38 research outputs found

    Aspect oriented service composition for telecommunication applications

    Get PDF
    This PhD dissertation investigates how to overcome the negative effects of cross cutting concerns in the development of composite service applications. It proposes a combination of dynamic aspect oriented programming with a rules driven service composition mechanism. This combination allows very flexible utilization of aspects based on run-time data. The thesis contributes a join-point model and it integrates techniques for weaving and advice definition into the underlying composition language and execution engine. A particular focus of the thesis is telecommunication applications with their unique model for utilizing heterogeneous constituent services and their severe real-time requirements. Next to its primary use for modular implementation and flexible deployment of concerns in telecommunication applications, the dissertation discusses AOP as a feature for automated management and customization of service applications. The verification of the proposed solution contributes a detailed assessment of run-time performance, including a theoretical model of the AOP implementation. It allows predicting the performance of various alternative solutions. The proposed solution for combined AOP and service composition provides properties, which directly address challenges in pervasive computing and the Internet of things. Thus, this dissertation advances beyond the telecommunication domain with results applicable to various highly relevant technical developments

    An interoperability framework for pervasive computing systems

    Full text link
    Communication and interaction between smart devices is the foundation for pervasive computing and the Internet of Things. Pervasive platforms, that support developers in building new services and applications, have been extensively researched in the past. Nowadays, a multitude of heterogeneous pervasive platforms exist. In real-world deployments, this leads to the formation of platform-specific silos. Therefore, the need for interoperability between such platforms arises. This thesis presents a framework which addresses all elaborated issues preventing co-operation between different platforms and allows for extension and customisation of different aspects, including platforms and transformation mechanisms. The framework bases on uniform abstractions that support translations of different features. The transformation model provides an automatic as well as a manual transformation mechanism. For evaluation, a prototype is implemented and assessed, providing support for six distinct platforms. Particularly, the framework’s feasibility is demonstrated with three realistic scenario implementations, an effort evaluation, and a cost evaluation

    Prototype ultrasonic wayfinder with haptic feedback for an IOT environment

    Get PDF
    Pervasive computing and the Internet of Things (IoT) have stimulated the development of many new assistive devices. It is possible to incorporate sensors such as acoustic, inductive, capacitive, temperature, humidity, pressure, location, and many more. Haptic feedback provides a person with sensory information through the skin using vibration or force-feedback responses. Commercial organizations have moved very quickly into this design space, particularly Sunu (smart-watch), HandSight (cameras on glove), and others. Arduino and Raspberry Pi are examples of the computing platforms currently in use. Sonar or ultrasonic transducers enable the production of lighter equipment with improved functionalities. Sonar as a means of assistive navigation has been used extensively in maritime environments to detect animals (D'Amico and Pittenger, 2009, Evans and Awbrey, 1988). As an assistive technology, there are projects for the blind which upgrade their walking sticks with an ultrasonic sensor (Amemiya and Sugiyama, 2010). Similar projects have been undertaken worldwide and most devices can only provide one or two designated functions. The size of the completed device is small enough to embed on a shoe, a walking stick, or on a wheelchair. A sonar sensor can detect something less than a meter from an individual user. This study uses a glove to attach a sonar sensor on a Raspberry Pi 0, whereas the Tacit glove (Hoefer, 2011) carries two sonar sensors with an Arduino controller actuating vibrating motors on a glove

    SISTEM PEMBAYARAN PARKIR MENGGUNAKAN NEAR FIELD COMMUNICATION BERBASIS ANDROID DAN TEKNOLOGI INTERNET OF THINGS

    Get PDF
    Abstract—This paper proposes a design of the parking payment system using NFC (Near Field Communication) and GPS (Global Position System) to create parking payment method smarter. The main contributions of this work is to apply the concept of pervasive computing and the Internet of Things (IOT) in the construction of the parking system, so that users become more comfortable to park their vehicles. This is achieved by a Wifi installed parking location and a unique SSID name. The system will perform sensing to users who enter the parking location using the IMEI. Parking payments using applications on smartphones with NFC Enable a way brought closer to the NFC reader in the system. Users tapping on a smartphone with NFC reader to Enable NFC to perform early initialization process the vehicle park will record the user ID, date, and the balance of virtual money. Apps on smartphones will record the parking location coordinates corresponding vehicle parking location selected by the user. Furthermore, the application will help users find the location of the vehicle when user forgotten the position. Parking payment system in this study has been successfully built by avoiding the use of paper tickets so it will be easier for users and more environmentally friendly. Keyword— Smart Parking Payment, NFC, Pervasive Computing, IoT, EMEI Sensin

    Semantic Blockchain to Improve Scalability in the Internet of Things

    Get PDF
    Generally scarce computational and memory resource availability is a well known problem for the IoT, whose intrinsic volatility makes complex applications unfeasible. Noteworthy efforts in overcoming unpredictability (particularly in case of large dimensions) are the ones integrating Knowledge Representation technologies to build the so-called Semantic Web of Things (SWoT). In spite of allowed advanced discovery features, transactions in the SWoT still suffer from not viable trust management strategies. Given its intrinsic characteristics, blockchain technology appears as interesting from this perspective: a semantic resource/service discovery layer built upon a basic blockchain infrastructure gains a consensus validation. This paper proposes a novel Service-Oriented Architecture (SOA) based on a semantic blockchain for registration, discovery, selection and payment. Such operations are implemented as smart contracts, allowing distributed execution and trust. Reported experiments early assess the sustainability of the proposal

    Configuration of smart environments made simple combining visual modeling with semantic metadata and reasoning

    Get PDF
    We present an approach that combines semantic metadata and reasoning with a visual modeling tool to enable the goal-driven configuration of smart environments for end users. In contrast to process-driven systems where service mashups are statically defined, this approach makes use of embedded semantic API descriptions to dynamically create mashups that fulfill the user's goal. The main advantage of the presented system is its high degree of flexibility, as service mashups can adapt to dynamic environments and are fault-tolerant with respect to individual services becoming unavailable. To support end users in expressing their goals, we integrated a visual programming tool with our system. This tool enables users to model the desired state of their smart environment graphically and thus hides the technicalities of the underlying semantics and the reasoning. Possible applications of the presented system include the configuration of smart homes to increase individual well-being, and reconfigurations of smart environments, for instance in the industrial automation or healthcare domains

    Eversion, Ecology, Touch, and Rain: A Post-Pc Rhetoric

    Get PDF
    The post-PC era of computing offers digital rhetors an opportunity to innovate their inventional approaches. The new era is one in which an ecology of networked, distributed, sensor-based devices amplify our perceptions of self and world by changing the ecological relations that define our connections to our techno-social environments. By extending Casey Boyle’s posthuman practice of rhetorical invention to the new computational era, rhetoricians can develop digital interactive projects that move participants by amplifying the choric bases of their perceptions of self and world

    Towards Effective and Efficient Data Management in Embedded Systems and Internet of Things

    Get PDF
    The majority of today low-end and low-cost embedded devices work in dynamic environments under several constraints such as low power, reduced memory, limited processing and communication, etc. Therefore, their data management is critical. We introduce here a general method for data representation, storage, and transmission in embedded systems based on a compact representation scheme and some heuristics. This method has been implemented, tested, and evaluated within a vehicle tracking system that uses an in-house very low cost microcontroller-based telemetry device, which provides for near-real-time remote vehicle monitoring, energy consumption, ubiquitous health, etc. However, our method is general and can be used for any type of low-cost and resource-constrained embedded device, where data communication from the device to the Internet (or cloud) is involved. Its efficiency and effectiveness are proven by significant reductions of mobile data transmitted, as our case study shows. Further benefits are reducing power consumption and transmission costs
    corecore