48 research outputs found

    Integration of Blockchain and Auction Models: A Survey, Some Applications, and Challenges

    Get PDF
    In recent years, blockchain has gained widespread attention as an emerging technology for decentralization, transparency, and immutability in advancing online activities over public networks. As an essential market process, auctions have been well studied and applied in many business fields due to their efficiency and contributions to fair trade. Complementary features between blockchain and auction models trigger a great potential for research and innovation. On the one hand, the decentralized nature of blockchain can provide a trustworthy, secure, and cost-effective mechanism to manage the auction process; on the other hand, auction models can be utilized to design incentive and consensus protocols in blockchain architectures. These opportunities have attracted enormous research and innovation activities in both academia and industry; however, there is a lack of an in-depth review of existing solutions and achievements. In this paper, we conduct a comprehensive state-of-the-art survey of these two research topics. We review the existing solutions for integrating blockchain and auction models, with some application-oriented taxonomies generated. Additionally, we highlight some open research challenges and future directions towards integrated blockchain-auction models

    Blockchain applications in supply chains, transport and logistics : a systematic review of the literature

    Get PDF
    This paper presents current academic and industrial frontiers on blockchain application in supply chain, logistics and transport management. We conduct a systematic review of the literature and find four main clusters in the co-citation analysis, namely Technology, Trust, Trade, and Traceability/Transparency. For each cluster, and based on the pool of articles included in it, we apply an inductive method of reasoning and discuss the emerging themes and applications of blockchains for supply chains, logistics and transport. We conclude by discussing the main themes for future research on blockchain technology and its application in industry and services

    Transparent, trustworthy and privacy-preserving supply chains

    Full text link
    Over the years, supply chains have evolved from a few regional traders to globally complex chains of trade. Consequently, supply chain management systems have become heavily dependent on digitization for the purpose of data storage and traceability of goods. However, these traceability systems suffer from issues such as scattering of information across multiple silos and susceptibility of erroneous or modified data and thus are often unable to provide reliable information about a product. Due to propriety reasons, often end-to-end traceability is not available to the general consumer. The second issue is ensuring the credibility of the collated information about a product. The digital data may not be the true representation of the physical events which raises the issues of trusting the available information. If the source of digital data is not trustworthy, the provenance or traceability of a product becomes questionable. The third issue in supply chain management is a trade-off between the provenance information and protection of this data. The information is often associated with the identity of the contributing entity to ensure trust. However, the identity association makes it difficult to protect trade secrets such as shipments, pricing, and trade frequency of traders while simultaneously ensuring the provenance/traceability to the consumers. Our work aims to address above mentioned challenges related to traceability, trustworthiness and privacy. To support traceability and provenance, a consortium blockchain based framework, ProductChain, is proposed which provides an immutable audit trail of the supply chain events pertaining to the product and its origin. The framework also presents a sharded network model to meet the scalability needs of complex supply chains. Simulation results for our Proof of Concept (PoC) implementation show that query time for retrieving end-to-end traceability is of the order of a few milliseconds even when the information is collated from multiple regional blockchains. Next, to ensure the credibility of data from the supply chain entities, it is important to have an accountability mechanism which can penalise or reward the entities for their dishonest or honest contributions, respectively. We propose the TrustChain framework, which calculates a trust score for data contributing entities to the blockchain using multiple observations. These observations include feedback from interactions among supply chain entities, inputs from third party regulators and readings from IoT sensors. The integrated reputation system with blockchain, dynamically assigns trust and reputation scores to commodities and traders using smart contracts. A PoC implementation over Hyperledger Fabric shows that TrustChain incurs minimal overheads over a baseline. For protecting trade secrets while simultaneously ensuring traceability, PrivChain is proposed. PrivChain's framework allows traders to share computation or proofs in support of provenance and traceability claims rather than sharing the data itself. The framework also proposes an integrated incentive mechanism for traders providing such proofs. A PoC implementation on Hyperledger Fabric reveals a minimal overhead of using PrivChain as the data related computations are carried off-chain. Finally, we propose TradeChain which addresses the issue of preserving the privacy of identity related information with the blockchain data and gives greater access control to the data owners, i.e. traders. This framework decouples the identities of traders by managing two ledgers: one for managing decentralised identities and another for recording supply chain events. The information from both ledgers is then collated using access tokens provided by the data owners. In this way, they can dynamically control access to the blockchain data at a granular level. A PoC implementation is developed both on Hyperledger Indy and Fabric and we demonstrate minimal overheads for the different components of TradeChain

    Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture

    Full text link
    [EN] The term "Agri-Food 4.0" is an analogy to the term Industry 4.0; coming from the concept "agriculture 4.0". Since the origins of the industrial revolution, where the steam engines started the concept of Industry 1.0 and later the use of electricity upgraded the concept to Industry 2.0, the use of technologies generated a milestone in the industry revolution by addressing the Industry 3.0 concept. Hence, Industry 4.0, it is about including and integrating the latest developments based on digital technologies as well as the interoperability process across them. This allows enterprises to transmit real-time information in terms behaviour and performance. Therefore, the challenge is to maintain these complex networked structures efficiently linked and organised within the use of such technologies, especially to identify and satisfy supply chain stakeholders dynamic requirements. In this context, the agriculture domain is not an exception although it possesses some specialities depending from the domain. In fact, all agricultural machinery incorporates electronic controls and has entered to the digital age, enhancing their current performance. In addition, electronics, using sensors and drones, support the data collection of several agriculture key aspects, such as weather, geographical spatialization, animals and crops behaviours, as well as the entire farm life cycle. However, the use of the right methods and methodologies for enhancing agriculture supply chains performance is still a challenge, thus the concept of Industry 4.0 has evolved and adapted to agriculture 4.0 in order analyse the behaviours and performance in this specific domain. Thus, the question mark on how agriculture 4.0 support a better supply chain decision-making process, or how can help to save time to farmer to make effective decision based on objective data, remains open. Therefore, in this survey, a review of more than hundred papers on new technologies and the new available supply chains methods are analysed and contrasted to understand the future paths of the Agri-Food domain.Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS "Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems" (www.ruc-aps.eu), funded by the European Union under their funding scheme H2020-MSCARISE-2015.Lezoche, M.; Hernández, JE.; Alemany Díaz, MDM.; Panetto, H.; Kacprzyk, J. (2020). Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Computers in Industry. 117:1-15. https://doi.org/10.1016/j.compind.2020.103187S115117Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1-20. doi:10.1016/j.ejor.2008.02.014Ait-Mouheb, N., Bahri, A., Thayer, B. B., Benyahia, B., Bourrié, G., Cherki, B., … Harmand, J. (2018). The reuse of reclaimed water for irrigation around the Mediterranean Rim: a step towards a more virtuous cycle? Regional Environmental Change, 18(3), 693-705. doi:10.1007/s10113-018-1292-zAli, J., & Kumar, S. (2011). Information and communication technologies (ICTs) and farmers’ decision-making across the agricultural supply chain. International Journal of Information Management, 31(2), 149-159. doi:10.1016/j.ijinfomgt.2010.07.008Alzahrani, S. M. (2018). Development of IoT mining machine for Twitter sentiment analysis: Mining in the cloud and results on the mirror. 2018 15th Learning and Technology Conference (L&T). doi:10.1109/lt.2018.8368490Amandeep, Bhattacharjee, A., Das, P., Basu, D., Roy, S., Ghosh, S., … Rana, T. K. (2017). Smart farming using IOT. 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). doi:10.1109/iemcon.2017.8117219Annosi, M. C., Brunetta, F., Monti, A., & Nati, F. (2019). Is the trend your friend? An analysis of technology 4.0 investment decisions in agricultural SMEs. Computers in Industry, 109, 59-71. doi:10.1016/j.compind.2019.04.003Baio, F. H. R. (2011). Evaluation of an auto-guidance system operating on a sugar cane harvester. Precision Agriculture, 13(1), 141-147. doi:10.1007/s11119-011-9241-6Belaud, J.-P., Prioux, N., Vialle, C., & Sablayrolles, C. (2019). Big data for agri-food 4.0: Application to sustainability management for by-products supply chain. Computers in Industry, 111, 41-50. doi:10.1016/j.compind.2019.06.006Nicolaas Bezuidenhout, C., Bodhanya, S., & Brenchley, L. (2012). An analysis of collaboration in a sugarcane production and processing supply chain. British Food Journal, 114(6), 880-895. doi:10.1108/00070701211234390Bhatt, M. R., & Buch, S. (2015). Prediction of formability for sheet metal component using artificial intelligent technique. 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN). doi:10.1109/spin.2015.7095356Birkel, H. S., & Hartmann, E. (2019). Impact of IoT challenges and risks for SCM. Supply Chain Management: An International Journal, 24(1), 39-61. doi:10.1108/scm-03-2018-0142Boehlje, M. (1999). Structural Changes in the Agricultural Industries: How Do We Measure, Analyze and Understand Them? American Journal of Agricultural Economics, 81(5), 1028-1041. doi:10.2307/1244080Bonney, L., Clark, R., Collins, R., & Fearne, A. (2007). From serendipity to sustainable competitive advantage: insights from Houston’s Farm and their journey of co‐innovation. Supply Chain Management: An International Journal, 12(6), 395-399. doi:10.1108/13598540710826326Boshkoska, B. M., Liu, S., Zhao, G., Fernandez, A., Gamboa, S., del Pino, M., … Chen, H. (2019). A decision support system for evaluation of the knowledge sharing crossing boundaries in agri-food value chains. Computers in Industry, 110, 64-80. doi:10.1016/j.compind.2019.04.012Brewster, C., Roussaki, I., Kalatzis, N., Doolin, K., & Ellis, K. (2017). IoT in Agriculture: Designing a Europe-Wide Large-Scale Pilot. IEEE Communications Magazine, 55(9), 26-33. doi:10.1109/mcom.2017.1600528Bronson, K., & Knezevic, I. (2016). Big Data in food and agriculture. Big Data & Society, 3(1), 205395171664817. doi:10.1177/2053951716648174Brown, K. (2013). Global environmental change I. Progress in Human Geography, 38(1), 107-117. doi:10.1177/0309132513498837Chilcanan, D., Navas, P., & Escobar, S. M. (2017). Expert system for remote process automation in multiplatform servers, through human machine conversation. 2017 12th Iberian Conference on Information Systems and Technologies (CISTI). doi:10.23919/cisti.2017.7975913Choi, J., In, Y., Park, C., Seok, S., Seo, H., & Kim, H. (2016). Secure IoT framework and 2D architecture for End-To-End security. The Journal of Supercomputing, 74(8), 3521-3535. doi:10.1007/s11227-016-1684-0Cohen, W. M., & Levinthal, D. A. (1990). Absorptive Capacity: A New Perspective on Learning and Innovation. Administrative Science Quarterly, 35(1), 128. doi:10.2307/2393553Dabbene, F., Gay, P., & Tortia, C. (2014). Traceability issues in food supply chain management: A review. Biosystems Engineering, 120, 65-80. doi:10.1016/j.biosystemseng.2013.09.006Del Borghi, A., Gallo, M., Strazza, C., & Del Borghi, M. (2014). An evaluation of environmental sustainability in the food industry through Life Cycle Assessment: the case study of tomato products supply chain. Journal of Cleaner Production, 78, 121-130. doi:10.1016/j.jclepro.2014.04.083Devarakonda, R., Shrestha, B., Palanisamy, G., Hook, L., Killeffer, T., Krassovski, M., … Lazer, K. (2014). OME: Tool for generating and managing metadata to handle BigData. 2014 IEEE International Conference on Big Data (Big Data). doi:10.1109/bigdata.2014.7004476Nascimento, A. F. do, Mendonça, E. de S., Leite, L. F. C., Scholberg, J., & Neves, J. C. L. (2012). Calibration and validation of models for short-term decomposition and N mineralization of plant residues in the tropics. Scientia Agricola, 69(6), 393-401. doi:10.1590/s0103-90162012000600008Dolan, C., & Humphrey, J. (2000). Governance and Trade in Fresh Vegetables: The Impact of UK Supermarkets on the African Horticulture Industry. Journal of Development Studies, 37(2), 147-176. doi:10.1080/713600072Dragincic, J., Korac, N., & Blagojevic, B. (2015). Group multi-criteria decision making (GMCDM) approach for selecting the most suitable table grape variety intended for organic viticulture. Computers and Electronics in Agriculture, 111, 194-202. doi:10.1016/j.compag.2014.12.023Dworak, V., Selbeck, J., Dammer, K.-H., Hoffmann, M., Zarezadeh, A., & Bobda, C. (2013). Strategy for the Development of a Smart NDVI Camera System for Outdoor Plant Detection and Agricultural Embedded Systems. Sensors, 13(2), 1523-1538. doi:10.3390/s130201523Eisele, M., Kiese, R., Krämer, A., & Leibundgut, C. (2001). Application of a catchment water quality model for assessment and prediction of nitrogen budgets. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(7-8), 547-551. doi:10.1016/s1464-1909(01)00048-xElsayed, K. M. F., Ismail, T., & S. Ouf, N. (2018). A Review on the Relevant Applications of Machine Learning in Agriculture. IJIREEICE, 6(8), 1-17. doi:10.17148/ijireeice.2018.681Esteso, A., Alemany, M. M. E., & Ortiz, A. (2017). Métodos y Modelos Deterministas e Inciertos para la Gestión de Cadenas de Suministro Agroalimentarias. Dirección y Organización, 41-46. doi:10.37610/dyo.v0i0.509Esteso, A., Alemany, M. M. E., & Ortiz, A. (2018). Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. International Journal of Production Research, 56(13), 4418-4446. doi:10.1080/00207543.2018.1447706GERHARDS, R., GUTJAHR, C., WEIS, M., KELLER, M., SÖKEFELD, M., MÖHRING, J., & PIEPHO, H. P. (2011). Using precision farming technology to quantify yield effects attributed to weed competition and herbicide application. Weed Research, 52(1), 6-15. doi:10.1111/j.1365-3180.2011.00893.xGovindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 152, 9-28. doi:10.1016/j.ijpe.2013.12.028Gumaste, S. S., & Kadam, A. J. (2016). Future weather prediction using genetic algorithm and FFT for smart farming. 2016 International Conference on Computing Communication Control and automation (ICCUBEA). doi:10.1109/iccubea.2016.7860028Hashem, H., & Ranc, D. (2016). A review of modeling toolbox for BigData. 2016 International Conference on Military Communications and Information Systems (ICMCIS). doi:10.1109/icmcis.2016.7496565Hefnawy, A., Elhariri, T., Cherifi, C., Robert, J., Bouras, A., Kubler, S., & Framling, K. (2017). Combined use of lifecycle management and IoT in smart cities. 2017 11th International Conference on Software, Knowledge, Information Management and Applications (SKIMA). doi:10.1109/skima.2017.8294112Hosseini, S. H., Tang, C. Y., & Jiang, J. N. (2014). Calibration of a Wind Farm Wind Speed Model With Incomplete Wind Data. IEEE Transactions on Sustainable Energy, 5(1), 343-350. doi:10.1109/tste.2013.2284490Hu, Y., Zhang, L., Li, J., & Mehrotra, S. (2016). ICME 2016 Image Recognition Grand Challenge. 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). doi:10.1109/icmew.2016.7574663A. Irmak, J. W. Jones, W. D. Batchelor, S. Irmak, K. J. Boote, & J. O. Paz. (2006). Artificial Neural Network Model as a Data Analysis Tool in Precision Farming. Transactions of the ASABE, 49(6), 2027-2037. doi:10.13031/2013.22264Jeon, S., Kim, B., & Huh, J. (2017). Study on methods to determine rotor equivalent wind speed to increase prediction accuracy of wind turbine performance under wake condition. Energy for Sustainable Development, 40, 41-49. doi:10.1016/j.esd.2017.06.001Joly, P.-B. (2005). Resilient farming systems in a complex world — new issues for the governance of science and innovation. Australian Journal of Experimental Agriculture, 45(6), 617. doi:10.1071/ea03252Joshi, R., Banwet, D. K., & Shankar, R. (2009). Indian cold chain: modeling the inhibitors. British Food Journal, 111(11), 1260-1283. doi:10.1108/00070700911001077Kamata, T., Roshanianfard, A., & Noguchi, N. (2018). Heavy-weight Crop Harvesting Robot - Controlling Algorithm. IFAC-PapersOnLine, 51(17), 244-249. doi:10.1016/j.ifacol.2018.08.165Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. International Journal of Production Economics, 219, 179-194. doi:10.1016/j.ijpe.2019.05.022Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23-37. doi:10.1016/j.compag.2017.09.037Kelepouris, T., Pramatari, K., & Doukidis, G. (2007). RFID‐enabled traceability in the food supply chain. Industrial Management & Data Systems, 107(2), 183-200. doi:10.1108/02635570710723804Khan, S. F., & Ismail, M. Y. (2018). An Investigation into the Challenges and Opportunities Associated with the Application of Internet of Things (IoT) in the Agricultural Sector-A Review. Journal of Computer Science, 14(2), 132-143. doi:10.3844/jcssp.2018.132.143Kladivko, E. J., Helmers, M. J., Abendroth, L. J., Herzmann, D., Lal, R., Castellano, M. J., … Villamil, M. B. (2014). Standardized research protocols enable transdisciplinary research of climate variation impacts in corn production systems. Journal of Soil and Water Conservation, 69(6), 532-542. doi:10.2489/jswc.69.6.532Ko, T., Lee, J., & Ryu, D. (2018). Blockchain Technology and Manufacturing Industry: Real-Time Transparency and Cost Savings. Sustainability, 10(11), 4274. doi:10.3390/su10114274KÖK, M. S. (2009). Application of Food Safety Management Systems (ISO 22000/HACCP) in the Turkish Poultry Industry: A Comparison Based on Enterprise Size. Journal of Food Protection, 72(10), 2221-2225. doi:10.4315/0362-028x-72.10.2221Kvíz, Z., Kroulik, M., & Chyba, J. (2014). Machinery guidance systems analysis concerning pass-to-pass accuracy as a tool for efficient plant production in fields and for soil damage reduction. Plant, Soil and Environment, 60(No. 1), 36-42. doi:10.17221/622/2012-pseLamsal, K., Jones, P. C., & Thomas, B. W. (2016). Harvest logistics in agricultural systems with multiple, independent producers and no on-farm storage. Computers & Industrial Engineering, 91, 129-138. doi:10.1016/j.cie.2015.10.018Laube, P., Duckham, M., & Palaniswami, M. (2011). Deferred decentralized movement pattern mining for geosensor networks. International Journal of Geographical Information Science, 25(2), 273-292. doi:10.1080/13658810903296630Li, F.-R., Gao, C.-Y., Zhao, H.-L., & Li, X.-Y. (2002). Soil conservation effectiveness and energy efficiency of alternative rotations and continuous wheat cropping in the Loess Plateau of northwest China. Agriculture, Ecosystems & Environment, 91(1-3), 101-111. doi:10.1016/s0167-8809(01)00265-1Liakos, K., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in Agriculture: A Review. Sensors, 18(8), 2674. doi:10.3390/s18082674Meichen, L., Jun, C., Xiang, Z., Lu, W., & Yongpeng, T. (2018). Dynamic obstacle detection based on multi-sensor information fusion. IFAC-PapersOnLine, 51(17), 861-865. doi:10.1016/j.ifacol.2018.08.086Louwagie, G., Northey, G., Finn, J. A., & Purvis, G. (2012). Development of indicators for assessment of the environmental impact of livestock farming in Ireland using the Agri-environmental Footprint Index. Ecological Indicators, 18, 149-162. doi:10.1016/j.ecolind.2011.11.003Luque, A., Peralta, M. E., de las Heras, A., & Córdoba, A. (2017). State of the Industry 4.0 in the Andalusian food sector. Procedia Manufacturing, 13, 1199-1205. doi:10.1016/j.promfg.2017.09.195Malhotra, S., Doja, M. ., Alam, B., & Alam, M. (2017). Bigdata analysis and comparison of bigdata analytic approches. 2017 International Conference on Computing, Communication and Automation (ICCCA). doi:10.1109/ccaa.2017.8229821Mayer, J., Gunst, L., Mäder, P., Samson, M.-F., Carcea, M., Narducci, V., … Dubois, D. (2015). «Productivity, quality and sustainability of winter wheat under long-term conventional and organic management in Switzerland». European Journal of Agronomy, 65, 27-39. doi:10.1016/j.eja.2015.01.002McGuire, S., & Sperling, L. (2013). Making seed systems more resilient to stress. Global Environmental Change, 23(3), 644-653. doi:10.1016/j.gloenvcha.2013.02.001Mekala, M. S., & Viswanathan, P. (2017). A Survey: Smart agriculture IoT with cloud computing. 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS). doi:10.1109/icmdcs.2017.8211551Mishra, S., Mishra, D., & Santra, G. H. (2016). Applications of Machine Learning Techniques in Agricultural Crop Production: A Review Paper. Indian Journal of Science and Technology, 9(38). doi:10.17485/ijst/2016/v9i38/95032Mocnej, J., Seah, W. K. G., Pekar, A., & Zolotova, I. (2018). Decentralised IoT Architecture for Efficient Resources Utilisation. IFAC-PapersOnLine, 51(6), 168-173. doi:10.1016/j.ifacol.2018.07.148Mohanraj, I., Gokul, V., Ezhilarasie, R., & Umamakeswari, A. (2017). Intelligent drip irrigation and fertigation using wireless sensor networks. 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR). doi:10.1109/tiar.2017.8273682Montecinos, J., Ouhimmou, M., Chauhan, S., & Paquet, M. (2018). Forecasting multiple waste collecting sites for the agro-food industry. Journal of Cleaner Production, 187, 932-939. doi:10.1016/j.jclepro.2018.03.127Yandun Narváez, F., Gregorio, E., Escolà, A., Rosell-Polo, J. R., Torres-Torriti, M., & Auat Cheein, F. (2018). Terrain classification using ToF sensors for the enhancement of agricultural machinery traversability. Journal of Terramechanics, 76, 1-13. doi:10.1016/j.jterra.2017.10.005Nguyen, T., ZHOU, L., Spiegler, V., Ieromonachou, P., & Lin, Y. (2018). Big data analytics in supply chain management: A state-of-the-art literature review. Computers & Operations Research, 98, 254-264. doi:10.1016/j.cor.2017.07.004Nilsson, E., Hochrainer-Stigler, S., Mochizuki, J., & Uvo, C. B. (2016). Hydro-climatic variability and agricultural production on the shores of Lake Chad. Environmental Development, 20, 15-30. doi:10.1016/j.envdev.2016.09.001Nolan, P., Paley, D. A., & Kroeger, K. (2017). Multi-UAS path planning for non-uniform data collection in precision agriculture. 2017 IEEE Aerospace Conference. doi:10.1109/aero.2017.7943794Oberholster, C., Adendorff, C., & Jonker, K. (2015). Financing Agricultural Production from a Value Chain Perspective. Outlook on Agriculture, 44(1), 49-60. doi:10.5367/oa.2015.0197Opara, L. U., & Mazaud, F. (2001). Food Traceability from Field to Plate. Outlook on Agriculture, 30(4), 239-247. doi:10.5367/000000001101293724Ott, K.-H., Aranı́bar, N., Singh, B., & Stockton, G. W. (2003). Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. Phytochemistry, 62(6), 971-985. doi:10.1016/s0031-9422(02)00717-3Panetto, H. (2007). Towards a classification framework for interoperability of enterprise applications. International Journal of Computer Integrated Manufacturing, 20(8), 727-740. doi:10.1080/09511920600996419Paulraj, G. J. L., Francis, S. A. J., Peter, J. D., & Jebadurai, I. J. (2018). Resource-aware virtual machine migration in IoT cloud. Future Generation Computer Systems, 85, 173-183. doi:10.1016/j.future.2018.03.024Pilli, S. K., Nallathambi, B., George, S. J., & Diwanji, V. (2015). eAGROBOT — A robot for early crop disease detection using image processing. 2015 2nd International Conference on Electronics and Communication Systems (ICECS). doi:10.1109/ecs.2015.7124873Pinho, P., Dias, T., Cruz, C., Sim Tang, Y., Sutton, M. A., Martins-Loução, M.-A., … Branquinho, C. (2011). Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. Journal of Applied Ecology, 48(5), 1107-1116. doi:10.1111/j.1365-2664.2011.02033.xPrathibha, S. R., Hongal, A., & Jyothi, M. P. (2017). IOT Based Monitoring System in Smart Agriculture. 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT). doi:10.1109/icraect.2017.52Reardon, T., Echeverria, R., Berdegué, J., Minten, B., Liverpool-Tasie, S., Tschirley, D., & Zilberman, D. (2019). Rapid transformation of food systems in developing regions: Highlighting the role of agricultural research & innovations. Agricultural Systems, 172, 47-59. doi:10.1016/j.agsy.2018.01.022Ribarics, P. (2016). Big Data and its impact on agriculture. Ecocycles, 2(1), 33-34. doi:10.19040/ecocycles.v2i1.54Rosell, J. R., & Sanz, R. (2012). A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture, 81, 124-141. doi:10.1016/j.compag.2011.09.007Roshanianfard, A., Kamata, T., & Noguchi, N. (2018). Performance evaluation of harvesting robot for heavy-weight crops. IFAC-PapersOnLine, 51(17), 332-338. doi:10.1016/j.ifacol.2018.08.200Routroy, S., & Behera, A. (2017). Agriculture supply chain. Journal of Agribusiness in Developing and Emerging Economies, 7(3), 275-302. doi:10.1108/jadee-06-2016-0039Ruiz-Garcia, L., Steinberger, G., & Rothmund, M. (2010). A model and prototype implementation for tracking and tracing agricultural batch products along the food chain. Food Control, 21(2), 112-121. doi:10.1016/j.foodcont.2008.12.003Saggi, M. K., & Jain, S. (2018). A survey towards an integration of big

    Blockchain in Service Management and Service Research – Developing a Research Agenda and Managerial Implications

    Get PDF
    As blockchain technology is maturing to be confidently used in practice, its applications are becoming evident and, correspondingly, more blockchain research is being published, also extending to more domains than before. To date, scientific research in the field has predominantly focused on subject areas such as finance, computer science, and engineering, while the area of service management has largely neglected this topic. Therefore, we invited a group of renowned scholars from different academic fields to share their views on emerging topics regarding blockchain in service management and service research. Their individual commentaries and conceptual contributions refer to different theoretical and domain perspectives, including managerial implications for service companies as well as forward-looking suggestions for further research.Information and Communication TechnologyEconomics of Technology and Innovatio

    Networked world: Risks and opportunities in the Internet of Things

    Get PDF
    The Internet of Things (IoT) – devices that are connected to the Internet and collect and use data to operate – is about to transform society. Everything from smart fridges and lightbulbs to remote sensors and cities will collect data that can be analysed and used to provide a wealth of bespoke products and services. The impacts will be huge - by 2020, some 25 billion devices will be connected to the Internet with some studies estimating this number will rise to 125 billion in 2030. These will include many things that have never been connected to the Internet before. Like all new technologies, IoT offers substantial new opportunities which must be considered in parallel with the new risks that come with it. To make sense of this new world, Lloyd’s worked with University College London’s (UCL) Department of Science, Technology, Engineering and Public Policy (STEaPP) and the PETRAS IoT Research Hub to publish this report. ‘Networked world’ analyses IoT’s opportunities, risks and regulatory landscape. It aims to help insurers understand potential exposures across marine, smart homes, water infrastructure and agriculture while highlighting the implications for insurance operations and product development. The report also helps risk managers assess how this technology could impact their businesses and consider how they can mitigate associated risks

    Blockchain for secured IoT and D2D applications over 5G cellular networks : a thesis by publications presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer and Electronics Engineering, Massey University, Albany, New Zealand

    Get PDF
    Author's Declaration: "In accordance with Sensors, SpringerOpen, and IEEE’s copyright policy, this thesis contains the accepted and published version of each manuscript as the final version. Consequently, the content is identical to the published versions."The Internet of things (IoT) is in continuous development with ever-growing popularity. It brings significant benefits through enabling humans and the physical world to interact using various technologies from small sensors to cloud computing. IoT devices and networks are appealing targets of various cyber attacks and can be hampered by malicious intervening attackers if the IoT is not appropriately protected. However, IoT security and privacy remain a major challenge due to characteristics of the IoT, such as heterogeneity, scalability, nature of the data, and operation in open environments. Moreover, many existing cloud-based solutions for IoT security rely on central remote servers over vulnerable Internet connections. The decentralized and distributed nature of blockchain technology has attracted significant attention as a suitable solution to tackle the security and privacy concerns of the IoT and device-to-device (D2D) communication. This thesis explores the possible adoption of blockchain technology to address the security and privacy challenges of the IoT under the 5G cellular system. This thesis makes four novel contributions. First, a Multi-layer Blockchain Security (MBS) model is proposed to protect IoT networks while simplifying the implementation of blockchain technology. The concept of clustering is utilized to facilitate multi-layer architecture deployment and increase scalability. The K-unknown clusters are formed within the IoT network by applying a hybrid Evolutionary Computation Algorithm using Simulated Annealing (SA) and Genetic Algorithms (GA) to structure the overlay nodes. The open-source Hyperledger Fabric (HLF) Blockchain platform is deployed for the proposed model development. Base stations adopt a global blockchain approach to communicate with each other securely. The quantitative arguments demonstrate that the proposed clustering algorithm performs well when compared to the earlier reported methods. The proposed lightweight blockchain model is also better suited to balance network latency and throughput compared to a traditional global blockchain. Next, a model is proposed to integrate IoT systems and blockchain by implementing the permissioned blockchain Hyperledger Fabric. The security of the edge computing devices is provided by employing a local authentication process. A lightweight mutual authentication and authorization solution is proposed to ensure the security of tiny IoT devices within the ecosystem. In addition, the proposed model provides traceability for the data generated by the IoT devices. The performance of the proposed model is validated with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results indicate that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios. Despite the increasing development of blockchain platforms, there is still no comprehensive method for adopting blockchain technology on IoT systems due to the blockchain's limited capability to process substantial transaction requests from a massive number of IoT devices. The Fabric comprises various components such as smart contracts, peers, endorsers, validators, committers, and Orderers. A comprehensive empirical model is proposed that measures HLF's performance and identifies potential performance bottlenecks to better meet blockchain-based IoT applications' requirements. The implementation of HLF on distributed large-scale IoT systems is proposed. The performance of the HLF is evaluated in terms of throughput, latency, network sizes, scalability, and the number of peers serviceable by the platform. The experimental results demonstrate that the proposed framework can provide a detailed and real-time performance evaluation of blockchain systems for large-scale IoT applications. The diversity and the sheer increase in the number of connected IoT devices have brought significant concerns about storing and protecting the large IoT data volume. Dependencies of the centralized server solution impose significant trust issues and make it vulnerable to security risks. A layer-based distributed data storage design and implementation of a blockchain-enabled large-scale IoT system is proposed to mitigate these challenges by using the HLF platform for distributed ledger solutions. The need for a centralized server and third-party auditor is eliminated by leveraging HLF peers who perform transaction verification and records audits in a big data system with the help of blockchain technology. The HLF blockchain facilitates storing the lightweight verification tags on the blockchain ledger. In contrast, the actual metadata is stored in the off-chain big data system to reduce the communication overheads and enhance data integrity. Finally, experiments are conducted to evaluate the performance of the proposed scheme in terms of throughput, latency, communication, and computation costs. The results indicate the feasibility of the proposed solution to retrieve and store the provenance of large-scale IoT data within the big data ecosystem using the HLF blockchain

    Emerging Technologies

    Get PDF
    This monograph investigates a multitude of emerging technologies including 3D printing, 5G, blockchain, and many more to assess their potential for use to further humanity’s shared goal of sustainable development. Through case studies detailing how these technologies are already being used at companies worldwide, author Sinan Küfeoğlu explores how emerging technologies can be used to enhance progress toward each of the seventeen United Nations Sustainable Development Goals and to guarantee economic growth even in the face of challenges such as climate change. To assemble this book, the author explored the business models of 650 companies in order to demonstrate how innovations can be converted into value to support sustainable development. To ensure practical application, only technologies currently on the market and in use actual companies were investigated. This volume will be of great use to academics, policymakers, innovators at the forefront of green business, and anyone else who is interested in novel and innovative business models and how they could help to achieve the Sustainable Development Goals. This is an open access book
    corecore