1,421 research outputs found

    Comparison of different repetitive control architectures: synthesis and comparison. Application to VSI Converters

    Get PDF
    Repetitive control is one of the most used control approaches to deal with periodic references/disturbances. It owes its properties to the inclusion of an internal model in the controller that corresponds to a periodic signal generator. However, there exist many different ways to include this internal model. This work presents a description of the different schemes by means of which repetitive control can be implemented. A complete analytic analysis and comparison is performed together with controller synthesis guidance. The voltage source inverter controller experimental results are included to illustrative conceptual developmentsPeer ReviewedPostprint (published version

    Robust stability conditions for remote SISO DMC controller in networked control systems

    Get PDF
    A two level hierarchy is employed in the design of Networked Control Systems (NCSs) with bounded random transmission delay. At the lower level a local controller is designed to stabilize the plant. At the higher level a remote controller with the Dynamic Matrix Control (DMC) algorithm is implemented to regulate the desirable set-point for the local controller. The conventional DMC algorithm is not applicable due to the unknown transmission delay in NCSs. To meet the requirements of a networked environment, a new remote DMC controller is proposed in this study. Two methods, maximum delayed output feedback and multi-rate sampling, are used to cope with the delayed feedback sensory data. Under the assumption that the closed-loop local system is described by one FIR model of an FIR model family, the robust stability problem of the remote DMC controller is investigated. Applying Jury's dominant coefficient lemma and some stability results of switching discrete-time systems with multiple delays; several stability criteria are obtained in the form of simple inequalities. Finally, some numerical simulations are given to demonstrate the theoretical results

    On Control and Estimation of Large and Uncertain Systems

    Get PDF
    This thesis contains an introduction and six papers about the control and estimation of large and uncertain systems. The first paper poses and solves a deterministic version of the multiple-model estimation problem for finite sets of linear systems. The estimate is an interpolation of Kalman filter estimates. It achieves a provided energy gain bound from disturbances to the point-wise estimation error, given that the gain bound is feasible. The second paper shows how to compute upper and lower bounds for the smallest feasible gain bound. The bounds are computed via Riccati recursions. The third paper proves that it is sufficient to consider observer-based feedback in output-feedback control of linear systems with uncertain parameters, where the uncertain parameters belong to a finite set. The paper also contains an example of a discrete-time integrator with unknown gain. The fourth paper argues that the current methods for analyzing the robustness of large systems with structured uncertainty do not distinguish between sparse and dense perturbations and proposes a new robustness measure that captures sparsity. The paper also thoroughly analyzes this new measure. In particular, it proposes an upper bound that is amenable to distributed computation and valuable for control design. The fifth paper solves the problem of localized state-feedback L2 control with communication delay for large discrete-time systems. The synthesis procedure can be performed for each node in parallel. The paper combines the localized state-feedback controller with a localized Kalman filter to synthesize a localized output feedback controller that stabilizes the closed-loop subject to communication constraints. The sixth paper concerns optimal linear-quadratic team-decision problems where the team does not have access to the model. Instead, the players must learn optimal policies by interacting with the environment. The paper contains algorithms and regret bounds for the first- and zeroth-order information feedback

    ロバスト性解析と制御器設計のための離散時間非因果的周期時変スケーリング

    Get PDF
    京都大学0048新制・課程博士博士(工学)甲第17889号工博第3798号新制||工||1581(附属図書館)30709京都大学大学院工学研究科電気工学専攻(主査)教授 萩原 朋道, 教授 土居 伸二, 准教授 久門 尚史学位規則第4条第1項該当Doctor of Philosophy (Engineering)Kyoto UniversityDFA

    Robust Adaptive Control in H(infinity).

    Get PDF
    This dissertation addresses the problem of unifying identification and control in the paradigm of {\cal H}\sb\infty to achieve robust adaptive control. To achieve robust adaptive control, we employ the same approach used for identification in {\cal H}\sb\infty and robust control in {\cal H}\sb\infty. In the modeling part, we aim not only to identify the nominal plant, but also to quantify the modeling error in {\cal H}\sb\infty norm. The linear algorithm based on least-squares is used, and the upper bounds for the corresponding modeling error are derived. In the control part, we aim to achieve the performance specification in frequency domain using innovative model reference control. New algorithms are derived that minimize an {\cal H}\sb\infty index function associated with the deviation between the performance of the feedback system to be designed, and that of the reference model. The results for the modeling and control part are then combined and applied to adaptive control. It is shown that with mild assumption on persistent excitation, the least squares algorithm in frequency domain is equivalent to the recursive least squares algorithm in time domain. Moreover, finite horizon {\cal H}\sb\infty is employed to design feedback controller recursively using the identified model that is time varying in nature. The robust stability of the adaptive feedback system is then established

    Digital repetitive control under varying frequency conditions

    Get PDF
    Premi extraordinari doctorat curs 2011-2012, àmbit d’Enginyeria IndustrialThe tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area and Repetitive Control has proven to be an efficient way to face this topic; however, in some applications the period of the signal to be tracked/rejected changes in time or is uncertain, which causes and important performance degradation in the standard repetitive controller. This thesis presents some contributions to the open topic of repetitive control working under varying frequency conditions. These contributions can be organized as follows: One approach that overcomes the problem of working under time varying frequency conditions is the adaptation of the controller sampling period, nevertheless, the system framework changes from Linear Time Invariant to Linear Time-Varying and the closed-loop stability can be compromised. This work presents two different methodologies aimed at analysing the system stability under these conditions. The first one uses a Linear Matrix Inequality (LMI) gridding approach which provides necessary conditions to accomplish a sufficient condition for the closed-loop Bounded Input Bounded Output stability of the system. The second one applies robust control techniques in order to analyse the stability and yields sufficient stability conditions. Both methodologies yield a frequency variation interval for which the system stability can be assured. Although several approaches exist for the stability analysis of general time-varying sampling period controllers few of them allow an integrated controller design which assures closed-loop stability under such conditions. In this thesis two design methodologies are presented, which assure stability of the repetitive control system working under varying sampling period for a given frequency variation interval: a mu-synthesis technique and a pre-compensation strategy. On a second branch, High Order Repetitive Control (HORC) is mainly used to improve the repetitive control performance robustness under disturbance/reference signals with varying or uncertain frequency. Unlike standard repetitive control, the HORC involves a weighted sum of several signal periods. With a proper selection of the associated weights, this high order function offers a characteristic frequency response in which the high gain peaks located at harmonic frequencies are extended to a wider region around the harmonics. Furthermore, the use of an odd-harmonic internal model will make the system more appropriate for applications where signals have only odd-harmonic components, as in power electronics systems. Thus an Odd-harmonic High Order Repetitive Controller suitable for applications involving odd-harmonic type signals with varying/uncertain frequency is presented. The open loop stability of internal models used in HORC and the one presented here is analysed. Additionally, as a consequence of this analysis, an Anti-Windup (AW) scheme for repetitive control is proposed. This AW proposal is based on the idea of having a small steady state tracking error and fast recovery once the system goes out of saturation. The experimental validation of these proposals has been performed in two different applications: the Roto-magnet plant and the active power filter application. The Roto-magnet plant is an experimental didactic plant used as a tool for analysing and understanding the nature of the periodic disturbances, as well as to study the different control techniques used to tackle this problem. This plant has been adopted as experimental test bench for rotational machines. On the other hand, shunt active power filters have been widely used as a way to overcome power quality problems caused by nonlinear and reactive loads. These power electronics devices are designed with the goal of obtaining a power factor close to 1 and achieving current harmonics and reactive power compensation.Award-winningPostprint (published version
    corecore