481,098 research outputs found

    Ecological Traits Fail to Consistently Predict Moth Species Persistance in Managed Forest Stands

    Get PDF
    Species traits have been used as predictors of species extinction and colonization probabilities in fragmented landscapes. Thus far, trait-based analytical frameworks have been less commonly employed as predictive tools for species persistence following a disturbance. I tested whether life history traits, dietary traits, and functional traits were correlated with moth species persistence probabilities in forest stands subjected to varying levels of timber harvest. Three harvest treatments were used: control stands (unharvested since 1960), shelterwood cut stands (15% canopy removed), and patch cut stands (80% standing bole removed). Logistic regression models were built to assess whether species persistence probabilities were a function of species traits; separate models were constructed for each level of timber harvest treatment. Species persistence probabilities were mainly a function of pre-harvest abundances. Species traits had idiosyncratic effects on species persistence depending on the level of timber harvest employed. These results suggest that species traits may indirectly influence how moth species assemblages change as a result of forest management by determining pre-harvest abundance rather than persistence per se. The absence of significant trait effects on persistence probabilities may also reflect prior reduction in species trait space. That is, the range of species trait combinations sampled in this study was much lower than observed in historically unlogged eastern deciduous forest systems. Thus, the lack of significant trait-persistence correlations observed here might indicate historic extinctions of species from prior logging events that have not been offset by post-harvest recovery of original species assemblages

    Optimally Controlled Field-Free Orientation of the Kicked Molecule

    Full text link
    Efficient and long-lived field-free molecular orientation is achieved using only two kicks appropriately delayed in time. The understanding of the mechanism rests upon a molecular target state providing the best efficiency versus persistence compromise. An optimal control scheme is referred to for fixing the free parameters (amplitudes and the time delay between them). The limited number of kicks, the robustness and the transposability to different molecular systems advocate in favor of the process, when considering its experimental feasibility.Comment: 5 pages, 2 figures (version 2 contains some minor additions and corrects many misprints

    A geometric characterisation of persistently exciting signals generated by autonomous systems

    Get PDF
    The persistence of excitation of signals generated by time-invariant, continuous-time, autonomous linear and nonlinear systems is studied. The notion of persistence of excitation is characterised as a rank condition which is reminiscent of a geometric condition used to study the controllability properties of a control system. The notions and tools introduced are illustrated by means of simple examples and of an application in system identification

    Semi-Global Persistence and Stability for a Class of Forced Discrete-Time Population Models

    Get PDF
    We consider persistence and stability properties for a class of forced discrete-time difference equations with three defining properties: the solution is constrained to evolve in the non-negative orthant, the forcing acts multiplicatively, and the dynamics are described by so-called Lur’e systems, containing both linear and non-linear terms. Many discrete-time biological models encountered in the literature may be expressed in the form of a Lur’e system and, in this context, the multiplicative forcing may correspond toharvesting, culling or time-varying (such as seasonal) vital rates or environmental conditions. Drawing upon techniques from systems and control theory, and assuming that the forcing is bounded, we provide conditions under which persistence occurs and, further, that a unique non-zero equilibrium is stable with respect to the forcing in a sense which is reminiscent of input-to-state stability, a concept well-known in nonlinear control theory. The theoretical results are illustrated with several examples. In particular, we discuss how our results relate to previous literature on stabilization of chaotic systems by so-called proportional feedback control

    Combining genomics and epidemiology to analyse bi-directional transmission of mycobacterium bovis in a multi-host system

    Get PDF
    Quantifying pathogen transmission in multi-host systems is difficult, as exemplified in bovine tuberculosis (bTB) systems, but is crucial for control. The agent of bTB, Mycobacterium bovis, persists in cattle populations worldwide, often where potential wildlife reservoirs exist. However, the relative contribution of different host species to bTB persistence is generally unknown. In Britain, the role of badgers in infection persistence in cattle is highly contentious, despite decades of research and control efforts. We applied Bayesian phylogenetic and machine-learning approaches to bacterial genome data to quantify the roles of badgers and cattle in M. bovis infection dynamics in the presence of data biases. Our results suggest that transmission occurs more frequently from badgers to cattle than vice versa (10.4x in the most likely model) and that within-species transmission occurs at higher rates than between-species transmission for both. If representative, our results suggest that control operations should target both cattle and badgers

    On the design of persistently exciting inputs for data-driven control of linear and nonlinear systems

    Full text link
    In the context of data-driven control, persistence of excitation (PE) of an input sequence is defined in terms of a rank condition on the Hankel matrix of the input data. For nonlinear systems, recent results employed rank conditions involving collected input and state/output data, for which no guidelines are available on how to satisfy them a priori. In this paper, we first show that a set of discrete impulses is guaranteed to be persistently exciting for any controllable LTI system. Based on this result, for certain classes of nonlinear systems, we guarantee persistence of excitation of sequences of basis functions a priori, by design of the physical input only

    Tracking advanced persistent threats in critical infrastructures through opinion dynamics

    Get PDF
    Advanced persistent threats pose a serious issue for modern industrial environments, due to their targeted and complex attack vectors that are difficult to detect. This is especially severe in critical infrastructures that are accelerating the integration of IT technologies. It is then essential to further develop effective monitoring and response systems that ensure the continuity of business to face the arising set of cyber-security threats. In this paper, we study the practical applicability of a novel technique based on opinion dynamics, that permits to trace the attack throughout all its stages along the network by correlating different anomalies measured over time, thereby taking the persistence of threats and the criticality of resources into consideration. The resulting information is of essential importance to monitor the overall health of the control system and cor- respondingly deploy accurate response procedures. Advanced Persistent Threat Detection Traceability Opinion Dynamics.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Free-Space Graphics with Electrically Driven Levitated Light Scatterers

    Full text link
    Levitation of optical scatterers provides a new mean to develop free-space volumetric displays. The principle is to illuminate a levitating particle displaced at high velocity in three dimensions (3D) to create images based on persistence of vision (POV). Light scattered by the particle can be observed all around the volumetric display and therefore provides a true 3D image that does not rely on interference effects and remains insensitive to the angle of observation. The challenge is to control with a high accuracy and at high speed the trajectory of the particle in three dimensions. Systems that use light to generate free-space images either in plasma or with a bead are strictly dependent of the scanning method used. Mechanical systems are required to scan the particles in the volume which weakens the time dynamics. Here we use electrically driven planar Paul traps (PPTs) to control the trajectory of electrically charged particles. A single gold particle colloid is manipulated in three dimensions through AC and DC electrical voltages applied to a PPT. Electric voltages can be modulated at high frequencies (150 kHz) and allow for a high speed displacement of particles without moving any other system component. The optical scattering of the particle in levitation yields free-space images that are imaged with conventional optics. The trajectory of the particle is entirely encoded in the electric voltage and driven through stationary planar electrodes. We show in this paper, the proof-of-concept for the generation of 3D free space graphics with a single electrically scanned particle
    • …
    corecore