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Abstract

Since modeling of real plants inevitably gives rise to modeling errors regarded as uncertain-

ties, considering robustness for the uncertainties is important in actual control problems.

For tackling issues of analyzing robust stability of closed-loop systems in a less conserva-

tive fashion, the µ-analysis method is known to be effective. As an alternative approach

to robust stability analysis, on the other hand, discrete-time noncausal linear periodically

time-varying (LPTV) scaling has been proposed recently. This approach can be naturally

introduced through the lifting-based treatment of systems, and the associated conservative-

ness can be reduced by increasing the period of lifting. This thesis is concerned with this

lifting-based scaling approach.

In this thesis, we first review the definition and properties of noncausal LPTV scaling.

This scaling approach is a generalization of the conventional causal linear time-invariant

(LTI) scaling, and coincides with the latter scaling when we take the lifting period N =

1 (i.e., without lifting-based treatment). We call such a framework for robust stability

analysis without lifting-based treatment the lifting-free framework, and that with lifting-

based treatment the lifting-based framework. It is known that noncausal LPTV scaling

induces dynamic causal LTI scaling in the lifting-free framework even if it is confined to

static in the lifting-based framework. We show two theorems associated with this promising

property, and confirm them numerically.

After such reviews, we consider applying static noncausal LPTV scaling to robust con-

troller synthesis. If we take account of only robust stability in the synthesis, however,

responses of the resulting control systems may become oscillatory at an unacceptable level.

To avoid this problem, we develop a controller synthesis method taking account of not only

robust stability but also robust H∞ performance. Effectiveness of the developed method for

robust control is discussed theoretically and numerically, and also demonstrated by experi-

ments with a cart inverted pendulum whose length can be set from three choices (we regard

the difference as the uncertainty in the experiments). The obtained results will indicate

that the developed synthesis framework is indeed effective and practical in actual control

problems.
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Despite such advances for robust controller synthesis, however, comprehensive properties

of noncausal LPTV scaling have not necessarily been revealed entirely. Hence, in this thesis,

we also study further properties of noncausal LPTV scaling to exploit full potential of it.

The missing arguments include, for example, an explicit characterization of the class of

dynamic causal LTI scaling in the lifting-free framework that can equivalently be dealt with

by working instead on static noncausal LPTV scaling in the lifting-based framework. We

first introduce a concept called shift invariance with respect to timing of lifting, and give

a partial answer to the above open problem. Regarding the introduced concept, we can

show that noncausal LPTV scaling is not shift-invariant, in general, while causal scaling

is. In addition, if we introduce the operation called shift-invariant reconstruction, we can

naturally construct a class of shift-invariant scaling from (not necessarily shift-invariant)

noncausal LPTV scaling in the lifting-based framework, which plays an essential role in

the aforementioned characterization. The obtained theoretical results will be confirmed

numerically.

To facilitate further studies on properties of noncausal LPTV scaling, we also apply

another theoretical tool called an infinite matrix framework representing systems by infi-

nite matrices. Since causal LTI and noncausal LPTV scaling approaches are defined in the

different (lifting-free and -based) frameworks, direct comparison of their frequency-domain

properties has not been very straightforward. Hence, we consider constructing a new unified

framework that can equivalently deal with both the lifting-free and -based scaling approaches,

and compare them in the unified framework. In particular, we introduce causal LTI and non-

causal LPTV finite impulse response (FIR) scaling approaches in the lifting-free and -based

frameworks, respectively, as practical and tractable classes of dynamic scaling approaches,

and study their relationship with respect to the associated conservativeness in robust sta-

bility analysis. As a result of the comparison, we theoretically show the effect of employing

the lifting technique in robust stability analysis for reducing the conservativeness. In this

thesis, we also develop an explicit procedure for robust stability analysis based on dynamic

noncausal LPTV FIR scaling, which enables us to numerically confirm the above theoretical

results as well as the effectiveness of the developed analysis framework.

Through these theoretical and practical discussions, we develop a basis of robustness

analysis and controller synthesis exploiting noncausal LPTV scaling. Noncausal LPTV scal-

ing has interesting properties that differentiate it from the conventional causal LTI scaling,

and is expected to be one of the effective tools for robust control. The results obtained in

this thesis will thus be a step toward further developments in robust control theory.
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Chapter 1

Introduction

1.1 Background in robust control

When we apply control theory to real plants, it is generally required to identify them

by some models. However, since real plants include factors difficult to deal with, such

as nonlinearities and parameter variations, modeling of the plants inevitably gives rise to

modeling errors regarded as uncertainties. If these uncertainties are not taken account of

in the synthesis, the designed controllers may fail to control the real plants adequately.

Therefore, ensuring robustness, which guarantees required performance of the closed-loop

systems regardless of given classes of uncertainties, is quite important from the viewpoint of

control applications.

The gain margins and the phase margins studied in the framework of classical control

theory [6] are concepts related with robustness, and in this sense, the study of robust control

has a long history. In 1966, the so-called small-gain theorem was proved by George Zames

[46],[47], and it became easy to deal with the closed-loop system consisting of the nominal

system and the uncertainty. In 1979, George Zames further gave a formulation of the H∞

control problem [48],[49], and this became a trigger for the remarkable development of robust

control theory ensuring worst-case performance of the systems whose gaps from the plants

are explicitly extracted as H∞-norm-bounded uncertainties. Since the problem of designing

robust controllers satisfying the small-gain conditions can be regarded as a special case of the

H∞ control problems, the formulation attracted many researchers in those days. H∞ control

theory has been further developed [19],[12],[27], and employed to improve accuracy about

products in manufacturing industry such as steel industry, and also applied to the attitude

control of satellites, the head positioning control of disk drives, and so forth. Nowadays, H∞

control is one of the representative methods in the field of robust control.

As mentioned above, H∞ control theory has succeeded from the viewpoint of robust
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control for norm-bounded uncertainties. However, as higher accuracy was required in actual

control problems, it became insufficient to take account of only (unstructured) norm-bounded

uncertainties. In most actual cases, we obtain a sort of information about the uncertainties

(e.g., they are structured), and then robustness analysis and controller synthesis based on

the basic H∞ control theory naturally become conservative. It is quite important to reduce

this conservativeness, and many researchers tackled this issue to make the robust control

theory more practical.

As one of the robust control methods that enable us to deal with properties of uncer-

tainties directly, the µ-analysis and synthesis approach [11],[32],[51] was studied extensively

from the 1980s, with the research group of John C. Doyle in the lead. µ-analysis evaluates

robust stability of the closed-loop system through calculating the structured singular val-

ues. Various methods were proposed to reduce conservativeness of robust stability analysis,

associated with the development of µ-analysis. µ-synthesis is an extension of µ-analysis for

controller synthesis, and a D-scaling-based algorithm is available in µ-Analysis and Synthesis

Toolbox [2] on MATLAB. The µ-analysis and synthesis approach succeeded in reducing con-

servativeness of robustness analysis and controller synthesis for the systems with structured

uncertainties, and thus is already one of the standard methods for robust control.

Typical frameworks for µ-analysis and synthesis, however, have a sort of numerical issue.

More specifically, we often employ frequency gridding to calculate (an upper bound of) the

structured singular value for µ-analysis and synthesis, since computing its response on the

whole frequency range is generally difficult from the computational viewpoint. However, if

we employ frequency gridding, we cannot evaluate the structured singular values that are

not on the grid. Hence, the obtained results inevitably depend on the gridding taken in the

analysis. This may cause an unfavorable situation that the obtained results indicate that the

closed-loop system is robustly stable, even when it is not actually. Since processing power

of computers is finite, this issue is essentially unsolvable, as far as the frequency gridding is

employed.

From the 1990s, controller synthesis employing linear matrix inequalities (LMIs) was

studied extensively [7],[9],[38],[29]. Since LMIs are globally solvable as convex optimization

problems, they are quite suitable for computations, and enable us to systematically obtain

globally optimal solutions without any manual adjustment. In addition, LMIs can easily deal

with multivariable systems, and are also compatible with multiobjective controller synthesis.

Hence, many researchers made efforts to convert various conventional results to the LMI

counterparts. For example, the analysis condition in the framework of H∞ control was known

to reduce to an LMI by applying the bounded real lemma [1], and the analysis condition was

further linearized for controller synthesis as discussed in [18],[38],[31]. Since the LMI-based
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H∞ controller synthesis provides globally optimal solutions for H∞ control problems that

ensure robust stability of the closed-loop systems in a sufficient fashion (through ignoring

information about the uncertainties), it does not lead us to overestimate the stability region

with respect to the uncertainties. In addition, conservativeness of the synthesis stemming

from the ignored information of uncertainties can be reduced by introducing the scaling

technique, as in the case with µ-synthesis.

In parallel with the above development of LMI-based controller synthesis, treatment of

uncertainties was further studied. As one of the remarkable results, the integral quadratic

constraint (IQC) theory was organized [30]. This theory enables us to directly deal with

many kinds of norm-bounded uncertainties (e.g., static and dynamic, linear and nonlinear,

time-invariant and time-varying, and so fourth), and we can reduce the conservativeness

of the analysis and synthesis that arises in the treatment of uncertainties. The robustness

analysis condition in the IQC theory can be reduced to an LMI by applying the Kalman-

Yakubovich-Popov (KYP) lemma [43]–[45],[34], and the condition can be further linearized

for controller synthesis by the same linearization technique described in [38],[31]. IQC theory

unifies many kinds of control theory for the systems including norm-bounded uncertainties,

and conventional methods such as the small-gain and passivity theorems, D-scaling, (D,G)-

scaling and multiplier methods [42],[51],[13],[10],[37],[17] can be formulated as special cases

of the IQC approach.

1.2 Motivation of this thesis

The purpose of this thesis is to develop a robustness analysis and synthesis method that

is more practical and tractable compared with conventional methods. As already stated,

the IQC theory unifies many kinds of conventional results, and is one of the most successful

approaches for robust control. This thesis tackles the issue of how to efficiently reduce

conservativeness of the robustness analysis and synthesis based on this theory. In particular,

the thesis deals with the case of linear time-invariant (LTI) uncertainties, which naturally

arise when the plants include parameter variations. In this case, the separator-type robust

stability theorem [25] is known to further hold for robust stability of the closed-loop system.

This theorem can be regarded as a special case of the IQC approach under the restriction

on the class of uncertainties (to be LTI), and gives a condition not only sufficient but also

necessary for robust stability, while the general IQC theory guarantees only sufficiency.

Various types of robust stability conditions for LTI uncertainties are covered by the separator-

type theorem, as well as the IQC theorem.

Robust stability can be analyzed by searching for the matrices in the separator-type
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theorem called separators satisfying the robust stability condition therein (such separators

are said to be eligible in the following). Eligible separators can be searched for by an LMI-

based optimization through applying the KYP lemma, as in the IQC approach. To achieve

nonconservative robust stability analysis, however, such a search must work on all frequency-

dependent (i.e., dynamic) separators without any constraint, but this is not feasible from

computational viewpoints. Thus, a tractable class of separators is introduced in practice,

only on which the search of eligible separators is carried out. This generally results in

conservativeness in robust stability analysis, as in the case with the IQC approach.

For reducing the conservativeness, discrete-time noncausal linear periodically time-varying

(LPTV) scaling was introduced in [23]. This approach can be naturally introduced by

employing the separator-type robust stability theorem via the lifting-based treatment [4],

[5] of discrete-time systems. Since the separator-type robust stability theorems in the con-

ventional lifting-free and new lifting-based scaling approaches give necessary and sufficient

conditions for robust stability, both of these two scaling approaches can achieve exact ro-

bust stability analysis if an eligible (dynamic) separator could always be found whenever

such a separator does exist. As mentioned above, however, such a search is computationally

difficult, and to alleviate the difficulty in the search, one generally has to introduce a class

of tractable separators from which an eligible separator is to be searched for, whichever of

the two approaches one may take. Regarding the conservativeness of the analysis stemming

from such a practical issue, the advantage of noncausal LPTV scaling over LTI scaling has

been discussed in [23] through the frequency-domain analysis of the freedom provided by

noncausal treatment of signals. For example, if we confine ourselves to static separators in

both causal LTI and noncausal LPTV scaling approaches, it has been proved theoretically

and confirmed numerically that static noncausal LPTV scaling is less (at least, no more)

conservative than static causal LTI scaling.

In this thesis, we propose a robust performance controller synthesis method based on non-

causal LPTV scaling, which has such promising properties, and demonstrate its effectiveness

by control experiments with a cart-inverted pendulum. In addition, we further clarify the

properties of noncausal LPTV scaling through introducing new theoretical tools, and guar-

antee that exploiting the lifting technique in robust stability analysis indeed contributes to

reducing conservativeness of the analysis.

1.3 Contents of this thesis

This thesis is organized as follows. In Chapter 2, we first give a brief sketch of the

famous robust stability analysis method called µ-analysis for facilitating the understanding
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of a basis of the robust stability analysis problem with structured uncertainties. This chapter

then introduces discrete-time noncausal LPTV scaling that plays the most important role

throughout the thesis, as an alternative approach for robust stability analysis. This scaling

approach can be naturally introduced through the technique called discrete-time lifting, and

induces dynamic scaling in the lifting-free (i.e., original) framework even if it is confined to

static in the lifting-based framework. By this property, static noncausal LPTV scaling is

theoretically guaranteed to be less (at least no more) conservative in robust stability analysis

than the conventional static causal LTI scaling without lifting-based treatment. This chapter

reviews two theorems indicating this advantage, and numerically shows the validity.

In Chapter 3, we extend the lifting-based static noncausal LPTV scaling, which has such

a promising property, to robust performance controller synthesis, and demonstrate its effec-

tiveness by control experiments with a cart inverted pendulum. We first review and discuss

advantages of static noncausal LPTV scaling in detail, and develop a synthesis procedure

of robust performance controllers taking account of not only robust stability but also ro-

bust H∞ performance. The reason why we deal with also robust H∞ performance is that

the responses of the controlled systems often become oscillatory at an unacceptable level,

associated with periodicity of the controllers designed naturally under the lifting-based treat-

ment. We numerically confirm by a simple mechanical system example that this extension

indeed contributes to alleviating the oscillations in the responses without deteriorating the

robustness for the uncertainties so much. Then, we further demonstrate effectiveness of the

developed synthesis framework by control experiments with a cart inverted pendulum whose

pendulum length can be set from three choices.

In Chapter 4, we aim at clarifying further properties of noncausal LPTV scaling, whose

effectiveness has been already demonstrated from the practical viewpoint. As an open issue

for the properties, for example, it is not clear yet what specific class of dynamic scaling

is equivalent to static noncausal LPTV scaling (with respect to conservativeness of robust

stability analysis), although a class of dynamic scaling is indeed known to be induced if

we interpret the lifting-based static scaling in the lifting-free framework. In this chapter,

we provide a partial answer to this issue by discussing the properties of noncausal LPTV

scaling through introducing a concept called shift invariance with respect to timing of lifting.

Regarding the concept, we see that noncausal LPTV scaling is not shift invariant, in general,

while causal scaling is. In addition, we show that the lifting-based scaling obtained through

applying what we call shift-invariant reconstruction to static noncausal LPTV scaling is

completely equivalent to the (lifting-free) dynamic scaling induced by the same static scaling

with respect to the conservativeness. These theoretical results will be a basis for exploiting

full potential of noncausal LPTV scaling.
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In Chapter 5, we discuss properties of noncausal LPTV scaling from another viewpoint.

Specifically, we apply a framework of representing systems by infinite matrices, and clarify

the relationship between lifting-based noncausal LPTV scaling and lifting-free causal LTI

scaling through the infinite matrix framework. Since the two scaling approaches are defined

in the different (lifting-free and -based) frameworks, their frequency-domain properties are

not easy to compare in a straightforward fashion. However, the infinite matrix framework can

unify the lifting-free and -based treatment of systems, and both the lifting-free and -based

scaling approaches can be equivalently reduced to those in the infinite matrix framework.

This enables us to compare the two scaling approaches in the infinite matrix framework very

easily. For such discussions, we derive a robust stability condition in the infinite matrix

framework. Then, we introduce causal LTI and noncausal LPTV finite impulse response

(FIR) scaling approaches as examples of tractable and practical scaling classes, and study

the relationship between the two scaling approaches with respect to the conservativeness

through the infinite matrix framework. As a consequence of this comparison, we clarify the

effect of employing the lifting technique in robust stability analysis.

In Chapter 6, we develop a method of exploiting noncausal LPTV FIR scaling in ro-

bust stability analysis. This scaling has a sort of frequency dependence (i.e., dynamics) in

addition to time dependence related with the lifting-based treatment. Hence, exploiting it

in robustness analysis and controller synthesis is generally difficult, compared with the case

of static noncausal LPTV scaling mainly discussed in Chapters 2 and 3. As a future step

toward controller synthesis, this chapter confines ourselves to robust stability analysis prob-

lems. The difficulty of exploiting noncausal LPTV FIR scaling is mainly attributed to the

frequency dependence of the scaling. Hence we first resolve this difficulty for the lifting-free

causal LTI FIR scaling, which is a special case of noncausal LPTV FIR scaling, and then

extend the result toward the lifting-based scaling. The effectiveness of employing the lifting

technique in robust stability analysis has already been confirmed theoretically in Chapter 5,

and we demonstrate its validity by a numerical example.

In Chapter 7, we state the issues to be solved in each chapter again, and summarize the

obtained results. We then give concluding remarks, and refer to future works for further

developments in robust control theory.
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Chapter 2

Review of µ-Analysis and Robust
Stability Analysis Based on Noncausal
LPTV Scaling

2.1 Introduction

Robust stability analysis for closed-loop systems with structured uncertainties becomes

conservative, in general. As an approach for reducing this conservativeness, µ-analysis [11],

[32],[51] is known to be effective. This approach exploits frequency-dependent (i.e., dynamic)

scaling for robust stability analysis, through calculating the structured singular values. In

[23], on the other hand, another approach for robust stability called noncausal linear periodi-

cally time-varying (LPTV) scaling was proposed. This approach can be naturally introduced

through the lifting-based treatment of closed-loop systems, and the associated conservative-

ness can be reduced by increasing the period of lifting. This thesis studies the scaling

approach from the viewpoints of the extension toward controller synthesis and the clarifica-

tion of properties, to exploit potentials of the scaling approach as much as possible. As a

preliminary step toward such studies, this chapter reviews a basis of noncausal LPTV scaling

in robust stability analysis.

This chapter is organized as follows. In Section 2.2, we introduce the structured uncer-

tainties, which are often dealt with to achieve more accurate analysis and synthesis for robust

stability. We then briefly review a representative analysis approach for such uncertainties

called µ-analysis. In Section 2.3, we state the robust stability analysis problem studied in

this chapter, and review the discrete-time lifting technique and the separator-type robust

stability theorem, both of which play essential roles in introducing noncausal LPTV scaling.

In Section 2.4, we show the definitions of causal and noncausal LPTV scaling approaches,

and state the reason why we call the introduced scaling noncausal LPTV scaling. In addition,
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we apply the idea of (D,G)-scaling, and numerically confirm the effectiveness of noncausal

LPTV scaling. In Section 2.5, we show theorems indicating that noncausal LPTV scaling

is indeed effective for robust stability analysis of linear time-invariant (LTI) closed-loop sys-

tems, to which we essentially do not need to apply the lifting technique. We also confirm

the validity of the theoretical result by numerical examples.

2.2 Structured uncertainty and µ-analysis

Since modeling of the plants inevitably gives rise to modeling errors regarded as uncer-

tainties, we are often required in practice to deal with the system shown in Figure 2.1, where

P denotes the generalized plant and ∆ denotes the uncertainty. For this system (including

the uncertainty), the controller Ψ is designed and connected from y to u (Figure 2.2). Then,

through regarding the interconnection of P and Ψ as the nominal system G, we can obtain

the closed-loop system Σ shown in Figure 2.3. Developing a method of deciding whether

this Σ is robustly stable in the presence of the uncertainty ∆ is an important issue for actual

control problems. As an approach to robust stability analysis of the closed-loop system, the

µ-analysis method [11],[32],[51] is known to be effective with respect to the conservativeness.

Before proceeding to the discussions about noncausal LPTV scaling, which is the central

concept in this thesis, we briefly review the conventional µ-analysis method in this section,

associated with the so-called structured uncertainties.

Only in this section, we suppose that both G and ∆ are continuous-time systems (hence

the signals w and z in Figure 2.3 are continuous-time in this section). In addition, they

are also supposed to be stable, finite-dimensional, LTI and have p inputs and outputs. We

denote the (continuous-time) transfer matrices of G and ∆ by G(s) and ∆(s), respectively,

with the variable s of Laplace transforms.

In most actual cases, we may obtain a sort of information about the uncertainties such

as sources where they come from and properties that they have. With such information, we

¾∆

-w

-u P

z

-
y

Figure 2.1: Generalized plant with uncertainty.
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-w

-u P

z

¾∆

y

¾Ψ

G

Figure 2.2: Feedback system.

only have to deal with the corresponding restricted classes of uncertainties, rather than the

black box (i.e., completely full block) uncertainties. This idea naturally leads us to introduce

the class of structured uncertainties given by

∆ = {diag[δ1(s)Ir1 , · · · , δY (s)IrY
,∆1(s), · · · ,∆Z(s)]}, (2.1)

with δi(s) ∈ RH∞ (i = 1, . . . , Y ) and ∆j(s) ∈ RHmj×mj
∞ (j = 1, . . . , Z), where RH∞ and

RHmj×mj
∞ denote the set of proper and real rational stable transfer functions and matrices

of the size mj × mj, respectively. For example, taking Y = 2 and Z = 0 corresponds to the

assumption that the plant has two independent (dynamic) scalar uncertainties.

Suppose that we have some information about the uncertainties, and thus only have to

deal with the structured uncertainties described as (2.1). Then, if we analyze robust stability

of the closed-loop system without taking account of the structure, the corresponding result

inevitably becomes conservative, since the result does guarantee robust stability also for such

uncertainties that are not required to be considered. Hence, reducing the conservativeness

through taking account of the structure is very important in actual control problems. From

the 1980s, the µ-analysis approach was extensively studied to tackle this issue. The µ-

-w
G

z

¾∆

Figure 2.3: Closed-loop system Σ .
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analysis approach analyzes robust stability through calculating what we call the structured

singular values defined as follows.

Definition 2.1 For a given G(s) ∈ RHp×p
∞ and a given s ∈ C, the structured singular

value µ∆(G(s)) is defined as

µ∆(G(s)) :=
1

min{σ(∆(s)) : ∆ ∈ ∆, det(I − G(s)∆(s)) = 0}
, (2.2)

unless no ∆ ∈ ∆ makes I − G(s)∆(s) singular, in which case µ∆(G(s)) := 0.

It is obvious from this definition that the structured singular value depends on the structure

of the uncertainties. For this structured singular value, we have the following result [11],[32],

[51].

Theorem 2.1 Let γ > 0. The closed-loop system consisting of G(s) and ∆(s) is robustly

well-posed and internally stable for all ∆ ∈ ∆ with ‖∆‖∞ < 1/γ if and only if

sup
ω∈R

µ∆(G(jω)) ≤ γ. (2.3)

By this theorem, we can evaluate robust stability of the closed-loop system through calcu-

lating the structured singular values.

However, there is an issue that calculating the exact value of the structured singular value

is difficult (it has been proved to be NP-hard in [33]). Hence we usually have to employ upper

bounds of the structured singular values instead, to analyze robust stability. The maximum

singular value σ(G(s)) is one of the simplest upper bounds of µ∆(G(s)). This upper bound,

however, does not take account of the uncertainty structure, and thus results in providing no

reduction of the conservativeness in the analysis. As one of the approaches to reducing this

conservativeness, the D-scaling approach employing the following class of complex matrices

has been proposed.

D := {diag[D1, · · · , DY , d1Im1 , · · · , dZImZ
] : Di ∈ Cri×ri ,

Di = D∗
i > 0, dj ∈ R, dj > 0} (2.4)

This class is determined associated with the class (2.1) of structured uncertainties, and leads

us to the following relationship for a given s ∈ C.

µ∆(G(s)) = µ∆(D1/2G(s)D−1/2), D ∈ D (2.5)

Hence, for a given s ∈ C, we have

µ∆(G(s)) ≤ inf
D∈D

σ(D1/2G(s)D−1/2). (2.6)
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By searching for some appropriate D ∈ D, we can reduce the gap between µ∆(G(s)) and

σ(D1/2G(s)D−1/2) (i.e., conservativeness in the analysis).

We have reviewed a basis of the conventional µ-analysis method. In the above discussions,

we have dealt with the structured uncertainties given by (2.1) consisting of dynamic blocks.

In actual cases, however, we may be able to further restrict (some of) the blocks in (2.1) to

be static. Unfortunately, we cannot exploit this additional information if we employ only

D-scaling, but its extended approach called (D,G)-scaling may enable us to deal with the

information adequately. Although we omit the details here, we would like to emphasize that

this thesis is actually interested in reducing conservativeness of the robust stability analysis

for the structured uncertainties involving static blocks, and we will thus employ the notion

of (D,G)-scaling in robust stability analysis based on noncausal LPTV scaling, whose basis

is reviewed in the rest of this chapter.

2.3 Discrete-time lifting and separator-type robust sta-

bility theorem

In the preceding section, we reviewed one of the conventional robust stability analysis

approaches called µ-analysis with the assumption that the closed-loop system is continuous-

time; although we can also develop the discrete-time counterpart of the continuous-time

method, we would like to omit it here. In the rest of this chapter, we revisit a new robust

stability analysis approach called discrete-time noncausal LPTV scaling, which plays the

most important role in this thesis. Before introducing the scaling approach, we devote

this section to stating the robust stability analysis problem dealt with in this chapter, and

reviewing the discrete-time lifting technique [4],[5] and the separator-type robust stability

theorem [25] via the lifting-based treatment.

2.3.1 Robust stability analysis problem for discrete-time closed-
loop systems

Let us consider the discrete-time closed-loop system Σ shown in Figure 2.3 consisting of

the discrete-time nominal system G and the discrete-time uncertainty ∆. The nominal system

G is assumed to be internally stable, finite-dimensional, linear N -periodic, and represented

by

xk+1 = Akxk + Bkwk, zk = Ckxk + Dkwk (2.7)

where xk ∈ Rn, wk ∈ Rp, zk ∈ Rp, and Ak, Bk, Ck and Dk are N -periodic matrices. The

uncertainty ∆ is assumed to belong to a given set ∆ satisfying the following assumption.
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Assumption 1 Every ∆ ∈ ∆ is stable, finite-dimensional and linear N -periodic, and ∆

is star-convex with a center at the origin (i.e., k∆ ∈ ∆ whenever ∆ ∈ ∆ and 0 ≤ k ≤ 1).

In addition, every ∆ ∈ ∆ satisfies ‖∆‖∞ < 1/γ for a given γ > 0.

We also prepare the following alternative assumption, which is a special case of the above

assumption.

Assumption 2 Every ∆ ∈ ∆ is stable, finite-dimensional and LTI, and ∆ is star-convex

with a center at the origin. In addition, every ∆ ∈ ∆ satisfies ‖∆‖∞ < 1/γ for a given

γ > 0.

It can also be the case that every ∆ ∈ ∆ is static, i.e., a periodically time-varying or a

constant matrix. Furthermore, G is also allowed to be LTI; when ∆ is N -periodic, we view

an LTI system G as a special case of N -periodic systems. An LTI ∆ is treated in a similar

fashion (i.e., when G is N -periodic, we view the LTI ∆ as a special case of N -periodic

systems).

In this chapter, we study the problem of deciding whether the above closed-loop system

is robustly stable for a given uncertainty class ∆. In particular, we are interested in reducing

conservativeness of robust stability analysis when the uncertainties ∆ ∈ ∆ are structured

and have static blocks.

2.3.2 Discrete-time lifting

This subsection reviews the discrete-time lifting technique [4],[5]. The operation of in-

troducing new signal representations

ŵκ :=
[
wT

κN , wT
κN+1, · · · , wT

κN+N−1

]T
, ẑκ :=

[
zT

κN , zT
κN+1, · · · , zT

κN+N−1

]T
(2.8)

from the discrete-time signals w and z is called the lifting of signals, where κ denotes the

variable of time steps on the lifted time axis. This converts the treatment of systems with

input w and output z into that of systems with lifted input ŵ and lifted output ẑ, and such

treatment is called the lifting of systems. The resulting lifted representations of systems are

called N -lifted systems. By defining x̂κ := xκN , we can describe the N -lifted nominal system

Ĝ by

x̂κ+1 = Âx̂κ + B̂ŵκ, ẑκ = Ĉx̂κ + D̂ŵκ, (2.9)
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-ŵ
Ĝ

ẑ

¾∆̂

Figure 2.4: Lifted closed-loop system Σ̂ .

where Â, B̂, Ĉ and D̂ are given as follows.

Â =
N−1∏
k=0

Ak := AN−1 · · ·A1A0, (2.10)

B̂ =

[(
N−1∏
k=1

Ak

)
B0

(
N−1∏
k=2

Ak

)
B1 · · · BN−1

]
, (2.11)

Ĉ =


C0

C1A0
...

CN−1

N−2∏
k=0

Ak

 , D̂ =



D0 0 · · · 0

C1B0 D1
. . .

...
...

. . . . . . 0

CN−1

(
N−2∏
k=1

Ak

)
B0 · · · CN−1BN−2 DN−1

 (2.12)

Through this lifting-based treatment, we can regard the obtained system Ĝ as an LTI system

on the lifted time axis. Hence the transfer matrix of Ĝ can be defined and is denoted by

Ĝ(z), which is called the N -lifted transfer matrix of G, where z denotes the variable of z-

transforms under the lifting-based treatment. We can also obtain the N -lifted representation

∆̂ and the N -lifted transfer matrix ∆̂(z) from ∆. Through these ideas, we can obtain the

lifted representation Σ̂ (Figure 2.4) from the closed-loop system Σ .

2.3.3 Separator-type robust stability theorem via lifting-based treat-
ment

This subsection reviews the separator-type robust stability theorem. It follows from the

property of lifting that the closed-loop system Σ is robustly stable with respect to ∆ if and

only if its lifted counterpart Σ̂ is. Hence, we have the following robust stability theorem via

the lifting-based treatment [25],[23] (see also [21] for the classical well-posedness issue).

Theorem 2.2 Suppose that G is internally stable and N -periodic, and ∆ satisfies As-

sumption 1. Then, Σ is robustly (well-posed and) stable with respect to ∆ if and only if
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there exists Θ̂(z) = Θ̂(z)∗ (z ∈ ∂D) such that[
I

Ĝ(z)

]∗

Θ̂(z)

[
I

Ĝ(z)

]
≤ 0 (∀z ∈ ∂D), (2.13)[

∆̂(z)
I

]∗

Θ̂(z)

[
∆̂(z)

I

]
> 0

(
∀∆ ∈ ∆,
∀z ∈ ∂D

)
, (2.14)

where ∂D := {z ∈ C : |z| = 1} denotes the unit circle.

We can analyze robust stability of the closed-loop system Σ by searching for the matrix

Θ̂(z), called a separator, satisfying (2.13) and (2.14).

Note that this theorem reduces to the following usual (lifting-free) separator-type robust

stability theorem [25],[21] by letting N = 1 when Σ is LTI, where ζ denotes the variable for

z-transforms under the treatment without lifting, and G(ζ) and ∆(ζ) denote the transfer

matrices of LTI systems G and ∆, respectively.

Theorem 2.3 Suppose that G is internally stable and LTI, and ∆ satisfies Assumption 2.

Then, Σ is robustly (well-posed and) stable with respect to ∆ if and only if there exists

Θ(ζ) = Θ(ζ)∗ (ζ ∈ ∂D) such that[
I

G(ζ)

]∗

Θ(ζ)

[
I

G(ζ)

]
≤ 0 (∀ζ ∈ ∂D), (2.15)[

∆(ζ)
I

]∗

Θ(ζ)

[
∆(ζ)

I

]
> 0

(
∀∆ ∈ ∆,
∀ζ ∈ ∂D

)
. (2.16)

By Theorem 2.3, robust stability of LTI closed-loop systems can be analyzed without ap-

plying the lifting technique, and this is nothing but the conventional causal LTI scaling. We

call such a framework for robust stability analysis the lifting-free framework. On the other

hand, this thesis is rather interested in applying lifting-based Theorem 2.2 to the closed-

loop system Σ (even when Σ is surely LTI), and we call such a framework the lifting-based

framework.

In the following arguments, if a separator Θ̂(z) satisfies (2.13) and (2.14), then we say

that it is eligible with respect to (2.13) and (2.14) (or simply in the lifting-based framework).

Similarly, if Θ(ζ) satisfies (2.15) and (2.16), then we say that it is eligible with respect to

(2.15) and (2.16) (or in the lifting-free framework).

2.4 Causal and noncausal LPTV scaling

The preceding section reviewed the discrete-time lifting and the separator-type robust

stability theorem via the lifting-based treatment. On the basis of those preparations, this
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section introduces explicit definitions of causal and noncausal LPTV separators, and com-

pares the corresponding two scaling approaches with respect to conservativeness of robust

stability analysis by a numerical example.

2.4.1 Definitions of causal and noncausal LPTV separators

By Theorem 2.2, the robust stability problem of the closed-loop system Σ̂ (i.e., Σ ) re-

duces to searching for separators Θ̂(z) satisfying (2.13) and (2.14) for the given ∆. This

naturally leads to the idea of noncausal LPTV scaling reviewed in the following. For facili-

tating extensive discussions, however, it is important to introduce noncausal LPTV scaling

in contrast with causal LPTV scaling. This is carried out by classifying the separators Θ̂(z)

in Theorem 2.2 into two types [23].

First, causal LPTV separators are defined as follows.

Definition 2.2 We call a separator given by

Θ̂(z) =
[
V̂1(z) V̂2(z)

]∗
Λ̂

[
V̂1(z) V̂2(z)

]
(2.17)

a causal LPTV separator, where V̂1(z) and V̂2(z) are the N -lifted transfer matrices of causal

N -periodic systems V1 and V2 with p inputs, respectively, and Λ̂ = Λ̂∗ is a constant matrix

of the form Λ̂ = diag[Λ1, · · · ,ΛN ] with the size of Λi being the same for all i = 1, . . . , N .

In particular, if we take static V1 and V2, then we call the corresponding separator a static

causal LPTV separator.

The approach to robust stability analysis based on causal LPTV separators is called causal

LPTV scaling.

On the other hand, more general noncausal LPTV separators have been defined as follows.

Definition 2.3 We call a separator given by

Θ̂(z) = V̂ (z)∗Γ V̂ (z) (2.18)

a noncausal LPTV separator, where V̂ (z) is the transfer matrix of a causal LTI system V̂

with 2Np inputs defined directly on the lifted time axis κ in (2.9)1 and Γ = Γ ∗ is a constant

matrix. In particular, if we take a static V̂ , then we call the corresponding separator a static

noncausal LPTV separator.

1This means that V̂ is not required to be an N -lifted representation of a system in the original time axis
k in (2.7) before the application of lifting.

15



The approach to robust stability analysis based on noncausal LPTV separators is called

noncausal LPTV scaling. Even though Definition 2.3 is more general than Definition 2.2,

they degenerate into an identical definition when N = 1. We refer to the degenerated

separators as causal LTI separators (in the lifting-free framework).

2.4.2 Noncausal LPTV D-scaling

In the preceding subsection, we have reviewed the definitions of causal and noncausal

LPTV separators, and the associated scaling approaches. In this subsection, we give some

supplements about the reason why a separator given by Definition 2.3 is called a noncausal

LPTV separator, through restricting separators to D-scaling type as an example.

Let us consider a typical separator of the form

Θ̂(z) =

[
−γ2Ŵ (z)∗Ŵ (z) 0

0 Ŵ (z)∗Ŵ (z)

]
, (2.19)

corresponding to the D-scaling, where Ŵ (z) is invertible for every z ∈ ∂D and γ is a positive

scalar. Then, (2.13) and (2.14) are equivalent to the following conditions, respectively.

||Ŵ (z)Ĝ(z)Ŵ (z)−1|| ≤ γ (∀z ∈ ∂D), (2.20)

||Ŵ (z)∆̂(z)Ŵ (z)−1|| < 1/γ (∀∆ ∈ ∆, ∀z ∈ ∂D) (2.21)

That is, taking the separator (2.19) corresponds to applying the small-gain condition [46],

[47] scaled with Ŵ (z). Suppose for simplicity that the scaling factor is independent of z and

is thus a constant matrix Ŵ . If we interpret the corresponding scaling (i.e., the conditions

(2.20) and (2.21)) in the time domain with respect to the lifting-free time axis, it is not

hard to see that it generally leads to periodically time-varying scaling of the systems G and

∆ with some noncausal operation associated with the period of lifting N . In view of this

observation, we say that the separator (2.19) generally induces noncausal scaling on LPTV

systems G and ∆.

2.4.3 Noncausal LPTV (D,G)-scaling

We have viewed, with an example of D-scaling type noncausal LPTV separators (2.19),

the reason why the lifting-based scaling associated with Definition 2.3 is called noncausal

LPTV scaling. Since noncausal LPTV scaling is defined based on the separator-type robust

stability theorem rather than the small-gain theorem [23], however, we can actually exploit

separators more general than the D-scaling type one for robust stability. As one of such
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classes, this subsection introduces the (D,G)-scaling type [13] noncausal LPTV separators

given by

Θ̂(z) =

[
−γ2Ŵ (z)∗Ŵ (z) X̂G(z)

X̂G(z)∗ Ŵ (z)∗Ŵ (z)

]
, Ŵ (z)∗Ŵ (z) > 0, γ > 0. (2.22)

Then, (2.14) simplifies to ‖∆̂‖∞ < 1/γ, or equivalently ‖∆‖∞ < 1/γ, if Ŵ (z) and X̂G(z)

satisfy

Ŵ (z)∆̂(z) = ∆̂(z)Ŵ (z) (∀∆ ∈ ∆), (2.23)

X̂G(z)∗∆̂(z) + ∆̂(z)∗X̂G(z) = 0 (∀∆ ∈ ∆), (2.24)

respectively. Thus, we only have to search for Θ̂(z) satisfying (2.13), which is independent of

the uncertainties, once we confine ourselves to the above (D,G)-scaling type noncausal LPTV

separators. This approach to robust stability is called noncausal LPTV (D,G)-scaling.

Noncausal LPTV separators (2.22) satisfying (2.13) can be searched for through the linear

matrix inequality (LMI) optimization. For simplicity, this section confines itself to static

noncausal LPTV separators Θ̂ (LMI optimization for dynamic noncausal LPTV scaling will

be discussed in Chapter 6 in detail). Then, the KYP lemma [34] immediately leads us to

the following result.

Lemma 2.1 Suppose that G (and thus Ĝ) is internally stable. Then, (2.13) holds if and

only if there exists a real symmetric matrix P ∈ Rn×n satisfying[
Ĉ D̂
0 I

]T

Θ̂

[
Ĉ D̂
0 I

]
≤

[
Â B̂
I 0

]T [
−P 0
0 P

] [
Â B̂
I 0

]
. (2.25)

Hence, given a scalar γ > 0, we can analyze robust stability of the closed-loop system by

searching for a matrix P and a static (D,G)-scaling type separator (2.22) satisfying the LMI

(2.25) under the restrictions (2.23) and (2.24) on the separator.

If ∆̂(z) is the structured uncertainty consisting only of dynamic blocks, it is generally

difficult to find nonzero X̂G satisfying (2.24). However, for example, if ∆̂(z) is given by

δI with a scalar δ ∈ R, this condition reduces to X̂T
G + X̂G = 0, which generally has

nonzero solutions. Hence introducing (D,G)-scaling type separators can make sense when we

deal with the structured uncertainties involving static blocks. In particular, this extension

actually works very effectively in the case of noncausal LPTV scaling. In the following

subsection, we confirm this fact, as well as the effectiveness of noncausal LPTV scaling

itself, by a numerical example.
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2.4.4 Numerical example

Consider the 3-periodic system G described by

A0 =


0 1 0 0
0 0 1 0
0 0 0 1

0.1 0.1 −0.8 −1

 , A1 =


0 1 0 0
0 0 1 0
0 0 0 1

0.2 −0.4 0.01 0.2

 ,

A2 =


0 1 0 0
0 0 1 0
0 0 0 1

−0.4 −0.3 0.3 0.5

 , B0 = B1 = B2 =
[
0 0 0 1

]T
,

C0 =
[
0.3 0.2 0.5 0.1

]
, C1 =

[
0.3 0.3 0.3 0.4

]
,

C2 =
[
0.2 0.6 0.4 0.2

]
, D0 = D1 = D2 = 0, (2.26)

which we can confirm is internally stable. In addition, we assume that the corresponding

scalar uncertainties ∆ = δ are static and LTI. The problem we study here is to find the

minimal γ > 0 such that the closed-loop system Σ is robustly stable for the uncertainty set

∆ = {δ : |δ| < 1/γ}.
The analysis results obtained by static causal LPTV D-scaling and static noncausal

LPTV D-scaling are shown in Table 2.1. Each value in the table denotes the reciprocal of

the supremal value of |∆| for those ∆ such that the stability of the closed-loop system with

G and ∆ is ensured by each respective analysis method. The result of noncausal LPTV

scaling can indeed be confirmed to be better than that by causal LPTV scaling.

Since we define noncausal (and causal) LPTV scaling based on the separator-type robust

stability theorem (rather than the small-gain theorem), we can deal with (D,G)-scaling type

separators, whose corresponding analysis results are also shown in Table 2.1 for both the

causal and noncausal LPTV cases. According to the table, static noncausal (D,G)-scaling

is surely more effective than static noncausal D-scaling, even though static causal (D,G)-

scaling leads only to the same result as static causal D-scaling. To put it another way, the

extension from D-scaling to (D,G)-scaling does not work within the framework of causal

LPTV scaling but it does work effectively in the case of noncausal LPTV scaling. This is

one of the important advantages of noncausal LPTV scaling (the details will be discussed in

the following chapter).

Table 2.1: Results of robust stability analysis with different LPTV scaling approaches
Causal-D Noncausal-D Causal-(D,G) Noncausal-(D,G)

1/γ 0.4567 0.4962 0.4567 0.5292

18



2.5 Noncausal LPTV scaling applied to LTI systems

The preceding section introduced noncausal LPTV scaling, and numerically demon-

strated its effectiveness in robust stability analysis of LPTV closed-loop systems. In this

section, we review the properties of noncausal LPTV scaling in particular in the case of

analyzing robust stability of LTI closed-loop systems. In that case, we have two alternatives

for robust stability analysis as stated in Subsection 2.3.3: the lifting-based framework (i.e.,

noncausal LPTV scaling) and the lifting-free framework (i.e., causal LTI scaling). Whichever

framework one may take, however, it is generally difficult to search for eligible separators,

and thus one often introduces some tractable class of separators (such as static separators)

within which the search of eligible separators is to be carried out. It should be remarked

that, under such a restrictive search, the inequalities (2.13) and (2.14) as well as (2.15) and

(2.16) in these theorems become a conservative sufficient condition for robust stability. With

this in mind, the properties reviewed in this section are expected to be useful in clarifying

the ability of noncausal LPTV scaling in reducing the aforementioned conservativeness in

the analysis.

2.5.1 Theoretical results on static noncausal LPTV scaling

For simplicity, in this section, we introduce static scaling in both the lifting-free and

lifting-based frameworks. Then, we review what class of scaling is induced in the lifting-based

(resp. lifting-free) framework by static causal LTI (resp. noncausal LPTV) scaling defined in

the lifting-free (resp. lifting-based) framework. Further results for dynamic scaling will be

revisited and discussed in Chapter 4 later.

We first consider introducing static causal LTI scaling in the lifting-free framework. Then,

the following theorem holds [23].

Theorem 2.4 Suppose that G is LTI, and ∆ satisfies Assumption 2. If a static causal

LTI separator

Θ =

[
Θ11 Θ12

Θ21 Θ22

]
=: (Θij)i,j=1,2 (2.27)

is eligible in the lifting-free framework, the separator

Θ̂ = (IN ⊗ Θij)i,j=1,2 (2.28)

is eligible in the lifting-based framework, where ⊗ denotes the Kronecker product.

An important implication of the above theorem is that if we apply static causal/noncausal

LPTV scaling to LTI systems, we can perform at least as good robust stability analysis as
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static causal LTI scaling; we can see that the separator (2.28) satisfies the requirement about

static causal LPTV scaling in Definition 2.2 (and thus that about static noncausal LPTV

scaling in Definition 2.3).

Remark 2.1 The above theoretical result can be further generalized to the case of intro-

ducing dynamic causal LTI scaling in the lifting-free framework. The corresponding result

will be discussed in Chapter 4 as Theorem 4.1 with an explicit proof. The extended re-

sult immediately leads us to the above theorem, and hence we omit the proof of the above

theorem here.

We next consider introducing static noncausal LPTV scaling in the lifting-based frame-

work. Then, the following theorem, which is closely related to the advantage of static

noncausal LPTV scaling over static causal LTI scaling, holds [23] (this theorem is also an

immediate consequence from Theorem 4.3 reviewed in Chapter 4).

Theorem 2.5 Suppose that G is LTI, and ∆ satisfies Assumption 2. If a static noncausal

LPTV separator Θ̂ is eligible in the lifting-based framework, the causal LTI separator

Θ(ζ) = T (ζ)∗Θ̂T (ζ) (2.29)

is eligible in the lifting-free framework, where

T (ζ) := diag[Tp(ζ), Tp(ζ)], Tp(ζ) :=


ζ−(N−1)Ip

...
ζ−1Ip

Ip

 . (2.30)

This theorem implies that if we find an eligible static separator Θ̂ in the lifting-based frame-

work, it immediately means that we have also found an eligible dynamic separator Θ(ζ) in

the lifting-free framework. This indicates that even static noncausal LPTV scaling can in-

duce dynamic scaling if we interpret it in the lifting-free framework. Furthermore, it follows

from Theorem 2.4 that the induced scaling in the lifting-free framework is ensured to be, at

least, as effective as the static causal LTI scaling in that framework. This might suggest that

static noncausal LPTV scaling could possibly replace dynamic causal LTI scaling, which

sounds attractive because static separators are much more tractable than general dynamic

separators.

Remark 2.2 We have also introduced static causal LPTV scaling as one of the lifting-

based scaling approaches. However, such class of scaling cannot induce dynamic scaling in

20



the lifting-free framework actually. This can be easily confirmed by substituting a static

causal LPTV separator into (2.29); the resulting Θ(ζ) becomes a static matrix. From this

fact, together with Theorem 2.4, we can see that static causal LPTV scaling is as conservative

as static causal LTI scaling in robust stability analysis of LTI closed-loop systems.

2.5.2 Numerical example

We have reviewed the promising properties of static noncausal LPTV scaling in robust

stability analysis of LTI closed-loop systems. This subsection numerically demonstrates their

effectiveness in reducing conservativeness of the analysis.

Consider the LTI system G described by

[
A B
C D

]
=


0 1 0 0 0
0 0 1 0 1

−0.2 0.5 0.1 1 0
0 −1 0 0 0
0 0 1 0 0

 , (2.31)

which we can confirm is internally stable. In addition, we assume that the corresponding

uncertainties ∆ are static and LTI and given by ∆ = δI2 with a real scalar δ. The problem

here is to compute (an upper bound of) the minimal γ > 0 such that the closed-loop system

Σ is robustly stable for the uncertainty set ∆ = {∆ : ||∆|| < 1/γ}.
The analysis results obtained by static noncausal LPTV (D,G)-scaling under different

lifting period N are shown in Table 2.2. Since noncausal LPTV scaling with N = 1 coincides

with the lifting-free causal LTI scaling, the result 1/γ = 0.2761 can be seen as that by static

causal LTI scaling. Hence, this table shows that static noncausal LPTV scaling indeed

outperforms static causal LTI scaling with respect to conservativeness in robust stability

analysis of LTI systems. Note that this improvement is achieved by introducing noncausality

into the scaling because causal LPTV scaling cannot outperform causal LTI scaling in this

case, as stated in the preceding subsection.

Table 2.2: Static noncausal LPTV (D,G)-scaling for LTI system
N 1 2 4 8

1/γ 0.2761 0.9231 0.9231 0.9231

2.5.3 νN-lifted treatment of N-periodic systems

We have reviewed the promising properties of static noncausal LPTV scaling (i.e., The-

orems 2.4 and 2.5) for LTI closed-loop systems, and numerically demonstrated their effec-

tiveness with respect to conservativeness in robust stability analysis. Before closing this
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section, we remark that the reviewed properties can be exploited even in the analysis of

LPTV closed-loop systems.

Recall that the system obtained by applying the lifting technique to an N -periodic system

with the same period N becomes LTI on the lifted time axis. Hence if we further apply lifting

to the N -lifted LTI system with period ν ≥ 2 and analyze the robust stability by (static)

noncausal LPTV scaling with the period νN , the properties about Theorems 2.4 and 2.5

can be exploited at least for the integer ν.

To demonstrate this fact, we consider the same example (a 3-periodic nominal system

and an LTI uncertainty) studied in Subsection 2.4.4. We analyzed the minimal γ > 0 such

that the closed-loop system is robustly stable by static noncausal LPTV (D,G)-scaling with

the period νN (N = 3) with increasing ν from 1 to 4. Then we obtained the results shown

in Table 2.3. In this table, we can see that conservativeness of robust stability analysis is

reduced when we increase ν. This result indeed demonstrates that Theorem 2.4 and 2.5 are

useful also for robust stability analysis of LPTV systems.

Table 2.3: Static noncausal LPTV (D,G)-scaling with period νN for N -periodic system
ν 1 2 3 4

1/γ 0.5292 0.6516 0.7123 0.7123

2.6 Concluding remarks

In this chapter, we briefly reviewed a basis of µ-analysis with the treatment of the struc-

tured uncertainties. Then, as an alternative approach to less conservative robust stability

analysis, we also reviewed noncausal LPTV scaling, which plays the most important role in

the thesis. In particular, we showed two theorems closely related with the fact that even

static noncausal LPTV scaling can induce dynamic scaling in the lifting-free framework,

and outperform static causal LTI scaling with respect to conservativeness in robust stability

analysis, when we deal with LTI closed-loop systems. Effectiveness of this property was also

demonstrated numerically. In addition, we showed that this property can also be exploited

in the analysis of LPTV closed-loop systems, through taking integers larger than the period

of the LPTV systems as that for lifting-based treatment. The following chapter discusses

robust performance controller synthesis based on static noncausal LPTV scaling exploiting

the above promising property.
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Chapter 3

Robust Controller Synthesis Based on
Static Noncausal LPTV Scaling

3.1 Introduction

Ensuring robustness of control systems is one of the most important issues in control

system analysis and synthesis. H∞ control theory provides us with a powerful method

for controller synthesis taking account of robustness for the uncertainties arising from the

modeling errors of the plant. When there are multiple sources for the modeling errors, the

uncertainties become structured, and the well-known µ-analysis and synthesis techniques

[11],[32],[51] based on the H∞ methodology and frequency-domain (or dynamic) scaling give

an extended approach provided that the systems are linear time-invariant (LTI).

As an alternative approach to robustness analysis, noncausal LPTV scaling reviewed in

the preceding chapter has been introduced in [23] for discrete-time systems, based on the

lifting-based treatment of closed-loop systems. It introduces a sort of time-domain scaling in

a noncausal fashion, in general, and thus is called noncausal LPTV scaling. An interesting

feature of this approach is that even static noncausal LPTV scaling induces some frequency-

dependent scaling when it is interpreted in the context of lifting-free treatment. This feature

together with the fact that the uncertainties come to be dealt with in their lifted forms leads

to an effective method for robust stability analysis through the KYP Lemma [34] and LMI

optimization. Such a state-space approach could be an alternative to µ-analysis involving

some frequency-domain treatment.

In this chapter, we extend such a promising approach of static noncausal LPTV scaling to

a robust controller synthesis method. We theoretically discuss effectiveness of the synthesis

method as well as static noncausal LPTV scaling itself, and numerically demonstrate it

through the comparison with µ-synthesis. The LPTV controllers designed with the synthesis

method, however, tend to produce oscillatory responses, as can be often the case with LPTV
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controllers in general; the LPTV nature of the controllers contributing to achieving the

control performance specification could excite the plant dynamics in an undesirable way

and deteriorate another performance that has not been taken into consideration explicitly in

the design process. Hence, this chapter in particular studies robust performance controller

synthesis taking account of not only robust stability but also robust H∞ performance to

alleviate the possible oscillations in the responses of the resulting control systems. We

demonstrate effectiveness of such controller synthesis by a numerical example, and also by

control experiments with a cart inverted pendulum further.

This chapter is organized as follows. Section 3.2 reviews the basic ideas and frequency-

domain properties of static noncausal LPTV scaling. Section 3.3 discusses the flexibility

and effectiveness of noncausal LPTV scaling (compared with causal LPTV scaling, as well

as the conventional lifting-free scaling), and classifies their sources in relation to the exis-

tence of different types of uncertainty blocks. Section 3.4 presents a robust performance

controller synthesis method, as an extension of the robust stabilization method based on

static noncausal LPTV scaling. The effectiveness of such an extended synthesis method is

demonstrated with a numerical example in Section 3.5, in which it is also discussed how the

properties of noncausal LPTV scaling play an important role in the LPTV controller synthe-

sis for the robust performance problem. Effectiveness of the method is also demonstrated by

control experiments with a cart inverted pendulum in Section 3.6, as an example of actual

control problems.

3.2 Robust stability analysis based on static noncausal

LPTV scaling

This chapter aims at studying robust performance controller synthesis based on static

noncausal LPTV scaling reviewed in the preceding chapter. As a preliminary to such ar-

guments, this section briefly reviews what has been clarified about the scaling approach in

robust stability analysis of the feedback system Σ consisting of the nominal system G and

the uncertainty ∆ shown in Figure 2.3.

3.2.1 Separator-type theorem and static separators

Let us assume that the nominal system G is internally stable, finite-dimensional and LTI,

and the uncertainty ∆ belongs to a given set ∆ satisfying Assumption 2. Static noncausal

LPTV scaling can be naturally introduced through the lifting-based treatment [4],[5] of these

systems. We denote the lifted representations of G and ∆ by Ĝ and ∆̂, respectively, and
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the corresponding transfer matrices in the lifting-based framework by Ĝ(z) and ∆̂(z). Then,

regarding robust stability of the closed-loop system Σ , the following lifting-based separator-

type theorem holds.

Theorem 3.1 Suppose that G is internally stable, and ∆ satisfies Assumption 2. Then,

Σ is robustly (well-posed and) stable with respect to ∆ if there exists Θ̂ = Θ̂T such that[
I

Ĝ(z)

]∗

Θ̂

[
I

Ĝ(z)

]
≤ 0 (∀z ∈ ∂D), (3.1)[

∆̂(z)
I

]∗

Θ̂

[
∆̂(z)

I

]
> 0

(
∀∆ ∈ ∆,
∀z ∈ ∂D

)
, (3.2)

where ∂D := {z ∈ C : |z| = 1} denotes the unit circle.

This theorem is a restatement of Theorem 2.2 under the restriction on the matrix Θ̂ , called

a noncausal LPTV separator, which is taken to be static. With this theorem, we can analyze

robust stability of Σ for a given class ∆ through searching for the separator Θ̂ satisfying

(3.1) and (3.2). Such an approach to robust stability analysis is called static noncausal

LPTV scaling, since taking a general matrix Θ̂ corresponds to allowing a sort of noncausal

operations of signals if the treatment is interpreted in the lifting-free framework.

However, no noncausal operations arise in the special case when Θ̂ = (Θ̂)i,j=1,2 is re-

stricted to such a form that Θ̂ij (i, j = 1, 2) are block-diagonal matrices consisting of N

submatrices with size p × p. Such a separator is called a static causal LPTV separator, and

the approach to robust stability analysis with such separators is called static causal LPTV

scaling. Note that when N = 1, (static) noncausal LPTV scaling and (static) causal LPTV

scaling coincide with each other, and are nothing but the conventional (static) LTI scaling.

Noncausal LPTV scaling has remarkable frequency-domain properties that distinguish it

clearly from causal LPTV scaling. They will be summarized in the following subsection.

Remark 3.1 We could consider the dynamic (i.e., z-dependent) Θ̂(z) instead of Θ̂ in

inequalities (3.1) and (3.2), as introduced in the preceding chapter. However, we confine

ourselves to the case of the static separator Θ̂ in the controller synthesis studied in this

chapter unless stated otherwise. This is because the search of dynamic separators satisfying

these inequalities is more difficult, in general, especially in the case of controller synthesis.

Regarding robustness analysis, on the other hand, we will study a procedure of searching for

dynamic separators in Chapter 6.
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3.2.2 Frequency-domain properties of static noncausal LPTV scal-
ing

This subsection summarizes the remarkable properties of static noncausal LPTV scaling

reviewed in the preceding chapter, assuming for the moment that G and ∆ are LTI. Note

that G and ∆ then have transfer matrices, so that we could also study the robust stability

of Σ through the conditions (3.1) and (3.2) with Ĝ(z) and ∆̂(z) obtained by taking N = 1,

i.e., by dealing with Σ directly without applying lifting. We denote these transfer matrices

by G(ζ) and ∆(ζ), respectively, and the associated separator by Θ .

The following properties have been clarified about noncausal LPTV scaling [23].

(i) If there exists a separator Θ := (Θij)i,j=1,2 in the lifting-free approach satisfying the

conditions corresponding to inequalities (3.1) and (3.2), then the causal LPTV sepa-

rator

Θ̂ = (IN ⊗ Θij)i,j=1,2 (3.3)

satisfies (3.1) and (3.2) in the lifting-based approach, where ⊗ denotes the Kronecker

product of matrices.

(ii) If there exists a noncausal LPTV separator Θ̂ satisfying (3.1) and (3.2), then the

dynamic separator (recall Remark 3.1)

Θ(ζ) = T (ζ)∗Θ̂T (ζ),

T (ζ) = diag[Tp(ζ), Tp(ζ)], Tp(ζ) =


ζ−(N−1)Ip

...
ζ−1Ip

Ip

 (3.4)

in the lifting-free approach satisfies the conditions corresponding to inequalities (3.1)

and (3.2).

The first property implies that searching for a static noncausal LPTV separator in the lifting-

based analysis is, at least, as effective as searching for a static separator in the conventional

lifting-free LTI scaling. Furthermore, the second property implies that noncausal LPTV

scaling corresponds to dynamic LTI scaling if it is interpreted in the lifting-free approach.

Note that the latter is not the case for causal LPTV scaling, since the resulting Θ(ζ) then

degenerates to a constant matrix. Hence, these properties suggest that static noncausal

LPTV scaling is more effective than the conventional static LTI scaling.
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Note that this chapter studies the synthesis of LPTV controllers, and thus assuming G to

be LTI as above is not directly suited to the situations in the following arguments. However,

once we regard N -periodic systems as νN -periodic systems with some integer ν ≥ 2, the

properties (i) and (ii) mean that noncausal LPTV scaling is effective also for periodic systems.

This is because we could repeat the same arguments with N replaced by ν, if we start from

the LTI systems Ĝ and ∆̂.

3.3 Flexibility of noncausal LPTV scaling and the clas-

sification of its sources

The preceding section reviewed the frequency-domain properties of noncausal LPTV

scaling. These properties are closely related with the effectiveness of the design procedure

of LPTV controllers based on noncausal LPTV scaling, as will be discussed in Section 3.5.

Before such discussions, however, this section discusses another viewpoint: how the flexibility

of noncausal LPTV scaling can be earned by the aspect that the LTI uncertainties are dealt

with as the lifted form ∆̂. In particular, we classify the sources of the flexibility of noncausal

LPTV scaling (compared with causal LPTV scaling, which includes the conventional lifting-

free scaling as a special case) in relation to the existence of different types of blocks in

∆.

3.3.1 Flexibility of noncausal LPTV scaling

In this chapter, we confine ourselves to the separators of the (D,G)-scaling type [13]

given by

Θ̂ =

[
−γ2Wsq XG

XT
G Wsq

] (
Wsq > 0,
γ > 0

)
. (3.5)

Then, (3.2) simplifies to ‖∆̂(z)‖∞ < 1/γ, or equivalently ‖∆(ζ)‖∞ < 1/γ, ∀∆ ∈ ∆ if Wsq

and XG satisfy

Wsq∆̂(z) = ∆̂(z)Wsq, XT
G∆̂(z) + ∆̂(z)∗XG = 0. (3.6)

Hence, the basic idea for robust stability analysis is to search for Θ̂ with as small γ as possible

and with Wsq and XG satisfying (3.6), under the constraint (3.1). Now, let us observe how

noncausal LPTV scaling leads to crucial flexibility in the search of separators.

In the remainder of this chapter, we assume the structured LTI uncertainties described

by

∆(ζ) = diag[δ1Im1 , · · · , δSImS
,∆1, · · · ,∆F ,∆1(ζ), · · · ,∆Z(ζ)], (3.7)
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where δi ∈ R (i = 1, . . . , S), ∆i ∈ Rni×ni (i = 1, . . . , F ), ∆i(ζ) ∈ RHli×li
∞ (i = 1, . . . , Z)

and ‖∆(ζ)‖∞ < δ̄ for some δ̄ > 0. Although we have dealt with repeated dynamic blocks

δ1(s)Ir1 , . . . , δY (s)IrY
in (2.1) (in the continuous-time case), we considered that assuming

such blocks in the structured uncertainty is not realistic in actual problems, and omitted

them (i.e., took Y = 0) in (3.7). Instead, we have newly introduced (repeated and full types

of) static blocks in (3.7) that are considered to be natural to assume. For such structured

uncertainties, let us first consider the static causal LPTV separator of the (D,G)-scaling

type, which is (by definition) given by (3.5) with Wsq and XG restricted to the diagonal

forms

Wsq = diag[Wsq,0, · · · , Wsq,N−1], XG = diag[XG,0, · · · , XG,N−1]. (3.8)

Then, when mi = 1 (i = 1, . . . , S), for example, it is hard to find a nonzero XG satisfying

(3.6). This means that in such a case we can apply only D-scaling if we are to apply the

idea of causal LPTV scaling, whatever N we may take. Alternatively, when S = 0, F = 1

and Z = 0, it is hard to find Wsq satisfying (3.6) that is not a scalar times the identity, as

well as nonzero XG satisfying (3.6), regardless of N . This implies that no meaningful causal

LPTV scaling exists.

However, it is important to note that, even in the cases mentioned above, the lifted ∆̂

(after appropriate permutations of rows and columns) has blocks described as δiIN (i =

1, . . . , S) and IN ⊗∆i (i = 1, . . . , F ). Since XG and Wsq in noncausal LPTV scaling are free

from the diagonal structures in (3.8), we can immediately take XG that is nonzero, or Wsq

that is not a scalar times the identity under the constraint (3.6). This clearly demonstrates

the flexibility of noncausal LPTV scaling.

3.3.2 Classification of the sources of flexibility of noncausal LPTV
scaling

From the observations in the preceding subsection, we can give Table 3.1 showing whether

such more general forms of Wsq and XG, other than the block diagonal forms given in (3.8),

can indeed be taken under the constraint (3.6). The table is classified by the types of the

diagonal subblocks in the uncertainty ∆ in (3.7). In this table, ‘e’ denotes that introducing

noncausality into scaling is ‘effective’ in the sense that the existence of the corresponding type

of subblock always enables us to take non-block-diagonal Wsq or XG under the constraint

(3.6). When it is postfixed with ‘+’ in the consideration on XG, it means that the effectiveness

is quite marked in the sense that, without introducing noncausality into scaling, it would

have been restricted not only to a block-diagonal matrix but actually to the zero matrix.
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Table 3.1: Effectiveness earned by the flexibility of noncausal LPTV scaling
type of subblock Wsq XG

δiImi
(mi = 1) e e+

δiImi
(mi ≥ 2) e e
∆i e -

∆i(ζ) - -

Table 3.1 can be confirmed by observing general forms of Wsq and XG in the noncausal

LPTV separator Θ̂ of (3.5) satisfying (3.6), which are given by

Wsq = W T
sq ∈ RW , (3.9)

XG = −XT
G ∈ RX , (3.10)

where RW is the set of all matrices

RN =

R11 · · · R1N
...

. . .
...

RN1 · · · RNN

 , (3.11)

Rij = diag[R
(1)
ij , · · · , R

(S)
ij , r

(1)
ij In1 , · · · , r

(F )
ij InF

, ρ
(1)
ij Il1 , · · · , ρ

(Z)
ij IlZ ],

R
(k)
ij ∈ Rmk×mk , k = 1, . . . , S, (3.12)

with ρ
(k)
ij (k = 1, . . . , Z) being scalars such that ρ

(k)
ij = 0 (i 6= j) and ρ

(k)
11 = ρ

(k)
22 = · · · = ρ

(k)
NN .

Also, RX is the set of all RN with Rij replaced by

Rij = diag[R
(1)
ij , · · · , R

(S)
ij , 0n1 , · · · , 0nF

, 0l1 , · · · , 0lZ ]. (3.13)

The advantages in the frequency domain suggested in the preceding section have been

confirmed in [23] (and in the preceding chapter) with respect to numerical examples of robust

stability analysis. However, the observations leading to Table 3.1 about the lifted treatment

of ∆ and the relevant arguments (which include giving the explicit forms (3.9) and (3.10) of

Wsq and XG) in the present subsection have not been discussed explicitly; only flexibility in

some special case has been referred to (see Section 4.2 of [23]).

It is expected that these advantages can be exploited also in controller synthesis prob-

lems. The following section develops an explicit procedure of robust performance controller

synthesis based on static noncausal LPTV scaling.
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3.4 Robust H∞ performance controller synthesis based

on noncausal LPTV scaling

This section considers extending the robust stability analysis approach of static noncausal

LPTV scaling to robust controller synthesis. The most natural and simplest extension from

robust stability analysis is robust stabilization controller synthesis. One of our studies [24]

has discussed such a direct extension in detail, whose summary will be given in Subsec-

tion 3.4.1. However, as will be confirmed and discussed in Subsection 3.5.2, taking account

of only robust stability in controller synthesis may cause a problem that the responses of the

resulting control systems become quite oscillatory at an unacceptable level. To avoid this

problem, it is important to take account of not only robust stability but also robust H∞ per-

formance with some appropriate input-output settings aiming at alleviating the oscillations.

Hence, in Subsections 3.4.2 and 3.4.3, we further develop a robust performance controller

synthesis method based on static noncausal LPTV scaling.

3.4.1 Robust stabilization controller synthesis based on noncausal
LPTV scaling

Let us consider the closed-loop system shown in Figure 2.2, where P represents the LTI

generalized plant described by xk+1

zk

yk

 =

 A B1 B2

C1 D11 D12

C2 D21 D22

 xk

wk

uk

 , (3.14)

∆ represents the structured LTI uncertainty (3.7) belonging to the given uncertainty set ∆,

and Ψ represents the controller. We assume D22 = 0 without loss of generality. The robust

stabilization problem in this subsection is to design an N -periodic controller Ψ that robustly

stabilizes the closed-loop system (Figure 2.2) with respect to ∆.

Given the controller Ψ , we can check robust stability of the closed-loop system by The-

orem 3.1, through regarding the interconnection of P and Ψ as the nominal system G in

Figure 2.3; although G naturally becomes N -periodic, its N -lifted counterpart can be dealt

with in the same manner in Theorem 3.1, as that introduced in Section 3.2 (see the preceding

chapter for more details). The basic idea of robust stabilization controller synthesis based

on noncausal LPTV scaling is to apply the lifting technique (see Figure 3.1) and search for

not only a noncausal LPTV separator Θ̂ but also an LTI controller Ψ̂ of the form

q̂κ+1 = A
bΨ q̂κ + B

bΨ ŷκ,

ûκ = C
bΨ q̂κ + D

bΨ ŷκ, (3.15)
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Figure 3.1: Lifted representation of feedback system.

which corresponds to an N -periodic controller Ψ in the lifting-free framework, satisfying

inequalities (3.1) and (3.2). While (3.1) is relatively easy to deal with, (3.2) is generally

difficult to directly deal with, since the condition consists of infinitely many inequalities

with respect to ∆. To circumvent this difficulty, we confine separators to (D,G)-scaling type

(3.5). Then, (3.2) simplifies to ‖∆̂(z)‖∞ < 1/γ or equivalently ‖∆(ζ)‖∞ < 1/γ, provided

that Wsq and XG satisfy (3.6). We thus only have to solve the remaining condition (3.1), as

in the case of robust stability analysis, once separators are confined to (D,G)-scaling type

satisfying (3.6).

Remark 3.2 Note that since the controller Ψ̂ will be directly computed in the lifting-

based framework, the corresponding controller Ψ in the lifting-free framework may become

noncausal. We thus confine the direct feedthrough matrix D
bΨ of the controller Ψ̂ to an

appropriate set Dl of block lower triangle matrices in the following, to ensure the imple-

mentability of the corresponding Ψ as a causal LPTV controller.

For P in (3.14), let us denote its lifted representation P̂ by x̂κ+1

ẑκ

ŷκ

 =

 Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 D̂22


 x̂κ

ŵκ

ûκ

 . (3.16)

It is known that the strict form[
I

Ĝ(z)

]∗

Θ̂

[
I

Ĝ(z)

]
< 0 (∀z ∈ ∂D) (3.17)

of the inequality (3.1) can be reformulated as an LMI condition for controller synthesis [38],

[31], once the separator Θ̂ is fixed. This immediately leads us to the following theorem [24].
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Theorem 3.2 There exists a controller Ψ̂ , implementable as a causal LPTV controller Ψ

in Figure 2.2, such that Ĝ in Figure 3.1 is internally stable and satisfies (3.17), if and only

if there exist real matrices R ∈ Dl, P = P T , H = HT , J , X, Y , S, Q, F and L satisfying



P J ÂX + B̂2L Â + B̂2RĈ2 B̂1 + B̂2RD̂21 0

∗ H Q Y Â + FĈ2 Y B̂1 + FD̂21 0

∗ ∗ X + XT − P I + ST − J −(Ĉ1X+D̂12L)T XT
G (Ĉ1X + D̂12L)T Wsq

∗ ∗ ∗ Y + Y T − H −(Ĉ1+D̂12RĈ2)
T XT

G (Ĉ1 + D̂12RĈ2)
T Wsq

∗ ∗ ∗ ∗ γ2Wsq −H (D̂11+D̂12RD̂21)
T Wsq

∗ ∗ ∗ ∗ ∗ Wsq


>0,

H = He{XG(D̂11 + D̂12RD̂21)}. (3.18)

When the above inequality holds, S−Y X is nonsingular, and with any nonsingular matrices

V and U such that V U = S − Y X, one such controller Ψ̂ is given by

A
bΨ = A0

bΨ
− B0

bΨ
D̂22(I + D0

bΨ
D̂22)

−1C0
bΨ
, B

bΨ = B0
bΨ
− B0

bΨ
D̂22(I + D0

bΨ
D̂22)

−1D0
bΨ
,

C
bΨ = (I + D0

bΨ
D̂22)

−1C0
bΨ
, D

bΨ = (I + D0
bΨ
D̂22)

−1D0
bΨ
,[

A0
bΨ

B0
bΨ

C0
bΨ

D0
bΨ

]
=

[
V −1 −V −1Y B̂2

0 I

] [
Q − Y ÂX F

L R

] [
U−1 0

−Ĉ2XU−1 I

]
. (3.19)

To achieve better control performance, however, it is important to optimize not only

parameters for the controller Ψ̂ but also the separator Θ̂ , and this situation causes (3.18) to

be a bilinear matrix inequality (BMI). Since it is difficult to obtain an optimal solution to

BMIs, we solve it with an iterative method described as follows.

Robust stabilization controller synthesis method:

A1. Construct the lifted representation P̂ from P with the given N .

A2. With fixed Wsq and XG, search for R ∈ Dl, P , H, J , X, Y , S, Q, F and L in

(3.18) minimizing γ, through LMI optimization, where the initial Wsq and XG may be given

arbitrarily within the structures shown in the equations in Subsection 3.3.2 (e.g., Wsq = I,

XG = 0).

A3. Minimize γ with a bisection method with respect to (3.18) as follows: each time γ is

fixed, fix also X, L and R, and search for P , H, J , Y , S, Q, F , Wsq and XG satisfying (3.18)

within the above constraints on the structure of Wsq and XG.

A4. Repeat A2. and A3. to obtain as small γ as possible.
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3.4.2 Robust performance problem and its reduction to robust
stabilization problem

The preceding subsection discussed robust stabilization controller synthesis based on non-

causal LPTV scaling (associated with the feedback system shown in Figure 2.2). Let us next

consider the feedback system shown in Figure 3.2. In the figure, P denotes the generalized

plant represented by (3.14) with D22 = 0 and with w = [wT
u , wT

d ]T and z = [zT
u , zT

d ], where

wd and zd denote the disturbance input and the performance output, respectively. ∆u is

an uncertainty that lies in the given connected uncertainty set ∆u (3 0) such that every

∆u ∈ ∆u is finite-dimensional, LTI, and stable. The robust performance controller synthesis

problem in this chapter is to design an N -periodic controller Ψ that robustly stabilizes the

closed-loop system (Figure 3.2) for the uncertainty class ∆u and suppresses the worst-case

H∞-norm from wd to zd as much as possible.

Suppose we consider the lifted system shown in Figure 3.3, where P̂ , ∆̂u and Ψ̂ denote

the lifted representations of P , ∆u and Ψ , respectively. The stability of feedback systems

is retained by the application of lifting, and the H∞-norm of an LPTV system is equivalent

to that of the lifted equivalent LTI system. Hence, we can readily restate our problem into

that of designing the LTI controller (3.15) such that it robustly stabilizes the above lifted

feedback system and makes the worst-case H∞-norm from ŵd to ẑd less than γd for as small

γd > 0 as possible, provided that D
bΨ is confined to belong to an appropriate set Dl of block

lower triangle matrices ensuring the implementability of Ψ̂ as Ψ , a causal LPTV controller.

Since the mapping from ŵd to ẑd is LTI, it is known that the H∞-norm between ŵd

and ẑd is less than or equal to γd if and only if the closed-loop system obtained by letting

ŵd = ∆̂dẑd is stable for all ∆̂d ∈ ∆̂d, where ∆̂d denotes the set of all dynamic stable LTI ∆̂d

whose H∞-norm is less than 1/γd. Hence, by defining ∆̂ := diag[∆̂u, ∆̂d], we can reduce the

problem to that of designing Ψ̂ such that the system shown in Figure 3.1 is robustly stable

-wd
P -zd

-u y

zu

¾∆u

-wu

¾Ψ

Figure 3.2: Robust performance problem.
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Figure 3.3: Lifted representation of feedback system for robust performance problem.

with respect to ∆u ∈ ∆u and ∆̂d ∈ ∆̂d. This fact can be summarized as follows.

Theorem 3.3 Suppose the closed-loop system shown in Figure 3.3 is given. The H∞-norm

between ŵd and ẑd is less than or equal to γd for all ∆u ∈ ∆u such that ‖∆u‖∞ < 1/γu if

and only if the closed-loop system given by Figure 3.1 is robustly stable with respect to

{∆̂ = diag[∆̂u, ∆̂d]
∣∣ ∆u ∈ ∆u, ‖∆u‖∞ < 1/γu, ∆̂d ∈ ∆̂d}.

To facilitate the explanation of the basic idea for reducing the robust performance con-

troller synthesis problem to the robust stabilization controller synthesis problem, let us for

the moment replace ∆̂d with the set of the lifted representations of LTI ∆d whose H∞-norm

is less than 1/γd (even though it is in fact much smaller than the actual ∆̂d). Then, ∆̂ can be

regarded as the lifted representation of ∆ = diag[∆u,∆d], and once γd is fixed, appropriately

scaling the output (or input) signals of P allows us to assume without loss of generality that

the above ∆ = diag[∆u,∆d] is given by (3.7) for some δ̄ > 0. More precisely, by scaling the

output zd of P and the associated input of ∆d by the factors γu/γd and γd/γu, respectively,

and regarding the output-scaled generalized plant and the input-scaled uncertainty as P and

∆d, respectively, we can see that ∆ = diag[∆u,∆d] is given by (3.7) with δ = 1/γu and that

the corresponding ∆Z in (3.7) equals ∆d. This situation is compatible with the assumption

in the robust stability analysis of the closed-loop system via noncausal LPTV scaling.

In the above description of the basic idea, we have introduced some rough treatment of

∆̂d; it does not always correspond to the set of the lifted representations of LTI ∆d but

is related also to N -periodic dynamic ∆d, actually. Hence, we have to deal with periodic

and dynamic uncertainties when we consider exploiting noncausal LPTV scaling in robust

performance controller synthesis. Fortunately, noncausal LPTV scaling can in fact deal

with such uncertainties, too, as long as the freedom in the scaling is adequately restricted

about N -periodic uncertainty blocks; in the present situation, no scaling is allowed for the

N -periodic dynamic block ∆d (∆̂d ∈ ∆̂d). This constraint is indeed satisfied automatically
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by the form of ρ
(Z)
ij IlZ , i, j = 1, . . . , N in (3.12) and the restriction 0lZ in (3.13). Taking this

observation into account, the above reduction to robust stabilization controller synthesis

problem is rigorous even when we deal with such a synthesis problem through the lifting

technique to exploit noncausal LPTV scaling.

Following the basic idea shown above, we can construct an explicit robust performance

controller synthesis method based on static noncausal LPTV scaling, as will be described in

the following subsection.

3.4.3 Explicit procedure of robust performance controller synthe-
sis based on noncausal LPTV scaling

An explicit robust performance controller synthesis method based on noncausal LPTV

scaling is given in this subsection. A remark on its relationship with the robust stabilization

controller synthesis method in Subsection 3.4.1 will be given after stating the procedure.

Robust performance controller synthesis method:

B1. Initialization steps

B1-1. Denote the original given generalized plant (3.14) by the new symbol P0, and take

the initial γd > 0 and γ > γu large enough.

B1-2. Multiply the output zd of P0 by γ/γd (so that we can regard the norm of the

inversely scaled fictitious uncertainty to be less than 1/γ, rather than 1/γd). Denote, for

notational simplicity, the resulting scaled generalized plant by the same symbol P (which in

the beginning was used to denote the original generalized plant); we assume that (3.14) now

represents this modified P rather than the original P0. Construct the lifted representation

P̂ from the modified generalized plant with the given N .

B1-3. Consider the augmented structured uncertainty ∆ consisting of the plant uncertainty

∆u and the scaled fictitious uncertainty; when ∆ is described in the form (3.7), we assume

that the last block ∆Z(ζ) corresponds to the scaled fictitious uncertainty and that the norm

of ∆ is less than 1/γ (since 1/γ < 1/γu, this implies that we are taking account of only a

subset of ∆u at this initial stage).

B1-4. For the augmented structured uncertainty ∆, take the initial Wsq and XG arbitrarily

within the structures shown in the equations in Subsection 3.3.2 (e.g., Wsq = I, XG = 0).

B2. Robust stabilization steps

B2-1. Minimize γ with a bisection method with respect to (3.18) as follows: each time γ is

fixed,

(i) Apply Step B1-2. with the new γ;

(ii) Fix also Wsq and XG, and search for R ∈ Dl, P , H, J , X, Y , S, Q, F and L satisfying
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(3.18).

B2-2. Minimize γ with a bisection method with respect to (3.18) as follows: each time γ is

fixed,

(i) Apply Step B1-2. with the new γ;

(ii) Fix also X, L and R, and search for P , H, J , Y , S, Q, F , Wsq and XG satisfying

(3.18) within the constraints on the structure of Wsq and XG given by the equations in

Subsection 3.2.2.

B2-3. Repeat Steps B2-1. and B2-2. until γ ≤ γu is achieved. If this is achieved eventually,

it implies that robust stabilization with respect to ∆u (‖∆u‖∞ < 1/γu, ∀∆u ∈ ∆u) has been

succeeded in with the worst case H∞-performance less than the initial level γd, and thus let

γ = γu and go to the next step to optimize the worse case H∞-performance. Otherwise,

regard the robust performance controller synthesis problem to be infeasible with the present

method or the present initial γd, Wsq and XG.

B3. H∞-performance optimization steps

B3-1. Minimize γd with a bisection method1 as follows: (i) Take new γd > 0 determined

by the bisection scheme, and apply Step B1-2. with the new γd;

(ii) Fix γ, Wsq and XG, and search for R ∈ Dl, P , H, J , X, Y , S, Q, F and L satisfying

(3.18);

(iii) Repeat (i) and (ii) to minimize, by a bisection method, γd under the constraint that the

resulting (3.18) is feasible.

B3-2. Minimize γd with a bisection method as follows:

(i) Take new γd > 0 determined by the bisection scheme, and apply Step B1-2. with the new

γd;

(ii) Fix γ, X, L and R, and search for P , H, J , Y , S, Q, F , Wsq and XG satisfying

(3.18) within the constraints on the structure of Wsq and XG given by the equations in

Subsection 3.2.2;

(iii) Repeat (i) and (ii) to minimize, by a bisection method, γd under the constraint that the

resulting (3.18) is feasible.

B3-3. Repeat B3-1. and B3-2. to obtain as small γd as possible.

The above procedure leads to a robust performance controller Ψ̂ given by (3.19) such

that the worst-case H∞-performance is less than γd under the uncertainties ∆u.

Remark 3.3 In Steps B2-1., B2-2., B3-1. and B3-2. of the above procedure, it is repeatedly

required to apply Step B1-2. (in which the lifted representation P̂ is to be constructed from

1Unlike in Step B2-1., this bisection method is with respect to γd rather than γ. Similarly for Step B3-2.
below. Note that γ has been set to γu and will not be changed in Step B3.

36



the modified P in the respective stage). However, it is obvious that in each of these steps,

P̂ can actually be constructed simply by appropriately scaling the lifted representation P̂0

of the original generalized plant. Hence, it actually suffices to apply lifting only once for the

original P0.

This robust performance controller synthesis method is an extension of the robust stabi-

lization controller synthesis method shown in Subsection 3.4.1 in the following sense. First

of all, except for minor modifications, Steps B2-1. and B3-1. in this subsection correspond

to Step A2. in Subsection 3.4.1, while Steps B2-2. and B3-2. to Step A3. in Subsection 3.4.1.

Hence, an essential difference of the above robust performance synthesis method from the

one in Subsection 3.4.1 is that robust stabilization (without paying attention to robust per-

formance) is first achieved in Step B2., and then robust performance is improved in Step B3.

Because of this two stage structure, Step B2. only aims at reducing γ down to γu (rather

than minimizing γ), and this leads to minor modifications. On the other hand, Step B3.

aims at improving the robust performance level γd as much as possible. Hence, Step B3.

is essentially the same as Steps A2. to A4. in Subsection 3.4.1, even though their explicit

descriptions look rather different. This is simply because the target γd for minimization

in Steps B3. does not appear explicitly in the LMI (3.18), so that we had to describe the

explicit relation between γd and the LMI (3.18) in the above procedure.

3.5 Numerical example and discussions

This section shows with a numerical example the effectiveness of noncausal LPTV scaling

for robust controller synthesis. In particular, it is demonstrated that attempting not only

robust stabilization but also robust performance can successfully alleviate the oscillations in

the responses of the closed-loop system that are supposed to be descendent from the period-

icity of the controller. Furthermore, a methodology is suggested for monotonically improving

the performance of the closed-loop system through a sequential design procedure; it involves

a sequential increase of the period of the LPTV controller by an integer multiple, in which

the frequency-domain properties of noncausal LPTV scaling summarized in Subsection 3.2.2

play an important role for performance improvement.

3.5.1 Example: A simple mechanical system

This subsection first introduces a simple mechanical system as a numerical example

studied throughout this section. It consists of a rod whose mass can be neglected and a

point mass attached on one end of the rod. The other end of the rod is the pivot at which a
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torque τ can be applied to the rod as the control input, where the rod is assumed to rotate

within a vertical plane (see Figure 3.4). The length r of the rod is 0.2 and the nominal value

M of the point mass is 1. The control objective is to regulate around 0 the angle θ of the

rod from the vertically inverted attitude in the presence of the uncertainty in M .

The equation of motion for the above system is given by

τ + Mgr sin θ = Mr2θ̈, (3.20)

where g = 9.8 denotes the gravitational acceleration. We can obtain a continuous-time state

equation by linearizing (3.20) around (θ, θ̇) = (0, 0) and defining the state variables ξ1 := θ,

ξ2 := θ̇, the input u := τ and the output y := θ. By discretizing the associated transfer

function via the zero-order hold with sampling period Ts = 0.1 and realizing the result (with

states taken independently of ξ1 and ξ2), we can obtain[
x1,k+1

x2,k+1

]
=

[
0 1
−1 α

] [
x1,k

x2,k

]
+

[
0
1

]
uk, (3.21)

yk =
[
(α − 2)β (α − 2)β

] [
x1,k

x2,k

]
(3.22)

where α := e
√

g
r
Ts +e−

√
g
r
Ts and β := 1

2Mgr
. Since M in fact includes uncertainty, we consider

replacing β by β = (1 + δ)β0 with the real scalar uncertainty δ and the nominal value β0,

while the (nominal) value of α is denoted by α0. We then separate δ from (3.21) and (3.22)

so that the system can be described with the generalized plant

P :


0 1 0 0
−1 α0 0 1
β0 β0 0 0

(α0 − 2)β0 (α0 − 2)β0 α0 − 2 0

 (3.23)

and the uncertainty ∆u = δ.

θ

r Mg

τ

Figure 3.4: Simple mechanical system.
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3.5.2 Results of robust stabilization controller synthesis and dis-
cussions

In this subsection, we first design robust stabilization controllers for the uncertainties δ

such that |δ| < 1/γu for as small γu as possible, based on static noncausal LPTV scaling

through the method given in Subsection 3.4.1 with γ set to γu. The minimum value of γu

achieved by the LPTV controller based on noncausal LPTV scaling with each N is shown in

Table 3.2. In addition to γu, we also show γu,anal in Table 3.2 for each N , which denotes the

minimum value of γu for which robust stability of the closed-loop system with the designed

LPTV controller is ensured for the uncertainties |δ| < 1/γu through the ‘post-synthesis’

analysis based on static noncausal LPTV scaling with N = 6. Such analysis is introduced

here because the method for controller synthesis involves iterative solutions of LMIs and

thus is not ensured to lead to the theoretical minimum of γu. Hence, the minimum value of

γu obtained in the synthesis step is generally conservative, so that the mere comparison of

the values of γu for different values of N may not be meaningful enough. The comparison of

the values of γu,anal aims at alleviating the issue since the post-synthesis analysis is carried

out with a common value N = 6 regardless of N used in the synthesis step.

As shown in Table 3.2, the synthesis results based on noncausal LPTV scaling are surely

improved by increasing the period N of the controller. We stress here that such improvement

is earned not only (i) by the increase in the controller period or the associated expansion of the

controller classes but also (ii) by the enhanced ability of noncausal LPTV scaling with larger

N , whose frequency-domain interpretation has been provided in Subsection 3.2.2. Regarding

(i), it should be recalled that, because of the difficulty in simultaneously optimizing noncausal

LPTV scaling and the controller, the design results are not ensured to be globally optimal.

Hence, it is not an obvious theoretical consequence that increasing N leads to a better

result. This observation implies that the above point (ii) is indeed closely related with the

improvement that we have obtained by increasing N . This is because a larger N generally

gives a less conservative result for robust stability analysis under a fixed controller (recall

the relevant frequency-domain arguments in Section 3.2.2, that is, noncausal LPTV scaling

with larger N is more flexible), and this aspect is obviously inherited also to the case in

which noncausal LPTV scaling is employed in controller synthesis.

Table 3.2: Design results for robust stabilization with noncausal LPTV scaling
N 1 2 3 6
γu 2.0141 1.5936 1.4673 1.3546

γu,anal 2.0139 1.5934 1.4670 1.3546
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Figure 3.5: Initial value responses under the robust stabilization controller Ψ̂ with N = 6
when ξ(0) = [1, 0].

We also remark that the minimum value of γu obtained by the conventional D-scaling-

based µ-synthesis coincides with that for N = 1 in Table 3.2. This is obvious from the

following two facts: (i) no (dynamic) D-scaling is meaningful for the scalar uncertainty δ

here, so that µ-synthesis reduces to unscaled H∞ synthesis; (ii) when N = 1, static noncausal

LPTV (D,G)-scaling reduces to D-scaling for the scalar uncertainty δ (recall the relevant

arguments in Subsection 3.3.1), which also reduces to unscaled H∞ synthesis. Hence, we

can confirm through this example the effectiveness of noncausal LPTV scaling over the

conventional µ-synthesis approach in robust stabilization controller synthesis. In particular,

the best result γu,anal = 1.3546 with noncausal LPTV scaling is quite marked because µ-

synthesis can only achieve γu,anal = 2.0139.

However, feedback systems with periodic controllers often tend to produce oscillatory

responses, and the closed-loop systems with the controllers designed here are no exception.

In fact, the initial value responses of the 6-periodic feedback system, corresponding to the

value of γu,anal = 1.3546 in Table 3.2 obtained by total optimization in the synthesis step,

are shown in Figure 3.5, where we only consider the nominal case of δ = 0. They are

obviously unacceptable (even though terminating the optimization in the synthesis step at

a moderate level could somewhat reduce the oscillations). This seems to be attributed to

the fact that the periodicity of the LPTV controller excites the high frequency dynamics of

the plant and deteriorates the control performance that has not been taken explicitly into
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consideration in the controller synthesis. Thus, to sophisticate the synthesis method based

on noncausal LPTV scaling to a more practical one, we have to tackle the issue of alleviating

oscillatory responses. The following subsection demonstrates that the robust performance

controller synthesis method in Section 3.4 can surely alleviate the oscillatory responses while

retaining the effectiveness of noncausal LPTV scaling, provided that the method is applied

appropriately.

3.5.3 Results of robust performance controller synthesis and dis-
cussions

We have observed that robust stabilization with noncausal LPTV scaling could lead to the

oscillations in the responses of the closed-loop system, which are supposed to be descendent

from the periodicity of the controller itself. To alleviate such oscillations while exploiting

the advantages of noncausal LPTV scaling, we consider applying the robust performance

controller synthesis method presented in Section 3.4.

More precisely, we consider the generalized plant P for the robust performance problem

shown in Figure 3.6, where Pstab denotes the one used in the robust stabilization problem,

i.e., (3.23). Roughly speaking, this modified generalized plant takes the control input u as

the performance output zd. This is intended to be helpful in suppressing the oscillations

of the control input (see Figure 3.5), which are presumed to be the main cause in the

overall oscillatory responses of the closed-loop system. We also consider the disturbance

wd that contaminates the control input, and consider the problem of reducing the robust

H∞ performance from wd to zd. More precisely, we assume here that the uncertainties

satisfy |δ| < 1/γu for γu = 1.7, and consider minimizing the worse-case H∞ performance

for such uncertainties through the robust performance controller synthesis method based on

noncausal LPTV scaling presented in Section 3.4.

The initial value responses of the 6-periodic feedback system, obtained by minimizing the

robust H∞ performance with such synthesis, are shown in Figure 3.7 for the nominal value of

M and for the maximum and minimum values of the uncertainty δ. Compared with the re-

wu -

Pstab

-
zu

wd

?+h-+u q
-

-
y

-
zd

Figure 3.6: Generalized plant for robust performance problem.
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Figure 3.7: Initial value responses under the robust performance controller Ψ̂ with N = 6
when ξ(0) = [1, 0].

sponses shown in Figure 3.5, these responses demonstrate that the oscillations are drastically

suppressed. This implies that an adequate use of the robust stabilization controller synthesis

method with noncausal LPTV scaling (i.e., the method presented in Subsection 3.4.3) can

take account of robust performance issues too, and can thus give a practically attractive

controller. As we try to achieve robust stabilization for larger uncertainties, it may become

harder to suppress oscillatory responses, but what should be stressed here is our success in

achieving satisfactory closed-loop responses for such uncertainties for which the conventional

µ-synthesis fails to achieve even robust stabilization; recall that µ-synthesis can achieve ro-

bust stabilization only for |δ| < 1/γu = 0.4965 (with γu = 2.0139), which is much smaller

than the current value 1/γu = 0.5882 (with γu = 1.7).

Remark 3.4 It has been shown in [14],[50] that no LPTV controllers can outperform

LTI controllers in the H∞-norm minimization problem for LTI plants. The examples stud-

ied in this section by no means contradict this result. This is because the result of [14],

[50] is concerned only with the H∞-norm performance of a nominal system (i.e., without

uncertainties), or equivalently, the robust stability problem for unstructured dynamic un-

certainties. The problems we have studied in this section involve an uncertainty that is

static. Furthermore, the robust performance problem in this subsection considers both the

uncertainties of the plant and the closed-loop performance, and thus leads equivalently to a

42



structured uncertainty (see Theorem 3.3). The results of the above examples are in fact quite

natural since, for static and/or structured uncertainties, it is well known (see, e.g., [26]) that

LPTV controllers could often outperform LTI controllers.

3.5.4 Remark on extension to sequential design procedure

It is obvious that the powerful properties of noncausal LPTV scaling reviewed in Sub-

section 3.2.2 and discussed in Section 3.3, which played an important role in the robust

stabilization controller synthesis in Subsection 3.5.2, are inherited also to the case of robust

performance controller synthesis. These properties can be exploited further, for example,

when we sequentially increase the period of the LPTV controller by an integer multiple (i.e.,

ν × N for some ν ≥ 2). Indeed, we can make the H∞ performance monotonically improved

(or non-degraded, more precisely speaking) by an appropriate choice of the initial separator

for the νN -periodic controller design, in spite of the use of an iterative design procedure

without guaranteed global optimality.

This can be seen from the following two facts: (i) if there exists Θ̂ ensuring a certain level

of robust performance under the N -periodic controller Ψ , then by the property (i) stated in

Subsection 3.2.2, it follows that the separator (Iν ⊗ Θ̂ij)i,j=1,2 under the lifting period νN

ensures the same level of robust performance for the same controller viewed as a νN -periodic

controller (denoted by Ψν); (ii) under a fixed separator, Theorem 3.2 gives a necessary and

sufficient condition for the existence of a controller satisfying the required conditions, and

hence a controller achieving at least the same level of robust performance as the above Ψν

can surely be designed on the basis of Theorem 3.2 by taking the separator (Iν ⊗ Θ̂ij)i,j=1,2.

3.6 Demonstrating effectiveness of noncausal LPTV scal-

ing through experiments

In the preceding section, we demonstrated by a simple numerical example the effectiveness

of the robust performance controller synthesis method based on static noncausal LPTV

scaling developed in Section 3.4. In this section, we further demonstrate the effectiveness by

control experiments with a cart inverted pendulum.

3.6.1 Model of cart inverted pendulum

We show in Figure 3.8 a schematic picture of the cart inverted pendulum used for demon-

strating the effectiveness of our robust performance controller synthesis approach. In this

picture, the cart can move along a horizontal line driven with a DC motor, and r denotes
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Figure 3.8: Schematic picture of cart inverted pendulum.

the distance of the cart from its initial position. The pendulum attached on the cart can

rotate within the upper-half vertical plane including the horizontal line along which the cart

can move, and θ denotes the angle of the pendulum from the vertically inverted attitude.

The current i of the DC motor is controlled by an inner-loop PI controller. For simplicity,

we assume that the current i immediately follows the reference input of the PI controller,

and identify the latter outer-loop control input with the current i.

When we take the state vector xc = [r, θ, ṙ, θ̇] and the control input uc = i, the state

equation of the cart inverted pendulum can be described as

ẋc = Acxc + Bcuc,

Ac =


0 0 1 0
0 0 0 1

0 −m2l2g
X

−fc

X
(Jp + ml2) cml

X

0 mgl
X

(Mc + m + Jc

r2
c
) fcml

X
− c

X
(Mc + m + Jc

r2
c
)

 ,

Bc =


0
0

a
X

(Jp + ml2)
−mla

X

 , (3.24)

where X = kMcJp + Mcml2 + mJp + JcJp/r
2
c + Jcml2/r2

c (see Table 3.3 for the meaning of

each parameter, and its actual value for the case l = 0.2 m).

Remark 3.5 In the actual situation, the kinetic friction force Fc sgn(ṙ) would arise to the

cart against the direction of its movement. To cancel this force in the experiments, we add

Fc sgn(ṙ)/a to the control input generated by the controller.

We suppose that the pendulum length includes uncertainty, and is represented by 2(1 + δ)l

with an uncertain parameter δ. Then, the parameters depending on the pendulum length
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Table 3.3: Parameters of the cart inverted pendulum under pendulum length 2l = 0.4 m
Physical quantity Notation and value

Length from the pivot to the
center of the pendulum l = 0.200 m

Mass of the pendulum m = 5.36 × 10−2 kg
Mass of the cart Mc = 0.686 kg

Radius of the wheels rc = 2.49 × 10−2 m

Gain from the current of the DC
motor to the force to the cart a = 1.92 N/A

Moment of inertia of the wheels
and the armature of the motor Jc = 1.34 × 10−4 kg · m2

Moment of inertia of the pendulum
around the center Jp = 7.15 × 10−4 kg · m2

Equivalent viscous friction coefficient
in the direction of the cart movement fc = 0.360 kg/s

Viscous friction coefficient of the shaft
between the cart and the pendulum c = 1.50 × 10−3 kg · m2/s

Acceleration of gravity g = 9.807 m/s2

in (3.24) (i.e., l, m and Jp) are supposed to be replaced by the associated representations

including δ. Under this treatment, we extract the uncertain part from (3.24), and con-

struct a model represented by the linear fractional transformation consisting of the following

continuous-time generalized plant Pc and ∆c.

Pc :


ẋc = Acxc + Bc1wc + Bc2uc

zc = Cc1xc + Dc11wc + Dc12uc

yc = Cc2xc

(3.25)

∆c : wc = δI5zc (3.26)

Since noncausal LPTV scaling is to be applied for discrete-time systems, we discretize (3.25)

and (3.26). For simplicity, we apply the zero-order hold discretization with sampling period

0.01 s, which is determined by the hardware.

Our cart inverted pendulum actually has three choices 0.3 m, 0.4 m and 0.5 m for the

pendulum length. In this chapter, we regard the variation in the pendulum length as the

uncertainty, and consider designing a single controller independent of the pendulum length.

We take 0.4 m as the nominal value of the pendulum length 2l, and consider the (discrete-

time) uncertainty set

∆u :=
{
∆u | ∆u = δI5, |δ| < δ̄

}
(3.27)

for a given δ̄ satisfying δ̄ > 0.25. Since the uncertain representation 2(1+δ)l of the pendulum
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length covers all the three choices for the pendulum length under this set, it suffices for us to

design a controller that robustly stabilizes the closed-loop system for the above ∆u (assuming

that the effect of discretizing ∆c into ∆u can be ignored).

3.6.2 Generalized plant and controller synthesis

This section demonstrates the effectiveness of robust controller synthesis based on non-

causal LPTV scaling through experiments with the cart inverted pendulum. As a step

toward such discussions, this subsection first introduces a generalized plant suitable for our

controller synthesis, based on the model given in the preceding subsection.

Let us consider the generalized plant shown in Figure 3.9 for robust performance con-

troller synthesis. The system Pstab in the figure denotes the discrete-time counterpart of

the continuous-time generalized plant Pc given in the preceding subsection. We suppose

that a disturbance contaminates the control input u. We denote the disturbance by wd in

Figure 3.9, which is scaled by the weight q1 for adjusting its ratio to u. As the control

output zd for the generalized plant, we take the sum of the control input contaminated by

the disturbance and the state x of Pstab evaluated through the weight qT
2 . Taking such wd

and zd for robust H∞ performance is expected to lead to controllers adequately suppressing

the control input and state responses. We next discuss how to adjust the weights q1 and qT
2

to have satisfactory performance.

Regarding q1, we take q1 = 0.01 since the disturbance wd seems relatively small compared

with the input u.

Regarding qT
2 , we consider taking its first entry large enough to suppress the response

of the cart position r. However, only taking account of the response of r often causes

unacceptable oscillations in the response of θ, which seems to be sensitively induced by the

movement of the cart. To avoid this problem, we also take the third entry of qT
2 large enough

to suppress the response of the velocity ṙ. The second and fourth entries of qT
2 are also

adjusted simultaneously to suppress the responses of the angle θ and the angular velocity

u -
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-
Pstab

wu -
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Figure 3.9: Generalized plant for suppressing control input and state responses.
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θ̇ directly. Following these ideas, we tuned the value of qT
2 in a trial-and-error fashion; for

fixed qT
2 , we designed robust performance controllers with N = 1, 2 and 4, all with the initial

value of the separator given by Wsq = I and XG = 0, and compared the design results

through simulations. After a trial-and-error process for tuning qT
2 , we found an adequate

weight qT
2 = [1.3, 0.5, 1.0, 0.5] for our design. Under this qT

2 , the control input is kept, for

most of the times, within the range of the current that the motor can accept without causing

saturation (approximately between −1.4 A and 1.4 A), and the oscillations of r and θ are

adequately suppressed for all of N = 1, 2 and 4.

Having introduced a generalized plant independent of the lifting period N suitable for our

design as described above, we take only the results for N = 1 (discarding those for N = 2 and

4) and initiate our design of robust performance controllers based on noncausal LPTV scaling

with the lifting period N = 2 and 4 as discussed in Subsection 3.5.4. Then, we obtained

the minimum values of γd as shown in Table 3.4. We can see that the results monotonically

improve (at least do not degrade) as N is increased, as is theoretically guaranteed. The

minimum values of γd obtained at the synthesis stage could be conservative, in general,

because of the use of an iterative method. Hence, Table 3.4 also shows γd,anal, which is the

minimum value of γd for which robust stability of the closed-loop system with the designed

controller is ensured; this is obtained by the analysis based on noncausal LPTV scaling with

N = 4 (regardless of N used in the controller synthesis).

Table 3.4: Design results by noncausal LPTV scaling

N 1 2 4 4∗

γd 1.373 0.451 0.451 0.451
γd,anal 0.122 0.041 0.046 0.055

3.6.3 Robust performance control experiments

With the controllers of N = 1, 2 and 4 designed in the preceding subsection, we performed

control experiments, and confirmed that all the controllers successfully kept the pendulum

in an inverted position when its length is 0.4m. The obtained time responses of r and θ

under the LTI controller (i.e., N = 1) are shown in Figure 3.10 with dashed lines. As shown

in this figure, r and θ continued to oscillate in the experiment, even after a sufficiently long

time. To evaluate these oscillations quantitatively, we show in Table 3.5(a) the standard

deviations of r and θ calculated from the data of their time responses from 10 to 60 s.
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Figure 3.10: Experiment results of r and θ.

By the advantage of noncausal LPTV scaling, it is expected that the control performance

monotonically improves by increasing N . However, Table 3.5(a) shows a sort of mismatch

against this expectation in the comparison between the cases of N = 2 and 4 (the result of

N = 2 looks better than that of N = 4). To find the cause of this outcome, we examined the

responses of the feedback systems in experiments, and found that the control input u in the

case of N = 4 seriously exceeded the acceptable range of the current (see Figure 3.11(a)).

Since the values of r and θ obtained at each sampling instant inevitably include noises, the

cause could be attributed to some of the gains in the designed controller whose absolute
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values are relatively large; the input u would become quite sensitive to the noises in the

sampled values associated with such gains, and could easily exceed the acceptable range. In

fact, the absolute values of some entries in the direct feedthrough matrix D
bΨ were quite large

in the case of N = 4, compared with the cases of N = 1 and 2. We presumed that this is

the essential reason why the performance deteriorated in N = 4, and considered restricting

the direct feedthrough matrix D
bΨ for the case of N = 4 so that the absolute values of its

entries do not exceed 1000. We refer to the controller obtained through such a restriction,

which can be handled directly by dealing with an associated constraint on R in the LMI

condition, as the controller with N = 4∗. The response of u under this controller shown in

Figure 3.11(b) successfully lies within the acceptable range of the current. Furthermore, the

corresponding responses of r and θ, shown in Figure 3.10 with solid lines, are successfully

suppressed in terms of the amplitudes, compared with the cases of N = 1 and N = 2; see

their standard deviations shown in Table 3.5(a).

To demonstrate robustness of the feedback systems, we further performed control exper-

iments changing the pendulum length into 0.3m and 0.5m. Then, we confirmed that all

the four controllers designed so far successfully kept the pendulum in an inverted position

even for these different pendulums. Tables 3.5(b) and 3.5(c) show the standard deviations

of r and θ in the experiments for the pendulum length 0.3m and 0.5m, respectively. From

Table 3.5, we could say that the controller N = 4∗ has achieved the highest performance

among the four controllers, and that it has achieved almost the same performance, regardless

of the pendulum length.

Table 3.5: Experiment results: Standard deviations of r and θ

(a) Pendulum length 0.4m

N 1 2 4 4∗

r 13.571 cm 4.486 cm 5.310 cm 3.958 cm
θ 0.784◦ 0.603◦ 0.729◦ 0.343◦

(b) Pendulum length 0.3m

N 1 2 4 4∗

r 15.433 cm 3.857 cm 7.234 cm 4.115 cm
θ 1.138◦ 0.753◦ 0.818◦ 0.454◦

(c) Pendulum length 0.5m

N 1 2 4 4∗

r 17.721 cm 4.678 cm 6.793 cm 3.936 cm
θ 1.132◦ 0.580◦ 0.747◦ 0.532◦
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Figure 3.11: Experiment results of u.

3.7 Concluding remarks

In this chapter, we first reviewed the properties of static noncausal LPTV scaling in

robust stability analysis. The properties are indeed effective also for robust stabilization

controller synthesis. However, it was observed in this chapter that the synthesis taking

account of only robust stabilization may suffer from some drawback; the designed controllers

may produce oscillations in the closed-loop system responses because of their own periodicity.

To alleviate such oscillations and have satisfactory performance, this chapter also discussed

robust performance controller synthesis based on static noncausal LPTV scaling. More

precisely, we showed that an adjusted use of the robust stabilization controller synthesis

method can deal with robust performance controller synthesis. Then, we demonstrated

with a numerical example that, through such a robust performance controller synthesis

method, a practical design of LPTV controllers can be achieved for such uncertainties for

which µ-synthesis with LTI controllers fails to achieve even robust stabilization. We further

demonstrated the effectiveness of the developed synthesis method by control experiments

with a cart inverted pendulum.
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Chapter 4

Properties of Noncausal LPTV
Scaling and Their Relationship with
Lifting Timing

4.1 Introduction

In this chapter, we discuss properties of discrete-time noncausal LPTV scaling. The lift-

ing technique enables us to treat discrete-time LPTV systems as if they were LTI. Hence,

given an LPTV system (or an LTI system as a special case), we can analyze its robust stabil-

ity by applying the separator-type robust stability theorem (see Theorem 2.2) to the lifted

LTI system. Noncausal LPTV scaling is an idea that can be introduced quite naturally in

such an analysis by allowing some noncausal operations of signals through the lifting-based

treatment. Noncausality thus introduced in the scaling approach has been demonstrated to

be effective for reducing the conservativeness in the robustness analysis of LTI and LPTV

systems both theoretically and numerically, as reviewed in Chapter 2. In particular, as far as

LTI systems are concerned, it has been proved that even if we confine ourselves to static non-

causal LPTV scaling, it induces some dynamic causal LTI scaling when it is interpreted in

the lifting-free (i.e., conventional) treatment. This property endows (even static) noncausal

LPTV scaling with a promising ability in achieving less conservative analysis, in spite of its

simple treatment. Such a feature of noncausal LPTV scaling can be exploited also in the

development of robust controller synthesis methods, and their effectiveness has been demon-

strated by numerical examples and also control experiments, as discussed in the preceding

chapter.

Despite the promising properties on the practical side of noncausal LPTV scaling de-

scribed above as a new approach to robust control, however, its comprehensive properties

have not necessarily been revealed entirely. The missing arguments include, e.g., the char-
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acterization of the class of dynamic causal LTI scaling in the lifting-free treatment that can

equivalently be dealt with by working instead on static noncausal LPTV scaling in the lifting-

based treatment; or what theoretical differences there are between noncausal LPTV scaling

and the conventional causal LTI scaling. These issues must be resolved for further clarifying

the advantages (or drawbacks) of noncausal LPTV scaling compared with the conventional

method and thus establishing a further solid theoretical basis for noncausal LPTV scaling.

This chapter aims at making a step forward to such issues by clarifying further properties of

noncausal LPTV scaling. In particular, as a key idea, we introduce the notion of the timing

of lifting into the framework of noncausal LPTV scaling. The effect of shifting the lifting

timing can be studied easily by using what we call the timing-shift matrix, and thus this ma-

trix plays an important role throughout the chapter. More precisely, this chapter introduces

through this matrix the notion called shift invariance (with respect to lifting timing) of the

separator in the robust stability theorem, as well as that notion of a class of separators. It

is then shown that this notion plays a crucial role in revealing the properties of noncausal

LPTV scaling through its theoretical comparisons with causal LPTV scaling and causal LTI

scaling.

This chapter is organized as follows. Section 4.2 confines itself to the robust stability

analysis of LTI systems, and revisits and slightly extends the existing results about the re-

lationship between causal/noncausal LPTV scaling and the conventional causal LTI scaling.

Section 4.3 introduces the timing shift about lifting and the timing-shift matrix, as well as

the shift invariance notion of a separator and a class of separators, and then discusses the

implication of the presence (or lack) of shift invariance on the properties of noncausal LPTV

scaling. Section 4.4 introduces shift-invariant reconstruction of a given class of noncausal

LPTV separators that is not necessarily shift-invariant, and shows an important equiva-

lence relationship between the two approaches: one is noncausal LPTV scaling with the

reconstructed class of separators, while the other is the dynamic causal LTI scaling (in the

lifting-free framework) with the associated separator class induced by the given class of non-

causal LPTV separators. The implication of such a relationship is further discussed, and

important observations are given on the properties of noncausal LPTV scaling.

In the following arguments, if the separator Θ̂(z) satisfies (2.13) and (2.14) in lifting-

based Theorem 2.2, then we say that it is eligible with respect to (2.13) and (2.14) (or simply

in the lifting-based framework). Similarly, if Θ(ζ) satisfies (2.15) and (2.16) in lifting-free

Theorem 2.3, then we say that it is eligible with respect to (2.15) and (2.16) (or in the lifting-

free framework). In addition, if there exists an eligible Θ(ζ) ∈ Θ(ζ) (or Θ̂(z) ∈ Θ̂(z)), then

we say that the separator class Θ(ζ) (or Θ̂(z)) is eligible.
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4.2 Revisit to noncausal LPTV scaling applied to LTI

systems

This chapter discusses the properties of noncausal LPTV scaling that follows naturally

from Theorem 2.2 as a method for robust stability analysis, where we place particular em-

phasis on (but do not limit our attention exclusively to) the case when Σ is LTI. In that

case, we have two alternatives for robust stability analysis: lifting-based framework (i.e.,

noncausal LPTV scaling) and lifting-free framework (i.e., the conventional causal LTI scal-

ing). Whichever framework one may take, however, it is generally difficult to search for

eligible separators, and thus one often introduces some tractable class of separators within

which the search of eligible separators is to be carried out. It should be remarked that, under

such a restrictive search, inequalities (2.13) and (2.14) as well as (2.15) and (2.16) in these

theorems become a conservative sufficient condition for robust stability. With this in mind,

this chapter aims at studying the properties of noncausal LPTV scaling that are expected

to be useful in clarifying its ability in reducing the aforementioned conservativeness in the

analysis, particularly in comparison with the conventional causal LTI scaling.

To facilitate the arguments that motivate the study in the remainder of this chapter, this

section first introduces some important results suggesting possible advantages of noncausal

LPTV scaling over causal LTI scaling, assuming that both the nominal system G and the

uncertainty ∆ in the closed-loop system Σ (Figure 2.3) are stable and LTI. Some of these

results have in fact been reported in existing studies (with or without proof), but such

remarks will be deferred to the end of this section to avoid distracting the attention of the

reader. Instead, we opt to suggest immediately after these results some open problems that

are not covered by these results. These problems will motivate further discussions about the

properties of noncausal LPTV scaling studied in the remainder of this chapter.

The first result is as follows.

Theorem 4.1 Suppose that G is LTI, and ∆ satisfies Assumption 2. If there exists an

eligible causal LTI separator Θ(ζ) in the lifting-free framework, there exists an eligible causal

LPTV separator Θ̂(z) in the lifting-based framework. In particular, if a causal LTI separator

given by

Θ(ζ) = (Θij(ζ))i,j=1,2 = (Vi(ζ)ΛVj(ζ))i,j=1,2 (4.1)

in the lifting-free framework is eligible, the separator

Θ̂(z) =

(
1

N
V̂i(z)∗Λ̂V̂j(z)

)
i,j=1,2

(4.2)

is eligible in the lifting-based framework.
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Proof. Let φ := exp(2πi/N), where i denotes the imaginary unit. Let us define the matrix

Up(ζ) :=
1√
N

[
Tp(ζ) Tp(φζ) · · · Tp(φ

N−1ζ)
]
, (4.3)

where Tp(ζ) is given by (2.30). It follows that Up(ζ) is a unitary matrix for ζ ∈ ∂D. Since

Ĝ(ζN)Tp(ζ) = Tp(ζ)G(ζ) (4.4)

holds [40],[5], we immediately see that

Ĝ(ζN)Up(ζ) = Up(ζ)G(ζ), (4.5)

where given a ζ-dependent matrix M(ζ), we use the shorthand notation

M(ζ) = diag[M(ζ),M(φζ), · · · ,M(φN−1ζ)]. (4.6)

We now proceed to the proof. Let us take an eligible causal LTI separator given by (4.1),

where V1 and V2 are LTI systems with p inputs. Since it satisfies (2.15) and (2.16) and since

φ ∈ ∂D, it also satisfies these two inequalities with ζ replaced by φiζ (i = 1, . . . , N − 1). In

other words, we have[
I

G(ζ)

]∗

Θ(ζ)

[
I

G(ζ)

]
≤ 0 (∀ζ ∈ ∂D), (4.7)[

∆(ζ)
I

]∗

Θ(ζ)

[
∆(ζ)

I

]
> 0

(
∀∆ ∈ ∆,
∀ζ ∈ ∂D

)
. (4.8)

Through appropriate permutations of rows and columns, (4.7) and (4.8) are equivalently

transformed into[
I

G(ζ)

]∗ (
Θij(ζ)

)
i,j=1,2

[
I

G(ζ)

]
≤ 0 (∀ζ ∈ ∂D), (4.9)[

∆(ζ)

I

]∗ (
Θij(ζ)

)
i,j=1,2

[
∆(ζ)

I

]
> 0

(
∀∆ ∈ ∆,
∀ζ ∈ ∂D

)
. (4.10)

Let us define

U(ζ) = diag[Up(ζ), Up(ζ)]. (4.11)

Then, by applying the congruence transformation with Up(ζ)∗ on (4.9) and (4.10), and by

noting the relation (4.5), we have[
I

Ĝ(ζN)

]∗

U(ζ)Θ(ζ)U(ζ)∗
[

I

Ĝ(ζN)

]
≤ 0 (∀ζ ∈ ∂D), (4.12)[

∆̂(ζN)
I

]∗

U(ζ)Θ(ζ)U(ζ)∗
[
∆̂(ζN)

I

]
> 0

(
∀∆ ∈ ∆,
∀ζ ∈ ∂D

)
. (4.13)
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Regarding the separator in (4.12) and (4.13), we have the following again from (4.5).

Up(ζ)Θij(ζ)Up(ζ)∗ =Up(ζ)Vi(ζ)∗ΛVj(ζ)Up(ζ)∗

=V̂i(ζ
N)∗Up(ζ)ΛUp(ζ)∗V̂j(ζ

N)

=V̂i(ζ
N)∗Λ̂Up(ζ)Up(ζ)∗V̂j(ζ

N)

=V̂i(ζ
N)∗Λ̂V̂j(ζ

N) (∀ζ ∈ ∂D). (4.14)

This implies that the separator (4.2) is eligible in the lifting-based framework. Q.E.D.

An important implication of the above theorem is that if we apply causal/noncausal

LPTV scaling to LTI systems, we can perform at least as good robust stability analysis

as causal LTI scaling. The separator in the lifting-based framework given in this theorem,

i.e., (4.2), satisfies the requirement in Definition 2.2 in a particular way, that is, with LTI

systems V1 and V2, and with the constraint Λi = Λj (i, j = 1, . . . , N). Hence, we refer to the

separator of the form (4.2) constructed from the causal LTI separator (4.1) (in the lifting-free

framework) as an equivalent causal LTI separator in the lifting-based framework. We denote

such an embedding mapping from (4.1) to (4.2) by Θ̂(z) = Ê[Θ(ζ)]. Similarly, we call

the treatment with such separators causal LTI scaling in the lifting-based framework. The

validity of introducing such terms can be verified in a strong sense since not only Theorem 4.1

but also a sort of its converse holds as follows.

Theorem 4.2 Suppose that G is LTI, ∆ satisfies Assumption 2, and a causal LTI separator

Θ(ζ) described by (4.1) is given. If the embedded separator Θ̂(z) = Ê[Θ(ζ)] equivalent to

Θ(ζ) is eligible in the lifting-based framework, Θ(ζ) is eligible in the lifting-free framework.

Proof. Suppose that Θ̂(z) = Ê[Θ(ζ)] given by (4.2) satisfies (2.13) and (2.14). Then,

by post-multiplying (resp. pre-multiplying) these inequalities with Tp(ζ) (resp. its complex

conjugate transpose) and by noting (4.4), we have[
I

G(ζ)

]∗

ΘTp(ζ)

[
I

G(ζ)

]
≤ 0 (∀ζ ∈ ∂D), (4.15)[

∆(ζ)
I

]∗

ΘTp(ζ)

[
∆(ζ)

I

]
> 0

(
∀∆ ∈ ∆,
∀ζ ∈ ∂D

)
, (4.16)

where

ΘTp(ζ) =

(
1

N
Tp(ζ)∗V̂i(ζ

N)∗Λ̂V̂j(ζ
N)Tp(ζ)

)
i,j=1,2

. (4.17)
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Regarding the above separator ΘTp(ζ), we have

1

N
Vi(ζ)∗Tp(ζ)∗Λ̂Tp(ζ)Vj(ζ) = Vi(ζ)∗ΛVj(ζ) (∀ζ ∈ ∂D) (4.18)

by (4.4), since V̂i (i = 1, 2) are the lifted representations of the LTI systems Vi (i = 1, 2),

and Λ̂ = diag[Λ, · · · ,Λ]. That is, ΘTp(ζ) is nothing but the causal LTI separator in the

lifting-free framework underlying (4.2). This completes the proof. Q.E.D.

Remark 4.1 Even though this section is confined to the case of LTI Σ , we can similarly

define causal LTI scaling for LPTV systems; such scaling refers to the approach in the lifting-

based framework that uses only equivalent causal LTI separators constructed from causal

LTI separators in the lifting-free framework. The properties of causal LTI scaling for LPTV

systems will be discussed in Section 4.3.

The following is another important result closely related to the advantage of noncausal

LPTV scaling over causal LTI scaling.

Theorem 4.3 Suppose that G is LTI, and ∆ satisfies Assumption 2. If a noncausal LPTV

separator Θ̂(z) is eligible in the lifting-based framework, the causal LTI separator

Θ(ζ) = T (ζ)∗Θ̂(ζN)T (ζ) (4.19)

is eligible in the lifting-free framework, where T (ζ) is given by (2.30).

Proof. It can be confirmed by post-multiplying (resp. pre-multiplying) (2.13) and (2.14)

with T (ζ) (resp. its complex conjugate transpose) and by noting (4.4), under z = ζN .

Q.E.D.

This theorem implies that if we find an eligible separator Θ̂(z) in the lifting-based framework,

it immediately means that we have also found an eligible separator Θ(ζ) in the lifting-free

framework. In particular, even if we were to confine ourselves to the search of static noncausal

LPTV separators Θ̂ (which is nothing but a constant matrix) in the lifting-based framework,

it would induce some frequency-dependent scaling (i.e., dynamic causal LTI scaling) in the

lifting-free framework (recall Theorem 2.5).

However, Theorems 4.1 and 4.3 alone are deficient in the theoretical depth for affirming

the above prospect. In other words, the properties of noncausal LPTV scaling have not been
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revealed completely, and there still remain important issues that should be investigated much

further. For example, let us take a class Θ̂
noncausal

0 (z) of noncausal LPTV separators, and

denote by

Θ(ζ) :=
{
T (ζ)∗Θ̂(ζN)T (ζ)

∣∣ Θ̂(z) ∈ Θ̂
noncausal

0 (z)
}

(4.20)

the class of separators Θ(ζ) in the lifting-free framework given by (4.19) with Θ̂(z) ∈
Θ̂

noncausal

0 (z). An important unresolved issue is whether the eligibility of the class Θ(ζ)

always implies that of the original class Θ̂
noncausal

0 (z), or to put it another way, whether it

is ensured that we can convert the problem of searching for an eligible Θ(ζ) ∈ Θ(ζ) equiva-

lently into that of searching for an eligible noncausal LPTV separator Θ̂(z) ∈ Θ̂
noncausal

0 (z).

If this question has an affirmative answer, then the prospect mentioned above is also resolved

affirmatively by taking Θ̂
noncausal

0 (z) to be the set of static separators.

This chapter aims at making a step forward to answering the question raised above by

revealing further properties of noncausal LPTV scaling. To proceed in that direction, the

idea of shifting the timing of lifting (timing-shift of lifting) plays a crucial role. Hence, we

first study in the following section some fundamental properties of noncausal LPTV scaling

with respect to the timing-shift of lifting, where we deal with N -periodic systems as well

as LTI systems. We then proceed the arguments about the timing-shift in Section 4.4 for

the special case when Σ is LTI. In particular, we discuss further relationship and difference

between noncausal LPTV scaling and the conventional causal LTI scaling, and provide a

partial answer to the question raised above.

Before closing this section, we give some remarks about the above theorems. Regarding

Theorem 4.1, its special case confining only to static separators has been given in [23] in

a less explicit form; see Theorem 2 and its proof therein. A similar but again less explicit

assertion has been given about a general case in [22], in which the proof was omitted because

of limited space. Hence, the proof of this theorem was given, which is indeed important in the

following arguments because the ideas therein are closely related with the discussions of this

chapter (in particular, Theorem 4.5 to be derived later). On the other hand, Theorem 4.2

is asserted for the first time in this chapter (except for the case of static separators, which

is again asserted by Theorem 2 in [23] in an implicit way). Finally, Theorem 4.3 is nothing

but Theorem 1 in [23], which, together with the other two theorems, strongly motivates the

further studies in the remainder of this chapter.

57



4.3 Timing-shift in noncausal LPTV scaling

The preceding section confined itself to the case when Σ is LTI. This section returns to

the treatment of N -periodic systems, introduces the idea of timing-shift about the lifting

treatment in noncausal LPTV scaling, and discusses the properties of noncausal LPTV

scaling in connection with timing-shift.

4.3.1 Timing-shift matrix and its properties

To begin with, the timing of lifting (or lifting timing for short) means the basic time

instant that we take in the lifting-based treatment of signals and systems. For example,

for a signal fk related with an N -periodic system H, the lifted representation of fk is

usually given by f̂κ = [fT
κN , fT

κN+1, · · · , fT
κN+N−1]

T . However, when we consider the lift-

ing timing denoted by l, then by definition, the lifted representation is given by f̂
(l)
κ =

[fT
κN+l, f

T
κN+1+l, · · · , fT

κN+N−1+l]
T . Under the lifting timing l, we denote the resulting lifted

system by Ĥ(l), and its associated transfer matrix by Ĥ(l)(z). Obviously, it is enough to con-

sider the lifting timing l only in {0, 1, . . . , N − 1}, and if H is LTI, its lifted representation

Ĥ(l) obtained by regarding H as N -periodic is independent of the lifting timing l. However,

this is not the case if H is not LTI. Hence, we can easily see that lifting timing could be

an important factor to study especially when the system Σ is LPTV. We will eventually see

that it is equally important even when Σ is LTI.

Even though shifting the lifting timing is equivalent to shifting signals before applying

the standard lifting with l = 0, its effect can easily be treated in the lifting-based framework

(i.e., after lifting has been applied) by introducing the (backward) timing-shift matrix

Sp(z) :=

[
0 z−1Ip

I(N−1)p 0

]
. (4.21)

Let us denote the z-transform of the lifted signal f̂
(l)
κ by F̂ (l)(z). Then, ignoring the influence

of the “initial value fl,” we readily have F̂ (l)(z) = Sp(z)F̂ (l+1)(z). This immediately leads to

Ĥ(l+1)(z) = Sp(z)−1Ĥ(l)(z)Sp(z). (4.22)

It is immediate from the definition that the timing-shift matrix Sp(z) has the properties

Sp(z)Sp(z)∗ = Sp(z)∗Sp(z) = I (z ∈ ∂D), Sp(z)N = z−1I. (4.23)

4.3.2 Effect of timing-shift in noncausal LPTV scaling

By applying the congruence transformation by the matrix Sp(z) on the conditions in

Theorem 2.2 and noting (4.22), we are led to the following theorem.
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Theorem 4.4 Suppose that G is N -periodic, and ∆ satisfies Assumption 2. Let us define

S(z) := diag[Sp(z), Sp(z)]. (4.24)

Then, Θ̂(z) = Θ̂(z)∗ (∀z ∈ ∂D) satisfies[
I

Ĝ(0)(z)

]∗

Θ̂(z)

[
I

Ĝ(0)(z)

]
≤ 0 (∀z ∈ ∂D), (4.25)[

∆̂(0)(z)
I

]∗

Θ̂(z)

[
∆̂(0)(z)

I

]
> 0

(
∀∆ ∈ ∆,
∀z ∈ ∂D

)
(4.26)

under the standard lifting timing l = 0 if and only if it satisfies[
I

Ĝ(l)(z)

]∗

(S(z)l)∗Θ̂(z)S(z)l

[
I

Ĝ(l)(z)

]
≤ 0 (∀z ∈ ∂D), (4.27)[

∆̂(l)(z)
I

]∗

(S(z)l)∗Θ̂(z)S(z)l

[
∆̂(l)(z)

I

]
> 0

(
∀∆ ∈ ∆,
∀z ∈ ∂D

)
(4.28)

under at least one lifting timing l = 0, . . . , N − 1, and also if and only if it satisfies (4.27)

and (4.28) under all l = 0, 1, . . . , N − 1.

According to this theorem, if we take a set of some tractable (e.g., static) separators denoted

by Θ̂0(z), the approach under the lifting timing l = 0 that searches for eligible separators

Θ̂(z) ∈ Θ̂0(z) is, if it is interpreted under another lifting timing l, equivalent to the approach

of searching for eligible separators (S(z)l)∗Θ̂(z)S(z)l such that Θ̂(z) ∈ Θ̂0(z). Hence, it is

not obvious, in general, whether the approach of searching for eligible separators Θ̂(z) ∈
Θ̂0(z) under l = 0 is equivalent to that under another l that searches for eligible separators

Θ̂(z) within the same class Θ̂0(z). That is, even if we were to search for eligible separators

within the common tractable class Θ̂0(z) regardless of l, the effects obtained by noncausal

LPTV scaling might vary in general, depending on the underlying lifting timing l. If this is

indeed the case, it would be related with the fact that an eligible separator Θ̂(z) ∈ Θ̂0(z)

under some lifting timing l may not satisfy

Θ̂(z) = S(z)∗Θ̂(z)S(z) (z ∈ ∂D). (4.29)

Hence, the remainder of this section is devoted to discussing the properties of causal LTI,

causal LPTV and noncausal LPTV scaling approaches, all in connection with the condition

(4.29). In particular, we suggest that noncausal LPTV scaling has different properties in

this respect from the other two approaches.

In the rest of this chapter, we regard that separators are defined only on the unit circle

∂D, and identify an operator with another if they take the same value for every z (or ζ) on

the unit circle. For example, I and z∗zI are regarded as the same separator.
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(a) Causal LTI scaling We first consider causal LTI scaling (in the lifting-based

framework, i.e., in the sense of Remark 4.1), assuming that Σ is N -periodic, in general.

A causal LTI separator (4.2) in the lifting-based framework is described by V̂1, V̂2 and Λ̂,

which are the lifted representations of the LTI systems V1, V2 and Λ, respectively (hence,

V̂i = V̂
(0)
i = V̂

(l)
i , l = 0, 1, . . . , N − 1). This, together with (4.22), leads to

(Sp(z)l)∗Θ̂ij(z)Sp(z)l =(1/N)(Sp(z)l)∗V̂i(z)∗Λ̂V̂j(z)Sp(z)l

=(1/N)V̂i(z)∗(Sp(z)l)∗Λ̂Sp(z)lV̂j(z)

=(1/N)V̂i(z)∗Λ̂V̂j(z) = Θ̂ij(z) (i, j = 1, 2). (4.30)

This in particular implies that (4.29) holds, and it, together with Theorem 4.4, immediately

leads to the fact that a causal LTI separator in the lifting-based framework is eligible under

one lifting timing l if and only if it is under every timing.

If a separator Θ̂(z) satisfies (4.29), we say that it is shift-invariant (with respect to lifting

timing). Similarly, we say that the separator class Θ̂0(z) is shift-invariant if

Θ̂0(z) = {S(z)∗Θ̂(z)S(z) | Θ̂(z) ∈ Θ̂0(z)}. (4.31)

In particular, if every Θ̂(z) ∈ Θ̂0(z) is shift-invariant, we say that the separator class Θ̂0(z)

is strongly shift-invariant. Having introduced these terms, we readily see that any class

consisting of causal LTI separators is strongly shift-invariant, and thus causal LTI scaling in

the lifting-based framework leads to the same analysis results regardless of the lifting timing

l.

(b) Causal LPTV scaling We next consider causal LPTV scaling. Then, it turns out

that the eligibility of a causal LPTV separator given by Definition 2.2 depends generally

on lifting timing. This is because the systems V̂1, V̂2 and Λ̂ in Definition 2.2 are the lifted

representations of N -periodic systems for which (4.30) fails, in general. However, this only

means that the eligibility of a given causal LPTV separator depends on lifting timing, and

does not necessarily mean that the eligibility of a class of causal LPTV separators does.

For example, let us take the class Θ̂
causal

static of static LPTV separators, and consider the static

causal LPTV scaling based on Θ̂
causal

static . By Definition 2.2, this class coincides with the set of

matrices in the form of

Θ̂static =
(
diag[X1

ij, X
2
ij, · · · , XN

ij ]
)

i,j=1,2
(4.32)

where Xk
ij (i = 1, 2; j = 1, 2; k = 1, . . . , N) are constant matrices of the same size. Hence

S(z)∗Θ̂staticS(z) =
(
diag[X2

ij, · · · , XN
ij , X1

ij]
)

i,j=1,2
∈ Θ̂

causal

static , (4.33)
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and thus Θ̂
causal

static is a (non-strongly) shift-invariant class. This means that whether Θ̂
causal

static

is eligible does not depend on lifting timing. Even when we consider dynamic causal LPTV

separators, a naturally constructed separator class would also become (non-strongly) shift-

invariant unless the LPTV systems V1 and V2 and the constant matrix Λ̂ in the causal

LPTV separator are restricted to some “distorted sets” that fail to be invariant under the

one-step shift in the lifting-free time axis k; considering such distorted sets would never

sound sensible, and thus would be unnatural. Hence, the eligibility of a natural class of

causal LPTV separators is independent of lifting timing, and hence causal LPTV scaling

also leads virtually to the same analysis results regardless of the lifting timing l.

(c) Noncausal LPTV scaling We have so far discussed the relationship of lifting tim-

ing to two types of causal scaling approaches. We have then observed that all natural classes

of causal separators are shift-invariant, and thus their eligibility is virtually independent of

the lifting timing l. However, noncausal LPTV scaling exhibits a different aspect, which

could be attributed to the fact that taking a general LTI systems V̂ in noncausal LPTV

separators (recall Definition 2.3) corresponds to ignoring causality to some limited extent,

where causality is meant here with respect to the original lifting-free time axis k rather than

the lifting-based time axis κ in (2.9). To confirm the different aspect, let us take, for example,

the class Θ̂
noncausal

static of static noncausal LPTV separators, and consider the static noncausal

LPTV scaling based on Θ̂
noncausal

static . By Definition 2.3, this class coincides with the set of

constant matrices. Hence, it follows that the z-dependent factors in S(z)∗Θ̂staticS(z) do not

vanish, in general, and thus it does not belong to Θ̂
noncausal

static . That is, the class Θ̂
noncausal

static of

static noncausal LPTV separators is not shift-invariant with respect to lifting timing. This

fact is much different from that for static causal LPTV separators shown in (4.33).

4.3.3 Numerical confirmation of theoretical results

An outcome of the property of static noncausal LPTV scaling about the lack of shift

invariance, stated in the preceding subsection, should also be easy to confirm numerically

by observing the dependency of analysis results on the lifting timing l. In fact, however,

an example in that direction can never be constructed if Σ is confined to be LTI. This is

because the static noncausal LPTV separator Θ̂ is eligible if and only if S(z)∗Θ̂S(z) is, since

Ĝ(1) = Ĝ(0) and ∆̂(1) = ∆̂(0) in Theorem 4.4 when Σ is LTI; due to this coincidence, the lack

of shift invariance in the class of static noncausal LPTV separator does not lead to difference

in the analysis results with respect to the shift in the lifting timing. We thus consider an

example with an LPTV system Σ .

Example: Consider the 3-periodic system G given by (2.26) in Subsection 2.4.4. In addition,
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we assume that the corresponding scalar uncertainty ∆ = δ is static and LTI. The problem

we study here is to find (a lower bound of) the maximal δ such that the closed-loop system

Σ is robustly stable with respect to the uncertainty set ∆ = {δ : |δ| < δ}.
The analysis results of the maximal δ obtained by static causal/noncausal LPTV scaling

are shown in Table 4.1, where we confined ourselves to the class of (D,G)-scaling type

separators [13] in both approaches (this treatment of separators was discussed in detail in

Subsection 2.4.3 and Section 3.3). Such analysis can be carried out through the KYP lemma

[34] (see Lemma 2.1) and LMI optimization, as reviewed in Subsection 2.4.3.

Table 4.1 shows that the analysis results of δ obtained by noncausal LPTV scaling depend

much on the lifting timing l. In contrast, we can confirm, also numerically, that the analysis

results of δ obtained by causal LPTV scaling are completely independent of l.

Table 4.1: Robust stability analysis considering lifting timing l

Timing l Noncausal-(D,G) Causal-(D,G)
0 0.5292 0.4567
1 0.6032 0.4567
2 0.6293 0.4567

4.4 Shift-invariant reconstruction of separator classes

in noncausal LPTV scaling and its implication

This section introduces the idea of shift-invariant reconstruction of separator classes.

With this idea, the properties of noncausal LPTV scaling applied to LTI systems are clarified

further, particularly from the viewpoint of its possible ability in replacing the conventional

frequency-dependent (i.e., dynamic causal LTI) scaling.

4.4.1 Shift-invariant reconstruction of separator classes

The preceding section discussed by introducing the (backward) timing-shift matrix the

properties and effectiveness of noncausal LPTV scaling applied to LPTV systems. In partic-

ular, a central issue there was on the difference in the properties between noncausal LPTV

scaling and causal LPTV or LTI scaling, and it was studied from the viewpoint of lifting

timing and its shift. An important key in that study was whether the separator class taken

in noncausal LPTV scaling is shift-invariant with respect to lifting timing. Motivated by

this observation, suppose we are given a (not necessarily shift-invariant) class of noncausal
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LPTV separators denoted by Θ̂
noncausal

0 (z), and let us construct the separator class

Θ̂(z) :=

{
1

N

N−1∑
l=0

(S(z)l)∗Θ̂(z)S(z)l
∣∣ Θ̂(z) ∈ Θ̂

noncausal

0 (z)

}
. (4.34)

Then, every separator in Θ̂(z) is a noncausal LPTV separator by (4.21), and is shift-

invariant by (4.23). Hence, Θ̂(z) is strongly shift-invariant. Furthermore, it is easy to

see that Θ̂(z) = Θ̂
noncausal

0 (z) if and only if Θ̂
noncausal

0 (z) is strongly shift-invariant. Hence,

Θ̂(z) 6= Θ̂
noncausal

0 (z) whenever Θ̂
noncausal

0 (z) is not shift-invariant. We thus call the separator

class Θ̂(z) the (strongly) shift-invariant reconstruction of the separator class Θ̂
noncausal

0 (z).

Similarly, we call

1

N

N−1∑
l=0

(S(z)l)∗Θ̂(z)S(z)l (4.35)

the shift-invariant reconstruction of the separator Θ̂(z).

This section is primarily concerned with the case when Σ is LTI, and provides some

discussions related to shift-invariant reconstruction so that further properties of noncausal

LPTV scaling applied to LTI systems can be clarified. In particular, we discuss the relation-

ship between noncausal LPTV scaling based on Θ̂(z) and causal LTI scaling based on the

separator class Θ(ζ) we have introduced earlier in (4.20). Note that both Θ̂(z) and Θ(ζ) are

constructed from the same class Θ̂
noncausal

0 (z). What we establish in this section is that, even

though a direct relationship between the classes Θ(ζ) and Θ̂
noncausal

0 (z) is still open, a direct

relationship between the former class Θ(ζ) and the shift-invariant reconstruction Θ̂(z) of

the latter class can be clarified completely. Implications of the success in this direction will

also be discussed.

Remark 4.2 There is no inclusion relation between Θ̂
noncausal

0 (z) and its shift-invariant

reconstruction Θ̂(z), in general (see Figure 4.1). This can be seen by considering the case

Θ̂
noncausal

0 (z) = Θ̂
noncausal

static . In this case, Θ̂
noncausal

static includes static noncausal LPTV separators

that are not shift-invariant (hence do not belong to Θ̂(z)) and result in dynamic separa-

tors (hence do not belong to Θ̂
noncausal

static ) when shift-invariant reconstruction is applied to

them. This does imply the lack of mutual inclusion, but the intersection Θ̂(z) ∩ Θ̂
noncausal

static

is nonempty because it equals the class Θ̂
LTI

static of static causal LTI separators (in the lifting-

based framework).

4.4.2 Properties of shift-invariant reconstruction in noncausal LPTV
scaling

The following theorem plays a crucial role in this section.
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lifting-based framework

lifting-free framework

shift-invariant reconstruction (4.34)

Θ̂
noncausal

0 (z) Θ̂(z)

Theorem 4.5

Θ(ζ)

(4.20)

Theorem 4.1,
Theorem 4.5 class of non-eligible separators

(by Corollary 4.1)

: direct mapping of classes

: induced mapping to a class of eligible separators by the
interpretation of noncausal LPTV scaling in the lifting-free
framework when Σ is LTI (through Theorem 4.3)

Figure 4.1: Relationship between some classes of separators and its implication in noncausal
LPTV scaling.

Theorem 4.5 Given a noncausal LPTV separator Θ̂(z), consider the causal LTI separator

Θ(ζ) induced in the lifting-free framework by (4.19). Then, the equivalent separator Ê[Θ(ζ)]

in the lifting-based framework coincides with the shift-invariant reconstruction (4.35) of Θ̂(z).

Proof. The noncausal LPTV separator Θ̂(z) can be described by

Θ̂(z) =
(
Θ̂ij(z)

)
i,j=1,2

, Θ̂ij(z) = V̂i(z)∗Γ V̂j(z) (4.36)

where V̂ (z) =: [V̂1(z) V̂2(z)]. Hence, Θ(ζ) given by (4.19) is described by

Θ(ζ) = (Θij(ζ))i,j=1,2 =
(
Tp(ζ)∗V̂i(ζ

N)∗Γ V̂j(ζ
N)Tp(ζ)

)
i,j=1,2

. (4.37)

According to the discussion in Section 4.2, the derivation of the equivalent causal LTI sep-

arator Θ̂(z) = Ê[Θ(ζ)] in the lifting-based framework corresponding to Θ(ζ) amounts to
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representing (1/N)Up(ζ)Θij(ζ)Up(ζ)∗ in terms of ζN . Regarding this issue, we have

Up(ζ)Θij(ζ)Up(ζ)∗ =Up(ζ)Tp(ζ)∗V̂i(ζ
N)∗Γ V̂j(ζ

N) Tp(ζ)Up(ζ)∗

=T̂p(ζ
N)∗Up(ζ)V̂i(ζ

N)∗Γ V̂j(ζ
N)Up(ζ)∗T̂p(ζ

N)

=T̂p(ζ
N)∗{IN ⊗ (V̂i(ζ

N)∗Γ V̂j(ζ
N))}T̂p(ζ

N) (4.38)

=T̂p(ζ
N)∗{IN ⊗ Θ̂ij(ζ

N)}T̂p(ζ
N) (∀ζ ∈ ∂D), (4.39)

where ⊗ denotes the Kronecker product; in the reduction to (4.38), note that V̂i(ζ
N)∗Γ V̂j(ζ

N)

is invariant under the replacement of ζ by φζ and that its size is p × p, which is the same

as that of the identity matrices in Tp(·) contained in Up(ζ). Hence, the causal LTI separator

Ê[Θ(ζ)] in the lifting-based framework equivalent to Θ(ζ) in the lifting-free framework is

given by

Θ̂(z) =

(
1

N
T̂p(z)∗{IN ⊗ Θ̂ij(z)}T̂p(z)

)
i,j=1,2

. (4.40)

To describe this separator in a simpler form, we first aim at giving an explicit form of T̂p(z).

By the definition of Tp(ζ), it can be realized with

[
AT BT

CT DT

]
:=


I(N−2)p 0(N−2)p×p

0p Ip

Ip 0p

I(N−2)p 0(N−2)p×p

0p×(N−2)p Ip

 . (4.41)

Hence, by the definition of lifting of systems, T̂p(z) can be realized with (ÂT , B̂T , ĈT , D̂T )

given by
AN

T AN−1
T BT AN−2

T BT . . . BT

CT DT

CT AT CT BT
. . .

...
...

. . . . . .

CT AN−1
T CT AN−2

T BT . . . CT BT DT

 . (4.42)

By direct calculations, we can obtain

Am
T =

[
I(N−1−m)p

0mp

]
, Am

T BT =

0(N−2−m)p×p

Ip

0mp×p

 , (4.43)

CT Am
T =

[
I(N−1−m)p

0(m+1)p

]
, CT Am

T BT =

0(N−2−m)p×p

Ip

0(m+1)p×p

 . (4.44)
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In particular, AN
T = 0. Therefore, we obtain

T̂p(z) = z−1ĈT B̂T + D̂T =


Sp(z)N−1

...
Sp(z)
INp

 . (4.45)

Substituting (4.45) into (4.40) immediately leads to (4.35). This completes the proof.

Q.E.D.

This theorem together with (4.20) and (4.34) implies that the shift-invariant reconstruction

Θ̂(z) of the separator class Θ̂
noncausal

0 (z) is nothing but the class {Ê[Θ(ζ)] |Θ(ζ) ∈ Θ(ζ)} of

equivalent embedded causal LTI separators in the lifting-based framework (see Figure 4.1).

Combining our preceding arguments, we are led immediately to the following result about

the robust stability analysis of the LTI system Σ .

Corollary 4.1 Suppose that G is LTI, and ∆ satisfies Assumption 2. Given a noncausal

LPTV separator Θ̂(z), the associated Θ(ζ) in (4.19) is eligible in the lifting-free framework

if and only if the shift-invariant reconstruction (4.35) of Θ̂(z) is eligible in the lifting-based

framework. In particular, given Θ̂
noncausal

0 (z), the induced class Θ(ζ) is eligible in the lifting-

free framework if and only if Θ̂(z) is in the lifting-based framework.

Proof. Necessity follows from Theorem 4.1 and Theorem 4.5, while sufficiency follows

from Theorem 4.2 and Theorem 4.5. Q.E.D.

4.4.3 Implication of the properties of shift-invariant reconstruc-
tion in noncausal LPTV scaling

In the above, we have shown Theorem 4.5 and Corollary 4.1 as the main results in this

section. We next discuss some facts revealed by these new results so that the significance of

these results can be demonstrated. We refer to Figure 4.1 to this end, in which the upper

part is related to the use of Theorem 2.2 (i.e., the lifting-based framework), while the lower

part is related to the use of Theorem 2.3 (i.e., the lifting-free framework).
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The classes Θ0(ζ) and Θ1(ζ), their inclusion relation, and their relevance to shift-
invariant reconstruction

Let us consider the two subclasses contained in Θ(ζ) in this figure. The inner subclass is

denoted by Θ0(ζ) while the outer by Θ1(ζ). By definition, Θ0(ζ) is such a set of the eligible

separators in the lifting-free framework that are obtained by applying (4.19) to all eligible

separators Θ̂(z) ∈ Θ̂
noncausal

0 (z) in the lifting-based framework. Θ1(ζ) is defined similarly by

replacing Θ̂
noncausal

0 (z) with its shift-invariant reconstruction Θ̂(z). The introduction of the

class Θ0(ζ) is motivated by Theorem 4.3, but it is not ensured that Θ0(ζ) coincides with the

subset consisting of all eligible separators in Θ(ζ). This is because of the lack of the converse

assertion in this theorem. This implies that the lifting-based framework with Θ̂
noncausal

0 (z)

is not always equivalent to the lifting-free framework with Θ(ζ), but could in fact be more

conservative. As we have discussed in Section 4.2, we have been interested in analyzing

such a gap. The purpose of this subsection is to show that the preceding arguments in this

section about shift-invariant reconstruction successfully lead to clarifying the gap. In fact,

it will turn out that the separator class Θ1(ζ) (and thus the shift-invariant reconstruction

of Θ̂
noncausal

0 (z)) plays a crucial role in characterizing the gap.

Before proceeding, we first remark that the inclusion between Θ0(ζ) and Θ1(ζ) implicitly

asserted in Figure 4.1 is not trivial since there is generally no inclusion between Θ̂
noncausal

0 (z)

and Θ̂(z) (Remark 4.2). However, we indeed have Θ0(ζ) ⊂ Θ1(ζ), and Theorem 4.5 plays

a crucial role in its proof as follows. Let us take an arbitrary separator Θ(ζ) ∈ Θ0(ζ). By

the definition of Θ0(ζ), there exists an eligible separator Θ̂(z) ∈ Θ̂
noncausal

0 (z) such that the

above Θ(ζ) is represented by (4.19). On the other hand, the equivalent separator Ê[Θ(ζ)]

in the lifting-based framework corresponding to Θ(ζ) eligible in the lifting-free framework

is eligible by Theorem 4.1, and it belongs to Θ̂(z) by Theorem 4.5. By the definition of

Θ1(ζ), this implies that Θ0(ζ) ⊂ Θ1(ζ). This inclusion implies that we can carry out

robust stability analysis in a less conservative fashion by dealing with the shift-invariant

reconstruction of separator classes in the lifting-based framework (at the possible expense of

increased complexity in the search of eligible separators).

Implication and significance of shift-invariant reconstruction

Regarding the significance suggested above about the introduction of the shift-invariant

reconstruction Θ̂(z) and the corresponding class Θ(ζ) in the lifting-free framework, we can

reveal a much more important and stronger result. In fact, it follows immediately from

Corollary 4.1 that Θ1(ζ) coincides with the class of all eligible separators in Θ(ζ). The

implication of this fact on the properties of noncausal LPTV scaling is as follows.
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As we have discussed earlier, this chapter is motivated by the possible ability of (static)

noncausal LPTV scaling in replacing the conventional frequency-dependent (i.e., dynamic

causal LTI) scaling, as suggested by Theorem 2.5 (and thus Theorem 4.3). Due to the lack

of the converse assertion of that theorem, however, the degree of such an ability has not

been fully clarified. In particular, it has not been clear if (under some conditions) noncausal

LPTV scaling with the separator class Θ̂
noncausal

0 (z) is equivalent to the conventional causal

LTI scaling with the separator class Θ(ζ) derived from Θ̂
noncausal

0 (z) as in (4.20). What

is established by the above observation is that, even though a direct answer to the above

question is still open, replacing Θ̂
noncausal

0 (z) with its shift-invariant reconstruction Θ̂(z)

in noncausal LPTV scaling does lead, when it is interpreted in the lifting-free framework,

equivalently to causal LTI scaling with Θ(ζ).

Before closing this section, we note that we could also derive the following result that

is somewhat relevant to the inclusion Θ0(ζ) ⊂ Θ1(ζ), as an immediate consequence of

Theorem 4.4.

Corollary 4.2 Suppose that G is LTI, ∆ satisfies Assumption 2, and a class Θ̂
noncausal

0 (z)

of noncausal LPTV separators is given. If the class Θ̂
noncausal

0 (z) is eligible, the class Θ̂(z)

is also eligible.

We have seen in the above the significance of the main results of this chapter (Theorem 4.5

and Corollary 4.1) in clarifying the ability of noncausal LPTV scaling applied to the robust

stability analysis of LTI systems. This clearly demonstrates that the lifting timing, timing-

shift matrix and shift-invariant reconstruction of separator classes are quite important also

in the robust stability analysis of the LTI system Σ , in spite of the fact that the lifted

representations of LTI systems are independent of lifting timing. As such, the arguments

of this chapter are expected to provide a basis for further studies on the properties and

effectiveness of noncausal LPTV scaling applied to LTI systems as well as LPTV systems.

4.4.4 Numerical confirmation of theoretical results

This subsection numerically confirms the inclusion relationship Θ0(ζ) ⊂ Θ1(ζ) and the

equivalence relationship between noncausal LPTV scaling based on Θ̂(z) and causal LTI

scaling based on Θ(ζ) in terms of conservativeness in robust stability analysis, which are

shown in Figure 4.1.
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We consider the internally stable LTI system G given by

[
A B
C D

]
=



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0.1

−0.2 −0.62 0.01 0.6 −0.7 0.1 0
1 1 1 0 0 0.1 0.2
0 0 0 1 1 0 0


. (4.46)

In addition, we assume the corresponding uncertainties ∆ are static LTI and structured as

given by ∆ = diag[δ1 δ2]. The purpose here is to compute (a lower bound of) the maximal

δ such that the closed-loop system Σ is robustly stable with respect to the uncertainty set

∆ = {∆ : ‖∆‖ < δ}. In such analysis, we employ the idea of the (D,G)-scaling approach [13]

and take the following four types of separator classes: the first one is the class Θ̂
noncausal

static,(D,G) of

static noncausal LPTV separators of the (D,G)-scaling type under a prescribed N (which

we take equal to 6), which we view as Θ̂
noncausal

0 (z) in the preceding arguments. The other

three are the class Θ(ζ) constructed from the above class through (4.20), the class Θ̂(z)

constructed from the same class through (4.34), and the class Θ static,(D,G) of static causal

LTI separators of the (D,G)-scaling type.

Note that the second and fourth are separator classes for the lifting-free framework; the

reason why we take the fourth is as follows: since the second is induced by static separators

in the lifting-based framework (and the third is asserted to have an ability equivalent to

the second), we also take, for reference, the fourth one so that we can also demonstrate the

advantage of the lifting-based framework over the lifting-free framework under the common

setting using only static separators.

Remark 4.3 Separators in Θ(ζ) are dynamic, in general, and thus this class is less

tractable than the above two classes of static separators. However, since free parameters in

such separators are contained only in its “numerator part” by (4.19), no essential difference

arises from the case of static separators. That is, eligibility of Θ(ζ) can be checked without

conservativeness through the KYP lemma [34] applied to inequality (2.15), because (2.16) is

satisfied automatically for any Θ̂ ∈ Θ̂
noncausal

static,(D,G), thanks to the properties of (D,G)-scaling.

To avoid distraction and concentrate on demonstrating the significance of the preceding

arguments in this section, however, the details are omitted about the numerical search pro-

cess of separators (see Chapter 6 for details). Essentially the same comment applies to the

treatment of Θ̂(z).

The numerical results of the analysis of δ are shown in Table 4.2, from which we can

first confirm that static noncausal LPTV scaling is less conservative than static causal LTI
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Table 4.2: Robust stability analysis with each class of separators (N = 6)

Separator class Θ̂
noncausal

static,(D,G) Θ(ζ) Θ̂(z) Θ static,(D,G)

δ 1.4091 1.4942 1.4942 1.2115

scaling in the lifting-free framework. However, we also see that the former is still more

conservative than the dynamic causal LTI scaling in the lifting-free framework based on Θ(ζ).

In other words, this is an example in which noncausal LPTV scaling with the separator class

Θ̂
noncausal

0 (z) fails to equivalently check eligibility of the associated separator class Θ(ζ)

in the lifting-free framework. However, it can be also confirmed from Table 4.2 that the

result obtained through noncausal LPTV scaling based on Θ̂(z), which is the shift-invariant

reconstruction of Θ̂
noncausal

static,(D,G), is no more conservative than that of causal LTI scaling based

on Θ(ζ). This confirms not only the inclusion relationship Θ0(ζ) ⊂ Θ1(ζ) but also the

equivalence in the ability of the two scaling approaches with the separator classes Θ(ζ) and

Θ̂(z) defined in the lifting-free framework and lifting-based framework, respectively.

4.5 Concluding remarks

This chapter developed a new direction for studying the properties of noncausal LPTV

scaling, which has been introduced as a new method for robust stability analysis by applying

the separator-type robust stability theorem and the discrete-time lifting technique. A key

idea in this direction was to consider the timing of lifting, and shift invariance of separator

classes was introduced as a key notion relevant to the lifting timing. It was then discussed

that, compared with causal LPTV scaling and the conventional frequency-dependent scaling

(i.e., causal LTI scaling), noncausal LPTV scaling has, in general, different properties about

the shift invariance of the separator classes it deals with. It was also discussed how taking a

different lifting timing in noncausal LPTV scaling could affect the robust stability analysis of

LPTV systems. The robust stability analysis of LTI systems with noncausal LPTV scaling,

on the other hand, is not affected by the lifting timing. This, however, never implies that

the idea of lifting timing is meaningful only in the treatment of LPTV systems. Instead,

it was established that the idea of shift-invariant reconstruction of separator classes plays

an important role in clarifying further properties of noncausal LPTV scaling applied to LTI

systems. In particular, we have given a partial answer to the open question about static

noncausal LPTV scaling, i.e., how substantial and promising its ability is in equivalently

inducing frequency-dependent scaling in the conventional lifting-free framework.
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Chapter 5

Unified Treatment of Robust Stability
Conditions through an Infinite Matrix
Framework

5.1 Introduction

This chapter is concerned with robust stability analysis of LTI closed-loop systems em-

ploying the separator-type robust stability theorem. Properties of noncausal LPTV scaling

for such analysis have been studied in the preceding chapter from the frequency-domain

viewpoint through introducing the timing-shift matrix Sp(z). This chapter, on the other

hand, studies such properties from another viewpoint through introducing what we call an

infinite matrix framework.

Robust stability can be analyzed by searching for eligible separators in both the lifting-free

and lifting-based frameworks. To achieve nonconservative robust stability analysis, however,

such a search must work on all frequency-dependent (i.e., dynamic) separators without any

constraint, but this is not feasible from computational viewpoints. Thus, a tractable class

of separators is introduced in practice, only on which the search of eligible separators is

carried out, whichever framework we may employ. This generally results in conservativeness

in robust stability analysis.

As such tractable classes, for example, we can introduce those of static separators in

both causal LTI and noncausal LPTV scaling approaches, and the relationship between the

corresponding two scaling approaches has been already studied, as reviewed in Chapter 2.

However, if we take more general but tractable classes of separators in these approaches,

it has not been easy to directly compare them as in the case of static separators. This

difficulty can largely be attributed to the fact that they are dealt with in two different (i.e.,

lifting-free and lifting-based) frameworks and their frequency-domain properties are not easy
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to compare in a straightforward fashion.

This chapter aims at developing a new unified framework for dealing with these two ap-

proaches that can facilitate their mutual comparison and relevant studies in a very compre-

hensible and intuitive manner. More explicitly, by means of infinite matrix representations

of systems [15],[8], restatements of the robust stability conditions associated with the con-

ventional causal LTI scaling and the lifting-based noncausal LPTV scaling are established in

a unified fashion in Section 5.2. This leads to the notion of infinite-dimensional separators,

whose specific forms are studied in Section 5.3 by confining ourselves to the tractable classes

of separators characterized by finite impulse response, both in the conventional causal LTI

scaling and noncausal LPTV scaling approaches. Section 5.4 combines these arguments to

address the main problem. Specifically, it is demonstrated that the infinite matrix framework

developed in this chapter is very comprehensible and useful in the theoretical study on the

mutual relationship between causal LTI and noncausal LPTV scaling approaches. Theoret-

ical benefit of the infinite matrix framework is further demonstrated as to its usefulness in

isolating the effects of time dependence and frequency dependence in scaling through the

structure of infinite-dimensional separators.

We use the following notation in this chapter. N0 denotes the set of nonnegative integers,

and l2(N0,R
q) denotes the set of unilateral infinite series of vectors vk ∈ Rq such that∑∞

k=0 ‖vk‖2 < ∞.

5.2 Robust stability conditions based on infinite ma-

trix representations

This section employs infinite matrix representations of systems [15],[8], and introduces

different forms of robust stability conditions under such treatment. The infinite matrix

framework of such new conditions will turn out to provide a unified medium for directly com-

paring the lifting-free framework and the lifting-based framework in robust stability analysis.

Hence, such a unified framework facilitates further studies on clarifying the relationship be-

tween the conventional causal LTI scaling and noncausal LPTV scaling. At the same time,

such a framework is also effective for comparing the effect of frequency dependence in scaling

(i.e., dealing with dynamic separators, as is often the case in the conventional lifting-free

framework) and that of time dependence in scaling (which includes noncausal operations

naturally introduced by the application of noncausal LPTV scaling). The introduction of

robust stability conditions through infinite matrix representations will constitute the basis

of the subsequent arguments in this chapter.
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5.2.1 Robust stability analysis problem for LTI closed-loop sys-
tems

This subsection explicitly states the problem studied in this chapter. Let us consider

the discrete-time closed-loop system Σ (Figure 2.3) consisting of the discrete-time nominal

system G and the discrete-time uncertainty ∆. The system G is assumed to be internally

stable, finite-dimensional, LTI, and represented by

xk+1 = Axk + Bwk, zk = Cxk + Dwk (5.1)

with xk ∈ Rn, wk ∈ Rp and zk ∈ Rp. On the other hand, ∆ is assumed to belong to a given

set ∆ satisfying Assumption 2 (i.e., LTI uncertainties).

This chapter studies the problem of deciding whether the above LTI closed-loop system

Σ is robustly stable with respect to the given set ∆.

5.2.2 Infinite matrix representations of systems

This subsection introduces infinite vector representations of input/output signals and

the associated infinite matrix representations of systems [15],[8]. They will be a basis for

introducing a different form of robust stability condition in this section.

Let us consider the infinite vector representation of w, the input of the nominal system

G, and denote it by

w̃ = [wT
0 , wT

1 , wT
2 , · · · ]T . (5.2)

We also define z̃ similarly. Assuming that the initial state of G is zero, these representations

lead us to the formal description

z̃ = G̃w̃ (5.3)

of the input-output relation of the nominal system G, where the infinite matrix G̃ is given

by

G̃ =


D 0 0 0 · · ·

CB D 0 0
. . .

CAB CB D 0
. . .

CA2B CAB CB D
. . .

...
. . . . . . . . . . . .

 (5.4)

with block Toeplitz and lower triangular structure. The infinite matrix representation ∆̃ of

the uncertainty ∆ is defined similarly.
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5.2.3 Robust stability condition based on infinite matrix repre-
sentations

This subsection is devoted to introducing a robust stability condition based on the infinite

matrix representations of G and ∆. The condition introduced here may be, in a sense, simply

a restatement of that in Theorem 2.3. Moreover, the restated infinite matrix condition might

be less useful if its value were assessed only from a practical point of view. Nonetheless,

significance of the extension toward such a direction with infinite matrix representations lies

in the fact that a parallel and unified extension can also be achieved about Theorem 2.2

leading to noncausal LPTV scaling. We will indeed see this parallelism in the following

subsection, and further see in Section 5.4 that such extensions effectively facilitate us to

have a fresh and clear insight into the relationship between causal LTI scaling and noncausal

LPTV scaling.

We begin our discussions with the following key lemma. It follows by applying the

Fourier expansion, but requires rigorous arguments to circumvent mathematical subtleties;

the detailed proof will be given in Subsection 5.2.5.

Lemma 5.1 Suppose that M(ζ) is a stable rational transfer matrix with q columns, and

L = L∗ is a constant matrix. For a given α ∈ R,

M(ζ)∗LM(ζ) ≥ αI (∀ζ ∈ ∂D) (5.5)

if and only if

M̃∗L̃M̃ ≥ αĨ (5.6)

on l2(N0,R
q), where M̃ , L̃ and Ĩ are the infinite matrix representations of M(ζ), L and I,

respectively.

In (5.6), the inequality is in terms of non-negativeness of quadratic forms on l2(N0,R
q).

An implication of the above theorem is that the ζ-dependence in inequality (5.5) may be

removed if one accepts to work on infinite matrix inequality (5.6). A direct application of

the above lemma leads to the following proposition.

Proposition 5.1 Suppose that G is internally stable and the separator Θ(ζ) is given by

Θ(ζ) =
[
V1(ζ) V2(ζ)

]∗
Λ

[
V1(ζ) V2(ζ)

]
(5.7)
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with a constant matrix Λ = Λ∗ and stable transfer matrices V1(ζ) and V2(ζ). Then, the robust

stability conditions (2.15) and (2.16) hold if and only if the infinite matrix inequalities[
Ĩ

G̃

]∗

Θ̃

[
Ĩ

G̃

]
≤ 0, (5.8)[

∆̃

Ĩ

]∗

Θ̃

[
∆̃

Ĩ

]
≥ ε(∆)Ĩ

(
∀∆∈∆,
∃ε(∆) > 0

)
(5.9)

hold on l2(N0,R
p) for the infinite matrix

Θ̃ =
[
Ṽ1 Ṽ2

]∗
Λ̃

[
Ṽ1 Ṽ2

]
(5.10)

where Ṽ1, Ṽ2 and Λ̃ are the infinite matrix representations of V1(ζ), V2(ζ) and Λ, respectively.

In view of the role of the infinite matrix Θ̃ in inequalities (5.8) and (5.9), we call it a sep-

arator in the framework of infinite matrix representations, or simply an infinite-dimensional

separator. Furthermore, we call the particular separator Θ̃ given in (5.10) the infinite matrix

representation of the separator (5.7).

We have assumed in the above proposition that V1(ζ) and V2(ζ) are stable. This obviously

leads to restricting the class of separators from which eligible separators in the lifting-free

framework are searched for. Fortunately, however, such restriction is known to lead to no

conservativeness in the robust stability analysis [25]. Hence, Theorem 2.3 and Proposition 5.1

lead immediately to the following robust stability theorem.

Theorem 5.1 Suppose that G is internally stable, and ∆ satisfies Assumption 2. Then,

Σ is robustly (well-posed and) stable with respect to ∆ if and only if there exists Θ̃ that

satisfies (5.8) and (5.9) on l2(N0,R
p) and is in the form of (5.10), where Ṽ1 and Ṽ2 are the

infinite matrix representations of stable transfer matrices V1(ζ) and V2(ζ), respectively, and

Λ̃ is the infinite matrix representation of a static system Λ.

5.2.4 Generalization of the class of infinite-dimensional separators

The preceding subsection studied introducing the infinite matrix representation counter-

part to causal LTI scaling supported by Theorem 2.3, and gave infinite matrix representations

of causal LTI separators. This subsection extends the study to noncausal LPTV scaling sup-

ported by Theorem 2.2, gives infinite matrix representations of noncausal LPTV separators,

and observes how these representations are different from those of causal LTI separators.

The extension to noncausal LPTV scaling is essentially just to repeat in the lifting-based

framework the same arguments as those in the preceding subsection. In other words, the

75



key in the extension is to apply Lemma 5.1 with M(ζ) replaced by the transfer matrix M̂(z)

defined on the lifted time axis. This naturally leads to an infinite matrix inequality on

l2(N0,R
Np), but this space is isometrically isomorphic to l2(N0,R

p) used in that lemma.

Hence, these two spaces may be identified with each other, and thus it is not always nec-

essary to distinguish an infinite matrix inequality on one space from the one on the other.

Similarly, the infinite vector representation w̃ of w and that of the lifted counterpart ŵ are

essentially the same, and they need not be distinguished; we denote both of them by w̃

without introducing the bothering notation ˜̂w. Similar comments apply also to the lifted

representations of systems; the infinite matrix representation of G and that of the lifted

counterpart of G may also be identified, and both of them are denoted by G̃.

With the preceding arguments and notation, we are led to the following infinite matrix

representation counterpart of Theorem 2.2 about noncausal LPTV scaling.

Theorem 5.2 Suppose that G is internally stable, and ∆ satisfies Assumption 2. Then,

Σ is robustly (well-posed and) stable with respect to ∆ if and only if there exists Θ̃ that

satisfies (5.8) and (5.9) on l2(N0,R
Np) and is in the form of

Θ̃ =
[
Ṽ1 Ṽ2

]∗
Γ̃

[
Ṽ1 Ṽ2

]
(5.11)

where Ṽ1 and Ṽ2 are the infinite matrix representations of stable transfer matrices V̂1(z)

and V̂2(z) defined directly on the lifted time axis, respectively, and Γ̃ is the infinite matrix

representation of a static system Γ .

Since l2(N0,R
p) and l2(N0,R

Np) may essentially be identified as stated earlier, the differ-

ence between Theorem 5.1 about causal LTI scaling and Theorem 5.2 lies only in the forms

of the infinite-dimensional separators Θ̃ in these theorems. In Theorem 5.1 (or (5.10)), Ṽ1

and Ṽ2 are related to stable LTI systems V1 and V2 (defined on the lifting-free time axis),

and Λ̃ is related to a constant matrix Λ whose size is compatible with the number of rows of

V1 and V2. In Theorem 5.2, on the other hand, Ṽ1 and Ṽ2 are related to stable LTI systems

V̂1 and V̂2 defined on the lifted time axis, and Γ̃ is related to a constant matrix Γ whose

size is compatible with the number of rows of V̂1 and V̂2. Therefore, in comparison with

Theorem 5.1, Theorem 5.2 can be interpreted as relaxing the assumptions on the systems

constituting the separator by allowing them to have N -periodicity. Moreover, some sort of

noncausality is also allowed by introducing them directly on the lifted time axis. These dif-

ferences lead to the enhanced ability of noncausal LPTV scaling, but they are simply natural

consequences since the motivation behind introducing the idea of noncausal LPTV scaling

underlying Theorem 5.2 has been nothing but such enhancement.
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In the following arguments, if the infinite-dimensional separator Θ̃ satisfies (5.8) and

(5.9), then we say that it is eligible in the infinite matrix framework.

5.2.5 Proof of Lemma 5.1

This subsection gives the proof of the key lemma shown in Subsection 5.2.3. Throughout

this subsection, ζ is confined to ∂D. Consider the infinite-dimensional vectors

x̃ =
[
xT

0 xT
1 · · · xT

K 0 · · ·
]T

, xi ∈ Rq (i = 0, . . . , K), ∃K < ∞, (5.12)

and let l0 denote the set of all infinite-dimensional vectors given by (5.12). This l0 is obviously

a dense subset of l2(N0,R
q). It is easy to see that it suffices to prove Lemma 5.1 only for

α = 0.

Necessity proof:

Let α = 0 and suppose that (5.5) holds. For the infinite matrix

T∞(ζ) =
[
I ζ−1I ζ−2I · · ·

]
, (5.13)

it is obvious that T∞(ζ)x̃, which by definition is an infinite series if x̃ ∈ l2(N0,R
q), is

convergent for x̃ ∈ l0, and belongs to Cq. Hence, it follows from (5.5) that

x̃T T∞(ζ)∗M(ζ)∗LM(ζ)T∞(ζ)x̃ ≥ 0 (∀ζ ∈ ∂D, ∀x̃ ∈ l0). (5.14)

Since M(ζ) is stable, it admits the expansion

M(ζ) = M0 + ζ−1M1 + ζ−2M2 + · · · (ζ ∈ ∂D). (5.15)

This implies that T∞(ζ)M̃ is convergent, which immediately justifies that

T∞(ζ)M̃ = M(ζ)T∞(ζ) (5.16)

if we note that the right-hand side involves no infinite series. By substituting this relation

into (5.14), we have

x̃T M̃∗T∞(eiθ)∗LT∞(eiθ)M̃x̃ ≥ 0 (0 ≤ ∀θ ≤ 2π, ∀x̃ ∈ l0), (5.17)

where i denotes the imaginary unit. Integrating both sides over [0, 2π] leads to

x̃T M̃∗
∫ 2π

0

T∞(eiθ)∗LT∞(eiθ)dθM̃x̃ ≥ 0 (∀x̃ ∈ l0), (5.18)
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where a direct computation yields∫ 2π

0

T∞(eiθ)∗LT∞(eiθ)dθ = 2πL̃. (5.19)

Hence,

x̃T M̃∗L̃M̃ x̃ ≥ 0 (∀x̃ ∈ l0). (5.20)

Since M̃ and L̃ are bounded on l2(N0,R
q), and since l0 is dense in l2(N0,R

q), inequality

(5.20) holds also for all x̃ ∈ l2(N0,R
q). This completes the proof.

Sufficiency proof:

We let α = 0 and show that (5.6) fails if (5.5) fails. If

M(eiθ)∗LM(eiθ) � 0 (0 ≤ ∃θ ≤ 2π), (5.21)

there exists θ = θ0 (0 < θ0 < 2π) and v0 such that

v∗
0M(eiθ0)∗LM(eiθ0)v0 < 0. (5.22)

Since M(eiθ)∗LM(eiθ) is continuous with respect to θ because M(ζ) is rational, there exist

θ1 and θ2 such that

v∗
0M(eiθ)∗LM(eiθ)v0 < 0, θ ∈ [θ1, θ2], 0 < θ1 < θ0 < θ2 < 2π. (5.23)

If we consider approximating v0 for θ ∈ [θ1, θ2] and 0 otherwise with a continuous complex

vector function on [0, 2π], we readily see the existence of continuous x(θ) such that x(0) =

x(2π) and∫ 2π

0

x(θ)∗M(eiθ)∗LM(eiθ)x(θ)dθ < 0. (5.24)

By Fejér’s theorem [3], for any ε > 0, there exists a finite series

S(θ) =
m∑

i=−m

cie
iiθ, ci ∈ Cq (i = −m, . . . ,m) (5.25)

such that

‖x(θ) − S(θ)‖ < ε (0 ≤ ∀θ ≤ 2π). (5.26)

By taking ε small enough, we can have∫ 2π

0

S(θ)∗M(eiθ)∗LM(eiθ)S(θ)dθ < 0, (5.27)
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which in turn implies that∫ 2π

0

S(θ)∗eimθM(eiθ)∗LM(eiθ)e−imθS(θ)dθ < 0. (5.28)

Noting that

e−imθS(θ) = T∞(eiθ)x̃c,m, (5.29)

for

x̃c,m :=
[
cT
m cT

m−1 · · · cT
−m 0 · · ·

]T
, (5.30)

we readily have∫ 2π

0

x̃∗
c,mT∞(eiθ)∗M(eiθ)∗LM(eiθ)T∞(eiθ)x̃c,mdθ < 0. (5.31)

This, together with (5.16) and (5.19), implies that

x̃∗
c,mM̃∗L̃M̃ x̃c,m < 0. (5.32)

Although x̃c,m belongs to l2(N0,C
q) (rather than l2(N0,R

q)), its decomposition into x̃c,m =

x̃rl,m + jx̃im,m with x̃rl,m, x̃im,m ∈ l0 leads to

x̃∗
c,mM̃∗L̃M̃ x̃c,m = x̃T

rl,mM̃∗L̃M̃ x̃rl,m + x̃T
im,mM̃∗L̃M̃ x̃im,m. (5.33)

Therefore, at least one of x̃T
rl,mM̃∗L̃M̃ x̃rl,m and x̃T

im,mM̃∗L̃M̃ x̃im,m must be negative. This

completes the proof.

5.3 Infinite matrix representations of causal LTI and

noncausal LPTV separators characterized by finite

impulse response

This section first deals with a dynamic LTI separator in the lifting-free framework char-

acterized by finite impulse response (FIR), for simplicity, and gives its infinite matrix rep-

resentation. The arguments reveal in the framework of infinite matrix representations an

implication of frequency dependence (or dynamics) of separators. The arguments are then

extended to a separator in the lifting-based framework characterized by FIR, and the infinite

matrix representation of a noncausal LPTV separator is also given. Such a separator has

not only frequency dependence but also time dependence resulting from its N -periodicity,
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in general. An implication of such N -periodicity in contrast with frequency dependence will

also be interpreted in the infinite matrix framework. These interpretations will be crucial

as preliminary observations for the arguments in the following section. In fact, the mutual

relationship between causal LTI separators and noncausal LPTV separators will be discussed

there in an intuitive fashion by the use of the infinite matrix framework.

5.3.1 Causal LTI separator characterized by finite impulse re-
sponse

In this subsection, we consider the dynamic causal LTI separator ΘFIR(ζ) = ΘFIR(ζ)∗

(defined for ζ ∈ ∂D in the lifting-free framework) given by

ΘFIR(ζ) = (ΘFIR,ij(ζ))i,j=1,2 ,

ΘFIR,ij(ζ) = Θ
[0]
ij +

K∑
k=1

(
Θ

[−k]
ij ζ−k + Θ

[k]
ij (ζ∗)−k

)
,

Θ
[k]
ij =

(
Θ

[−k]
ji

)T

∈ Rp×p (k = 0, 1, . . . , K). (5.34)

We call it a causal LTI separator characterized by FIR, or simply a causal LTI FIR separator,

and we refer to K as its order, assuming that Θ
[K]
ij 6= 0 for some i, j = 1, 2; a causal LTI

separator V (ζ)∗ΓV (ζ) is in the form of (5.34) if and only if V (ζ) has an FIR. Since we have

assumed in Theorem 5.1 that V1(ζ) and V2(ζ) are stable and thus their impulse responses

converge to zero, it would not be extremely restrictive to confine ourselves to such a class

of separators by taking a large enough K. This subsection is devoted to giving an explicit

form of the infinite matrix representation of the dynamic causal LTI FIR separator (5.34).

The separator (5.34) defined on ∂D can be rearranged as

ΘFIR(ζ) =
(
Tp(ζ)∗Θ

[FIR]
ij Tp(ζ)

)
i,j=1,2

(5.35)

where

Tp(ζ) =


ζ−KIp

...
ζ−1Ip

Ip

, Θ
[FIR]
ij =


Θ

[0]
ij Θ

[1]
ij · · · Θ

[K]
ij

Θ
[−1]
ij 0 · · · 0
...

...
. . .

...

Θ
[−K]
ij 0 · · · 0

. (5.36)

Hence by (5.10), the infinite matrix representation of ΘFIR(ζ) is given by

Θ̃FIR =
(
T̃ ∗

p Θ̃
[FIR]
ij T̃p

)
i,j=1,2

, (5.37)
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where T̃p and Θ̃
[FIR]
ij = diag[Θ

[FIR]
ij ,Θ

[FIR]
ij , · · · ] are the infinite matrix representations of Tp(ζ)

and Θ
[FIR]
ij , respectively. The explicit form of the former is given by

T̃p =



Tp,0 0 · · ·
... Tp,0

. . .

Tp,K
...

. . .

0 Tp,K
. . .

...
. . . . . .


, (5.38)

if we introduce the matrices

Tp,i =


δKiIp

...
δ1iIp

δ0iIp

 , i = 0, 1, . . . , K (5.39)

with the Kronecker delta δij. Hence, it follows that Θ̃FIR =
(
Θ̃FIR,ij

)
i,j=1,2

, where

Θ̃FIR,ij =



Θ
[0]
ij Θ

[1]
ij · · · Θ

[K]
ij 0 · · ·

Θ
[−1]
ij Θ

[0]
ij Θ

[1]
ij · · · Θ

[K]
ij

. . .
... Θ

[−1]
ij

. . . . . . . . . . . .

Θ
[−K]
ij

...
. . .

0 Θ
[−K]
ij

. . .
...

. . . . . .


. (5.40)

It should be noted that the above infinite matrix is block Toeplitz, which is obtained by

repeatedly shifting the matrix Θ
[FIR]
ij toward the right-lower direction by one block and then

superposing the resulting matrices. Since only Θ
[k]
ij ∈ Rp×p, k = 0,±1, . . . ,±K are nonzero

submatrices in Θ̃FIR,ij, we simply say that Θ̃FIR has band structure with one-side width K

with respect to the size of Rp×p.

In the special case of a static causal LTI separator, i.e., when K = 0, each block of

Θ̃FIR reduces to an infinite block diagonal (and Toeplitz) matrix. Increasing K leads to the

increase in the one-side width of (or the freedom in) the band structure associated with

the infinite-dimensional separator Θ̃FIR. We could formally regard the limit of such band

structure for K → ∞ to be a general block Toeplitz structure.
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5.3.2 Noncausal LPTV separator characterized by finite impulse
response

Next, let us consider the noncausal LPTV FIR separator Θ̂FIR(z) = Θ̂FIR(z)∗ (defined

for z ∈ ∂D in the lifting-based framework), which is given by Θ̂FIR(z) =
(
Θ̂FIR,ij(z)

)
i,j=1,2

,

where Θ̂FIR,ij(z) is given by ΘFIR,ij(ζ) with ζ replaced by z and Θ
[k]
ij replaced by Θ̂

[k]
ij in (5.34).

By parallel arguments to those in the preceding subsection, the infinite matrix representation

of this separator is given by Θ̃FIR =
(
Θ̃FIR,ij

)
i,j=1,2

with Θ̃FIR,ij given by (5.40) whose Θ
[k]
ij

is replaced by Θ̂
[k]
ij again. Hence, it is obvious that this infinite-dimensional separator also

has band structure with one-side width K with respect to the size of RNp×Np. That is, the

structure depends on both K and N , which are related to frequency dependence and time

dependence, respectively.

The preceding subsection observed that the infinite matrix representation of the causal

LTI FIR separator (5.34) has band structure with one-side width K with respect to the

size of Rp×p. The degree of freedom in its structure can be increased by taking larger K

(the index for frequency dependence). The size of matrices constituting the band, however,

remains the same regardless of K. For a noncausal LPTV FIR separator, on the other hand,

the role of K remains the same, while the size of matrices constituting the band structure

depends on N (the index for time dependence). Hence, even under fixed K (e.g., K = 0

leading to static separators), the degree of freedom in the associated band structure can be

increased as the lifting period N increases. An important question about noncausal LPTV

scaling would be whether there can be established some explicit relationship between the

freedom with respect to K (relevant to frequency dependence) and that with respect to N

(relevant to time dependence). We demonstrate in the following section that the framework

of infinite matrix representations developed in this chapter provides a very clear and intuitive

insight that is helpful to studying such issues.

5.4 Comparison of different scaling approaches through

infinite matrix framework

The purpose of this section is to demonstrate the usefulness of the framework of infinite

matrix representations developed in this chapter, as a unified medium for dealing with lifting-

free (i.e., causal LTI) and lifting-based (i.e., noncausal LPTV) scaling approaches to robust

stability analysis.

In the following arguments, we occasionally refer to the schematic picture of the infinite-

dimensional separator Θ̃ij as in Figure 5.1 to ease descriptions and help intuitive under-
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NLPTV
0 p columns p columns

: band structure under N = 1, K = NLPTV
0 − 1

: band structure under N = NLPTV
0 , K = 1

: band structure under N = NLPTV
0 , K = 0

(NLPTV
0 = 3)

Figure 5.1: Schematic picture of infinite matrix representation Θ̃ij.

standing; this picture assumes the case of noncausal LPTV scaling with N = NLPTV
0 for

NLPTV
0 = 3, but it applies at the same time to causal LTI scaling (i.e., with N = 1) by

considering p × p submatrices in this figure. An explicit description about our standing

assumption (on the stability of the transfer matrices contained in separators) is suppressed

for conciseness in this section.

5.4.1 Noncausal LPTV separator induced by causal LTI separator

In this subsection, we assume that the infinite matrix representation (5.10) of a causal

LTI separator Θ(ζ) is eligible in the infinite matrix framework. Our purpose here is to

discuss what implications will follow (what separators may be induced equivalently) under

the interpretation of Θ(ζ) from the noncausal LPTV scaling viewpoint.

Here, recall that the infinite matrix representation of a system and that of its N -lifted

description coincide with each other, regardless of N . This, together with the inspection

of the infinite matrix representations (5.10) and (5.11), leads immediately to the following

result.

Theorem 5.3 Suppose the infinite-dimensional separator (5.10) associated with the causal

LTI separator (5.7) is eligible. Then, the infinite matrix representation of the lifted counter-

part Ê[Θ(ζ)] (see Section 4.2 for the definition of the embedding mapping Ê[·]) of Θ(ζ) is

also eligible.

We need no manipulations of equations to prove this theorem, and it just suffices to
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change the way to view infinite matrices by taking different partitioning. Indeed, if the

band structure in Figure 5.1 shown with solid lines is block Toeplitz in terms of submatrices

in Rp×p, then it can also be viewed as block Toeplitz in terms of submatrices in RNp×Np

(consider the band structure in Figure 5.1 shown with dot lines), and this together with close

inspection of the forms of the latter submatrices completes the proof. We can easily see that

the converse assertion of the above theorem also holds.

Remark 5.1 The implication of the above theorem is essentially the same as that of

Theorems 4.1 in the preceding chapter, even though the assertion in the latter has been

stated without introducing the infinite matrix framework. The role of this new framework

in the above theorem and its proof is believed to be transparent and much more intuitive

and comprehensible compared with the techniques in the preceding chapter based on the

frequency-domain properties of lifted systems.

We see that Ê[Θ(ζ)] is a causal LPTV separator. Hence by Theorem 5.3, if (i) there

exists an eligible causal LTI separator in the lifting-free framework, then (ii) there exists an

eligible causal LPTV separator in the lifting-based framework, while it is obvious that the

condition (ii) implies (iii) there exists an eligible noncausal LPTV separator. If we apply the

technique with S̃p introduced in the following subsection, we can readily establish that (iii)

implies (i). Hence, these three conditions are in fact equivalent.

Since we have started our arguments from two robust stability theorems, each of which

gives an apparently different but necessary and sufficient condition for robust stability, the

mere observation above is actually a trivial consequence. The value of the above theorem

rather lies in that it clarifies an explicit mutual correspondence among eligible separators in

different frameworks.

In spite of the equivalence of the above conditions (i)–(iii), however, it does not simply

imply that noncausal LPTV scaling offers no advantage over causal LTI scaling even in

a practical sense. Indeed, a more substantial comparison should be made about different

scaling approaches under the practical situation in which the search of eligible separators

can only be carried out within some restricted but tractable class. As a matter of fact, the

most fundamental motivation of the present chapter lies in the comparison of causal LTI and

noncausal LPTV scaling approaches under such a viewpoint.

As an example of restricted but tractable classes, we consider a class of causal LTI FIR

separators with the order K = KLTI
0 . Then, the following theorem holds.

Theorem 5.4 If there exists an eligible causal LTI FIR separator with K = KLTI
0 in the

lifting-free framework, there exists an eligible noncausal LPTV FIR separator with N =
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NLPTV
0 and K = KLPTV

0 in the lifting-based framework, provided that

KLPTV
0 NLPTV

0 ≥ KLTI
0 . (5.41)

To see the assertion, consider the band structure with one-side width K with respect to

the size of Rp×p, and suppose that it is included in the band structure with one-side width

KLPTV
0 with respect to the size of RNLPTV

0 p×NLPTV
0 p. It is easy to see that the maximal value of

such K equals KLPTV
0 NLPTV

0 , and this immediately leads to the assertion. The fact provided

in this theorem is not obvious without exploiting the infinite matrix framework, and this

clearly demonstrates a situation in which the new unified framework is quite useful.

5.4.2 Causal LTI separator induced by noncausal LPTV separator

The preceding subsection was under the existence assumption of the eligible infinite

matrix representation of a causal LTI separator. In contrast, this subsection assumes that

the infinite matrix representation of an eligible noncausal LPTV separator is given, and

studies what implications will follow by interpreting it in the causal LTI scaling viewpoint.

Let us introduce the infinite matrix1

S̃p =

[
0p×∞

Ĩ

]
(5.42)

where Ĩ denotes the infinite matrix representation of the identity system with p inputs and

outputs. Since G̃ is block Toeplitz, it is easy to see that

G̃S̃p =

[
0p×∞

G̃

]
= S̃pG̃. (5.43)

The same arguments apply also to the uncertainty ∆. Hence, by post-multiplying S̃p and

pre-multiplying its adjoint on (5.8) and (5.9), we see that the infinite-dimensional separator

diag[S̃p, S̃p]
∗Θ̃diag[S̃p, S̃p] =

(
S̃∗

pΘ̃ijS̃p

)
i,j=1,2

(5.44)

is also eligible. The submatrix S̃∗
pΘ̃ijS̃p is nothing but the infinite matrix obtained by re-

moving the first p rows and columns of Θ̃ij (and then by shifting the result toward the

left-upper direction to stay at the same position); note by the assumption on Θ̃ that Θ̃ij is

block Toeplitz in terms of submatrices in RNp×Np, and the above p rows and columns re-

moved correspond to only a fraction of the underlying block. Hence, we can repeat applying

1The matrix S̃p is in fact the infinite matrix representation of the timing-shift matrix Sp(z) introduced
in the preceding chapter.
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diag[S̃p, S̃p] on the resulting “shifted infinite-dimensional separator” for N times, when the

resulting shifted separator reverts to the original Θ̃ . We will thus have N distinguishable

eligible infinite-dimensional separators (including the original one) in this process, and their

average (this is nothing but the shift-invariant reconstruction of the infinite-dimensional

separator) is also eligible since the conditions are affine with respect to the separator.

For example, if the original Θ̃ corresponds to a static noncausal LPTV separator (i.e.,

K = 0 as in the band structure in Figure 5.1 shown with dash lines), then we can see that

the above averaged infinite-dimensional separator will have the band structure with respect

to the size of Rp×p (this in particular implies that it is block Toeplitz) shown in solid lines

in the figure. In other words, the existence of an eligible static noncausal LPTV separator

under the lifting period N = NLPTV
0 ensures that of an eligible (dynamic) causal LTI FIR

separator with K not exceeding NLPTV
0 −1. Extending this observation to the case of general

noncausal LPTV FIR separators readily leads to the following result.

Theorem 5.5 If there exists an eligible noncausal LPTV FIR separator with N = NLPTV
0

and K = KLPTV
0 in the lifting-based framework, there exists an eligible causal LTI FIR

separator with K = KLTI
0 in the lifting-free framework, provided that

KLTI
0 + 1 ≥ (KLPTV

0 + 1)NLPTV
0 . (5.45)

This theorem gives a class of causal LTI FIR separators with which the associated causal

LTI scaling is ensured to be less conservative than (to be more precise, at least as effective

as) noncausal LPTV FIR scaling with N = NLPTV
0 and K = KLPTV

0 , while Theorem 5.4

discusses the opposite direction. More specifically, the implications of these two theorems

can be summarized as follows. With respect to the conservativeness of robust stability

analysis, noncausal LPTV FIR scaling with N = NLPTV
0 and K = KLPTV

0 is superior to (at

least, not inferior to) causal LTI FIR scaling with K = KLPTV
0 NLPTV

0 . However, the former

is inferior to (at least, not superior to) another enhanced causal LTI FIR scaling with K

increased by NLPTV
0 − 1, i.e., with K given by K = (KLPTV

0 + 1)NLPTV
0 − 1.

From the two theorems in this section, we can see how the conservativeness of the causal

LTI and noncausal LPTV FIR scaling approaches varies with the order K for frequency

dependence and the lifting period N , and the comparison of such conservativeness can be

carried out through the conditions (5.41) and (5.45) in an explicit fashion. Although this is

only a discussion for the relationship between causal LTI and noncausal LPTV FIR scaling

approaches, the infinite matrix framework is equally effective for comparing other particular

scaling approaches defined in the lifting-free and lifting-based frameworks.
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5.5 Concluding remarks

Aiming at developing a framework for facilitating further clarification of the relationships

between the conventional lifting-free causal LTI scaling and lifting-based noncausal LPTV

scaling approaches, this chapter first gave the infinite matrix representation counterparts of

the robust stability conditions underlying these approaches. This successfully led to a unified

framework for dealing with the two approaches through the idea of infinite-dimensional sepa-

rators. Explicit forms of the infinite-dimensional separators were given for these approaches,

and were shown to have mutually different types of block Toeplitz (band) structure. The

arguments also showed how noncausal and time-varying nature as well as frequency depen-

dence introduced into scaling is reflected on the (band) structure. It was then demonstrated

that the difference in the structure provides us with a very clear and intuitive interpretation

on the difference in the two scaling approaches, and some relationship between these ap-

proaches was understood with the infinite matrix framework in a very comprehensible way.

The benefit of developing the infinite matrix framework is thus clear, and this framework is

believed to be very useful in further theoretical studies.
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Chapter 6

Robust Stability Analysis Based on
Noncausal LPTV FIR Scaling

6.1 Introduction

Chapters 4 and 5 studied the properties of dynamic noncausal LPTV scaling from theo-

retical viewpoints. This chapter, on the other hand, discusses the scaling approach from the

viewpoint of how to exploit it in actual analysis problems in an efficient fashion.

The necessary and sufficient condition in the (lifting-based) separator-type robust stabil-

ity theorem consists of two types of inequalities, one for the nominal system while the other

for uncertainties, where the latter consists of infinitely many inequalities, in accordance with

the fact that there are infinitely many possible uncertainties. To handle these inequalities,

a restricted but tractable class of separators is usually introduced satisfying the following

properties: (i) the class can be represented with a finite number of parameters; (ii) the in-

finitely many inequalities for uncertainties are satisfied on the class in a sufficient fashion.

Such treatment, however, leads to conservativeness in robust stability analysis. For less

conservative robust stability analysis, this chapter confines itself to what we call noncausal

LPTV FIR separators, which satisfy (i), and develops a framework called noncausal LPTV

FIR scaling for exploiting such separators through the lifting-based treatment. Regarding

such discussions, once a basis for numerical treatment of (lifting-free) causal LTI FIR scaling

is established, noncausal LPTV FIR scaling can essentially be dealt with as its extension.

Hence, developing an explicit procedure of robust stability analysis based on causal LTI FIR

scaling is important as a preliminary step for the discussions in this chapter, and thus we

first study it.

This chapter begins by briefly discussing through the basic idea of (D,G)-scaling [13]

what constraints should be placed on causal LTI FIR separators so that the property (ii)

is satisfied, and gives explicit structure of the class of causal LTI FIR separators dealt with
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in this chapter. This explicit structure, in principle, immediately leads us to a systematic

method for searching for an eligible (i.e., satisfying the condition for robust stability) causal

LTI FIR separator; indeed, applying the KYP lemma [34] readily converts the search, with-

out any conservativeness, to an LMI problem involving the static coefficient matrices of FIR

separators. To avoid undue increase in the computational load for solving the LMI, however,

an explicit but nontrivial minimal realization is further derived about an augmented system

to which the KYP lemma will be applied. This is a crucial step not merely from a practical

point of view but also from a theoretical point of view. It is partly because employing a

minimal realization maximally improves the ability of causal LTI FIR scaling, and theoreti-

cally clarifying its order could provide us with an estimate of the associated computational

load. Based on these discussions, we further develop an explicit procedure of robust stability

analysis based on noncausal LPTV FIR scaling, and numerically demonstrate its effective-

ness through the comparison with the conventional static LTI scaling and µ-analysis. Note

that the relationship between causal LTI and noncausal LPTV FIR scaling approaches with

respect to conservativeness in the analysis has been theoretically studied as Theorems 5.4

and 5.5 in the preceding chapter. Hence, the validity of these results will also be confirmed

with an example in this chapter.

This chapter is organized as follows. Section 6.2 states the robust stability problem dealt

with in this chapter, and revisits the definition of causal LTI FIR scaling. This section

then considers restricting the class of causal LTI FIR separators to the (D,G)-scaling type,

and clarifies the structure of the (D,G)-scaling type causal LTI FIR separators suitable for

dealing with a given set of structured uncertainties. On the basis of this step, Section 6.3

shows a method of searching for an eligible causal LTI FIR separator. In particular, from the

computational viewpoint, this section derives a minimal realization of an augmented system

involved in the analysis, and gives an LMI condition. Section 6.4 extends the developed

analysis procedure to that of noncausal LPTV FIR scaling through employing the lifting-

based treatment. Section 6.5 demonstrates with numerical examples the effectiveness of

noncausal LPTV FIR scaling, and also numerically confirms the theoretical results shown in

the preceding chapter.

6.2 Basic idea of robust stability analysis with causal

LTI FIR scaling

In this section, we first state the problem studied in this chapter. Then, as a preliminary

step for developing an explicit robust stability analysis method based on noncausal LPTV

FIR scaling, we introduce causal LTI FIR scaling without lifting-based treatment. We also
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consider restricting the associated causal LTI FIR separators to (D,G)-scaling type for

actual analysis problems, and explicitly show an appropriate structure of the separators that

is crucial for dealing with the structured uncertainties.

6.2.1 Robust stability analysis problem with LTI structured un-
certainty

Let us consider the discrete-time closed-loop system Σ (Figure 2.3) consisting of the

nominal system G and the uncertainty ∆. The system G is assumed to be internally stable,

finite-dimensional, LTI, and represented by (5.1) with xk ∈ Rn, uk ∈ Rp and yk ∈ Rp. On

the other hand, ∆ is assumed to belong to a given set ∆ satisfying the following assumption.

Assumption 3 Every ∆ ∈ ∆ is finite-dimensional and LTI, and the corresponding trans-

fer matrix has the block-diagonal structure

∆(ζ) = diag[δ1Im1 , · · · , δSImS
,∆1, · · · ,∆F ,∆1(ζ), · · · ,∆Z(ζ)], (6.1)

with δi ∈ R (i = 1, . . . , S), ∆i ∈ Rni×ni (i = 1, . . . , F ) and ∆i(ζ) ∈ RHli×li
∞ (i = 1, . . . , Z).

In addition, every ∆ ∈ ∆ satisfies the H∞ norm condition ‖∆‖∞ < 1/γ for a given γ > 0.

This chapter studies the problem of numerically deciding whether the above closed-loop

system Σ is robustly stable with respect to ∆ for a given γ.

6.2.2 Causal LTI FIR scaling

Since causal LTI scaling corresponds to a generalization of the conventional frequency-

dependent scaling such as D-scaling, its fundamental idea is not necessarily novel, yet a

method for exploiting the idea in the actual problems has not been deeply developed. This

is because the class consisting of all causal LTI separators is very large, and it is hard to

develop a systematic way to search, in a necessary and sufficient fashion, for an eligible

separator from that class. An easy direction to circumvent the difficulty at the price of

possible conservativeness in analysis is to fix V (ζ) of the causal LTI separator

Θ(ζ) = V (ζ)∗ΛV (ζ). (6.2)

More precisely, if a proper and stable transfer matrix V (ζ) is given, then it follows from

the KYP lemma [34] that the problem of searching for a separator (6.2) satisfying (2.15),

the condition for the nominal system G, reduces to an LMI problem with respect to the

constant matrix Λ. This problem should be much easier than dealing directly with Θ(ζ)

with arbitrary V (ζ). To exploit such an idea, we confine ourselves to the class of special
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causal LTI separators ΘFIR(ζ) = ΘFIR(ζ)∗ (ζ ∈ ∂D) given by (5.34). If V (ζ) in (6.2) is given

by the z-transform of an FIR, the separator Θ(ζ) can be represented in the form of (5.34).

Conversely, every separator in the form (5.34) can be represented in the form of (6.2) for the

fixed V (ζ) given by

V (ζ) :=
[
V1(ζ) V2(ζ)

]
= diag[Tp(ζ), Tp(ζ)], Tp(ζ) =


ζ−KIp

...
ζ−1Ip

Ip

 , (6.3)

which is the z-transform of an FIR. Thus, we call a separator given by (5.34) a causal LTI FIR

separator, as introduced in the preceding chapter. Causal LTI FIR scaling is the approach to

robust stability analysis based on causal LTI FIR separators. A rationale for our confining

to causal LTI FIR scaling can be given by the fact that every causal LTI separator with a

given stable transfer matrix V (ζ) and a given Λ can be approximated by a causal LTI FIR

separator with large enough “order” K, whereas, once the order K is fixed, the class of such

causal LTI FIR separators can be described with a finite number of matrices Θ
[k]
ij and thus

should be easy to deal with (compared with the class of dynamic causal LTI separators with

V (ζ) confined to a given class). In this connection, it is known that the necessity assertion of

Theorem 2.3 remains true even if V (ζ) is confined to stable transfer matrices. Hence, causal

LTI FIR scaling is expected to alleviate the difficulties in the search of an eligible dynamic

separator without introducing excessive conservativeness. This advantage is expected to be

inherited in the analysis with the extended noncausal LPTV FIR scaling.

Remark 6.1 The causal LTI separator (2.29) induced from the static noncausal LPTV

separator Θ̂ in Theorem 2.5 is nothing but a causal LTI FIR separator, noting that ζ∗ζ = 1

on ∂D. Although we introduced causal LTI FIR scaling as a preliminary step toward the

discussions about noncausal LPTV FIR scaling in this chapter, the former scaling thus has

also been a key concept throughout the thesis.

6.2.3 (D,G)-scaling type of causal LTI FIR separators

To exploit causal LTI FIR scaling in a tractable way, we next introduce a particular class

of causal LTI FIR separators. Specifically, we consider restricting the class of causal LTI FIR

separators to (D,G)-scaling type, and describe explicit constraints on the (D,G)-scaling type

causal LTI FIR separators under which inequality (2.16) is automatically satisfied for the

given uncertainty set ∆. Introducing such a class is crucial since robust stability analysis can

then be tackled by searching, within the restricted class, for an (eligible) separator satisfying
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the other inequality (2.15) about the nominal system, as stated in Chapter 3 in the case of

static scaling.

Let us take the γ in Assumption 3 and consider the separator of the (D,G)-scaling type

given by

Θ(ζ) =

[
−γ2ΘD(ζ) ΘG(ζ)
ΘG(ζ)∗ ΘD(ζ)

]
, (6.4)

ΘD(ζ) > 0 (∀ζ ∈ ∂D). (6.5)

Suppose that ΘD(ζ) and ΘG(ζ) satisfy

ΘD(ζ)∆(ζ) = ∆(ζ)ΘD(ζ) (∀∆ ∈ ∆,∀ζ ∈ ∂D), (6.6)

ΘG(ζ)∗∆(ζ) + ∆(ζ)∗ΘG(ζ) = 0 (∀∆ ∈ ∆, ∀ζ ∈ ∂D). (6.7)

As is well known, inequality (2.16) then reduces to ‖∆(ζ)‖∞ < 1/γ and thus it does hold by

Assumption 3. Therefore, robust stability can easily be analyzed by searching for a (D,G)-

scaling type separator (6.4) satisfying (2.15) together with constraints (6.5)–(6.7). A class

of causal LTI FIR separators of order K (thus V (ζ) is given by (6.3)) that lead to ΘD(ζ)

and ΘG(ζ) satisfying (6.6) and (6.7) can easily be constructed as

ΘFIR(ζ) =
{

diag[Tp(ζ), Tp(ζ)]∗Θ [FIR]diag[Tp(ζ), Tp(ζ)]
∣∣∣ Θ [FIR] ∈ Θ [FIR]

}
(6.8)

where Θ [FIR] denotes the set of constant matrices Θ [FIR] such that

Θ [FIR] =

[
−γ2Θ

[FIR]
D Θ

[FIR]
G

(Θ
[FIR]
G )T Θ

[FIR]
D

]
, (6.9)

Θ
[FIR]
D = (Θ

[FIR]
D )T ∈ Θ

[FIR]
D , Θ

[FIR]
G = −(Θ

[FIR]
G )T ∈ Θ

[FIR]
G (6.10)

with Θ
[FIR]
D defined as the set of matrices

ΘK =


Θ [0] Θ [1] · · · Θ [K]

Θ [−1] 0 · · · 0
...

...
. . .

...
Θ [−K] 0 · · · 0

 ∈ R(K+1)p×(K+1)p, (6.11)

Θ [k] = diag[Θ
[k]
1 , · · · ,Θ

[k]
S , θ

[k]
s1 In1 , · · · , θ

[k]
sF InF

, θ
[k]
d1Il1 , · · · , θ

[k]
dZIlZ ] ∈ Rp×p, (6.12)

Θ
[k]
i ∈ Rmi×mi (i = 1, . . . , S), (6.13)

θsi ∈ R (i = 1, . . . , F ), (6.14)

θdi ∈ R (i = 1, . . . , Z) (6.15)
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and Θ
[FIR]
G as the set of ΘK with Θ [k] replaced by

Θ [k] = diag[Θ
[k]
1 , · · · ,Θ

[k]
S , 0n1 , · · · , 0nF

, 0l1 , · · · , 0lZ ]. (6.16)

Indeed, we can readily see that every ΘFIR(ζ) ∈ ΘFIR(ζ) is a (Hermitian) causal LTI FIR

separator with ΘFIR,ij(ζ) (i.e., the resulting ΘD(ζ) and ΘG(ζ)) being block diagonal since

Θ [k] is. A close inspection of the structure of ΘD(ζ) and ΘG(ζ) readily leads to (6.6) and

(6.7) if we note the second equation in (6.10).

Summarizing the above arguments, we see that it suffices to search for such a causal LTI

FIR separator Θ(ζ) = ΘFIR(ζ) in the class ΘFIR(ζ) satisfying (2.15) as well as the remaining

constraint (6.5). The first constraint (2.15) can readily be rewritten as

Ga(ζ)∗Θ [FIR]Ga(ζ) ≤ 0 (∀ζ ∈ ∂D), (6.17)

where

Ga(ζ) := diag[Tp(ζ), Tp(ζ)]

[
I

G(ζ)

]
. (6.18)

A similar comment applies also to the second constraint (6.5); it is obviously equivalent to

Tp(ζ)∗Θ
[FIR]
D Tp(ζ) > 0 (∀ζ ∈ ∂D). (6.19)

Hence, the problem to be solved for exploiting causal LTI FIR (D,G)-scaling is to search for

a static matrix Θ [FIR] satisfying the frequency-dependent conditions (6.17) and (6.19) under

the structural constraints (6.9) and (6.10).

6.3 LMI reformulation of causal LTI FIR scaling

6.3.1 Minimal realization of the augmented system Ga(ζ)

Once we obtain a realization of the augmented system Ga(ζ) introduced in (6.18), the

frequency-dependent inequality (6.17) immediately reduces to an LMI condition by the KYP

lemma, and a similar argument applies also to (6.19). A minimal realization of Tp(ζ) in (6.19)

can readily be obtained. Thus, we confine this subsection to the derivation of a minimal

realization of Ga(ζ). Such a discussion is important not only from a practical viewpoint but

also from a theoretical viewpoint since clarifying the order of the minimal realization could

provide us with an estimate of the associated computational load in the analysis.

Although it is straightforward to construct a realization of Ga(ζ) with order 2Kp + n,

where n denotes the order of a minimal realization of G(ζ), the resulting realization can
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Figure 6.1: Nominal system Ga for FIR scaling.

be confirmed to non-minimal when K ≥ 1. Still worse, it seems hard to derive a closed-

form minimal realization by eliminating redundant states in such a non-minimal realization.

Hence, we begin by introducing another non-minimal realization of Ga(ζ) suitable as an

initial step for deriving a minimal realization of it. We see that Ga can be represented by the

block diagram in Figure 6.1. From this block diagram, we can readily obtain a realization

of Ga(ζ) given by

(Aa0, Ba0, Ca0, Da0) :=



0(K−1)p×p I(K−1)p

0p 0p×(K−1)p
0

0(K−1)p×p

Ip

IK ⊗ B
0n×Kp

IK+1 ⊗ A
0Kn×p

B
IKp

0p×Kp
0

0Kp×p

Ip

IK ⊗ D
0p×Kp

IK+1 ⊗ C
0Kp×p

D


, (6.20)

where (A,B,C,D) denotes a minimal realization of G(ζ). Note that the order of the above

realization is (Kp + n) + Kn.

Taking account of the structure of the reachability matrix associated with the realization
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(6.20), we define the similarity transformation matrix

V =



IKp 0
0n×p In

B A
. . .

AB
. . . A2 . . . . . .

...
. . . . . .

...
. . . . . . . . .

AK−1B · · · AB B AK · · · A2 A In


. (6.21)

Indeed, the first K block columns of V correspond to those of the reachability matrix (lined

up in the reverse order), while the remaining columns are chosen to make V nonsingular; V

is in fact constructed in such a way that V −1 has a closed-form representation given by

V −1 =


IKp 0

0n×p In

−B −A
. . .

. . . . . . . . .

−B −A In

 . (6.22)

Applying the similarity transformation with this V to the realization (6.20) leads to

V −1Aa0V =


0(K−1)p×p I(K−1)p

0p 0p×(K−1)p
0

B 0
0 0Kn×(K−1)p

IK+1 ⊗ A

 , (6.23)

V −1Ba0 =

 0(K−1)p×p

Ip

0(K+1)n×p

 . (6.24)

It is obvious from the structure of the above matrices that the last Kn states of the new

realization are unreachable and thus may be discarded. We can readily see that this leads

to the following closed-form realization with the order Kp + n.

0(K−1)p×p I(K−1)p 0 0(K−1)p×p

0p 0p×(K−1)p 0 Ip

B 0n×(K−1)p A 0
IKp 0 0Kp×p

0p×Kp 0 Ip

D C

CB
. . . CA

CAB
. . . D

... 0Kp×p
...

. . . CB D
...

CAK−1B . . . CAB CB CAK D


(6.25)
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We can see that this realization is reachable and observable, and thus is minimal; we denote

it by (Aa, Ba, Ca, Da) in the following.

6.3.2 LMI condition for robust stability analysis with causal LTI
FIR scaling

Once a minimal realization of Ga(ζ) is given, the following lemma is a direct consequence

of the KYP lemma [34].

Lemma 6.1 Suppose that G (and thus Ga) is internally stable. Then, Ga(ζ) satisfies

(6.17) if and only if there exists a real symmetric matrix P ∈ R(Kp+n)×(Kp+n) satisfying I 0
Aa Ba

Ca Da

∗

diag
[
−P, P,Θ [FIR]

]  I 0
Aa Ba

Ca Da

 ≤ 0. (6.26)

By this lemma, we can search for a causal LTI FIR separator satisfying (6.17) and thus

(2.15) by solving the LMI (6.26) for Θ [FIR] and P .

The remaining constraint (6.5), or equivalently (6.19), is satisfied if and only if there

exists a real symmetric matrix PT ∈ RKp×Kp such that I 0
AT BT

CT DT

∗

diag
[
−PT , PT ,−Θ

[FIR]
D

]  I 0
AT BT

CT DT

 < 0, (6.27)

where (AT , BT , CT , DT ) denotes the minimal realization of Tp(ζ) given by

[
AT BT

CT DT

]
=


0(K−1)p×p I(K−1)p

0p 0p×(K−1)p

0(K−1)p×p

Ip

IKp

0p×Kp

0Kp×p

Ip

 . (6.28)

Combining all the preceding arguments, we have developed a framework for analyzing

robust stability of the closed-loop system Σ with causal LTI FIR (D,G)-scaling; Σ is robustly

stable with respect to ∆ satisfying Assumption 3 if the two LMIs (6.26) and (6.27) are

solvable for Θ [FIR], P and PT , where Θ [FIR] is confined to have the structure given by (6.9)

and (6.10).

6.4 Extension to noncausal LPTV FIR scaling

In this section, based on the arguments about causal LTI FIR scaling, we further develop

a robust stability analysis method with noncausal LPTV FIR scaling. We first discuss the
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(D,G)-scaling type constraint on noncausal LPTV FIR separators defined in the lifting-

based framework, and show the specific restricted structure of the separators satisfying such

a constraint for the given ∆. We then briefly state the LMI condition for noncausal LPTV

FIR scaling in the lifting-based framework.

6.4.1 Constraints on (D,G)-scaling type noncausal LPTV FIR sep-
arators

Let us consider the noncausal LPTV FIR separator Θ̂FIR(z) = Θ̂FIR(z)∗ (defined for

z ∈ ∂D in the lifting-based framework), which is given by Θ̂FIR(z) =
(
Θ̂FIR,ij(z)

)
i,j=1,2

,

where Θ̂FIR,ij(z) is given by ΘFIR,ij(ζ) with ζ replaced by z and Θ
[k]
ij replaced by Θ̂

[k]
ij in

(5.34). This subsection discusses the structure that noncausal LPTV FIR separators have

to take so that (2.14) is automatically satisfied with respect to ∆ satisfying Assumption 3.

As a step toward such discussions, we first consider confining the separators to the fol-

lowing (D,G)-scaling type.

Θ̂FIR(z) =

[
−γ2Θ̂D(z) Θ̂G(z)

Θ̂G(z)∗ Θ̂D(z)

]
, (6.29)

Θ̂D(z) > 0 (∀z ∈ ∂D) (6.30)

Then, if Θ̂D(z) and Θ̂G(z) satisfy the conditions

Θ̂D(z)∆̂(z) = ∆̂(z)Θ̂D(z) (∀∆ ∈ ∆), (6.31)

Θ̂G(z)∗∆̂(z) + ∆̂(z)∗Θ̂G(z) = 0 (∀∆ ∈ ∆) (6.32)

for the N -lifted transfer matrix ∆̂(z) of ∆, inequality (2.14) reduces to ‖∆̂(z)‖∞ < 1/γ

(i.e., ‖∆(ζ)‖∞ < 1/γ), and thus it does hold by Assumption 3. Hence, we further confine

ourselves to those Θ̂D(z) and Θ̂G(z) satisfying (6.31) and (6.32), as is the case with causal

LTI FIR scaling. An inconvenient aspect in dealing with these constraints, however, is that

the structure of the lifted ∆̂(z) is different from that of the original ∆(ζ) in (6.1). For

example, if ∆(ζ) = diag[δ1, δ2] with independent δ1 and δ2, its lifted representation with

N = 2 becomes ∆̂(z) = diag[δ1, δ2, δ1, δ2]. If this ∆̂(z) is represented as the right hand side

of (6.1) with ζ replaced by z, we are forced to taking S = 4, but this leads to ignoring the

fact that both δ1 and δ2 appear twice in ∆̂(z). To circumvent such inconvenience, we first

apply the block checker/diagonal transformation introduced in [20].

For N ∈ N, ν ∈ N and αi ∈ N (i = 1, . . . , ν) with the set N of positive integers, the

permutation matrix

EN(α1, · · · , αν) = [E
(1)
N (α1, · · · , αν), · · · , E

(ν)
N (α1, · · · , αν)] ∈ RαN×αN (6.33)

97



with α :=
∑ν

i=1 αi is called a block checker/diagonal transformation matrix, where E
(i)
N (α1,

· · · , αν) (i = 1, . . . , ν) is defined as

E
(i)
N (α1, · · · , αν) = IN ⊗ E(i)(α1, · · · , αν) (6.34)

through the decomposition of the identity matrix Iα into

Iα =: [E(1)(α1, · · · , αν), · · · , E(ν)(α1, · · · , αν)], (6.35)

with E(i)(α1, · · · , αν) ∈ Rα×αi (i = 1, . . . , ν). By virtue of

E∆
N := EN(m1, · · · ,mS, n1, · · · , nF , l1, · · · , lZ), (6.36)

we have

∆̂(z)̀ := (E∆
N )T ∆̂(z)E∆

N

= diag[δ1INm1 , · · · , δSINmS
, IN ⊗ ∆1, · · · , IN ⊗ ∆F , ∆̂1(z), · · · , ∆̂Z(z)], (6.37)

where ∆̂i(z) is the lifted representation of ∆i(ζ). The structure of ∆̂(z)̀ is very close to that

of ∆(ζ) given by (6.1), and the only essential deference between the two structures is that

∆1, . . . ,∆F in (6.1) are replaced with IN ⊗ ∆1, . . . , IN ⊗ ∆F in (6.37), respectively.

Here, by post-multiplying E∆
N and pre-multiplying its transpose on (6.31) and (6.32), we

have the equivalent conditions

Θ̂D(z)̀ ∆̂(z)̀ = ∆̂(z)̀ Θ̂D(z)̀ (∀∆ ∈ ∆), (6.38)(
Θ̂G(z)̀

)∗
∆̂(z)̀ +

(
∆̂(z)̀

)∗
Θ̂G(z)̀ = 0 (∀∆ ∈ ∆), (6.39)

where Θ̂D(z)̀ = (E∆
N )T Θ̂D(z)E∆

N and Θ̂G(z)̀ = (E∆
N )T Θ̂G(z)E∆

N . Therefore, we can replace

the problem of finding the structure of Θ̂D(z) and Θ̂G(z) satisfying (6.31) and (6.32) with

the problem of finding the structure of Θ̂D(z)̀ and Θ̂G(z)̀ satisfying (6.38) and (6.39). The

latter problem is essentially the same as the corresponding problem that also arose in causal

LTI FIR scaling. Hence, we can readily have an answer to the former problem, whose details

will be given in the following subsection.
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6.4.2 Specific structure of (D,G)-scaling type noncausal LPTV
FIR separators

Let us consider the class of noncausal LPTV FIR separators

Θ̂FIR(z) =
(
TNp(z)∗Θ̂

[FIR]
ij TNp(z)

)
i,j=1,2

, (6.40)

TNp(z) =


z−KINp

...
z−1INp

INp

 , Θ̂
[FIR]
ij =


Θ̂

[0]
ij Θ̂

[1]
ij · · · Θ̂

[K]
ij

Θ̂
[−1]
ij 0 · · · 0
...

...
. . .

...

Θ̂
[−K]
ij 0 · · · 0

 , (6.41)

with

Θ̂
[FIR]
22 = (Θ̂

[FIR]
22 )T ∈ Θ̂

[FIR]

D , (6.42)

Θ̂
[FIR]
12 = −(Θ̂

[FIR]
12 )T ∈ Θ̂

[FIR]

G , (6.43)

Θ̂
[FIR]
11 = −γ2Θ̂

[FIR]
22 , (6.44)

Θ̂
[FIR]
21 = (Θ̂

[FIR]
12 )T , (6.45)

TNp(z)∗Θ̂
[FIR]
22 TNp(z) > 0 (∀z ∈ ∂D), (6.46)

where Θ̂
[FIR]

D is the set consisting of all the matrices given by

Θ̂K =

 Θ̂ [0] · · · Θ̂ [K]

... 0 0

Θ̂ [−K] 0 0

 , (6.47)

Θ̂ [k] = E∆
Ndiag[Θ̂

[k]
1 , · · · , Θ̂

[k]
S , Θ̂

[k]
s1 , · · · , Θ̂

[k]
sF , θ

[k]
d1INl1 , · · · , θ

[k]
dZINlZ ](E∆

N )T , (6.48)

Θ̂
[k]
i ∈ RNmi×Nmi (i = 1, . . . , S), (6.49)

Θ̂
[k]
si =

 θ
[k]
si,11Ini

· · · θ
[k]
si,1NIni

...
. . .

...

θ
[k]
si,N1Ini

· · · θ
[k]
si,NNIni

 , (6.50)

and Θ̂
[FIR]

G is the set consisting of all the matrices given by the above Θ̂K with Θ̂ [k] replaced

by

Θ̂ [k] = E∆
Ndiag[Θ̂

[k]
1 , · · · , Θ̂

[k]
S , 0Nn1 , · · · , 0NnF

, 0Nl1 , · · · , 0NlZ ](E∆
N )T . (6.51)

Then, (2.14) reduces to ‖∆̂(z)‖∞ < 1/γ (i.e., ‖∆(ζ)‖∞ < 1/γ), and it is automatically

satisfied for the given uncertainty set ∆. The essential difference between the above structure

and that of (D,G)-scaling type causal LTI FIR separators is only Θ̂
[k]
s1 , . . . , Θ̂

[k]
sF in (6.48)

whose structure is given by (6.50) associated with the blocks IN ⊗ ∆1, . . . , IN ⊗ ∆F of the

structured uncertainty in (6.37).
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6.4.3 LMI condition for robust stability analysis with noncausal
LPTV FIR scaling

The preceding subsection stated that if we confine ourselves to noncausal LPTV FIR

separators given by (6.40) satisfying (6.42)–(6.46), then (2.14) in the separator-type robust

stability theorem is automatically satisfied. Therefore, for robust stability analysis based

on noncausal LPTV FIR scaling, it suffices to search for Θ̂ [FIR] =
(
Θ̂

[FIR]
ij

)
i,j=1,2

satisfying

(6.42)–(6.46) such that the separator Θ̂(z) = Θ̂FIR(z) resulting from (6.40) satisfies the

remaining condition (2.13). When N = 1 (i.e., in causal LTI scaling), a method of searching

for such Θ̂FIR(= ΘFIR) leading to Θ(ζ) satisfying (2.15) has been already discussed in the

preceding section. This subsection extends the result to the case of noncausal LPTV FIR

scaling.

Substituting Θ̂FIR(z) given by (6.40) into Θ̂(z), we can rewrite (2.13) as

Ĝa(z)∗Θ̂ [FIR]Ĝa(z) ≤ 0 (∀z ∈ ∂D), (6.52)

where Ĝa(z) := [TNp(z)T (TNp(z)Ĝ(z))T ]T . A realization of Ĝa(z) is given by

0(K−1)Np×Np I(K−1)Np 0 0(K−1)Np×Np

0Np 0Np×(K−1)Np 0 INp

B̂ 0n×(K−1)Np Â 0
IKNp 0 0KNp×Np

0Np×KNp 0 INp

D̂ Ĉ

ĈB̂
. . . ĈÂ

ĈÂB̂
. . . D̂

... 0KNp×Np
...

. . . ĈB̂ D̂
...

ĈÂK−1B̂ . . . ĈÂB̂ ĈB̂ ĈÂK D̂



(6.53)

which is minimal if (A,B) is reachable and (C,A) is observable. We denote it by (Âa, B̂a, Ĉa, D̂a),

where Âa ∈ R(KNp+n)×(KNp+n), B̂a ∈ R(KNp+n)×Np, Ĉa ∈ R2(K+1)Np×(KNp+n) and D̂a ∈
R2(K+1)Np×Np.

Then, by the KYP lemma, we immediately have the following result.

Lemma 6.2 Assume that G (i.e., Ĝa(z)) is internally stable. Then, Ĝa(z) satisfies (6.52)

if and only if there exists a real symmetric matrix P ∈ R(KNp+n)×(KNp+n) satisfying I 0

Âa B̂a

Ĉa D̂a

∗

diag
[
−P, P, Θ̂ [FIR]

]  I 0

Âa B̂a

Ĉa D̂a

 ≤ 0. (6.54)
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By this lemma, we can find through (6.40) a noncausal LPTV FIR separator Θ̂(z) =

Θ̂FIR(z) satisfying (2.13) by solving the LMI (6.54). Regarding the inequality condition

(6.46) on Θ̂
[FIR]
22 , we can also reduce it to the LMI condition (6.27) with (AT , BT , CT , DT )

replaced by a minimal realization of TNp(z).

To summarize, we can analyze robust stability of the closed-loop system by solving the

above two LMIs under the constraints (6.42)–(6.45), and this establishes an explicit and

feasible method for robust stability analysis with noncausal LPTV FIR scaling.

6.5 Numerical examples

This section numerically demonstrates the effectiveness of the developed framework for

robust stability analysis with noncausal LPTV FIR scaling. We also confirm with a numerical

example the theoretical results shown in Theorems 5.4 and 5.5 about conservativeness of

noncausal LPTV FIR scaling relative to that of causal LTI FIR scaling.

6.5.1 Numerical demonstration of effectiveness of noncausal LPTV
FIR scaling

Let us consider the stable LTI system G given by

A =

[
0 I3

0.1 aT

]
, aT =

[
0.3 −0.6 0.8

]
,

B =

[
02

0.1I2

]
, C =

[
I2 02

]
, D = 0 (6.55)

and the uncertainty set ∆ = {∆
∣∣ ‖∆‖ < δ, ∆ = diag[δ1, δ2], δi ∈ R (i = 1, 2)} with given

δ (= 1/γ). The problem we study here is to find (a lower bound of) the maximal δ such that

the closed-loop system Σ consisting of G and ∆ (∈ ∆) is robustly stable.

For this problem, we first analyze the maximal δ by static causal LTI scaling. Then, we

have a lower bound δ = 2.0849. Next, we analyze it by noncausal LPTV FIR scaling with

(N,K) = (2, 1). Then, we have a less conservative lower bound δ = 3.2587. This clearly

demonstrates that introducing frequency dependence and time dependence into scaling (i.e.,

taking K > 0 and N > 1) is very effective. To confirm the improvement of the analysis

results more visually, we show in Figure 6.2 the robust stability regions of (δ1, δ2) ensured

by the above analysis results, where the outer solid line and inner dashed line correspond to

(N,K) = (2, 1) (i.e., noncausal LPTV FIR scaling) and (N,K) = (1, 0) (i.e., static causal

LTI scaling), respectively. The outer shaded area represents the instability region computed

with a fine-grid analysis. We can see that noncausal LPTV FIR scaling drastically improves

the analysis and gives an (almost) exact stability radius.

101



-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

δ 2

δ1

(N,K) = (1, 0)

(N,K) = (2, 1)

Figure 6.2: Robust stability domain for the closed-loop system.

6.5.2 Comparison with µ-analysis

The preceding subsection has demonstrated the effectiveness of noncausal LPTV FIR

scaling through comparison with static causal LTI scaling. This subsection proceeds to

numerical comparison with the conventional dynamic (D,G)-scaling approach of µ-analysis

[51], where we use the µ-analysis and synthesis toolbox [2] of MATLAB. µ-analysis tackles the

robust stability problem of closed-loop systems through calculating the structured singular

value at each frequency. We take 1000 points between 10−2 and π/Ts (≈ 3.14 × 103) (with

equal distance in the logarithmic scale) as angular frequency points at which the structured

singular values are computed, assuming that Σ has sampling period Ts = 0.001. Then, we

have the frequency plot of an upper bound µ of the structured singular values for the nominal

system G shown in Figure 6.3, and from its peak value 0.3048, an estimate of a lower bound

of δ becomes 3.2811 as its reciprocal.

Even though the above value is larger than the upper bound 3.2587 with noncausal LPTV

FIR scaling, it does not immediately imply that µ-analysis has achieved a less conservative

µ

angular frequency
10-2 10-1 100 101 102 103 1040

0.1

0.2

0.3

0.4

Figure 6.3: Upper bound µ of the structured singular value.
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analysis. Indeed, we have seen that the above noncausal LPTV FIR scaling has succeeded

in an almost exact analysis, and hence it would be contradicting if we could have such a

discernibly larger lower bound of the maximal δ. What the above numerical result with µ-

analysis reminds us is that it can only give an estimate of a lower bound, and it changes with

the angular frequencies at which the structured singular values are computed. For example,

to detect the peak of the upper bound µ around 103 more accurately, suppose we take 1000

points between 103 and 103.1. Then, the resulting estimate of a lower bound of δ reduces to

3.2528, which turns smaller than the lower bound obtained by noncausal LPTV FIR scaling.

In contrast to such an essentially approximate nature in µ-analysis, checking the exis-

tence of an eligible noncausal LPTV FIR separator can be carried out in a necessary and

sufficient fashion (for each fixed N and K of noncausal LPTV FIR scaling), and once an

eligible separator turns out to exist, it immediately ensures robust stability rigorously. The

framework presented in this chapter would be much more reliable than µ-analysis in this

regard.

Remark 6.2 Although the above µ-analysis with the toolbox seems to have almost no

advantage over the LMI-based noncausal LPTV FIR scaling with respect to both the com-

putational complexity and the reliability, these drawbacks have been studied and resolved,

e.g., in [28],[16],[35],[36]. In particular, these articles study µ-analysis methods that do not

require such typical frequency grids for calculating µ as those employed in this subsection,

and succeed in reducing the computational complexity as well as improving the reliability.

Although the approaches to robust stability analysis discussed in this thesis and those papers

are completely different, it is considered to be important to further sophisticate our scaling

approach, so as to be applied to much wider classes of problems.

6.5.3 Numerical confirmation of theoretical results on the effect
of introducing time dependence into scaling

The preceding two subsections have demonstrated the effectiveness of noncausal LPTV

FIR scaling by comparing it with static causal LTI scaling and µ-analysis. This subsection

takes several pairs of (N,K) for noncausal LPTV FIR scaling, and confirms the theoretical

results shown in Theorems 5.4 and 5.5 numerically.

Let us consider the stable LTI system G given by

A =

[
0 I5

0.1 aT

]
, aT =

[
−0.2 −0.3 0.3 −0.6 0.8

]
,

B =

[
02×4

0.1I4

]
, C =

[
I4 04×2

]
, D = 0 (6.56)
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Table 6.1: Analysis results by noncausal LPTV FIR scaling

(N,K) (1, 0) (2, 0) (1, 1) (1, 2) (2, 1) (1, 3)

δ (= 1/γ) 0.8449 1.0041 1.2036 1.4563 1.4563 1.4563

and the uncertainty set ∆ = {∆
∣∣ ‖∆‖ < δ, ∆ = diag[δ1, δ2, δ3, δ4], δi ∈ R (i = 1, . . . , 4)}.

We study the problem of finding (a lower bound of) the maximal δ such that the closed-loop

system Σ consisting of G and ∆ (∈ ∆) is robustly stable.

The analysis results of the maximal δ obtained by noncausal LPTV FIR scaling (and

causal LTI FIR scaling as a special case) are shown in Table 6.1. In this table, the pairs

(N,K) are aligned in such an order that the corresponding analysis result for one pair should

be less conservative (more precisely, should not degrade) than that for the pair to the left of

it, according to the assertions of Theorems 5.4 and 5.5. We can confirm that the results in

this table indeed demonstrate the assertions.

Remark 6.3 Since we have restricted separators to (D,G)-scaling type in this example,

their infinite matrix counterparts are led to have an associated structure. This situation

possibly affects the discussions about Theorems 5.4 and 5.5, whose proofs in the preceding

chapter were based on the assumption that the infinite-dimensional FIR separator has no

structural constraint in causal LTI scaling and noncausal LPTV scaling. Fortunately, how-

ever, the assertions of Theorems 5.4 and 5.5 can be confirmed to hold, by essentially the same

arguments, even under the above restriction on the separators, provided that uncertainties

are static (i.e., Z = 0). This can be immediately confirmed through deriving the infinite

matrix counterparts of (D,G)-scaling type causal LTI FIR separators and (D,G)-scaling

type noncausal LPTV FIR separators (and comparing their structures in the infinite matrix

framework).

6.6 Concluding remarks

In this chapter, we have first established a systematic framework for robust stability

analysis based on causal LTI FIR scaling. To develop such a framework, we first introduced

an appropriate class of (D,G)-scaling type of causal LTI FIR separators associated with the

given structure of uncertainties. We then provided an explicit LMI condition for searching

for an eligible FIR separator, together with a minimal realization of the augmented system

Ga(ζ) involved in the LMI condition. The latter contributes to reducing the computation

load in robust stability analysis.
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Then, based on these arguments, we have further developed a robust stability analysis

method based on lifting-based noncausal LPTV FIR scaling. Numerical examples were also

given to demonstrate the effectiveness of the developed method. The examples show that

noncausal LPTV FIR scaling surely reduces conservativeness in robust stability analysis,

and is practically tractable and reliable compared with the conventional µ-analysis, as long

as the use of the MATLAB toolbox is concerned. The validity of the theoretical results

shown in the preceding chapter has been also confirmed numerically. The theoretical results

in Chapter 4 can also be demonstrated in a similar fashion, and thus we have actually given

in the chapter a numerical example in which the idea of FIR scaling is exploited in numerical

computations.
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Chapter 7

Conclusion

This thesis studied robustness analysis and controller synthesis based on discrete-time non-

causal LPTV scaling for closed-loop systems with structured uncertainties. We summarize

main contributions of this thesis in the following.

In Chapter 2, we reviewed the definition of noncausal LPTV scaling, and discussed its

effectiveness in robust stability analysis. In particular, we showed theoretical results indi-

cating that noncausal LPTV scaling induces dynamic scaling in the lifting-free framework

even when it is taken to be static in the lifting-based framework. This property indeed

contributes to reducing conservativeness in robust stability analysis, and we demonstrated

it with numerical examples.

In Chapter 3, we considered exploiting static noncausal LPTV scaling, which has such

a promising property, in robust controller synthesis. If we take account of only robust sta-

bility in the synthesis, however, the responses of the resulting control systems may become

very oscillatory because of the periodicity of the controllers naturally designed under the

lifting-based treatment. To avoid this problem, we developed a lifting-based controller syn-

thesis method taking account of not only robust stability but robust H∞ performance. We

numerically demonstrated that the developed method can achieve good robust stability with

successfully alleviating the oscillations. We further demonstrated by control experiments

with a cart inverted pendulum that the developed method is indeed practical and has po-

tentials for tackling actual control problems.

In Chapter 4, to clarify further properties of noncausal LPTV scaling, whose effective-

ness has already been confirmed in both analysis and synthesis problems, we introduced the

concept called shift invariance with respect to lifting timing, and studied its relationship

to noncausal LPTV scaling. Then, we showed that noncausal LPTV scaling is not shift-

invariant, in general, while causal LTI scaling is. In addition, we found that the operation

called shift-invariant reconstruction plays an important role in clarifying properties of non-
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causal LPTV scaling. More specifically, we theoretically showed that the gap (in terms of

conservativeness in robust stability analysis) between some class of noncausal LPTV scaling

and causal LTI scaling induced from the former scaling in the lifting-free framework can

be interpreted in the lifting-based framework as that between the former scaling and its

shift-invariant reconstruction. This means that the aforementioned gap can be completely

characterized in the lifting-based framework, and the shift-invariant reconstruction plays a

key role in exploiting full potential of (static) noncausal LPTV scaling.

In Chapter 5, as an alternative tool for studying properties of noncausal LPTV scal-

ing, we considered the framework of representing systems by infinite matrices, and derived a

separator-type robust stability condition in the framework. Such a new tool provides us with

a unified treatment of lifting-free causal LTI scaling and lifting-based noncausal LPTV scal-

ing, through deriving their infinite matrix counterparts. As tractable and practical classes,

we introduced noncausal LPTV FIR scaling and causal LTI FIR scaling in the lifting-based

and lifting-free frameworks, respectively, and compared them in the infinite matrix frame-

work. Then, through the comparison, we clarified the effect of exploiting the lifting technique

in reducing conservativeness of robust stability analysis. These discussions were carried out

in a very intuitive manner with the new unified framework, which is expected to inspire

further studies on properties of noncausal LPTV scaling.

In Chapter 6, we developed a numerical method for robust stability analysis based on

noncausal LPTV FIR scaling whose properties have been discussed through the infinite ma-

trix framework. We numerically demonstrated that conservativeness of the scaling approach

can be reduced by increasing the lifting period and the order of the corresponding FIR sepa-

rators. In addition, we also confirmed with a numerical example the validity of the theoretical

results obtained through the infinite matrix framework. The theoretical results in Chapter 4

can also be numerically demonstrated in a similar fashion, and thus we have actually given

in the chapter a numerical example in which the idea of FIR scaling is exploited in numerical

computations.

We thus studied robustness analysis and controller synthesis based on noncausal LPTV

scaling from both theoretical and practical viewpoints. Static noncausal LPTV scaling has

been theoretically and numerically confirmed to be effective in robust stability analysis,

compared with the conventional static causal LTI scaling, and its extension toward controller

synthesis has also been discussed in Chapter 3 with demonstrating the effectiveness by control

experiments. Therefore, the basis of static noncausal LPTV scaling is considered to be

developed almost entirely. As future works around these discussions, for example, we can

raise the issue of making the synthesis framework further practical (e.g., by considering

the introduction of integral compensation) and that of studying whether introducing the
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notion of (static) noncausal LPTV scaling is also effective for analysis frameworks other

than (D,G)-scaling, which has been dealt with throughout this thesis.

Regarding dynamic noncausal LPTV scaling, on the other hand, its extension toward

controller synthesis has not been discussed in this thesis, although robust stability analysis

based on such scaling has in detail in Chapters 4–6. This was mainly attributed to a par-

ticular difficulty in exploiting (not necessarily lifting-based) dynamic scaling in controller

synthesis in an LMI-based fashion. Regarding static scaling, the linearization techniques

shown in [38] and [31] are known to be effective in deriving a BMI condition that can be

exploited for output feedback full-order controller synthesis (which reduces to an LMI when

the associated static separator is given and fixed). However, these techniques cannot be

directly exploited for dynamic scaling. An obstacle for deriving an LMI (or BMI) condition

for controller synthesis exploiting dynamic scaling is associated with a difficulty in ensuring

internal stability of the nominal system in the closed-loop system. Fortunately, however, a

solution to this issue has been provided in [39], in which a coupling condition is introduced

between the two Lyapunov matrices in the associated inequality conditions for controller

synthesis. On the basis of this result, the reference [41] has studied robust controller synthe-

sis exploiting dynamic scaling. Even though these studies deal only with the continuous-time

case, our discrete-time noncausal LPTV FIR scaling could also be exploited for controller

synthesis, provided that a similar fundamental technique is established in the discrete-time

case. Such discussions will also be future works related with the discussions in this thesis.
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