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A B S T R A C T

Neural processing of dynamic continuous visual input, and cognitive influences thereon, are frequently studied
in paradigms employing strictly rhythmic stimulation. However, the temporal structure of natural stimuli is
hardly ever fully rhythmic but possesses certain spectral bandwidths (e.g. lip movements in speech, gestures).
Examining periodic brain responses elicited by strictly rhythmic stimulation might thus represent ideal, yet
isolated cases. Here, we tested how the visual system reflects quasi-rhythmic stimulation with frequencies
continuously varying within ranges of classical theta (4–7 Hz), alpha (8–13 Hz) and beta bands (14–20 Hz)
using EEG. Our findings substantiate a systematic and sustained neural phase-locking to stimulation in all three
frequency ranges. Further, we found that allocation of spatial attention enhances EEG-stimulus locking to theta-
and alpha-band stimulation. Our results bridge recent findings regarding phase locking (“entrainment”) to
quasi-rhythmic visual input and “frequency-tagging” experiments employing strictly rhythmic stimulation. We
propose that sustained EEG-stimulus locking can be considered as a continuous neural signature of processing
dynamic sensory input in early visual cortices. Accordingly, EEG-stimulus locking serves to trace the temporal
evolution of rhythmic as well as quasi-rhythmic visual input and is subject to attentional bias.

1. Introduction

The Human visual system excels in organising the massive and
continuous inflow of sensory impressions into meaningful and beha-
viourally relevant entities. Its capability of exploiting the rich temporal
structure of dynamic visual input supports this effort extensively (Blake
and Lee, 2005; Buracas et al., 1998; Mazzoni et al., 2011). Temporal
structure aides in separating figure from ground (Alais et al., 1998;
Guttman et al., 2007), extrapolating the origin and destination of
moving objects (Nijhawan, 1994; Whitney, 2002) and increasing
sensitivity to upcoming sensory input (Correa and Nobre, 2008;
Lasley and Cohn, 1981). Despite these vital aspects of visual percep-
tion, little is known about how neural processing of continuous visual
stimulation unfolds in time.

Classically, neuroimaging studies have focussed on neural re-
sponses to visual transients owing to the fact that these allow for
better experimental control (Rust and Movshon, 2005). Current day
Human visual neuroscience nevertheless features two lines of research
on dynamic visual input processing: Entrainment studies focus on the
ability of the visual system to synchronize intrinsic rhythms of the
brain, such as theta (4–7 Hz) or alpha (8–13 Hz), to temporal
regularities embedded in continuous visual input (Adrian and

Matthews, 1934; Notbohm et al., 2016; Thut et al., 2011). Research
into auditory processing contributes that this brain-stimulus coupling
affords efficient coding due to the deterministic nature of the stimulus
(Henry and Herrmann, 2014; Schroeder and Lakatos, 2009). Further,
it enables precise predictions of future stimulus occurrences when
using visual presentation rates within theta (Cravo et al., 2013) or
alpha bands (Spaak et al., 2014).

Another line of research, using the frequency-tagging approach,
probes influences of changes in emotional (Bekhtereva and Muller,
2015; Keil et al., 2003; Keil et al., 2009a) or cognitive states, e.g.
attention (Keitel et al., 2013a; Kim et al., 2007; Stormer et al., 2014),
perceptual qualities (Jacoby et al., 2012; Parks et al., 2011; Porcu et al.,
2014) or stimulus properties, e.g. face orientation (Rossion et al.,
2012), on early visual processing by means of continuous stimulus-
driven brain activity, termed steady-state responses (SSRs; reviewed in
Norcia et al., 2015; Regan, 1966).

Both lines of research have in common that experiments typically
feature strictly rhythmic visual stimulation. However, this type of
stimulation may only represent an ideal case that is predominantly
met by artificially generated sensory input (Blake and Lee, 2005). In
contrast, natural sensory input likely exhibits quasi-periodic temporal
structure at best, meaning that its spectral composition can vary over
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time (Butts et al., 2007; Kayser et al., 2003; Mazzoni et al., 2011).
Prominent examples are the visual components of audio-visual

speech (Chandrasekaran et al., 2009). Dynamic speech-related stimuli
such as gestures (Biau and Soto-Faraco, 2015) and quasi-periodic lip
movements (Zion Golumbic et al., 2013) aid in comprehending speech
under challenging listening conditions. Frequency variations, inherent
to these stimuli, convey information and thus are functionally relevant
(Giraud and Poeppel, 2012). For example, human observers are able to
discriminate different languages (Soto-Faraco et al., 2007) or even
perform speech-reading (Summerfield, 1992) using only visual infor-
mation.

Despite the functional relevance of frequency variations, how the
Human visual system processes dynamic quasi-rhythmic input has so
far attracted little attention (but see Chang et al., 2015; Goncalves
et al., 2014; Schall et al., 2009). In the present study, we aimed to
systematically characterise neural activity that indicated processing of
visual stimuli exhibiting quasi-rhythmic contrast changes within
classical theta (4–7 Hz), alpha (8–13 Hz) or beta bands (14–20 Hz).
On each trial of the experiment we presented two frequency-varying
stimuli, one in each lower visual hemifield, for several seconds while
participants were randomly cued to attend to either the left or right
stimulus only to perform a visual detection task (see Fig. 1). An
additional condition, in which stimuli changed contrast rhythmically at
10 Hz (left) and 12 Hz (right stimulus) served to qualify putative
attentional biases of neural responses to quasi-rhythmic stimulation
against known gain modulations of SSRs.

In line with a recent study on cortical entrainment to visual
elements of speech (Park et al., 2016) we anticipated full-scalp
electroencephalographic (EEG) recordings to reflect theta-band stimu-
lation. Because periodic brain responses can be driven over a wide
range of frequencies up to 100 Hz using strictly rhythmic stimulation
(Herrmann, 2001), we assumed similar responses to stimulation above
the theta range. Also, experiments using speech-related visual stimula-
tion have so far only indirectly inferred effects of attention on
corresponding neural responses (Crosse et al., 2015; Park et al.,
2016). Our paradigm allowed for directly assessing influences of
visuo-spatial attention on brain responses to concurrent quasi-rhyth-
mic stimuli within frequency ranges relevant for visual speech percep-
tion and beyond.

In brief, we pursued the following specific objectives:

1. Replicate attentional modulations of two well-established SSR
measures (Kashiwase et al., 2012; Kim et al., 2007; Porcu et al.,

2013), spectral power and inter-trial phase consistency (ITC), in
data from our strictly-rhythmic stimulation conditions.

2. Quantify SSRs from strictly-rhythmic stimulation conditions by
evaluating neural phase-locking to stimulation (termed EEG-stimu-
lus locking) expressed as spectral cross-coherence (XCOH).
Compare attention effects on EEG-stimulus locking with effects
obtained from (1).

3. Quantify a similar measure (based on XCOH) of EEG-stimulus
locking to visual stimulation with varying frequencies (theta, alpha
and beta) and test for differences between frequency bands.

4. Examine gain effects on EEG-stimulus locking when participants

Fig. 1. Details of experimental stimulation (a) Trial time course. Central cue presentation (white arc=attend right; arc cue colour was green in original stimulation) precedes continuous
streams of contrast modulating patches. Upper right inset gives an example of target (and distracter) appearances. (b) Time series depict random band-limited frequency fluctuations
(FM functions, top graphs) in periodic contrast modulation functions (CMFs, bottom graphs) for left and right stimuli on a given trial. (c) Left stimulus traversing one CMF peak-to-peak
cycle.

Fig. 2. Analyses flow chart. *Power spectra were computed from averaged epochs.
ITC=inter-trial coherence. **Prior to Fourier transforms EEG time series were resampled
to 100 Hz to match the stimulus sampling rate. ǂ “Stimuli” refers to the two contrast
modulation functions (CMFs) per trial. Fourier transforms of CMFs used the same
parameters as the corresponding EEG data (1-s epochs windowed using single Hanning
tapers for rhythmic-stimulation conditions vs multi-tapers for quasi-rhythmic stimula-
tion). Numbered grey backdrops (1, 2 and 3/4) illustrate which flow corresponds to
which of the four analyses steps.
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attended vs ignored corresponding frequency-varying stimuli.
Compare gain effects between brain responses driven by rhythmic
and quasi-rhythmic stimulation.

Underlying data analyses are described in detail in Section 2.6 and
illustrated in Fig. 2.

2. Methods

2.1. Participants

Twenty-two volunteers with normal or corrected-to-normal vision
and no history of neurological diseases or injury participated in the
study. After pre-processing of EEG and behavioural data we excluded 4
participants due to excessive eye movements during recordings and
one participant due to chance level performance in the visual detection
task. Data of the remaining participants (N=17, 13 women; median
age=22 yrs, range=19–32 yrs) entered further analyses.

The ethics committee of the College of Science & Engineering at
the University of Glasgow approved of all procedures (application no.
300140020). Participants gave informed written consent prior to the
experiment.

2.2. Stimulation

Stimuli were presented on a 21-inch cathode ray tube screen, using
a refresh rate of 100 frames per second and a resolution of 1024×768
pixel (width×height). Experimental stimulation comprised two periph-
erally presented “blurry” checkerboard-like patches (horizontal/verti-
cal diameter=6°/4.4° of visual angle) as well as two small concentric
circles (maximum eccentricity=0.4°; luminance < 1 cd/m2) that served
as a central fixation point. Patches were positioned in lower left and
right visual quadrants at a centre-to-centre eccentricity of 4.4° relative
to fixation (Fig. 1a). All stimuli were presented against a grey back-
ground (luminance=6.5 cd/m2). Patches were generated by MATLAB’s
(The Mathworks, Natick, MA, USA) wavefun2 function yielding 2-
dimensional 10-th order Daubechies wavelets computed in 4 iterations.
We opted for this type of stimuli because their texture provided an
optimal basis for a contrast modulation as described below. In
addition, their characteristic “distortion” allowed positioning the
patches in such a way that their spatial frequency decreased as a
function of eccentricity from fixation, thus, approximating the gradient
of sparser visual resolution towards para-foveal regions.

Both patches underwent periodic contrast changes in the course of
each trial: Contrast, i.e. stimulus visibility, varied between a maximum
of 90% Michelson contrast (peak luminance=29.1 cd/m2) and a mini-
mum of 10% (peak luminance=7.5 cd/m2). As illustrated in Fig. 1b
Patch contrast changed incrementally on each frame of the presenta-
tion to approximate sinusoidal contrast modulations (Andersen and
Muller, 2015). Crucially, the mean rate of change differed between
experimental conditions: In a control condition that served to compare
results with earlier frequency-tagging studies (Keitel et al., 2013a; Kim
et al., 2007; Müller et al., 1998) contrast modulation occurred with a
constant frequency of 10 Hz for the left and 12 Hz for the right
stimulus (“constant flicker” condition). In the remaining conditions
we tested quasi-rhythmic stimulation limited to theta- (4–7 Hz), alpha-
(8–13 Hz) and beta-bands (14–20 Hz). To this end, both patches
changed contrast with frequencies that varied along pre-defined
random trajectories (=‘frequency modulation functions’ or ‘FMFs’).
Each trial featured two pre-defined FMFs (see Fig. 1b) that were up-
sampled to match the screen refresh rate from two separate random
processes sampled at 2 Hz. Random processes were generated for each
trial anew such that one set of FMFs only occurred once for each
participant.

In FMFs the maximum velocity of frequency changes was limited to
3.2 Hz/s (theta), 5.1 Hz/s (alpha) and 6.0 Hz/s (beta), i.e. roughly

corresponding to a full crossing of respective bandwidths per second.
The correlation between the two FMFs on any given trial was kept
within the range of ± 0.05 (Pearson correlation coefficient r) because,
in quasi-rhythmic conditions, frequencies of both patches varied within
the same frequency band. Thus constraining covariation of frequency
changes in patch contrast modulation effectively controlled for pro-
longed periods of patches flickering at similar frequencies or having
similar trajectories.

Finally, FMFs were applied to sinusoidal carriers yielding contrast
modulation functions (CMFs, Fig. 1b) sampled at the screen refresh
rate. This allowed for a presentation similar to the constant flicker
condition with smooth frame-wise changes in stimulus contrast
(Fig. 1c). As a consequence of the uniqueness of FMFs, CMFs were
generated separately for each trial and were never repeated.

2.3. Procedure and task

Participants were seated comfortably in an acoustically dampened
and electromagnetically shielded chamber and directed gaze towards
the fixation ring on the computer screen. At the beginning of each trial,
a green semi-circle (RGB: 0, 230, 0) appeared between fixation circles
for 0.5 s cueing participants to attend to the left or right stimulus
(Fig. 1a). Subsequently, the two flickering patches were presented for
3.5 s. After flicker offset, the fixation ring remained on screen for an
extra 0.7 s allowing participants to blink before the next trial started.

Participants were instructed to respond to occasional brief “flashes”
of the cued stimulus (=targets) while ignoring similar events in the
other stimulus (=distracters). For that purpose, local stimulus lumi-
nance was capped at ± 10% of background luminance and affected
areas were replaced with uniform grey tones (luminance= ± 30% of
background) for a 0.3 s interval (Fig. 1a inset). Targets and distracters
occurred in one third of all trials and up to 2 times in one trial with a
minimum interval of 0.8 s between subsequent onsets. Responses were
recorded as space-bar presses on a standard keyboard. Participants
started responding with either their left or right hand. Halfway through
the experiment they were then instructed to respond with the other
hand.

In our experiment we manipulated the two factors attended
position (left vs. right patch) and stimulation frequency (constant,
theta, alpha and beta) in a fully balanced design. Trials of the resulting
eight conditions were presented in a pseudo-randomized order. In total
we presented 576 trials (=72 trials per condition) divided into 8 blocks
(~6 min each). Prior to the experiment, participants performed a
training of at least one block. They received feedback regarding average
hit rate and reaction time after each training and each experimental
block.

2.4. Behavioural data recording and analyses

Responses were considered a ‘hit’ when a button press occurred
between 0.2 and 1 s after target onset. We further defined correct
rejections as omitted responses to distracter stimuli. Based on these
data, we calculated the response accuracy (ACC) as the ratio of correct
responses (number of hits and correct rejections) to the total number of
targets and distracters for each condition and participant according to:

ACC
N N

N N
=

+
+

Hits Correct Rejections

Targets Distracters (1)

Accuracies were subjected to a two-way repeated measures analysis
of variances (ANOVA) with factors of attended position (left vs. right)
and stimulation frequency (constant, theta, alpha, or beta). Reaction
times (RTs) were analysed accordingly. Note that RT analyses were
based on median RTs per participant and condition to account for the
typical left skew of RT distributions.

In all repeated measures ANOVAs conducted in this study, the
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Greenhouse–Geisser (GG) adjustment of degrees of freedom was
applied to control for violations of sphericity (Greenhouse and
Geisser, 1959). Original degrees of freedom, corrected p-values (pGG)
and the correction coefficient epsilon (εGG) are reported.

2.5. Electrophysiological data recording and preprocessing

EEG was recorded from 128 scalp electrodes that were mounted in
an elastic cap using a BioSemi ActiveTwo system (BioSemi,
Amsterdam, Netherlands) set to a sampling rate of 512 Hz. Lateral
eye movements were monitored with a bipolar outer canthus montage
(horizontal electro-oculogram). Vertical eye movements and blinks
were monitored with a bipolar montage positioned below and above
the right eye (vertical electro-oculogram). From continuous data, we
extracted epochs of 5 s starting 1 s before patch onset. In further pre-
processing, we excluded trials containing transient targets and dis-
tracters (24 per condition) as well as epochs with horizontal and
vertical eye movements exceeding 20 μV (~2° of visual angle) or
containing blinks.

We further applied the ‘fully automated statistical thresholding for
EEG artefact rejection’ (FASTER, Nolan et al., 2010). This procedure
corrected or discarded epochs with residual artefacts based on statis-
tical parameters of the data. Artefact correction employed a spherical-
spline-based channel interpolation. In addition to the earlier criteria,
epochs with more than 12 artefact-contaminated electrodes were also
excluded from analysis. For each participant FASTER interpolated up
to 5 globally contaminated electrodes (median=2) and an average of up
to 5.4 intermittently contaminated electrodes (median=3.4) per epoch.

In summary, from 48 available epochs per condition we discarded a
median of 11.5 (24%) per participant with a between-subject range of
5.3 to 20.6 epochs (11–43%). Note that high rates of trial rejections can
be expected in covert attention studies that include a thorough control
of eye movements (see e.g. Keitel et al., 2013a). We refrained from
artificially equating epoch numbers across conditions because within-
participant variation with a median range of ± 4 trials ( ± 11%) around
individual means remained small. Finally, data were re-referenced to
average reference. Basic data processing steps such as extraction of
epochs from continuous recordings, re-referencing and plotting of
scalp iso-contour voltage maps made use of EEGLAB (Delorme and
Makeig, 2004) in combination with custom routines written in
MATLAB.

2.6. Electrophysiological data analyses

2.6.1. Common analyses procedures
EEG data analyses were carried out in Fieldtrip (Oostenveld et al.,

2011). All analyses steps are illustrated in Fig. 2. From pre-processed
artefact-free epochs (5 s) we extracted segments of 3 s starting 0.5 s after
patch onset. Data prior to stimulation (1 s) were omitted because they
only served to identify eye movements shortly before and during cue
presentation. The initial 0.5 s of stimulation were excluded to attenuate
the influence of stimulus-onset evoked activity on EEG spectral decom-
position. We further disregarded the final 0.5 s of original epochs
because stimulation ceased after 3.5 s. In principle, this final period
would have afforded investigating offset responses or a post-offset
stimulus-induced reverberation (Spaak et al., 2014). However, partici-
pants frequently blinked their eyes shortly after stimulation offset as
instructed (see Section 2.3), thus, disallowing further EEG analyses.

Re-epoched 3-s data segments were converted to scalp current
densities, a reference-free measure, that typically yields topographies
with more circumscribed maxima (Ferree, 2006; Kayser and Tenke,
2015) as has been demonstrated also for continuous periodic brain
responses (Keitel et al., 2013b). Scalp current density computations
involved the Fieldtrip function ft_scalpcurrentdensity using the
‘spline’method (Perrin et al., 1987) while setting the lambda parameter
to 10−4.

Statistical significance of attention effects and stimulus-locking (see
box Hypothesis testing in Fig. 2) was assessed by means of cluster-
based permutation tests (Maris and Oostenveld, 2007) using N=1000
random permutations. Dependent upon specific contrasts data were
either clustered across < channel×frequency > doublets (EEG-stimulus
locking – XCOH) or single values per channel (power, ITC and XCOH
in case of SSR attention effects; XCOH in case of EEG-stimulus locking
attention effects) using an average neighbourhood of 7.3 channels.
Resulting probabilities were corrected for two-tailed testing.

For a second-level comparison of attention effects across measures
(power, ITC and XCOH) or conditions (constant vs. frequency-varying
stimulation) we computed attention modulation indices (AMIs) for
each measure. Prior to aggregation, measures were collapsed across
electrodes as derived from above described cluster analyses.
Specifically, attentional gain was quantified as:

AMI
X X
X X

=
−
+ijk

ijk
att

ijk
unatt

ijk
att

ijk
unatt

(2)

where X represents the numerical value of a given measure for each
stimulation condition i and participant j under conditions in which the
corresponding stimulus k was attended (superscript att) or unattended
(unatt). The resulting AMI has previously been used to evaluate gain
effects (Kastner et al., 2001; Keitel et al., 2013b). It effectively
normalizes inter-individual variance within and between measures
and thus serves to retain the net attention effect. AMIs were subjected
to repeated-measures analyses of variances (ANOVAs). Specific factor-
ial designs are reported below. Dependencies between measures were
further investigated by fitting robust linear models to the data using the
MATLAB built-in function fitlm (enabling RobustOpts, otherwise using
defaults). In all regression analyses reported here, outliers were
excluded by evaluating Cook’s distance measure (Cook, 1977). In case
of exclusions, we provide the number of outliers and report statistics
based on outlier-removed data. Outlier points are further indicated in
scatter plots illustrating regressions.

2.6.2. Step 1: rhythmic-stimulation driven SSRs – power and inter-
trial phase coherence (ITC)

First, we focused our analyses on those two experimental conditions
(attend left vs attend right) that featured stimulus contrast modula-
tions at constant rates of 10 Hz (left stimulus) and 12 Hz (right
stimulus). Following a typical approach of SSR analyses in spatial
attention paradigms, detrended (i.e. linear trend removed) data seg-
ments were averaged for each subject, both conditions and each EEG
channel separately. Fourier transforms of untapered averaged time
series yielded spectral power estimates, i.e. squared absolute values of
complex Fourier spectra (Gross, 2014), with a frequency resolution of
1/3 Hz. For 10 and 12-Hz components separately, cluster-based
permutation tests identified electrodes that showed systematic gain
effects when contrasting attended vs unattended conditions. SSR
amplitudes (square-root of power) at these electrode clusters served
to calculate AMIs (see Eq. (2)).

Additionally, we determined AMIs based on electrode clusters
showing substantial modulations of ITC by attention (Delorme and
Makeig, 2004). To this end, detrended 3-s EEG scalp current density
time series were subjected to Fourier transforms prior to averaging
across trials. The absolute value of the resulting complex quantity
expressed the inter-trial phase coherence at each frequency across
trials according to:

∑ITC f
N

C f
C f

( )= 1 ( )
( )n

N
n

n=1 (3)

where Cn(f) is the complex Fourier coefficient of trial n of N at
frequency f and |.| indicates the absolute value (Gross, 2014). Phase
locking as a measure of SSR modulation has been introduced to SSR
analyses more recently (Kim et al., 2007; Nozaradan et al., 2012). Both,
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SSR power and phase locking have demonstrated sensitivities to top-
down influences on sensory processing (Kashiwase et al., 2012; Porcu
et al., 2013). Similar to SSR amplitude or power, phase locking values
can be visualized as spectra that typically display narrow peaks at
stimulation frequencies (Nozaradan et al., 2012; Ruhnau et al., 2016).

2.6.3. Step 2: rhythmic-stimulation driven SSRs – EEG-stimulus
cross-coherence (XCOH)

In addition to the two established SSR measures described above
we quantified SSRs by taking into account the stimuli themselves: The
rhythmic variations in stimulus contrast were described precisely by a
sinusoidal function of frequency 10 or 12 Hz. We exploited this in
calculating spectral XCOHs between stimulus contrast-modulation and
corresponding EEG. Although this approach may seem overly compli-
cated in case of rhythmic-stimulation driven SSRs, it was mandatory
for studying stimulus-locked continuous brain responses to frequency-
varying stimulation in the other conditions of our experiment (see Step
3). Thus applying it to SSRs and comparing it to estimates of SSR
power and ITC provided a proof-of-principle for subsequent analyses.
Put differently, our approach required a demonstration that our
measure of SSR stimulus locking was as sensitive to top-down
attentional biases as were SSR power and ITC.

Because analyses of stimulus locking to rhythmic and quasi-
rhythmic visual stimulation were highly similar they are described in
detail below (see section EEG-stimulus locking to quasi-rhythmic
band-limited stimulation). Most importantly, this analyses yielded
spectral representations of phase XCOH between stimulus and EEG.
Systematic attentional modulation of XCOH was assessed similarly to
SSR power and ITC and aggregated into AMIs (see Eq. (2)).

All AMIs were subjected to a two-way repeated-measures ANOVA
with factors of SSR measure (power, ITC and XCOH) and stimulus
position (10 Hz, left vs 12 Hz, right). We further tested whether AMIs
based on the established SSR measures power and ITC predicted
attentional modulation in XCOH. Because attentional modulation was
comparable between left and right stimuli (see Results), we performed
regression analyses (i.e. linear model fits) on AMIs collapsed across
stimuli. Two separate regressions tested for linear dependencies of
XCOH gain effects on SSR power and on ITC attentional modulation.

2.6.4. Step 3: EEG-stimulus locking to quasi-rhythmic band-limited
stimulation

As the key element in determining whether the EEG phase-locked
to frequency-varying visual stimulation, we calculated the spectral
cross-coherence (XCOH) between EEG time series and corresponding
contrast modulation functions (CMFs, Fig. 1b). To this end, artefact-
free epoched EEG time series of all conditions were down-sampled
(using the Fieldtrip function ft_resampledata) to the sampling rate of
CMFs (100 Hz, i.e. the screen refresh rate). A built-in low-pass filter,
applied before down-sampling, served to avoid aliasing artefacts.
Resampled epochs were truncated to 3-s segments starting 0.5 s after
stimulus onset. This step removed edge effects introduced by the low-
pass filter ('filter ringing'; Widmann et al., 2015) and excluded strong
transient brain responses evoked by stimulus onset. Down-sampled
EEG scalp voltage time series were converted to scalp current densities.

Subsequently, data segments as well as corresponding CMFs of
each trial were re-epoched into five successive 1-s segments with an
overlap of 0.5 s and then subjected to Fourier transforms using the
multi-taper method as implemented in Fieldtrip (Percival and Walden,
1993) with a spectral smoothing constant of ± 2 Hz. As an exception,
in XCOH analyses of constant-stimulation conditions single Hanning
tapers were applied to the data. 1-s data segments (=100 sampling
points) were zero-padded to a length of 2 s prior to Fourier transforms
to allow for a frequency resolution of 0.5 Hz. Using thus obtained
complex Fourier spectra we calculated the XCOH of each EEG sensor
with each of the two CMFs separately (by means of Fieldtrip’s
ft_connectivityanalysis, method ‘coh’). We pooled data across both

attention conditions (Attend Left vs Attend Right) to substantiate a
general EEG-stimulus locking. Following above described steps thus
yielded XCOH spectra for both stimuli and for each of the three
frequency-varying stimulation conditions.

Additionally, we calculated a surrogate XCOH using time-reversed
contrast modulations (Gross et al., 2013; Park et al., 2016) to assess
whether resulting peaks in XCOH were a by-product of stimulating
within respective frequency bands or indeed reflected the stimulus
contrast modulations on each trial precisely. XCOH spectra based on
original vs reversed contrast modulations were then compared by
means of cluster-based permutation tests.

As documented in the Results section below, we found substantial
EEG-stimulus locking to both stimuli regardless of their frequency
band, which afforded further comparisons of peak XCOH between
conditions. For that purpose we averaged XCOH (calculated based on
original contrast modulations) across frequencies and electrodes
separately for each condition and for left and right stimuli. To control
for differences in cluster sizes (number of electrodes) and frequency
bandwidth between conditions we considered 11 recording sites
showing maximum coherence in each condition (=minimum cluster
size, beta band stimulation) and ± 3 spectral components, i.e. ±
1.5 Hz, around respective centre frequencies (=minimum bandwidth,
theta band stimulation). A repeated-measures ANOVA with factors of
stimulus frequency (3 factor levels: theta, alpha, beta) and stimulus
position (2 factor levels: left vs right) subsequently evaluated differ-
ences in EEG-stimulus locking.

2.6.5. Step 4: modulation of EEG-stimulus locking by attention
We repeated above described processing steps while keeping data of

conditions attend left and attend right separate to evaluate whether the
allocation of spatial attention towards a stimulus modulated corre-
sponding EEG-stimulus locking. For each stimulus we thus obtained
one XCOH spectrum under the condition that the stimulus was
attended and a second one under the condition that the stimulus was
unattended. Again, both spectra were also derived using time-reversed
stimulus functions. These surrogate spectra were subtracted from the
original XCOH spectra to retain only the amount of XCOH (=corrected
XCOH) that could be attributed to precise EEG-stimulus locking.

Group level systematic gain was assessed by means of cluster-based
permutation testing corrected XCOH at the centre frequencies of
respective stimulated frequency bands. Note that only channels
exhibiting significant EEG-stimulus locking (see step 3) were regarded
in this analysis (i.e. were considered in setting up the channel
neighbourhood structure for the cluster-based testing procedure).
Because only few channels showed substantial locking to beta-band
stimulation this condition was excluded from analyses of gain effects.

To increase statistical sensitivity towards the expected positive gain
effects we employed one-tailed testing. Substantial gain effects during
theta and alpha-band stimulation (see Results) were compared by
means of a two-way repeated-measures ANOVA with factors of
stimulus frequency (theta vs alpha) and stimulus position (left vs
right). Finally, two separate linear-model fits explored dependencies of
XCOH attentional modulation during theta- and alpha-band stimula-
tion with XCOH gain effects during strictly rhythmic stimulation (see
step 2).

3. Results

3.1. Behavioural data

Participants responded with similar accuracy to transient “flashes”
while attending to left vs. right patches (main effect stimulus position:
F(1,16) < 1). Accuracy however depended on the rate of stimulus
contrast modulation (main effect stimulus frequency: F(3,48=12.05,
pGG < 0.001, εGG=0.54, ƞ

2=0.19) and was lowest when Gabor patches
where flickering in the beta range (Fig. 3a). The interaction of both
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factors was insignificant (F(3,48)=1.13, p=0.35).
Response speed analyses also revealed an influence of stimulus

frequency (F(3,54)=13.18, pGG < 0.001, εGG=0.66, ƞ
2=0.06). Relatively

slow responses during theta band stimulation likely caused this effect
(Fig. 3b). The stimulus position (F(1,16)=1.13, p=0.31) and an
interaction of both factors had negligible effects on reaction times
(F(3,48) < 1).

Participants produced on average 0.24 false alarms (SEM± 0.15)
per condition with an individual maximum of 3 false alarms in one
condition. False alarms were not further analysed due to their overall
low occurrence.

Taken together, these data indicate that participants were well able
to maintain attentional focus on the cued stimulus.

3.2. Electrophysiological data

3.2.1. Different SSR measures reveal comparable attentional gain
Condition-resolved spectra showed greater SSR power, greater ITC

and greater EEG-stimulus locking (XCOH) at Fourier components
corresponding to the stimulation frequencies (10 and 12 Hz) when
either stimulus was attended (Fig. 4a, c and e). Cluster-based permuta-
tion tests based on scalp topographies (Fig. 4b, d and f) confirmed
these effects statistically (all P < .05) for both stimuli and all three SSR
measures (power, ITC vs XCOH). In case of the 10 Hz stimulus XCOH,
the attention effect was only marginally significant (P < .1).

To quantify attention effects, we computed attention modulation
indices (AMIs) according to formula (2) based on SSR power, ITC and
XCOH, collapsed across respective significant electrode clusters each
(Fig. 5a). Specific contrasts against zero showed that AMIs indicated
substantial gain in all six cases (all P < .05, Bonferroni-corrected for
multiple comparisons).

A repeated-measures ANOVA established that AMIs were compar-
able across the three SSR measures (F(2,32) < 1) and for left and right
stimulus positions (F(1,16) < 1) although average AMIs suggested a
slight advantage for the SSRs driven by the right stimulus (Fig. 5a). The
interaction stimulus positions×measures remained negligible (F(2,32)
< 1). Fitting robust linear models (see Fig. 5b and c) further demon-
strated that individual gain effects in SSR stimulus locking (XCOH)
were predicted by SSR amplitude gain (one outlier removed; F(1,14)
=67.00, P < 0.001, adjusted R2=0.82), as well as ITC gain (one outlier
removed; F(1,14)=22.20, P < 0.001, adjusted R2=0.59).

3.2.2. Quasi-rhythmic contrast modulation gives rise to EEG-
stimulus locking

The present study mainly aimed at investigating how the visual
system responded to quasi-rhythmic stimulation. We found that these
brain responses were characterised by an EEG stimulus-locking
restricted to frequency bands featured in the stimulation. More
specifically, XCOH spectra quantifying EEG-stimulus locking in
Fig. 6a-f showed clear peaks during theta (4–7 Hz), alpha (8–13 Hz)
and beta band stimulation (14–20 Hz). When tested against surrogate
data based on EEG-stimulus locking with time-reversed stimuli,
frequency ranges exhibiting substantial EEG-stimulus locking (all <
EEG channel×frequency > clusters: P < .05) remarkably resembled
spectral profiles of corresponding stimuli (Fig. 6a-f, compare XCOH
spectra with corresponding stimulus power spectra beneath).

While these results highlighted the ability of the visual system to
follow stimulus-specific frequency changes in time, topographical
distributions (scalp maps) of XCOH in Fig. 6 suggested that responses
to both stimuli could further be separated in space: Peak cross
coherence was lateralized to the hemisphere contralateral to the
location of the corresponding stimulus for each frequency band.

A comparison of peak XCOH between stimulation conditions
(theta: 0.146 ± 0.015, alpha: 0.085 ± 0.008, beta: 0.072 ± 0.004; all
Mean ± SEM, collapsed across left and right stimuli) confirmed the
monotonous drop in EEG-stimulus locking from low to high frequency
bands (main effect stimulus frequency: F(2,32)=31.03, pGG < 0.001,
εGG=0.67, η

2=0.29; also see Fig. 6a-f). XCOH remained comparable
between left and right stimuli (main effect stimulus position: F(1,16) <
1). An interaction of both factors was not significant (F(2,32) < 1).

Interestingly, when only considering EEG spectral power during
stimulation (Fig. 7) there was no indication of stimulus-related
frequency-specific neural activity. In fact, power spectra – obtained
from the same spectral decomposition steps as XCOH spectra – were
virtually identical irrespective of the stimulated frequency band.
Consistently, they showed the typical 1/f characteristic and a promi-
nent alpha peak.

3.2.3. Attention modulates EEG-stimulus locking in theta- and alpha-
bands

Scalp maps in Fig. 8 depict electrode clusters (as determined by
cluster-based permutation tests) that showed systematic gain effects
(all P < .05, one-sided) in theta- and alpha-band stimulation condi-
tions. Gain effects were further readily observable within stimulated

Fig. 3. Results of behavioural performance analyses, collapsed across left and right visual stimuli. (a) Accuracy as expressed in proportion correct in %. (b) Response speed (median RT)
in msec. Error bars in (a) and (b) indicate standard errors of the mean (SEM). Values on bars display Mean ± SEM. SSR=stimulation with constant frequencies (10|12 Hz), θ=theta band
(4–7 Hz), α=alpha band (8–13 Hz), and β=beta band stimulation (14–20 Hz).
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frequency bands in XCOH spectra (Fig. 8a-d). A comparison (repeated
measures ANOVA) of gain effects pooled across electrodes of respective
clusters (Fig. 9a) showed that attentional modulation neither varied
with the stimulus frequency band (F(1,16) < 1) nor with the stimulus
position (F(1,16) < 1). No systematic interaction between factors was
observed (F(1,16) < 1).

Comparable gain effects for left and right stimuli afforded collap-
sing across the factor stimulus position in further regression analyses.
Here, individual gain effects on SSR stimulus locking (depicted in
Fig. 4e and f) were found to predict gain effects on theta-band (one
outlier excluded, F(1,14)=14.00, P < 0.005, adjusted R2=0.47) but not
on alpha-band EEG-stimulus locking (one outlier excluded, F(1,14)
=2.64, P=0.14, adjusted R2=0.09) although the latter followed a
similar trend (Fig. 9b-c).

4. Discussion

We studied how mass neural activity reflects quasi-rhythmic
sensory input. Our data demonstrate that the visual system faithfully
follows dynamics of stimuli changing contrast on functionally relevant
and ecologically plausible time scales. Corresponding neural activity
was characterized by a sustained phase-locking between EEG and
stimulation whereby higher frequencies led to lower coupling between
EEG and stimulus. For theta- and alpha-band stimulation EEG-
stimulus locking increased when participants attended to the location
of corresponding stimuli. For theta-band stimulation attentional
modulation closely resembled individual gain effects on steady-state
responses (SSRs) driven by strictly rhythmic stimulation.

Fig. 4. SSRs driven by rhythmic stimulation – spectra and attention effects. (a) Grand average EEG scalp current density power spectra based on Fourier transforms of averaged epochs
(thus ‘evoked’) for Attend Left (Blue line) and Attend Right conditions (Red line). Peaks at 10 and 12 Hz correspond to the stimulation frequencies. Shaded areas depict standard error of
the mean (SEM). Inset scalp maps illustrate topographical distributions of power and highlight the lateralization of respective maxima. (b) Scalp maps depicting power differences
(Attended minus Unattended). Black dots indicate electrode clusters that showed systematic modulations as confirmed by cluster-based permutation statistics. The corresponding P-
Value is given below each map. (c,d) Same as in (a) and (b) but for SSR inter-trial coherence (ITC). (e) Same as in (a) but for cross-coherence (XCOH; i.e. EEG-stimulus locking). Note
that this analysis yields two sets of spectra – one set of two (Attend Left and Attend Right) for the XCOH with each stimulus. For illustrative purposes the plot is split halfway such that
the left part, up to 11 Hz, shows spectral XCOH with the left stimulus (10 Hz) and the right part, from 11 Hz on, shows XCOH with the right stimulus (12 Hz). (f) Same as in (b) but for
XCOH.
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4.1. Tracing the temporal structure of visual input

The dynamics of our visual environment endow continuous sensory
input with rich temporal structure (Blake and Lee, 2005) – a feature
upon which Human visual perception heavily relies when segmenting
scenes into objects or when extrapolating stimulus trajectories. Here,
we demonstrate that neural activity continuously reflects stimulus
temporal structure.

Strikingly, related findings have been reported from animal single-
cell recordings: For instance, Buracas et al. (1998) demonstrated that
spike rates of extra-striate visual neurons in alert primates encoded the
fine temporal structure of drifting Gabor patches that changed move-
ment direction stochastically between preferred and anti-preferred
directions. The authors further found that these time-varying stimuli
were easier discriminable than Gabor patches constantly drifting in one
direction when their stochastic temporal structure was defined on an
ecologically relevant time scale (30–300 ms). This scale corresponds
well with constants in saccade behaviour (Buschman and Miller, 2009;
Otero-Millan et al., 2008) and approximately marks the minimum
(250 ms at 4 Hz) and maximum periods (50 ms at 20 Hz) of the here
employed stimulation. Such a stimulus-locked modulation of neuronal
spike rate has since been described in different species and using a
variety of stimuli (Bair and Koch, 1996; Berry et al., 1997; Butts et al.,
2007; de Ruyter van Steveninck et al., 1997).

More recently, the relative phase of low-frequency oscillating (i.e.
< 20 Hz) local field potentials (LFPs) in the animal brain has been
shown to influence spike rates and thus contributes additional in-
formation about dynamic visual scenes (Mazzoni et al., 2011;
Montemurro et al., 2008). Montemurro et al. (2008) further reported
a monotonous relationship in LFP oscillations below 20 Hz: the lower
their frequency the higher the amount of information they code for.
Their finding provides a possible explanation for the preponderance of
the visual system to trace low-frequency visual input as reflected in our
finding of decreasing EEG-stimulus-locking with increasing stimula-
tion frequency range. As laid out in detail below, these results interface
with the idea that LFPs can phase-lock, or entrain, to dynamic
continuous sensory stimulation.

4.2. EEG-stimulus locking and entrainment of intrinsic oscillations

Low-frequency ( < 20 Hz) brain oscillations have been ascribed a
vital role in parsing sensory input (Ghitza, 2012; Schroeder and
Lakatos, 2009; VanRullen et al., 2014). The notion of entrainment
assumes that these ongoing oscillations can re-align their phases to

temporal regularities in sensory input as to facilitate this sampling
process (Lakatos et al., 2008). Although the majority of studies on
visual entrainment feature strictly rhythmic stimulation, Calderone
et al. (2014) recently pointed out that some have also looked into quasi-
rhythmic scenarios thus extending the notion of entrainment to more
naturalistic stimuli. For example, Besle et al. (2011) demonstrated
cortical entrainment to an approximate delta-rhythmic stimulation
(mean frequency 1.5 Hz) in Human electrocorticographic (ECog)
recordings. However, comparing strictly-rhythmic and quasi-rhythmic
stimulation in the same frequency range, Cravo et al. (2013) reported
stronger entrainment to the former.

Another line of recent research employed strictly rhythmic visual
stimulation in the ~10 Hz range while considering resulting periodic
modulations in neural activity as entrainment of intrinsic generators of
the parieto-occipital alpha rhythm (de Graaf et al., 2013; Mathewson
et al., 2012; Notbohm et al., 2016; Spaak et al., 2014). Some of these
studies used quasi-rhythmic (Mathewson et al., 2012) or irregular1

visual stimulus sequences (Notbohm et al., 2016; Spaak et al., 2014) as
control conditions because intrinsic oscillators should resonate less (or
not at all) with frequency-varying sensory input. Analyses of neural
responses in respective conditions, if carried out, were indeed unable to
substantiate entrainment (Mathewson et al., 2012; Notbohm et al.,
2016). Specifically, Mathewson et al. (2012) found that EEG phase
locking in the stimulated frequency range during quasi-rhythmic
(“variable”) conditions was indistinguishable from another condition
with no intermittent stimulation. Taken together, studies into entrain-
ment to frequency-varying sensory input have so far reported equivocal
findings and support only relatively weak entrainment to low-fre-
quency (delta-band) quasi-rhythmic stimulation.

Conflicting findings likely relate to a methodological issue:
Variable-frequency brain responses are more difficult to analyse by
means of standard spectral decomposition because their frequency-
domain representations distribute across the spectrum. This yields
signal-to-noise ratios inferior to constant frequency responses such as
SSRs that concentrate their spectral power in a single frequency
component (Norcia et al., 2015). Variations in frequency violate the
stationarity assumption of widely applied Fourier-transform based
approaches. Put differently, when applying a Fourier transform to a
signal one assumes that the oscillations composing the signal are

Fig. 5. Attentional modulation of brain responses (SSRs) driven by rhythmic visual stimulation. (a) Attentional modulation indices (AMIs) for left (light grey) and right (dark grey)
stimuli based on SSR power, inter-trial phase coherence (ITC) and EEG – stimulus locking (XCOH). (b) SSR power gain effects (x-axis) predict individual attentional modulation of
XCOH. Black dots represent participants. Straight grey line=robust linear fit. Dashed lines=95%-confidence intervals (CIs). Adjusted R2 values (upper left corner) display goodness-of
-fit. (c) Same as in b but using ITC-based AMIs as predictor (x-axis). Asterisks in b and c indicate outliers, identified by means of Cook’s distance, not included in the regression.

1 Note that due to the construction of irregular stimuli in respective studies, these are
spectrally non-uniform with broader peaks around similar frequencies as in regular
conditions (see e.g. Notbohm et al., 2016, Fig. 1). Thus, they retain some periodicity and
can also be considered quasi-rhythmic in the present sense.
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constant in frequency over time (Cohen, 2014; Gross, 2014) – a
requirement that is hardly ever met by noisy EEG time series of several
seconds duration let alone the natural sensory input that shapes them.

Studies into cortical processing of audio-visual speech, a prime
example for quasi-rhythmic stimulation (Chandrasekaran et al., 2009),
have circumvented this limitation to some extent by taking into account

Fig. 6. EEG-stimulus locking and EEG power spectra during stimulation. (a) Main plot: Grand average cross coherence (XCOH) spectra calculated based on original forward (coloured
line) and reversed stimulus functions (black line) of the left stimulus flickering with theta-band frequencies. Shaded areas indicate standard errors of the mean. Inset scalp map:
Topographical distribution of the difference between Forward and Reverse XCOH. Black dots depict the cluster of electrodes that exhibited systematic stimulus locking at the centre
frequency of the stimulation bandwidth (5.5 Hz for theta band stimulation). Side plot (below main plot): The coloured line shows the average spectral distribution of stimulus power on
an arbitrary scale. Grey bars illustrate significant cluster sizes at each frequency (dashed line indicates max size). (b,c,d,e,f) Same as in (a) but for different frequency bands (left column)
and for stimuli presented to the right (right column).
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the time-varying nature of the stimulus signal (Crosse et al., 2015;
Gross et al., 2013; Zion Golumbic et al., 2013). For example, Gross
et al. (2013) directly computed the spectral dependencies between
time- and frequency varying stimuli and brain signals (also see Peelle
et al., 2013). Applying a related approach, the present results support
the observation that the visual system traces quasi-rhythmic stimula-
tion in the speech-relevant theta frequency range (4–7 Hz, Park et al.,
2016). Our finding of most pronounced EEG locking to stimulation
fluctuating within the theta-band may highlight a special role for
narrow-band low frequency periodic brain responses. Nevertheless,
substantial EEG stimulus-locking to higher and broader frequency

ranges (here: alpha and beta) suggests a more general tracing process
that codes the temporal structure of continuous input in visual cortex.
Beyond facilitating visual processing of speech, tracing the dynamics of
visual stimuli on different time scales may subserve multisensory
integration with temporally synchronized sensory input to other senses
(Parise and Ernst, 2016; Talsma et al., 2010; van Atteveldt et al., 2014)
as has been demonstrated with quasi-rhythmic visual input (Schall
et al., 2009; Van der Burg et al., 2008).

It remains to be seen, however, whether such a tracing process can
be fully accounted for by assuming entrainment of ongoing brain
oscillation (Besle et al., 2011; Mathewson et al., 2012; Spaak et al.,

Fig. 7. EEG power spectra during stimulation. Leftmost panel: Overlay of EEG power (logarithmic scale) during theta- (yellow), alpha- (blue) and beta band (purple) visual stimulation.
Spectra were pooled across electrodes indicated on the inset scalp map. Other panels: Individual spectra from (a) superposed with the spectral composition of visual stimuli (grey line) in
respective conditions. Note that stimulus power is arbitrarily scaled – peak stimulus power was set to peak alpha power for illustrative purposes.

Fig. 8. EEG-stimulus locking: modulation by attention. (a-d) Grand-average spectra show greater cross-coherence (XCOH) when left and right stimuli were attended (coloured line) vs
unattended (grey line). Shaded areas represent standard errors of the mean. Inset scalp maps depict the topographical distribution of the difference between Attended and Unattended
XCOH. Black dots in scalp maps indicate clusters of electrodes that exhibited systematic gain effects at the centre frequencies of respective stimulation bandwidths (as illustrated in a).
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2014). Alternatively, contributions from stimulus-evoked activity may
have to be considered (Capilla et al., 2011; Keitel et al., 2014; Thut
et al., 2011). In our data this issue is most evident in a strong alpha
band response that dominates the EEG power spectrum in all condi-
tions. This signature of intrinsic rhythmic activity (Keitel and Gross,
2016) seems to remain unaffected in power and peak frequency
regardless of stimulated frequency ranges (Fig. 7) and will be investi-
gated in a separate dedicated analysis of the present data.

4.3. Multiple frequency-varying stimuli allow tracking attentional
allocation

Speech entrainment studies established that attending to a specific
source in a multi-speaker scenario enhances tracking precision of the
speech signal, i.e. preferential entrainment to the attended input
(Rimmele et al., 2015; Zion Golumbic et al., 2013; Zoefel and
VanRullen, 2015) relative to irrelevant concurrent input. The present
data explicitly demonstrate that this effect generalizes to situations in
which observers attend to one of two concurrent but spatially separated
visual inputs with individual temporal structure within theta or alpha
frequency ranges. Thus, the structure of continuous visual input at an
attended position may be traced more precisely by enhancing neural
phase-locking to stimulation at that position (Chennu et al., 2009).

Our measure of EEG-stimulus locking allowed separating neural
responses to simultaneously presented stimuli similar to steady-state
responses (SSRs) to strictly rhythmic stimulation. Employing fre-
quency-varying stimulation can thus be regarded as an extension of
the frequency-tagging approach (Norcia et al., 2015) that alleviates the
necessity of tagging multiple stimuli with distinct but steady frequen-
cies. Instead, multiple stimuli can be tagged with frequencies that vary
within a common band rendering them perceptually similar. Further
paralleling SSRs, theta- and alpha-band EEG-stimulus locking in-
creased with allocation of spatial attention to the position of the
driving stimulus, an effect that allows tracking the attentional focus.
Still, low beta-band EEG-stimulus locking points at practical limita-
tions of the frequency-varying approach. Also, when comparing scalp
maps of attention effects between SSR-stimulus locking (Fig. 4f) and
EEG-stimulus locking to theta- and alpha band stimulation (Fig. 8a-d),
the latter seems to be more far-spread, which could be due to
frequency-varying stimulation involving additional or different cortical
generators (Keil et al., 2009b; Muller et al., 1997). Additional studies
will need to determine critical parameters (frequency band, bandwidth)
for attentional modulation.

Lastly, note that attention effects on SSRs during strictly-rhythmic
(i.e. constant flicker) conditions consistently but counter-intuitively
located contra-laterally to the respective power, ITC and XCOH
maxima (compare topographies between left and right columns of
Fig. 4). Frequency-tagging experiments investigating effects of spatial
attention on lateralized stimuli have reported similar topographical
effects (Keitel et al., 2013a). Expecting an attention effect contra-
laterally to the attended side in topographical contrasts entails the
implicit assumption that attention effects exclusively manifest as
stationary response gains. Alternatively, however, attention to a
stimulus may lead to the recruitment of additional neuronal ensembles
generating SSRs – for example accessing extended networks in up-
stream visual areas (Lithari et al., 2016; Zhang et al., 2015). Instead of
increasing a local maximum this would result in more far-spread
topographies of responses driven by attended stimuli. Consequentially,
seemingly ipsilateral attention effects could be produced by contrasting
far-spread (attended) with more circumscribed (unattended) maxima
in topographies. SSR sensor space analysis typically circumvents this
issue by analysing data collapsed across electrode clusters. Recent
advances in deriving spatial filters for SSR analyses may provide more
insight and a possible remedy (Cohen and Gulbinaite, 2016).

4.4. Fluctuating rhythms: in-between strictly periodic and aperiodic

In this study we mainly focussed on some characteristics of brain
responses to quasi-rhythmic stimulation and comparing these with
SSRs to strict rhythms. When considering rhythmicity as a continuous
physical property of sensory input signals, however, our quasi-rhyth-
mic case can still be considered close-to-rhythmic in comparison to
another long-standing line of research employing arrhythmic, spec-
trally broadband stimulation that mainly aims to characterise response
properties (e.g. impulse response) of the visual system (Sutter, 2001).
In one such study, for example, VanRullen and Macdonald (2012)
measured responses to broadband (1–80 Hz) luminance fluctuations
and reported evidence for an alpha-reverbatory process that indicated a
prolonged (~1 s) re-iteration of perceptual episodes after exposure – a
finding impossible to obtain using (quasi-) rhythmic stimulation. Other
studies employed so-called m-sequences (Bin et al., 2011; Sutter, 1992)
or a particular derivative, Gold-codes (Thielen et al., 2015), primarily
as a means to increase performances of brain-computer interfaces.
Brain responses to these pseudo-random binary sequences (e.g. con-
trast reversals) can be quantified by cross-correlating stimulus- and
EEG/MEG-recorded brain signals, an approach that is related to the

Fig. 9. Gain modulation of EEG-stimulus locking – comparisons: (a) Gain effects, expressed as differences in XCOH (attended minus unattended) for theta- (orange) and alpha-band
(blue) EEG-stimulus locking driven by left and right stimuli. (b) Modulation of SSR stimulus locking (x-axis) predicts individual modulation of theta-band stimulus locking (y-axis).
Black dots represent individual participants. Straight line=robust linear fit. Dashed lines=95%-confidence intervals (CIs). Adjusted R2 values (upper left corner) display goodness-of -fit.
(c) Same as in b but regressing gain modulation of alpha-band stimulus locking (y-axis). Asterisks in b and c indicate outliers, identified by means of Cook’s distance, not included in the
regression.
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here employed spectral cross-coherence. Thus obtained measures of
brain-stimulus correspondence have been shown to indicate atten-
tional allocation in multi-element displays (Slotnick et al., 2002)
similar to SSRs and the present measure of EEG-stimulus locking.

In sum, brain responses to arrhythmic stimulation have been
studied extensively and it stands to question whether extrapolating
respective findings may trivialize the present results. However, ar-
rhythmic stimulation has in many ways been optimised to characterise
the basic physical properties of the visual system as an “input filter”.
Our quasi-rhythmic stimuli instead comprise perceptual experiences
that are physically plausible in terms of their spectro-temporal
composition – as is evident when comparing them to of speech
(Chandrasekaran et al., 2009). Moreover, it is possible that although
stimulus rhythmicity can be conceived of as a quantitative continuum
(from strictly rhythmic to arrhythmic, or, from a spectral perspective,
single frequency to broadband), plausible quasi-rhythmic stimuli that
approach ecological validity are also perceived as qualitatively different
from arrhythmic stimulation and therefore warrant dedicated studies.

4.5. Conclusion

We found that EEG-recorded brain responses continuously reflect
quasi-rhythmic dynamics in visual stimulation across different time
scales. Moreover, multiple simultaneously presented stimuli that
displayed independent dynamics were traced individually – arguably
a favourable skill when navigating and behaving adaptively in an ever-
changing visual environment. Supporting this notion, our measure of
brain-stimulus coupling increased (for theta- and alpha-band stimula-
tion) when corresponding stimuli were behaviourally relevant. These
gain effects possibly signify that the visual system traces attended
dynamic stimulation with enhanced temporal precision.
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