1,497 research outputs found

    Online Permutation Routing in Partitioned Optical Passive Star Networks

    Full text link
    This paper establishes the state of the art in both deterministic and randomized online permutation routing in the POPS network. Indeed, we show that any permutation can be routed online on a POPS network either with O(dglogg)O(\frac{d}{g}\log g) deterministic slots, or, with high probability, with 5cd/g+o(d/g)+O(loglogg)5c\lceil d/g\rceil+o(d/g)+O(\log\log g) randomized slots, where constant c=exp(1+e1)3.927c=\exp (1+e^{-1})\approx 3.927. When d=Θ(g)d=\Theta(g), that we claim to be the "interesting" case, the randomized algorithm is exponentially faster than any other algorithm in the literature, both deterministic and randomized ones. This is true in practice as well. Indeed, experiments show that it outperforms its rivals even starting from as small a network as a POPS(2,2), and the gap grows exponentially with the size of the network. We can also show that, under proper hypothesis, no deterministic algorithm can asymptotically match its performance

    Crosstalk-free Conjugate Networks for Optical Multicast Switching

    Full text link
    High-speed photonic switching networks can switch optical signals at the rate of several terabits per second. However, they suffer from an intrinsic crosstalk problem when two optical signals cross at the same switch element. To avoid crosstalk, active connections must be node-disjoint in the switching network. In this paper, we propose a sequence of decomposition and merge operations, called conjugate transformation, performed on each switch element to tackle this problem. The network resulting from this transformation is called conjugate network. By using the numbering-schemes of networks, we prove that if the route assignments in the original network are link-disjoint, their corresponding ones in the conjugate network would be node-disjoint. Thus, traditional nonblocking switching networks can be transformed into crosstalk-free optical switches in a routine manner. Furthermore, we show that crosstalk-free multicast switches can also be obtained from existing nonblocking multicast switches via the same conjugate transformation.Comment: 10 page

    Upper Bound Analysis and Routing in Optical Benes Networks

    Get PDF
    Multistage Interconnection Networks (MIN) are popular in switching and communication applications. It has been used in telecommunication and parallel computing systems for many years. The new challenge facing optical MIN is crosstalk, which is caused by coupling two signals within a switching element. Crosstalk is not too big an issue in the Electrical Domain, but due to the stringent Bit Error Rate (BER) constraint, it is a big major concern in the Optical Domain. In this research dissertation, we will study the blocking probability in the optical network and we will study the deterministic conditions for strictly non-blocking Vertical Stacked Optical Benes Networks (VSOBN) with and without worst-case scenarios. We will establish the upper bound on blocking probability of Vertical Stacked Optical Benes Networks with respect to the number of planes used when the non-blocking requirement is not met. We will then study routing in WDM Benes networks and propose a new routing algorithm so that the number of wavelengths can be reduced. Since routing in WDM optical network is an NP-hard problem, many heuristic algorithms are designed by many researchers to perform this routing. We will also develop a genetic algorithm, simulated annealing algorithm and ant colony technique and apply these AI algorithms to route the connections in WDM Benes network

    Bitwise-based Routing Algorithms in Optical Multistage Interconnection Network

    Get PDF
    Recent advances in electro-optic technologies have made optical communication a promising networking alternative to meet the ever increasing demands of high performance computing communication applications for high channel bandwidth, low communication latency and parallel processing as well. Optical Multistage Interconnection Network (OMIN) is very popular in switching and communication among other types of interconnection networks. A major problem in OMIN is crosstalk, which is caused by coupling two signals within a switching element. Crosstalk problem in a switch is the most prominent factor which reduces the signal-to-noise ratio and restricts the size of network. To avoid crosstalk in OMINs many algorithms have been proposed by many researchers such as the Four Heuristic, Simulated Annealing, Genetic, Remove Last Passes and Zero Algorithms. Under the constraint of avoiding crosstalk, the interests of these algorithms are to find a permutation that uses a minimum number of passes and minimum execution time. Accordingly the objective of this research is to optimize and improve the current algorithms in terms of number of passes and execution time. To achieve such goal, this research follows three approaches. In the first, the Improved Zero algorithm is proposed to solve the problem and secondly, the Bitwise Improved Zero algorithm is developed. Finally Four Heuristic and Difference Increasing and Decreasing routing algorithms based on bitwise operation are established. The results of this study show that Bitwise Improved Zero algorithms reduce the execution time nearly seven times. This reduction is very considerable because the execution time of routing algorithms is very important to route the messages in the networks. Moreover Improved Zero algorithm was shown to be more accurate and efficient compared to other algorithms in terms of the average number of passes and execution time. Furthermore by converting Four Heuristic and Difference Increasing and Decreasing routing algorithms to bitwise algorithms the execution time was improved significantly

    Zero Algorithms for Avoiding Crosstalk in Optical Multistage Interconnection Network

    Get PDF
    Multistage Interconnection Networks (MINs) are popular in switching and communication applications. It had been used in telecommunication and parallel computing systems for many years. The broadband switching networks are built from 2 x 2 electro-optical switches such as Lithium Niobate switches. Each switch has two active inputs and outputs. Optical signals, carried on either inputs are coupled to either outputs by applying an appropriate voltage to the switch. One of the problems associated with these electro-optical switches is the crosstalk problem, which is caused by undesired coupling between signals carried in two waveguides. This thesis propose an efficient solution to avoid crosstalk, which is routing of traffic through an N x N optical network to avoid coupling two signals within each switching element. Under the constraint of avoiding crosstalk, the research interest is to realize a permutation that will use the minimum number of passes (to route the input request to output without crosstalk). This routing problem is an NP-hard problem. Many heuristic algorithms have been proposed and designed to perform the routing such as the sequential algorithm, the sequential down algorithm, the degree-ascending algorithm, the degree-descending algorithm, the Simulated Annealing algorithm and the Ant Colony algorithm. The Zero algorithms are the new algorithms that have been proposed in this thesis. In Zero algorithms, there are three types of algorithms namely; The Zero X, Zero Y and zeroXY algorithms. The experiments conducted have proven that the proposed algorithms are effective and efficient. They are based on routing algorithms to minimize the number of passes to route all the inputs to outputs without crosstalk. In addition, these algorithms when implemented with partial ZeroX and ZeroY algorithms would yield the same results as the other heuristic algorithms, but over performing them when the execution time is considered. Zero algorithms have been tested with many cases and the results are compared to the results of the other established algorithms. The performance analysis showed the advantages of the Zero algorithms over the other algorithms in terms of average number of passes and execution time

    Simulated Annealing Routing and Wavelength Lower Bound Estimation on WDM Optical Multistage Networks

    Get PDF
    Multistage interconnection networks (MINs) are popular in switching and communication applications and have been used in telecommunication and parallel computing systems for many years. Crosstalk a major problem introduced by an optical MIN, is caused by coupling two signals within a switching element. We focus on an efficient solution to avoiding crosstalk by routing traffic through an N3N optical network to avoid coupling two signals within each switching element using wavelength-division multiplexing (WDM) and a time-division approach. Under the constraint of avoiding crosstalk, the interest is on realizing a permutation that uses the minimum number of passes for routing. This routing problem is an NP-hard problem. Many heuristic algorithms are already designed by researchers to perform this routing such as a sequential algorithm, a degree-descending algorithm, etc. The genetic algorithm is used successfully to improve the performance over the heuristic algorithms. The drawback of the genetic algorithm is its long running times. We use the simulated annealing algorithm to improve the performance of solving the problem and optimizing the result. In addition, a wavelength lower bound estimate on the minimum number of passes required is calculated and compared to the results obtained using heuristic, genetic, and simulated annealing algorithms. Many cases are tested and the results are compared to the results of other algorithms to show the advantages of simulated annealing algorithm
    corecore