
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

1-12-2006

Upper Bound Analysis and Routing in Optical
Benes Networks
Jiling Zhong

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Zhong, Jiling, "Upper Bound Analysis and Routing in Optical Benes Networks." Dissertation, Georgia State University, 2006.
https://scholarworks.gsu.edu/cs_diss/4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71421684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu


   
  

   

UPPER BOUND ANALYSIS AND ROUTING IN OPTICAL BENES NETWORKS 
 

by 
 

JILING ZHONG 
 

Under the Direction of Yi Pan 
 

ABSTRACT 
 

 

Multistage Interconnection Networks (MIN) are popular in switching and communication 

applications.  It has been used in telecommunication and parallel computing systems for many 

years.  The new challenge facing optical MIN is crosstalk, which is caused by coupling two 

signals within a switching element. Crosstalk is not too big an issue in the Electrical Domain, but 

due to the stringent Bit Error Rate (BER) constraint, it is a big major concern in the Optical 

Domain. In this research dissertation, we will study the blocking probability in the optical 

network and we will study the deterministic conditions for strictly non-blocking Vertical Stacked 

Optical Benes Networks (VSOBN) with and without worst-case scenarios. We will establish the 

upper bound on blocking probability of Vertical Stacked Optical Benes Networks with respect to 

the number of planes used when the non-blocking requirement is not met.  

 

We will then study routing in WDM Benes networks and propose a new routing algorithm so 

that the number of wavelengths can be reduced. Since routing in WDM optical network is an 

NP-hard problem, many heuristic algorithms are designed by many researchers to perform this  



 

  

routing. We will also develop a genetic algorithm, simulated annealing algorithm and ant colony 

technique and apply these AI algorithms to route the connections in WDM Benes network. 

 
 
INDEX WORDS: Benes Network, Mins, Genetic Algorithms, Simulated Annealing, Ant Colony 
Algorithms 
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Chapter 1 

Introduction 

 
Multistage Interconnection Network (MIN) is very popular in switching and 

communication applications [47]. It has been used in telecommunication and parallel 

computing systems for many years. This network consists of N inputs, N outputs, and n 

stages (n = log2N).  Each stage has N/2 Switching Elements (SEs), each SE has two inputs 

and two outputs connected in a certain pattern.  The most widely used MINs are the 

electronic MINs. As optical technology advances, there is a considerable interest in using 

optical technology to implement interconnection networks and switches [31, 32, 41, 44]. In 

electronic MINs electricity is used, where as in optical MINs light is used to transmit the 

messages. 

The electronic MINs and the optical MINs have many similarities [47], but there are 

some fundamental differences between them such as the optical-loss during switching [2, 17] 

and the crosstalk problem in the optical switches [4, 31]. To avoid the crosstalk problem, 

various approaches have been proposed by many researchers [1, 4, 30, 37].  

1.1 Motivation  

In this research, we are interested in a network called Benes Network.  Benes 

networks are extensions to Banyan networks, which have a unique connection pattern [14, 

47].  Previous results [12],[13] focus on determining the minimum number of planes required 

for nonblocking Vertical Stacked Optical Benes Networks (VSOBN) networks. These results 
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indicate that the vertical stacking scheme, although is attractive, requires a prohibitively high 

hardware cost for building a nonblocking VSOBN network.  

Analysis of blocking probability of a network that does not meet the hardware 

requirement for nonblocking is an effective approach to studying network performance. In 

[19], blocking probability of stacked banyan networks is analyzed. In this dissertation, We 

shall analyze the blocking properties of VSOBN networks, and derive an upper bound of the 

blocking probability with respect to the number of planes employed. As it turns out, we do 

not need a full number of planes to guarantee non-blocking, and our analysis will show what 

the probability of blocking is if a smaller number of planes is used. 

Optical switches are now widely used in WDM all-optical networks. Directional 

couplers (DCs) can switch signals with multiple wavelengths. They are commonly used to 

build large optical switches. However, DCs suffer from an intrinsic crosstalk problem [31]. 

In this dissertation, we study the nonblocking properties of WDM Benes networks under 

crosstalk free constraints. WDM routing in Benes network consists of two parts of work, one 

is route construction, or the setup the SEs, the other is wavelength assignment, which is to 

assign different wavelength to routes so that they do not interfere with each other. Previous 

research and work was concentrated on wavelength assignment [6, 20].  But in our research 

we would like to propose a very interesting idea of wavelength aware route construction. The 

idea is to set up the SEs such that the wavelengths used in the second phase, the wavelength 

assignment phase, can be reduced. 

In this research, we will use genetic algorithms, simulated annealing and ant colony 

algorithms to assign the wavelength. Since the wavelength is equivalent to the graph coloring 

problem and therefore is NP-Complete, some heuristic solution is acceptable and necessary.  
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1.2 Research Contribution 

 In summary, this dissertation has the following contributions: 

1. Proposes a mathematical model to analyze the blocking probability of stacked Benes 

network; derive an upper bound of the blocking probability with respect to the 

number of planes in stacked Benes network. 

2. Proposes a new algorithm in WDM Benes network routing that  reduces the number 

of wavelengths needed; proposes modified windows method for baseline network. 

3. Develops AI techniques, such as the genetic algorithm (GA), simulated annealing 

(SA) algorithm and the ant colony optimization (ACO) technique that are applied to 

the problem to calculate the number of wavelength required for routing a given 

permutation. 

The remainder of the dissertation is organized as follows. Chapter 2 provides the 

required background information by briefly discussing these networks and introduces one of 

the important problems called crosstalk in OMIN and some approaches such as space 

division, time division and wavelength division multiplexing to avoid crosstalk. Chapter 3 

introduces the Benes network and some relevant issues in Benes network such as crosstalk, 

routing and blocking. Chapter 4 provides a survey of the previous related work. Chapter 5 

proposes a mathematical model to analyze the stacked Benes network and derives the upper 

bound of blocking probability without some worst cases. Chapter 6 will introduce 

wavelength aware route construction in WDM Benes network. Chapter 7 introduces a 

modified genetic algorithm to solve routing problem. Chapter 8 explores the use of simulated 

annealing to solve the routing problem. Chapter 9 explores the use of ant colony algorithms 
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to solve the routing problem. Chapter 10 summarizes the dissertation and provides some 

possible future research topics.   
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Chapter 2 

Background 

 Optical switches are used in optical networks for a variety of applications. The 

different applications require different switching times and number of switch ports. In terms of 

the switching function achievable, switches are of two types: blocking or non-blocking. A 

switch is said to be non-blocking if an unused input port can be connected to any unused output 

port. If some interconnection cannot be realized, the switch is said to be blocking, to be non-

blocking otherwise. There are three types of non-blocking networks, namely strictly non-

blocking, wide sense non-blocking, and rearrangeably non-blocking. This research will focus 

on one of the rearrangeably non-blacking networks, Benes network.  

  

2.1. Optical Multistage Interconnection Networks 

 Optical Multistage Interconnection Networks (OMIN) differ from Electrical 

Multistage Interconnection Networks; in which optical signal is converted to/from electrical 

signal at the network input/output, optical Multistage Interconnection Networks work in optical 

domain. This advantage makes the signal transmission in optical network faster. 

As networks face increasing bandwidth demand and diminishing fiber availability [2, 4], 

network providers are moving towards a crucial milestone in network evolution: the optical 

network. Optical networks, based on the emergence of the optical layer in transport networks, 

provide higher capacity and reduced costs for new applications such as the Internet, video and 

multimedia interaction, and advanced digital services. 

Optical networks are high-capacity telecommunications networks based on optical 

technologies and components that provide routing, grooming, and restoration at the wavelength 
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level as well as wavelength-based services. Customers are demanding more services and 

options and are carrying more and different types of data traffic. Optical networks provide the 

required bandwidth and flexibility to enable end-to-end wavelength services and meet all the 

high-capacity and varied needs [2, 14, 17]. 

Optical fiber offers much higher bandwidth than conventional copper cables. A single 

fiber has a potential bandwidth on the order of 50THz [8]. Meanwhile, it has low cost, 

extremely low bit error rate (typically 10-12, compared to 10-6 in copper cables), low signal 

attenuation and low signal distortion. In addition, optical fibers are more secure from tapping, 

since light does not radiate from the fiber and it is nearly impossible to tap into it secretly 

without being detected. As a result, it is the preferred medium for data transmission with bit 

rate more than a few tens of megabits per second over any distance more than one kilometer. It 

is also the preferred means of realizing short distance (a few meters to hundreds of meters), 

high-speed (gigabits per second and above) interconnection inside large systems [11]. In the 

past few decades, optical fibers have been widely deployed in all kinds of telecommunications 

networks. 

Optical fiber has been used in two generations of optical network [11]. In the first 

generation, it was essentially used for transmission and simply to provide capacity, since it 

provides lower bit error rates and higher capacities than copper cables. All the switching and 

other intelligent network functions were handled by electronics. Thus, the bandwidth was 

limited by the electronics at the fiber endpoints. Currently, transmission rates are restricted to 

10Gb/s (OC-192) in commercially available systems. Examples of the first generation optical 

networks are SONET and SDH networks. 
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In the second-generation optical networks, optical layer handles switching and some of 

the routing. The fiber bandwidth is further exploited by a technique called wavelength division 

multiplexing (WDM), where the optical bandwidth is partitioned into a large number of 

channels on different wavelengths (or, equivalently, colors), and each channel works at peak 

electronic rate. These wavelengths do not interfere with each other as long as the channel space 

is large enough. Other than providing a huge bandwidth, WDM networks can also provide data 

transparency in which the network may accept data at any bit rate and any protocol format 

within the limits. Data transparency may be realized through all-optical (or single-hop) 

transmission and switching of signals. In an all-optical network, data is transferred from source 

to destination in optical form, without undergoing any optical-to-electrical conversion. 

Keeping the signal in optical form eliminates the "electronic bottleneck" of communications 

networks with electronic switching [31]. 

 

2.2. Multistage Interconnection Networks (MINs) 

Electronic multistage interconnection networks (MINs) have been studied extensively 

as an important interconnecting scheme for communication and parallel computing systems 

[14, 16].   MINs connect input devices to output devices through a number of switch stages, 

where each switch element (SE) is a crossbar network [31]. The number of stages and the 

connection patterns between stages determine the routing capability of the networks. 

MINs were initially proposed for telephone networks and later for array processors 

[14]. In these cases, a central controller establishes the path from input to output. In cases 

where the number of inputs equals the number of outputs, each input synchronously transmits a 

message to one output, and each output receives a message from exactly one input. Such 
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unicast communication patterns can be represented as a permutation of the input addresses 

[10]. On the other hand, in asynchronous multiprocessors, centralized control and permutation 

routing are infeasible. In this case, a routing algorithm is required to establish the path across 

the stages of a MIN [14]. 

Depending on the interconnection scheme employed between two adjacent stages and 

the number of stages, various MINs have been proposed [14, 16]. MINs are good for 

constructing parallel computers with hundreds of processors and have been used in commercial 

machines. 

2.3. A Generalized MIN Model 

There are many ways to interconnect adjacent stages [14]. Figure 1 shows a generalized 

multistage interconnection network with N inputs and M outputs. It has g  

 
 

Figure 2.1. A generalized MIN with M inputs, N outputs, and n stages 
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Figure 2.2. A closer view of on of the stages  

 

stages, G0 to Gg-1. As shown in Figure 2, each stage, say Gi has wi switches of size ai,j × bi,j, 

where 1≤ j ≤ wi. Thus, stage Gi has pi inputs and qi outputs, where 

,
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The connection between two adjacent stages, Gi-1 and Gi, denoted Ci, defines the 

connection pattern for pi = qi-1 links, where p0 = N and qg-1 = M. A MIN thus can be 

represented as 

                       C0(M)S0(w0)C1(p1)S1� Sn-1(wn-1)Cn(N) 

A connection pattern Ci(pi) defines those pi links should be connected between the qi-1 = 

pi outputs from stage Gi-1 and the pi inputs to stage Gi. Different connection patterns give 

different characteristics and topological properties of MINs. The links are labeled from 0 to pi-1 

at Ci. 

wi 
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From a practical point of view, it is interesting that all the switches are identical, thus 

amortizing the design cost. Banyan networks are a class of MINs with the property that there is 

a unique path between any pair of source and destination [16]. An N-node (N=kn) Delta 

network is a sub class of banyan networks, which is constructed from identical k × k switches 

in n stages, where each stage contains N
k  switches. Many of the known MINs, such as Omega, 

flip, cube, butterfly, and baseline [14], belong to the class of Delta networks [33] and have 

been shown to be topologically and functionally equivalent [48]. A good survey of those MINs 

can be found in [14, 47]. 

2.4 MIN Switchers 

There are two types of witches: blocking or non-blocking. A switch is said to be non-

blocking if an unused input port can be connected to any unused output port. Thus a non-

blocking switch is capable of realizing every interconnection pattern between the inputs and 

the outputs. If some interconnection pattern(s) cannot be realized, the switch is said to be 

blocking. One of the popular blocking networks is Banyan network.  

2.4.1 Banyan Networks 

 Banyan networks were first introduced by Goke and Lipovski [16]. Banyan network 

is a multistage interconnection network (MIN), which usually consists of a number of 

switching elements (SEs) grouped into several stages interconnected by a set of links. Usually, 

a 2 x 2 crossbar can implement each Sea. The traditional cross bar has two states, namely, 

cross state and bar state (Figure 2.3).  
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                                       Bar State                                    Cross State 

Figure 2.3      Two SE states 

 

 There is another type of cross bar, which is often referred as non-traditional, where 

one input (output) can be directed to (form) both of the outputs (inputs), as in Figure 2.4. This 

type is more powerful but also is more expensive and therefore not popular. In this dissertation, 

we shall consider traditional cross bar only. 

 

Figure 2.4          Non-traditional cross bar 

 

The formal definition of Banyan networks is as follows,  

1. It has N inputs, N outputs, logN stages and N/2 SEs in each stage. 

2. There is a unique path between each input and each output. 

3. Let u and v be two SEs in stage i, and let Sj(u) and Sj(v) be two sets of SEs to which u 

and v can reach in stage j, 0<i+1=j<=n. Then Sj(u) Λ Sj(v) = ∅  or  

      Sj(u) = Sj(v) for any u and v. 

Banyan networks are widely used as switch networks or interconnection networks due to its 

nice properties such as (uniformed connection pattern, self-routing, and short network 

diameter). There are several well-known Banyan networks, such as Omega, Shuffle 
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Exchange, Butterfly, and Baseline networks. It has been proved that all these networks 

have the same topology; therefore, they are equivalent. In this dissertation, we use Baseline 

network as the representative of Banyan network. 

 An N x N Baseline network, denoted by BL(N) is constructed recursively. A BL(2) is 

a 2 x 2 SE. A BL(N) consists of a switching stage of N/2 SEs, and a shuffle connection, 

followed by a stack of two BL(N/2). A BL(N) has logN stages and each stage has N/2 SEs, 

denoted as s0, s1� sn/2-1. If we pair them as follows, (s0, s1), (s2, s3), �, (sn/2-2, sn/2-1),  for 

each of such a pair, the upper outputs of both switches are linked to a switch in the upper 

BL(N/2) network, the lower outputs of both switches are linked to a switch in the lower 

BL(N/2) network, and only input switches in the pair are linked to those two switches in the 

next stage (one is in the upper BL(N/2) network, and the other is in the lower BL(N/2)  

network).  Figure 2.5 shows the recursive pattern of a Baseline network. 

 

 

Figure 2.5. A recursive construction of baseline network 

 

 One of the properties of Banyan network is that it is self-routing. And the routing is 

decided by the destination. For example, a binary form of a destination is dn-1dn-2�d0. When 
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making a routing decision, if the (n-i)th bit of the destination equals to 0, the input of the SE on 

the connection path in stage i is connected to the SE�s upper output link; if it equals1, the input 

of the SE on the connection path in stage i is connected to the SE�s lower output link. As can 

be seen in Figure 2.6, the connection is from 001 to 111, since the destination is 111, the path 

will take the lower, lower, and lower output at each or the states it goes through. 

                                    

Figure 2.6 Self-routing in Banyan network 

 

 Banyan network has some very nice properties, such as short path and uniform path 

length. The length of the path is logN, and each path has the same length. Moreover, the 

number of SEs, or cross point, is NlogN. What makes Banyan network even more appealing is 

its self-routing property, which makes local routing decision making possible. However, 

Banyan network has a very serious drawback, it being blocking network. For example, in 

Figure 2.7, two connection, (001-111) and (011-110), both require the lower output link in the 

second stage, exhibiting a conflict. 
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Figure 2.7. Blocking in Banyan network 

 

 Because of its being a blocking network, other non-blocking networks are usually 

preferred. As previous noted, there are three types of non-blocking, namely, strictly non-

blocking, wide sense non-blocking, and rearrangeabely non-blocking, each of which is 

elaborated further.  

 2.4.2 Strictly Non-blocking Network 

 A strict non-blocking switch allows any unused input to be connected to any unused 

output regardless of how previous connections were made through the switch. One example of 

strict non-blocking network is Clos network [11], Clos networks has three stages of SEs, which 

can be implemented by crossbars. The first stage contains r1 SEs, each of which has n1 inputs 

and m outputs, and each of the m outputs goes to each of the m r1 x r2 SEs in stage 2; each of 

the r2 outputs in stage 2 in turn goes to one of the r2 m x n2 inputs in the third stage. A Clos 

network is usually denoted by C(n1, r1, m, n2, r2), and if n1=n2=n and r1 = r2 =r, Clos network 

can be denoted as C(n, m, r), as in Figure 2.8 
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Figure 2.8. 3-stage Clos network 

 

If m >= 2n �1, then Clos network is strict non-blocking. The number of SEs used in Clos 

network is O(N3/2) [11]; each path in Clos network goes through the same number of SEs, 

therefore the signal energy loss along the path is uniformed.   

2.4.3 Wide Sense Non-blocking Network 

 A switch is said to be wide-sense non-blocking if any unused input can be connected 

to any unused output, without requiring any existing connection to be rerouted. Wide-sense 

non-blocking switches usually make use of specific routing algorithms to route connections so 

that future connections will not be blocked. An example of wide sense non-blocking network is 

crossbar. A crossbar consists of a matrix of N x N SEs, as in Figure 2.9, to connect input i to 

output j, the path taken traverses the SE in row i till it reaches column j and then traverses the 

switches in column j till it reaches output j. Thus the SE on this path in row i and column j 

must be set appropriately for this connection to be made. An N × N crossbar requires n2 SEs. 

The shortest path length is 1 and the longest path length is 2N � 1.  Obviously, paths consist of 

deferent number of SEs and therefore the signal energy loss along different paths may be 

different and that is not desirable.      
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Figure 2.9. A 4 x 4 Crossbar 

 

2.4.4 Rearrangeably Non-blocking Networks 

A non-blocking switch that may require rerouting of connections to achieve the non-

blocking property is said to be rearrangeably non-blocking. The Benes network is a 

rearrangeably nonblocking switch architecture, and is one of the most efficient switch 

architectures in terms of the number of 2x2 switches it uses to build larger switches.   

Banyan-type networks have a single path between an input�output pair. A common 

design technique for creating alternate paths is to append x extra stages to the back of a regular 

Banyan-type network in which case the number of paths between an input�output pair becomes 

2x (see Fig. 2.10). The maximum number of stages that can be added to such network is (log N 

� 1), which corresponds to the Benes network 
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Figure 2.10: By appending extra stages, alternative routes are available 
 
 
 
             A Benes networks a small number of SEs along a path between an input�output pair. 

These characteristics have made Benes networks attractive for constructing DC-based optical 

switching networks because loss and attenuation of an optical signal are proportional to the 

number of couplers that the optical signal passes through. Benes networks proves to be 

rearrangeably non-blocking network [26]. A Benes networks of N inputs has 2logN-1 stages, 

and each stage has N/2 SEs. Therefore, A Benes networks has O(NlogN) SEs, which is smaller 

than either the Crossbar or the Clos network.    
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2.5 Problems in OMIN 

Fiber optic communications promise to meet the increasing demand of communication 

systems, and received much attention in parallel processing community as well [31].  Although 

optical MIN has great promises and has some advantages over the electronic MIN, it leads to 

some other problems too.  Optical MINs suffer with problems such as path loss, conversion of 

the signal at the switch and crosstalk [2, 4, 17].  

2.5.1. Bottlenecks at The Switch Element 

An optical cross-connect switch may be thought of as a black box with multiple input 

and output fibers carrying network traffic. The optical cross-connect switches used in today�s 

networks rely on electronic cores. An optical signal arriving at a switch input port is converted 

to an electronic signal by a high-speed photo detector (receiver). Electronic circuits in the 

switch core then direct the signal to the desired output port. A final electrical-to-optical 

conversion is performed by a laser diode, transforming the signal back into light for onward 

transmission on the fiber network [2].  

The fundamental problem with these electronic cores is that they do not scale well to 

large port counts (numbers of input and output channels) and are costly to replace for network 

upgrades to the higher data rates needed for the growing demand for bandwidth. In order to 

avoid this problem, the need is to develop all optical switching technologies with low-optical-

loss switching and extremely high reliability [17]. 

2.5.2. Crosstalk in OMIN 

  One of the most serious problems is optical crosstalk in optical MIN.  This crosstalk 

occurs when two signal channels interact with each other.  When a crosstalk happens, a small 
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fraction of the input signal power may be detected at another output although the main signal is 

injected at the right output.  For this reason, when a signal passes many switching elements, the 

input signal will be distorted at the output due to the loss and crosstalk introduced on the path 

[4, 31]. This was not too big an issue in electrical MINs, but because the more stringent bit 

error rate in optical network, it has become a big problem. There are two ways in which optical 

signals can interact in a planar switching network.  The channels carrying the signals could 

cross each other in order to embed a particular topology.  Alternatively, two paths sharing a SE 

will experience some undesired coupling from one path to another within a SE [31].  This is 

shown in Figure 2.11: 

 
 

Figure 2.11. Cross talk in a switch element 

 

Each switching element can be in two connecting schemes as shown in Figure 2.11. 

Since these two ways in Figure 2.11 will cause crosstalk, what we need to do is to prevent 

these situations from occurring in all the switching elements. 
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2.6. Approaches to avoid crosstalk 

To reduce the negative effect of crosstalk, many approaches have been proposed. One 

way to solve crosstalk is to use a 2N × 2N regular MIN to provide the N × N connection [4].  

But half the inputs and outputs are wasted in this approach.  We can use wave division 

multiplexing (WDM) [1, 27, 30, 40] and time division multiplexing (TDM) [31, 37] to solve 

this problem. WDM is based on a well-known concept of called frequency division 

multiplexing or FDM. With this technology, the bandwidth of a channel (its frequency domain) 

is divided into multiple channels, and each channel occupies a part of the larger frequency 

spectrum. In WDM networks, each channel is called a wavelength. This name is used because 

each channel operates at a different frequency and at a different optical wavelength. Because 

we are dealing with optical networks, wavelengths on the fiber are separated from each other 

by a guard band, which helps prevent their interfering with each other. This idea is called 

channel spacing, or simply spacing [4]. It is similar to the idea of guard bands used in electrical 

systems. In Figure 2.12, small gaps between each channel represent the guard band. 

 

Figure 2.12. WDM 
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Figure 2.13.  TDM 

 

TDM provides full channel capacity but divides the channel usage into time slots. Each 

user is given a slot and the slots are rotated among the users. A pure TDM system cyclically 

scans the input signals (incoming traffic) from the multiple incoming data sources 

(communication links, for example) [4]. Figure 2.13 shows on how TDM can be implemented. 

Most optical networks (or, for that matter, most networks in general) use a combination 

of WDM and TDM by time-division multiplexing fixed slots onto a specific wavelength, as in 

Figure 2.14, in which, each color represents a message, and as can be seen, messages are 

spread among several time slots and several frequencies. This concept is quite valuable 

because it allows multiple users to share one WDM wavelength�s capacity. 
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Figure 2.14. A hybrid of WDM and TDM 

 

In this research we are interested in routing traffic through an N × N optical network to 

avoid coupling two signals within each switching element.  We can implement this idea using 

time division multiplexing (TDM) [37].  This means, in every switching element, there are 

only four legal passing connections as shown in Figure 2.15. 

 
Figure 2.15. Legal passing connections in a SE at a time 
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Chapter 3 

Related Work 

 The Benes architecture is a rearrangeably nonblocking switch architecture, and is one 

of the most efficient switch architectures in terms of the number of 2x2 switches it uses to 

build larger switches.   

In this dissertation, we will focus on the optical Benes networks that are free of first-

order crosstalk in SEs (we refer to this as crosstalk-free hereafter). It is the crosstalk-free 

constraint that makes the analysis of optical Benes networks different from that for electronic 

ones. In Benes networks, when two connections intend to use the same link, one of them will 

be blocked. This is called link-blocking. There is, however, another type of blocking in optical 

Benes networks. If adding the connection causes some paths including the new one to violate 

the crosstalk-free constraint, the connection cannot be added even if the path is available. We 

refer to this second type of blocking as crosstalk-blocking. Since the crosstalk-free constraint 

requires that only one signal be allowed to pass through a SE at a time, it thus has a larger 

contribution to the overall blocking probability than that of link-blocking. 

             Vertical stacking of multiple copies of an optical Benes network is a novel scheme for 

constructing nonblocking (crosstalk-free) optical switching networks with neither increasing 

the number of stages nor sacrificing the self-routing property of the Benes network [12], as 

shown in Figure 3.1. 
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Figure 3.1. A Stacked Banyan Networks with Two Planes. 

 

 We use VSOBN to denote vertically stacked optical Benes networks and 

VSOBN(N,m) to denote an VSOBN network that has m stacked copies (planes) of an NxN 

Benes network. Previous results [12],[13] focus on determining the minimum number of planes 

required for nonblocking VSOBN(N,m) networks. These results indicate that the vertical 

stacking scheme, although is attractive, requires a prohibitively high hardware cost for building 

a nonblocking VSOBN network. 

 In this section, we will briefly introduce some of the previous related work.  

3.1 Analysis of Blocking Probability of Stacked Banyan Networks 

           Analysis of blocking probability of a network that does not meet the hardware 

requirement for non-blocking is an effective approach to studying network performance. In 
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[19], blocking probability of stacked Banyan networks is analyzed. As in Figure 3.2, vertically 

stacked Banyan network is one of the ways to achieve non-blockingness [12]. 

                                 

Figure 3.2 Vertically stacked Banyan network 

 

 The deterministic condition for the network being strictly non-blocking is explore and 

as it turns out, the hardware cost for strictly non-blocking stacked Banyan network is too high 

[19]. Then, the blocking probability of stacked Banyan network under the condition that the 

number of planes do not meet the non-blocking requirement is analyzed. The probability for 

the worst case to happen is derived and it is very small, which justifies that in most cases, there 

is really no need to meet the non-blocking requirement. The author then derives the upper 

bound and lower bound of the stacked Banyan network. These bounds provide quantitative 

measurements for tradeoffs between network hardware cost and blocking probability, and 

show that network hardware cost can be dramatically reduced if a small and predictable 

blocking probability is allowed. 
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3.2 Semi-permutation in Benes Network 

 A permutation [49] for a network is a pairing of its inputs and outputs such that each 

input appears in exactly one pair and each output appears also in exactly one pair. In other 

words, a permutation is a full one-to-one mapping between the network inputs and outputs. For 

an N x N network, suppose input xi is mapped to output yi. Then a permutation can be denoted 

as  

x0  x1  �  x n-1 

      y0  y1  �  y n-1  

 

In addition, a one-to-one mapping between n� network inputs and n� network outputs (n�<n) is 

denoted as a partial permutation.  

 A partial permutation of the following form  

x0  x1  �  x n/2-1 

      y0  y1  �  y n/2-1  

Where n is a even integer, xi , yi∈ {0, 1, ..., n-1}and x0<x1<�<xn_2-1 is referred to as a semi-

permutation [49] of the n-element set, if 
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12/nx = {0, 1, �, n/2 - 1} 
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 Clearly, a semi-permutation is a partial permutation that ensures that there is only one 

active link passing through each input switch and output switch, that is, it eliminates crosstalk 
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in the first and last stages in the network, and thus it has the potential to be realized in an 

optical network under the constraint of avoiding crosstalk. It is then established that semi-

permutation can actually be realized in an optical Benes network without incurring crosstalk. 

The algorithm used to decompose a permutation into two semi-permutations is proposed and 

then the algorithm to route the semi-permutation.  

3.3. Optical Window  

Since we do not allow cross talk in optical muiti-stage networks, we have to use a method 

to find out which messages should not be assigned to the same wavelength because they will 

cause crosstalk.  The window method in Omega network [32] is used for finding conflicts 

among all the messages to be sent.  This method has already been proved to be correct by other 

researchers.  It can be described roughly as follows.  Given a permutation, we combine each 

source address and its corresponding destination address to produce a matrix.  The optical 

window size is the m-1, where m = log2N and N is the size of the network.  We use this 

window on the produced matrix from left to right except the first column and last column.  If 

two messages have the same bit pattern in any optical window, they will cause conflict in the 

network.  That means they cannot be in the same group, hence, they have to be routed with 

different wavelength.   

To see how the window method works, the source-destination permutation shown in Figure 

3.3 is considered, where the network size is 8. The optical window method is applied as shown 

in Figure 3.5 on the permutation shown in Figure 3.4. 

Source:              0 1 2 3 4 5 6 7 

Destination:      4 1 2 3 0 5 6 7 

Figure 3.3 A permutation 
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000 ! 100 
001 ! 001 
010 ! 010 
011 ! 011 
100 ! 000 
101 ! 101 
110 ! 110 
111 ! 111 

 
Figure 3.4. Source-Destination permutation 

 
Step 1 (window 0) Step 2 (window 1) Step 3 (window 2)  
        
  0   0   0   1   0   0 0   0   0   1   0   0 0   0   0   1   0   0 
  0   0   1   0   0   1       0   0   1   0   0   1   0   0   1   0   0   1 
  0   1   0   0   1   0       0   1   0   0   1   0   0   1   0   0   1   0 
  0   1   1   0   1   1       0   1   1   0   1   1    0   1   1   0   1   1 
  1   0   0   0   0   0 1   0   0   0   0   0 1   0   0   0   0   0 
  1   0   1   1   0   1 1   0   1   1   0   1 1   0   1   1   0   1 
  1   1   0   1   1   0 1   1   0   1   1   0 1   1   0   1   1   0 
  1   1   1   1   1   1 1   1   1   1   1   1 1   1   1   1   1   1 
 
Message Conflicts Message Conflicts Message Conflicts 
 
000 and 100  000 and 110  000 and 101 

001 and 101  001 and 011  001 and 100 

011 and 111  101 and 111  110 and 111 

010 and 110  010 and 100  010 and 011 
 
                   Figure 3.5 Optical Windows Method 
 

 

In the above example shown in Figure 3.5 message 000 and 100 in Optical window 0 have 

the same bit pattern of �00� inside the window and hence have a conflict. The bit patterns in 

the above example can be any of the four combinations of �00�, �01�, �10�, �11�. For 
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example, in Optical Window 0, message 0 conflicts with message 4, for their bit patterns being 

both �00�; message 1 conflicts with message 5, for their bit patterns being both �01�; message 

2 conflicts with message 6, for their bit patterns both being �10�; and message 3 conflicts with 

message 7, for their bit patterns both being �11�. Therefore, message 0 and message 4 must be 

shaded using different colors; message 1 and message 5 must be shaded using different colors; 

message 2 and message 6 must be shaded using different colors; and message 3 and message 7 

must be shaded using different colors. At each Optical Window the messages shaded with the 

same color inside an optical window have conflicts between them. 

4.4. Conflict Graph and Graph Coloring 

 The conflict graph [36] of a permutation π is a graph G (V, E), where V is the set of 

all the messages, V is the set of pair of messages that ever being colored the same. For 

example, the conflict graph for the above example would be  

                                  

                               Figure 3.6. An example of conflict graph 

 

Then the graph is colored, which is known to be NP-complete [60]. 

4.5. Parallel Routing in Benes Networks 

 The decomposition of a permutation into 2 semi-permutations takes O (N) time [36], 

and since there are O(logN) SEs along a path, the time complexity of routing in Benes network 
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is O(NlogN). Tony T. Lee [6] develops a parallel algorithm to decompose a permutation into 2 

semi-permutations, and the time complexity of his algorithm is O(log2N), which is sketched as 

follows. 

Packets are forwarded to one of the two output links at each SEs, and each of these output links 

is labeled as forward routing bit, or FRB (for the baseline network) and reverse forward routing 

bit or RRB (for the reverse baseline network) A set of routing paths in is said to be non-

blocking if and only if the following are satisfied. 

1) Symmetric Routing Constraint: The FRB of input and the RRB of output must be the same if 

and are in a connection request. It is because they must be connected to the same central 

module in order to establish a path. 

2) Internally Conflict-Free Constraint: The FRBs (RRBs) of the two input (output) ports on 

the same switching module must be distinct in order to avoid internal conflict. 

When performing switching function, a 2 x 2 switching element can either be in bar state (state 

0) in which the two positions remain, or in cross state (state 1) in which the two positions 

exchange from the inputs to the outputs. We use ai and bi to denote the state of the th input 

(output) switching element. When a packet gets across a switching element, its routing bit 

determines the state of the element, and vice versa. For a permutation as  

                                              

Let α and β denote the FRBs and the RRBs, respectively, of packets. The symmetric self-

routing constraint requires that α(k) = β(π(k)), for k = 0, 1, �, N-1. and the internal conflict-

free constraints require that α(k) = α�(k+1). Combine these two formula, we will get β(π(k)) = 
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α(k) = α�(k+1) = β�(π(k+1)). With the state variables of switching elements, the above routing 

bits can be as well given by 
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By such algebraic interpretation, we can set up the Boolean equations for the route assignment 

as demonstrated below. The permutation given in the previous example can first be mapped 

into 

                                      a0   a0�   a1   a1�   a2   a2�   a3   a3�   

                                      b2   b2�   b0   b3�   b0   b1�   b3   b1�    

It then gives  

                                     a0 = b2,    a0� = b2�,    a1 = b0�,   a1� = b3,   
                               a2  = b0,    a2� = b1 ,    a3 = b3�,   a3� = b1�          

We can eliminate all a�s from the above and obtain a set of equations composed only of b�s as 

                                          b2 = b2,   b0 = b3,   b1 = b0�,  b3 = b1� 
 
This set of equations is called the initializing equations. As it turns out, the permutation is 

partitioned into several equivalent classes. For example, the above permutation is partitioned 

into 2 equivalent classes, class 1 being {b0, b1, b3} and class 2 being {b2}, and then a 

representative from each class is chosen and assigned a value 0 or 1. Up to now, the states of 

outer stages are set, and algorithm recursively set the states of each inner stages.    

4.6 Parallel Routing in Benes Network without Crosstalk 

 In [62], a parallel routing and wavelength assignment algorithm is proposed. 

Conceptually, this algorithm has logN rounds, in each round i, the algorithm sets up the SEs at 

k is even 
k is odd 

k is even 
k is odd 
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stages i and 2logN-i-2, and uses at most 2(i + 1) +1 wavelengths to ensure that there is no 

crosstalk in stages {0 � i}, and {2logN-i-2, �, 2logN-2} , The algorithm is briefly described 

as follows, 

1. Decompose a permutation into two semi-permutations, each named upper or lower 

semi-permutation, satisfying that two active inputs (outputs) in an SE in the first (last) 

stage are in different parts.  

2.  Route one of them through the upper sub network, and the other through the lower sub 

network.  

The above two steps decide the setup of the Benes network, and the following steps are to 

assign wavelengths to the network. 

3. If there is a connection c� so that c and c� pass through the same SE in stage i , record this 

information and assign c and c� different wavelength from different end of the available 

wavelength pool 
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Chapter 4 

Upper Bound on Blocking Probability of VSOBN 

 In this chapter, we shall analyze the worst-case scenarios in Benes networks and 

develop an upper bound on blocking probability of vertical stacked optical Benes networks.  

4.1 Strictly Nonblocking without Worst Case Scenarios 
 

In this section, we briefly describe the deterministic condition for the strictly nonblocking 

VSOBN network that is obtained based on worst-case and second worst-case analysis. We also 

evaluate the probability that the worst-case scenario occurs to motivate the work of this paper. 

Due to their topological symmetry, all paths in a Benes network have the same property 

in terms of blocking. To study the blocking probability, we can arbitrarily select an input and an 

output in the network and set up a connection between them. Throughout this paper, we will 

select the path between the first input and the first output and try to set up a connection between 

them. We call the path between this input-output pair the tagged path. All the SEs on the tagged 

path are called tagged SEs. In Benes networks, all paths between the targeted pair are called the 

tagged paths. 

The flow of information through the network is assumed to be from left to right�all the 

inputs being on the left-hand side and all the outputs on the right-hand side of the network. The 

stages of SE�s are numbered from left (stage 1) to right (2logN -1 stage ). The stages of links are 

also numbered from left to right, but starting from 0 (input links) to (2logN -1destination links). 

For a tagged path, an input intersecting set (IIS) Ii associated with stage i (1<=i<=2logN-1) is 

defined as the set of all inputs that intersect a tagged SE at stage. Likewise, an output 

intersecting set Oi (OIS) associated with stage i is the set of all outputs that intersect a tagged SE 

at stage 2LogN-i. Fig. 4.1 shows some examples. 
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We are interested in an optical network that is nonblocking and crosstalk-free. This can 

be achieved at the cost of extra hardware. For a VSOBN network, the following theorem gives 

the deterministic condition for strictly nonblocking [12], we are going to discuss the noblocking 

requirement without the worst case scenarios. 

 
Theorem 4.1: VSOBN is strictly nonblocking if and only if the following condition is true: 
                     
                             m>= 2x + (2N/2x)1/2-1 in which x = logN-1 
 

The above result was obtained based on worst-case analysis. That is, to find the 

maximum possible number of connections that will conflict the tagged path and let each of these 

connections block a distinct plane. 

   

 

 

 

 

 

 

 

 

     

Figure 4.1 Different input (output) links have different blocking capabilities 

 

From figure 4.1, we know that different input(output) links have different blocking 

capabilities. Inputs(outputs) in I1 have the capabilities to block the whole plane; inputs(outputs) 
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in I2 have the capabilities to block only ½ plane�; inputs(outputs) in Ik have the capabilities to 

block only 1/2k-1plane. When a connection is set up between an input from Ii and an output from 

Oj, the connection will block 1/2min{i,j}-1 plane. Therefore, the problem of finding the worst-case 

traffic pattern can be formulated as follows: 

Given a set Γ: {1, ½, ½, ¼, ¼, ¼, ¼, �, 1/ N/2 ,�, 1/ N/2}, find a relation Γ x Γ, such that  Σ 

max(Γ x Γ) is maximized.  

It is clear that in order to maximize the sum, the relation must be as unbalanced as 

possible. For example, for set{1, ½}, (1, ½) and (½,1) would be a better choice than(1,1) and (½, 

½) since the former will block 2 plane, but the latter will only block 1½ planes.  

Therefore, in order to maximize the sum, we must pick the relation pairs from the two ends of 

the set. We shall prove this: 

Given a set Γ: {1, ½, ½, ¼, ¼, ¼, ¼, �, 1/ N/2 ,�, 1/ N/2}, to find a relation Γ x Γ, such that  Σ 

max(Γ x Γ) is maximized, the relations picked from different end is the optimal solution. 

Proof: we sort the list 1, ½, ½, ¼, ¼, ¼, ¼, �, 1/ N/2 ,�, 1/ N/2 in descending order then sort it 

in ascending order  1/ N/2,�, 1/ N/2,�¼, ¼, ¼, ¼, ½, ½, 1. In the first list, we pick 1 and then 

pair it with 1/ N/2 from the second list, since 1/ N/2 is the smallest number in the second list and 

due to the fact that the larger valued between the two in each pair will be produced, pair 1/ N/2 

with 1 will in no way decrease the ultimate value. Once this pair has been settled, the lists 

become ½, ½, ¼, ¼, ¼, ¼, �, 1/ N/2 ,�, 1/ N/2 and 1/ N/2,�¼, ¼, ¼, ¼, ½, ½, 1; and the 

algorithm will proceed recursively. From this, it turns out that the problem possesses greedy 

property and it is clear that the greedy solution is optimal in this case.                                         ◘ 

And the relation is (1,1/N/2), (1/2, 1/N/2),( 1/2, 1/N/2),( 1/2, 1/N/2),( 1/2, 1/N/2),(1/4, 

1/N/2),�, (1/N/4, 1/N/2) ,�, (1/N/4, 1/N/2), their respective inversions and  (1/N/2, 1/N/2). Add 1,1, 
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½, ½, ½, ½, ½, ½, ½, ½,  ¼, �, 1/N/4 ,�,1/N/4 ,1/N/2 together, we will get the result of theorem 

4.1. 

From Theorem 4.1, it is clear that the hardware cost for a strictly non-blocking VSOBN 

network is high. 

Let us find out the probability that the worst-case scenario could occur. Let the 

probability that an input (output) port is busy be r and denote by Pworst the probability that the 

worst-case scenario occurs. Pworst is then given in the following lemma under the assumption that 

statuses of individual input (output) ports are independent. 

Lemma 4.1: In an NxN optical benes network, we have 
 

Pworst =  
2

12/

12/
1
2/














−

−


 − r

N
N

Nr n                            

 

Proof: Under the constraint of crosstalk-free, the worst-case scenario of conflicts on the tagged 

path is when all inputs in set Ii(1<=i<=logN-1) are destined for the outputs in OlogN and all 

outputs in set Oi are originated from the inputs in set IlogN. Thus, the maximum number of 

conflicts with the tagged path is determined by both the connections from set Ii  and set Oi. Any 

of the N/2-1 input can reach any of the N-1 output. In the worst case scenario, a connection from 

Ii must be terminated at an output in OlogN and there is N/2 of them. And we have to consider the 

case in which all the inputs in IlogN  going to Oi. 

Therefore, Pworst = 
2

12/

12/
1
2/














−

−


 − r

N
N

Nr n                                                                                    ◘ 
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When r=0.9 and N =64 and r=0.9 and N=128 , 

P64 = 2.63 x 10-34 

P128 = 3.97 x 10-77 

This indicates that the probability of worst case from happening is very small or even can 

be ignored.  

Table 4.1:  Blocking Capacity and No. of planes required 

     No. of  inputs 16 32 64 128 256 

 6 1/8  8 1/16 10 1/32 12 1/64 14 1/128 

No. of planes required 7 9 11 13 15 
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Figure 4.2: Blocking requirement and actual number of planes needed for worst cases. 
 

We now define the term second worst-case scenario as follows: 

Second worst case is the case (cases) in which the second largest blocking capability occurs.                                 

Blocking 
Capacity 
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 It is also important to find out the probability that the second worst-case scenario could 

occur. The reason is explained as follows:                                              

 

 

Take when N = 16 as an example,  

I1: {1}                                                O1: {1} 

I2: {½, ½}                                          O2: {½, ½} 

I3: {¼, ¼, ¼, ¼}                                O3: {¼, ¼, ¼, ¼} 

I4: {1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8}  O4: {1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8} 

The worst-case is when inputs (outputs) in I1, I2, and I3 are connected to outputs (inputs) 

in I4. There will be one pair in I4 and O4 left and this pair accounts for the 1/8. In order to be 

strictly non-blocking, we need 7 planes.  

Now let us consider the second worst-case. In the second worst-case, the blocked planes 

will be 6. The second worst case happens either when I1, I2, I3 going to O4 and O1, O2, O3 going 

to I4 while the remaining one pair in I4 and O4 is not connected or one pair in I3 and O3 is 

connected while rest of the inputs (outputs) are connected to O4 (I4). Therefore, in the former 

case, the blocking capability is reduced by 1/8 because the remaining pair in I4 and O4 is not 

connected; in the latter case, because one pair in I3 and O3 is connected, while in the worst case 

these two are both connected with one in I4 or O4, the capability of blocking is reduced by ¼. At 

the same time, the pair in the I4 and O4 must be connected together, which increased the blocking 

capability by 1/8. So, blocking difference between the worst-case and the second worst-case will 

be ¼-1/8 = 1/8. 

This proved Theorem 4.2. 
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Theorem 4.2: A VSOBN network is strictly nonblocking with m = 2*(logN �1) when worst and 

second worst case do not occur. 

Now it is the time to find out the probability that second worst-case could happen.   

Lemma 4.2: In an NxN optical benes network, we have 

Psecond-worst= 
2

12/ )1(

12/
1
2/
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Proof: Under the constraint of crosstalk-free, the second worst-case scenario of conflicts on the 

tagged path happens in two cases.  

Case 1: when all inputs in set Ii(1<=i<=logN-2) are destined for the outputs in OlogN and all 

outputs in set Oi (1<=i<=logN-2) are originated from the inputs in set IlogN For inputs in IlogN-1 

and outputs in OlogN-1, only one pair is connected, rest of them are connected to OlogN or IlogN. 

Thus, the maximum number of conflicts with the tagged path is determined by both the 

connections from set Ii  and set Oi. Any of the N/4-1 input can reach any of the N-1 output. In the 

worst case senario, a connection from Ii must be terminated at an output in OlogN and there is N/4 

of them. One input from IlogN-1 and one output in OlogN-1 is connected. And we have to consider 

the case in which all the inputs in IlogN  going to Oi.  

Case 2: Exactly the same as in the worst case except that the pair in IlogN and OlogN is idle. In this 

case, the total blocking capacity is reduced by 1/8.   

Therefore, Psecond-worst= 
2

12/ )1(
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When r=0.9 and N =64 and r=0.9 and N=128 respectively. 
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P64 = 3.91 x 10-34 

P128 = 8.38 x10-74 

This shows that the probability that second worst case happens is still very small, which 

justifies theorem 4.2. 

The result is significant, because we can save one whole plane if the worst case and 

second worst-case do not happen very often.   

Table 4.2 Savings (percentage) without 1st and 2nd worst case 

     No. of  inputs 16 32 64 128 256 512 1024 
No. of planes w/o 1st 
and 2nd worst scenarios 

6  8  10  12  14  16 18 

Blocking requirement 
w/o 1st worst scenarios 

6 1/8 8 1/16 10 1/32 12 1/64 14 1/128 16 1/256 18 1/512 

Saving(percentage) 
w/o 2nd worst case 

14.3% 11.1% 9.1% 7.7% 6.7% 5.9% 5.3% 
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Figure 4.3. Savings (percentage) without 1st and 2nd worst case. 
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The table shows that even when N = 1024, which is a quite large network, we can save 

5.3%, if we neglect first and second order worst-cases. 

Lemma 5.3: In an NxN optical benes network, further neglecting third order worst-case does not 

save a plane. 

  For example when N = 16, in the third worst-case, the blocked planes will be 4.875. 

The reason is that 1/8 is the smallest residue in this system and in order to get the blocked planes 

in the third worst case, all needs to be done is to let two pair in I3 and O3 to be connected; while 

in the second worst case only one pair is connected the other pair is connected with one in I4 or 

O4. Therefore, the capability of blocking is reduced by ¼. And the same time, the pair in the I4 

and O4 must be connected together, which increased the blocking capability by 1/8. So, blocking 

difference between the second worst-case and the third worst-case will be ¼-1/8 = 1/8. 

Therefore, further neglecting third order worst-case is meaningless. 

From the above analysis, it can be seen that spending a large amount of extra hardware in 

order to guarantee the strictly non-blocking property is not cost-effective in most cases. This 

motivates us to find out the blocking probability of a VSOBN network with respect to the 

number of planes (hardware cost), and to seek an approach to making tradeoff between hardware 

cost and blocking probability. 

4.2 Upper Bound on Blocking Probability 

Since exact blocking probability is hard to obtain, in this section we will derive various 

formulas to get an upper bound on the blocking probability of a VSOBN in terms of the number 

of planes. This bound can be considered as the estimate for the worst case blocking probability. 

In the following discussion, we give a few definitions and notation that will be used in the 

analysis.  
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For an N x N network, a matrix of logN x logN is proposed. An element in the matrix Cij 

stands for the connection from Ii to Oj.   

For an N x N network, a matrix of logN x logN is proposed. An element in the matrix Cij stands 

for the connection from Ii to Oj.   

 
C11       C12        �      C1n 
C21       C22        �      C2n 
. 
. 
. 
C(n-1)1   C(n-1)2   �       C(n-1)n 
Cn1       Cn2       �       Cnn 
 
We use CIi to denote the sum of coefficients of Cij in row i where j>=i. For example:  

CI2 = C22 + C23 +� + C2n 

We use COj to denote the sum of coefficients of Cij in column j where i>=j. For example:  

CO2 = C22 + C32 +� + Cn2 

By this definition, CIi stands for the connections coming from input group i going to ouput 

groups j (j>=i). COj stands for the connections going to ouput group j coming from input groups i 

(i>=j). 

The total blocking capability BC is therefore CI1 + CO1 � C11 + ½*(CI2 + CO2 � C22)+ ¼* (CI3 + 

CO3 � C33) + � + 1/2logn-1*(CIn + COn � Cnn) 

CI1 stands for the connections coming from input group to every output group. CO1 stands for the 

connections coming from every input group to output group 1. And any connection in CI1 and 

CO1 will block a whole plane. But there are some overlaps in these tow groups and the overlap is 

C11(which are the connections coming from input group 1 to output group 1), since it has been 

counted twice in CI1 and CO1. 
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CI2 stands for the connections coming from input group 2 to every output group other than group 

1. CO2 stands for the connections coming from every input group other than input group 1 to 

output group 2. And any connection in CI2 and CO2 will block 1/2 whole plane. But there are 

some overlaps in these two groups and the overlap is C22(which are the connections coming from 

input group 2 to output group 2), since it has been counted twice in CI2 and CO2. 

Similar consideration will apply to CI3, CO3,� CIn, COn. 

 Clearly there will be no blocking if CI1 + CO1 � C11 + ½*(CI2 + CO2 � C22)+ ¼* (CI3 + CO3 � C33) 

+ � + 1/2logn-1*(CIn + COn � Cnn)<m.                                                                   (1) 

Therefore we have 

P(nonblocking) = ∑
−

=

)1,2min(

0

0

1

m

CI

∑
−

=

)2)*1(,2min(

0

1
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� ∑
−−
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)2)*1(,2/min(

0

1log n
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mn

C
∑
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=

)1,2min(

0

0

1

m
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∑
−

=

)2)*1(,2min(

0

1

2

m

CO

� ∑
−−

=

)2)*1(,2/min(

0

1log n

On

mn

C
  

P(CI1, CO1, CI2, CO2, �, CIn, COn) * P(CI1 + CO1 � C11 + ½*(CI2 + CO2 � C22)+ ¼* (CI3 + CO3 � 

C33) + � + 1/2logn-1*(CIn + COn � Cnn)<= m-1 

|CI1, CO1, CI2, CO2, �, CIn, COn)                                                                                        (2) 

The lower bound of CI1 is 0 since it can not be negative. On the other hand, CI1 must not be 

greater than 20, since there is only 20 input in I1; and CI1 must not be greater than m-1, since there 

are only m planes in the networks and if CI1 is greater than m-1, then the network will be 

blocked. Therefore, CI1 must not be greater than the minimum of 20 and m-1. 

The lower bound of CI2 is 0 since it can not be negative. On the other hand, CI2 must not be 

greater than 21, since there is only 21 inputs in I2; and CI2 must not be greater than 2*(m-1), since 

there are only m planes in the networks and if CI2 is greater than 2*(m-1), then the network will 

be blocked. Therefore, CI1 must not be greater than the minimum of 21 and 2*(m-1). 

And the ranges of other connections can be derived accordingly. 
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From (1) 

CI1 + CO1 � C11 + ½*(CI2 + CO2 � C22)+ ¼* (CI3 + CO3 � C33) + � + 1/2logn-1*(CIn + COn � Cnn)<= 

m-1, 

by simple algebraic manipulation, 

We have C11 + ½ C22 + ,�, + 1/2logn-1Cnn >= CI1 + CO1 + ½*(CI2 + CO2)+�+ 1/2logn-1 (CIn + COn) 

� m + 1                                                                                                                   (3) 

Therefore,  

P(nonblocking) = ∑
−

=

)1,2min(
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P(CI1, CO1, CI2, CO2, �, CIn, COn) * ∑
=++++ −

Upper

LowerCCCC nn
n 1log

332211 2/1...4/12/1

 P(C11, C22, ,�,  Cnn |CI1, CO1, 

CI2, CO2, �, CIn, COn) 

In which  

Lower = max[0, CI1 + CO1 + ½*(CI2 + CO2)+�+ 1/2logn-1 (CIn + COn) � m + 1] 

Upper = min(CI1 , CO1)+ ½*min(CI2 ,CO2)+�+ 1/2logn-1*min(CIn , COn) 

From (3) C11 + ½ C22 + ,�, + 1/2logn-1Cnn >= CI1 + CO1 + ½*(CI2 + CO2)+�+1/2logn-1 (CIn + COn) � 

m + 1, we can see that the lower bound of (C11+ ½ C22+ ¼ C33 + �+1/2logn-1Cnn) is CI1 + CO1 + 

½*(CI2 + CO2)+�+ 1/2logn-1 (CIn + COn) � m + 1.  

On the other hand, C11 must not be greater than CI1 or C01; 1/2 C22 must not be greater than 

1/2CI2 or 1/2C02 � and so forth. Here so derives the upper bound of (C11+ ½ C22+ ¼ C33 + � 

+1/2logn-1Cnn). 

And  
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P(nonblocking) = P(CI1, CO1, CI2, CO2, �, CIn, COn) P(C11, C22,�, Cnn |CI1, CO1, CI2, CO2, �, CIn, 

COn) 

= P(C11, C22,�, Cnn, CI1, CO1, CI2, CO2, �, CIn, COn) 

= P(CI1 C11)P(C22,�, Cnn , CO1, CI2, CO2, �, CIn, COn| CI1 C11) 

= P(CI1 C11)P(C22,�, Cnn , CO1, CI2, CO2, �, CIn, COn| C11)    

We drop CI1 under the assumption that the connections in CI1 are independent with all others, 

which can be justified if the amount of traffic under consideration is huge.  

= P(CI1 C11)P(C11 ,C22,�, Cnn , CO1, CI2, CO2, �, CIn, COn)/P(C11) 

= P(CI1 C11) P(CO1 C11)P(C22,�, Cnn ,  CI2, CO2, �, CIn, COn| CO1 C11)/P(C11) 

= P(CI1 C11) P(CO1 C11)P(C22,�, Cnn ,  CI2, CO2, �, CIn, COn| C11)/P(C11)  

We drop CO1 under the assumption that the connections in CO1 are independent with all others, 

which can be justified if the amount of traffic under consideration is huge.  

= P(CI1 C11) P(CO1 C11)P(C11, C22,�, Cnn ,  CI2, CO2, �, CIn, COn)/P2(C11) 

= . 

   . 

   . 

= P(CI1 C11) P(CO1 C11) P(CI2 C22 ) P(CO2 C22)� P(CIn Cnn) P(COn Cnn)P(C11, C22, ,�,  Cnn)/ 

P2(C11) P2(C22)� P2(Cnn) 

Since C11, C22, ,�,  Cnn  are independent of each other, 

 P(C11, C22, ,�,  Cnn) = P(C11)P(C22) ,�, P(Cnn) 

 So P(nonblocking) = P(CI1 C11) P(CO1 C11) P(CI2 C22 ) P(CO2 C22)� P(CIn Cnn) P(COn Cnn)P(C11, 

C22, ,�,  Cnn)/ P2(C11) P2(C22)� P2(Cnn) 
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= P(CI1 C11) P(CO1 C11) P(CI2 C22 ) P(CO2 C22)� P(CIn Cnn) P(COn Cnn) P(C11)P(C22) ,�, P(Cnn)/ 

P2(C11) P2(C22)� P2(Cnn) 

= P(CI1 C11) P(CO1 C11) P(CI2 C22 ) P(CO2 C22)� P(CIn Cnn) P(COn Cnn) / P(C11) P(C22)� P(Cnn) 

 

P(C11) stands for the probability of C11 connections coming from input group 1 going to output 

group 1. 

Therefore, P(C11) is 

P(C11) = 








11

1
C

11
1

Cα (1- 1α ) 111 C− , 1α is the probability that a connection from input group 1 

going to the out put groups 1. So 1α  is r * 1/N-1 in this case.(r is the incoming rate or outgoing 

rate of the traffic) 

P(C22) stands for the probability of C22 connection coming from input group 2 going to output 

group 2. 

Therefore, P(C22) is 

P(C22) = 








22

12
C

22
2

Cα (1- 2α ) 22
12 C− , 2α is the probability that a connection from input group 2 

going to the out put groups 2. So 2α  is r *21/(N-1) in this case. 

. 

. 

. 

P(Ckk) stands for the probability of Ckk connection coming from input group k going to output 

group k. 

Therefore, P(Ckk) is 
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P(Ckk) = 
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kα (1- kα ) kk
k C−−12 , kα is the probability that a connection from input group k 

going to the out put groups k. So kα  is r * (2k-1)/(N-1) in this case. 

 

P(CI1 C11) is the probability of CI1 connections from input group 1 to output groups 1 and above 

while there are C11 connections from input group 1 to output group 1. 

P(CI1 C11) =  
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In which  1α is the probability that a connection from input group 1 going to the out put groups 

1. So it is r * 20/N-1 in this case. 1γ  is the probability that a connection from input group 1 going 

to the out put groups above 1 and 1γ is r * (N-21 / N-1) 

 

P(CI2 C22) is the probability of CI2 connections from input group 2 to output groups 2 and above 

while there are C22 connections from input group 2 to output group 2. 

P(CI2 C22) =  
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−
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In which 2α is the probability that a connection from input group 2 going to the out put groups 

2. So it is r * 21/N-1 in this case. 2γ  is the probability that a connection from input group 2 going 

to the out put groups above 2 and 2γ is r * (N-22 / N-1) 

 

P(CIk Ckk) is the probability of CIk connections from input group K to output groups K and above 

while there are Ckk connections from input group K to output group K. 
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P(CIk Ckk) =  
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In which kα is the probability that a connection from input group k going to the out put group k. 

So kα  is r * 2k-1/N-1 in this case. kγ  is the probability that a connection from input group k 

going to the out put groups above k and kγ  is r * (N-2k / N-1) 

P(CO1 C11) is the probability of CO1 connections going to output group 1 from input groups 1 and 

above while there are C11 connections from input group 1 to output group 1. 

P(CO1 C11) =  
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In which 1α is the probability that a connection from input group 1 going to the out put groups 

1. So it is r * 20/N-1 in this case. 1γ  is the probability that a connection going into  output group 

1 from  the input groups above 1 and 1γ is r * (N-21 / N-1) 

 

P(CO2 C22) is the probability of CO2 connections going into output group 2 coming from input 

groups 2 and above while there are C22 connections from input group 2 to output group 2. 

P(CO2 C22) =  
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−

γαγα  In which 2α is the 

probability that a connection from input group 2 going to the out put groups 2. So it is r * 21/N-1 

in this case. 2γ  is the probability that a connection going into output group 2 coming from the 

input groups above 2 and 2γ is r * (N-22 / N-1) 

P(COk Ckk) is the probability of COk connections from input group K to output groups K and 

above while there are Ckk connections from input group K to output group K. 
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P(COk Ckk) =  
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In which kα is the probability that a connection from input group k going to the out put group k. 

So kα  is r * 2k-1/N-1 in this case. kγ  is the probability that a connection going into output group 

k coming from the input groups above k and kγ  is r * (N-2k / N-1) 

Based on the above formulas, we can calculate the blocking probability with various 

numbers of planes.  

 

Figure 4.4. Illustration of paths for calculatingα  and γ  
 
 

This therefore proved the following theorem 3: 

Theorem 3: In a VSOBN(m,n) network, the nonblocking probability is  P(CI1 C11) P(CO1 C11) 

P(CI2 C22 ) P(CO2 C22)� P(CIn Cnn) P(COn Cnn) / P(C11) P(C22)� P(Cnn); in which P(Ckk) = 
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kα (1- kα ) kk
k C−−12 , kα is the probability that a connection from input group k going to 

the out put groups k. So kα  is r * (2k-1)/(N-1) in this case, P(CIk Ckk) is the probability of CIk 

connections from input group K to output groups K and above while there are Ckk connections 

from input group K to output group K. 

P(CIk Ckk) =  
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In which kα is the probability that a connection from input group k going to the out put group k. 

So kα  is r * 2k-1/N-1 in this case. kγ  is the probability that a connection from input group k 

going to the out put groups above k and kγ  is r * (N-2k / N-1), P(COk Ckk) is the probability of 

COk connections from input group K to output groups K and above while there are Ckk 

connections from input group K to output group K. 

P(COk Ckk) =  
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In which kα is the probability that a connection from input group k going to the out put group k. 

So kα  is r * 2k-1/N-1 in this case. kγ  is the probability that a connection going into output group 

k coming from the input groups above k and kγ  is r * (N-2k / N-1)                                   ◘ 

Now we show some analytical results based on the formulas obtained in the section. 

Figure 14 show the blocking probability with different number of planes. From the figure, it can 

be seen that when n =16, the blocking probability is very close to 0 even the number of planes is 

5. Hence, in most practical cases, we do not need a full number of planes to guarantee non-

blocking, and our analysis will show what the probability of blocking if a smaller number of 
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planes is used. Figure 4.5 can be used as guidance when a designer makes a trade-off between 

performance and cost. 
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Figure 4.5.  Blocking Probability for Traffic Rate r = 0.8 and 0.1 
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Chapter 5 

WDM Routing in Benes network 

Optical switches are now widely used in WDM all-optical networks. Directional couplers 

(DCs) can switch signals with multiple wavelengths. They are commonly used to build large 

optical switches. However, DCs suffer from an intrinsic crosstalk problem [31]. In this 

dissertation, we study the non-blocking properties of WDM Benes networks under crosstalk free 

constraints.  

In [49], it has been proved that a permutation can be decomposed into two semi-

permutations and each of the two semi-permutations can be routed separately through the Benes 

network without crosstalk. However, it is not the same as routing the two semi-permutations in 

the Benes network with two different wavelengths at the same time. In our study, we assume 

each SE has only two states, either bar or state, therefore, the two semi-permutations might have 

conflicts in setting the states of the SEs. 

 Our WDM routing algorithm is composed of two phases, namely route constructing 

phase and wavelength assigning phase. In route constructing phase, we are given a permutation 

and the output of this phase is a setup of the switch elements; in wavelength assigning phase, the 

network setup from the previous phase will be taken and a wavelength assignment will be made 

on this network so that cross talk will not occur.  

5.1 Route Construction 

A Benes network exhibits a symmetric topological structure [26]. As shown in Fig. 5.1, 

the Benes network can be considered as a cascaded combination of an Banyan network (a 

baseline network in specific) and a reverse Banyan network with the two joint stages 

overlapping. Since there is only a unique path between any input and any output in both of the 
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baseline and the reverse baseline networks, each path in the Benes network actually consists of 

two subpaths, one in the baseline network and the other in the reverse baseline network. These 

two subpaths can be joined at any one of the central modules to form a complete path. For any 

complete path in the Benes network, the forward subpath from the input, and the reverse subpath 

from the output, to the middle stage must have the same binary �destination address,� which 

indicates a particular central module for the connection. 

                                              

Figure. 5.1  Benes network exhibits symmetry respect to the center stage 

 

In [6] [20], a parallel routing algorithm is proposed, which recursively routes the Benes 

network from outer layer to inner with N/2 processors. But in optical network, crosstalk 

elimination or reduction is another important issue besides admissibility. This dissertation 

proposes a way to reduce contentions between connections at the routes setup phase.  

5.1.1 Motivation 

 Benes network is a rearrangeably non-blocking network, which implies that Benes 

network can route any permutation provided that the rearrangement of the existing connections is 

allowed. In other words, Benes network can route off-line permutation.  
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 It would be interesting to know how many different possible routs a connection can 

take on.  

Theorem 5.1 In N x N Benes network, there are N/2 different paths for each connection.  

Proof: Because a Benes network exhibits a symmetric topological structure. As shown in Fig. 

5.1, the Benes network can be considered as a cascaded combination of a Banyan network (a 

baseline network in specific) and a reverse Banyan network with the two joint stages 

overlapping. Therefore, each connection can choose to from view point of input and output can 

choose to meet at one of the N/2 center stage SEs.  

Corollary 5.1. In N x N Benes network, there are at most ((N/2)!)2 connection patterns for each 

permutation.  

Proof: Because each connection can choose to meet at any of the available center stage, each 

center stage SE can accommodate 2 connections.  For the first connection, there are N/2 such 

options; for the second connection, there are also N/2 such options; for the third connection, 

there are N/2 � 1 options, and for the fourth connection, there are N/2-1 option, and so on. 

Therefore, the total possible combinations are N/2 * N/2 * (N/2 � 1) * (N/2 � 1)*�*1*1 = 

((N/2)!)2.                                                                                                                                          ◘ 

It should be noted that the actual admissible connections are much less than what 

Corollary 5.1 provides, due to the following reason.  

  There are total N/2 * (2 logN �1) SEs in a Benes network and each SEs can be in one of 

the two states, therefore, the total number of different switch settings for the Benes network 

would be 2 N/2 * (2 logN �1), according to Sterling�s approximation [61], this is much less than the 

upper bound Corollary 5.1 provides.  
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  Nonetheless, the fact that there are multiple routes available motivates us to pick a better 

route in terms of less cross talk.  

Wavelength assignment problem can often be formulated as a graph-coloring problem. In 

the conflict graph [32], the number of the nodes is the size of the network.  Each node represents 

a connection.  If two nodes have conflict during routing, they are connected using an edge.   

 

 
Figure5.2. Conflict graph for a given source-destination permutation 

 

Wavelength assignment problem now becomes the problem of coloring the conflict graph 

such that no adjacent nodes share the same color. [32][49] The chromatic number of a graph G is 

the smallest number of colors χ(G) needed to color the vertices of G so that no two adjacent 

vertices share the same color [60].  But to find the chromatic number is NP-Complete [7] [9]. 

Consider the following permutation  

                                              

This permutation can be realized by several different SE settings. We provide two of 

them here.  

000 001 011 010

100 101 111 110
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Figure 5.3. Two of the possible SE settings for a permutation and their conflict graphs 

 

 As can be seen, the two settings have two different conflict graphs, and therefore have 

the potential of deriving different graph coloring. 
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52 Wavelength Awareness Routing 

According to Brooks Theorem [7], the chromatic number of a graph is at most the 

maximum vertex degree , unless the graph is complete or an odd cycle. In [20], it is proved that 

the chromatic number of any conflict graph with node size N is less than 2logN-1.  

In this research, we propose a greedy algorithm, in hopes that in the route setup phase, 

the conflict graph is so constructed that the number of colors used can be reduced.  The idea of 

the greedy algorithm is illustrated as follows.  

Suppose C1 is conflicting with C2 at this moment. 

 

Figure 5.4.   C1 is conflicting with C2 

 

Suppose a new connection C3 can be connected with C1 or C2, since the contention 

number of C1 and C2 are both 1, C3 can choose to conflict with either of them. 

 

Figure 5.5. C3 is chosen to be conflicting with C1 

 

Suppose a new connection C4 can be connected with C1 or C2, since the degree of C1is 2 

and that of C2 is 1, C4 will choose to conflict with C2. 
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Figure 5.6. C4 is chosen to be conflicting with C2 

Suppose in a later SE connection C4 will be connected with C1 or C3, since the degree of 

C1is 2 and that of C3 is 1, C4 will choose to conflict with C3, instead of C1, therefore prevented 

a clique of size 3 from emerging. 

 

Figure 5.7. C4 is chosen to be conflicting with C3 instead of C1 

 

It should be pointed out that the greedy algorithm is not optimal, as the following 

example shows: 
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Suppose in (a), C5 can be chosen to conflict with either C1 or C2, greedy algorithms will 

always choose C1 with the result being (b) other than C2 with the result being (C) 

because the degree of C1 is l while that of C2 is 2. However, the chromatic number of (b) 

is 3 since it is a odd circle while that of (c) is 2. 

  

                Figure 5.8.  Greedy algorithms is not optimal 

  

 

In [6], the connections are partitioned into several equivalent classes. It is interesting to know 

how many such equivalent classes could there be.  

Theorem 6.2 There are at most N/2 equivalent classes in a N x N Benes network.  

Proof: Given a N x N Benes network, the following permutation  

                                               

Will provide the biggest number of equivalent classes. And this permutation corresponds to a0 = 

b0, a1 = b1, a2 = b2 � a N/2-1 = b N/2-1, therefore the equivalent class will be {b0, b1, b2 � b N/2-1}. 

 The idea of the wavelength-aware routing is that the algorithm anticipates the number 

of conflicts in the next stage, and set up the states of SEs in the current stage.  
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The algorithm is described as follows. Since each path in Benes network consists of 2logN-1 

SEs, therefore, each connection can conflict with at most 2logN-1 other connections. 

Connections are denoted by their originating inputs. 

Given a permutation π, each connection maintains an array C[ ] of size 2logN-1, which records 

the connections with which it conflicts. Since there are two connections going through each SE, 

each SE maintains an array SE[ ] of size 2, which records the connections going through this SE. 

Each SE also maintains a variable SE_state that records the state of that SE. 

Input: A permutation 

Output: A set up of the Benes network 

• Derive the equations discussed in Chapter 4 according to symmetric routing constraint 

and internally conflict-free constraint 

• Sort the equivalent classes into descending order, using the number of members within 

each equivalent class as index.  

• For each of the k equivalent classes bi from 0 to k-1 

 Do  

         Pick a representative from the equivalent class 

         If i = 0,    //the first equivalent class 

                    set the state of the representative to be either 0 or 1,  

                  for each of the members of the equivalent class  

                              set SE_state for the current SE 

                                update SE [ ] for the current SE                   

                                update SE [ ] for the SE the connection leads to 

                               update C[ ] for each connection within this equivalent class 
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           else  

                                      set the state of the representative to be 0  

                    for each of the members of the equivalent class  

                    update SE [ ] for the current SE,                   

                    update SE [ ] for the SE the connection leads to 

                    update C[ ] for each connection within this equivalent class 

                    record the largest number N1 of conflicts from C[ ] 

                     set the state of the representative to be 1  

                    for each of the members of the equivalent class  

                    update SE [ ] for the current SE,                   

                    update SE [ ] for the SE the connection leads to 

                    update C[ ] for each connection within this equivalent class 

                    record the largest number N2 of conflicts from C[ ] 

 compare N1 with N2, pick the state which provides the smaller conflicts and                  

set SE_state to that state  

• After that the outer layer of SEs are so set. Then the algorithm will set the inner layers 

recursively.  

• At the last stage, which is the center of Benes network, each connection will also record 

the SE index it passes.  
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 5.3 Wavelength assignment 

           Once the routes are decided, which means the status of the SEs are decided, the next step 

is to assign the routes with different wavelengths. This is equivalent to a vertex cover problem 

and is known to be NP-Complete [7][9]. 

         To construct the conflict graph, we propose a modified version of the original windows 

method. Our windows method works as follows. 

Take the permutation in Figure 5.9 as an example, and suppose the resulting SEs setting is as in 

Figure 5.10 

                                                      

Figure 5.9. A permutation 

 

                        

Figure 5.10. The network setting for the permutation in Figure 5.9 

 

 From the above diagram, we know that connection 0 records 00 as the center SE index, 

connection 1 record 10 as the center SE index, connection 2 records 11 as the center SE index, 

connection 3 records 01 as the center SE index, connection 4 records 00 as the center SE index, 

0 
1 
 
2 
3 
 
4 
5 
 
6 
7 

10

00 

01 

11 
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connection 5 records 10 as the center SE index, connection 6 records 11 as the center SE index, 

connection 7 records 01 as the center SE index.  

 The modified windows method has two parts, one part is from the input to the center 

stage, and the second part is from the output back to the center stage. Notice that the topology of 

Omega network and Baseline network is different. The Omega network has a shuffle exchange 

property while Baseline network does not. The first part of the modified window method is as 

follows.  

 In step 1, we first list the input port number, which is also the connection index, 

concatenated with its corresponding center SE index. 

 

                                                 

 

 

 

 

 

 

Figure 5.11 Step 1 in the first part 

 

In the above example connection 0 and 1 in step 1 (window 0) have the same bit pattern 

of �00� inside the window and hence have a conflict. The bit patterns in the above example can 

be any of the four combinations of �00�, �01�, �10�, �11�, and hence are shaded using different 

colors.  

 
Conn 0:    0 0     0 
Conn 1:    0 0     1 
Conn 2:    0 1     0 
Conn 3:    0 1     1 
Conn 4:    1 0     0 
Conn 5:    1 0     1 
Conn 6:    1 1     0 
Conn 7:    1 1     1 
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Step 2: The new input port address in stage 2 is decided as substituting the least significant bit of 

the input port number from the previous input port number by the XOR of the state of the SE and 

the least significant digit of the previous input port and then right cycle-shift it. For example, 

consider connection 2 in the following Benes network, the input port address of the connection in 

stage 1 is 010, and the stage state is 1. In order to derive the input port number at the second 

stage, we substitute the least significant bit of 010, which is 0, with the state of the XOR of 0 and 

SE, which is 1, and we will get 011.  We then right cyclically shift the new address we then get 

the address of connection 2 in stage 2, which is 101.   

             

                          Figure 5.12. Address change in Baseline network 

 

Therefore, the window for the connections in stage 2 is shown below as  

                                             

 

 

  

 

                                        Figure 5.13 Step 2 in the first part 

 
Conn 0:    0 0     0 
Conn 1:    1 0     0 
Conn 2:    1 0     1 
Conn 3:    0 0     1 
Conn 4:    0 1     0 
Conn 5:    1 1     1 
Conn 6:    1 1     1 
Conn 7:    0 1     1 
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Different from the original window method, where the window moves from left to right; in our 

modified window method, the window will not move and it always covers the first two bits of 

the input address of the connection at each stage.  

Step 3: Similarly, the window for the connections in stage 3 is shown below as  

                                               

 

 

 

 

Figure 5.14 Step 3 in the first part 

 

  In the second part, we list the output ports number followed by the connection they 

belong but with all the digits reversed, for example 001 will be reversed as 100, as follows. And 

in this second part, stage1 refers to the first stage from output to input, stage 2 refers to the 

second stage from output to input, and so on.  

Step 1: 

                                                   

 

 

 

 

Figure 5.15 Step 1 in Second Part 

 

Conn 0:    0 0     0
Conn 1:    1 0     0
Conn 2:    1 1     0
Conn 3:    0 1     0
Conn 4:    0 0     1
Conn 5:    1 0     1
Conn 6:    1 1     1
Conn 7:    0 1     1

0    0 0    Conn 4    
1    0 0    Conn 2    
0    1 0    Conn 5    
1    1 0    Conn 7    
0    0 1    Conn 0    
1    0 1    Conn 1    
0    1 1    Conn 3    
1    1 1    Conn 6  
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Step 2: The new input port address in stage 2 is decided as substituting the least significant bit of 

the output port number from the previous output port number by the XOR of the state the current 

SE and the least significant bit of the previous output port number and then right cycle-shift it. 

And the window for step 2 is as below, 

                                             

 

 

 

 

 

                               Figure 5.16 Step 2 in Second Part 

 

Step 3: Similarly, the window for step 3 is as follows, 

                                         

 

 

 

 

Figure 5.17 Step 3 in Second Part 

 

 

 

 

0    0 0    Conn 4
0    0 1    Conn 2
1    0 1    Conn 5
1    0 0    Conn 7
0    1 0    Conn 0
1    1 1    Conn 1
1    1 0    Conn 3
1    1 1    Conn 6

0    0 0    Conn 4
0    1 1    Conn 2
0    0 1    Conn 5
0    1 0    Conn 7
1    0 0    Conn 0
1    0 1    Conn 1
1    1 0    Conn 3
1    1 1    Conn 6
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And eventually the conflict graph will be as follows 

                                 

                      Figure 5.18 Conflict graph � result of the modified windows method 
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Chapter 6 

Genetic Algorithms  

 Since Wavelength Assignment is an NP-Complete problem, heuristic solutions are 

often desirable. Among other AI techniques, genetic algorithms are applied to search heuristic 

solution to many problems, such as Traveling Salesman Problem. In this dissertation, we apply 

genetic algorithms in wavelength assignment. 

6.1 Introduction to Genetic Algorithms 

 Looking at the world around us, we see a staggering diversity of life. Millions of species, 

each with its own unique behavior patterns and characteristics, abound. Yet, all of these plants 

and creatures have evolved, and continue evolving, over millions of years. They have adapted 

themselves to a constantly shifting and changing environment in order to survive. Those weaker 

members of a species tend to die away, leaving the stronger and fitter to mate, create offspring 

and ensure the continuing survival of the species. Their lives are dictated by the laws of natural 

selection and Darwinian evolution. And it is upon these ideas that genetic algorithms are based. 

A genetic algorithm starts with a set of solutions, which are represented by chromosomes. 

Those solutions are called populations. Solutions from one population are taken and used to form 

a new population. This is motivated by a hope, that the new population will be better than the old 

one. The new solutions (offspring�s) to form a new population are selected based on the fitness 

of the solution, i.e. the more suitable they are the more chances they get to reproduce. This is 

repeated generation by generation until some condition is satisfied such as the population size 

gets to the limit or the improvement of the best solution is good enough for the research or no 

further improvement is possible. 
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The idea of survival of the fittest is of great importance to genetic algorithms. GAs use 

what is termed as a fitness function in order to select the fittest string that will be used to create 

new, and conceivably better, populations of strings. The fitness function takes a string and 

assigns a relative fitness value to the string. The method by which it does this and the nature of 

the fitness value does not matter. The only thing that the fitness function must do is to rank the 

strings in some way by producing the fitness value. These values are then used to select the 

fittest strings. The concept of a fitness function is, in fact, a particular instance of a more general 

AI concept, the objective function. 

The following is a flow chat of the GAs[27]. 

 

Figure 6.1 Genetic Algorithms 
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6.2 Operators of Genetic Algorithm 

There are three major operations in genetic algorithm, namely crossover, mutation and 
selection.  
 
Crossover 
 

Crossover selects genes from parent chromosomes and creates a new offspring.  There 

are many ways to do crossover such as single-point crossover, double point crossover, etc.  The 

simplest way is the single-point crossover, which is to choose some crossover point randomly 

and everything before this point is copied from a first parent and then everything after that point 

is copied from the second parent.  It looks like this: 

 

Chromosome 1: 00001111111 

Chromosome 2: 1 1111111000 

 
 
 
The arrow shows the selected point for crossover.  So the new offspring are:  
 

Chromosome 1: 00001111000 

Chromosome 2: 1 1 111111111 
 
Different crossover methods can be used on different problems.  The specific crossover made for 

a specific problem may improve the performance of the Genetic Algorithm. 

Mutation 

Mutation takes place after the crossover is performed.  The reason to use mutation is to 

prevent from falling all solutions in population into a local optimum of solved problem [14]. 

Mutation changes randomly the new offspring.  In binary encoding, we can switch a few 

randomly chosen a few bits from 1 to 0, or from 0 to 1.   

Offspring from the crossover: 
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                                                      Chromosome 1: 00001111000 

Chromosome 2: 1 1 111111111 
 

After Mutation: 

          Chromosome 1: 01001111000 

          Chromosome 2: 1 1 111110111 

Selection 

When we have many solutions, we need to select some of them to produce the offspring 

in pairs.  The selection is to try the parents on the fitness function to get the better fitting parents.  

Then use the selected parents to be the parents of the next generation. 

6.3 Parameter of Genetic Algorithm 

There are two basic parameters in Genetic Algorithm, which are crossover probability 

and mutation probability. 

Crossover probability is the parameter to say how often the crossover will be performed.  If the 

crossover probability is 0%, this means no crossover is performed, the offspring is exact the copy 

of the parent.  If the crossover probability is 100%, then all the offspring is made by crossover. 

Mutation probability is the parameter to control how often the parts of the chromosome will be 

mutated.  If there is no mutation, offspring is taken after crossover without any change.  If 

mutation is performed, part of the chromosome is changed.  If mutation probability is 100%, the 

whole chromosome is changed.  Mutation is used to prevent falling Genetic Algorithm falling 

into local extreme, but it should not occur very often, because it will change the Genetic 

Algorithm to random search.  This is also approved by the results of our testing in this research. 

Population size is the parameter to determine how many chromosomes are in population for one 

generation.  The population size cannot be too small or too large because too small size of 



  72
                                      
  

 

 

 

population give Genetic Algorithm less search space, the result will not be improved much while 

too big population size will slow down the execution.  Even if it will get better result, if the 

performance is too bad, it is not suitable.  Researches show that after some limit (which depends 

mainly on encoding and the problem), it is not useful to increase the population size because it 

makes solving the problem much slower [15]. 

Generation [15] is an important parameter in genetic algorithm. The more generations a test 

case has the better chance that the genetic algorithm will find a better solution. In each 

generation, we use the fitness function to select the better solutions to be the members of the next 

generation. Then, this new generation will produce its next possible better offspring. With more 

generations a genetic algorithm can produce a better solution. However, as the generation size 

gets bigger and bigger, the test cases take more and more time to execute. The performance is 

related to the number of generations. 

 

6.4. A Modified GAs  

As observed by Whitley, � It can be argued that there are only two primary factors (and 

perhaps only two factors) in genetic search: population diversity and selective pressure. These 

two factors are inversely related. Increasing selective pressure results in a faster loss of 

population diversity. Maintaining population diversity offsets the effect of increasing selective 

pressure. In some sense this is just another variation on the idea of exploration versus 

exploitation that has been discussed by Holland and others.�[52] In John Holland�s canonical 

generic algorithms, fitness is defined by fi/f, where fi is the evaluation associated with string i 

and f is the average evaluation of all the strings in the population. This is known as fitness 

proportional reproduction. There can be a couple of problems with fitness proportional 
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reproductions. First selection can be too strong in the first few generations: too many duplicates 

are sometimes allocated to very good individuals found early in the search. Second, as 

individuals in the population improve over time, there tends to be less variation in fitness, with 

more individuals being close to the population average. As the population average fitness 

increases, the fitness variance decreases and the corresponding uniformity in fitness values 

causes selective pressure to go down. In this case, the search begins to stagnate.  

Other methods to sample a population are based on introducing artificial weights: 

chromosomes are selected proportionally to their rank rather than actual evaluation values [51] 

[52] [53]. These methods are based on a belief that the common cause of rapid (premature) 

convergence is the presence of super individuals, which are much better than the average fitness 

of the population. Such super individuals have a large number of offspring and (due to the 

constant size of the population) prevent other individuals from contributing any offspring tin the 

next generations. In a few generations a super individual can eliminate desirable chromosomal 

material and cause a rapid convergence to (possibly local) optimum. There are many methods to 

assign a number of offspring based on ranking. In [51], a linear function and a parameter are 

defined: 

                                       Prob (rank) = q � (rank -1)r, 

Or a non-liner function,  

                                       Prob (rank) =  q(1-q)rank-1  

 

 In this research, GAs is further modified based on their relative fitness and their relative 

distribution [54]. Both functions return the probability of an individual ranked in position rank 

(rank = 1 means the best individual, rank = pop_size the worst one) to be selected in a single 
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selection. Such approaches, though shown to improve genetic algorithm behavior in some cases, 

have some apparent drawbacks. The major problem is they ignore the information about the 

relative evaluations of different chromosomes. 

6.4.1 Take Relative Fitness Information into Account 

The modified GAs [63] takes the chromosome�s relative fit into account, and the selective 

pressure is modified by the following, 

Prob� = Prob * 2/(1+exp(f-fi)) 

 

 

                         

Figure 6.2 Adjust the selective pressure according to relative fitness 

 

The idea of this adjustment is to keep the selective pressure of those chromosomes which 

have the average fitness intact; to increase the selective pressure of those chromosomes which 

have the above average fitness and to decrease the selective pressure of those chromosomes 

which have the below average fitness. 
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6.4.2 Take Fitness Distribution Information into Account 

The population is divided into K intervals, the number of chromosomes falling into the 

respecting interval is counted. Then the selective pressure from regular ranking function Prob 

(or from Prob�) is adjusted according to their distribution. 

Probj�� = Prob * 2/(1+exp(d-dj))  in which j is from 1 to K; d is the average NO of chromosomes 

for the whole range, dj is the average chromosome count for interval j. 

                           

Figure 6.3 Adjust the selective pressure according to chromosome distribution 

 

The idea of this adjustment is to keep the selective pressure of those chromosomes which 

have the average distribution intact and to increase the selective pressure of those chromosomes 

which have the above average distribution and to decrease the selective pressure of those 

chromosomes which have the below average distribution. 

6.5 Genetic Algorithms in This Thesis 

The chromosomes in this thesis are a list of digits, each digit represent a connection and a 

color. For example, in a 16 x 16 Benes network, one of the chromosomes could be 

2015304201234513, each digit represents a connection, and the different digit values are used to 

represent different wavelength assigned to the connection. There are several parameters that have 
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significant effect on the performance of GA, which are cross over rate, initial population size, 

number of generations and objective function, and mutation rate.  

6.5.1 Crossover Rate 

In order for GA to be effective, the crossover rate must be big enough, so that there will 

be enough offspring, and we have found that the cross over rate should be as large as enough in 

this research. Therefore, we choose our cross over rate to be 70% and 100% 

 

6.5.2 Initial Population Size 

The initial population size should be large enough so that GA can search a wide area of 

sample space, instead of being confined in small area and quickly falling in local optimal. 

Through our experiments, we have found that for a network of size 8 x 8, initial population size 

of 100, for a network of size 16 x 16, initial population size of 500, for a network of size 32 x 32, 

initial population size of 1000 to be adequate.  

6.5.3 Number of Generations 

The number of generations should also be large enough so that GA can evolve over time, 

without that, GA will settle with sub-optimal value quickly. Through our experiments, we have 

found that for a network of size 8 x 8, the number of generations of 100, for a network of size 16 

x 16, number of generations of 500 and for a 32 x 32 network, number of generation of 1000 to 

be adequate.  

6.5.4 Objective Function 

There are two factors we should consider when design the objective function. The 

obvious one is the number of colors, but that alone is not effective. The reason that we cannot 

consider only the number of colors when evaluate the chromosomes is that since the cross over 
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and mutation both are random, there will inevitably be many offspring that are wrongly colored. 

If these offspring are eliminated from the sampling pool all together, we will not have enough 

population, and the GA will quickly lead to a situation where there is no properly colored 

offspring at all or the nodes are colored all in different color. Therefore, the object function must 

also include the measurement of the number of wrongly colored nodes. In this research, we will 

reward the nodes, which have different color with their neighbors, by increasing their fitness 

score and penalize those having the same color by decreasing their fitness score. The overall 

fitness value would be the fitness score derived from taking the wrongly colored nodes into 

account divided by the number of colors used, therefore, the fitness function penalizes wrongly 

colored nodes as well as excessive number of colors.  

6.5.5. Mutation Rate 

In GA, mutation rate is usually preferred to be relatively small, and we choose 0.1, 0.05 

and 0.2 for comparison purposes in this research. 

6.6. Results and Discussion 

The result of genetic algorithm provides better results in terms of the number of 

wavelengths needed compared with [62]. For example, consider the following permutation in a 8 

x 8 Benes network,  

                                                      

Figure 6.4. A permutation 

  

In [62], the resulting conflict graph is as follows, as can be seen in Figure, it needs 6 

wavelengths to route the connection. 
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Figure 6.5 The graph coloring of the above permutation in [62] 

 

While the result of Genetic algorithms is as follows, and it needs only 5 wavelengths. 

                              

Figure 6.6 The graph coloring of the above permutation using GAs 

 

 We then have tested our wavelength awareness routing algorithm and that proposed in 

[36].  

 The following tables show the different test cases. 

 Table 6.1 is the number of wavelength required in 8 x 8 Benes network, with cross rate 

= 0.7, Figure 6.7. is a comparison between the original algorithm with wavelength-aware routing 

algorithm.  
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Table 6.1 Number of wavelength required in 8 x 8 Benes network, cross over rate = 0.7 

No. of Tests mutation crossover original algorithm wavelength aware 
100 0.05 0.7 3.74 3.73 
100 0.1 0.7 3.74 3.74 
100 0.4 0.7 3.74 3.74 
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Figure 6.7 Number of wavelength required in 8 x 8 Benes network, cross over rate = 0.7 

 

 Table 6.2 is the number of wavelength required in 8 x 8 Benes network, with cross rate 

= 1, Figure 6.8. is a comparison between the original algorithm with wavelength-aware routing 

algorithm.  

 

Table 6.2 Number of wavelength required in 8 x 8 Benes network, cross over rate = 1 

No. of Tests mutation crossover original algorithm wavelength aware 
100 0.05 1 3.74 3.73 
100 0.1 1 3.74 3.73 
100 0.4 1 3.74 3.74 
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Figure 6.8 Number of wavelength required in 8 x 8 Benes network, cross over rate = 1 

 

 Table 6.3 is the number of wavelength required in 16 x 16 Benes network, with cross 

rate = 0.7, Figure 6.9. is a comparison between the original algorithm with wavelength-aware 

routing algorithm.  

 

Table 6.3 Number of wavelength required in 16 x 16 Benes network, cross over rate = 0.7 

No. of Tests mutation crossover original algorithm wavelength aware 
100 0.05 0.7 5.87 5.71 
100 0.1 0.7 5.87 5.71 
100 0.4 0.7 5.87 5.71 
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Figure 6.9. No. of wavelength required in 16 x 16 Benes network, cross over rate = 0.7 

 

 Table 6.4 is the number of wavelength required in 16 x 16 Benes network, with cross 

rate = 1, Figure 6.10. is a comparison between the original algorithm with wavelength-aware 

routing algorithm.  

 

Table 6.4 Number of wavelength required in 16 x 16 Benes network, cross over rate = 1 

No. of Tests mutation crossover original algorithm wavelength aware 
100 0.05 1 5.87 5.71 
100 0.1 1 5.87 5.71 
100 0.4 1 5.87 5.72 
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Figure 6.10 No. of wavelength required in 16 x 16 Benes network, cross over rate = 1 

 

 Table 6.5 is the number of wavelength required in 32 x 32 Benes network, with cross 

rate = 0.7, Figure 6.11. is a comparison between the original algorithm with wavelength-aware 

routing algorithm.  

 

Table 6.5 Number of wavelength required in 32 x 32 Benes network, cross over rate = 0.7 

No. of Tests mutation crossover original algorithm wavelength aware 
100 0.05 0.7 7.55 7.21 
100 0.1 0.7 7.56 7.21 
100 0.4 0.7 7.56 7.22 
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Figure 6.11 No. of wavelength required in 32 x 32 Benes network, cross over rate = 0.7 

 

 Table 6.6 is the number of wavelength required in 32 x 32 Benes network, with cross 

rate = 1, Figure 6.12. is a comparison between the original algorithm with wavelength-aware 

routing algorithm.  

 

Table 6.6 Number of wavelength required in 32 x 32 Benes network, cross over rate = 1 

No. of Tests mutation crossover original algorithm wavelength aware 
100 0.05 1 7.52 7.19 
100 0.1 1 7.53 7.2 
100 0.4 1 7.53 7.2 
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Figure 6.12 Number of wavelength required in 32 x 32 Benes network, cross over rate = 1 

 

 As can be seen from the tables, changing mutation rate does not change the result 

much, while wavelength awareness routing outperforms the original algorithm in every case, in 

terms of number of wavelengths needed. And it also can be seen that with the network size 

increasing, the improvement of wavelength awareness routing over original algorithm gets more 

significant. We list the improvement in a separate figure as follows, 
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Figure 6.13 Average saving of No. of wavelength over the original algorithm 

 

 We think that the performance improves with the network size because with the size 

increases, there is more room for a connection to choose between different paths; while in a 

smaller network such options are very limited. 
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Chapter 7  

Simulated Annealing 

 Simulated annealing is a generalization of a Monte Carlo method for examining the 

equations of state and frozen states of n-body systems [63]. The concept is based on the manner 

in which liquids freeze or metals recrystalize in the process of annealing. In an annealing process 

a melt, initially at high temperature and disordered, is slowly cooled so that the system at any 

time is approximately in thermodynamic equilibrium. As cooling proceeds, the system becomes 

more ordered and approaches a "frozen" ground state at T=0. Hence the process can be thought 

of as an adiabatic approach to the lowest energy state. If the initial temperature of the system is 

too low or cooling is done insufficiently slowly the system may become quenched forming 

defects or freezing out in metastable states (ie. trapped in a local minimum energy state). 

The original Metropolis scheme was that an initial state of a thermodynamic system was 

chosen at energy E and temperature T, holding T constant the initial configuration is perturbed 

and the change in energy dE is computed. If the change in energy is negative the new 

configuration is accepted. If the change in energy is positive it is accepted with a probability 

given by the Boltzmann factor exp -(dE/T). This processes is then repeated sufficient times to 

give good sampling statistics for the current temperature, and then the temperature is 

decremented and the entire process repeated until a frozen state is achieved at T=0.  

By analogy the generalization of this Monte Carlo approach to combinatorial problems is 

straightforward [64]. The current state of the thermodynamic system is analogous to the current 

solution to the combinatorial problem, the energy equation for the thermodynamic system is 

analogous to at the objective function, and ground state is analogous to the global minimum. The 

major difficulty (art) in implementation of the algorithm is that there is no obvious analogy for 
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the temperature T with respect to a free parameter in the combinatorial problem. Furthermore, 

avoidance of entrainment in local minima (quenching) is dependent on the "annealing schedule", 

the choice of initial temperature, how many iterations are performed at each temperature, and 

how much the temperature is decremented at each step as cooling proceeds. 

In SA, the value of an objective function [65] that we want to minimize is analogous to 

the energy in a thermodynamic system. At high temperatures, SA allows function evaluations at 

faraway points and it is likely to accept a new point with higher energy. This corresponds to the 

situation in which high-mobility atoms are trying to orient themselves with other non-local atoms 

and the energy state can occasionally go up. At low temperatures, SA evaluates the objective 

function only at local points and the likelihood of it accepting a new point with higher energy is 

much lower. This is analogous to the situation in which the low-mobility atoms can only orient 

themselves with local atoms and the energy state is not likely to go up again. Obviously, the 

most important feature of SA is the so-called annealing schedule [65] or cooling schedule, which 

specifies how rapidly the temperature is lowered from high to low values. This is application 

specific and requires some experimentation by trial-and-error. 

SA's major advantage over other methods is an ability to avoid becoming trapped in local 

minima. The algorithm employs a random search that not only accepts changes that decrease the 

objective function f (assuming a minimization problem), but also some changes that increase it. 

The latter are accepted with a probability 

P = exp (-δf/T) 

where �f is the increase in f and T is a control parameter, which by analogy with the original 

application is known as the system ''temperature" irrespective of the objective function involved. 

Figure 7.1 shows the structure of a SA.  
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Figure 7.1 A SA flow chart 

 

If the new solution were randomly generated, it would be possible that this new solution 

is not a legal solution; in order to solve this problem, another concept move set [65] is proposed. 

A move set {m}, is the set of all operations that generate one solution from another by moving a 

component of the solution. A popular moving set is inversion, translation and switching [66].  

7.1 Inversion 

Inversion is to reverse the order of a segment in a string. For example, if the original list 

is 0 1 2 3 4 5 6 7, and after randomly choose two points in this list, for example 3 and 5, the 

inversion of that list according to these two points would be 0 1 2 5 4 3 6 7.  

7.2 Translation  

Translation is to randomly generate two points and then translate that section of the list to 

be stored in two randomly generated points. For example, if the list is 0 1 2 5 4 3 6 7 and if we 
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generate 1 and 3 for the section to be replaced, and then 6 and 7, the section 1-2-5 is placed in 

between 6 and 7 as 0 4 3 6 1 2 5 7. 

7.3 Switching 

Two points are randomly chosen and then the points are switched at those positions. 

Suppose if we generate 0 and 2, then 0 and 2 are interchanged in the above list as 2 0 4 3 6 1 0 5 

7. 

Clearly, these three operations will not generate illegal result, because all the information 

is derived within the system, and because our case, the information refer to the wavelength, or 

color, it must be legal results. 

7.4 The Experiment and Analysis of The Test Result 

The experiment follows the setting as in [66], the parameters used in the algorithm are the 

starting temperature, the final temperature, the temperature-cooling rate (α), the number of 

iterations M for a particular temperature value and the stopping value ts. The starting temperature 

is used for the Algorithm to start at a particular temperature. The cooling rate (α) is chosen 

between 0 and 1. Generally it is chosen between 0.8 and 1. The ts is chosen as 10, and the 

number of iterations M vary as indicated in [66]. 

The result of genetic algorithm provides better results in terms of the number of 

wavelengths needed compared with [62]. For example, consider the following permutation in a 8 

x 8 Benes network as in Figure 8.2,  

 

Figure 7.2 A permutation 
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In [62], the resulting conflict graph is as follows, as can be seen in Figure 7.3, it needs 6 

wavelengths to route the connection 

                            

Figure 7.3 The graph coloring of the above permutation in [62] 

 

While the result of Genetic algorithms is as follows, and it needs only 5 wavelengths. 

                              

Figure 7.4 The graph coloring of the above permutation using SA 

 

  Then we test several cases with Simulated Annealing.  

   First, we test the effect of different move sets on the results of simulated annealing.  

 Table 7.1 is the comparison of number of wavelength required in 8 x 8 Benes network, 

using different move sets, Figure 7.5. is a comparison between the original algorithm with 

wavelength-aware routing algorithm.  
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Table 7.1. No. of wavelengths in 8 x 8 Benes network under different move set (avg. of 1000 
tests) 
 

starting temp end temp cool rate 
No. Of 

iterations orig inv orig trans orig switch nw inv nw trans new switch
100 10 0.8 2 3.814 4.131 4.107 3.814 4.131 4.107 
100 10 0.8 4 3.814 4.112 4.112 3.814 4.112 4.112 
100 10 0.8 6 3.814 3.973 4.103 3.814 3.973 4.103 
100 10 0.8 8 3.814 3.994 3.997 3.813 3.992 3.997 
100 10 0.8 10 3.814 3.986 3.985 3.813 3.986 3.985 
100 10 0.8 12 3.813 3.991 3.987 3.812 3.986 3.985 
100 10 0.8 14 3.813 3.989 3.985 3.812 3.989 3.978 
100 10 0.8 16 3.812 3.99 3.978 3.812 3.989 3.978 
100 10 0.8 18 3.812 3.978 3.976 3.812 3.978 3.976 
100 10 0.8 20 3.812 3.978 3.976 3.812 3.978 3.976 

 

  

From above table, we can see that the inversion move set outperforms other move sets, 

and it conforms to the result in [66]; therefore, we choose inversion as the representative of the 

our wavelength aware routing and the original routing scheme. 
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Figure 7.5 No. of wavelengths in 8 x 8 Benes network under different move set 
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 Table 7.2 is the comparison of number of wavelength required in 16 x 16 Benes 

network, using different move sets, Figure 7.6. is a comparison between the original algorithm 

with wavelength-aware routing algorithm.  

 

Table 7.2. No. of wavelengths in 16 x 16 Benes network under different move set (avg. of 1000 
tests) 
 

starting temp end temp cool rate 
No. of 

iterations orig inv orig trans orig switch nw inv nw trans new switch
100 10 0.8 2 5.923 5.923 5.92 5.805 5.851 5.851 
100 10 0.8 4 5.919 5.925 5.918 5.8 5.852 5.848 
100 10 0.8 6 5.917 5.922 5.921 5.799 5.851 5.849 
100 10 0.8 8 5.917 5.923 5.92 5.793 5.848 5.85 
100 10 0.8 10 5.914 5.921 5.921 5.798 5.849 5.848 
100 10 0.8 12 5.912 5.918 5.918 5.799 5.848 5.85 
100 10 0.8 14 5.911 5.919 5.917 5.799 5.848 5.848 
100 10 0.8 16 5.911 5.917 5.918 5.8 5.842 5.845 
100 10 0.8 18 5.911 5.918 5.916 5.798 5.848 5.845 
100 10 0.8 20 5.91 5.917 5.916 5.797 5.848 5.845 

 

 

From the above table, also it can be seen that inversion move set out performs other move 

sets; therefore, we choose inversion move set as the representative to compare the original 

algorithm with the wavelength aware routing algorithm. 
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Figure 7.6. No. of wavelengths in 16 x 16 Benes network under different move set 

 

 Table 7.3 is the comparison of number of wavelength required in 16 x 16 Benes 

network, using different move sets, Figure 7.7. is a comparison between the original algorithm 

with wavelength-aware routing algorithm.  

 

Table 7.3. No. of wavelengths in 32 x 32 Benes network under different move set (avg. of 1000 
tests) 
 

starting temp end temp cool rate No. of iterations orig inv nw inv 
100 10 0.8 2 7.661 7.59 
100 10 0.8 4 7.647 7.579 
100 10 0.8 6 7.628 7.572 
100 10 0.8 8 7.626 7.568 
100 10 0.8 10 7.59 7.565 
100 10 0.8 12 7.59 7.563 
100 10 0.8 14 7.58 7.551 
100 10 0.8 16 7.566 7.49 
100 10 0.8 18 7.562 7.425 
100 10 0.8 20 7.559 7.382 
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Figure 7.7. No. of wavelengths in 32 x 32 Benes network under different move set (avg. of 1000 
tests) 
 

We then investigate the effect of starting temperature and ending temperature on the 

performance of SA on Benes routing algorithms.  

Table 7.4 is the number of wavelength under SA with changing starting temperature in    

8 x 8 Benes network, and Figure 7.8 is a comparison between the original algorithms with the 

wavelength-aware routing.  

 

Table 7.4. Number of wavelength in Benes network under SA with changing starting 
temperature in 8 x 8 Benes network  (avg. of 1000 tests) 
 

starting temp end temp cool rate No. of iterations orig inv nw inv 
100 10 0.8 20 3.813 3.812 
200 10 0.8 20 3.813 3.812 
300 10 0.8 20 3.812 3.812 
400 10 0.8 20 3.812 3.812 
500 10 0.8 20 3.811 3.81 
600 10 0.8 20 3.809 3.808 
700 10 0.8 20 3.809 3.807 
800 10 0.8 20 3.809 3.807 
900 10 0.8 20 3.808 3.806 
1000 10 0.8 20 3.808 3.806 
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Figure 7.8. Number of wavelength in Benes network under SA with changing starting 
temperature in 8 x 8 Benes network 

 

Table 7.5 is the number of wavelength under SA with changing starting temperature in 16 

x 16 Benes network, and Figure 7.9 is a comparison between the original algorithms with the 

wavelength-aware routing.  

Table 7.5. Number of wavelength in Benes network under SA with changing starting 
temperature in 16 x 16 Benes network  (avg. of 1000 tests) 
 

starting temp end temp cool rate No. of iterations orig inv nw inv 
100 20 0.8 20 5.91 5.8 
200 20 0.8 20 5.899 5.79 
300 20 0.8 20 5.895 5.783 
400 20 0.8 20 5.896 5.78 
500 20 0.8 20 5.883 5.779 
600 20 0.8 20 5.882 5.775 
700 20 0.8 20 5.88 5.77 
800 20 0.8 20 5.879 5.768 
900 20 0.8 20 5.879 5.764 
1000 20 0.8 20 5.877 5.75 
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Figure 7.9 Number of wavelength in Benes network under SA with changing starting 
temperature in 16 x 16 Benes network   
 

Table 7.6 is the number of wavelength under SA with changing starting temperature in 32 

x 32 Benes network, and Figure 7.10 is a comparison between the original algorithms with the 

wavelength-aware routing.  

Table 7.6. Number of wavelength in Benes network under SA with changing starting 
temperature in 32 x 32 Benes network  (avg. of 1000 tests) 
 

starting temp end temp cool rate 
No. of 

iterations orig inv nw inv 
100 20 0.8 20 7.559 7.382 
200 20 0.8 20 7.559 7.382 
300 20 0.8 20 7.557 7.38 
400 20 0.8 20 7.555 7.382 
500 20 0.8 20 7.557 7.377 
600 20 0.8 20 7.549 7.375 
700 20 0.8 20 7.544 7.375 
800 20 0.8 20 7.539 7.374 
900 20 0.8 20 7.539 7.371 
1000 20 0.8 20 7.539 7.371 
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Figure 7.10 Number of wavelength in Benes network under SA with changing starting 
temperature in 32 x 32 Benes network 
 

As can be seen, the number of wavelength required reduces as the starting temperature 

increases. This conforms to our speculation. When the temperature increase, the simulated 

annealing has more space to search for and therefore, it will more likely provide better solution 

than when the temperature is low. And in any case, the wavelength awareness routing 

outperforms the original one.  

 

 

Table 7.7 is the number of wavelength under SA with changing ending temperature in 8 x 

8 Benes network, and Figure 7.11 is a comparison between the original algorithms with the 

wavelength-aware routing.  
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Table 7.7. Number of wavelength in Benes network under SA with changing ending temperature 
in 8 x 8 Benes network (avg. of 1000 tests) 
 

starting 
temp end temp cool rate 

No. of 
iterions orig inv nw inv 

1000 10 0.8 20 3.808 3.806 
1000 5 0.8 20 3.806 3.806 
1000 2.5 0.8 20 3.801 3.801 
1000 0.125 0.8 20 3.797 3.795 
1000 0.0625 0.8 20 3.794 3.794 
1000 0.03125 0.8 20 3.794 3.794 
1000 0.015625 0.8 20 3.794 3.792 
1000 0.007813 0.8 20 3.794 3.794 
1000 0.00391 0.8 20 3.794 3.788 
1000 0.00196 0.8 20 3.794 3.788 
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Figure 7.11 Number of wavelength in Benes network under SA with changing ending 
temperature in 8 x 8 Benes network 
 
 

Table 7.8 is the number of wavelength under SA with changing ending temperature in 16 

x 16 Benes network, and Figure 7.12 is a comparison between the original algorithms with the 

wavelength-aware routing. 
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Table 7.8. Number of wavelength in Benes network under SA with changing ending temperature 
in 16 x 16 Benes network (avg. of 1000 tests) 
 

starting 
temp end temp cool rate 

No. of 
iterions orig inv nw inv 

1000 10 0.8 20 5.872 5.75 
1000 5 0.8 20 5.866 5.746 
1000 2.5 0.8 20 5.861 5.746 
1000 0.125 0.8 20 5.861 5.744 
1000 0.0625 0.8 20 5.855 5.738 
1000 0.03125 0.8 20 5.85 5.74 
1000 0.015625 0.8 20 5.843 5.735 
1000 0.007813 0.8 20 5.841 5.731 
1000 0.00391 0.8 20 5.832 5.729 
1000 0.00196 0.8 20 5.831 5.729 
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Figure 7.12 Number of wavelength in Benes network under SA with changing ending 
temperature in 16 x 16 Benes network 

 

Table 7.9 is the number of wavelength under SA with changing ending temperature in 32 

x 32 Benes network, and Figure 7.13 is a comparison between the original algorithm with the 

wavelength-aware routing. 
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Table 7.9. Number of wavelength in Benes network under SA with changing ending temperature 
in 32 x 32 Benes network (avg. of 1000 tests) 
 

starting 
temp end temp cool rate 

No. of 
iterations orig inv nw inv 

100 20 0.8 20 7.559 7.382 
200 20 0.8 20 7.559 7.382 
300 20 0.8 20 7.557 7.38 
400 20 0.8 20 7.555 7.382 
500 20 0.8 20 7.557 7.377 
600 20 0.8 20 7.549 7.375 
700 20 0.8 20 7.544 7.375 
800 20 0.8 20 7.539 7.374 
900 20 0.8 20 7.539 7.371 
1000 20 0.8 20 7.539 7.371 
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Figure 7.13 Number of wavelength in Benes network under SA with changing ending 
temperature in 32 x 32 Benes network 

As can be seen from the above tables, the number of wavelengths required decease as the 

temperature decreases. This is because when we evaluate exp (-δf / T) and compare it with the 

value generated by the random number generator, as the temperature is getting low, exp (-δf/T) 

evaluates to a very less value which in many cases is less than the random number generated. So, 
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at this point only solutions, which are strictly better than the original solution, are accepted and 

the others are rejected. And in any case, the wavelength awareness routing outperforms the 

original one.  

 

We then investigate the effect of different cooling rate on the number of wavelengths. 

Table 7.10 is the number of wavelength under SA with changing ending temperature in 8 x 8 

Benes network, and Figure 7.14 is a comparison between the original algorithms with the 

wavelength-aware routing. 

 

Table 7.10. Number of wavelength in Benes network under SA with changing cooling rate in 8 x 
8 Benes network (ave. of 1000 tests) 
 

starting 
temp end temp cool rate No. of iterations orig inv nw inv 
1000 10 0.81 20 3.808 3.806 
1000 10 0.82 20 3.808 3.806 
1000 10 0.83 20 3.805 3.805 
1000 10 0.84 20 3.808 3.805 
1000 10 0.85 20 3.805 3.805 
1000 10 0.86 20 3.805 3.802 
1000 10 0.87 20 3.801 3.802 
1000 10 0.88 20 3.801 3.801 
1000 10 0.89 20 3.801 3.801 
1000 10 0.9 20 3.801 3.801 
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Figure 7.14. . Number of wavelength in Benes network under SA with changing cooling rate in 8 
x 8 Benes network 
 

Table 7.11 is the number of wavelength under SA with changing ending temperature in 

16 x 16 Benes network, and Figure 7.15 is a comparison between the original algorithms with the 

wavelength-aware routing. 

 

Table 7.11. Number of wavelength in Benes network under SA with changing cooling rate in 16 
x 16 Benes network (ave. of 1000 tests) 

 

starting temp end temp cool rate 
No. of 

iterations orig inv nw inv 
1000 10 0.81 20 5.881 5.8 
1000 10 0.82 20 5.881 5.79 
1000 10 0.83 20 5.879 5.782 
1000 10 0.84 20 5.879 5.779 
1000 10 0.85 20 5.877 5.779 
1000 10 0.86 20 5.876 5.778 
1000 10 0.87 20 5.876 5.773 
1000 10 0.88 20 5.874 5.759 
1000 10 0.89 20 5.873 5.751 
1000 10 0.9 20 5.872 5.744 

 



  103
                                      
  

 

 

 

16 x 16 Benes network

5.65

5.7

5.75

5.8

5.85

5.9

0.8
1

0.8
2

0.8
3

0.8
4

0.8
5

0.8
6

0.8
7

0.8
8

0.8
9 0.9

No. of iterations per Temp

N
o.

 o
f w

av
el

en
gt

h

original algorithm
wavelength aware

 

Figure 7.15. Number of wavelength in Benes network under SA with changing cooling rate in 16 
x 16 Benes network 
 

Table 7.12 is the number of wavelength under SA with changing ending temperature in 

32 x 32 Benes network, and Figure 7.16 is a comparison between the original algorithms with the 

wavelength-aware routing. 

Table 7.12. Number of wavelength in Benes network under SA with changing cooling rate in 32 
x 32 Benes network (avg. of 1000 tests) 

 

starting 
temp end temp cool rate No. of iterations orig inv nw inv 
1000 10 0.81 20 7.54 7.371 
1000 10 0.82 20 7.54 7.37 
1000 10 0.83 20 7.539 7.371 
1000 10 0.84 20 7.539 7.365 
1000 10 0.85 20 7.537 7.362 
1000 10 0.86 20 7.537 7.355 
1000 10 0.87 20 7.537 7.355 
1000 10 0.88 20 7.537 7.351 
1000 10 0.89 20 7.535 7.349 
1000 10 0.9 20 7.535 7.349 
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Figure 7.16. Number of wavelength in Benes network under SA with changing cooling rate in 32 

x 32 Benes network 

 

As can be seen from the above figure, the performance of SA gets better when the 

cooling rate slows down, which conforms to the theory [65]. And in any case, the wavelength 

awareness routing outperforms the original one.  

 

 

 

 

 

  

 



  105
                                      
  

 

 

 

Chapter 8  

Ant Colony 

 Ant Colony Algorithms are inspired by the behavior of natural ant colonies, in the 

sense that they solve their problems by multi agent cooperation using indirect communication 

through modifications in the environment. 

8.1 Introduction to Ant Colony 

 Natural, or real, ants release a certain amount of pheromone while walking, and each 

ant prefers (probabilistically) to follow a direction that is rich of pheromone. This simple 

behavior explains why ants are able to adjust to changes in the environment, such as new 

obstacles interrupting the currently shortest path [67]. For example, consider the following 

scenario, where ants are searching for food.  

 

 

                                           Figure 8.1 Ants are looking for food 

 

 If at some point, an obstacle is put on the ants� way to food,  

 

                                              Figure 8.2 An obstacle is in the way 
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When the ants reach the obstacle they will randomly choose some way around it (right, left, over 

or under).  

                                

                                        Figure 8.3 Ants randomly choose a route  

 

 From the figure, we can see that the upper half rout is shorter than the lower half out. 

But the ants do not know which is short, they just randomly pick one of the route. Apparently, 

those ants who choose the upper route will get to the food faster than those who choose the lower 

half, and therefore those who choose the upper half will build a stronger trail than the ones taking 

the lower part.  This, in turn, will attract more ants to the upper route (since ants have the 

tendency of following trails) and at the same time, the pheromone left on the lower route will 

evaporate over time. Eventually, there is only one route left, which is the upper router, the 

shortest one in this case.  

                    

                             Figure 8.4 Ants have found the shortest path 
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8.2 Application of Ant Colony Optimization to Benes network routing 

 The routing in Benes network has been formulated as a graph-coloring problem. The 

connections in the Benes network are mapped to the nodes in the graph. A routing is non-

blocking if and only if its corresponding graph can be properly colored.[68]  In our research, we 

are trying to find the smallest possible number which is sufficient to color the conflict graph. The 

graph-coloring algorithm ANTCOL is designed by Costa and Hertz [68] and this algorithm is an 

implementation of the Ant Colony technique and it can properly color the graph.  

 The ANTCOL algorithm is briefly described as follows,  

There are n ants, and their functionality is to travel from nodes to nodes and color them in a 

constructive way. When they color the nodes, they try to minimize the conflicts among the 

nodes. Their experience is stored in a N x N array; each element of this array represents the 

quality between two non-adjacent, the quality will evaporate over time, unless reinforced by the 

coloring process. And the quality is updated by the following formula, : 1/
a rs

rs rs a
s S

M M q
∈

= ρ. + ∑ , 

where M is the quality, (1-ρ) is the evaporation rate, therefore ρ is the preserving rate, the second 

part of the formula is the reinforcement part, that is to increase the quality, and q is the number 

of colors in the previous cycle.  

The quality of the resulting coloring strongly depends on the order in which the vertices are 

scanned. The ordering of the vertices can be either static or dynamic [68], An ordering of the 

vertices is called static if it can be completely determined before any color has been assigned. An 

ordering is called dynamic if the choice of the next vertex to be colored is based on previous 

color assignments. There are three major static ordering methods, namely RANDOM, LF 

(Largest First), and SL (Smallest Last); there are two major dynamic ordering methods, namely 
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DSATUR, RLF (Recursive Largest First). In [66], it shows that among these ordering method, 

RLF performs the best. We therefore will test our algorithm only with RLF. 

  

8.3 Experiment Analysis  

Table 8.1. The number of wavelength needed with respect to different number of ants in 16 x 16 
Benes network, with cycle = 100 

 

No. of Ants 
evaporation 

rate 
old 

algorithm wavelength aware 
2 0.05 3.785 3.785 
4 0.05 3.761 3.76 
8 0.05 3.761 3.759 
16 0.05 3.763 3.762 
32 0.05 3.771 3.769 
64 0.05 3.78 3.775 

128 0.05 3.785 3.782 
256 0.05 3.788 3.785 
512 0.05 3.793 3.789 
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Figure 8.5. Number of wavelength with respect to number of ants in 8 x 8 Benes Network 
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Table 8.2, the number of wavelength needed with respect to different number of ants in 16 x 16 
Benes network, with cycle = 100 

 

No. of Ants evaporation rate old algorithm wavelength aware 
2 0.05 5.96 5.85 
4 0.05 5.92 5.81 
8 0.05 5.91 5.793 

16 0.05 5.901 5.749 
32 0.05 5.873 5.728 
64 0.05 5.868 5.719 
128 0.05 5.87 5.719 
256 0.05 5.879 5.725 
512 0.05 5.883 5.76 
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Figure 8.6 Number of wavelength with respect to number of ants in 16 x 16 Benes network 
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Table 8.3. The number of wavelength needed with respect to different number of ants in 16 x 16 
Benes network, with cycle = 100 

 

No. of Ants 
evaporation 

rate 
old 

algorithm wavelength aware 
2 0.05 7.79 7.442 
4 0.05 7.765 7.413 
8 0.05 7.73 7.401 
16 0.05 7.71 7.385 
32 0.05 7.651 7.377 
64 0.05 7.628 7.363 

128 0.05 7.603 7.315 
256 0.05 7.611 7.322 
512 0.05 7.615 7.327 
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Figure 8.7 The number of wavelength with respect to number of ants in 32 x 32 Benes network 
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 As can be seen from the figures, the Ant Colony performs the best in 8 x 8 network 

when the number of ants is 8, in 16 x 16 network when the number of ants is 64, and in 32 x 32 

network when the number of ants is 128. It is interesting to notice that when the number of ants 

increase passes that mark, the performance goes down. The reason perhaps is that when the 

number of ants goes above some threshold value, the overhead of controlling these ants has 

offset the computational power gain. 

8.4. Comparisons Among GA, SA and ACO 

 From the discussion of each the GA, SA and ACO, it is clear that the proposed 

algorithm is better than the original Benes network routing algorithm in terms of the number of 

wavelength required. And it is also interesting to compare these three different technologies. 

   We will compare these three technologies and the original heuristics in a 3 different 

network sizes.  

Table 8.4.  Comparison among GA, SA and ACO and Heuristics 

Network 
size GA SA ACO GA-new SA-new ACO-new original heuristic 
8 x 8 3.74 3.828 3.77 3.74 3.811 3.78 4.17 

16 x 16 5.87 5.896 5.88 5.71 5.753 5.742 6.31 
32 x32 7.56 7.678 7.623 7.21 7.391 7.35 8.29 
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Figure 8.8 Comparisons among GA, SA and ACO and Heuristics 

 

 As can be seen from Figure 8.8 the average number of wavelength of the wavelength 

awareness routing is are better than the corresponding original routing algorithms; and among 

them GA has the best performance in terms of number of wavelength.  

 

 We now compare the running time for each of the three AI techniques and that of the 

original heuristics. 

Table 8.5 Comparison of running time among the AI techniques and the heuristic. 

Network 
size GA SA ACO GA-new SA-new ACO-new original heuristic
8 x 8 221sec 0.05sec 0.07 475sec 5sec 10sec 0.01sec 

16 x 16 58minutes30Sec 0.33sec 2sec 1hr30minutes 8sec 17sec 0.01sec 
32 x32 10hours 3sec 5sec 15hours 15sec 39sec 0.01sec 
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Figure 8.9 Comparisons of running time among GA, SA and ACO and Heuristics 

 It is clear from Figure 8.9. that the running time of Genetic Algorithms is much higher 

that the rest of the algorithms, even Genetic Algorithms provide the best result in terms of the 

No. of Wavelengths needed to routing the network.  

  Because the gap between Genetic Algorithms and the rest of the algorithms are so 

huge, it is necessary to illustrate the other algorithms except GA in a separate figure 8.10.  
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Figure 8.10 Comparisons of running time among SA and ACO and Heuristics 

 

 It can be seen from figure 8.9 that the running time of heuristic is the best and that of 

Ant Colony algorithm is the worst among the three. But in terms of the number of wavelengths 

needed to routing the network, heuristic provides the worst result and Simulated Annealing 

provides the best.  
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Chapter 9 

Conclusion and Future Work 

 This final chapter concludes the thesis and identifies some future research topics. 

9.1 Conclusion 

In this dissertation, we propose a mathematical model to analyze the blocking 

probability of stacked Benes network. We find that it is not cost effective to meet non-

blocking requirements in most cases. We further derive an upper bound of the blocking 

probability with respect to the number of planes in stacked Benes network.  

We propose a new algorithm in WDM Benes network routing that reduces the 

number of wavelengths needed we further adapt the windows method to baseline network. 

We develops AI techniques, such as the genetic algorithm (GA), simulated annealing 

(SA) algorithm and the ant colony optimization (ACO) technique are applied to the problem 

to calculate the number of wavelength required for routing a given permutation. We then 

compare the results from these three techniques and we find that genetic algorithms yield the 

best result in terms of the number of wavelength; but in terms of the running time, Genetic 

Algorithms performs the worst while Simulated Annealing provides the best performance.  

9.2 Future Work  

 We then identify some of the possible future research topics.  

 Lower Bound Estimation 

We will find the clique of a conflict graph [49], which is obtained after applying the 

window method to a given network. We find the number of cliques [57] and use this value as a 

lower bound on the number of wavelengths. A clique in an undirected graph G = (V, E) is a 
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subset V' ⊂  V of vertices, each pair of which is connected by an edge in E. The size of the clique 

is the number of vertices it contains. The clique problem is the optimization problem of finding a 

clique of maximum size in a graph [57]. An algorithm for determining whether a graph G = (V, 

E) with |V| vertices has a clique of size k is to list all k-subsets of V, and check each one to see 

whether it forms a clique. The running time of the algorithm is polynomial if k is a constant. k 

could be proportional to |V|, in which case the algorithm runs in super polynomial time. We can 

find the clique by using an algorithm which tests for a particular clique size [57] by traversing 

through all the nodes in the conflict graph. For example a clique of size 4 on a graph having 8 

nodes can be found using four loops as shown below. 

for ( i = 0; i < 5; i ++ ) { 
 for ( j = i + 1; j < 6; j ++ ) { 
  for ( k = j + 1; k < 7; k ++ ) { 
   for ( l = k + 1; l < 8; l ++ ) { 
    check if vertices Vi , Vj , Vk , and Vl form a clique of size 4 
   } 
  } 
 } 
} 
 

Similarly we can find the clique of different sizes. As we can see this algorithm has a 

very high time complexity because finding the clique of a graph is a NP-complete problem [57]. 

The number of possible combinations for finding a clique of size �k� with �n� nodes can be found 

using the combination formula nck. This method of finding the clique may not be an efficient 

implementation, but we are not concerned with the clique problem but the problem of finding a 

lower bound estimate on the number of passes required for routing the messages. 

Since finding the clique has a very high time complexity, we will avoid finding all the 

cliques equal to the number of nodes in the graph. This can be accomplished by finding the 

maximum degree of the graph as the upper bound. Then using this value as the upper bound we 
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can find the clique of a given conflict graph. For any conflict graph the minimum clique value 

will be 2. So starting from a clique value of 2 we will find higher clique values until the upper 

bound value. If we obtain a new clique value then we update the value of the clique. This is done 

until the upper bound is reached. We stop at this point because there is no point in searching for a 

higher clique value as we have already found the maximum number of passes required. If a 

higher clique value exists then the maximum number of passes value would have been different. 

Hence the clique value found is the correct value. If the clique value found for a given 

permutation is equal to the number of passes obtained using any algorithm discussed so far then 

the algorithm has worked well in routing that permutation. 

 The clique value calculated is used as a lower bound on the number of wavelengths 

required in routing a given permutation. In other words the maximum number of wavelengths 

can never be less than the clique size. 

 Parallel Routing 

 It is well known that wavelength assignment is NP-Complete, therefore parallelization 

is a possible research field. As in [20], A permutation can be correctly set up in O (NlogN) time 

using a completely connected multiprocessor system of N Processors. 

We can further improve this by combining our refined route setup algorithms with this 

parallel wavelength assignment algorithm.  

One to Many Casting  

 In the Benes network we discussed, we assume the traffic is one-to-one; another 

possible research is to allow one-to-many traffic, the so-called multicasting. Because the 

connection within one multicasting group can share the same wavelength, the question is how to 

set up the connection such that those connections within one multicasting group share the same 
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wavelength while connections belonging to different group do not. 

More Order of Worst Cases 

 
 In this dissertation, we analyze the blocking probability of VSOBN with respect to the 

number of planes. In particular, we analyze the non-blocking requirement when the several worst 

cases do not happen.  In our dissertation, we stop at the third worst case, because neglecting 3rd 

worst case alone will not save a plane. But it is interesting to further investigate the situation in 

which the first n cases, for example the first 100 worst cases or first 200 worst cases do not 

happen. Maybe the aggregate effect from 3rd worst case to the nth case will save a plane. Further, 

we are interested in deriving a function of the nth worst cases, namely, if up to the nth worst cases 

are neglected, how many planes are required to guarantee non-blockingness?  
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