76 research outputs found

    Assessment of high-frequency steady-state visual evoked potentials from below-the-hairline areas for a brain-computer interface based on Depth-of-Field

    Get PDF
    Background and Objective: Recently, a promising Brain-Computer Interface based on Steady-State Visual Evoked Potential (SSVEP-BCI) was proposed, which composed of two stimuli presented together in the center of the subject's field of view, but at different depth planes (Depth-of-Field setup). Thus, users were easily able to select one of them by shifting their eye focus. However, in that work, EEG signals were collected through electrodes placed on occipital and parietal regions (hair-covered areas), which demanded a long preparation time. Also, that work used low-frequency stimuli, which can produce visual fatigue and increase the risk of photosensitive epileptic seizures. In order to improve the practicality and visual comfort, this work proposes a BCI based on Depth-of-Field using the high-frequency SSVEP response measured from below-the-hairline areas (behind-the-ears). Methods: Two high-frequency stimuli (31 Hz and 32 Hz) were used in a Depth-of-Field setup to study the SSVEP response from behind-the-ears (TP9 and TP10). Multivariate Spectral F-test (MSFT) method was used to verify the elicited response. Afterwards, a BCI was proposed to command a mobile robot in a virtual reality environment. The commands were recognized through Temporally Local Multivariate Synchronization Index (TMSI) method. Results: The data analysis reveal that the focused stimuli elicit distinguishable SSVEP response when measured from hairless areas, in spite of the fact that the non-focused stimulus is also present in the field of view. Also, our BCI shows a satisfactory result, reaching average accuracy of 91.6% and Information Transfer Rate (ITR) of 5.3 bits/min. Conclusion: These findings contribute to the development of more safe and practical BCI.Fil: Floriano, Alan. Universidade Federal do Espírito Santo; BrasilFil: Delisle Rodriguez, Denis. Universidade Federal do Espírito Santo; BrasilFil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Bastos Filho, Teodiano Freire. Universidade Federal do Espírito Santo; Brasi

    Enhancement and optimization of a multi-command-based brain-computer interface

    Get PDF
    Brain-computer interfaces (BCI) assist disabled person to control many appliances without any physically interaction (e.g., pressing a button). SSVEP is brain activities elicited by evoked signals that are observed by visual stimuli paradigm. In this dissertation were addressed the problems which are oblige more usability of BCI-system by optimizing and enhancing the performance using particular design. Main contribution of this work is improving brain reaction response depending on focal approaches

    Periodicity Estimation Using Representations in Nested Periodic Dictionaries with Applications in Neural Engineering

    Get PDF
    In this dissertation, we investigate periodicity estimation with nested periodic dictionaries (NPDs), a newly introduced family of matrices that can capture periodicity in the data. We address two main problems. First, we study the detection of periodic signals using their representations in NPDs. To this end, the detection problem is posed as a composite hypothesis testing problem, where the signals are assumed to admit sparse representations in a Ramanujan Periodicity Transform (RPT) dictionary as an instance of NPDs. For the binary case, we develop a generalized likelihood ratio detector and obtain exact distributions of the test statistics in terms of confluent hypergeometric functions, along with flexible approximate distributions. Subsequently, we extend our approach to multi-hypothesis and multi-channel settings, where we account for spatial correlations between the different channels. We study the application of the proposed method in the detection of periodic brain responses to external visual stimuli, known as steady-state visually evoked potentials (SSVEPs), which is fundamental to the development of Brain Computer Interfaces. Results based on experiments with synthesized and real-data demonstrate that the RPT detector outperforms conventional spectral-based methods. Second, we address the problem of period estimation. Periodic signals composed of periodic mixtures admit sparse representations in NPDs. Therefore, their underlying hidden periods can be estimated by recovering the exact support of said representations. In this dissertation, we investigate support recovery guarantees of such signals in noise-free and noisy settings. While sufficient recovery conditions of sparse signals have been studied in the literature on compressive sensing, these conditions are of limited use for NPDs, because their analysis does not capture their intrinsic structures. Therefore, we establish new conditions based on a newly introduced notion of nested periodic coherence. Our results show significant improvement over generic recovery bounds as the conditions hold over a larger range of sparsity levels

    Neurofeedback Therapy for Enhancing Visual Attention: State-of-the-Art and Challenges

    Get PDF
    We have witnessed a rapid development of brain-computer interfaces (BCIs) linking the brain to external devices. BCIs can be utilized to treat neurological conditions and even to augment brain functions. BCIs offer a promising treatment for mental disorders, including disorders of attention. Here we review the current state of the art and challenges of attention-based BCIs, with a focus on visual attention. Attention-based BCIs utilize electroencephalograms (EEGs) or other recording techniques to generate neurofeedback, which patients use to improve their attention, a complex cognitive function. Although progress has been made in the studies of neural mechanisms of attention, extraction of attention-related neural signals needed for BCI operations is a difficult problem. To attain good BCI performance, it is important to select the features of neural activity that represent attentional signals. BCI decoding of attention-related activity may be hindered by the presence of different neural signals. Therefore, BCI accuracy can be improved by signal processing algorithms that dissociate signals of interest from irrelevant activities. Notwithstanding recent progress, optimal processing of attentional neural signals remains a fundamental challenge for the development of efficient therapies for disorders of attention

    Development and Characterization of Ear-EEG for Real-Life Brain-Monitoring

    Get PDF
    Functional brain monitoring methods for neuroscience and medical diagnostics have until recently been limited to laboratory settings. However, there is a great potential for studying the human brain in the everyday life, with measurements performed in more realistic real-life settings. Electroencephalography (EEG) can be measured in real-life using wearable EEG equipment. Current wearable EEG devices are typically based on scalp electrodes, causing the devices to be visible and often uncomfortable to wear for long-term recordings. Ear-EEG is a method where EEG is recorded from electrodes placed in the ear. The Ear-EEG supports non-invasive long-term recordings of EEG in real-life in a discreet way. This Ph.D. project concerns the characterization and development of ear-EEG for real-life brain-monitoring. This was addressed through characterization of physiological artifacts in real-life settings, development and characterization of dry-contact electrodes for real-life ear-EEG acquisition, measurements of ear-EEG in real-life, and development of a method for mapping cortical sources to the ear. Characterization of physiological artifacts showed a similar artifact level for recordings from ear electrodes and temporal lobe scalp electrodes. Dry-contact electrodes and flexible earpieces were developed to increase the comfort and user-friendliness of the ear-EEG. In addition, electronic instrumentation was developed to allow implementation in a hearing-aid-sized ear-EEG device. Ear-EEG measurements performed in real-life settings with the dry-contact electrodes, were comparable to temporal lobe scalp EEG, when referenced to a Cz scalp electrode. However, the recordings showed that further development of the earpieces and electrodes are needed to obtain a satisfying recording quality, when the reference is located close to or in the ear. Mapping of the electric fields from well-defined cortical sources to the ear, showed good agreement with previous ear-EEG studies and has the potential to provide valuable information for future development of the ear-EEG method. The Ph.D. project showed that ear-EEG measurements can be performed in real-life, with dry-contact electrodes. The brain processes studied, were established with comparable clarity on recordings from temporal lobe scalp and ear electrodes. With further development of the earpieces, electrodes, and electronic instrumentation, it appears to be realistic to implement ear-EEG into unobtrusive and user-friendly devices for monitoring of human brain processes in real-life

    Visual cortex responses reflect temporal structure of continuous quasi-rhythmic sensory stimulation

    Get PDF
    Neural processing of dynamic continuous visual input, and cognitive influences thereon, are frequently studied in paradigms employing strictly rhythmic stimulation. However, the temporal structure of natural stimuli is hardly ever fully rhythmic but possesses certain spectral bandwidths (e.g. lip movements in speech, gestures). Examining periodic brain responses elicited by strictly rhythmic stimulation might thus represent ideal, yet isolated cases. Here, we tested how the visual system reflects quasi-rhythmic stimulation with frequencies continuously varying within ranges of classical theta (4–7Hz), alpha (8–13Hz) and beta bands (14–20Hz) using EEG. Our findings substantiate a systematic and sustained neural phase-locking to stimulation in all three frequency ranges. Further, we found that allocation of spatial attention enhances EEG-stimulus locking to theta- and alpha-band stimulation. Our results bridge recent findings regarding phase locking (“entrainment”) to quasi-rhythmic visual input and “frequency-tagging” experiments employing strictly rhythmic stimulation. We propose that sustained EEG-stimulus locking can be considered as a continuous neural signature of processing dynamic sensory input in early visual cortices. Accordingly, EEG-stimulus locking serves to trace the temporal evolution of rhythmic as well as quasi-rhythmic visual input and is subject to attentional bias

    Integrated Real-Time Control And Processing Systems For Multi-Channel Near-Infrared Spectroscopy Based Brain Computer Interfaces

    Get PDF
    This thesis outlines approaches to improve the signal processing and anal- ysis of Near-infrared spectroscopy (NIRS) based brain-computer interfaces (BCI). These approaches were developed in conjunction with the implemen- tation of a new customized exible multi-channel NIRS based BCI hardware system (Soraghan, 2010). Using a comparable functional imaging modality the assumptions on which NIRS-BCI have been reassessed, with regard to cognitive task selection, active area locations and lateralized motor cortex activation separability. This dissertation will also present methods that have been implemented to allow reduced hardware requirements in future NIRS-BCI development. We will also examine the sources of homeostatic physiological interference and present new approaches for analysis and at- tenuation within a real-time NIRS-BCI paradigm
    • …
    corecore