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Abstract Quantifying pathogen transmission in multi-host systems is difficult, as exemplified in

bovine tuberculosis (bTB) systems, but is crucial for control. The agent of bTB, Mycobacterium

bovis, persists in cattle populations worldwide, often where potential wildlife reservoirs exist.

However, the relative contribution of different host species to bTB persistence is generally

unknown. In Britain, the role of badgers in infection persistence in cattle is highly contentious,

despite decades of research and control efforts. We applied Bayesian phylogenetic and machine-

learning approaches to bacterial genome data to quantify the roles of badgers and cattle in M.

bovis infection dynamics in the presence of data biases. Our results suggest that transmission

occurs more frequently from badgers to cattle than vice versa (10.4x in the most likely model) and

that within-species transmission occurs at higher rates than between-species transmission for both.

If representative, our results suggest that control operations should target both cattle and

badgers.
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Introduction
Control of a pathogen in a system where it can infect multiple species requires an understanding of

the role of each host species in the infection dynamics (Haydon et al., 2002). For example, when

each host species is capable of maintaining infection independently, control operations in one spe-

cies can be rendered ineffective as a result of spillover from another. Mycobacterium bovis infection

in cattle populations (resulting in bovine tuberculosis - bTB) is a problem around the world

(Ayele et al., 2004; Cousins and Roberts, 2001; de Kantor and Ritacco, 2006; Godfray et al.,

2013; Reviriego Gordejo and Vermeersch, 2006; Schmitt et al., 2002), with many wildlife species

implicated in its spread and persistence in different bTB systems (Delahay et al., 2002;

Gortazar et al., 2003; Miller and Sweeney, 2013; Nugent, 2005; Nugent et al., 2015). On the

islands of Britain and Ireland, the current evidence suggests that effective control of infection in cat-

tle is hindered by transmission from an infected wildlife population – the European badger (Meles

meles) (Godfray et al., 2013).

Although a considerable amount of research demonstrates an association between M. bovis

found in sympatric cattle and badger populations (Balseiro et al., 2013; Goodchild et al., 2012;

Olea-Popelka et al., 2005; Vial et al., 2011; Woodroffe et al., 2005), quantification of the direction

and extent of transmission remains elusive. Recent studies using whole genome sequences (WGS)

have demonstrated a close genetic relationship among M. bovis isolates taken from sympatric cattle

and wildlife populations (Biek et al., 2012; Glaser et al., 2016; Patané et al., 2017). However, the

low genomic variability of M. bovis and imbalanced sampling across host species has limited the

ability to identify the direction of transmission. Evidence to date suggests that, even with access to

pathogen sequence data, obtaining directional estimates of transmission might only be possible at

the population level and will require dense targeted sampling and fine-grained epidemiological

metadata (Kao et al., 2016; Kao et al., 2014), as has previously been demonstrated in investiga-

tions of M. tuberculosis outbreaks in humans (Bryant et al., 2013; Gardy et al., 2011;

Guthrie et al., 2018; Walker et al., 2012; Walker et al., 2018; Yang et al., 2017) and in tracing

between cattle herds for outbreaks of M. bovis (Biek et al., 2012; Salvador et al., 2019). However,

eLife digest Disease-causing microbes that infect more than one type of animal can be difficult

to control. This is especially true when they infect wildlife. For example, Mycobacterium bovis is a

bacterium that causes tuberculosis in tens of thousands of cattle in Britain every year and also infects

badgers and other wildlife. Controlling the infections in cattle is essential, as it helps prevent the

bacteria from infecting humans, improves cattle welfare and reduces the substantial costs to the

livestock industry.

Analysing the relatedness of M. bovis genomes from infected cattle and badgers may help

scientists work out how often badgers infect cattle and vice versa. Scientists have collected data and

M. bovis samples from infected badgers in Woodchester Park, in England, for over three decades.

Using these data and additional information about M. bovis infecting nearby cattle may help

scientists learn how the bacteria spreads and how to stop it.

Now, Crispell et al. show that complex patterns of contact between cattle and badgers likely

drive the persistence of tuberculosis in cattle, also known as bovine tuberculosis. In three separate

analyses, Crispell et al. compared the genomes of M. bovis found in cattle and badgers, the animals’

locations, when they were infected, and whether they could have been in contact. The analyses

found that M. bovis was likely to have been transmitted more frequently from badgers to cattle

rather than from cattle to badgers. They also showed that transmission within each species

happened more often than transmission between species.

If these results are confirmed by other studies, they may help scientists develop better strategies

for controlling tuberculosis in British cattle. In particular, controversial control strategies – such as

badger culls – could be more targeted to better combat tuberculosis in cattle but have less of an

impact on badgers. These insights might also aid control efforts in other countries where bovine

tuberculosis is a problem and an important source of human tuberculosis.
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these approaches have yet to be applied to situations where dense multi-host pathogen data are

available.

Since the 1970s, a high-density naturally infected badger population at Woodchester Park in

southwest England has been the subject of detailed study (Delahay et al., 2013). Both the resident

badgers and sympatric cattle herds are frequently infected with M. bovis, providing the potential for

inter-species transmission of infection to occur in either direction (DEFRA, 2017; Delahay et al.,

2013). The data and samples associated with bTB occurrence in and around Woodchester Park are

uniquely detailed, with individual-level host life history data and archived M. bovis isolates available

for both the cattle (Orton et al., 2018) and badger (Delahay et al., 2013) populations. By combin-

ing WGS of selected cattle and badger isolates, with detailed local population data from this excep-

tionally in-depth study system, our work aimed to quantify the relative roles of the local badger and

cattle populations in the spread and persistence of M. bovis in an endemic area.

Based on previous evidence of transmission between cattle and badgers, and the success of com-

bining detailed tracing methods with WGS for M. tuberculosis, our hypothesis is that M. bovis circu-

lation in our endemic setting is not limited to a single maintenance host and that it involves bi-

directional transmission between the two host populations. Our research aimed to test this hypothe-

sis and to quantify transmission patterns by analysing the Woodchester Park data using a series of

statistical and observational analyses linking pathogen genome data with diagnostic testing and

population movement and demographic data for both cattle and badgers.

Results

Selecting the isolates, generating and processing the sequencing data
Archived M. bovis isolates were available from 116 badgers and 189 cattle living in and around

Woodchester Park. Multiple isolates were available from the sampled badgers, resulting in a total of

230 isolates sourced from badgers. These isolates were whole genome sequenced, and, after quality

assessments, 193 badger-derived (from 98 individual badgers taken from 2000 to 2011) and 159 cat-

tle-derived sequences (from 1988 to 2013) were retained for further analyses.

Evidence of epidemiological signatures in the genetic data
To investigate the presence of spatial, temporal, and network signatures associated with infection

dynamics in the M. bovis genomic data, inter-sequence genetic distances were calculated between

all the cattle- and badger-derived sequences and compared to population metrics. The metrics

described the spatial-, temporal-, and network-based relationships that were expected to be associ-

ated with pathogen transmission. The genetic and epidemiological data were compared using Ran-

dom Forest (Liaw and Wiener, 2002) and Boosted Regression (Elith et al., 2008) models in R

(v3.4.3; R Development Core Team, 2016) to separately analyse badger–badger (n = 12483), cat-

tle–cattle (n = 1927), and badger–cattle (n = 4838) comparisons.

The Random Forest (and Boosted Regression) models were able to explain approximately 67%

(62%), 60% (54%) and 75% (70%) of the variation observed in the inter-sequence genetic distance

distributions associated with the badger–badger, cattle–cattle, and badger–cattle comparisons,

respectively. For each of these models, metrics based on spatial and temporal distances were the

most informative in explaining the variation in the genetic distances. Generally, as the temporal and

spatial distances associated with the sampled animals decreased, the number of differences

between the M. bovis genomes decreased (Appendix 1—figures 5, 6 and 7). There was substantial

agreement in the variable rankings between the Random Forest and Boosted Regression models

(Appendix 1—figures 2, 3 and 4). For the within-species comparisons metrics, the network data

were also highly informative. Generally, the number of differences between the genomes associated

with a pair of animals of the same species decreased as the connectedness of their social groups

(badgers) or herds (cattle) increased. The variation explained by the Random Forest models and the

high ranking of spatial-, temporal-, and network-based metrics was robust to the presence of highly

correlated or non-informative metrics and those with missing data (data not shown).
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Figure 1. A Maximum Likelihood phylogenetic tree constructed using RAxML (v8.2.11; Stamatakis, 2014) and rooted against the Mycobacterium bovis

reference sequence, AF2122/97 (Malone et al., 2017). Badger and cattle isolates are represented at the tips of the phylogeny by circles and triangles,

respectively. Five clades, labelled 1–5, are highlighted with cyan, pink, green, purple, and brown branches, respectively. Cattle and badger isolates

within the clades can be distinguished by their shape and colour. Each internal node in the phylogeny is shown as a grey to black shaded circle, with

the intensity of the shading indicating the amount of support each node had across 100 bootstraps.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Each of the clades from Figure 1 in the main manuscript are plotted separately.
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Figure 2. Life history summaries of the sampled and in-contact cattle and badgers associated with clade 4 in Figure 1. (a) The number of in-contact

badgers associated with the sampled badgers (total in grey, number of animals that have tested positive in red). (b) The number of in-contact cattle

associated with the sampled cattle (total in grey [right axis], number of animals that reacted inconclusively [red] or positively [blue] to routine skin test

Figure 2 continued on next page
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Inter-species clades identified in the phylogeny
The relatedness of M. bovis genomes sampled from the cattle and badgers was evaluated by con-

structing a phylogenetic tree (Figure 1) using RAxML (v8.2.11; Stamatakis, 2014). Genetic diversity

was observed between the cattle- and badger-derived M. bovis sequences, with the number of Sin-

gle Nucleotide Variants (SNVs) between sequences ranging from 0 to 150 (median = 20). Five clades

including cattle- and badger-derived sequences were identified (Figure 1 and Figure 1—figure sup-

plement 1), using a 10 SNV threshold (informed by thresholds used for M. tuberculosis

[Bryant et al., 2013; Jajou et al., 2018; Roetzer et al., 2013; Yang et al., 2017]).

Four of the five clades (1–4) identified contained highly similar (within three SNVs) badger- and

cattle-derived M. bovis sequences. The badger-derived M. bovis sequence in clade 5 was six SNVs

away from its closest cattle-derived sequence. The similarities between the cattle-derived and bad-

ger-derived M. bovis sequences in clades 1–4 indicate recent shared transmission histories

(Meehan et al., 2018). Clade 4 (highlighted in purple in Figure 1) contained the majority (156/193)

of the badger-derived M. bovis sequences and represents the main lineage circulating within the

Woodchester Park badger population. In addition, the presence of 16 cattle-derived sequences in

clade 4, 15 of which were distant (up to 12 SNVs) from the clade root is consistent with multiple bad-

ger-to-cattle transmission events. In contrast, the presence of cattle-derived sequences close to the

roots of clades 1–5 suggests that these lineages might have originated in cattle, although these pat-

terns could also be explained by the cattle population being sampled up to 12 years prior to the

badger population (cattle were sampled from 1988 to 2013 and badgers from 2000 to 2011).

Although clades 1 and 5 contained highly similar sequences originating from cattle and badgers,

each clade was associated with only eight animals, making meaningful inference of inter-species

transmission patterns difficult. In addition to inter-species clades, several cattle-only clades were

identified (Figure 1).

Consistent with our hypothesis, the close proximity of M. bovis genomes sourced from cattle and

badgers suggests that inter-species transmission occurred in the sampled system. In addition, the

presence of clades dominated by a single species suggests that sustained within-species transmis-

sion has been occurring in both the cattle and badger populations.

The life histories of the sampled cattle and badgers and in-contact animals associated with the

inter-species clades (clades 1–5) identified in Figure 1 were interrogated. In this manuscript, a bad-

ger or cow is considered ‘sampled’, if one of the M. bovis genomes analysed here was sourced from

it. In-contact animals were defined as those that lived in the same herd (for cattle) or social group

(for badgers) at the same time as one or more of the sampled animals, according to the available

data. From the interrogations of the life history data, further evidence indicative of inter-species

transmission and disease maintenance in the Woodchester Park badger population was identified

for the animals associated with clade 4 (Figure 2; equivalent figures for the remaining clades can be

found in Figure 2—figure supplements 1, 2, 3, and 4). Infection was detected in the majority of the

sampled badgers before it was detected in the majority of the sampled cattle. Sampled badgers

were present in Woodchester Park at least from 1993 until 2011, based on the available capture and

sampling data (Figure 2c). The sampled badgers were in contact with 575 captured badgers, 291

(51%) of which had tested positive for M. bovis infection at some point in their lives (Figure 2a). In

contrast, the sampled cattle were in contact with 1760 cattle, of which only 312 (18%) tested positive

for M. bovis (Figure 2b). In the animals associated with clade 4, infection was detected earlier in

badgers, except in the case of one cow, despite the cattle population being sampled over a broader

temporal and spatial window (see Materials and methods section: ‘Selecting the isolates’ for more

Figure 2 continued

[left axis]). In-contact animals are those that lived in the same herd (cattle) or social group (badgers) at the same time as the sampled animals. (c) The

recorded lifespans of the sampled cattle (black horizontal bars) and badgers (grey horizontal bars) associated with clade 4.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Life history summaries of the sampled and in-contact cattle and badgers associated with clade 1 in Figure 1.

Figure supplement 2. Life history summaries of the sampled and in-contact cattle and badgers associated with clade 2 in Figure 1.

Figure supplement 3. Life history summaries of the sampled and in-contact cattle and badgers associated with clade 3 in Figure 1.

Figure supplement 4. Life history summaries of the sampled and in-contact cattle and badgers associated with clade 5 in Figure 1.
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Figure 3. Comparison of likelihood scores and inter-species transition rate estimates from the BASTA analyses. Model structure is described in

Figure 6, and for each model the sizes of defined demes were held equal or allowed to vary. (a) The Akaike Information Criterion Markov Chain Monte

Carlo (AICM; Baele et al., 2013) scores (lower is better) calculated for each of the representations of a structured population analysed in BASTA

(Figure 6). The vertical lines show the lower and upper (2.5% and 97.5%, respectively) bounds of the AICM scores computed on 100 bootstrapped

posterior likelihoods. (b) Estimated inter-species transition rates for each model. Where multiple badgers-to-cattle and cattle-to-badgers transition rates

Figure 3 continued on next page

Crispell et al. eLife 2019;8:e45833. DOI: https://doi.org/10.7554/eLife.45833 7 of 36

Research article Epidemiology and Global Health Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.45833


details). In addition, the badgers were the most represented species in clade 4. These two observa-

tions suggest that the clade 4 lineage was being maintained in the badger population. The single

cattle-derived sequence that was found closest to the root node of clade 4 (Figure 2c) was sourced

from an animal sampled six years prior to any sequences derived from badgers being available.

Across all inter-species clades investigated, the sampled cattle (n = 71) were in contact with approxi-

mately 11,732 animals, 1356 of which tested positive for M. bovis infection, whereas the sampled

badgers (n = 97) were in contact with approximately 650 badgers, over half of which (329) tested

positive.

Estimated inter-species transmission rates
Although the patterns observed in the phylogenetic and animal life history data were consistent with

inter-species transmission in both directions, further analyses were required to quantify the inter-spe-

cies transmission rates. These further analyses should account for the temporal and spatial sampling

biases resulting from the broader sampling window applied to the cattle population in time (1988 to

2013 versus 2000 to 2011) and space (cattle were sampled from up to 100 km away from the Wood-

chester Park area, whereas the badgers were only sampled from within Woodchester Park).

A series of analyses were conducted using the Bayesian Structured coalescent Approximation, or

BASTA, package (De Maio et al., 2018) available as part of Bayesian evolutionary analyses platform

BEAST2 (Bayesian Evolutionary Analysis by Sampling Trees; Bouckaert et al., 2014). These analyses

aimed to estimate the M. bovis inter-species transmission rates between the sampled badger and

cattle populations. BASTA is capable of estimating evolutionary dynamics in a structured population

and accounting for sampling biases. Here the sampled M. bovis population was structured as it was

circulating largely separately in the sampled cattle and badger populations, as seen in Figure 1 and

the strong population-specific epidemiological signatures found by the Random Forest and Boosted

Regression analyses. In addition, further structure exists within the cattle and badger populations as

these were subdivided into herds and social groups, respectively. A series of increasingly spatially

structured population models were defined to determine whether the inter-species transmission

rates estimated using BASTA were affected by the spatial patterns evident from the Random Forest

and Boosted Regression analyses. Structured population models were also chosen to address the

spatial sampling biases, by introducing an increasingly structured unsampled badger population.

Previous analyses have used BASTA in a similar fashion to estimate evolutionary dynamics in the

presence of unsampled populations (De Maio et al., 2015). To further reduce the influence of the

spatial and temporal biases and the computational load, the BASTA analyses used a subset of the

cattle- (n = 83) and badger-derived (n = 97) M. bovis sequences obtained between 1999 and 2014

within 10 km of Woodchester Park.

The AICM (Akaike’s Information Criterion Markov Chain Monte Carlo) score (Baele et al., 2013)

was used to compare the BASTA analyses based on different structured populations (Figure 3a).

The structured population with two demes (M. bovis populations in badgers and cattle) had the best

(lowest) AICM score, although there was considerable overlap with the bootstrapped AICM score

interval for one of the four deme models (splitting the M. bovis populations in badgers and cattle

into inner and outer populations based on being within or beyond 3.5 km from Woodchester Park

[Figure 3a]). The estimated inter-species transition rates provided from each BASTA analysis demon-

strated considerable variation, with some estimated cattle-to-badger transition rates bounding zero

(Figure 3b). The estimated transition rates can be considered equivalent to the transmission rates,

Figure 3 continued

were estimated (see Figure 6), the values were summed. The values above each vertical line represent the posterior probability of each rate, either as a

mean of probabilities associated with multiple estimated rates (for the 3Deme_outerIsBadgers, 4Deme, 6Deme, and 8Deme models) or a single

probability (for the 2Deme, 3Deme_outerIsBoth, and 3Deme_outerIsCattle models). (c) The number of transitions between the known and estimated

states counted on each phylogenetic tree in the posterior distribution produced by the ‘2Deme_equal’ structured population model analysed in BASTA

(counting is illustrated in Figure 3—figure supplement 1). The vertical lines show the lower and upper (2.5% and 97.5%, respectively) bounds of the

distributions.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Diagrams illustrating how the transmission events were counted on each of the phylogenies in the posterior distributions

produced by BASTA.
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because the states (between which the transition rates were estimated) considered here represented

different species. The estimates of the inter-species transition rates from the two-deme model with

the best AICM score support the existence of both badger-to-cattle transmission (0.045 times per

lineage per year, lower 2.5%: 0.028, upper 97.5%: 0.069) and cattle-to-badger transmission (0.0044

times per lineage per year, lower 2.5%: 0.00021, upper 97.5%: 0.017). Figure 3b shows the order of

magnitude differences between the estimated inter-species transmission rates, with the highest sup-

ported two-deme model estimating that badger-to-cattle transmission events occurred on average
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Figure 4. Steps involved in the analysis of M.bovis whole genome sequences and epidemiological data. Analyses are shown in blue and outputs and

inputs in black. Red arrows represent the removal of data. The three main outputs are highlighted with grey boxes. SNV: Single Nucleotide Variant.

BASTA: Bayesian Structured coalescent Approximation.
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10.4 times more frequently than cattle-to-badger transmission events in the sample population.

Figure 3c represents the lower bound on the number of times (according to the analyses based on

the favoured two-deme model) that the sampled M. bovis population was transmitted from one ani-

mal to another (regardless of sub-population and, where possible, assuming the ancestral node and

one of its daughter nodes represent infection in the same animal [Figure 3—figure supplement 1]).

The estimated counts of these transmission events are consistent with the estimated inter-species

transition rates and demonstrate that within-species transmission occurs at a higher rate. Specifically,

badger-to-badger transmission was estimated to occur at least 2.7 times more frequently than bad-

ger-to-cattle transmission (lower 2.5%: 2.2, upper 97.5%: 3.8). In cattle, analyses estimated that at

least 46 cattle-to-cattle transmission events occurred (lower 2.5%: 40, upper 97.5%: 56), whereas the

estimated number of cattle-to-badger events bounded zero (lower 2.5%: 0, upper 97.5%: 4, with a

median value of zero). The counts of events between individual animals outputted by BASTA repre-

sent the lower bound of the number of transmission events that occurred over the evolutionary

Inner:  3.5km

Outer:  10km ● Badger

Cow

Figure 5. Sampling locations of the 97 badgers and 83 cattle associated with the Mycobacterium bovis sequences selected for analysis in BEAST2.

Location represents the registered address of each sampled farm or the centroid of the estimated sampled badger social group’s territory boundary

(indicated by the red polygons). The overlaid circles were used to split the cattle- and badger-derived M. bovis sequences into ‘inner’ and ‘outer’

populations, the distances refer to the radius of each circle. The ‘inner’ circle was defined such that it contained all the locations associated with the

available badger-derived and closest (within the badger’s recorded home range of <1 km2 [Gittleman and Harvey, 1982; Garnett et al., 2005;

Macdonald et al., 2008; Roper et al., 2003]) surrounding cattle-derived M. bovis sequences.
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history of the sampled M. bovis population because they are estimated on the transmission chains

between the sampled and ancestral host animals and do not account for missing individuals in these

chains.

Taken together, the results from the BASTA analyses are consistent with the hypothesis that circu-

lation of M. bovis in our study populations involved transmission within and between the badgers

and cattle. In addition, the directional inter-species transmission rates indicate that transmission

from badgers to cattle occurred more frequently than transmission from cattle to badgers and inter-

species transmission rates were estimated to be considerably lower than intra-species transmission

rates.

Discussion
We hypothesised that the sampled M. bovis population was circulating within and between the sam-

pled cattle and badger populations. Testing our hypothesis across multiple analyses, we found that,

while none of these analyses are definitive in their own right, our results are consistent with our

hypothesis and suggest that there has been a long history of within- and between-species transmis-

sion in the Woodchester Park area, and an important role for badgers in disease persistence.

Cattle Badgers

2 demes

Cattle Badgers

3 demes - outer is cattle

Cattle Badgers

4 demes

Cattle Badgers

8 demes - east & west

Cattle Badgers

3 demes - outer is both

Cattle Badgers

3 demes - outer is badger

Cattle Badgers

6 demes - north & south

Cattle Badgers

6 demes - east & west

Cattle Badgers

8 demes - north & south

Figure 6. Deme assignment diagrams illustrating the different demes (sub-populations) defined in a range of structured population analyses conducted

using BASTA. In each analysis, the Mycobacterium bovis sequences available were assigned to each deme based upon the sampled species and their

sampling location. The grey doughnut in the badger demes represents an un-sampled population. These diagrams are based on the spatial

associations of the badger and cattle-derived M. bovis sequences shown in Figure 5.
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Our choice of analytical methods was based in part on our awareness of underlying data biases.

Ideally, sampling should be proportionate to prevalence in the host populations and matched over

the same spatial and temporal ranges. Here, the combination of poor sensitivities of the standard

tests for cattle (~50–80%; de la Rua-Domenech et al., 2006) and badgers (~50–70%;

Chambers et al., 2009) and a reliance on historical archived isolates, meant data biases were

unavoidable. Counterbalancing this weakness are the dense sampling of both host populations and

the exceptionally detailed metadata.

Random Forest and Boosted Regression models identified strong epidemiological signatures of

M. bovis transmission within and between host populations. Within species, metrics capturing the

spatial, temporal, and network dynamics were all highly informative, indicative of M. bovis circulation

being dependent on these factors. Between species, the variation observed between M. bovis

sourced from cattle and badgers was found to be well explained by where the animals resided and

when they were infected. Changes in these relationships could be exploited to rapidly identify

changes in the epidemiology, as might be caused by badger social perturbation under culling opera-

tions (Tuyttens et al., 2000; Woodroffe et al., 2006).

The present study identified further evidence of within- and between-species transmission in the

phylogenetic relationships between the M. bovis genomes (Figure 1). Five clades containing highly

similar M. bovis genomes derived from infected cattle and badgers were identified, suggesting that

substantial inter-species transmission had occurred. The presence of clades dominated by a single

host species was also consistent with sustained within-species transmission. However, these phyloge-

netic relationships are particularly sensitive to sampling biases and should be interpreted with cau-

tion. For example, one interpretation of the basal location of the cattle-derived M. bovis genomes in

the clades shown in Figure 1 is that they originated in cattle. Alternatively, this pattern could be the

result of sampling the cattle population over a broader temporal range (from 1988 to 2013) than the

badgers (2000 to 2011).

Further interrogation of the cattle and badger life histories associated with clade 4 (Figure 1)

revealed evidence of prolonged persistence of this lineage in the badger population (Figure 2).

Despite the cattle population being sampled over a longer time period, the badgers associated with

clade 4 were predominantly infected earlier than the cattle and that strain persisted in the badgers

for over 10 years. The remaining clades examined suggested that cattle could have been infected

before badgers; however, it was not possible to determine whether badgers outside of Woodches-

ter Park could be driving these interactions. Our results do suggest that inter-badger transmission is

likely to be dominated by short-range interactions, given that short spatial distances (all less than 3.7

km) were highly informative in describing the genetic relationships examined in the machine learning

analyses. Therefore, badgers further away from Woodchester Park are unlikely to be directly driving

the patterns observed in our sampled badger population, and the ‘invading’ clades observed here

are more parsimoniously explained by introductions of M. bovis from cattle. An additional limitation

of these analyses is that no other wildlife species were sampled. Previous research by Delahay et al.

(2007) found other mammal species infected with M. bovis in the area, albeit at lower prevalence

(7.2% in Fallow deer and 6.8% in Muntjac deer) than the sampled badger population (~30%;

Delahay et al., 2013).

Given considerable evidence in the present study for inter-species transmission of M. bovis, we

next used BASTA, an analysis platform that can account for sampling biases (De Maio et al., 2018),

to quantify these processes (Figure 3b). The BASTA analyses estimated transition rates between

demes within a structured population. As the demes within the structured model were species-spe-

cific, the estimated between-species transition rates can be considered equivalent to transmission

rates between populations of badgers and cattle. The most favoured two-deme model estimated

badgers-to-cattle transmission rates were, on average, 10.4 times higher than cattle-to-badgers

transmission rates (Figure 3a and b). However, the second most favoured four-deme model (which

included a more complex population structure) estimated that inter-species transmission rates were

close to equal. Although even structured coalescent models do not accurately reflect spatial contact

patterns, that the simplest ‘two-deme’ model is favoured is encouraging (i.e. more spatially struc-

tured models do not perform better). However, the two-deme model may also have been favoured

because of the limited genetic diversity available to estimate the evolutionary parameters and there-

fore further exploration with explicitly spatial approaches is an important next step.
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In the process of quantifying inter-species transmission rates, the BASTA analyses also provide

counts of the number of transmission events within and between the sampled badgers and cattle

(Figure 3c). These counts provide a conservative estimate of the minimum number of transitions

between the sampled animals and their ancestors. Although it is not appropriate to directly compare

the counts within- and between-species, they do demonstrate that, at a minimum, within-species

transmission occurs at least twice as frequently as between-species transmission. The high degree of

within-species transmission estimated here is consistent both with the results of other studies that

highlight the importance of cattle-to-cattle transmission (Costello et al., 1998; Gilbert et al., 2005;

Goodchild and Clifton-Hadley, 2001; Green et al., 2008; Menzies and Neill, 2000), and the persis-

tent long-term infection observed in the Woodchester Park badger population (Delahay et al.,

2013).

The high-density badger population in Woodchester Park is likely to be similar to populations

found in other parts of southwest England (Judge et al., 2017). However, broader representative-

ness should be confirmed by comparison to sympatric cattle and badger populations elsewhere in

Britain and Ireland, particularly in areas with high bTB incidence. In addition, we selected only iso-

lates of spoligotype SB0263, as this was the dominant type in the badger population. The selection

of SB0263 could artificially inflate the badgers-to-cattle transition rates estimated here, as the high

prevalence of this spoligotype in the badgers could be a reflection of host preference. However,

though there are known phenotypic differences between spoligotypes, there is no evidence that

these fundamentally change the epidemiology (Garbaccio et al., 2014; Wright et al., 2013). In

addition, many different M. bovis spoligotypes have been observed in sympatric badger and cattle

populations (Smith et al., 2003) and SB0263 is not only one of the most common spoligotypes in

the UK (Smith et al., 2003), it is also highly prevalent in the cattle around Woodchester Park.

If the transmission interactions estimated in our research are replicated elsewhere, this could help

to explain the failure of efforts to address recurrent and persistent infection in cattle herds that co-

exist with badger populations (Gallagher et al., 2013; Karolemeas et al., 2011). In addition, the bi-

directional transmission of M. bovis between species has the potential to combine local persistence

in badgers with the long-distance mobility of the cattle. In line with a recent evidence review

(Godfray et al., 2018), our research also suggests that coordinated bTB control in both cattle and

badgers may be necessary to control infection in cattle. More generally, our analyses illustrate the

complex interplay that underpins multi-host pathogen problems and demonstrate that, despite this

complexity, appropriately defined suites of methods can be used to overcome issues of data biases

and identify important epidemiological properties of these systems.

Materials and methods

Analyses layout
Figure 4 describes the complete set of analyses conducted on the M. bovis whole genome sequen-

ces sourced from infected cattle and badgers living in and around Woodchester Park. These analyses

are described in the sections that follow.

Selecting the isolates
Since 1976, the Woodchester Park badger population has been the subject of a capture-mark-recap-

ture study whereby each badger social group is trapped four times a year (Delahay et al., 2013).

Social group territories are delineated annually using bait-marking (Delahay et al., 2000). During

trapping operations, each captured badger is given a unique tattoo and at each capture event a

number of samples are obtained to determine M. bovis infection status (full details described in

Delahay et al., 2013). From 1990 onwards, any M. bovis isolated from samples taken during trap-

ping were spoligotyped (spacer-oligo typing) using conventional methods (Aranaz et al., 1996) and

archived. Spoligotyping reports the presence or absence of 43 known spacer sequences within a sin-

gle direct repeat region of the M. bovis genome. In total, 230 isolates were available from the

archive, which originated from samples taken from 116 different badgers from 2000 to 2011.

The cattle herds surrounding Woodchester Park undergo statutory annual testing for M. bovis

infection as a part of routine surveillance, and results are stored in APHA’s cattle testing (SAM) data-

base (Lawes et al., 2016). Test-positive cattle are slaughtered, selected tissues taken for culture and
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any M. bovis isolates are spoligotyped and archived. In addition, the movements of every cow in the

UK are recorded in the Cattle Tracing System (CTS). For the present study 124 cattle-derived M.

bovis isolates, each collected from an individual cow between 1988 and 2013, were selected from

the archives. Cattle isolates were selected if they were of the same spoligotype as the badger iso-

lates and were from herds within 10 km of Woodchester Park. More than 90% of the badger-derived

isolates were spoligotype SB0263. More than 75% (1096/1442) of the isolates available from cattle

within 10 km of Woodchester Park shared the same spoligotype and it is the second most common

type found across England (Smith et al., 2003; Smith et al., 2006). To increase the chances of

sequencing strains that were shared with the badgers in Woodchester Park, rather than circulating in

the cattle population independently, only cattle-derived isolates of spoligotype SB0263 were

selected. Additional spoligotype SB0263 isolates from cattle that lived in herds within 100 km of

Woodchester Park (n = 65) were included to provide a broader spatio-temporal context, resulting in

a total of 189 isolates.

Generating and processing the sequencing data
Badger-derived M. bovis isolates were prepared for sequencing by the Agri-Food and Biosciences

Institute in Northern Ireland (AFBI-NI) and for the cattle-derived isolates by APHA. M. bovis isolates

were selected from the frozen archives and re-cultured on Löwenstein-Jensen medium. Prior to DNA

extraction the isolates were heat killed in a water bath at 80˚C for a minimum of 30 min. DNA was

extracted from these cultures using standard high salt and cationic detergent cetyl hexadeycl tri-

methyl ammonium bromide (CTAB) and solvent extraction protocols (Parish and Stoker, 2001;

van Soolingen et al., 2001). Extracted DNA was sequenced at the Glasgow Polyomics facility using

an Illumina Miseq producing 2 � 300 bp paired end reads (badger derived isolates) and at the

APHA central sequencing unit in Weybridge using an Illumina Miseq producing 2 � 150 bp paired

end reads (cattle derived isolates). The 65 additional cattle-derived isolates were sequenced at the

APHA central sequencing unit in Weybridge using an Illumina NextSeq producing 2 � 150 bp paired

end reads (cattle-derived isolates).

Following quality assessments in FASTQC (v0.11.2; Andrews, 2010; RRID:SCR_014583), the raw

WGS data were trimmed using PRINSEQ (v0.20.4; Schmieder and Edwards, 2011; RRID:SCR_

005454) and adapters were removed using TRIMGALORE (v0.4.1; Krueger, 2015; RRID:SCR_

016946). The trimmed data were aligned to the M. bovis reference genome (AF2122/97;

Malone et al., 2017) using the Burrows-Wheeler aligner (BWA, v0.7.17; Li and Durbin, 2009; RRID:

SCR_010910). Regions encoding proline-glutamate and proline-proline-glutamate surface proteins,

or annotated repeat regions were excluded (Sampson, 2011). Mapping quality information on all

the SNVs identified was retained for each isolate.

The allele frequencies at each position in the aligned (against reference) sequence from each iso-

late were examined. For a haploid organism these frequencies are expected to be either 0 or 1, with

some random variation expected from sequencing errors (Sobkowiak et al., 2018). A heterozygous

site was defined as one where the allele frequencies were >0.05 and <0.95. Four cattle-derived

sequences that had more than 150 heterozygous sites, and allele frequencies that were clustered

and non-random (data not shown), were removed. In addition, 26 badger-derived and 16 cattle-

derived M. bovis sequences were removed because of suspected errors in the metadata (Appendix

1: Investigating isolate metadata discrepancies).

For the sequences from the remaining isolates (204 badger- and 169 cattle-derived isolates),

alleles were called at each variant position if they had mapping quality �30, high-quality base

depth �4 (applied to reverse and forward reads separately), read depth �30, and allele

support �0.95. For any site that failed these criteria, if the allele called had been observed in a dif-

ferent isolate that had passed, a second round of filtering was conducted using a high-quality base

depth of 5 (total across forward and reverse reads) and the same allele support. As recombination is

thought to be extremely rare for mycobacteria (Namouchi et al., 2012), variants in close proximity

could indicate a region that is difficult to sequence or under high selection. To avoid calling variants

in these regions, variant positions within 10 bp of one another were removed. Following filtering,

sequences from 11 badger and 10 cattle isolates that had insufficient coverage (<95%) of the variant

positions were removed. Once the alignment was generated, sites with a consistency index less than

1, generally considered homoplasies (Farris, 1989), were removed (n = 4, of 14,991 sites) using
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HomoplasyFinder (v0.0.0.9; Crispell et al., 2019; RRID: SCR_017300). All the scripts necessary for

the processing of the WGS data are freely available online.

Comparing genetic and epidemiological distances
Our research hypothesized that within- and between-species transmission was occurring in the study

system. If bi-directional transmission was occurring, then there should be epidemiological signatures

in the genomic data linked to these events. These signatures are likely to relate to the spatial, tem-

poral, and network dynamics of the sampled badger and cattle populations, as these will determine

their contact patterns.

To investigate whether there were any epidemiological signatures of within- and between-species

transmission of the sampled M. bovis isolates, the genetic distances between sequences were com-

pared to epidemiological metrics describing the spatial, temporal, and network relationships

between the animals associated with each sequence. Inter-sequence genetic distances were calcu-

lated, for every pair of sequences, by dividing the number of differences present between the pair

of sequences by the total number of sites considered (n = 14,987). In addition, epidemiological met-

rics were calculated to identify any similarities among animals associated with a particular pair of iso-

lates. Epidemiological metrics were calculated using the data, where available, on each animal

obtained from its capture or movement and testing history (further details in Appendix 1: Defining

the epidemiological metrics). Two additional dummy metrics, samples from a uniform distribution

and a Boolean distribution, were included to determine a threshold of importance that distinguishes

noise from signal. Inter-isolate genetic distances and associated epidemiological metrics were com-

pared using Random Forest (RRID:SCR_015718; Liaw and Wiener, 2002) regression and Boosted

Regression (RRID:SCR_017301; Elith et al., 2008) models in R (v3.4.3; R Development Core Team,

2016). These machine learning approaches were used to separately analyse badger–badger, bad-

ger–cattle, and cattle–cattle comparisons. For each set of comparisons, a training dataset was con-

structed using 50% of the data available and, following training using these data, the model was

tested on the remaining 50% of the data. Genetic distances � 15 SNVs were used for these analyses

to avoid larger inter-sequence distances that were not likely to relate to the fine resolution epidemi-

ological relationships of interest.

Random Forest and Boosted Regression approaches were selected as these methods can deal

with large datasets with many highly correlated variables whose relationship to the response variable

(genetic distances) cannot readily be defined (Auret and Aldrich, 2012). A broad range of epidemi-

ological metrics were defined as the Random Forest and Boosted Regression models are robust to

non-informative and/or highly correlated variables (Auret and Aldrich, 2012; Elith et al., 2008;

Liaw and Wiener, 2002). The two independent approaches were used to ensure that any patterns

observed were robust.

The influence of including highly correlated and non-informative predictor variables and variables

with a large amount of missing data in the machine learning approaches was investigated using the

Random Forest models. For highly correlated variables, clusters of correlated variables were defined

and the least informative variable from each cluster was incrementally removed and the impact on

the fitted Random Forest regression models was examined. A similar approach was used twice more

to evaluate the influence of retaining non-informative predictor variables and of including predictor

variables with large amounts of missing data in the models.

Building phylogeny and interrogating clusters
Following investigation of population level epidemiological signatures in the sequence data, a phylo-

genetic tree was constructed to describe the evolutionary relationships among our set of M. bovis

genome sequences. If inter- and intra-species transmission events were occurring in the sampled sys-

tem, there should be evolutionary signatures in the phylogenetic tree. For example, if M. bovis

sequences sourced from cattle and badgers have a very close phylogenetic relationship, this sug-

gests that inter-species transmission has occurred. The phylogeny was constructed with the maxi-

mum likelihood algorithm in RAxML (v8.2.11; Stamatakis, 2014; RRID:SCR_006086) using a GTR

(generalized time reversible) substitution model with 100 bootstraps. The maximum likelihood algo-

rithm was selected as a fast alternative to Bayesian approaches. Although Bayesian approaches will

better explore the phylogenetic tree space, this space is expected to be small for phylogenies based
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on M. bovis data given its highly conserved genome. The GTR model was the most appropriate

based on analyses using the modelTest() function in the R package PHANGORN (v2.3.1;

Schliep, 2011; RRID:SCR_017302).

Based on the range of SNV thresholds (3–12) used to define recent M. tuberculosis transmission

(Bryant et al., 2013; Jajou et al., 2018; Roetzer et al., 2013; Yang et al., 2017), clades containing

highly related (<10 SNVs apart) cattle-derived and badger-derived sequences (inter-species clades)

were identified (Figure 1). The testing histories and recorded movements (for cattle), and capture

information (for badgers) of the sampled and in-contact animals associated with each cluster were

available. These data were investigated to determine whether they provided any additional evidence

to support the phylogenetic relationships indicative of inter-species transmission. ‘In-contact’ animals

were defined as those badgers that resided in the same badger social group, or those cattle that

lived in the same herd, at the same time as one or more of the sampled badgers or cattle (respec-

tively) associated with a particular inter-species clade.

Estimating inter-species transmission rates
To further investigate patterns of inter- and intra-species transmission, additional evolutionary analy-

ses were completed to estimate directional inter-species transmission rates and quantify their fre-

quency relative to intra-species transmission events. A subset of the sequences available (from 97

badger- and 83 cattle-derived isolates) was selected to estimate the transmission rate of M. bovis

between the sampled cattle and badger populations. The selected sequences were within the parent

clade containing all the inter-species clades (shown in Figure 1) and were sampled from within 10

km of Woodchester Park between 1999 and 2014. The subset of sequences was split into ‘inner’ and

‘outer’ groups, based on a 3.5 km radius from Woodchester Park (Figure 5). The 3.5 km radius size

was selected to contain the sampling locations associated with all the badger-derived sequences

and the closest cattle-derived sequences, based on the reported home-ranges of badgers in south-

ern England being <1 km2 (Garnett et al., 2005; Macdonald et al., 2008; Roper et al., 2003).

The presence of a temporal signal among the selected M. bovis sequences was examined

(Appendix 2: Testing the presence of a temporal signal). A temporal signal was supported by a posi-

tive trend, calculated within TEMPEST (v1.5; Rambaut et al., 2016; RRID:SCR_017304), between

each sequence’s root-to-tip distance and its sampling time and the results of a tip-date randomisa-

tion procedure (Firth et al., 2010).

The Bayesian Structured coalescent Approximation (BASTA v2.3.1; De Maio et al., 2015; RRID:

SCR_017303) tool, available in BEAST2 (Bayesian Evolutionary Analysis by Sampling Trees – v2.4.4

(Bouckaert et al., 2014), RRID:SCR_017307), uses an approximation of the structured coalescent

approach (Vaughan et al., 2014) to estimate migration rates within a structured population. The

structured population in the current context is the M. bovis population, whose structure was likely to

relate to host species and their spatial relationships. BASTA, in contrast to previously popular meth-

ods such as discrete trait analyses (Lemey et al., 2009; Pagel et al., 2004), can estimate the ances-

tral structure of the population in the presence of biased sampling (De Maio et al., 2015). There

were two biases associated with the set of sequences available. First, the prevalence of M. bovis in

the sampled cattle and badger populations was likely to be different as a result of the on-going con-

trol operations in the cattle, therefore the sampling proportions of these different populations rela-

tive to the prevalence of M. bovis were likely to be unequal. Second, although the badger

population within Woodchester Park has been intensively monitored and sampled, the surrounding

badger population is less well understood and unsampled, whereas cattle both within and outside

the Woodchester Park area have been sampled.

Based on the ‘inner’ and ‘outer’ populations of the sampled cattle and badgers (shown in Fig-

ure 5), a series of BASTA analyses, splitting the sampled M. bovis population into different demes,

were designed to estimate the inter-species transition rates while accounting for the two sampling

biases discussed (Figure 6). For each of the nine separate population structures, two separate analy-

ses were conducted, one where the deme sizes were constrained to be equal and another where

they were allowed to vary. Each of these 18 analyses was repeated three times and estimates were

combined across replicates. The inter-species transition rates from each model were compared using

the Akaike’s Information Criterion through Markov Chain Monte Carlo (AICM; Baele et al., 2013),

for further details see Appendix 2: Structured coalescent analyses using BASTA.
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Code availability
All the code generated for this manuscript is freely available on GitHub. General scripts are available

within the ‘WoodchesterPark’ of the GeneralTools repository (https://github.com/JosephCrispell/

GeneralTools; Crispell, 2019a; copy archived at https://github.com/elifesciences-publications/Gen-

eralTools). The Java source code files can be found in a separate respository (https://github.com/

JosephCrispell/Java; Crispell, 2019b; copy archived at https://github.com/elifesciences-publica-

tions/Java). These scripts are licenced under the General Public Licence v3.0.

Data availability
All WGS data used for these analyses have been uploaded to the National Centre for Biotechnology

Information Short Read Archive (NCBI-SRA: PRJNA523164). Because of the sensitivity of the associ-

ated metadata, only the sampling date and species will be provided with these sequences.
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Namouchi A, Didelot X, Schöck U, Gicquel B, Rocha EP. 2012. After the bottleneck: genome-wide diversification
of the Mycobacterium tuberculosis complex by mutation, recombination, and natural selection. Genome
Research 22:721–734. DOI: https://doi.org/10.1101/gr.129544.111, PMID: 22377718

Nugent G. 2005. The role of wild deer in the epidemiology and management of bovine tuberculosis in New
Zealand. Lincoln University.

Nugent G, Buddle BM, Knowles G. 2015. Epidemiology and control of Mycobacterium bovis infection in
brushtail possums (Trichosurus vulpecula), the primary wildlife host of bovine tuberculosis in New Zealand .
New Zealand Veterinary Journal 63:28–41. DOI: https://doi.org/10.1080/00480169.2014.963791

Olea-Popelka FJ, Flynn O, Costello E, McGrath G, Collins JD, O’keeffe J, Kelton DF, Berke O, Martin SW. 2005.
Spatial relationship between Mycobacterium bovis strains in cattle and badgers in four Areas in Ireland.
Preventive Veterinary Medicine 71:57–70. DOI: https://doi.org/10.1016/j.prevetmed.2005.05.008, PMID: 15993
963

Orton RJ, Deason M, Bessell PR, Green DM, Kao RR, Salvador LCM. 2018. Identifying genotype specific
elevated-risk Areas and associated herd risk factors for bovine tuberculosis spread in british cattle. Epidemics
24:34–42. DOI: https://doi.org/10.1016/j.epidem.2018.02.004

Pagel M, Meade A, Barker D. 2004. Bayesian estimation of ancestral character states on phylogenies. Systematic
Biology 53:673–684. DOI: https://doi.org/10.1080/10635150490522232, PMID: 15545248

Parish T, Stoker NG. 2001. Mycobacterium Tuberculosis Protocols. Humana Press. DOI: https://doi.org/10.1385/
1592591477
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Appendix 1

Comparing genetic and epidemiological distances

Defining the epidemiological metrics
A series of epidemiological metrics (Appendix 1—table 1) were designed to capture how

epidemiologically related a pair of sampled animals were. These metrics were compared to

the inter-sequence genetic distances using Random Forest (Liaw and Wiener, 2002) and

Boosted Regression (Elith et al., 2008) models. Three different analyses were conducted

based on badger–badger, cattle–cattle, and badger–cattle comparisons. The metrics were

defined based on the sampling times and locations, and the life histories of the sampled

animals. Life history data for the sampled badgers included all capture event data; specifically,

the capture date, the social group the badger was captured in, and the bTB status were used.

The bTB status of badgers at a capture event was determined using bacteriological culture

(from 1982), Brock Test ELISA (from 1982), gamma-IFN test (from 2006), and Stat-Pak test

(from 2006) (tests are described in Chambers et al., 2009). For the sampled cattle, the life

histories were made up of the cattle movement data (stored in the Cattle Tracing System) and

testing (stored in APHA’s cattle testing SAM database) histories. As part of the national TB

surveillance program, cattle are tested using the Single Intradermal Comparative Cervical

Tuberculin (SICCT) test and results are stored in the SAM database. For each sampled badger,

its main social group was defined as the group in which it spent the majority of its recorded

life, its sampled group was that in which it was captured when it was sampled, and its infected

group was that in which it was captured when infection was first detected. For each sampled

cow, the main and sampled herds were identified in a similar way. Weighted adjacency

matrices were constructed counting the number of cattle/badgers that moved/dispersed

between each herd/social group. Using these matrices, the shortest path lengths between

herds or social groups were calculated using Dijkstra’s algorithm (Dijkstra, 1959). The

epidemiological metrics for comparing each pair of sampled animals were calculated using

custom Java code (available here). Random Forest and Boosted Regression models, within R,

do not handle missing data explicitly, and so where it was not possible to calculate a metric

because of insufficient data a ‘�1’ was inserted. The influence of missing data was

investigated by sequentially removing metrics with the highest amounts of missing data. These

analyses demonstrated little effect on the variation explained by the Random Forest models or

the importance rankings of the metrics (data not shown). The nature of the epidemiological

metrics meant that many were highly correlated. The influence of highly correlated metrics on

the Random Forest regression models was investigated by sequentially removing metrics from

highly correlated clusters. These analyses demonstrated minimal effects on the importance

rankings of the epidemiological metrics (data not shown).

Appendix 1—table 1. Epidemiological metrics capturing the spatial, temporal, and network

relationships between a pair of sampled animals. Whether or not the metric was used in the

badger–badger, cattle–cattle, and badger–cattle comparisons is indicated.

Epidemiological metrics
Badger-
Badger

Cattle-
Cattle

Badger-
Cattle

Same main [herd/social group]? YES YES NO

Same sampled [herd/social group]? YES YES NO

Same infected [herd/social group]? YES NO NO

Spatial distance between main [herd/social group]s YES YES YES

Spatial distance between sampled [herd/social group]s YES YES YES

Spatial distance between infected [herd/social group]s YES NO NO

Distance from closest land parcel to main [herd/social group] using
centroids

NO NO YES

Appendix 1—table 1 continued on next page
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Appendix 1—table 1 continued

Epidemiological metrics
Badger-
Badger

Cattle-
Cattle

Badger-
Cattle

Distance from closest land parcel to sampled [herd/social group] using
centroids

NO NO YES

Number of days overlap between the recorded lifespans YES YES YES

Number of days overlap between the infected lifespans YES NO NO

Number of days spent in same [herd/social group] YES YES NO

Number of days between infection detection dates YES NO YES

Number of days between sampling dates YES YES NO

Number of days between breakdown dates NO YES NO

Number of recorded [cattle movements/dispersal events] between main
[herd/social group]s

YES YES NO

Number of recorded [cattle movements/dispersal events] between
sampled [herd/social group]s

YES YES NO

Number of recorded [cattle movements/dispersal events] between
infected [herd/social group]s

YES NO NO

Shortest path length between main [herd/social group]s YES YES NO

Mean number of [cattle/badgers] traversing edges of shortest path
between main [herd/social group]s

YES YES NO

Shortest path length between sampled [herd/social group]s YES YES NO

Mean number of [cattle/badgers] traversing edges of shortest path
between sampled [herd/social group]s

YES YES NO

Shortest path length between infected [herd/social group]s YES NO NO

Mean number of [cattle/badgers] traversing edges of shortest path
between infected [herd/social group]s

YES NO NO

Number of [cattle/badgers] recorded in both main [herd/social group]s YES YES NO

Number of [cattle/badgers] recorded in both sampled [herd/social
group]s

YES YES NO

Number of [cattle/badgers] recorded in both infected [herd/social
group]s

YES NO NO

Shortest path length between main [herd/social group]s (some [herd/
social group]s excluded)

NO YES NO

Mean number of [cattle/badgers] traversing edges of shortest path
between main [herd/social group]s (some [herd/social group]s ex-
cluded)

NO YES NO

Shortest path length between sampled [herd/social group]s (some
[herd/social group]s excluded)

NO YES NO

Mean number of [cattle/badgers] traversing edges of shortest path
between sampled [herd/social group]s (some [herd/social group]s
excluded)

NO YES NO

Shortest path length between infected [herd/social group]s (some
[herd/social group]s excluded)

NO YES NO

Mean number of [cattle/badgers] traversing edges of shortest path
between main [herd/social group]s (some [herd/social group]s ex-
cluded)

NO YES NO

Investigating isolate metadata discrepancies
The consistency between preliminary phylogenetic data and the spoligotype (spacer-oligo

type) data for the cattle- and badger-derived M. bovis sequences was manually examined.

Spoligotyping reports the presence and absence of 43 known spacer sequences within a

single direct repeat region of the M. bovis genome. The phylogenetic relationships of 26

badger- and 16 cattle-derived sequences were inconsistent with their spoligotype data, as

they were phylogenetically dissimilar to sequences sharing their nominal spoligotype. These

inconsistencies were indicative of mislabelling and therefore all the cattle- and badger-
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derived sequences were investigated to determine the extent and effect of any mislabelling

present. As cattle- and badger-derived sequences were sourced from different archives of M.

bovis (isolates held by APHA or the Animal and Plant Health Agency in Weybridge for cattle,

and York for badgers), it was assumed that species identification was correct.

Badger isolates
Detailed epidemiological data describing the badger population in Woodchester Park were

available. Each isolate was linked to a sampled badger via a unique identifier.

Epidemiological metrics were created to summarise the spatial-, temporal-, and network-

based relationships between the sampled badgers. Any mislabelled sequence would be

associated with the incorrect badger. Potentially mislabelled isolates were identified as those

where the variation in their genetic distances to all others was poorly explained by the

available epidemiological data. The inter-sequence genetic distances were compared to the

epidemiological metrics using a Random Forest regression model (Liaw and Wiener, 2002)

and a Boosted Regression model (Elith et al., 2008), separately in R (v3.4.3; R Development

Core Team, 2016). Only genetic distances <15 SNVs were included in these analyses to

avoid larger distances that were not likely to relate to the fine resolution epidemiological

data available.

Both the Random Forest and Boosted Regression models were able to accurately predict

the inter-sequence genetic distances using the epidemiological metrics (Pearson’s correlation

statistics of 0.8 and 0.77, respectively). The median difference between the predicted and

actual inter-isolate genetic distances was calculated for each isolate. Sequences with medians

in the highest 5% of values produced by the Random Forest or Boosted Regression models

were identified as potentially mislabelled and removed (Appendix 1 - table 2). In addition,

the 11 badger-derived M. bovis sequences whose spoligotype data did not match the

phylogenetic information but were not identified by the Random Forest or Boosted

Regression models were removed from any further analyses to ensure as many of the

mislabelled sequences as possible were removed.

Appendix 1—table 2. The 15 M. bovis isolates whose inter-isolate genetic distances were

poorly predicted (median difference between actual and predicted genetic distances outside

95% percentile) by the Random Forest and/or Boosted Regression models. Those isolates

whose spoligotypes did not match the phylogenetic patterns are also listed.

Isolate
ID

Outlier - Random
Forest

Outlier - Boosted
Regression

Phylogenetic-Spoligotype
mismatch

WB65 YES YES NO

WB15 YES YES NO

WB137 NO YES NO

WB70 YES YES NO

WB98 YES YES NO

WB99 YES YES NO

WB71 NO YES YES

WB105 YES YES YES

WB106 YES YES NO

WB74 YES YES NO

WB75 YES YES NO

WB107 NO NO YES

WB72 NO NO YES

WB96 YES NO NO

WB100 YES NO YES
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To determine if there was evidence of further significant errors, the effect of shuffling the

metadata associated with the badger-derived sequences was examined. If the extent of the

mislabelling was considerable, further shuffling should not affect the accuracy of the Random

Forest model. Varying proportions of the sequences were shuffled, and a Random Forest

model was used to fit the resulting inter-isolate genetic distances to the epidemiological

metrics. As the proportion of the isolates shuffled increased the accuracy of the Random

Forest model declined rapidly (Appendix 1—figure 1). The accuracy of the Random Forest

model was determined by estimating the proportion of the variation in the inter-isolate

genetic distance distribution that was explained by the epidemiological metrics.
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Appendix 1—figure 1. The impact of shuffling varying proportions of the M. bovis isolate

sequences on the variation explained by the Random Forest model. The mean of 10 replicates

is shown as a black point, with vertical lines representing the min and max values.

Cattle isolates
The approach to investigation of the mislabelled badger-derived sequences described above

was replicated for the cattle-derived sequences using modified epidemiological metrics. The

Random Forest regression model (using the epidemiological metrics to explain variation in

the inter-cattle-sequence genetic distances) performed well (producing an Rsq of

approximately 61%) with no outlier sequences with poorly explained genetic distances being

identified. As the Random Forest approach found no evidence of mislabelling in the cattle-

derived M. bovis sequences, an additional approach was used to investigate the potential for

mislabelling.

Spoligotype data were available for the cattle-derived M. bovis sequences. Spoligotyping

indexes the presence or absence of 43 spacer sequences within a single direct repeat region
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of the M. bovis genome (Roring et al., 1998). The spacer sequences present in each cattle-

derived Whole Genome Sequence (WGS) were extracted and compared to a reference

library of the 43 spacer sequences (Xia et al., 2016). The spoligotype information extracted

from each M. bovis isolate’s WGS data was compared to the spoligotype originally assigned

to the isolate from conventional typing. The spoligotype information did not match that

assigned from the conventional typing for 16 cattle-derived sequences. In addition, these

isolates were found to be genetically more similar to sequences sharing the spoligotype

derived from the WGS data than to sequences sharing the recorded spoligotype. Therefore,

the spoligotype information originally available for these 16 sequences was considered

incorrect – either as a result of a typing mistake or through mislabelling. These cattle-derived

M. bovis sequences were removed. As no other spoligotype-WGS data mismatches were

observed, the extent of the mislabelling in the cattle-derived sequences was considered to

be minimal. In addition, as the cattle archive included isolates across a broad range of

spoligotypes, there was a high chance that mislabelling would result in a different

spoligotype being assigned, and the low number of wrongly assigned spoligotypes therefore

indicative of a limited mislabelling.

Metric importance in Random Forest and Boosted Regression
analyses
Comparisons between the genetic distances and associated epidemiological metrics were

completed using Random Forest and Boosted Regression models in R. Two different

machine learning approaches were used to ensure that measures of variable importance

were robust to the analyses chosen. Genetic distances � 15 SNVs were selected to avoid

between-clade comparisons and their associated large genetic distances that are unlikely to

relate to fine scale epidemiological relationships. The Random Forest (and Boosted

Regression) models were able to explain approximately 67% (62%), 60% (54%) and 75%

(70%) of the variation in the genetic distances associated with the badger–badger

(n = 12,483), cattle–cattle (n = 1927), and badger–cattle (n = 4838) comparisons,

respectively. The importance of the epidemiological metrics in the Random Forest and

Boosted Regression models is shown in Appendix 1—figure 2, Appendix 1—figure 3, and

Appendix 1—figure 4. For the Random Forest models, importance was measured by the %

increase in the Mean Squared Error (MSE) value when each epidemiological metric was

randomly permuted. For the Boosted Regression models, the relative influence of each

variable was calculated by counting the number of times each variable was selected to split

the response data in a decision tree weighted by the squared improvement to the model fit

that resulted from that variable being used at each split (Elith et al., 2008). There was good

agreement between the ranking of the epidemiological metrics by the Random Forest and

Boosted Regression models as both models predicted that metrics based upon the spatial,

temporal, and network information were important in explaining variation in the genetic

distance distribution.
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corr = 0.67
Boosted Regression
Random Forest
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Random uniform sample

Random boolean sample

Same sampled social group?

Same infected social group?

Number of recorded dispersal events between infected social groups

Number of days spent in same social group

Number of recorded dispersal events between sampled social groups

Shortest path length between main social groups

Shortest path length between infected social groups

Same main social group?

Number of recorded dispersal events between main social groups

Number of days overlap between the infected lifespans

Shortest path length between sampled social groups

Number of days overlap between the recorded lifespans

Mean number of badgers traversing edges of shortest path between sampled social groups

Spatial distance between sampled social groups

Mean number of badgers traversing edges of shortest path between main social groups

Number of badgers recorded in both main social groups

Number of days between sampling dates

Number of badgers recorded in both infected social groups

Mean number of badgers traversing edges of shortest path between infected social groups

Number of badgers recorded in both sampled social groups

Number of days between infection detection dates

Spatial distance between infected social groups

Spatial distance between main social groups
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% Increase MSE (RF)

0 5 9 14 18 23

Relative Influence (BR)

Appendix 1—figure 2. The importance of each epidemiological metric in explaining variation

in the inter-badger-sequence genetic distance distribution. Metrics are coloured according to

whether they used temporal (gold), spatial (red), or network (blue) information. The

correlation (Pearson’s correlation) of the variable importance from the Random Forest and

Boosted Regression models is reported in the legend. Two random metrics were included, a

sample from a uniform distribution and a sample from a Boolean distribution, in the

regression models.
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Shortest path length between main herds (some herds excluded)

Random uniform sample
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Number of cattle recorded in both main herds
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Appendix 1—figure 3. The importance of each epidemiological metric in explaining variation

in the inter-cattle-sequence genetic distance distribution. Metrics are coloured according to

whether they used temporal (gold), spatial (red), or network (blue) information. The

correlation (Pearson’s correlation) of the variable importance from the Random Forest and

Boosted Regression models is reported in the legend. Two random metrics were included, a

sample from a uniform distribution and a sample from a Boolean distribution, in the

regression models.
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corr = 0.85
Boosted Regression
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Random uniform sample
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Appendix 1—figure 4. The importance of each epidemiological metric in explaining

variation in the badger-cattle-sequence genetic distance distribution. Metrics are coloured

according to whether they used temporal (gold), or spatial (red), or network (blue)

information. The correlation (Pearson’s correlation) of the variable importance from the

Random Forest and Boosted Regression models is reported in the legend. Two random

metrics were included, a sample from a uniform distribution and a sample from a Boolean

distribution, in the regression models.

Partial dependence plots were used to estimate the direction of the effect between each

of the epidemiological metrics (predictor variables) and the genetics distances (response

variable) (Appendix 1—figure 5, Appendix 1—figure 6, and Appendix 1—figure 7). These

relationships should be interpreted with caution as the presence of highly correlated

epidemiological metrics in the data analysed will affect the accuracy of estimating the

direction of effects (Auret and Aldrich, 2012).
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Appendix 1—figure 5. Partial dependence plots estimating the average marginal effect of

each epidemiological metric fitted in the Random Forest regression models on the inter-bad-

ger-sequence genetic distance distribution. The Y axis in each sub-plot represents the genetic

distance distribution of the number of the differences between the M. bovis genomes. The X

axis of each plot corresponds to the range associated with the corresponding

epidemiological metrics. The red line represents the average marginal effect on the

predicted genetic distance for each value of the epidemiological metric. Metrics with low

importance in the Random Forest models were removed (% Mean Squared Error change

of < 0.5%).
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Same main herd? Number of days overlap between the recorded lifespans Number of days between sampling dates

Number of days between breakdown dates Spatial distance between main herds Spatial distance between sampled herds

Mean number of cattle traversing edges of shortest 

path between sampled herds

Number of cattle recorded in both sampled herds Mean number of cattle traversing edges of shortest 

path between sampled herds (some herds excluded)

Appendix 1—figure 6. Partial dependence plots estimating the average marginal effect of

each epidemiological metric fitted in the Random Forest regression models on the inter-cattle-

sequence genetic distance distribution. The Y axis in each sub-plot represents the genetic

distance distribution of the number of the differences between the M. bovis genomes. The X

axis of each plot corresponds to the range associated with the corresponding

epidemiological metrics. The red line represents the average marginal effect on the

predicted genetic distance for each value of the epidemiological metric. Metrics with low

importance in the Random Forest models were removed (% Mean Squared Error change

of < 0.5%).
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Number of days overlap between the recorded lifespans Number of days between infection detection dates Spatial distance between main herd/social groups

Spatial distance between sampled herd/social groups Distance from closest land parcel to main social 

group using centroids

Distance from closest land parcel to sampled social 

group using centroids

Appendix 1—figure 7. Partial dependence plots estimating the marginal effect of each epide-

miological metric fitted in the Random Forest regression models on the badger-cattle-

sequence genetic distance distribution. The Y axis in each sub-plot represents the genetic

distance distribution of the number of the differences between the M. bovis genomes. The X

axis of each plot corresponds to the range associated with the corresponding

epidemiological metrics. The red line represents the average marginal effect on the

predicted genetic distance for each value of the epidemiological metric. Metrics with low

importance in the Random Forest models were removed (% Mean Squared Error change

of < 0.5%).

For the inter-badger distances, the partial dependence plots (Appendix 1—figure 5)

suggest the following: as the overlap between recorded/infected lifespans increases, M.

bovis genetic similarity decreases; as temporal distance between infection/sampling times

increases, genetic similarity decreases; as the connectedness of sampled/infected/main social

groups decreases, similarity decreases; and as spatial distance between infected/main/

sampled social groups increases, genetic similarity increases. Although we interpret these

relationships with caution, that M. bovis genetic similarity appears to increase as spatial

distance increased is contrary to our expectation. This relationship between spatial distance

and M. bovis similarity suggests that at the spatial scale we are examining the Woodchester

Park badger population, other factors such as the connectedness of social groups could be

adding noise to the spatial signal. Vicente et al. (2007) explored the complex relationship

between social group organisation and movement and the incidence of bovine tuberculosis

in the Woodchester Park badger population. Vicente et al. (2007) found that movement

patterns within a core subset of intensively studied, and likely highly connected, social

groups had a different effect to movements outside the core area, which could explain the

deviations from our expectation that as spatial distance increases, M. bovis similarity should

decrease.

For the inter-cattle distances, the partial dependence plots (Appendix 1—figure 6)

suggest the following: cattle from the same herd were more likely to share similar M. bovis;

more overlap in lifespans increased genetic similarity; increases in temporal and spatial

distances were associated with a decrease in M. bovis similarity; and as network

connectedness increases, M. bovis similarity decreases. There was considerable noise around

these trends and many of the slopes were shallow and their direction of effect tended to flip

with large genetic distances. One of the clearest factors influencing this noise was number of
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data points, with larger genetic distances there were little data available to determine

whether a discernible signal was present.

For the badger–cattle distances, the partial dependence plots (Appendix 1—figure 7)

suggest the following: increased lifespan overlap was associated with increased M. bovis

similarity, and as temporal and spatial distances increased, M. bovis similarity decreased.

There was a lot of noise around these relationships, but these trends were in line with our

expectations that cattle and wildlife in close proximity in time and space are more likely to

transmit infection to one another.
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Appendix 2

Phylogenetic analyses

Testing the presence of a temporal signal
Prior to any evolutionary analyses, which will assume a clock-like substitution rate, the

existence of a temporal signal was investigated. Only those isolates selected to be analysed

using BASTA (Bayesian Structured coalescent Approximation v2.3.1; De Maio et al., 2015)

were investigated. A maximum likelihood tree was constructed and bootstrapped using

RAxML (v8.2.11; Stamatakis, 2014). The clade containing only the selected isolates was

extracted and re-rooted in TEMPEST (v1.5; Rambaut et al., 2016). The patristic distances

(sums of the phylogenetic branch lengths) from each of the tips in the phylogeny to the root

were calculated and compared to the sampling times. A slight positive trend (R2 = 0.12, p

value < 0.001) was observed, indicating the presence of a weak temporal signal (Firth et al.,

2010).

The presence of a temporal signal was further examined using a tip-date randomisation

procedure (Firth et al., 2010). A simple two-population analysis (badgers and cattle) allowing

the population sizes to be different and using a relaxed clock model was used to analyse the

selected isolates in BASTA. The estimated substitution rate, resulting from the BASTA analysis,

was compared to those resulting from BASTA analyses where the dates associated with the

isolates were randomly shuffled (Appendix 2—figure 1). The substitution rates estimated

using randomly shuffled dates were considerably different from those estimated using the true

dates, supporting the existence of a temporal signal in these data.
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Appendix 2—figure 1. The substitution rate estimates from BASTA using either true or ran-

domly shuffled sampling dates. The upper (97.5%) and lower (2.5%) bounds of each distribution
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are shown as blue points, the horizontal dashed lines represent the same bounds for the

estimates based on the actual dates. Each BASTA analysis using a two population (badgers

and cattle) structure, allowed different but constant population sizes, and relaxed clock model

based upon an HKY substitution model.

Structure coalescent analyses using BASTA
A set of 18 BASTA analyses was derived based on different structured populations and

constraining the deme (sub-populations) sizes or allowing them to vary. Each of the 18 BASTA

analyses was replicated three times using a relaxed clock model and an HKY (Hasegawa-

Kishino-Yano; Hasegawa et al., 1985) substitution model. The relaxed clock model was

chosen to avoid assuming a constant evolutionary rate across the sampled M. bovis population

and because preliminary analyses using the relaxed clock had a higher likelihood score in

comparison to analyses using the strict clock (data not shown). The HKY substitution model

was selected as it was the simplest such model with the lowest number of parameters that still

allowed the rate of transitions and transversions to differ.

Figure 3 in the main manuscript illustrates the inter-deme transition rate parameters

estimated for each structured population, the necessity of each of these parameters was

assessed using a variable rate flag parameter (either 0 or 1). If a transition rate parameter

was not informative in describing the evolutionary relationships of the sampled M. bovis

population, its flag would be frequently assigned a zero value. The estimates of inter-deme

transition rates resulting from each BASTA analysis were combined across replicates, with the

first 10% of the posterior samples removed. For each inter-deme transition rate posterior

values were removed if their associated variable rate flag was set to zero and the remaining

values were converted to forward transition rates according to De Maio et al. (2015). Each

BASTA analysis was repeated but the nucleotide alignment was replaced with an empty

alignment. By using an empty alignment, the parameter estimates for the BASTA analysis will

rely entirely on the prior distributions, this type of analysis can therefore be used to check

whether the genetic data are informative for estimation of each parameter. If the estimate for

a particular parameter in a BASTA analysis is similar with and without the sequence alignment,

there is insufficient information in the genetic data to estimate it. For each BASTA analysis, the

posterior distributions for each parameter were considerably different in the presence and

absence of the sequence alignment, suggesting that there were sufficient data available to

estimate them.
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