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Summary 

At Philips Applied Technologies, research is carried out on the motion control of wafer 
scanners. A wafer scanner performs the lithography process within the production of in­
tegrated circuits (ICs). Due to the fine patterns on the ICs and the high throughput re­
quirements, extremely high positioning accuracy as well as very aggressive motion profiles are 
demanded. 

In the near future, lightweight stage construction becomes crucial to avoid an infeasible design 
for actuators and amplifiers. As a result, these stages will be less stiff than traditional designs 
and will have more pronounced resonant dynamics. Traditional feedforward design methods 
do not take these resonant dynamics explicitly into account or do not lead to satisfactory 
results. The goal of this research is to develop an inversion based feedforward controller 
design method which deals with the more pronounced resonant dynamics of future wafer 
stages in an effective manner and which is robust for model uncertainties. 

Before developing a feedforward controller design method, inverse systems are investigated, 
since a feedforward filter usually is an approximation of the inverse system model. Special 
attention is given to non-minimum phase systems, since these have unstable inverses. Fur­
thermore, the initial conditions of the plant are shown to have a substantial effect on the 
achievable servo performance. Commonly, model uncertainty is addressed by optimizing the 
worst case performance in a model set. In this thesis, feedforward is optimized for the entire 
model set instead of the worst case. 

The lifted system representation proves to be a useful system description in the design and 
analysis of feedforward. The inverse of a convolution matrix can be approximated by the 
Moore-Penrose generalized inverse. Using the lifted system description , it can be shown 
that non-minimum phase systems cannot track an arbitrary reference trajectory, unless the 
plant starts with suitable initial conditions. Pre-actuation can be used to bring the system 
into the correct initial conditions, but this introduces a servo error during the pre-actuation 
interval. 

Using this knowledge, it is shown how, regardless of the presence of non-minimum phase 
zeros, an inverse state-space system can be used for feedforward control by decomposing the 
inverse system into a stable and an unstable part. Subsequently, the boundary conditions for 
the stable part are defined at the start of the interval under consideration and the boundary 
conditions for the unstable part at the end of this interval. This method is called stable 
inversion. 

This feedforward design method is subsequently applied to the NXT-A 7 wafer stage. It is 



shown that stable inversion feedforward results in a smaller transient error and less oscillatory 
behavior than velocity and acceleration feedforward and that the high-frequent energy content 
of the servo error is significantly reduced. Applying sufficient pre- and post-actuation, never­
theless, is a necessity. To further improve the servo performance, more accurate models of the 
low-frequent behavior of the system are required. Robust stable inversion remains a subject 
to further research: the selection of the nominal and uncertainty model in this research were 
shown to be too conservative, hence leading to poor servo performance. 
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CHAPTER 1 

Introduction 

1.1 Background 

At Philips Applied Technologies, research is carried out on the motion control of wafer scan­
ners. A wafer scanner performs the lithography process within the production of integrated 
circuits (ICs). The goal of this process is to project a certain image on the light-sensitive top 
of a silicon disc, see Figure 1.1. Ultra-violet light (a) passes through the reticle, which is a 
mask containing the image, and imaging opties ( c) onto the silicon disc, also called a wafer. 
The wafer and reticle are both placed on motion stages (b and d), that position them with 
respect to the imaging opties. Due to the fine patterns on the ICs, extremely high position 
accuracy is required: the servo errors of the wafer stage are in the order of magnitude of 
1 nm. Next to accuracy, the stages are also required to position the wafer and reticle very 
quickly. Typical throughput requirements of 150 wafers per hour imply very aggressive mo­
tion profiles: velocities of 1 m/s and accelerations in the order of 100 m/s2 are customary. 

1.2 Motivation 

The position control of motion systems generally consists of a feedforward and a feedback 
controller. While feedback con trol is mainly concerned with the ( robust) stability of the closed 
loop system and disturbance rejection, feedforward control is essential to achieve the required 
settling performance: in Hennekens (2009) it is argued that, during maximum acceleration, 
feedforward is responsible for approximately 99.97% of the total control signal for wafer 
stages. In Lunenburg (2009) a number of commonly used feedforward methods are discussed. 
In current wafer stages, low order mass and snap feedforward (Boerlage, 2006; Boerlage et al., 
2004) is used to handle the rigid body behavior and the low-frequent behavior of the flexible 
modes. It is assumed that these flexible modes appear only at high frequencies and are 
therefore not excited by the reference trajectory. The servo performance of this method can 
be optimized by means of Machine-In-the-Loop (MIL) control optimization (Van der Meulen, 
2005b; Van der Meulen et al., 2008). Further improvements can be achieved by adding Finite 
Impulse Response (FIR) filters (Baggen et al., 2008; Heertjes and Van de Molengraft, 2009; 
Hennekens, 2009). 

1 



CHAPTER 1. INTRODUCTION 

Figure 1.1: Schematic layout of the lithography process, where a: ultra-violet light, b: reticle stage 
with reticle, c: imaging opties and d: wafer stage with wafer. 

In the near future , lightweight stage construction becomes crucial to avoid an infeasible design 
for actuators and amplifiers. Furthermore, increasing throughput requirements demand for 
bigger stages, hence the wafer size is bound to increase from 300 mm to 450 mm. As a 
result , these stages will be less stiff than traditional designs and will therefore display more 
pronounced resonant dynamics. In summary, future lightweight wafer stages will become 
less stiff and hence resonances will occur at lower frequencies, while increasingly aggressive 
motion profiles have more energy content at higher frequency. Contrary to the current method 
described above, which essentially treats resonant behavior merely as parasitic, this asks for 
a feedforward method that effectively deals with these flexibilities . Within Philips Applied 
Technologies, this is referred to as Beyond Rigid Body (BRB) control. 

Iterative Learning Control (ILC) is a MIL optimization method which iteratively updates the 
feedforward signal such that the servo error for a particular reference trajectory decreases 
(Bristow et al., 2006; Van de Wijdeven, 2008) . Recently, ILC is often implemented using 
the lifted system representation, which provides large design flexibility and superior analysis 
properties (Van der Meulen, 2005a). Although ILC can lead to excellent servo performance 
for BRB systems, the fact that a new feedforward signal has to be 'learned' for every reference 
trajectory is a major drawback. 

In theory, exact nominal tracking is achieved if the inverse of the plant is used as a feedforward 
controller. The use of the inverse, however, is generally assumed to be of limited practical 
use: firstly, motion stages are strictly proper and hence result in an improper feedforward 
filter. In discrete time, this implies a non-causal filter. In Lunenburg (2009) , however, it is 
already shown that this can be easily solved by adding a certain amount of delay to the filter 
and delaying the reference trajectory with the corresponding number of samples. Secondly, 
the presence of non-minimum phase transmission zeros leads to an unstable feedforward filter 
and, in general, to an unbounded feedforward signal which cannot be implemented in practice. 

2 



1.3. OVERVIEW OF THE RESEARCH 

However, by suitably addressing this issue, a useful feedforward signal may be obtained, as 
will be shown. 

A third remark concerning the use of the inverse of the plant for feedforward control is that 
a plant model never represents the true system exactly. The previously mentioned MIL 
methods are able to handle model uncertainty. Furthermore, the genera! plant setup, which 
is commonly used in combination with 1-i.00 or 1-i.2 optimization is very well suited for dealing 
with model uncertainty. Although very good results are obtained with 1-i.00 or 1-i.2 feedback 
control, the result is aften not satisfactory for feedforward control: since the feedforward 
controller essentially is a trade-off over the entire frequency range, a low-frequent mismatch 
between feedforward filter and inverse system introduces a significant servo error (Van de Wal, 
2001). Furthermore, order reduction of the controller to meet implementation restrictions 
deteriorates the performance. In practice, a nomina! 1-i.00 or 1-i.2 feedforward controller aften 
outperforms the robust solution. 

1.3 Overview of the Research 

From the issues mentioned in the previous section, the problem statement of this research is 
formulated as: 

Develop an inversion-based feedforward controller design method that deals with the more 
pronounced resonant dynamics of future wafer stages in an effective manner and that is robust 
for model uncertainties. 

With respect to this problem statement, a number of subproblems are identified. 

Ql) In order to understand how to address certain properties of (inverse) systems and to be 
able to interpret results, it is important to gain physical insight in (inverse) systems. 

Inverting a system can be viewed as interchanging the poles and zeros, indicating their im­
portance in feedforward design. Particularly non-minimum phase zeros are important , since 
these result in unstable inverse systems. Computing a feedforward signal from an inverse 
system essentially means solving a differential equation. Hereto, the initia! conditions are of­
ten tacitly assumed to be zero. However, by choosing other boundary conditions completely 
different results are obtained. Before that, however, it is important to understand what the 
states of inverse systems actually represent. For these reasons, Ql is further split into the 
following questions: 

Qla) What do the states of an inverse system represent? 
Qlb) How can poles and zeros be physically interpreted? 
Qlc) What is the (physical) explanation for the fact that systems with non-minimum phase 

zeros are difficult to control in a feedforward sense? 
Qld) How do initia! conditions affect this? 

Next to these questions it is important to realize that the plant model never exactly resembles 
the true plant. It is essential to account for this in feedforward control, hence: 

Q2) What is a suitable way of dealing with model uncertainty in inversion-based feedforward 
control? 

3 



CHAPTER 1. INTRODUCTION 

To be able to address uncertainty, it has to be quantified. Furthermore, it should be realized 
that a feedforward controller is usually not implemented in open loop but always accompa­
nied by a (robust) feedback controller which partly attenuates the servo error introduced by 
a mismatch between model and true system. Finally, robust control commonly aims at opti­
mizing the worst case performance. However, as mentioned in Skogestad and Postlethwaite 
(2005, p. 259), this does not always lead to optimal results, which suggests the following 
subquestions: 

Q2a) What is the most suitable way to model uncertainty for feedforward control design? 
Q2b) To what extent can feedback attenuate mismatches between the true inverse system 

and the feedforward controller? 
Q2c) Is the common robust approach of optimizing the worst-case performance suitable for 

feedforward design? 

By answering Ql and Q2, it becomes clear what is important in feedforward control design 
and the gained knowledge is used to develop a design methodology for feedforward control. 
Bath the rather conventional state-space system representation as well as the lifted system 
representation are investigated. A state-space solution is advantageous, since it can be easily 
implemented in the current software. As mentioned above the lifted system representation 
on the other hand, provides large design flexibility and excellent analysis possibilities and is 
therefore an interesting system description for feedforward control design. 

Q3) Is it possible to use inverse state-space systems for feedforward control design, regardless 
of the presence of non-minimum phase zeros? 

Q4) How can the lifted system representation be used for feedforward control design? 

A good starting point for Q3 is stable inversion, see, e.g., Devasia et al. (1996); Sogo (2002); 
Zou and Devasia (1999). A preliminary example using a simple minimum phase system for 
feedforward in the lifted system representation is discussed in Lunenburg (2009), but a general 
approach has not been provided yet. Furthermore, addressing uncertainty is an open research 
question in both approaches. 

1.4 Outline of the Report 

This report is organized as follows. In Chapter 2 it is recapitulated why inverting either the 
plant, the open loop or the closed loop for feedforward control design can in theory lead to 
exact tracking. Furthermore, the difference between SISO and MIMO systems is addressed 
and some concepts are defined which are used throughout this report. 

Next, item Ql is addressed in Chapter 3, followed by item Q2 in Chapter 4. The gathered 
knowledge is subsequently used in Chapters 5 and 6 to develop feedforward control methods 
using the lifted system representation and the state-space description. 

Thereafter, the NXT-A7 wafer stage setup is introduced in Chapter 7, which will be used to 
validate the developed theories. The results of SISO experiments are discussed in Chapter 8 
and a model of this wafer stage is used to apply the developed feedforward methods in MIMO 
simulations (Chapter 9). 

Finally, conclusions and recommendations for further research are given in Chapter 10. 

4 



CHAPTER 2 

The U se of lnverses 
Feedforward 

• 
lll 

In this chapter, the use of inverse systems in feedforward control is discussed and some 
definitions are given that are used throughout this thesis. As is shown in Lunenburg (2009), 
using the plant inverse for feedforward control leads to exact tracking if a standard 2DOF 
control architecture is used. In Section 2.1 it is shown that, in theory, exact tracking can also 
be achieved by using the inverse of either the open loop or the closed loop if a different control 
architecture is used. This holds for both SISO as well as MIMO systems. However, inverting 
MIMO systems is in general not as easy and less intuitive than inverting SISO systems. This 
is explained in Section 2.2. Another issue arising when inverting systems is the relative degree, 
which is therefore discussed in Section 2.3. 

2.1 Feedforward Architectures 

In theory, exact tracking can be achieved by using either the inverse plant, the inverse open 
loop or the inverse closed loop for feedforward control in different control architectures. This 
can be explained by determining the transfer functions from the reference r to the servo error 
e (the arguments s and tor zand k are omitted to enhance readability). 

In Figure 2.1, the standard 2DOF control architecture is displayed. In this case, the transfer 
function from reference trajectory r to tracking error e is given by: 

(2.1) 

where P denotes the plant, Cfb the feedback controller and Cff the feedforward controller. In 
this configuration, the error e is zero if Cff = p- 1 . Note the difference with Iterative Learning 
Control: an ILC signal is usually also injected between the feedback controller and the plant. 
In that case the inverse process sensitivity is used to update the ILC signal. However, (2.1) 
shows why the inverse plant instead of the inverse process sensitivity should be used for 
feedforward control. 

In literature, architectures different from the one in Figure 2.1 are sometimes used. A slightly 
different configuration is displayed in Figure 2.2. Here, e is given by: 

(2.2) 

5 



CHAPTER 2. THE USE OF INVERSES IN FEEDFORWARD 

Uff 

r p y 

Figure 2.1: Plant inversion feedforward. 

where exact tracking is obtained when Cff = (PC!b)-1
, meaning that the feedforward con­

troller equals the inverse of the open loop. This configuration, however, is not very common 
for feedforward control design. 

It is also possible to use the inverse of the closed loop as Cff. Hereto, the configuration in 
Figure 2.3 is used. Note that in this case, the input to C!b does not equal the servo error. 
The error can be expressed as: 

(2.3) 

Exact tracking results if Cff = ( (J + PC!b)-1 PC!b )-l which boils down to inverting the 

closed loop. This architecture is more common than open loop inversion and is used in, 
e.g., Butterworth et al. (2008); Tomizuka (1987). In Rigney et al. (2006) plant inversion 
and closed loop inversion are compared for settle time applications with uncertainty. In this 
thesis, however, only the first architect ure will be considered since this is the only one that is 
independent of the feedback controller. 

The relation in (2.1) denotes the closed loop transfer from reference trajectory to servo error. 
This makes it a suitable measure to assess the effect of the feedforward controller in the 
frequency domain. 

Definition 2.1 The reference sensitivity Sr is the closed loop transfer from reference to error: 

(2.4) 

where S 0 denotes the output sensitivity. 

Uff 

r Ufb 
p y 

Figure 2.2: Open loop inversion feedforward. 
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2.2. SISO AND MIMO SYSTEMS 

r Ufb 
p y 

Figure 2.3: Closed loop inversion feedforward. 

This definition, however , does not depend solely on feedforward but also on feedback. In open 
loop, the following definition can be given: 

Definition 2.2 The f eedforward sensitivity Str is the open loop transf er from ref eren ce to 
error: 

(2.5) 

Hence, Str indicates the effect of feedforward. Ideally, Str(jw) = 0 Vw, but this is hardly 
possible in practice. A mismatch between p - 1 (jw ) and Ctr(jw) can be partly attenuated by 
the feedback controller. This is also t aken into account in Sr(jw). Since feedback controllers 
usually contain integral action, lim S0 (jw) = 0 and hence Sr (jw) will also approach zero at low 

w->Ü 

frequencies. Note that the concepts of feedforward sensitivity (2.4) and reference sensitivity 
(2.5) are not used consistently in literature, see, e.g., Hennekens (2009) ; Peeters et al. (2000) ; 
Skogestad and Postlethwaite (2005) . 

The control architectures discussed in this section can be used for both SISO and MIMO 
systems. However , inverting MIMO systems is in general not as easy and less intuitive than 
inverting SISO systems. This is addressed in the next section. 

2.2 SISO and MIMO Systems 

The flexible behavior of the next generation wafer st ages inherently introduces multivariable 
behavior. In a rigid body approach, the various degrees of freedom (DOFs) are st atically 
decoupled and feedforward is subsequently applied separately in each DOF. 

In Figure 2.5 the Bode diagrams from F 1 to y2 of a 2 Mass-Spring-Damper system (see 
Figure 2.4) and its inverse are plotted. The magnitude and phase of the plant and its inverse 
are simply related by: 

w- 1(jw)I = IP(j w)1 - 1 

L(P- 1(jw)) = - L (P( j w)) 

(2.6a) 

(2.6b) 

The low-frequent -2 slope corresponding to the rigid body mode of a motion system hence 
appears as a +2 slope in the inverse system. This implies that there is no force required to 
hold the system at rest at a certain position. However , as can be seen in Figure 2.6, this does 
not hold for a 2 x 2 MIMO 2 MSD system. 

All entries of the MIMO 2 MSD system have low-frequent -2 slopes, but the inverse system 
shows O slopes. This can be explained by the fac t that the spring is applying a force on both 

7 



CHAPTER 2. THE USE OF INVERSES IN FEEDFORWARD 

d 

Figure 2.4: Schematic 2 Mass-Spring-Damper 
System. 

;_] : g 
100 10 1 102 103 

f [Hz] 

Figure 2.5: Bode diagram of a SISO 2 MSD 
System (black) and its inverse (gray). 

m1 as well as m2 whilst holding the system at a position Y1 -/- Y2· In order for the system to 
stay at rest , this force has to be compensated by both Fi and F2, hence lim pi-

1
.
1 (jw) -/- 0. 

w-+0 ' 

Figure 2.6: Bode magnitude diagram of a MIMO 2 Mass-Spring-Damper System (black) and its 
inverse (gray). 

2.2.1 Decoupling 

In order to enable the possibility to synthesize diagonal feedforward and feedback controllers 
and thus significantly simplifying control design, the 2 x 2 2MSD system can be decoupled into 
a rigid body mode and a flexible mode. The resulting Bode-diagram is plotted in Figure 2.7, 
where also the inverse system is shown. It appears that on the diagonal entries, the relations 
in (2.6a) and (2.6b) hold. The off-diagonal entries are zero for both Pdec and Pd~~' hence no 
MIMO feedforward design is required for this particular example. 

However, the 2MSD system has two inputs and two outputs, but only one rigid body mode. 
This is different from many practical applications such as wafer stages, that usually have 
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2.3. THE RELATIVE DEGREE 

~ _::'----1 _______________ I ~ ] - • ~ 
100 10 1 100 10 1 102 103 

f [Hz) f [Hz] 

Figure 2. 7: Bode magnit ude diagram of a decoupled MIMO 2 Mass-Spring-Damper System (black) 
and its inverse (gray). 

an equal number of rigid body modes and DOFs. Thus, wafer st ages are usually statically 
decoupled according to their rigid body modes. This is in general not sufficient to make 
the off-diagonal entries equal to zero. Take, e.g. , the lumped mass model of an H-bridge in 
Figure 2.8. The original model is rigid body decoupled , resulting in: 

(2 .7) 

The corresponding Bode diagram is plotted in Figure 2.9. At low frequencies, the rigid body 
behavior is dominant so the diagonal entries of P(j w) are much larger than the off-diagonal 
entries. This also holds for P1-l (jw) and P2-J(jw) , which are much larger than P1-J (jw) and 
P2-l (jw) at low frequencies. However , at h,igher frequencies, the inexact decoupl,ing due to 
fle~ibilities causes the off-diagonal entries to have the same order of magnitude as the diagonal 
entries, hence requiring multivariable feedforward control. 

In present feedforward control designs, MIMO FIR filters are tuned to address the high­
frequent multivariable behavior (Baggen et al. , 2008; Heertjes and Van de Molengraft , 2009; 
Hennekens, 2009) . Nevertheless, fut ure wafer stages will have flexibilities at lower frequencies 
and the current FIR fil ters will not be able to compensate for this if the inverse plant possesses 
resonances. Furthermore, FIR tuning does not give any insight in what is physically happening 
and is not useful in case of inferential control. Therefore, a fully multivariable inversion-based 
feedforward control design is required for BRB control design. 

In the next section , the relative degree and properness for SISO and MIMO systems are 
discussed. 

2.3 The Relative Degree 

The relative degree of a SISO system is defined as the number of poles np minus the number 
of zeros n z of a syst em, i.e., 

(2 .8) 
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CHAPTER 2. THE USE OF INVERSES IN FEEDFORWARD 

Figure 2.8: Lumped mass model of an H-Bridge. 

Figure 2.9: Bode magnitude diagram of a H-bridge (black) and its inverse (gray). 

In discrete time, causality and properness of a system are directly related: 

Definition 2.3 

• A discrete system P(z) is strictly proper, or strictly causal, if the output depends only 
on past inputs, i.e., p > O; 

• A discrete system P(z) is bi-proper if the output depends on bath past and present 
inputs, i.e., p = O; 

• A discrete system P( z) is proper, or causal, if it is either strictly proper or proper, i.e., 
P?. O; 

• A discrete system P(z) is improper, or a-causal {non-causal), if the output also depends 
on future inputs, i.e., p < 0. 

In literature, it is often argued that a system is only invertible if it is bi-proper, since inverting 
a strictly proper system results in an improper system. This is generally not true: although an 
improper system cannot be described in common state-space, a descriptor state-space system 
(Luenberger, 1977) or transfer function matrix can be used instead. In practice, however, an 
improper inverse system cannot be implemented as a causal feedforward filter. 

10 
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In continuous time, an improper inverse system with relative degree - p can be made proper 
by multiplying it by 

8
~ and subsequently ddtbt) should be used to calculate Uff(t). This 

corresponds to inverting a system according to Silverman (1969) , where the inverse system is 
viewed as a bank of differentiators followed by a proper dynamic system. 

In discrete time, an improper system is non-causal. Hence, an improper inverse system can be 
made proper by multiplication by }P , in which case r(k) can still be used to calculate Uff(k) 
but should be delayed by p samples before being fed into the feedback loop (Lunenburg, 
2009). 

In a MIMO system, the relative degree is not defined as the number of poles minus the number 
of transmission zeros. Instead, a MIMO system has a vector relative degree [p1 , ... , Pp], with 
p the number of outputs and Pi the number of times one has to differentiate the output Yi(t) 
in order to have at least one component of the input vector explicitly appearing (Isidori, 
1995). 

The properness of a MIMO system depends on the individual entries of the system. According 
to Zhang et al. (2006), a MIMO system is proper if all of its elements are proper and a system 
is strictly proper if all its elements are strictly proper. 

In the next chapter, the states of (inverse) systems and the physical interpretation of poles 
and zeros are discussed. 
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CHAPTER 3 

States, Poles and Zeros 

In this chapter, a number of properties of systems and their inverses are discussed. To 
begin with, the states of the original and the inverted system are discussed in Section 3.1. 
Next, the mathematica! description as well as the physical interpretation of poles and zeros 
is discussed. If a SISO system is represented by a gain k and a number of poles and zeros, 
the inverse can be described by inverting k and interchanging the poles and zeros. This 
illustrates the importance of poles and zeros in feedforward. It also implies that a system 
containing non-minimum phase (NMP) zeros has an unstable inverse. A physical explanation 
for this is discussed in Section 3.4, followed by the implications of the initia! conditions of the 
system and its inverse. Finally, the zeros due to the sampling of a continuous time system 
are discussed in Section 3.5. 

3.1 The States of the Inverse System 

If a system is physically modeled, the states of a state-space system have a straightforward 
interpretation: in case of mechanica! systems, these usually express the ( angular) positions 
and velocities of components of the system. A question that arises while working with inverse 
systems is how to interpret the states of the inverse system. 

Consider the bi-proper dynamic system: 

i:(t) = Ax(t) + Bu(t) , x(0) = xo 

y(t) = Cx(t) + Du(t) 
(3.1) 

with x(t) E llP the states of the system and u(t), y(t) E JRP the inputs and outputs of the 
system. The inverse of this system is given by (Lunenburg, 2009): 

x(t) = (A - BD-1C) x(t) + BD-1y(t), x(0) = Xo 

u(t) = -D- 1Cx(t) + n-1y(t) 
(3.2) 

Essentially, only the inputs and outputs are interchanged and the states remain the same, 
which implies that the states of the inverse system represent the same quantities as for the 
original system. If D is rank deficient, Silverman (1968, 1969) can be used, in which case the 
states of the resulting inverse system are still the same. 
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If a continuous time system is viewed in combination with ZOH and sampler, the states of the 
original system and the resulting discrete system are the same. This follows directly from the 
definition of the matrices of the discrete system: while the discrete state and input matrices 
(with a sampling period Ts) are given by (Franklin et al., 2002): 

(3.3) 

(3.4) 

the C and D matrices of the discrete system are equal to those of the continuous system. 
Furthermore, a similar reasoning as with continuous time systems can be made: the states of 
the inverse system equal those of the original system. This can be illustrated by an example: 

Example 3.1 As an example, a system consisting of a mass (m = l kg) connected to a wall 
by means of a spring (k = 100 N/m) and damper (d = 0.5 Ns/m) is used with a second order 
reference trajectory. The inverse system is used as the feedforward controller. In Figures 3.1 
and 3.2 the states of the inverse and the original system are shown, which are exactly the 
same. 

~

000:1 ====i ~0::1 ====1 
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25 

! 
0:1:; : :;i ! 

0 :1:; : : :;i 
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25 

t rsi t rsi 

Figure 3.1: Position (upper plot) and velocity 
(lower plot) of the inverse system. These exactly 
match the position and velocity of the original 
system (see Figure 3.2). 

Figure 3.2: Position (upper plot) and velocity 
(lower plot) of the mass-spring-damper system. 

In practice, a plant model is often obtained by system identification rather than by physical 
modeling. Therefore, it is more difficult to assign a physical measure to the states. However, 
via similarity transformations it is always possible to obtain a modal representation where the 
states represent velocities and positions. Therefore, it can be concluded that it is not desired 
to directly use unstable feedforward filters, since these may result in unbounded velocities 
and/or positions of the system to be controlled. 
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3.2 Poles 

In Skogestad and Postlethwaite (2005), poles are loosely defined as the finite values s = Pi (for 
continuous systems) or z = Pi (for discrete systems) where P(pi) has a singularity ('is infinite'). 
If a plant is represented by a minimal state-space system, the poles Pi can be computed as the 
eigenvalues Ài of the state matrix A. The locations of poles in the complex plane solely depend 
on the plant to be controlled, e.g., mass, stiffness and damping characteristics. In the lifted 
system description, unstable poles turn up as very large singular values of the convolution 
matrix, see Appendix B. 

In case of a MIMO transfer function matrix, the multivariable poles essentially are the poles 
of the various entries of the transfer function matrix, although the multiplicity of the poles 
cannot be determined by looking at the individual entries. In case of a state-space description, 
the poles are still the eigenvalues of the state matrix. Next to a location, multivariable poles 
also have directions associated with them. Using 

(3.5) 

Üp; is defined as the input pole direction and '[ip; is defined as the output pole direction of the 
pole located at s = Pi (Skogestad and Postlethwaite, 2005). 

The poles of a system are associated with the eigenmodes (natural modes) of the system. 
The motion systems considered throughout this thesis typically contain a rigid body mode 
for every degree-of-freedom (DOF), which implies having two poles at s = 0 (continuous time) 
or z = l ( discrete time). Furthermore, systems usually contain a number of flexible modes 
( resonance modes). 

Example 3.2 Consider the system in Figure 3.3. This system has one rigid body mode, in 
which the two masses move as ij they were connected through a rigid rod. The fiexible mode 
corresponds to the masses moving in opposite directions. The frequency and damping of this 
mode depend on the values for m1, m2, k and d and are directly related to the locations of the 
poles in the complex plane. 

k 

d 

Figure 3.3: A 2 mass-spring-damper system. 

3.3 Zeros 

Corresponding to the loose definition of poles in the previous section, zeros can be defined as 
the values s = Zi (continuous time) or z = Zi (discrete time) where P(zi) loses rank1 . Unlike 

1Note that z (without subscript) denotes the z-operator, while z; (with subscript) denotes a zero in either 
continuous or discrete time. 
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poles, the values of zeros vary mainly according to the locations of the sensors and actuators 
(Miu, 1991). Only if sensors and actuators introduce mass and additional dynamics, the 
A matrix and therefore the values of the poles may very according to sensor and actuator 
locations. If the state-space equations of a dynamica! system are written as: 

(3.6) 

then the zeros can be computed as the values for which the matrix in (3.6) loses rank. In the 
lifted system description, NMP zeros turn up as very small singular values of the convolution 
matrix, see Appendix B. 

Contrary to poles, the zeros of a MIMO system cannot be computed by looking at the 
individual entries of a transfer function matrix, as will be illustrated by an example (Skogestad 
and Postlethwaite, 2005, Section 4.5). 

Example 3.3 Consider the 2 x 2 system given by the transfer function matrix: 

1 [s - 1 4 ] 
P(s) = s + 2 4.5 2(s - 1) (3.7) 

In this system, two individual entries have a zero at s = l. However, substituting s = l 
in (3.7) does not cause the matrix to lose rank. On the other hand, substituting s = 4 does 
cause the matrix to lose rank, hence s = 4 actually is a multivariable zero. 

As is the case with MIMO poles, multivariable zeros also have directions associated with 
them. In this case, they are given by (Skogestad and Postlethwaite, 2005): 

P(zi)'üz; = 0fïz; (3.8) 

Uz; /. 0 is defined as the input pole direction and Yz; /. 0 is defined as the output pole direction 
of the pole located at s = Zi. 

In the time domain, the presence of zeros implies that certain input signals are blocked. 
More specifically, if s = Zi is a zero of P( s), then there exists an input signal of the form 
uez;tl+(t) (l+(t) denotes a unit step) and initial conditions xo such that the output y(t) = 0 
fort> 0. 

A physical interpretation of zeros of mechanica! systems is given in Miu (1991). Here, it 
is shown that the zeros of a system represent the resonances of the remaining sub-structure, 
when artificial constraints are put at the sensor/ actuator location (see also Verhoeven (2010) ). 
This indicates why the zeros of a system are essential for feedforward. In point-to-point moves, 
the output, i.e., the sensor location, is supposed to stay at rest after the move. However, the 
remaining states of the system are not necessarily in rest, therefore requiring post-actuation. 

Example 3.4 Take for example the mass-spring-damper system from Figure 3.4. Now, a 
feedforward signal is applied such that y exactly tracks a point-to-point move. After arrival 
m2 is at rest so iJ = 0, but m1 might still be moving. Typically, it wilt oscillate at the frequency 
of the zeros of the total system. In order for y to stay at rest, F should not only contain a 
steady state component but also compensate for the oscillating force of k2 and d2 on m2. 
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F 

m1 

y 

Figure 3.4: Mass-spring-damper system from an example in Miu (1991). 

This can be further generalized : forces on m2 due to possible oscillations of m1 have to be 
compensated during any reference trajectory. 

Remark 3.1 From the examples in the previous and current section, it appears that, unlike 
the locations of the poles, the locations of the zeros depend on the placement of sensors and 
actuators. 

Unlike unstable poles, unstable zeros (also called non-minimum phase zeros) do not imply 
that a system is unstable. However , it is well known that they do pose limits on the achievable 
performance of feedback control , see, e.g. , Skogestad and Postlethwaite (2005). In feedforward 
control , unstable zeros have to be dealt with in a suitable way (Butterworth et al. , 2008; 
Lunenburg, 2009; Tomizuka, 1987) , since a NMP system has an unstable inverse. In the next 
section , it is discussed why the presence of unstable zeros limits servo performance if they are 
not addressed in a suitable way. Furthermore, special attention is given to sampling zeros in 
Section 3.5. 

3.4 Non-Minimum Phase Behavior 

In mechanical systems, NMP zeros may arise when sensors and actuators are placed on 
opposite sides of the center of gravity. Furthermore, since in practice digital controllers are 
used , additional NMP zeros may be introduced by sampling, see Áström et al. (1984). In order 
to illustrate the implications of NMP zeros, an exemplary system is introduced . Thereafter , 
inert ia feedforward is used on a second order reference trajectory, which clearly shows the 
difference between minimum phase and non-minimum phase behavior. 

3.4.1 The Flexible Cart System 

Throughout this thesis, the flexible cart system shown in Figure 3.5 will aften be used to 
illustrate the difference between minimum and non-minimum phase systems. It consists of a 
mass resting on two springs and dampers ( not shown in the picture). A force u is applied in 
horizontal direction at the top of the mass, resulting in a displacement x and a rotation </J of 
the black. The displacement can be measured at the right bottom (y1) or the right top (y2) ; 
t he diff erence between two systems will be discussed below. The dynamics of the system in 
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◄ .. u 
~ x Y2 

~ Y1 
,__ ___ 
k,d 

Figure 3.5: The Flexible Cart system. 

Figure 3.5 can be described by the following equations: 

mx u (3.9a) 

I</> 
1 1 2· 1 2· · (3.9b) -lu - -kl sm(</>) - -dl sm(</>) 
2 2 2 

l . 
(3.9c) Y1 x + 2 sm(</>) 

l . 
(3.9d) Y2 x - -sm</> 

2 

where k and d are the spring and damper constants, m is the mass of the block, and I is 
the mass moment of inertia. The various parameters are given in Table 3.12 . Linearizing the 

Table 3.1: System parameters of the flexible cart. 

Parameter I Value I Unit 

m 8 kg 
I 0.013 kgm2 

k 10 kN/m 
d 333 Ns/m 
l 0.1 m 

equations of motion around </> = 0 results in the following transfer functions: 

(3.10a) 

(3.lüb) 

Both systems Pi ( s) and P2 ( s) have two poles at the origin and poles at s = -48.1 and 
s = -80.0. Furthermore, Pi(s) has a LHP zero at s = -27.0 and a RHP zero at s = 265 and 
is thus non-minimum phase. This is also visible in the Bode diagram in Figure 3.6, where 
P1 ( s) does not comply with the Bode gain-phase relationship. System P2 ( s) has both its 
zeros in the LHP at s = -25.2 ± 29.6j and thus is minimum phase. 

2Note that in Lunenburg (2009) d = 10 Ns/m. However, the alternative value in this section is chosen such 
that the response is supercritically damped and hence the NMP behavior can be seen more clearly. 
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Figure 3.6: Bode-diagrams of P 1(s) (black) and P2 (s) (gray). 

In a state-space description with x = [x x </) Jf, matrices A and B are equal for Pi 
and P2: 

0 
0 0 0 

[

o 1 

A = O O O 
0 0 _lkl2 

2 J 

The difference appears in the C matrices: 

and in both cases D = 0. 

0 l 0 
1 ' 

_ldl2 
2 J 

[1 o ½ o] 
[1 o -½ o] 

(3.11) 

(3.12a) 

(3.12b) 

To assess the sampled data system, the MATLAB command c2o is used to obtain the system 
including ZOH and sampler. Hereto, a sampling time of T8 = 0.005 s is used. 

The resulting discrete time system has two poles at z = 1 and poles at z = 0. 786 and 
z = 0.670, where the poles at z = 1 correspond to the rigid body mode and the remaining 
poles with the rotation of the flexible cart. Furthermore the sampled minimum phase system 
P2 (z ) has zeros at z = 0.872±0.130j and a sampling zero at z = -0.879 which are all located 
inside the unit circle. The non-minimum phase system Pi(z) has its zeros at z = 0.874, 
z = 3.87 and the sampling zero at z = -0.575. The non-minimum phase behavior manifests 
itself here in the zero outside the unit circle. Note that by adding the ZOH and the sampler 
the discrete systems have three zeros instead of the two of the continuous time flexible cart 
systems. This zero is therefore also referred to as sampling zero (see Section 3.5). 

3.4.2 Inertia Feedforward 

To illustrate the difficulty in feedforward control for NMP plants, it is first studied what 
happens if a step input is applied to the flexible cart system. This step input corresponds to 
using mass feedforward for a second order reference trajectory. To ensure closed-loop stability, 
a low bandwidth feedback controller is used. In Figure 3.7, it is shown that the rotation </) 

19 



CHAPTER 3. STATES, POLES AND ZEROS 

of the flexible cart system converges to steady state. As long as </> is constant, the system 
essentially behaves as a rigid body. As a result of this rotation, Y1 lags behind the reference 
trajectory and Y2 on the other hand leads in front of the reference trajectory, as can be seen 
in Figure 3.8. As </> has reached its steady state value, the difference between Y1, y2 and a 
simple mass is also constant, being e = ±½<t>-

This result is well-known: mass feedforward does not lead to exact tracking in case of flexible 
systems. Intuitively, one could expect that y2 achieves exact tracking if the feedforward signal 
Uff 2 is not a step response but increased from 0 to 1 somewhat gradually, e.g., like a filtered 
st~p response. This would cause both x and -½</> and hence the output y to increase less 
quickly. In case of the non-minimum phase system, however, this is not that straightforward: 
since it is lagging, it seems that the force should initially be increased. However, this would 
also increase the initial rotation and hence the lag. A feedforward control strategy has to be 
designed that effectively deals with this apparent contradiction. 

- 3 

r=a 
0 0.05 0.1 0.15 0.2 

!-,:R 
-3 

: 1 
0 0.05 0.1 0.15 0.2 

t [si 

Figure 3. 7: Displacement of the COG x and 
rotation </> of the flexible cart system due to a 
step input on u. The rotation </> converges to 
steady state. 

3.4.3 The Inverse System 

4 

3 

a 2 
;:,, 

-1~--~ ---~--~- - -~ 
0 0.005 0.01 

t [si 
0.015 0.02 

Figure 3.8: Reference trajectory (black, dot­
ted), Y1 (black) and Y2 (gray). It appears that Y1 
is lagging and y2 is leading the reference trajec­
tory. 

With this contradiction introduced, the question arises how it is possible that, in theory, an 
unstable inverse leads to exact tracking. In Figure 3.9, Uff,l and Uff,2 are computed using the 
exact inverse systems. Since both Pi(z) and P2(z) have a relative degree of p = 1, the inverse 
systems are improper so a pole at z = 0 is added to enable a causal implementation. Therefore, 
the reference trajectory is delayed with one sample before being fed into the feedback loop 
(Lunenburg, 2009, Section 3.1). 

As can be seen in the lower plot Uff ,2 converges to 1 as expected. The feedforward signal for 
the non-minimum phase system Uff ,l is quite different: it becomes negative, hence moving the 
COG in negative direction, while the flexible cart is supposed to move in positive direction. 
This can be explained by looking at the rotations in Figure 3.10: again, </>2 nicely converges 
to the same steady state value as in Figure 3. 7. However, due to the continuous negative force 
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Figure 3.9: Feedforward cont rol signals for y1 

(upper plot) and y2 (lower plot). A theoretica! 
feedforward force in t he order of 1023 N (upper 
plot ) is unrealistic. 

t [s] 

Figure 3.10: Rotation of the flexible cart sys­
tem due to inversion-based feedforward: </> 1 (up­
per plot ) and </>2 (lower plot). An angle in the 
order of 1019 rad (upper plot) cannot be achieved 
in practice. 

Uff 1 , the increase of c/>1 is unbounded. Although the simulated response Y1 exactly matches , 
the reference trajectory, this result for Pi ( z) obviously cannot be realized in practice . 

3.4.4 Initial Conditions 

The output of a dynamic system consists of the sum of the forced response, which is due to 
the input signal, and t he free response, which is due to the initial conditions of the system. 
In the design of control systems, these initial conditions are often t acitly assumed to be zero, 
resulting in a zero free response3 . This seems sensible since the systems under consideration 
are at rest before and after moves. 

However , in Section 3.4.2 it is shown that the rotation cl> converges to a steady st ate value if 
a constant force is applied . Therefore, it is interesting to see what happens if the simulation 
st arts using these initial conditions, i.e., xo = [ 0 0 - 1 x 10-3 0 f . This is plotted in 
Figures 3.11 and 3.12. It appears that cl> stays constant and both Pi(z) and P2(z) exactly 
t rack the reference trajectory. This is an important result: contrary to the situation with 
zero initial conditions, a non-minimum phase system can actually exactly track a second order 
reference trajectory using inertia feedforward if the correct initial conditions are used. 

Remark 3.2 Note that the minimum phase system also achieves exact tracking if mass feed­
forward is used in combination with the correct initia[ condition. Nevertheless, exact tracking 
can also be obtained by using the inverse system (Section 3.4 .3). 

A detailed discussion about a single or multiple (complex) NMP zeros can be found in Hoagg 
and Bernstein (2007), where undershoot , overshoot and zero crossings in servo systems due 
to NMP zeros are addressed. 

3 A system which is not connected to the world through a spring element wil! a lso remain in rest if the 
initia! velocity equals zero and no external force is applied . 
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Figure 3.11: Displacement of the COG and ro­
tation of the flexible cart system due toa step in­
put on u, using xo = 0 m and </Jo = -1 x 10- 3 rad. 
The rotation </J stays constant. 

3.5 Sampling Zeros 

2.5 

2 / 
0.015 0.02 

Figure 3.12: Reference trajectory (black, dot­
ted) , y1 (black) and Y2 (gray) using xo = 0 mand 
<Po = -1 x 10-3 rad. It appears that all three are 
exactly the same. 

Next to the non-minimum phase zeros discussed in the previous section, sampling zeros require 
some additional attention. In Áström et al. (1984), it is shown that additional zeros are 
introduced when sampling systems with a relative degree p > l. If a continuous SISO system 
has a relative degree p = 2, the sampled data system will have an additional zero at z ;::::;; -1 
for a sufficiently small sampling period. If the inverse model is used for feedforward control, 
this will have a pole at z ;::::;; -1. This is not desired for feedforward design, since it may 
introduce undamped oscillations of the resulting feedforward signal at the Nyquist frequency 
Us/2), see, e.g., Franklin et al. (2002, Section 8.2.3). 

This behavior is highly undesirable: not only might these vibrations turn up in the system 
output due to a mismatch between the model and the true system, but it might also have 
a significant impact on the intersample behavior. In Oomen (2010); Oomen et al. (2009) it 
is shown in an ILC context that excellent onsample performance does not necessarily imply 
good intersample behavior and that this effect may be caused by sampling zeros. 

To prevent this oscillatory effect , the pole at z = Zs should be taken out of the feedforward 
filter: 

l z - Zs 
Crr(z) = p - (z) z (1 - zs) (3.13) 

The numerator of the transfer function cancels the pole at z = z8 , while the factor 1 - Zs 

assures that the steady state gain does not change. Furthermore, an additional pole at z = 0 
is added to retain the relative degree. This modification of the feedforward filter can be 
seen as filtering of the feedforward path. Therefore, in order to maintain exact tracking, the 
reference trajectory should be filtered equivalently, see Figure 3.13. 

Remark 3.3 Note that this filtering of the reference trajectory can be seen as a subsample 
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Figure 3.13: Filtering to avoid vibrations of the feedforward signal at the Nyquist frequency. 

delay correction, see, e.g., Van Donkelaar {2003): 

l Zs 
r1(k + 1) = --r(k + 1) - --r(k) 

1 - Zs l - Zs 
(3.14) 

Note, however, that in Van Donkelaar {2003) a subsample delay is tuned to improve the servo 
performance, while in this case it is used to avoid oscillations of the feedforward signal at the 
Nyquist frequency. 

To illustrate the issue of sampling zeros and the proposed solution, a step response is per­
formed using a simple mass, similar to Example 1.1 in Oomen (2010, 8.5.2). 

Example 3.5 The transfer function of a moving mass in combination with a ZOH and sam­
pler is given by: 

P(z) = T; z + l 2 

2m (z - 1) 
(3.15) 

which has a zero at exactly z = - l. U sing the inverse system to compute the feedforward signal 
for a step reference trajectory r( t) results in the upper plot of Figure 3.14. In Figure 3.15 it 
appears that the output y(t) exactly equals r(t) at the sample instants but shows oscillatory 
behavior in between samples. This corresponds to the ILC result in Oomen {2010). 

Removing the pole of the inverse system at z = - l results in the feedforward signal in the 
lower plots of Figure 3.14. The oscillatory behavior of the tracking error has been removed, 
but the at-sample error at t = 0.02 s is not zero. Finally, filtering the reference trajectory 
as well {lower plot of Figure 3.15) results once again in exact at-sample tracking as well as 
optimized intersample behavior. 

In Chapters 2 and 3, inverse systems and their properties are discussed. However, a model of 
a system never exactly represents the true system. Therefore, model uncertainty is addressed 
in Chapter 4. 
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Figure 3.14: Comparison of Uff fora step in the 
setpoint resulting from the exact inverse system 
( upper plot) and with the sampling zero removed 
(middle and lower plot). The upper plot shows 
oscillations of Uff at the Nyquist frequency, while 
the lower two plots are the same. 
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Figure 3.15: Comparison of the servo error at 
low (open dots) and high (solid line) sampling 
rate, with Uff resulting from the exact inverse 
system (upper plot), the sampling zero removed 
(middle plot) and the sampling zero removed plus 
the setpoint filtered (lower plot). The upper plot 
shows good onsample but poor intersample be­
havior, while the middle plot has an onsample 
error at t = 0.02 s . The lower plot shows the 
best onsample and intersample behavior. 



CHAPTER 4 

U ncertainty and Feedforward 

As shown in Chapter 2 exact tracking can be achieved if the feedforward filter is chosen as 
Cff = p-1 . Although current system identification techniques result in accurate models, these 
will never exactly resemble the real plant. A certain amount of model uncertainty will always 
remain due to, e.g. , production tolerances, nonlinearities, wear and position dependent dy­
namics. Furthermore, a model cannot be made overly complex, soa finite model order is also 
an important source of uncertainty. In this chapter, the consequences of model uncertainty 
for feedforward control are addressed. In Section 4.1, various uncertainty structures used 
to describe these uncertainties are discussed. Next, a few examples of mismatches between 
the true plant and the model are investigated to gain insight in the effect these have. The 
role of feedback is also taken into account. There exist robust feedforward solutions which 
explicitly deal with model uncertainty. These are introduced in Section 4.3. These commonly 
optimize the 'worst-case' performance, but one could question whether this approach is suited 
for feedforward design. This is discussed in Section 4.4. 

4.1 U ncertainty Modeling 

In Skogestad and Postlethwaite (2005), two main classes of model uncertainty are distin­
guished: 

• Parametric (real) uncertainty: the model structure is completely known, but (some of) 
the parameters are uncertain. In this case, an uncertain parameter ap E [amin, Ctmax] 

can be described by: 
(4.1) 

where a 0 is the nomina! value and r °' = ( Ctmax - Ctmin) / ( Ctmax + Ctmin) is the relative 
uncertainty and ~ is any real scalar ~ E [-1, l]. 

• Dynamic ( frequency-dependent) uncertainty: Since a true system is too complex to be 
represented exactly by a model of fini te order, there is model uncertainty due to missing 
dynamics. 

The models of wafer stages are obtained by system identification rather than by physical 
modeling and therefore the model parameters do not directly represent physical variables. 
This means that dynamic uncertainty models are used for the control design. There are a 
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number of uncertainty structures which are commonly used for control design. These are 
discussed in the next section. 

4.1.1 Uncertainty Structures 

In Figure 4.1 a number of commonly used uncertainty structures is displayed. Here, .6. can 
be any stable system satisfying ll.6.ll oo :S 1. Furthermore, w denotes a st able, minimum 
phase weighting filter. Of these six alternatives, multiplicative uncertainty weights are often 
preferred since these are more informative: if lw1(j w)I > 1, the uncertainty exceeds the 
magnitude of the plant , which is important in both feedback and feedforward control. This 
will be further discussed in Section 4.3. 

(a) Additive Uncertainty (b) Inverse Additive Uncerta inty 

(c) Multiplicative Input Uncerta inty (d) Inverse Multiplicative Input Uncerta inty 

(e) Multiplicative Output Uncerta inty (f) Inverse Multiplicative Out put Uncerta inty 

Figure 4.1: Various commonly used uncertainty models 

A disadvantage of the uncertainty structures displayed in Figure 4.1 is that poles and zeros 
cannot cross from the LHP into the RHP and vice-versa (in continuous time). This is impor­
tant since in case of only LHP zeros, the inverse model can be used directly for feedforward 
control while RHP zeros result in an unstable inverse system. Therefore, a coprime-factor­
based uncertainty description (Skogestad and Postlethwaite, 2005) or Dual-Youla-Kucera 
model uncertainty structure (Oomen, 2010) are more suited. These less common uncertainty 
descriptions are, however , beyond the scope of this thesis. 

4.1.2 Uncertainty in the Lifted System Description 

In the lifted system description , a statie map J , representing convolution, is used to de­
scribe the input-output behavior of a dynamic system (Bamieh et al., 1991; Lunenburg, 2009; 
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Van de Wijdeven, 2008). The lifted system description will be elaborated in Section 5.1. 
In ILC, addressing uncertainty is mainly important to ensure robust convergence. Hereto, 
an uncertainty description in the lifted domain is important. Consider the singular value 
decomposition of the convolution matrix J: 

(4.2) 

where V and U contain the input and output singular vectors and E is a diagonal matrix 
with the singular values 0-1, ... , O"N ordered in decreasing magnitude. One could expect that 
uncertainty concerns the smaller singular values but this turns out to be not true. 

Looking more carefully at the singular values and singular vectors, it can be concluded that 
the singular vectors contain harmonie oscillations. The corresponding singular values denote 
the magnitude of the Bode-diagram of the underlying system. This is confirmed by Dijkstra 
(2003), and amore elaborate discussion of the interpretation of singular values and singular 
vectors can be found in Appendix B. 

In Van de Wijdeven (2008), an uncertainty description like the ones above is used in the 
lifted domain. In this case, the weighting filters and ~ are lower triangular (block) Toeplitz 
matrices. 

4.2 Feedback 

Model uncertainty implies that the model is not an exact representation of the plant. It is 
interesting to see how a mismatch between model and plant affects the tracking performance, 
and what the effect of feedback is. Hereto, a number of possibilities is discussed. First, the 
presence of friction is investigated, followed by a low-frequent gain mismatch. Finally, phase 
delays are discussed. 

4.2.1 Damping 

Industrial motion stages are often modeled with a low-frequent -2 slope, which implies that 
there is no damping or stiffness with respect to the fixed world. In practice there may be 
some friction or stiffness present due to, e.g., a cable slab or Eddy current damping, which 
results in a -1 or 0 slope at low frequencies. A low-frequent mismatch between Cff(s) and 
p - 1 (s) will, to a certain extent, be attenuated by the integral action of Cfb(s). Here, the 
remaining error will be quantified in the frequency domain using Sff(s) and Sr(s). 

Assume that the true system is a simple mass with m = 1 kg, given by: 

while the nomina! model is given by: 

1 
P(s) = -s(-s -+-w1-) 

1 
P0 (s) = 2 s 

(4.3) 

(4.4) 
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Now, if the inverse of the model is used as feedforward controller, Cff(s) 
resulting feedforward sensitivity is given by: 

(4.5) 

At high frequencies, this is a minus one slope, meaning that the feedforward controller im­
proves tracking performance, but at low frequencies (w < WJ ), Sff(s) :::::: 1 soit does not improve 
performance with respect to the situation without feedforward, as was expected. Furthermore, 
Sff( s) increases linearly with w f · A simple proportional-integral (PI) controller is introduced 
to illustrate to what extent the feedback controller is able to attenuate this: 

(4.6) 

Note that in practice derivative action is required to stabilize the system, but this occurs 
at a higher frequency than Wi and is therefore omitted for simplicity. The resulting output 
sensitivity is given by: 

(4.7) 

Now, the reference sensitivity is given by: 

WJS
2 

Sr(s) = S0 (s)Sff(s) = 3 2 k k 
S + WJS + S + Wi 

( 4.8) 

An exemplary Sr(s) with WJ = 0.21r rad/s, Wi = 61r rad/s and k = 9 is displayed in Figure 4.2. 
At low and high frequencies, Sr(s) asymptotically approaches: 

lim Sr(s) = WJ s2 

s-+O kwi 
. a 

hm Sr(s) = -
S-+00 8 

( 4.9) 

(4.10) 

These asymptotes intersect at w = ~ rad/s with a magnitude of ISr(j~)I:::::: v'6:· In 

this example, max ISr(s)I = -20.3 dB, indicating that although WJ manifests itself a factor 30 
below Wi it still has a significant impact on the eventual tracking performance. In summary, 
the extent to which the feedback controller is able to attenuate such an uncertainty depends 
on the locations of the integrator frequency and the uncertainty. 

4.2.2 Gain Mismatch 

In Lunenburg (2009), it was shown that a low-frequent gain mismatch leads to large tracking 
errors if only a proportional controller is used. Here, an analysis similar to the previous 
section is performed for such a mismatch. Take, e.g., the system: 

1 
P(s) = -

2 ms 

which is approximated by the nominal model: 
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Figure 4.2: Sr(s) in case of a system which con­
tains damping which is not present in the model. 

Figure 4.3: Sr(s) in case of a mismatch between 
the gain of the inverse of the true system and the 
feedforward controller. 

If Cff = P;1 , the feedforward sensitivity is given by: 

-1 6 Sff(s) = 1 - PP = --
o m (4.13) 

which is constant over the entire frequency range. Using the PI controller of (4.6), S0 (s) is 
given by: 

ms3 

Sa(s) = ----­
ms3 + ks + kwi 

(4.14) 

Hence, the reference sensitivity equals: 

Sr(s) = _i_ ms3 6s3 (4 15) 
m ms3 + ks + kwi ms3 + ks + kwi · 

which is plotted form = 1 kg and 6 = 0.01 kg in Figure 4.3. The limits of Sr(s) are given 
by: 

lim Sr(s) = -~s3 
s-+O kwi 

lim Sr(s) = _j_ 
S-+00 ffi 

(4.16) 

(4.17) 

These asymptotes intersect at w = ~' which is independent of the actual mismatch 6. 

Note that limSr(s) has a low-frequent +3 slope. This is due to the integrator. If a controller 
s-+O 

did not contain integral action (wi = 0), (4.15) would become: 

Js3 
Sr(s) = - 3 k (4.18) 

ms + s 

with 
6s2 

lim = --
s-+ü k 

(4.19) 

This is a + 2 slope hence the transfer function from the desired acceleration ra ( s) to the error 
e(s) would give a good indication of the tracking error during constant acceleration. 
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4.2.3 Phase Lag 

The examples discussed above both concern a gain mismatch between Cff(s) and P0-
1(s), but 

also a phase mismatch can cause severe tracking errors: a phase shift of </J implies a time delay 
of <Pfw fora sinusoidal input with frequency w (Tomizuka, 1987). In turn, this causes Sr(s) 
to be unequal to zero. Take again a simple mass (m = 1 kg). If Cff lags p 0-

1 with only 1°, 
this results in ISffl = -35.2 dB over the entire frequency range, which equals a gain mismatch 
of 1. 7%. As discussed before, this is far too much for accurate servo performance. 

In Appendix A, it is argued that using Euler integrators in series to compute reference tra­
jectories leads to a transfer function from reference to output: 

Y(z) = z + l R(z) 
2z2 ( 4.20) 

Although this is not a plant property and cannot be attributed to model uncertainty, this 
difference can be seen as a phase delay of 1 ½ samples. If the sample delay due to the relative 
degree of p = 1 is compensated, a subsample delay of ½ remains. This corresponds to a time 
delay of: 

• 0.5/2500 = 0.0002 s with fs = 2.5 kHz 
• 0.5/5000 = 0.0001 s with fs = 5.0 kHz 

The resulting servo errors during a constant scanning motion with a velocity of 1 m/s are 
0.2 mm and 0.1 mm. This is obviously too large for the feedback controller to attenuate, 
indicating the importance of tuning the required delay correction (Van der Meulen, 2005b; 
Van der Meulen et al., 2008). 

4.3 Robust Feedforward 

Now that the uncertainty is modeled, it should be suitably addressed in feedforward design. 
In feedback control design, H 00 and H2 optimization are commonly used to address model 
uncertainty. According to Skogestad and Postlethwaite (2005), the presence of non-parametric 
and unstructured uncertainty is the raison d 'être for H00 optimization. Similarly, these tools 
can be used to synthesize feedforward controllers, see, e.g., Hoyle et al. (1991); Lee and 
Salapaka (2009); Lunenburg (2009); Prempain and Postlethwaite (2001). These methods 
typically result in a feedforward controller which gives a guaranteed performance for every 
plant Pin the set P. This result is commonly obtained by reducing the gain, i.e., ICff(jw)I :S 
IP-1 (jw)I Vw, thus also deteriorating the nominal performance. 

Another reference which is often quoted in discussing robust feedforward is Devasia (2002), 
which investigates the use of the exact inverse model for feedforward. With the additive 
uncertainty defined as: 

( 4.21) 

where P0 denotes the nominal model and Pp the perturbed plant, and for multivariable plants 
the condition number: 
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4.4. DISCUSSION 

Table 4.1: Comparison ofreference sensitivity Sr(6.,jw) and output sensitivity S0 (6.,jw) for different 
uncertainty size 6.(jw). 

Size of U ncertainty 

ll ~(jw)ll2 < Po(jw) 
- Kp0 (Jw) 

Comparison of Tracking Performance 

For all controllers and any uncertainty ~(jw) 
Sr(~,jw) :S So(~,jw) 

There exists a controller and an uncertainty ~(jw) such that 
Sr(~,jw) > S0 (~,jw) 

For any controller, there exists an uncertainty ~(jw) such that 
Sr(~,jw) > So(~,jw) 

the conclusions are summarized in Table 4.1. 

In words, this means that at those frequencies w where the additive uncertainty ~(jw) is 
smaller than the the nominal plant P0 (jw) divided by its condition number Kp

0
, using the 

inverse model as feedforward controller leads to improved servo performance compared to the 
situation without feedforward. Therefore, the robust feedforward filter proposed in Devasia 
(2002) equals zero when ll~(jw)ll2 > 1~

0

((j~jl and equals the inverse model when ll~(jw)ll2 :S 

IIPo(j~)II with ~(J'w) as defined in (4.21). 
kp

0
(Jw) 

In Wu and Zou (2009) a more sophisticated gain modulated system inverse is used for feed­
forward: 

C ( . ) 2cos(l~0lmax(w))p-l(. ) 
ff JW = o JW 

~Tmin + ~Tmax 
( 4.23) 

where ~r and ~0 are defined by: 

(4.24) 

This approach may yield less conservative results since both magnitude and phase information 
of the uncertainty are taken into account. Similar to H 00 and H2 feedforward, it is an 
optimization of the worst case. In the next section it is discussed whether this approach is 
suited for feedforward. 

4.4 Discussion 

All methods discussed in the previous section have in common that they optimize performance 
for the worst-case plant P present in P, leading to a guaranteed performance for every P E P. 
In feedback control, this approach makes sense, since the feedback controller is supposed to 
stabilize the system and the closed loop system must be guaranteed to be stable. However, 
this worst-case approach may not always achieve optimal performance, e.g., if the worst-case 
plant rarely or never occurs (Skogestad and Postlethwaite, 2005, p. 259). Therefore, it can 
be argued that better servo performance may be obtained when a different approach is used 
for feedforward, e.g., optimizing the average performance of all P E P. This is illustrated by 
means of a simple example with a constant plant subject to real uncertainty. 
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Example 4.1 Consider a system with a nomina[ model 

( 4.25) 

which is subject to a large parameter uncertainty such that 

( 4.26) 

Since the magnitude of the uncertainty exceeds the magnitude of the plant, robust feedforward 
implies that Cff = 0 (Devasia, 2002). However, in 1/1.1 = 91% of the plants P E P, 
better performance is achieved when the inverse of the nomina[ system is used as feedforward: 
cff = 1/ fa= 1. 

To compute an optima[ solution, a cost function is defined as: 

( 4.27) 

Instead of optimizing the worst case ( /j,_ = -1), the optima[ solution for the entire model set 
P is defined as: 

Cff = arg min f 1 H(fj.)dfj. 
cff -1 

(4.28) 

which can be computed to be Cff = 0. 71. 

::i:: 

1 0 

Figure 4.4: The cost function H 
(1- P(fj,_)Ctr)2 for various values of /j,_ and Ctr. 

1.\ 
1 - --· - -- --- --··· ·-- - - .. --- -

~:: \ 
0.2 '--

" 

Figure 4.5: The cost function H as a function of 
/j,_ for Ctr = 0 (grey, dash-dotted), Ctr = 1 (grey, 
solid) and Ctr = 0.71 (black) The area under the 
gray, dash-dotted line is the largest, while the 
area under the black line is smallest, indicating 
that Ctr = 0. 71 is the optima! solution. 

This is graphically depicted in Figures 4-4 and 4.s. It can be seen that if Cff = 0, H(fj,_) will 
never exceed 1, but the overall performance, i.e., the area under the gray, dash-dotted line in 
Figure 4.s is much larger than the area under the solid gray line, obtained by using Cff = P

0
-

1 

(see also Table 4.2). This area is minimized by using Cff = 0.71, resulting in the black line. 

This is quite an extreme example where the multiplicative uncertainty exceeds the nominal 
model. In practice, this will usually only occur at high frequencies. However, also if the 
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Table 4.2: Integral of H on 6. E [-1, 1]. 

Cff j f~ 1 Hd~ 

0.00 2.00 
1.00 0.80 
0.71 0.58 

uncertainty is smaller smaller (w1 < 1), the result is not optimal for Cff = P0-1, showing that 
a robust feedforward approach optimizing Cff for the entire model set P can improve servo 
performance. This result is taken into account in robust feedforward synthesis in Chapters 5 
and 6. 
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CHAPTER 5 

The U se of the Lifted System 
Representation for Feedforward 
Controller Synthesis 

The lifted system description is an increasingly used way of describing linear systems, e.g., 
in Iterative Learning Control Dijkstra (2003). According to Van der Meulen (2005a, p. 97), 
the main advantages of the lifted system representation are the large design flexibility and 
the excellent analysis properties. In Lunenburg (2009), it is shown how the lifted system 
representation can be used for feedforward control design. The proposed method is rela­
tively straightforward: the impulse response matrix used in the lifted system representation 
is inverted and the resulting matrix can be used to compute the feedforward signal. This 
technique was successfully applied to the minimum phase flexible cart system introduced in 
Section 3.4.1. A number of issues, however, remained unsolved: 

• Non-minimum phase systems lead to convolution matrices with singular values Ij~ 0 for 
every NMP zero (Dijkstra, 2003; Hashemi and Hammond, 1996). This means that using 
the inverse convolution matrix leads to large (unbounded) feedforward signals, which 
cannot be applied in practice. How can the inverse convolution matrix be approximated 
and what is the error that results from this approximation? 

• In Section 3.4.4, it is shown that certain initial conditions other than x(O) = 0 can lead 
to exact tracking for NMP systems. What requirements do these initial conditions have 
to meet? How can this be explained in the lifted domain? Furthermore, what is the 
effect of pre-actuation in the lifted domain? 

• How can model uncertainty be dealt with in a suitable way? 

These issues are investigated in this chapter. First, the approach in Lunenburg (2009) is 
extended to include non-minimum phase systems in Section 5.1. Thereafter, a lower bound 
on the resulting servo error is discussed in Section 5.2, where the initial conditions and pre­
actuation are also taken into account. It appears that the solutions of Sections 5.1 and 5.2 
are Linear Time Varying (LTV) rather than Linear Time Invariant (LTI). In Section 5.3, it is 
explained how LTI solutions can be enforced if this is desired. Thereafter, in Section 5.4, it is 
discussed how uncertainty can be handled in the spirit of Section 4.4. Despite the advantages 
of the lifted system description, numerical issues form a drawback on these concepts. These 
are discussed in Section 5.5. The various issues are illustrated by means of an example with 
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the flexible cart system in Section 5.6. 

5 .1 Concepts 

In the lifted system representation, a statie map, representing convolution, is used to describe 
the system dynamics. Commonly, a convolution matrix (or impulse response matrix) with 
finite dimensions is used, leading to the following description: 

1 
y(O) 1 1 D y(l) GB 

y(N - 1) CA;_2 B 

0 
D OI I u(O) 11 C 1 0 u(l) CA 

~ u(N - 1) + CA~- 1 xo 

(5.1) 

where A E ]Rnxn , B E lRn xm, C E lRmxn and D E lRm xm denote the matrices of an n th order 
square state-space description. Furthermore, N represents the length of input- and output 
vectors, i.e., the length of the actuation and observation intervals. Although not a general 
requirement, these are chosen equal in this case, since this closely resembles the situation of 
an online feedforward filter. As a result, the convolution matrix is square. The last term of 
(5.1) represents the contribution of the initial conditions xo. For now, these are assumed to 
be zero. Matrix Jo resembles an 'extended' observability matrix, i.e., the observability matrix 
of a state-space system is defined as the first m x n rows of J0 . The short notation used for 
(5.1) is: 

y =Ju+ Joxo (5.2) 

If a system has a relative degree p > 0, the first p rows of matrix J are zero. In order to 
prevent the resulting loss of rank, the output vector can be shifted over p samples. With a 
relative degree p = 1, which is typical for the systems under consideration (discrete systems 
having force input and position output), (5.1) becomes: 

ly(l)I I GB y(2) CAB 

y(~) CAN-l B 

0 
CB 

0 11 u(O) 11 CA 1 0 u(l) CA2 

;B u(N - 1) + C~N xo 

(5.3) 

In case of MIMO systems, there is a vector relative degree (Section 2.3) and this shift is 
not this easy in general. However, for the systems under consideration D typically is a zero 
matrix and the product C B of full rank, in which case this shifted representation can be used 
directly. 

Now, with the initial conditions xo = 0, designing the feedforward signal u implies computing 
the solution toy= Ju= r. Ideally, u = J- 1r such that y = J J- 1r = r. In Hashemi and 
Hammond (1996), however, it is mentioned that J has a singular value rJ ~ 0 for every 
NMP zero of the underlying system. This is confirmed by, e.g., Dijkstra (2003). This means 
that the exact inverse of J cannot be used in general to calculate u, since it results in large 
(unbounded) u. As an alternative, the Moore-Penrose generalized inverse (also called Moore­
Penrose pseudo-inverse) can be used: 
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Proposition 5.1 Consider a system with nz,u unstable zeros and the singular value decom­
position of the convolution matrix of (5.2): 

(5.4) 

Here, I:1 contains the N - nz,u 'clustered' singular values, while I:2 contains the nz,u singular 
values <7 ~ 0. By clustered it is meant that the diagonal entries of I:1 are large compared 
to the diagonal entries of I:2 (see also Figure 5. 10). The matrices U and V, containing the 
singular vectors, are partitioned accordingly. 

A bounded feedforward signal u can now be computed by: 

(5.5) 

This bounded feedforward signal u minimizes the 2-norm (en hence the energy) of the servo 
error e = r - Ju. 

If the underlying system is minimum phase, I:2 is empty and Jt = 1-1 . In case of a non­
minimum phase system, Jt = ViI:11U[ is neither lower-triangular nor Toeplitz, implying 
that the underlying system is neither causal nor linear time invariant (LTI) . This can be seen 
in Figures 5.1 and 5.2, where the first row and the diagonal of the generalized inverse of the 
200 x 200 convolution matrix (N = 200) of the NMP flexible cart system are plotted. While 
using 1-1 in case of MP systems leads to exact tracking, replacing the exact inverse 1-1 by 
the Moore-Penrose pseudo-inverse Jt, however, introduces a servo error. The lower bound on 
the resulting servo error is analyzed in the next section. 
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F ig ure 5. 1: First row of the 200 x 200 Jt of 
the NMP flexible cart system. The observation 
that Jt ( 1, k) -/- 0 for k > 1 indicates that the 
underlying system is non-causal. 
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F igure 5 .2: Diagonal of the 100 x 100 (gray) 
and 200 x 200 (black) Jt of the NMP flexible 
cart system. Since Jt(k,k) is not equal for a ll k, 
it is concluded that the underlying system is not 
LTI. For different sizes of Jt , the effects on the 
edges are the same, hence the black and gray lines 
coincide on the left side. If Jt is sufficiently large, 
the center part of this matrix is approximately 
Toeplitz hence LTI. 
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5.2 Performance Limitations in the Lifted Domain 

As shown in Section 5.1, a feedforward signal can be computed by inverting the convolution 
matrix of a system and multiplying this with the reference trajectory. In case of a minimum 
phase system, this leads to exact tracking of an arbitrary reference trajectory. In case of 
a NMP system, however, the inverse convolution matrix is approximated by the Moore­
Penrose pseudo-inverse. As a result, the feedforward signal u is bounded, but a servo error 
is introduced as well. In Section 5.2.1, this error is quantified. 

However, in Section 3.4.4 it is shown that a NMP system can achieve exact tracking with a 
bounded feedforward signal if it has suitable initial conditions. This is investigated in the 
lifted domain in Section 5.2.2. The question naturally arising from this observation is whether 
it is possible to use pre-actuation on a limited interval k E [-nnc , 0] to bring the system from 
x(k = -nnc) = 0 to any x(k = 0) = xo while keeping the output y(k :S 0) = 0. This is 
discussed in Section 5.2.3. 

Nevertheless, it appears that this two-step approach does not lead to a clear bound on the 
achievable performance. In order to quantify this bound, a feedforward signal including pre­
actuation should be computed without explicitly defining xo. This way, a bound on the 
achievable performance can be given which is discussed in Section 5.2.4. 

5.2.1 Quantifying the Error in the Lifted Domain 

Recall that the feedforward problem stated at the start of this chapter is defined as computing 
a feedforward signal u such that the 2-norm of the servo error defined by: 

(5.6) 

is minimized. In this equation, eis the N x 1 error vector, y is an N x 1 output vector, JN 
the N x N convolution matrix of the plant (the subscript N denotes the size) and r the N x 1 
reference trajectory. Furthermore, zero initial conditions are assumed. Now, if (5.5) is used 
to compute the feedforward signal and given zero initial conditions, the output of the system 
is given by: 

Y = JNJtr 

= [ U1 1 U2 ] [ ~
1 

1 ~
2 

] [ ~~~ ] [Vi] [~11
] [u[] r (5.7) 

= U1U[r 

Hence, the resulting servo error is given by: 

(5.8) 

This expression is the servo error for an arbitrary reference trajectory if a non-causal, time­
varying feedforward signal is computed in the lifted domain for an exact model. Hence, it 
forms a lower bound on the achievable servo performance if other limitations such as causality 
and time-invariance are enforced. Basically, it implies that exact tracking can only be achieved 
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if the reference trajectory r is perpendicular to U2. On the other hand, the open loop servo 
error equals r if this is a linear combination of the columns of U2. 

As discussed in Appendix B and Dijkstra (2003); Skogestad and Postlethwaite (2005), the 
vectors in U2 are exponentially decreasing with the rate determined by the location of the 
NMP zeros. In Figure 5.3 the output singular vector U2 corresponding to the single, real 
NMP zero of the flexible cart system is plotted. In general, r is not perpendicular to U2, 
since the location of the NMP zeros of the system is usually not considered in the design of 
a reference trajectory. This implies that exact tracking cannot be achieved for NMP systems 
with initial conditions x(O) = 0 and a bounded feedforward signal. 
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Figure 5.3: Output singular vector correspond­
ing to the NMP zero of the flexible cart system, 
which is a decreasing exponential function. 

5.2.2 lnitial Conditions 

The previous section confirms that a NMP system cannot achieve exact tracking on k E 

[O, N] if a bounded feedforward signal and zero initial conditions are used. This raises the 
question what happens if nonzero initial conditions are used. In Section 3.4.4 it is shown 
that the NMP flexible cart system can achieve exact tracking if it starts with suitable initial 
conditions. In that particular case, suitable initial conditions and a corresponding feedforward 
were determined pragmatically, but in general this is not that straightforward. In the lifted 
domain it can be confirmed that exact tracking can be achieved. 

Theorem 5.1 Given a system with convolution matrix J N and extended observability matrix 
Jo, there exists a bounded feedforward signal u and initial conditions xo such that exact 
tracking of an arbitrary reference trajectory is achieved, i.e.: 

(5.9) 

To prove this, (5.9) is rewritten into: 

e = r - [ J N I Jo ] [ : ] = 0 (5.10) 
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The loss of rank of JN due to NMP zeros equals the number of NMP zeros n~mp· On the 
other hand, adding the initial conditions of the system to (5.6) adds n variables, while keeping 
the number of equations equal. Hence, the matrix [ JN I Jo ] in (5.9) is rectangular with 
more columns than rows. For proper systems, it holds that n 2 n~mp, so there exist u 
and xo such that (5.10) is satisfied. Note that this solution is generally not unique. An 
approach to compute a unique solution for u without explicitly calculating xo is discussed in 
Section 5.2.4. 

This proves that for every system there exist a bounded feedforward signal u and initial 
conditions x0 such that exact tracking is achieved, i.e., y = r (see Figure 5.4). To start 
tracking a reference trajectory with initial conditions xo, however, the system has to be 
brought from x = 0 to x = xo using pre-actuation during a bounded interval. Therefore, it is 
important to know whether every xo can actually be reached while keeping y = 0, which is 
discussed in the next section. 

States x( -nnc) = 0 x(0) = xo 

Time (samples instants) k = -nnc k=0 k=N 

Feedforward signal Upre u 

Desired output 0 r 

Output Ypre y 

Figure 5.4: A timeline to illustrate pre-actuation and initia! conditions (nnc denotes the number of 
pre-actuation samples). 

5.2.3 Pre-actuation 

As explained in Section 5.2.2, pre-actuation should be used to bring a system to suitable initial 
conditions at k = 0. To analyse this in the lifted domain, two matrices are defined. First, 
a matrix is defined which maps the input signal onto the states of the system. Essentially, 
this equals a convolution matrix except that the entries have not been premultiplied with the 
output matrix C: 

l
x(-nnc + 1)1 1 B 
x(-n~c + 2) = A:B 

x(0) Annc-1 B 

Xpre = JJUpre 

0 
B 01 lu(-nnc + 1)1 0 u(-nnc +2) 

. . . . . . 
B u(O) 

(5.11) 

This matrix maps the input Upre onto the states on the entire pre-actuation interval of nnc 
samples. However, only x(O) and therefore the bottom n rows of h are of interest: 

l
u(-nnc + 1)1 
u(-nnc + 2) 

B] : 

u(0) 
(5.12) 
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Note that h,o resembles a reversed extended controllability matrix, i.e., the controllability 
matrix of a state-space system is defined as the right m x n columns of h,o in reverse order. 
If the underlying system is controllable, the rank of rank(h,o) = n. 

It appears that it is not possible to bring P( z ) to x (k = 0) = xo on a bounded pre-actuation 
interval while keeping the output zero (see also Zou (2009)): 

Theorem 5.2 A system P(z ) cannot be brought /rom x (k = -nnc ) = 0 to an arbitrary 
x (k = 0) = xo on a bounded interval k E [-nnc, O] with a bounded input signa[ Upre while 
keeping its output Ypre equal to zero, i.e. , it is not possible to compute a Upre satisfying both: 

(5.13) 

and 

Ypre = J nnc Upre = 0 (5.14) 

where Jnnc denotes a convolution matrix of size nnc· 

To prove this , the two equations in Theorem 5.2 are written into one matrix equation: 

[~] - [__Q__] 
J Upre -

I ,O XQ 
(5.15) 

The matrix in this equation is rectangular with more rows than columns, hence it can be 
seen as having nnc + n equations for nnc unknowns. Contrary to the situation in the previous 
section, there is no Upre satisfying this equation. However, if a large amount of pre-actuation 
is utilized, i.e., nnc » n, then nnc +n ~ n 0 c and a solution which only introduces a small error 
can be found. This qualitatively shows that the st ates x of a system P(z ) can be brought 
from x (k = -n0 c ) to x (0) = xo while keeping y(k ~ 0) ~ 0 if nnc is selected sufficiently 
large. 

Next, it will be shown how a quantitative measure on the total error can be given if pre­
actuation is taken into account implicitly, i.e., without explicitly computing the initial con­
ditions. 

5.2.4 lmplicit Pre-actuation 

In Section 5.2.2 it is shown that it is possible to compute a feedforward signal u and initial 
conditions x o such that exact tracking is achieved. However , in Section 5.2.3 it appeared that 
it is not possible to bring system P( z) into state xo using pre-actuation on a limited interval 
while keeping y(k ~ 0) = 0. In this section, the performance that can be achieved when 
pre-actuation is implicitly added to (5.6) is investigated . This implies that pre-actuation is 
used , but no xo is explicitly computed. Essentially, this means that one feedforward signal 
[u~re, uT]T is computed for the entire interval k E [-nnc, N]. 

Hereto, the expressions for y in (5.9) and Ypre in (5.14) are rewritten into one matrix equa­
tion: 

(5.16) 
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In this equation, the product loh,o is given by: 

loh ,o = 

1 

CAnnc-1 B 

CAnncB 

CAN+~nc-2B 

cAnnc-2B 

CAnnc-1 B 

This shows that the matrix of (5.16) can be rewritten: 

[ ~:Jr,o ~N ] = lN+nnc 

(5.17) 

(5.18) 

which simply is a (N + nnc) x (N + nnc) convolution matrix. Hence, the total output is given 
by: 

(5.19) 

Subsequently, the feedforward problem implies computing the feedforward signal u that min­
imizes the 2-norm of the error e: 

eN+nnc = rs - lN+nncUN+nnc 

with: 

the shifted reference trajectory. 

Similar to (5.4), the error is given by: 

_ [ onnc Xl ] 
rs -

r 

(5.20) 

( 5.21) 

(5.22) 

where U2 has N + nnc rows instead of N, while the number of columns still equals the number 
of NMP zeros. To investigate why this shift of the reference trajectory leads to a reduced 
servo error, one has to take a closer look at U2. This matrix contains the output singular 
vector(s) corresponding to the smallest singular values of J and hence to the NMP zeros of 
P(z). From now on, the product U2 U'[ will be denoted as E: 

E = U2Ui (5.23) 

In order to quantify a lower bound on the achievable servo error, the following lemma, inspired 
by Dijkstra (2003), is required: 

Lemma 5.1 Consider a vector U2 = az;;k with lzul > 1, k E [1, N + nnc] and a such that 
IIU2 ll2 = 1, which is the basic shape fora system with one NMP zero (see Appendix B). Then, 
IIEll2 = IIU2Uill2 = 1. IJ E is partitioned: 

E = [ Epre I Eres ] 

with Epre the first nnc columns of E and Eres the remaining N columns of E, then 

IIEresll2 :=; ü.Z~nnc 

42 

(5.24) 

(5.25) 



5.2. PERFORMANCE LIMITATIONS IN THE LIFTED DOMAIN 

To prove this, it should be realized that the i th column of E equals the i th entry of U2 times 
U2. As a result , the 2-norm of the i th column of E equals the i th entry of U2, since IIU2 ll2 = 1. 
Now, the 2-norm of E is given by: 

(5.26) 

Furthermore, the 2-norm of Eres can be written as: 

(5.27) 

This leads to the following theorem: 

Theorem 5.3 IJ a system P(z) contains one non-minimum phase zero at z = Zu, the mini­
mum of the 2-norm of the servo error llell2 is bounded by o:z,;;:-nnc llrll 2, where nnc denotes the 
number of preview samples. 

To prove this, (5.22) is rewritten: 

e = Ers = [ Epre I Eres ] [ 
onnrcxl ] 

(5.28) 

Next, using the triangle inequality, it appears that: 

(5.29) 

The proof is completed by using Lemma 5.1: 

(5.30) 

In theory, this analysis can be extended for systems with multiple (complex) NMP zeros. 
This is subject to further research. 

Remark 5.1 IJ the rank loss of a convolution matrix JN equals the number of NMP zeros 
n~mp, one could see pre-actuation as simply adding columns on the left side of J N until its 
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column rank equals N. This way, exact tracking on k E [ko, ki] is achieved with only n~mp 

preview samples. In that case, however, the output y during the pre-actuation interval is 
not taken into account. This may lead to undesirable values of the output. Furthermore, 
the feedback controller which is usually present in practical applications will respond to this 
excitation of the output. Therefore, it is essential to take the output y during the pre-actuation 
interval into account. 

5.2.5 Summary 

Summarizing, the use of pre-actuation is supposed to overcome the performance limitations 
of non-minimum phase systems: 

• In Section 5.2.2 it is shown that a non-mm1mum phase system can indeed achieve 
exact tracking of an arbitrary reference trajectory if the right initial conditions and a 
corresponding feedforward signal are used. 

• Nevertheless, it is not possible to use pre-actuation on a bounded interval to bring a 
system P(z) from x (-nnc) = 0 to x (0) = xo while keeping the output equal to zero, as 
discussed in Section 5.2.3. 

• However, if sufficient pre-actuation time is used, the lower bound of the servo error 
decreases depending on the locations of the NMP zeros, see Section 5.2.4. 

In, e.g., Jemaa and Davison (2003); Ooi et al. (2006); Qiu and Davison (1993), time and fre­
quency domain integral constraints have been used to show that the presence of non-minimum 
phase zeros imposes inherent performance limitations on the achievable servo performance in 
the context of feedforward control. In these references, however, it is assumed that no preview 
or pre-actuation is employed. In Middleton et al. (2001, 2004), these limitations are extended 
to the preview control case. One of the most important results in Middleton et al. (2004) is 
that the achievable weighted 1{00 performance is approximately proportional to e-(Tpre , where 
( denotes the smallest real part of any NMP ( continuous time) zero and Tpre is the available 
preview time (note the correspondence between e-zcTs (with Ze a continuous time zero) and 
z;;nnc (with Zd a discrete time zero)). Furthermore, it is shown how a small undershoot during 
the pre-actuation period can prevent large transient errors. For a formal proof of these results 
and further performance limitations in both time and frequency domain the reader is referred 
to Middleton et al. (2004). 

5.3 Linear Time Invariant Lifted Feedforward 

In the previous sections it appeared that feedforward in the lifted domain may be Linear 
Time Varying (LTV), since Jt is not Toeplitz in case of a non-minimum phase system. It 
is, however, possible to obtain LTI feedforward in the lifted domain. The advantage of LTI 
filters is that they can easily be implemented online as FIR filters. To enforce LTI solutions, 
two different approaches can be used: 
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fnnc+nc - 1 

f nuc+nc 

jt Jt 

Figure 5.5: The entries of a truncated pseudo-inverse of a convolution 
matrix can be implemented as a FIR filter. 

The first approach is more straightforward and pragmatic, while the latter method is theoreti­
cally better funded and offers more possibilities, e.g., to include basis functions. Pre-actuation 
can be applied in both cases, as will be shown. Both approaches are elaborated below. 

5.3.1 Truncated Convolution Matrices 

In Figure 5.2 the magnitudes of the diagonal entries of the generalized inverse Jt of a 100 x 100 
and a 200 x 200 impulse response matrix J of the NMP flexible cart system are plotted. It can 
be seen that the time varying behavior exhibits itself mainly near the start and the end of the 
trajectory, which is emphasized by the difference of the 100 x 100 and 200 x 200 Jt examples. 
This is explained by the fact that convolution matrices of finite sizes are used. 

The most straightforward way to obtain an LTI filter is to use the center part of the Jt to 
compute u. In Figure 5.2, it can be seen that the middle part Jt of Jt , e.g., between 30 and 
170, is Toeplitz (Jt (k , k) is approximately constant for k E [30, 170]) and thus LTI. 

Now, if one wants to implement a FIR filter of nnc preview samples and nc causal samples, one 
has to take the first nnc entries of the first row and the first nc entries of the first column of Jt 
and implement them as one FIR filter (see Figure 5.5). Note that the reference trajectory r(k) 
has to be delayed with nnc samples to synchronize r(k) and the feedforward signals Uff(k). 
According to Heertjes and Van de Molengraft (2009), choosing nc and nnc is often a matter 
of trial and error: choosing the filter order too small limits the ability to describe the inverse 
dynamics, while choosing it too large may result in overfitting. 

5.3.2 Commutation of Convolution 

The approach to obtain FIR filters introduced in the previous section is somewhat pragmatic. 
Another way of computing FIR filters follows from utilizing the commutative property of 
convolution. This property essentially means that the order of the convolution operands 
does not affect the result of the convolution. Next, it is discussed how commutation can 
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be used to obtain LTI feedforward. Thereafter, it is discussed how pre-actuation can be 
achieved and finally it is briefly discussed how basis functions can be employed to enforce 
other properties. 

Concept 

Essentially, the concept introduced in Section 5.1 boils down to computing a convolution 
matrix F and subsequently a feedforward signal u = Fr. In Section 5.1, F = Jt such that 
the 2-norm of 

e = r - y = r - J Fr 

is minimized. Using the commutative property, this can be rewritten as minimizing 

since: 

1 /, 
0 

h fi 

fN fN-l 

e = r-JRJ 

Ol lr(l) l lr(l) 0 r(2) r(2) 

)l r(~) - r(~) 

0 r(l) 

r(N - 1) 

Similar to Section 5.1, this can be solved for f using the pseudo-inverse, i.e.: 

f = (JR)t r 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

In this case, the referencè trajectory r and hence also the matrix R represent an auxiliary 
trajectory which is only used to compute the FIR parameters, which actually are supposed 
to be trajectory independent. However, using a suitable r can be shown to have a significant 
effect on the obtained result. Similar to system identification, r should be informative enough 
(Pintelon and Schoukens, 2001), hence one could use (white) noise, a chirp signal or multisines. 
On the other hand, better results may be achieved if the auxiliary trajectory closely resembles 
realistic reference trajectories. However, choosing a suitable auxiliary r, is is not further 
discussed in this thesis, since it is a system identification rather than a feedforward issue and 
this approach will not be used in the remainder of this report. 

The FIR parameters f resulting from (5.34) can either be implemented online as a FIR filter 
or the commutative property can be used to compute F and subsequently u offline. The 
length of the FIR filter is determined by the number of columns of ( J R) that is used. This 
technique has a strong resemblance with Heertjes and Van de Molengraft (2009), where an 
ILC signal is mapped onto the optimal FIR parameters. 

Pre-actuation 

In case of a non-minimum phase system, the approach in Section 5.1 results in feedforward 
that is not only LTV, but also non-causal. Pre-actuation can also be achieved using the LTI 
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approach described here. In this case, the difference between the output y and a shifted 
reference signal should be minimized, similar to pre-actuation in Section 5.2. Hence: 

(5.35) 

Here, J is the (N + nnc) x (N + nnc) convolution matrix, R is the matrix containing the 
original reference trajectory r and r s is the shifted reference signal. Contrary to Sections 5.1 
and 5.2, r and r 8 have equal length in this case. The final nnc entries of r are equal, while 
r s contains nnc leading zero entries. 

Basis Functions 

A further expansion to this approach is to introduce basis functions. In Hennekens (2009), a 
connection between the FIR coefficients and the gains of time derivatives of the input signal is 
established. Here, the polynomial (z - lt plays an important role, since it directly connects 
FIR coefficients to velocity, acceleration, jerk and snap feedforward gains. This knowledge 
can be used to define basis functions for the impulse response parameters. These can be used 
to enforce certain properties of the resulting FIR filter. 

The FIR parameters can be expressed by: 

l
;:1 1~ ! 1 ! 2 

: : :11::1 13 0 0 1 . . . Q3 

. . . . . . . . . . . . 
(5.36) 

f=Ma 

Now, the feedforward gains a can be computed by changing (5.35) into: 

(5.37) 

and the resulting FIR parameters are computed according to (5.36). 

Example 5.1 Take, e.g., a moving mass. In case this system is in rest, there should be no 
feedforward force acting on the mass. This is the case if the sum of the FIR parameters is 
zero, which can be obtained by discarding the first column of matrix M. 

5.3.3 Summary 

In the lifted domain, LTI feedforward can be obtained by either using a truncated inverse con­
volution matrix or using the commutative property of convolution. Using the latter approach, 
a number of design choices have to be made: 

• A suitable number of causal and non-causal FIR parameters have to be selected. 
• The size N of the convolution matrices used is important. In theory, increasing N leads 

to amore accurate computation off. However, it also increases the condition number 
of J R so choosing it too large results in numerical inaccuracies (see also Section 5.5). 
Therefore, a suitable trade-off has to be made. 

47 



CHAPTER 5. THE USE OF THE LIFTED SYSTEM REPRESENTATION FOR FEEDFORWARD 
CONTROLLER SYNTHESIS 

• The final design choice regards the auxiliary reference trajectory ( r, r 8 and R), which 
is used for the computation of f. This shows strong resemblance to designing an ex­
citation signa! for system identification. Therefore, one could think of, e.g., (white) 
noise, multisines or a chirp signa!. In practice, however, these will not be used as refer­
ence trajectories, so it could also be argued that realistic trajectories or (filtered) step 
responses are used. These, on the other hand , may not be informative enough. 

Despite the increased implementation possibilities, the LTI lifted approach is not further 
elaborated in this thesis. In the next chapter, stable inversion feedforward will be introduced. 
Since this is LTI, it chosen to use prefer the LTV approach of Section 5.1 above the LTI 
concept of Section 5.3, hence enabling the possibility to compare time varying and time 
invariant feedforward. Furthermore, a drawback of the lifted LTI method is that there are 
too many design choices involved, so the obtained performance depends to a large extent on 
'tuning' of the parameters. Especially designing a suitable auxiliary r is essential for the end 
result, but this is more a system identification issue and therefore beyond the scope of this 
thesis. 

5.4 Uncertainty 

All concepts in this chapter so far assume the model is an exact representation of the system 
dynamics. Nevertheless, this is never the case in practice. In this section, robust feedforward 
in the lifted domain is discussed. 

In Section 4.4 it is argued that for robust feedforward design better results may be obtained 
if it is optimized for the entire model set P instead of optimizing the worst case performance. 
Here, the large design flexibility of the lifted system description proves to be very useful. 

The main idea behind robust feedforward in the lifted domain is to stack a number n1 of 
convolution matrices of random realizations of P such that the total matrix represents the 
entire model set. Subsequently, the least-squares solution to the stacked matrix equation is 
computed by: 

(5.38) 

where 

T 8 = [r; 
In this equation, n1 has to be selected such that .J is sufficiently representative for the entire 
model set. No direct guidelines of how to select n1 are available. A pragmatic approach is to 
increase n1 incrementally and compare the resulting u with the previous one. If the resulting 
u has converged to its optima! value for the entire model set, it does not change significantly 
if nJ is increased any further. It is assumed that the realizations are equally distributed over 
P. 

The n1 impulse response matrices can be obtained either directly by doing multiple identifi­
cation experiments, e.g., with different input signals or at different locations, or by fitting an 
overbound and taking random samples from the resulting uncertainty set . The first method 
omits the intermediate step of fitting an overbound, while the advantage of the latter method 
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is that no additional experiments are required if nJ is increased. An indirect benefit of this 
method is that it can be used incrementally to determine a suitable nJ: one keeps adding 
impulse response matrices until u does not change significantly anymore, as discussed above. 
Since increasing nJ also increases the size of .J, numerical issues become more important. 
These are addressed in the next section. 

5.5 Numerical Issues 

While the lifted system description has advantages over other system representations, there is 
one serious drawback: numerical implementation. If the length of the trajectory increases, so 
does the size of J. Furthermore, if feedforward signals for MIMO systems are computed or if 
robust feedforward is required, multiple impulse response matrices are stacked. According to 
Heath (2002), the required number of computations to calculate the SVD of an m x n matrix 
J is proportional to mn2 + n3 . This shows that computation time quickly increases for larger 
trajectories, MIMO systems and uncertain systems. 

Note that there are other methods than the singular value decomposition to calculate a least 
squares solution. For example, the MATLAB command mldi vide selects one out of ten alter­
native algorithms, depending on the structure of the matrix. Computing the singular value 
decomposition and subsequently the generalized inverse, however, enables the possibility to 
explicitly discard those singular values that are associated with the non-minimum phase zeros. 
Furthermore, the SVD method shows superb robustness and reliability (Heath, 2002). 

The latter is important since the condition number of J is another issue, besides its size. The 
rigid body modes, which are commonly present in the systems under consideration, cause 
the impulse response to increase linearly with time after the (assumed stable) flexible modes 
have converged. This causes the condition number of the Toeplitz impulse response matrix to 
increase dramatically. Take, e.g., the minimum phase flexible cart system, which has no small 
singular values due to NMP zeros (and thus only 'clustered' singular values). In Figure 5.6 
the condition number is plotted for various sizes of J and it appears that this also increases 
quickly with increasing size of J. The latter issue can be resolved if the impulse response 
matrix is computed for a system with acceleration as output rather than position, i.e., a 
system with the rigid body dynamics removed. Subsequently, the feedforward signal can be 
calculated by using the reference acceleration instead of the reference position. In practice, 
however, it is common to measure position rather than acceleration and the systems in this 
report therefore represent the transfer from force to position. Next, the issues discussed in 
this chapter are illustrated by means of an example. 

5.6 Example 

5.6.1 lntroduction 

The system used in this example is the flexible cart system, see Section 3.4.1, with the 
difference that the damping is changed to d = 10 Ns/m. This leads to the Bode-diagrams in 
Figure 5.7. The continuous time NMP system has two poles at s = 0 due to the rigid body 
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Figure 5.6: Condition number of the impulse 
response matrix of the minimum phase flexible 
cart system. 
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Figure 5.8: Bode-diagram of the feedback con­
troller. 
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Figure 5.7: Bode-diagrams of P1 (z) (black) and 
P2( z ) (gray). 

1_:FC •== 
0 0.5 1 1.5 

::icz •== 
0 0.5 1 1.5 

:,:1 :==== l 
0 0.5 1.5 

t [s] 

Figure 5.9: The reference acceleration (upper 
plot), velocity (middle plot) and position (lower 
plot) for the flexible cart system. 

mode. Furthermore, the flexible mode, having a resonance frequency of 9.9 Hz, introduces 
two stable poles at s = -l.92 ± 62.0j. The zeros of the NMP system are located at s = -81.0 
and s = 88.2. 

Including the ZOH and sampler with a sampling frequency of T8 = 0.005 s, a discrete rep­
resentation is obtained. Then, the poles of the rigid body mode are located at z = I and 
the poles of the flexible mode at z = 0.94 ± 0.30j. The zeros are mapped to z = 0.67 and 
z = 1.55. In addition, a sampling zero is introduced at z = -0.98. 

In Figure 5.7, the Bode-diagram of the minimum phase system is also plotted. This has its 
poles at the same location, but the zeros are located at s = 0. 76 ± 38.9j ( continuous time) and 
z = 0.98±0.19j and z = -l.00 (discrete time).The latter zero is a sampling zero. Next to the 
resonance, the MP flexible cart also has an anti-resonance, which is located at 6.2 Hz. 

In order to have a stable closed loop, the feedback controller displayed in Figure 5.8 is used. 
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It consists of a lead-lag filter , an integrator and a low-pass filter , leading to a bandwidth of 
1 Hz. It is decided to use only a 1 Hz bandwidth controller to emphasize the performance of 
feedforward control. 

5.6 .2 Nom inal Feedforward 
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Figure 5.10: Singular values of the 313 x 313 
convolution matrix of the NMP flexible cart sys­
tem. The first 312 singular values are 'clustered' 
and a313 :::::: 0 due to the single NMP zero. 

In this example, the flexible cart system is supposed to track a fourth order reference trajec­
tory, see Figure 5.9. Including 0.2 s pre- and post-actuation, this reference trajectory counts 
313 samples. The corresponding singular values of the 313 x 313 impulse response matrix are 
plotted in Figure 5. 10. As expected , 0'313 ~ 0 due to the presence of a single NMP zero. This 
singular value is discarded when the generalized inverse is computed , and the resulting Jt is 
neither lower t riangular nor Toeplitz as discussed in Section 5.1. 

U sing Jt , the nomina! feedforward signal is calculated and plot ted in Figure 5 .11 . To a certain 
extent , the feedforward signa! resembles the (scaled) acceleration signal but is somewhat 
smoother. Especially in the lower plot of Figure 5.11 it can be seen that U ff increases before 
t he acceleration is unequal to zero. This is the pre-actuation, discussed in Section 5.2, to 
enable exact tracking in the presence of NMP zeros. Likewise, the end of the feedforward 
signal is also smoother than the reference acceleration. Since the zeros are almost equal but 
of opposite sign (s = -81 ~ -s = -88) , the symmet rie increase and decrease of reference 
acceleration seems to result in a symmetrie increase and decrease of U ff as well. Closer 
examination , however , shows that this is not the case. Since there are only real zeros, the 
pre- and post-actuation do not show oscillatory behavior. 

The error after simulating this feedforward signa! with t he nominal system is shown in Fig­
ure 5.12. A servo error in the order of magnit ude of 10- 12 m is very small compared to the 
velocity and traveled dist ance. The most striking about the error plot is the sharp peak at 
the st art of the interval. This can be attributed to the finite preview time: to compensate 
for this, the feedforward signal shows a minor peak of 1 x 10-6 N. Had more preview been 
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Figure 5.11: Scaled acceleration (dotted) and 
feedforward signal (solid) resulting from lifted 
feedforward. The lower plot is a zoom of the up­
per plot, showing that Uff starts increasing before 
the reference acceleration. 
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Figure 5.12: Scaled acceleration ( dotted) and 
error (solid) using the feedforward signal of Fig­
ure 5.11. 

available, this peak would have been even smaller and the resulting servo error would also 
have decreased. This is further investigated in the next section. 

According to Section 5.2, the states of the system do not equal zero at x0 . In this case, 
Xcg = 4.0 x 10-5 m, ±cg = 3.4 x 10- 3 m/s, <p = -7.9 x 10-4 rad and~= -6.8 x 10-2 rad/s. 
Nevertheless, this combination of Xcg and </> only introduces a servo error in the order of 
magnitude of 10-12 m. 

5.6.3 Pre- and Post-Actuation 

1.34 1.36 1.38 1.4 1.42 1.44 1.46 
t [s] 

Figure 5.13: Scaled acceleration (black, dot­
ted) and Uff using Tpost = 0.0 s (black, solid), 
Tpost = 0.1 s (gray) and Tpost = 0.2 s (black, 
dash-dotted). Tpre = 0.2 s in all cases. The gray 
and the dash-dotted line can hardly be distin­
guished by visual inspection. 
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Figure 5.14: Scaled acceleration (black, dotted) 
and Uff using Tpre = 0.0 s (black, solid) , Tpre = 
0.1 s (gray) and Tpre = 0.2 s (black, dash-dotted). 
Tpost = 0.2 s in all cases. The gray and the dash­
dotted line can hardly be distinguished by visual 
inspection. 



5.6. EXAMPLE 

In order to demonstrate the effect of pre- and post-actuation, simulations have been performed 
with different values of Tpre and Tpost · Ideally, Uff is only defined during the interval of the 
move, hence Tpost = Tpre = 0 s. However, in Sections 3.3 and 5.2 it is argued that pre- and 
post-actuation is required to prevent transient errors due to NMP zeros at the start and MP 
zeros after the end of the move. This is illustrated in this section. 

In Figures 5.11 and 5.12, pre- and post-actuation of Tpre = Tpost = 0.2 s is used. In Figure 5.13 
the effect of varying the post-actuation on the feedforward signal is shown, while in Figure 5.14 
the amount of pre-actuation is varied . Varying Tpost mainly affects the end of Uff: if Tpost = 0 s, 
Uff does not converge smoothly to zero but shows an aggressive peak in opposite direction. 
The FF signals using Tpost = 0.1 s and Tpost = 0.2 s do not show any visible difference. 

A similar observation is made when varying Tpre· In case T pre = 0 s, sharp peaks of -40 N 
and 40 N are visible. Again, there is no visible difference for the feedforward signals using 
Tpre = 0.1 S and Tpre = 0.2 S. 

t [si 

Figure 5.15: Scaled acceleration ( dot ted) , and e 
using Tpre = 0.2 s and Tpost = 0.0 s (upper plot ), 
T pos t = 0.1 s (middle plot) and T pos t = 0.2 s 
(lower plot ). 
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Figure 5.16: Scaled acceleration (dotted) , and 
e using T pre = 0.0 s and T post = 0.2 s (upper 
plot) , T pre = 0.1 s (middle plot ) and T pre = 0.2 s 
(lower plot) . 

The resulting servo errors are plotted in Figures 5.15 and 5.16. In Figure 5.15, it appears that 
if insufficient post-actuation is applied , not all velocities are smoothly brought to zero. This 
is confirmed by Figure 5.17, where the angular velocity is plotted. As a result , the states do 
not equal zero at this point and an error is introduced after the feedforward signal has ended . 
This error can take substantial magnitudes. 

Varying the amount of pre-actuation, a narrow peak is introduced in the error profile, at the 
start of the feedforward signal. If sufficient pre-actuation is used , however, this error tends to 
decrease and can actually be made arbitrarily small by selecting Tpre sufficiently large. 

5.6.4 Robust Feedforward 

To illustrate the use of robust feedforward, the parameters of the minimum phase flexible 
cart system are perturbed. It is chosen to use the minimum phase system because this 
shows an anti-resonance at 6.2 Hz. This is interesting because the anti-resonance causes 
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Figure 5.17: Angular velocity using Tpre = 
Tpos t = 0.2 s (upper plot) , Tpost = 0 s (middle 
plot), introducing oscillations after the movement 
and Tpre = 0 s (lower plot), introducing an error 
before the movement. 
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Figure 5.18: Multiplicative uncertainty of 10 
random realizations of the uncertain plant (gray) 
and uncertainty weighting filter wm.( z ) (black). 

a severe oscillation of the nominal Uff, which can be seen in Figure 5.19. The parameters 
are perturbed with an uncertainty of 10% of their nominal value, with exception of the 
mass. This uncertainty is rather large, hence magnifying the effect of uncertainty and robust 
feedforward. In practice, wafer stages are expected to show much less uncertainty. In order 
to fit a multiplicative overbound wm(z), 10 random realizations Pp(z) of the uncertain model 
set P have been taken and the multiplicative difference Pp;,,P0 is computed. This is plotted 
in Figure 5.18. 

To compute the robust feedforward signal, the convolut ion matrices of 10 realizations of the 
uncertain minimum phase system have been stacked according to Section 5.4. The resulting 
Uff is plotted in Figure 5.19. The robust feedforward signal appears to be smoother than the 
nominal signal, with oscillations at the anti-resonance frequency (6.2 Hz) having a smaller 
amplitude. A small dip is visible at the start of the signal, again to compensate for the fact 
that only a limited amount of preview time is available. 

With bath the nominal and the robust feedforward signal, simulations have been performed 
with 5 different random realizations of the perturbed system. Similar to the nominal case, it 
is interesting to look at the states of the system to understand what is essentially happening. 
The states of the simulations above are plotted in Figure 5.20. The red lines denote the states 
of the nominal system using nominal feedforward. It appears that robust feedforward uses 
pre-actuation to bring the states of the system to values at the start of the interval, such that 
less oscillations are introduced during the remainder of the move. 

Looking at the error (Figure 5.21) , robust feedforward only shows a small improvement com­
pared to nominal feedforward during the move, i. e., between t = 0.21 s and t = 1.38 s. This 
improvement means that the amplitude of the 6.2 Hz oscillation is slightly reduced, mainly 
during constant velocity (lower plot). The error during the pre-actuation period (T < 0.21 s), 
however, is significant . This is confirmed by the cumulative PSD spectra (Figure 5.22): if 
a large mismatch between inverse plant and feedforward is present, the increase of the cu-
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Figure 5.19: Nomina! (gray) and robust (black) 
feedforward signa!. The amplitude of the oscil­
lation of the robust feedforward signa! is much 
smaller than that of the nomina! feedforward sig­
na!. 

Figure 5.20: System states of 10 realizations of 
the uncertain system using nomina! (gray) and 
robust (black) feedforward and states of the nom­
ina! system using nomina! feedforward (red). Us­
ing robust feedforward, the states clearly show 
less oscillatory behavior. 

mulative PSD at 6.2 Hz using nomina! feedforward is larger than using robust feedforward. 
This manifests itself most clearly in the green case. Nevertheless, the total error using robust 
feedforward is slightly larger for most simulations. 

5.7 Summary 

Using the generalized inverse of the convolution matrix, a bounded feedforward signal can be 
computed for both minimum and non-minimum phase systems. A number of issues that are 
discussed in this chapter are: 

• In case of NMP systems, the convolution matrix J has a singular value c, ~ 0 for every 
NMP zero. Therefore, it is undesired to use the inverse convolution matrix J- 1 to 
compute the feedforward signa!. If, however, the Moore-Penrose pseudo-inverse Jt is 
used instead, the 2-norm of the resulting servo error e = r - Ju is minimized. 

• If the Moore-Penrose pseudo-inverse is used to compute a feedforward signa! fora NMP 
system, a bound on the achievable servo performance can be given. This bound depends 
on the amount of pre-actuation and the location of the NMP zeros. The feedforward sig­
na! should be calculated including the pre-actuation feedforward, i.e. , without explicitly 
computing the initia! conditions at the start of the move. 

• The lifted system description can be used to obtain both LTV and LTI feedforward. In 
order to find out the possible performance improvement through LTV feedforward, the 
LTV approach is used throughout this thesis. 

• Uncertainty can be addressed by stacking multiple realizations of the convolution ma­
trix. A drawback of this method is that this may result in numerical difficulties. Sim­
ulation results, however, show only a limited improvement of servo performance during 
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Figure 5.21: Scaled acceleration (dotted) and 
simulation error for 5 random realizations of the 
uncertain system using nomina! ( dashed) and ro­
bust (solid) feedforward. The lower plot is a zoom 
during the constant velocity interval. 
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Figure 5.22: Cumulative PSD of the servo er­
rors using nomina! (dashed) and robust (solid) 
feedforward. 

the move and a deterioration before and after the move. A general conclusion cannot 
be drawn yet. 
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• Numerical issues are important in the lifted domain and may be a limiting factor. In 
case of stacking due to MIMO systems and/ or uncertainty, matrix sizes tend to increase 
and also the condition number increases dramatically. The latter could be improved by 
using systems with acceleration as output rather than position. 



CHAPTER 6 

Stable lnversion 

One of the main reasons why the exact inverse of the plant model is hardly ever used for 
feedforward is the possible presence of non-minimum phase zeros, since these lead to an 
unstable inverse system. In this chapter, it is discussed how this inverse model can still be 
used for feedforward control design and how stable inversion leads to bounded feedforward 
signals (Section 6.1). The connection between stable inversion and the lifted domain concepts 
in Chapter 5 is discussed in Section 6.2. Furthermore, since the model does not exactly 
resemble the actual plant, uncertainty should be addressed, which is discussed in Section 6.3. 
Finally, the use of stable inversion feedforward is illustrated by means of an example in 
Section 6.4. 

6.1 Stability, Causality and Boundary Conditions 

6.1.1 Concept 

Consider the state-space representation of the feedforward controller Cff ( z) = p -l ( z) for a 
square system: 

x(k + 1) = Ax(k) + Br(k) 

u(k) = Cx(k) + Dr(k) 
(6.1) 

with r(k) E !Rm the reference trajectory, u(k) E !Rm the feedforward signa! and x(k) E !Rn 
the system states. In order to come to a unique solution to (6.1) , the boundary conditions 
to the difference equation, i.e., the upper part of (6.1), have to be defined as well. These 
are typically defined at the start of the interval under consideration and are therefore called 
initia! conditions, i.e.: 

x(ko) = xo (6.2) 

Often, it is tacitly assumed that xo = 0. Using initia! conditions seems a sensible choice, since 
it enables the possibility to implement (6.1) as a causa! filter. 

Now, Cff(z) is stable if and only if it has all its poles in the open unit circle, i.e. , IÀi(A)I < 1, \/i. 
Roughly speaking, stability of Cff(z) implies that injection of a bounded signa! r(k) on the 
interval k E [ko , ... , ki] with initia! conditions x(ko) = xo results in a bounded u(k) on 
the same interval. Conversely, an unstable Cff(z) results in an unbounded u(k), which is 
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undesirable (see Section 3.1). However, instead of specifying initial conditions, one could also 
define boundary conditions at the end of the interval (final conditions): 

(6.3) 

Remark 6.1 Similar results are obtained in case of continuous time systems. In that case, 
Cff(s) is stable iff it has all its poles in the open left half plane, i.e., Re (Ài(A)) < 0, Vi. 

Example 6.1 As an example, we want to compute the solution to: 

x = ax, a > 0 (6.4) 

on the interval t E [to, t1]- IJ the boundary condition x(to) = xo is specified, the solution is 
given by: 

x(t) = xoea(t-to) (6.5) 

which increases exponentially since a (t - to) > 0 on t E [to, t f]. The solution x( t) can there­
fore become very large. IJ, however, boundary conditions are specified on the end of the 
interval, e.g., x(t1) = Xf, the solution is: 

x(t) = x 1ea(t-t1) 

which is bounded, since a(t- t1) < 0 on t E [to,t1]-

(6.6) 

Summarizing, if Cff(z) has all its poles inside the open unit circle, a bounded u(k) results if 
boundary conditions are defined on the start of the interval under consideration. Conversely, if 
Cff(z) has its poles outside the unit circle, the resulting u(k) is bounded if boundary conditions 
are defined on the end of the interval. 

This is the main idea behind stable inversion feedforward (Devasia et al., 1996; Peeters et al., 
2000; Sago, 2010; Zou, 2009; Zou and Devasia, 1999): 

Proposition 6.1 In stable inversion feedforward, Cff(z) is decomposed into a stable and an 
unstable part. The boundary conditions of the stable part Cff,s(z) are subsequently defined on 
the start of the interval and the boundary conditions of the unstable part Cff,u ( z) are defined 
on the end of the interval (the subscripts ·s and ·u denote the stable and unstable part). 

From this proposition, it appears that choosing suitable boundary conditions is essential using 
stable inversion, which is therefore discussed next. Thereafter, a number of issues regarding 
implementation are discussed. 

6.1.2 Boundary Conditions 

As mentioned before, boundary conditions on the start of an interval are aften assumed 
x(ko) = 0. This also seems a suitable choice for Cff,s(z). Choosing Xf for Cff,u(z), on the 
other hand, requires more attention. 

To enable a suitable choice, the reference trajectories considered are in rest at bath the 
start and the end of the interval, i.e., r(k < ko) = r(ko) and r(k > ki) = r(k1) (see 
Figure 6.1). Given this assumption, it makes sense to choose the boundary conditions such 
that the feedforward signal converges to a constant value for k < ko and k > k f. Hereto, Xu,f 
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has to be chosen such that Cff,u(z) is in equilibrium at k = kJ· A discrete time system is in 
equilibrium if x(k + 1) = x(k), hence: 

(6.7) 

which is solved by: 
(6.8) 

Since r(k > ki) = r(k1), it holds that xu(k > ki) = xu(k1) and therefore uu(k > ki) = 
uu(k1)- Furthermore, Cff,s(z) is stable and therefore converges to steady state, so that the 
total feedforward signal Uff ( k) = u8 ( k) + Uu ( k) also con ver ges to steady state af ter the interval 
under consideration k E [ko, ... , ki]-

to, ko t, k --+ 

+- T, K, 

Figure 6.1: A timeline to illustrate time-reversal and pre- and post-actuation. 

A similar reasoning can be made regarding the start of the interval: here, u 8 (k < 0) = 0 
and uu(k) will converge to a constant value for k < ko. Note that this has implications for 
the servo behavior: if one wants to achieve exact tracking, actuation of the system should 
already start before the system is supposed to move. This pre-actuation is required to prevent 
transient errors at the start of the move, as discussed in the lifted domain in Section 5.2. 

6.1.3 lmplementation Aspects 

In order to obtain a bounded solution to ( 6.1) if Cff ( z) contains both stable and unstable poles, 
Cff(z) should be decomposed into a stable Cff,s(z) and unstable part Cff,u(z). As argued in 
Wortelboer (1994), a robust matrix form from which the eigenvalues can be read out is the 
complex Schur form. This is used in Peeters et al. (2000) to decompose the system into a 
stable and an unstable part. 

First, matrix A is Schur transformed into an upper triangular form , where the diagonal 
contains the eigenvalues of A. In MATLAB , the schur is used to compute the Schur decom­
position. Furthermore, the eigenvalues are ordered using ordschur, such that Äu contains 
the eigenvalues inside the unit disc and À22 the eigenvalues outside the unit disc. As a 
result: 

(6.9) 

with Ä11 and À22 both upper triangular. Next, a state transformation has to be applied such 
that: 

(6.10) 

with: 

(6.11) 
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where X can be computed by solving the Sylvester equation (using lyap in MATLAB ): 

(6.12) 

Using Tand the Schur transformation matrix, Cff(z) can be brought into the form: 

(6.13) 

Hence, 

[ As j Bs] [~] cff = cff,s + cff,u = CsîD + CuTo (6.14) 

where D can be included in either Cff,s or Cff,u· 

As mentioned before, u 8 (k) can be computed straightforwardly since boundary conditions are 
defined on the start of the interval and Cff ,s ( z) can therefore be implemented as a causal filter. 
This is, however, not the case for uu(k). In order to calculate this component r(k) is fed into 
Cff,u in reverse time. This way, uu(k) can be computeä offline. 

In continuous time, the time-reversed system can be found by using x(-t) = -x(t) . There­
fore: 

x(T) = -Aux (T) - Bur(T) 

u(T) = Cux(T) + Dur(T) 
(6.15) 

In discrete time, time-reversal is somewhat more complicated. First , z is replaced by z- 1 , 

which essentially means the time reversal is performed: k+l is replaced by k-1. To emphasize 
the backward direction, the symbol K, is used instead of k. 

x(K, - 1) = Aux (K,) + Bur(K,) 

u(K,) = Cux(K,) + Dur(K,) 
(6.16) 

This is not a standard discrete state-space description. The first step to come to a standard 
description is rewriting the state equation in (6.16) such that: 

x(K,) = A.: 1x (K, - 1) - A.: 1 Bur(K,) 

u(K,) = Cu X(K,) + Dur(K,) 

Next, x(K,) is shifted one sample such that i; (K, + 1) = x (K,) , hence: 

i;(K, + 1) = A.: 1x(K,) - A.: 1 Bur(K,) 

u(K,) = Cui:(K, + 1) + Dur(K,) 

(6.17) 

(6.18) 

Now the state equation is in the standard form, hut the output equation contains i;(K, + 1) 
instead of i;(K,). This is solved by substituting the state equation into the output equa­
tion. 

i; (K, + 1) = A.:1:r(K,) - A.: 1 Bur(K,) 

u(K,) = CuA.:1x (K,) + (Du - CuA.:1 Bu) r(K,) 
(6.19) 
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U( z ) = Cff(z)R( z ) 

Decompose Cff(z) into Cff,s(z) and Cff,u(z) 

U( z ) = (Cff,s(z) + Cff,u(z)) R(z ) 

Time reversal for R(z ) and Cff,u(z) 

X s,O = O ,---U-. (-z-) -=-C~ff-,-s (-z-) R_(_z_) __ Xu,f = (I-Au)- 1 Bur(k1) 
Uu(z - 1 ) = cff,u(z - 1)R(z- 1) 

U( z ) = U.( z ) + Uu( z ) 

Figure 6.2: Flow-diagram of stable inversion. 

From this expression, it immediately becomes clear why this leads to a bounded solution: 
since Au has all its eigenvalues outside the unit circle, A~ 1 will have all its eigenvalues inside 
the unit circle and the system in (6.19) is therefore stable. The concept of stable inversion 
feedforward is graphically depicted in Figure 6.2. 

Although this concept seems very different from the lifted approach of Chapter 5, the results 
show strong resemblance. This is shown in the next section. 

6.2 Stable lnversion in the Lifted Domain 

In the concept introduced in the previous section, the solution to the unstable part of the 
inverse system is computed in reverse time, hence it can be seen as a-causal. The feedforward 
signal that is obtained by using the Moore-Penrose pseudoinverse is also a-causal. Therefore, 
it is interesting to see if there is a connection between these two results. This is investigated 
in this section. 

Recall the lifted system description including initial conditions of (5.1). Now, consider the 
lifted system description of an inverse system which is decomposed into a stable and an 
unstable part, see (6.14). Taking initial conditions into account, the lifted system description 
is given by: 

(6.20) 
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with: 

Js,O = [c; 

Ju,O = [c! 

0 
D 

uT(N - l)f 

rT(N - l)f 

C AN-3B s s s il 
r1 

0 
0 

C AN-3B u u u 

(CsA~-if]T 

(CuA~-1t]T 

Since Au has its eigenvalues outside the unit circle, the entries of the first column of Ju increase 
exponentially and may grow unbounded. Similarly to stable inversion in Section 6.1.1, a 
boundary condition Xu,f is defined on the end of the trajectory: 

N-1 

Xu(N) = A~ Xu,O + L A~Bur(N - l - i) = Xu,f 
i=O 

Solving this equation for Xu ,o leads to: 

N-1 

Xu,O = -A;:-N L A~Bur(N - 1 - i) + A;:-N Xu,f 
i=O 

= -A-N [AN-lB AN-2B AN-3B . . . Bu] u u u u u u u 

Substituting this result into Equation 6.20 results in: 
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r(O) 
r(l) 
r(2) 

r(N - 1) 

(6.21) 

(6.22) 

A-N + u Xu,f 

(6.23) 



with: 

Ju= Ju - Ju,oA;;N [A{:'- 1Bu A{:'-2Bu A{:'-3Bu 

-CuA~1 Bu -CuA~2 Bu -CuA~3 Bu 

0 -CuA~1 Bu -CuA~2 Bu 

Ü Ü -CuA~1Bu 

0 0 0 
~ -N 

lu,O = lu ,oAu 

= [(CuA~N)T (CuA~N+1)T (CuA~N+2t 

6.3. UNCERTAINTY 

Bu] 

-CuA~NBu 
-CuA;;(N-I) Bu 

-CuA;;(N-2) Bu 

This illustrates why the feedforward signals resulting from the lifted approach and stable 
inversion show a strong resemblance, since the first row of lu is similar to the first row of Jt 
(see Figure 5.1). Although not shown here, lu corresponds with the upper-diagonal part of 
a truncated pseudo-inverse (Section 5.3.1). The observation that the lifted solution is time­
varying cannot be explained by the LTI concepts of this chapter. This can be attributed to the 
fact that the lifted system description, contrary to state-space systems or transfer functions, 
is a finite time system description. This can be seen if the size of the impulse response matrix 
J of a system with one unstable zero is increased: it turns out that the time-varying behavior 
of Jt manifests itself more at the edges, as is already discussed in Section 5.3.1. 

In the next section, it is discussed how uncertainty can be addressed if stable inversion is used 
for feedforward. 

6.3 Uncertainty 

In the discussion above about stable inversion feedforward it is assumed that Cff(z) exactly 
resembles the inverse plant. However, as argued in Chapter 4, this is never the case in practice 
and there will always be a certain amount of model uncertainty. Handling model uncertainty 
in case of stable inversion feedforward is addressed in this section. 

In Section 4.4, it is shown why methods like 1t00 and 'H2 feedforward , which optimize the 
performance of the worst case plant P present in P, may not be suited for feedforward control. 
In this section, a method is developed which calculates the optimal feedforward filter for the 
entire model set P, which is directly applicable using stable inversion feedforward. The model 
uncertainty is quantified by a multiplicative uncertainty model, i.e.: 

P(z ) = P0 (z ) (I + Wm(z)~(z)) (6 .24) 

where P0 (z) denotes the nominal model, wm(z) a multiplicative uncertainty bound, Cff(z) the 
feedforward filter and ~(z) a complex uncertainty such that ll~(z)lloo :S 1. A multiplicative 
uncertainty description is chosen, since if lwml > 1, this straightforwardly shows that the 
magnitude of the uncertainty exceeds the magnitude of the plant (see Chapter 4). The 
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feedforward sensitivity is given by: 

Sff(z) = I - P(z)Cff(z) 

= I - P0 (z) (I + Wm(z)~(z)) Cff(z) (6.25) 

= I - P0 (z)Cff(z) - P0 (z)wm(z)~(z)Cff(z) 

The complex uncertainty ~(z) essentially forms a circle with radius r E [0, 1] and angle 
0 E [-1r, 1r] at each frequency f. With ·* defining the complex conjugate, ~(z) and ~*(z) can 
be written as: 

~ ( z) = r ( z) ( cos 0 ( z) + j sin 0 ( z)) 

~*(z) = r(z) (cos0(z) - jsin0(z)) 

~(z)~*(z) = r 2 (z) 

(6.26a) 

(6.26b) 

(6.26c) 

In Section 4.4, the optimal feedforward is defined as the value for Cff which minimizes the 
integral of S~(~, Cff) on the interval~ E [-1, l]. A similar reasoning can be used to compute 
the optimal Cff(z) in case P(z), wm(z) and ~(z) are dynamic systems instead ofreal constants. 
Since Sff(z) is complex, the square of the magnitude is computed by ISff(z)l2 = Sff(z)Sff(z) 
and the cost function H ( z) is defined as: 

Now, using: 

and 

it can be shown that: 

H(z) = j l Sff(z)SMz)d~ 

{21r rl 
= Jo Jo Sff(z)Sff(z)rdrd0 

{27r {27r 
Jo ~(z)d0 = Jo ~*(z)d0 = 0 

{27r 
Jo = ~(z)~ *(z)d0 = 21rr2 

(6.27) 

(6.28) 

(6.29) 

Finally, the optimal Cff(z) can be calculated by setting the derivative of H(z) with respect 
to Cff(z) to zero: 

which results in: 

(6.32) 

From this expression, it is clear that in case no uncertainty is present, i.e., wm(z) = 0, the 
feedforward filter equals the inverse of the nominal plant. Furthermore, it can be seen that 
model uncertainty can only decrease the gain at certain frequencies, which is consistent with 
other robust feedforward methods. A final remark is that L(½wm(z)w~(z)) = 0, which implies 
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that robustness does not introduce any phase angle. As discussed in Subsection 4.2.3, this 
is essential to achieve good servo performance. Since Wm ( z) is chosen as a stable weighting 
filter, w~(z) is typically unstable. Therefore, pre-actuation is not only applied in case of 
NMP systems but, is also present in case of an uncertain MP system. This also appeared in 
the example using robust feedforward in the lifted domain (Section 5.6.4). 

In the next section, the use of nominal and robust stable inversion feedforward is illustrated 
by means of an example using the flexible cart introduce in Section 3.4.1. 

6.4 Example 

The stable inversion concepts discussed in this chapter are illustrated by repeating the example 
of Chapter 5, hence the flexible cart is supposed to track the reference trajectory in Figure 5.9. 
Again, nominal feedforward is discussed, as well as the effect of pre- and post-actuation and 
robust feedforward. 

~;E : • • i 
0 0.02 0.04 0.06 0.08 0.1 

; :~r----l ___ 3 ~ :E: • • i 
100 10' 102 0 0.02 0.04 0.06 0.08 0.1 

J [HzJ t [sJ 

Figure 6.3: Bode-diagrams of the stable (black) 
and unstable part (gray) of the inverted NMP 
flexible cart model. 

6.4.1 Nominal Feedforward 

Figure 6.4: lmpulse response of the stable 
part (upper plot) and time-reversed unstable part 
(lower plot) of the inverted NMP flexible cart 
model. 

To compute the feedforward signal, the inverse system p- 1 (z) is first decomposed into a 
stable part P

8
-

1 ( z) and an unstable part P;; 1 ( z). The Bode-diagrams of both systems are 
shown in Figure 6.3. At low frequencies, both P8-

1 (z) and P;;1(z) have the same magnitude 
and a zero slope. The phase difference is exactly 180°. Note that the time-reversed pu-l (z-1 ) 

(not shown) has the same magnitude as P;; 1 (z) but a negative phase. 

To get an impression about the required pre- and post-actuation time, the impulse responses 
of P

8
-l ( z) and P;; 1 ( z-1 ) are plotted in Figure 6.4. In this figure, both impulse responses 

seem to have converged to zero after 0.05 s. However, as will be shown in Section 6.4.2, using 
more pre- and post-actuation results in smaller servo error. Using the entire trajectory in 
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Figure 6.5: Scaled acceleration ( dotted) and 
stable (black) and unstable (gray) part of the 
feedforward signal. 

Figure 5.9, i.e., with Tpre = Tpost = 0.2 s, the stable (uff,s) and unstable (uff,u) component of 
the feedforward signal are computed. The results are plotted in Figure 6.5. Both components 
strongly resemble the reference trajectory, with the stable component being negative. This can 
be explained by the fact that the Bode-diagrams both have a zero slope, the same magnitude 
but a 180° phase difference. Adding Uff,s and Uff,u, it appears that both components nearly 
cancel each other, resulting in the total feedforward signal shown in Figure 6.6. 

0.2 0.25 0.3 0.35 
t [s] 

Figure 6.6: Scaled acceleration ( dotted) and 
feedforward signal (solid) resulting from stable 
inversion feedforward. The bottom plot is a zoom 
of the upper plot, showing that Uff starts increas­
ing before the reference acceleration. 
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Figure 6. 7: Scaled acceleration ( dotted) and 
servo error (solid) using the feedforward signal 
of Figure 6.6. 

The feedforward signal is very similar to that of Chapter 5, so instead of being a scaled 
version of the acceleration, it is much smoother. It can be seen that the pre-actuation starts 
exciting the system while ra is still zero and hence before the system is supposed to move. 
Since there is one real NMP zero rather than a complex pair, the pre-actuation shows no 
oscillations. Furthermore, the transitions from constant jerk to constant acceleration phase 
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and vice-versa are smooth in the feedforward signal. T his Uff results in the servo error shown 
in F igure 6.7. It appears t hat the error looks like a scaled version of r(k), but there are neit her 
significant transient errors nor oscillations at the resonance frequency. The magnitude of the 
error, however, is significantly larger than in F igure 5.12, where lifted feedforward is used. 
The sharp peak in Figure 5.12 is completely absent in this figure. 

In these figures, the entire time before and after the start of the move is used for pre- and 
post-actuation. In the next section, the effect of the amount of pre- and post-actuation is 
investigated, followed by simulations using an uncertain system. 

6.4.2 Pre- and Post-Actuation 
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Figure 6.8: Scaled acceleration (black, dot­
ted) and Uff using Tpost = 0.0 s (black, solid), 
Tpost = 0.1 s (gray) and Tpost = 0.2 s (black, 
dash-dotted) . Tpre = 0.2 sin all cases. The gray 
and the dash-dotted line can hardly be distin­
guished by visual inspection. 
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Figure 6 .9: Scaled acceleration (black, dotted) 
and Uff using Tpre = 0.0 s (black, solid), Tpre = 
0.1 s (gray) and Tpre = 0.2 s (black, dash-dotted). 
Tpost = 0.2 s in all cases. The gray and the dash­
dotted line can hardly be distinguished by visual 
inspection. 

When implementing stable inversion feedforward, a suitable interval has to be selected on 
which the feedforward signal is defined, and boundary conditions are defined at the start and 
end of this interval. Similar to Section 5.6.3, Tpost and Tpre have been varied to show the effect 
of pre- and post-actuation. T he difference between the various feedforward signals is plotted 
in Figures 6.8 and 6.9. Contrary to F igures 5.13 and 5.14, there is no compensation for the 
fact that only a limited amount of Tpre or Tpost is used. This means that the feedforward 
signals are essentially cut off if insufficient pre- or post-actuation time is available. Similar 
to the lifted approach, the difference between the feedforward signals with Tpre = 0.1 s and 
Tpre = 0.2 s and between Tpost = 0.1 s and Tpost = 0.2 s seems negligible by visual inspection, 
but does have a significant effect on the servo error. 

While in F igure 6. 7 pre- and post-actuation times of Tpre = Tpost = 0.2 s are used, less post­
actuation leads to servo errors after the move (Figure 6.10) and less pre-actuation leads to 
transient errors at the start of the move (Figure 6.11) . This is similar to the observation in 
Section 5.6.3. 
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t [s] 

Figure 6.10: Scaled acceleration (dotted), and e 

using Tpre = 0.2 s and Tpost = 0.0 s (upper plot), 
Tpost = 0.1 s (middle plot) and Tpost = 0.2 s 
(lower plot). 

Figure 6.11: Scaled acceleration (dotted), and 
e using Tpost = 0.2 s and Tpre = 0.0 s (upper 
plot), Tpre = 0.1 s (middle plot) and Tpre = 0.2 s 
(lower plot). 

Again, these results can be explained by looking at the states of the system, in particular to 
the angle cp and angular velocity J (Figure 6.12). If no post-actuation is used, the feedforward 
input Uff turns zero as the output y reaches its final value. The states cp and J do not equal 
zero at that point, hence setting Uff = 0 causes cp and J to show an oscillation with decreasing 
amplitude. 

Similarly, using suffi.cient pre-actuation ensures that the cart is gradually pushed into the 
angle that will be reached during the constant acceleration phase. Not using suffi.cient pre­
actuation causes a sudden push, hence introducing a transient error. Comparing Figures 5.17 
and 6.12, it appears that J shows a larger deviation from the 'ideal' trajectory if LTV lifted 
feedforward is used. 

Although the differences between the signals in Figures 6.8 and 6.9 seem small, they do have 
a major impact on the servo error as can be seen in Figures 6.10 and 6.11. Comparing 
Figures 5.16 and 6.11, the difference between LTV and LTI feedforward can be seen. In 
Figure 5.16, insuffi.cient pre-actuation introduces a sharp peak in the error signal, so the error 
is concentrated in a small time-interval. In Figure 6.11, however, the error starts increasing 
at the same moment, but only slowly returns towards zero. 

In Figure 6.13 the 2-norm of the servo error on the entire interval is plotted for various values 
of Tpre and Tpost· Note that llell2 is plotted on a logarithmic scale. The straight red line in 
Figure 6.13 thus indicates that llell2 depends exponentially on Tpre· The dependency of llell2 
on Tpre depends on the location of the unstable zeros, as discussed in Section 5.2. A similar 
observation is made if the maximum servo error is plotted for various values of Tpre and Tpost· 

The bound on the error due to insuffi.cient post-actuation has not been proven yet, but it 
seems likely that this is a bound similar to bound related to pre-actuation. 
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Figure 6.12: Angular velocity using Tpre = 
Tpost = 0.2 s (upper plot), Tpost = 0 s (middle 
plot) , introducing oscillations after the move­
ment and Tpre = 0 s (lower plot), introducing 
an error before the movement. 

6.4.3 Robust Feedforward 

6.4. EXAMPLE 

0 

Tpre [s] 
0.2 0.2 Tpost [s] 

Figure 6.13: 2-norm of the tracking error ver­
sus Tpre and Tpost. The red line shows the un­
derbound for Tpost = 0.2 s as discussed in Sec­
tion 5.2.4. 

To assess the performance of robust stable inversion in Section 6.3, the same model set P is 
used as in Chapter 5. Using the same overbound wm(z), a robust feedforward is computed 
according to Section 6.3. The resulting feedforward signal is also plotted in Figure 6.14. It 
can be seen that, contrary to nominal feedforward, pre- actuation is used and the resulting 
feedforward signal is slightly smoother. Furthermore, the oscillations during the constant 
velocity interval and after the move are much smaller. Both feedforward signals are used to 
simulate with 10 realizations of the uncertain system. The resulting servo errors are plotted 
in Figure 6.16. 

It appears that the pre-actuation introduces a low-frequent servo error before the start of 
the move. This is due to the limited pre-actuation time. In Figure 6.14 it can be seen 
that the robust feedforward signal does not start entirely from rest. It can be expected 
that an increased preview period leads to a smaller pre-actuation error. During the move, 
however, the error using robust feedforward is smaller than using nominal feedforward on 
the same perturbed system. The dominant component of approximately 6.2 Hz is partially 
removed. 

These findings are confirmed by looking at the cumulative power spectral densities of the 
servo error in Figure 6.17. It seems that robust feedforward generally shows larger values 
at low frequencies; if a large mismatch between inverse plant and feedforward is present, 
nominal feedforward shows a large increase at 6.2 Hz (the frequency of the anti-resonance 
of the nominal system), while this difference is much smaller if robust feedforward is used. 
It is most clear in the gray case. This shows the advantage of robust feedforward: the low­
frequent error can be attenuated by the feedback controller, while this is much more difficult 
for high-frequent errors. 

The state trajectories of the simulations using nominal and robust stable inversion feedforward 
also show similar behavior as using lifted feedforward. Using robust feedforward, oscillations 
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Figure 6.14: Nominal (gray) and robust (black) 
feedforward signal for the MP flexible cart sys­
tem. The amplitude of the oscillation of the ro­
bust feedforward signal is much smaller than that 
of the nominal feedforward signal. 

Figure 6.15: System states of 10 realizations of 
the uncertain system using nominal (gray) and 
robust (black) feedforward and states of the nom­
inal system using nominal feedforward (red). Us­
ing robust feedforward, the states clearly show 
less oscillatory behavior. 

of the flexible modes have a smaller amplitude. This is possible due to the use of pre­
actuation. 

In short, it can be stated that in case of a highly uncertain system, robust feedforward leads 
to improved servo performance during the movement, especially during the constant velocity 
phase (see lower plot of Figure 6.16). This improvement can be attributed to the reduced 
oscillation of the feedforward signal at the frequency of the anti-resonance of the system. The 
improvement during the constant velocity phase comes at the expense of an increased servo 
error during pre-actuation. 

6.5 Summary 

Regarding stable inversion feedforward, a number of concluding remarks can be made: 
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• Using stable inversion, a bounded feedforward signal is obtained despite unstable poles 
of the inverse system. 

• The results of stable inversion and lifted feedforward methods show strong resemblance, 
but since time-varying solutions are possible in the lifted domain, lifted feedforward is 
able to partly compensate for the limited available pre-actuation time while this is not 
possible using stable inversion. However, in bath cases, sufficient pre- and post-actuation 
is required to obtain good servo tracking in case of non-minimum phase systems. 

• The required pre- and post-actuation time depends on the locations of the corresponding 
unstable and stable system zeros. Pre-actuation is used to bring the states of the system 
to values at the start of the interval such that exact tracking is possible, while post­
actuation is used to bring the states to rest after the move. The nominal servo error can 
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Figure 6.16: Scaled acceleration (dotted) and 
simulation error for 5 random realizations of the 
uncertain system using nominal ( dashed) and ro­
bust (solid) feedforward. The lower plot is a zoom 
during the constant velocity interval. 

6.5. SUMMARY 

1.5 

Figure 6.17: Cumulative PSD of the servo er­
rors using nominal (dashed) and robust (solid) 
feedforward. 

be made arbitrarily small by taking Tpre and Tpost sufficiently large. The exact amount 
of Tpre and Tpost required depends on the demanded servo accuracy. 

• Robust stable inversion leads to less oscillatory feedforward signals and state trajec­
tories. Furthermore, it reduces the high-frequent error during the constant velocity 
interval, which is otherwise present due to a mismatch between the inverse plant and 
feedforward filter. Nevertheless, this comes at the expense of a low-frequent servo error. 

The examples discussed so far concerned a fictitious flexible cart system. In the next chapters, 
the developed concepts are validated on the NXT-A7 wafer stage. 
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CHAPTER 7 

Experimental Setup 

The performance of the feedforward strategy discussed in the previous chapter is validated 
on the NXT-A7 wafer stage, which is introduced here. First, an overview of this stage is 
given, followed by a description of the dynamics of the A 7 wafer stage. Next, the feedback 
controllers used to obtain closed loop stability are described in Section 7.3. 

7.1 The NXT-A 7 Wafer Stage 

The NXT-A7 wafer stage was made in the context of ASML's NXT project to learn about 
planar motor artifacts. lts main components are shown in Figures 7.1 and 7.2. Future wafer 
stages are required to operate in vacuum to prevent absorption of the laser beam. Therefore, 
contactless operation is necessary since mechanica! and air hearings are not or hardly feasible 
in vacuum. Furthermore, this removes friction, thus enabling higher positioning accuracy. In 
order to achieve contactless operation, the NXT-A 7 u tilizes a planar motor to posi tion the 
stage (Compter, 2004). 

A planar motor has two main parts: a plate with an array of permanent magnets and a set 
of coils fixed to the wafer stage. By controlling the current through these coils, horizontal 
and vertical electromechanical forces are generated which enable position control of the stage 
in six degrees-of-freedom. The NXT-A7 has four forcers, each providing one vertical and one 
horizontal force. These forcers are mounted to an interface plate. A mirror black is mounted 
to the interface plate using four leaf springs. The position of the chuck is measured using 
an interferometry measurement system. This is fixed on a metrology stone, which in turn is 
mounted on three airmounts to isolate it from floor vibrations. 

The main direction of movement of the NXT-A 7 wafer stage is the x-direction, having a stroke 
of approximately 300 mm. End-of-stroke dampers are present to protect the wafer stage and 
the devices mounted on the metrology stone. In y-direction, the stroke is limited to 5 mm 
due to the presence of boundary rails (see Figure 7.2). The zero of the coordinate system is 
defined such that the stage can make symmetrie strokes, see Figure 7.3. 
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Figure 7.1: Photograph of the NXT-A7 wafer stage, where a: granite block, b: mover, c: airmount 

7. 2 Dynamics 

7.2.1 MIMO Systems and Equivalent Plants 

Before continuing to the discussion of the dynamics of the NXT-A 7 wafer stage, a note on 
MIMO systems and equivalent plants is given. Of the six DOFs shown in Figure 7.3, only 
the x-direction is used for the experiments and models of the x- and y-direction are used for 
simulations. This implies that the remaining DOFs are not explicitly taken into consideration. 
This implies that actually the equivalent plants are used. This is illustrated by means of an 
example using a 2 x 2 MIMO system. 

Example 7.1 Consider a 2 x 2 MIMO system P having SISO entries P11, Pi2, P21 and P22 
(see Figure 7.4). IJ one wants to implement feedforward in the direction of Y1, not only P11 
should be taken into account, since there is interaction between the various DOFs involved. 
Now, the SISO transfer function from u1 to Y1 , while the loop with C22 is closed, is also called 
the equivalent plant P11,eq- This is given by: 

P11,eq = P11 - Pi2 (J + C22P22)-
1 

C22P21 (7.1) 

In case of SISO feedforward of the NXT-A7 wafer stage, the equivalent plant in x-direction 
is similarly defined by (7.1) with: 

74 

• P11 the SISO upper left entry of the total 6 x 6 system, having both its input and output 
in the x-direction. 

• Pi2 the MISO (1 x 5) upper right part of the total system, having its output in x-direction 
and inputs in y, Rz, z, Rx, Ry-directions. 

• P21 the SIMO (5 x 1) lower left part of the total system, having its input in the x­
direction and outputs in the y, Rz, z, Rx, Ry-directions. 
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Figure 7.2: Detail photograph of the wafer stage test rig, where a: landing foot, b: forcer coil, c: 
end-of-stroke damper, d: zerodure mirror block, e: boundary rail and f: permanent magnet plate. 
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Figure 7 .3: Schematic overview of the wafer stage with the coordinate system. 

• P22 the MIMO (5 x 5) lower right part of the total system, having both its inputs in 
y , Rz , z, Rx , Ry-directions. 

• Cu the feedback controller in x-direction. 
• C22 is the diagonal feedback controller in y , Rz, z, Rx , Ry-directions. 

This implies that the equivalent plant P11,eq is independent of the feedback controller in 
x-direction C11 but does depend on the feedback controller used in the other 5 DOFs. 

7.2.2 SISO Identification 

In Oomen (2010); Quist (2010); Van Herpen (2009a), robust feedback control relevant system 
identification of the NXT-A7 wafer stage is discussed. The models obtained in these references 
are not used for the experiments in this thesis because: 

• The dynamics have changed over time: in Quist (2010) the dominant resonance was 
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P11 ,eq 
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Figure 7.4: The transfer from u1 to y1 with the loop containing C22 closed is also called the equivalent 
plant Pn,eq· 

located around 198 Hz. After renewing the glue connection between the leaf springs 
and the mirror black, this is now located at a higher frequency, as will be shown. 

• In Quist (2010) a 2 x 2 MIMO model is identified in x- and y-direction. For the feed­
forward experiments, however, a SISO model of the equivalent x-direction is required. 
Due to interaction, this is not the same as taking the x-direction of the model by Quist 
(2010) . 

• The experiments are aimed at identifying feedback relevant models, whereas here feed­
forward relevant models are required. As will be explained below, feedback controllers 
with a lower bandwidth have been used for the identification of feedforward relevant 
models. 

In this section, system identification of the equivalent x-direction is discussed, followed by the 
MIMO identification in Section 7.2.3. 

A common way of measuring frequency response functions (FRFs) is to add noise to the 
controller output . By subsequently measuring the plant input and the servo error, the input 
sensitivity Si = (I + CfbP)- 1 and negative process-sensitivity -PS= -(1 + PCfb)-1 P can 
be computed. Next , the FRF of the plant is extracted by using: 

(PS)(Si)-1 = (I + PC!b) - 1 P(I + CtbP) 

= P(I + CtbP) - 1(1 + CtbP) 

=P 

(7.2) 

By injecting and measuring the plant input and servo error only in the x-direction the equiv­
alent plant of this DOF is obtained. In the references mentioned above, it is argued that 
better results are achieved by using multisine excitation signals rather than noise, since these 
enable: 

• a reduction of the effect of disturbances without introducing systematic errors, 
• a straightforward combination of multiple measurements. 

Therefore, the multisine signals used in Quist (2010) are also used for the identification 
experiments in this research. 

Besides the excitation signal, the feedback controller used during identification is of impor­
tance for the obtained model quality. In Oomen (2010); Van Herpen (2010) it is shown that 
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for feedback control relevant identification, it is advantageous if the feedback controller used 
during the identification experiments is as close to the desired situation as possible. This 
means, e.g., that the bandwidth for the experimental feedback controller should be chosen as 
high as possible, and in Quist (2010) a controller with 40 Hz bandwidth in x- and y-direction 
is used. Nevertheless, this is not necessarily true for identification for feedforward control: if 
a controller has a high bandwidth, the input sensitivity at low frequencies will be very small, 
subsequently leading toa small signal-to-noise ratio and therefore a significant variance. 

This is confirmed by initial experiments with 40 Hz and 25 Hz bandwidth feedback controllers. 
Using controllers with a lower bandwidth (10 Hz) <lid not show a significant improvement. 
Therefore, controllers with a 25 Hz bandwidth in all DOFs are used for the identification 
experiments. The resulting FRFs and 3a variances (Van Herpen, 2009b) are displayed in 
Figures 7.5 and 7.6. 
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Figure 7.5: Identified FRF of the input sensi­
tivity Si with 3a-variance bound. 
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Figure 7.6: Identified FRF of the process sen­
sitivity PS with 3a-variance bound. 

Remark 7.1 Altematively, the multisines could have been injected at the controller input 
rather than at the controller output. By measuring the plant input and the servo error, 
the negative complementary sensitivity -T = - (I + Pefb)- 1 Pefb and control sensitivity 
es= (I + efbP)- 1 efb can be determined. eontrary to exciting at the controller output, these 
transfers do not have small magnitudes and are therefore expected to have a better signal-to­
noise ratio and hence a smaller variance. Nevertheless, es showed a very large variance at 
low frequencies and it is therefore decided to use excitation at the controller output for system 
identification. 

The equivalent FRF resulting from the multisine excitation is shown in Figure 7.7. A low­
frequent -2 slope is visible corresponding to the rigid body mode of the system. The first 
resonance appears at 228 Hz, which can be attributed to the limited stiffness of the leaf­
springs connecting the mirror block to the interface plate. Furthermore, a resonance and 
anti-resonance appear at 540 Hz and 588 Hz. At higher frequencies, the variance of PS is 
very large (see Figure 7.6), hence there is a lot of model uncertainty above approximately 
590 Hz. 

A tenth order model is fitted on the FRF-data, which is also shown in Figure 7.7. It corre­
sponds very well with the measurement data up to the second resonance, at higher frequencies 
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Figure 7. 7: Measured FRF (gray) and 10th or­
der model (black) of the plant in x-direction. 

the difference is much larger. 

Position Dependency 
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Figure 7.8: Relative difference between two 
FRFs measured at x = 0 cm and x = 5 cm. 

In Hamers (2006) actuator-related servo error sources of the NXT-A7 wafer stage are dis­
cussed. Due to, e.g. , phenomena based on the interaction between the magnetic field and 
the electric field and the design of the actuator and permanent magnet plate, the wafer 
stage possesses position dependent dynamics. In Chapter 8 scanning motions are performed 
from x = 0 cm to x = 5 cm. In order to get an impression of the position dependency of 
the NXT-A7, an identification experiment has been performed at x = 5 cm. The result is 
shown in Figure 7.8. Here, the relative difference between this measurement and the original 
measurement at x = 0 cm is plotted. 

It appears that between 30 Hz and 200 Hz, -30 dB < 1 PaitP 1 < -25 dB. This means that 

there is a relative difference of more than 5% is this frequency region, and in the remaining 
frequencies the uncertainty exceeds 10%. These are significant differences and it is expected 
that this has a significant effect on the servo performance, as discussed in Section 4.2. 

7.2.3 MIMO Identification 

In Chapter 9, simulations are performed with a 2 x 2 MIMO model of the x- and y-direction of 
the NXT-A7 wafer stage. The used model is obtained in Quist (2010) and the corresponding 
Bode-diagram is plotted in Figure 7.9. 

This model is identified before the glue connections were renewed, which explains why the 
dominant resonance is located at 198 Hz rather than 228 Hz. Since this model is only of 8th 
order, only the first resonance is fitted. One of the most striking features of this model are 
the low-frequent zero slopes. The excitation signal used for identification contains frequencies 
down to 2 Hz, and it appears that the resulting model has zero slopes below 2 Hz. It can be 
argued whether this is an accurate representation of the real plant; since the only connection 

78 



7.3. FEEDBACK CONTROL 

: :::1 ~'-,,~ -~ 
~-200_ . -------~ ~ 

-250~-~- ~-~--~-~ 
10-2 10-1 10° 101 102 103 

Figure 7.9: Measured FRF (gray) and 8th order model (black) of the NXT-A7 wafer stage in x- and 
y-direction. 

to the base stone is the cable slab, which is not expected to have a significant stiffness with 
respect to the outside world. A zero slope might also be caused by parasitic stiffness effect of 
K-factor variations (Van de Wal et al., 2007), but this manifests itself mainly in the vertical 
plane. Hence, a -2 or -1 slope seems more appropriate. At steady state, the magnitude of 
the transfer function is given by: 

P( = 0) = [-0.177 x 10-
3 

W -0.028 X 10-3 
-0.032 X 10-3

] 

0.073 X 10- 3 

Especially compared to Pyy(z), the off-diagonal entries have a significant magnitude. 

(7.3) 

The purpose of this model is to demonstrate the effect of MIMO feedforward compared to 
SISO feedforward. Although this model has some deficiencies, i.e., the fact that the system 
has changed after the identification experiment and the low-frequent zero slopes, it is well 
suited for its purpose and is therefore used in Chapter 9. 

7.3 Feedback Control 

All feedforward experiments and simulations in Chapters 8 and 9 are performed with 25 Hz 
bandwidth diagonal feedback controllers. The Bode-diagram of the feedback controller in 
x-direction is shown in Figure 7.10. In all six DOFs, this controller consists of: 

• a lead-lag filter with the zero and pole located at 8 Hz and 75 Hz. 
• an integrator with the zero located at 5 Hz. 
• a second order low-pass filter. In x- and y-direction, this is situated at 115 Hz, while in 

the other DOFs this is 125 Hz. For all DOFs, the damping is 0. 7. 

This 25 Hz bandwidth feedback controller does not push performance to the limit: in Quist 
(2010) a 90 Hz bandwidth MIMO feedback controller is designed. By using a low-bandwidth 
feedback controller, however, the performance of the feedforward controller expected to be 
more manifest in the experimental results. 
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Figure 7.10: Bode-diagram of the feedback con­
troller in x-direction. 

In the next chapters, stable inversion feedforward is implemented in SISO experiments and 
MIMO simulations on the NXT-A7 wafer stage. 
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CHAPTER 8 

Application to the NXT-A 7 Wafer 
Stage: SISO Experiments 

8.1 Introduction 

In this chapter, the performance of stable inversion feedforward is validated. To start with, the 
model identified in Section 7.2.2 is validated. Thereafter, the performance of stable inversion 
feedforward on a second order reference trajectory is discussed in Section 8.3, followed by 
the effect of pre- and post-actuation in Section 8.4. Furthermore, it is investigated whether 
the robust stable inversion method of Section 6.3 can be applied to deal with the position 
dependent dynamics of the NXT-A7 wafer stage. This is addressed in Section 8.5. Finally, 
some concluding remarks are given. 

8.2 Model Validation 

In this section, the model of the equivalent x-direction of the NXT-A7 wafer stage that is 
identified in Section 7.2.2 is validated. Hereto, a fourth order reference trajectory and mass 
feedforward is used for both a simulation and an experiment to evaluate the performance 
of the obtained model. The parameters of the reference trajectory, shown in Table 8.1, are 
selected by gradually increasing them from zero until they were found to be suitable for model 
validation. The result is displayed in Figure 8.1. In this figure, the green line denotes the 
simulation result and the blue line is the experimental result. Furthermore, the dotted line 
represents the (scaled) reference acceleration. The upper plot of Figure 8.1 shows the move 
from 0 cm to 5 cm while the lower plot shows the error while moving in the opposite direction. 
It appears that there is quite a significant mismatch between simulation, with e(t) ~ 0, and 
experiment. 

To further investigate the cause of the mismatch, the measured feedback signal is plotted in 
Figure 8.2. Here, two main features can be distinguished: 

• During standstill, i.e., when t < 0.32 s, 0.63 s < t < 1.26 s and t > 1.58 s, the feedback 
signal does not equal zero. This implies that there is a force required to keep the system 
at a certain position, which may be caused by the cable slab. Nevertheless, this is not 
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expected to be of any significance for feedforward control due to the integral action of 
the feedback controller. 

• The feedback signal during the constant velocity part, i.e., between 0.38 s and 0.56 s 
and between 1.33 s and 1.51 s, deviates significantly from the signal during standstill. 
Therefore, it is expected that there is in fact (viscous) damping present. This can also 
be caused by the cable slab or by electro-magnetic damping in the planar motor. 

-5 
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X 10-5 t [s] 
4~--~-~---~---- ~~ 2r.w 2t···· e o 1·· .. ~ ·. -; =:~ ~ 

1.3 1.4 1.5 1.6 1. 7 
t [s] 

Figure 8.1: Scaled acceleration (dotted) , mea­
sured error (blue) and simulated error using the 
original (green) and modified (red) models. Up­
per plot: forward movement. Lower plot: back­
ward movement. 
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Figure 8.2: Scaled acceleration ( dotted) and 
feedback signa! using mass feedforward during 
the validation experiment. 

To investigate the damping of the stage, experiments with fourth order trajectories with 
Vmax = 0.016 m/s, Vmax = 0.020 m/s, Vmax = 0.024 m/s, Vmax = 0.028 m/s and Vmax = 
0.032 m/s have been conducted. It is chosen to use small velocities since these require only 
a short constant acceleration interval and the constant velocity part on x E [O, 5] cm is thus 
maximized. 

From the measurements, the mean feedback signal during the constant velocity part is com­
puted. This is subsequently corrected for the fact that a nonzero feedback signal is required 
during standstill, as discussed above. The results are plotted in Figure 8.3, where o denotes 
the result for the constant velocity in positive and x in negative direction. Next, a line is 
fitted through the measurement results using a least-squares method. This result shows that 
there is a statie friction of 0.32 Nanda dynamic (viscous) dam ping of 74.2 Ns/m. This shows 
that this effect is caused by Eddy current damping; the EUV AD wafer stage was shown to 
have a statie friction in x-direction of 3.8 N and a damping of 81 Ns/m. 

While statie friction typically is nonlinear, the viscous damping is a linear effect and can thus 
be included in the linear plant model. The Bode-diagram of the original and the modified 
model is shown in Figure 8.4. 

Instead of having a low-frequent -2 slope, the modified model has a low-frequent -1 slope 
and a pole at 0.27 Hz. This shows why the system identification did not show any damping: 
the multisine excitation signals did not contain frequencies below 2 Hz. One could argue that 
multisine signals containing frequencies below 2 Hz should have been used in the identification 
experiments. However, since Si already showed a significant variance at 2 Hz, a multisine 
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Figure 8.3: Mean feedback force Ufb during con­
stant velocity Vmax for various values for Vmax ( o 

for positive, x for negative velocity) and first or­
der fit (line). 

8.2. MODEL VALIDATION 

Figure 8.4: Bode-diagrams of the original 
(gray) and modified (black) models. 

signal with frequencies below 0.27 Hz cannot be expected to lead to accurate identification of 
the low-frequent dynamics. 

The simulated response of the modified model is also plotted in Figure 8.1. It appears that the 
modified model (black line) is a much better representation of the system dynamics ( dashed) 
than the original model (gray). There is, however, still a large difference between the accuracy 
of the model at x = 0 cm and x = 5 cm. This follows from the fact that the upper plot (the 
forward movement) shows a better correspondence at the start of the move (at x = 0 cm), 
while during the backward movement (the lower plot), better correspondence can be observed 
at the end of the move, hence also at x = 0 cm. This is explained by the fact that the model 
is fitted on FRF data obtained by an identification experiment at x = 0 cm, while in reality 
motor-induced and position-dependent dynamics and disturbances are present. In the the 
FRFs measured in Section 7.2.2 a significant position dependency was shown, and here this 
also manifests itself in the time domain. As a consequence, the performance of nominal 
feedforward should be evaluated around x = 0 cm, i.e., during acceleration of the forward 
motion or deceleration of the backward motion. 

Remark 8.1 The fact that the FRF is measured at x = 0 cm is also the reason that the scans 
are performed from x = 0 cm to x = 5 cm; this way, the model is accurate at either the start 
(forward scan) or the end {backward scan) of the movement. Had symmetrical scans from 
x = -2.5 cm to x = 2.5 cm been made, the model would not be that accurate during either 
acceleration or deceleration. 

The correction to the model and the remaining position-dependency are confirmed by Fig­
ure 8.5. Here, position and feedback are plotted if only kJa is applied (43.5 kg) and if both 
kJa and kJv (74.2 Ns/m) are applied. In the latter case, there is less feedback required. Nev­
ertheless, there is still some hysteresis visible, which can be attributed to statie friction. Since 
these experiments are performed with small acceleration and velocity, the remaining shape is 
entirely due to position dependency of the stage and/or position dependency of the external 
disturbances. 
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Figure 8.5: Position - feedback plot with only 
kJa (gray) and kJa and kJv (black). The feedback 
Ufb is much smaller if kJv is applied. · 

Concluding, it is remarked that the model is sufficiently accurate for stable inversion feedfor­
ward at x = 0 cm, but not at x = 5 cm. Therefore, good performance using stable inversion 
feedforward is expected at x = 0 cm while a decreased performance and hence a significantly 
larger servo error will be visible at x = 5 cm. 

8.3 Stable Inversion Feedforward 

Now that damping is added to the identified model and the resulting model is validated, it 
can be used for stable inversion feedforward. In Figure 8.6, a pole-zero map of the system is 
shown. The zeros of the model are located at: 

• z = -1.59: this NMP zero is not expected to have a substantial effect since it is located 
at 1260 Hz. 

• z = -l.03 ± l.36j: these NMP zeros are located at 907 Hz so are expected to have only 
a moderate effect. 

• z = 5.05: with a frequency of 644 Hz, this is expected to be the dominant NMP zero, 
i.e., its effect will be clearly visible in the feedforward signal. 

• z = -1: this is a sampling zero, which is removed from the inverse system as discussed 
in Section 3.5. 

• z = 0.164 ± 0.968j: this MP complex pair is very lightly damped with a damping of 
0.0129, which can introduce oscillations of the feedforward signal at the corresponding 
frequency (558 Hz). 

• z = 0.60 ± 0.13j: with a damping of 0.916, these MP zeros are nearly critically damped 
and will therefore not cause any vibrations at 213 Hz. 

The Bode-diagrams of the decomposed inverse model are shown in Figure 8.7. The observa­
tions are similar to those made in Section 6.4: at low frequency, both p

5
-

1(z) and P;1(z) have 
a zero slope, are equal in magnitude but have a phase difference of 180°. Surprisingly, the 
resonance at 228 Hz does not turn up in either P

8
-

1(z) or P;1(z). In p
5
-

1(z), a resonance and 
anti-resonance turn up at 553 Hz and 566 Hz, hence they do not exactly coincide with those 
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Figure 8.6: Pole--zero map of the 10th order 
plant model. 
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Figure 8. 7: Bode-diagrams of the stable part 
P

8
-

1 (z) (black) and unstable part P,;; 1(z) (gray) 
of the decomposed inverse model p - 1(z). 

of the original system. Furthermore, the damping that is present in the model is not visible 
in the decomposed inverse model. There is no connection between the zeros of the inverse 
system p-l ( z) on the one hand and the zeros of the separate parts p

5
-l ( z) and P;; 1 ( z) on the 

other hand. Using this decomposition, feedforward signals have been computed for various 
trajectories. Next , the resulting Uff for a fourth order reference trajectory is discussed. 

Fourth Order Reference Trajectory 

In Table 8.1, the move parameters of second and fourth order reference trajectories are given. 
The acceleration, velocity and position of the fourth order trajectory are plotted in Figure 8.8. 
For this reference trajectory, two feedforward signals are computed: one with acceleration kJa 

Table 8.1: Parameters for the validation trajectory as well as the fourth and second order reference 
trajectories. 

1 validation 1 4 th order I 2nd order 

Smax [m/s4
] 48 X 103 48 X 103 00 

]max [m/sJ] 320 320 00 

amax [m/s:.i] 4.8 4.8 5.0 
Vmax [m/s] 0.032 0.2 0.2 
Xmax [m] 0.05 0.05 0.05 

and velocity k f v feedforward and one using the stable inversion approach of Chapter 6. The 
results are plotted in Figure 8.9, where it appears that there are only minor differences 
between both feedforward signals. Only during the constant acceleration interval, there is a 
small difference in magnitude visible, but the shape is the same in both cases. As a result , 
the performance of both signals is also approximately equal, and the servo error (not shown 
here) is dominated by other effects, such as a mismatch between model and real plant and 
disturbances. 
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Figure 8.8: Acceleration (upper plot) , velocity 
(middle plot) and position (lower plot) of a fourth 
order reference trajectory. 

Figure 8.9: Scaled acceleration ( dotted), Uff us­
ing k1a and kJv (gray) and Uff using stable inver­
sion (black) corresponding to the trajectory in 
Figure 8.8. Both feedforward signals are nearly 
the same, the only difference appears during the 
constant acceleration part. 

To be able to demonstrate the difference between stable inversion and acceleration and velocity 
feedforward, amore aggressive reference trajectory was required. However, it was undesired 
to increase acceleration and velocity because: 

• Increasing the maximum acceleration leads to large rotations around the Ry axis with 
the used low-bandwidth feedback controller. One could consider increasing the con­
troller bandwidth in Ry direction only. However, this may lead to a shift of the poles 
and zeros of the equivalent x-direction, hence suppressing the NMP behavior. 

• Using the same maximum acceleration, increasing the maximum velocity leads to either 
a longer trajectory or a shorter constant velocity part. The first one is not desired 
due to the position dependent dynamics (Hamers, 2006) , while a substantial constant 
velocity part is desired, since this resembles the scanning interval of a wafer stage. 

Therefore, only snap and jerk have been gradually increased. Eventually, it has been decided 
to switch to third ( Smax = oo) and, since these were still not aggressive enough, to second 
order trajectories ( Smax = Jmax = oo). These results are discussed next . 

Second Order Reference Trajectory 

In Figure 8.10 the second order reference trajectory with the parameters of Table 8.1 is plotted. 
The feedforward signal for the forward motion is computed using stable inversion feedforward 
with 0.24 s pre- and post-actuation. This means that Uff is defined on t E [0.052, 0.82] s. It is 
assumed that this is sufficient preview time and that the oscillations of the flexible dynamics 
of p- 1(z) have converged at t = 0.82 s. Due to the specific choice of boundary conditions as 
discussed in Section 6.1, Uff ,s and Uff ,u are supposed to cancel each other fort~ [0.052, 0.82] s 
and the leading and trailing zeros can thus be zero. As a result , both components are 'reset' at 
0.82 s and 1.70 s, as can be seen in Figure 8.11. This assumption is confirmed in Figure 8.12, 
where no steps are observed at either 0.052 s or 0.82 s. The components of the feedforward 
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Figure 8.10: Acceleration (upper plot) , veloc­
ity (middle plot) and position (lower plot) of a 
second order reference trajectory. 
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Figure 8.11: Scaled acceleration (dotted) and 
stable (black) and unstable (gray) part of the 
feedforward signa! corresponding to the trajec­
tory in Figure 8.10. 

signal for the backward motion are simply the negative of those of the forward motion. This 
way of implementing stable inversion thus relies on linearity of the system. Alternatively, the 
feedforward signal could have been computed for the entire trajectory, but then it would not 
have been symmetrical for the forward and backward motion. 

The components of the stable part Uff ,s and the unstable part Uff ,u of the feedforward signal 
both strongly resemble the reference trajectory, Uff ,u with positive and Uff ,s with negative sign. 
Furthermore, it appears that both components are very large, i.e. , in the order of magnitude 
of 108 N. This was expected due to the large magnitude of the corresponding Bode-diagrams 
(Figure 8.11). However, they nearly cancel each other and the resulting feedforward signal is 
plotted in Figure 8.12. 
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Figure 8.12: Scaled acceleration (dotted) , Uff 

using kfa and ktv (gray) and Uff using stable in­
version (black) corresponding to the trajectory in 
Figure 8.10 (see Figure 8.13 for details). 

z 100 1· .. 
200 1 •• ~~ 

!r oo--- ---"7~ 
0.288 0.289 0.29 0.291 0.292 0.293 0.294 

~-jr:::::J 
-200 

0.58 0.59 0 .6 0.61 0.62 
t [s] 

Figure 8.13: Zoom of Figure 8. 12 during pre­
actuation (upper plot) and post-actuation (lower 
plot). 
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The total feedforward signal is plotted in Figures 8.12 and 8.13, along with a kta, ktv feed­
forward signal. lt appears that in case of an aggressive second order trajectory, the difference 
between both feedforward signals is substantial, although the effect of the mass and damp­
ing is clearly visible in the feedforward signal computed by stable inversion. One of the 
most striking features is the pre-actuation (see upper plot of Figure 8.13). While a forward 
motion is requested, an oscillating pre-actuation force is present. The frequency of this os­
cillation is 909 Hz, hence can be attributed to the pair of complex NMP zeros at 907 Hz. 
A few samples before the system is supposed to start moving, this reaches its minimum: 
Uff(t = 0.2912) = -50 N. 

Furthermore, severe oscillations with a frequency of 565 Hz are present during the constant 
acceleration and constant velocity parts. These are caused by the anti-resonance of the model 
at 558 Hz, and should not be visible in the output. 

Results 
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Figure 8.14: Scaled acceleration ( dotted), ex 
using kJ a and k fv (gray) and ex using stable in­
version (black) (see Figure 8.15 for details). 
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Figure 8.15: Zoom of Figure 8.14 during accel­
eration of the forward motion ( upper plot) and 
deceleration of the backward motion (lower plot), 
both around x = 0 cm. 

The servo errors in x-direction resulting from these feedforward signals are plotted in Fig­
ure 8.15. The most striking feature of the error is the large difference between on the one 
hand, the error during acceleration and deceleration at x = 0 cm, i.e., around t = 0.29 s and 
t = 1.42 s, and on the other hand, around x = 5 cm, that is, at t = 0.54 s and t = 1.17 s. 
This can be attributed to the large difference between the low-frequent dynamic behavior of 
the NXT-A7 at x = 0 cm and x = 5 cm, as discussed in Section 7.2.2. In Quist (2010), it 
is argued that in case of feedback control this can easily be handled by robust control. This 
result , however, clearly shows that the effect of the position dependency on the performance of 
feedforward control is a big issue and it remains to be seen if this can be effectively addressed 
by robust feedforward control. 

As mentioned before, this position dependency is addressed in Hamers (2006), but the cor­
responding compensation algorithms were not available during the experiments. Due to this 

88 



8.3. STABLE INVERSION FEEDFORWARD 

position dependency, one should assess feedforward performance around x = 0, see Fig­
ure 8.15. In this figure, the difference of the servo error resulting from the two feedforward 
signals of Figure 8.12 is substantial. A number of observations from this figure are: 

• In the upper plot of Figure 8.15, the error during the acceleration and constant velocity 
part of the forward motion is shown. It appears that the pre-actuation of stable inversion 
does not lead to a significant servo error at t < 0.292 s. This confirms that the pre­
actuation is in the zero direction of the system. 

• The transient error using k Ja/ k fv feedforward is much larger than using stable inversion 
feedforward. During the constant acceleration phase, lemaxl = 9.1 x 10-6 m using 
k1a/k1v feedforward and lemaxl = 4.9 x 10-6 m using stable inversion. 

• The use of k1a/k1v feedforward causes the system to oscillate at the frequency of the 
dominant resonance of the plant (228 Hz). This oscillation is hardly visible using stable 
inversion, since the inverse system has an anti-resonance at that frequency. 

• The error during the constant velocity part, i.e., between t = 0.33 s and t = 0.54 s, is 
approximately equal for bath feedforward methods, except that stable inversion does 
not show oscillations at 228 Hz. The remaining error is attributed to the position 
dependency. 

• The lower plot of Figure 8.15 shows the servo error during deceleration of the backward 
motion. Here, similar observations are made as during acceleration in positive direction: 
less oscillations around 228 Hz and smaller transient errors. 

10-25..___~---~--~~--__.._---' 
10 50 100 

f [Hz] 

Figure 8.16: Power Spectra! Density of ex using 
kta and ktv (gray) and stable inversion (black). 

The power spectra! densities (PSDs) of the entire error signals are plotted in Figure 8.16. 
Above approximately 50 Hz, stable inversion performs better than k1a/k1v feedforward. Only 
around the second resonance frequency, the difference is small, which can be attributed to 
the mismatch between the real plant and the plant model at that frequency. This shows 
that advanced feedforward is able to improve servo performance above the bandwidth of 
the feedback controller, which has only a small gain at high frequencies due to controller 
roll-off. 

The feedback signals in x-direction applied during these experiments are plotted in Fig­
ure 8.17. Again, a force of 17 N is required to keep the stage at x = 0. Although the force is 
constant during one experiment, it will be different after the stage has been terminated and 
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Figure 8.17: Scaled acceleration (dotted) and 
feedback in x-direction using kta and ktv (gray) 
and stable inversion (black). 
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Figure 8.18: Rotation Ry using kta and ktv 
(gray) and stable inversion (black). The rotation 
Ry, which is nearly the same for both feedfor­
ward signals, strongly resembles the servo error 
in Figure 8.14. 

re-initiated. As mentioned before, it is expected that this is caused by the cable slab, but the 
reason for the differences between experiments is unclear a t this point. 

Furthermore, the feedback signals strongly resemble the servo errors. Using stable inversion, 
the maximum feedback action during acceleration in positive direction, i.e ., for 0.29 s < t < 
0.33 s, is approximately 8 N (without the constant force). This corresponds to 3.6% of the 
total actuation, which is still relatively large. 

Although in this experiment only the x-direction is considered, the NXT-A7 is controlled in 
six DOFs. Of the remaining five directions, the Ry rotation is the most interesting. This 
rotation shows also shows a strong correlation with the servo error in x-direction; note the 
resemblance between the ex (Figure 8.14) and Ry (Figure 8.18). It is interesting to see if 
this rotation can be prevented by using MIMO feedforward . This is addressed in the next 
chapter. 

8.4 Pre- and Post-Actuation 

In order to assess the effect of pre- and post-actuation, stable inversion has been applied 
with various values of Tpre and Tpost · This is discussed in t his section. Hereto, the second 
order reference trajectory of the previous section is used. Varying T pre mainly affects the 
first part of the move in positive direction, while varying T post mainly concerns Uff and ex 

after the move. Therefore, in the upcoming figures, only the relevant part of the interval is 
shown. 
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8.4. PRE- AND POST-ACTUATION 

Pre-Actuation 

As mentioned in Section 6.4.2, the feedforward signal Uff is essentially cut off if insufficient pre­
actuation is used. In Figure 8.19, the stable inversion feedforward signals for Tpre = 0.0 ms, 
Tpre = 0.8 ms and Tpre = 1.6 ms are shown. In all cases, Tpost = 0.24 s. Using Tpre = 0.8 ms 
and Tpre = 1.6 ms, a large peak force of 198 N appears just before the system is supposed to 
move. Furthermore, the signal with Tpre = 1.6 ms shows a negative force of -50.0 N. 
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Figure 8.19: Scaled acceleration (dotted) and 
Uff(t) using Tpre = 0.0 ms (red), Tpre = 0.8 ms 
(green) and Tpre = 1.6 ms (blue). Tpost = 0.24 s 
in all cases. 
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Figure 8.20: Servo errors in x-direction cor­
responding to the feedforward signals of Fig­
ure 8.19. Using Tpre = 0.0 ms (red), the servo 
error is largest and shows severe oscillations. 

In Figure 8.20, the resulting servo errors are plotted. It appears that both the negative force 
of -50 N and the positive peak force of 198 N do not result in a servo error for t < 0.29 s, 
implying that Uff operates in the zero-direction of the plant. However, the positive force 
turns the maximum transient error from 12.6 µm to -4.4 µm. This is further reduced by 
the negative force, leading to -2.5 µm. Furthermore, the 228 Hz oscillation is present if 
Tpre = 0.0 ms, so it can be concluded that pre-actuation is required to suppress oscillations 
at the main resonance frequency. 

A further decrease of the servo error could not be obtained by increasing Tpre· It can therefore 
be concluded that the servo error using Tpre = 1.6 ms is dominated by a mismatch between 
plant and plant model and by the position dependent dynamics. 

Post-Actuation 

A similar exercise is performed with various values for Tpost· In this case, Tpre = 0.24 s 
and Tpost = 0.0 ms, Tpost = 4.0 ms and Tpost = 8.0 ms. This is plotted in Figure 8.21. 
Using Tpost = 0.0 s, Uff(t) = 0 for t 2: 1.449 s. The difference between Tpost = 4.0 ms and 
Tpost = 8.0 ms is much smaller and somewhat difficult to see. However, if Tpost = 4.0 ms, 
Uff(t) = 0 for t 2: 1.453 s while it keeps oscillating if Tpost = 8.0 ms. As discussed, the 
oscillation have a frequency of 565 Hz and can hence be attributed to the first anti-resonance 
of the plant. 
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Figure 8.21: Scaled acceleration (dotted) and 
Uff(t) using Tpost = 0.0 ms (red), Tpost = 4.0 ms 
(green) and Tpost = 8.0 ms (blue). Tpre = 0.24 s 
in all cases. 
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Figure 8.22: Servo errors in x-direction cor­
responding to the feedforward signals of Fig­
ure 8.21. Using Tpost = 0.0 ms (red), the servo 
error is by far the largest and shows severe oscil­
lations. 

The errors in the x-direction resulting from these feedforward signals are shown in Figure 8.22. 
lt appears that 4.0 ms post-actuation to a large extent attenuates the transient error after 
the move. If Tpost = 0.0 ms, lexlmax = 34 µm. If Tpost 2: 0.4 ms, this is reduced to lexlmax = 
5. 7 µm. In case of Tpost = 8.0 ms, there is only little improvement. Besides suppressing the 
large transient error immediately after the move, post-actuation also reduces the oscillations 
at the resonance frequency. 

8.5 Robust Feedforward 

As mentioned before, in Quist (2010) it is shown that a robust feedback controller can ef­
fectively handle the position dependency of the NXT-A7 wafer stage. In this section, it is 
investigated whether this is also the case for stable inversion. Hereto, the multiplicative un­
certainty weighting filter displayed in Figure 8.23 is used. Using (6.32) a 'robust' plant is 
computed. The Bode-diagrams of both systems are displayed in Figure 8.24. lt appears that 
the robust plant is slightly larger at high frequencies . At low frequencies, there is hardly 
any difference visible. Nevertheless, zooming in on this plot it can be seen that at 1 Hz the 
magnitude of the nominal plant is 0.06 dB lower. As a result , the robust inverse system has a 
smaller magnitude and will thus also result in a feedforward signal with a smaller magnitude. 

This resulting feedforward signal is shown in Figure 8.25. Indeed, during the constant accel­
eration part, the robust feedforward signal is smaller than the nominal one. However, in this 
figure it is difficult to distinguish both signals. Therefore, in Figures 8.26 and 8.27 enlarge­
ments of this figure are shown during pre-actuation and during the constant acceleration and 
velocity interval. 

In the upper plot of Figure 8.26 it can be seen that, during pre-actuation, the feedforward 
signal oscillates at 208 Hz, which is close to the resonance frequency of the system. Fur-
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Figure 8 .23: Frequency response functions of 
perturbed systems (gray) and multiplicative un­
certainty weighting filter wm(z) (black). 
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8.5. ROBUST FEEDFORWARD 

Figure 8.24: Bode-diagrams of the plant 
model P(z) and the ' robust' plant model 
P(z) (1 + ½wm(z)w;,.,(z)) . 

1 1.5 

Figure 8.25: Scaled acceleration (dotted) and 
nomina! (gray) and robust (black) feedforward 
signals (see Figures 8.26 and 8.27 for details). 

thermore, in the lower plot it appears that the peaks during pre-actuation are smaller: the 
minimum at t = 0.2904 sis -28 N compared to -50 N of the nominal signal. Furthermore, 
the positive peak is 158 N instead of 198 N. 

During the constant acceleration interval (upper plot of Figure 8.27) , the magnitude of the 
nominal signal is larger than the robust one. The oscillations caused by the anti-resonance of 
the model at 558 Hz have a smaller amplitude. This also holds for the constant velocity part 
(lower plot). 

The servo error resulting from this feedforward signal is plotted in Figures 8.28 and 8.29. 
Despite the oscillations in Uff at 208 Hz, there is no significant error visible during pre­
actuation. Nevertheless, the error using robust feedforward is much larger than using nominal 
feedforward, both at x = 0 cm and x = 5 cm. 

This can be explained as follows: for robust stable inversion, the nominal model obtained at 
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Figure 8.26: Enlargements of Figure 8.25 dur­
ing pre-actuation. 
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Figure 8.27: Enlargements of Figure 8.25 dur­
ing constant acceleration (upper plot) and con­
stant velocity (lower plot). As expected, robust 
feedforward has smaller magnitude than nominal 
feedforward. 

x = 0 cm is used for P0 (z) in (6.32) and an overbound is fitted such that P also contains the 
model obtained at x = 5 cm. This is graphically depicted by the empty circle in Figure 8.30. 
The smallest model set containing both measurements, on the other hand, is represented by 
the gray circle. 

Since the empty circle is much larger than the gray circle, it can be concluded that using the 
model obtained from the measurement at x = 0 cm results in an unnecessarily conservative 
robust feedforward filter and hence in poor servo performance. Since the performance is 
optimized for the entire model set instead of the worst case present in this model set, it 
is even more important to minimize the model set P than using a common robust control 
solution. This result does raise the question whether a multiplicative uncertainty model is 
the most suited, or that amore advanced uncertainty model, e.g., as in Wu and Zou (2009) 
is required since robust solutions can only decrease the gain. 

Due to the poor choice of nominal model in this section, it cannot be concluded whether robust 
stable inversion is able to improve servo performance compared to nominal stable inversion 
in the presence of model uncertainty and possible position dependent dynamics. In order to 
assess the performance of robust stable inversion, the experiments have to be performed using 
a different nominal model P0 (z), leading to an overbound wm(z) with smaller magnitude and 
a less conservative model set P. 

8.6 Summary 

In this section, the most important conclusions of the experiments with the NXT-A7 wafer 
stage are summarized: 
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• Stable inversion feedforward results in a smaller transient error and less oscillatory 
behavior than velocity and acceleration feedforward, as shown in Section 8.3. Looking 
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F igure 8 .28: Scaled acceleration (dotted) and 
servo error in x-direction using nomina! (gray) 
and robust (black) stable inversion feedforward. 

Figure 8 .29: Enlargements of Figure 8.28 
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Figure 8.30: Graphical representation of the smallest possible model set P containing both mea­
surements (gray circle) and the model set used in the experiments (empty circle) . This shows why the 
used model set is unnecessary conservative. 

at the P SD plot, it is concluded that stable inversion is able to reduce the high-frequent 
content of the servo error, above the bandwidth of the feedback controller. Nevertheless, 
in order to also get good low-frequent behavior, accurate models are essential. 

• The models obtained by system identification techniques that are designed for feedback 
control do not meet the accuracy requirements at low frequencies imposed by feedfor­
ward control, as is shown in Section 8.2. Adding damping to the outside world proved 
to be an important improvement of the model quality, but further improvements are 
desired. 

• In Section 8.4, it is confirmed that sufficient pre- and post-actuation is required if stable 
inversion feedforward is applied. Choosing Tpre too small leads to a transient error and 
oscillations at the start of the interval, while choosing Tpost too small introduces similar 
effects immediately after the interval. 

• The position dependent behavior of the NXT-A7 is a major issue for feedforward control. 
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This can be seen from the substantial difference in the servo errors during acceleration 
and deceleration at x = 0 cm and x = 5 cm. This shows that either a dedicated 
compensation algorithm or robust feedforward is required. 

• The performance of robust stable inversion depends to a large extent on the nominal 
model that is selected from the model set. A poor choice results in unnecessarily con­
servatism. Further experiments should show whether robust stable inversion can lead 
to improved servo performance of the NXT-A7 wafer stage. 



CHAPTER 9 

Application to the NXT-A 7 Wafer 
Stage: MIMO Simulations 

9.1 Introduction 

Due to the reduced mass reduction and therefore decreased stiffness of future wafer stages, 
the interaction between the various DOFs of a wafer stage is bound to increase. Mass and 
snap feedforward are typically based on the assumption that there is no interaction, while 
the current MIMO FIR filters are only able to compensate for high-frequent cross-talk. In 
theory, stable inversion is able to explicitly account for interaction. This is shown in this 
chapter using simulations with the 2 x 2 model of the NXT-A7 wafer stage introduced in 
Section 7.2.3. Even more than for SISO systems, it appears that a model that accurately 
describes the low-frequent dynamics is a necessity. 

The purpose of this chapter is to demonstrate the difference between SISO and MIMO feed­
forward. Interaction between the DOFs is an issue even if a reference trajectory is defined for 
only one DOF while the other DOFs are supposed to stay at rest. Therefore, the reference 
trajectory of Chapter 8 is used. First, SISO feedforward is discussed, followed by MIMO feed­
forward and the results. All simulations are performed in closed-loop, with 25 Hz diagonal 
PID feedback controllers. 

9.2 SISO Feedforward in the x-direction 

There are two possibilities to compute SISO feedforward: 

• U se stable inversion on Pxx ( z) , i.e., the plant in x-direction. This way, interaction is 
not taken into account. 

• Use stable inversion on the equivalent plant (see Section 7.2.1) in the x-direction, i.e.: 

(9.1) 

This still results in a SISO feedforward signa!, but does take interaction into account. 
Nevertheless, it does not take into account that the output in the y-direction is supposed 
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to stay at zero. Note that the model used in Chapter 8 actually is the equivalent model 
of the x-direction. 

The Bode-diagrams of bath inverse systems are shown in Figure 9.1. Based on visual in­
spection of the Bode-diagrams, it appears that these systems are nearly the same. However, 
they do lead to significantly different results, as will be shown. Bath inverse systems have 
a zero low-frequent slope. Although this is not an accurate description of the real system 
(see Chapter 8), it is still useful to demonstrate the use of MIMO feedforward. Bath SISO 

:::~r ~ 
50 -2 
10 102 

Figure 9.1: Bode-diagram of the inverse of the 
(1 ,1) entry of P(z ) (gray) and of the equivalent 
SISO plant in the x-direction (black). Both Bode­
diagrams nearly coincide. 

feedforward signals are plotted in Figure 9.3, where the black line denotes the feedforward 
signal resulting from inverting the equivalent plant. The stiffness1 manifests itself in the fact 
that Uff(0.58 s < t < 1.17 s) =/- 0 N. Although bath SISO feedforward signals have more or 
less the same shape, the difference is clearly visible. Before looking at the resulting servo 
errors, MIMO feedforward is discussed. 

9.3 MIM O Feedforward 

In Figure 9.2, the Bode-diagram of the inverse 2 x 2 plant P(z) is shown. The multivariable 
zeros of this system are located at z = 0.18, z = 0.50 ± 0.52j (MP) and z = 1.82 and 
z = 1.14 ± l.86j (NMP). At steady state, the magnitude of the inverse system is given 
by: 

p-1( = O) = [-0.528 X 10
4 

W -0.206 X 104 
-0.235 X 104

] 

1.29 X 104 (9.2) 

This shows that the contribution of the off-diagonal entries is significant. A proper inverse 
plant is obtained by shifting according to the procedure described in Lunenburg (2009, Sec­
tion 2.4). Next, MIMO stable inversion is applied, leading to the feedforward signals plotted 

1 Recall from Section 7.2.3 that the used model has low-frequent zero slopes in all entries of P(z), white this 
is not likely in the true system. 

98 



9.4. RESULTS 

~.::1 
200 

• 

~ ~:::[ ~ ~ 100 

50 -2 10-1 100 101 102 103 50 -2 10-1 10° 101 102 103 10 10 

~ ::1 
200 

• • 

/ ~:::[ 
• 

·~ c:f; 100 

50 -2 10-1 10° 10' 102 103 50 -2 10-1 10° 101 102 103 10 10 
f [Hz] f [Hz] 

Figure 9.2: Bode-diagram of the inverse 2 x 2 MIMO plant in the x- and y-direction. 

in Figure 9.3. In the x-direction, the feedforward signal nearly coincides with that of the 
SISO equivalent plant. The shape of the feedforward signal in the y-direction can be mainly 
attributed to the stiffness. However, apart from this contribution feedforward forces up to 
20 N are observed. 

9.4 Results 
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Figure 9.3: Feedforward in x-direction (upper 
plot) and y-direction (lower plot, only containing 
a blue line) using SISO feedforward with the (1,1) 
entry of the plant (red), SISO feedforward with 
the equivalent plant in x-direction (green) and 
MIMO feedforward (blue). The blue and green 
line are hard to distinguish by visual inspection. 
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Figure 9.4: Servo errors in x-direction (upper 
plot) and y-direction (lower plot) using the feed­
forward signals of Figure 9.3. In the y-direction, 
the difference between the red and the blue line 
is maximally 4.1 x 10-8 m. 

The servo errors resulting from the feedforward signals in Figure 9.3 are plotted in Figure 9.4. 
Inverting Pxx(z) leads to the largest servo errors: maxex = 15.3 µmand maxey = 49.6 µm. 
lf the equivalent plant in the x-direction is used instead, the servo error in x-direction is 
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significantly reduced: max ex = 2.22 µm. In y-direction, however, the error is equally large. 
Finally, using MIMO feedforward nearly exact tracking is achieved in both DOFs: max ex = 
3.83 nm and max ey = 1.00 nm. 

Concluding, it is remarked that: 
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• Stable inversion is able to successfully deal with the interaction that is present in MIMO 
systems. 

• Nevertheless, the feedforward signals shown in this chapter are not realistic in practice. 
This is caused by the low-frequent behavior of the model, which has zero slopes up to 
2 Hz. In the real system, the behavior around these frequencies will be different. In 
order to implement MIMO stable inversion in practice, the accuracy of the models at 
low frequencies should be enhanced. 



CHAPTER 10 

Conclusions & Recommendations 

In the near future , lightweight wafer stages are required to avoid infeasible designs for actu­
ators and amplifiers. Furthermore, motion profiles will become increasingly aggressive and 
the wafer size may increase from 300 mm to 450 mm to meet the throughput requirements. 
This asks fora feedforward method that effectively deals with the resonant dynamics of these 
stages. In this thesis, stable inversion feedforward is investigated and implemented on the 
NXT-A7 wafer stage. The conclusions of this research are discussed in the next section, 
followed by recommendations for future research. 

10.1 Con cl usions 

• A non-minimum phase system can only achieve exact tracking of an arbitrary reference 
trajectory if both a suitable feedforward signal and corresponding initial conditions are 
used. Nevertheless, the states of a system cannot be brought from zero to arbitrary 
initial conditions using bounded pre-actuation on a bounded interval while keeping the 
output equal to zero. The resulting servo error depends on the amount of pre-actuation 
and the location of the NMP zeros, and can be made arbitrarily small by using a 
suffi.ciently long pre-actuation interval. This is shown in Chapter 5 using the lifted 
system representation. 

• It is often argued that the inverse of a strictly proper system with relative degree p 

cannot be used as a feedforward controller, since this inverse system is non-proper. In 
case of discrete systems, however, p poles can be added to the inverse system at z = 0 
to make it proper. As a consequence, the reference trajectory has to be delayed by p 

samples before being fed into the feedback loop. This way, the relative degree is no 
longer a restriction on using the inverse system for feedforward control. 

• A system with non-minimum phase zeros results in an unstable inverse. If this is 
implemented straightforwardly as a feedforward filter , an unbounded feedforward signal 
is the result. Using stable inversion (Chapter 6), the inverse system is decomposed into 
a stable and unstable part. Subsequently, boundary conditions for the stable part are 
defined at the start of the interval, while the boundary conditions for the unstable part 
are defined at the end of the interval. The latter can be implemented by computing 
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the solution to the unstable part in reverse time. The resulting feedforward signal is 
bounded. The stable inversion procedure is graphically depicted in Figure 10.1. 

U(z) = Cff(z)R(z) 

Decompose Cff(z) into Cff,s(z) and Cff,u(z) 

U(z) = (Cff,s (z) + Cff,u(z)) R(z) 

Time reversal for R(z) and Cff,u(z) 

Xs,O = Ü 
U8 (z) = Cff,s(z)R(z) 

Xu ,f = (I-Au) - l Bur(kJ) 
Uu(z- 1 ) = Cff,u(z- 1 )R(z- 1 ) 
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Time reversal for Uu(z- 1 ) 

U(z) = U.(z) + Uu(z) 

Figure 10.1: Flow-diagram of stable inversion. 

• Stable inversion feedforward leads to smaller transient errors and reduces high-frequent 
oscillations compared to velocity and acceleration feedforward, see Chapter 8. In the 
frequency domain, it can be seen that stable inversion is able to reduce the high-frequent 
content of the servo error, above the bandwidth of the feedback controller. Nevertheless, 
suflicient pre- and post-actuation is hereto required, otherwise transient errors and 
oscillations are introduced at the start of the move and immediately after the move. 
Furthermore, stable inversion is able to explicitly deal with the interaction between the 
various DOFs of the plant, as shown in Chapter 9. 

• The system identification procedure for feedback control is not sufliciently accurate for 
feedforward control, since the variance at low frequencies is too large. This manifests 
itself, e.g., in the fact that the low-frequent damping is not present in the models 
obtained by system identification. (see Sections 7.2.2 and 8.2). In this research, the low­
frequent damping has been experimentally determined at different constant velocities 
and added a posteriori. In case of MIMO systems, such a modification is much more 
diflicult and it is even more important to have a suitable identification method. 

• The position dependent behavior of the NXT-A7 wafer stage has a significant impact 
on performance of the wafer stage: there is a substantial difference between accelerating 
and decelerating at x = 0 cm and x = 5 cm. During the experiments, the compensations 
algorithms for these phenomena were disabled. From experiments with robust stable 
inversion to address the position dependency, it can be concluded that using a suitable 
nominal model is essential to avoid unnecessary conservatism, keeping in mind that a 
robust solution can only decrease the gain. Since the nominal model used in Section 8.5 
proved to be a poor choice, no definitive conclusion on robust stable inversion can be 
drawn. 



10.2. RECOMMENDATIONS FOR FUTURE RESEARCH 

10.2 Recommendations for Future Research 

Along with these conclusions, a number of recommendations for further research include: 

• investigation of feedforward control relevant system identification. An accurate model of 
the system to be controlled is essential for inversion-based feedforward, especially since 
tuning of advanced feedforward is more difficult than tuning of restricted complexity 
feedforward, since more parameters are involved. Nevertheless, during the experiments 
on the NXT-A7 wafer stage (Chapter 8), it appeared that the models obtained by system 
identification techniques for feedback control (Oomen, 2010; Quist, 2010; Van Herpen, 
2009b), were not sufficiently accurate at low frequencies, even though a low-bandwidth 
feedback controller had been used during the identification experiments. It seems that 
lower order reference trajectories (second or third order) in combination with a fixed 
structure model are more suited to measure the low-frequent characteristics. The higher 
order dynamics can subsequently be identified by methods that are similar to feedback 
control relevant identification. Alternatively, Machine-In-the-Loop tuning could be used 
to tune the feedforward parameters online. Both approaches, however, require further 
research. 

• further investigation of feedforward control and model uncertainty. The performance 
of robust stable inversion on the NXT-A7 wafer stage was not satisfactory. This can 
partly be attributed to the fact that the uncertainty was relatively large due to the 
position dependency of the system. However, the robust feedforward signal had a smaller 
amplitude than the nomina! signal, while, looking at the FRFs, a larger amplitude 
was required. Since robust feedforward solutions generally lead to a decrease of the 
magnitude of Cff(z), it should be investigated how to choose a suitable nomina! model 
and how to define the corresponding uncertainty model. Position dependency might 
also be dealt with by other means than robustness, which has not been addressed in 
this thesis. 

• online implementation of stable inversion. The feedforward signals throughout this the­
sis are all computed offline. In practice, however, it is desirable to be able to implement 
a feedforward filter online. How to implement stable inversion online remains subject 
to further research, in particular how to choose pre- and post-actuation intervals and 
how to discard the need for the batch-wise computation of the feedforward signal. 

• a joint feedforward/input shaping approach. Throughout this thesis, it has been as­
sumed that the reference trajectory is designed without taking the plant dynamics into 
account. In Section 5.2, it is shown that non-minimum phase systems cannot track 
arbitrary reference trajectories which possess components in the direction of any NMP 
zeros. However, by using knowledge of the plant dynamics, these components can be 
filtered out of the reference trajectory. The absence of these components in the reference 
trajectory can subsequently be taken into account in the design of the feedforward filter, 
potentially enabling the possibility to achieve exact tracking with a causal feedforward 
filter. 
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APPENDIX A 

N umerical Integration 

The aim of feedforward is to improve tracking of a certain reference signal. In this appendix, 
the design of a reference trajectory and, more specifi.cally, digital implementation is addressed. 
First, it is shown how numerical integration is commonly performed (Section A.l) and why 
this method does not give satisfactory results. Thereafter, an alternative solution is presented 
in Section A.2. 

A.1 Commonly Used Methods 

In a trajectory planning algorithm (Lambrechts et al. , 2005), switching times are calculated 
such that the highest bounded derivative of r(t) is a block-shaped signal. This is subsequently 
integrated until r(t) appears. In Lambrechts et al. (2005) the importance of implementation 
aspects is recognized. Therefore, the switching times that are originally calculated are modi­
fied so that they match sampling instants. Subsequently, numerical integration is carried out 
by putting a number of Euler integrators in series1 . A forward (explicit) Euler integrator is 
given by the transfer function: 

Ts 
z-1 

while a backward (implicit) Euler integrator can be written as: 

zT5 

z -1 

(A.l) 

(A.2) 

Putting discrete integrators in series results in signals that are not synchronized correctly. lt 
is therefore proposed to a posteriori utilize (subsample) delays to synchronize r(t) and its 
derivatives. A delay of ½ T5 can be approximated by averaging the values of the current and 
previous sample (Van Donkelaar, 2003). The following example shows why subsample delays 
are required if backward Euler integrators are put in series: 

Example A.1 Consider a simple mass with continuous time transfer function Pc(s) = m
1
s 2 . 

Furthermore, a trajectory planning algorithm calculates a desired acceleration ra ( t) which 
is integrated twice to obtain the desired position, i.e., r(t) = JJ ra(t)dtdt. IJ f eedforward 

1 In (Lambrechts et a l. , 2005) forward Euler integrators are described white in the MATLAB toolbox the 
command cumsum is implemented, which implies a backward Euler integrator. 
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was implemented in continuous time, exact tracking could be obtained by using the desired 
acceleration as input for a simple gain m. In the Laplace domain, the output would then be 
given by: 

1 
Y(s) = -

2 
mR(s)s2 = R(s) 

ms 
(A.3) 

However, this is commonly implemented in discrete time, so what would this look like in 
that case? Including the ZOH and the sampler, the discrete time transfer function is given 

by Pd(z) = ~ z2~i;+I where T8 denotes the sampling frequency. Furthermore, the trajec­
tory planner now calculates a discrete desired acceleration ra ( k) which has to be numerically 
integrated twice to obtain r(k). Using two backward Euler integrators in series, r(k) becomes: 

( 
zT )

2 
z

2T 2 
r(k) = __ s ra(k) = 

2 
8 ra(k) 

z - 1 z - 2z + 1 
(A.4) 

Using: 
(A.5) 

the output becomes: 

Y(z) = Pd(z )mRa(z ) = T; z + 1 m z
2 

-
2

z + 1 R(z ) = z + 1 R(z) (A.6) 
2m z2 - 2z + 1 z2T; 2z2 

which implies that output y(k + 2) equals ½ (r(k + 1) + r(k)) which is the average of the past 
two samples. 

This example shows that putting multiple Euler integrators in series does not lead to accurate 
results. Using slightly more advanced numerical integration algorithms such as the trapezoid 
rule (Heath, 2002) yields better results for the second integration step, but also fails for third 
or fourth order reference trajectories. An alternative is presented in the next section. 

A.2 An Alternative Numerical Integration Method 

The discrete system Pd(z) in Example A.l is obtained by viewing the continuous time system 
Pc(s) in combination with a ZOH and a sampler, see Figure A.l. 

1------------------------------1 

u(k) i ►I ZOH Pc(s) 1 y(t) ► I Sampler 11------,---Y_(k-~ 

Figure A.1: Digital representation of a dynamica! system. 

Similarly, a backward Euler integrator can be viewed as a continuous time integrator with a 
ZOH and a sampler. In Lunenburg (2009) it is shown that a double continuous integrator 
including ZOH and sampler does not equal two separate continuous integrators including ZOH 
and sampler in series (see Figure A.2). Therefore, it is suggested to integrate the reference 
signals in a similar way, see Figure A.3. If, e.g., a fourth order reference trajectory is designed, 
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d2 r( t) ----;Jft-'- 1 - - - - - - - - - - - - - - - - - - - - - - - 1 r(t) 
ZOH ~ Sampler 

# 
1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 r(t) 

ZOH ! Sampler ZOH ! Sampler 
1 ______________________________________________ ! 

Figure A.2: A double continuous integrator including ZOH and sampler does not equal two separate 
continuous integrators including ZOH and sampler in series. 

,------------------------------1 
dnr(t) 1 1 (t) 

_d_t_n~:-il .. ~1~_z_o_H_~f----il .. ~ ~l __ s_~-~f-----i".il Sampler 1 1 r .. 

Figure A.3: Block representation of alternative numerical integration method. 

s(k) is a block shaped signal. Subsequently, j(k), a(k), v(k) and r(k) have to be computed 
directly from s(k). Hereto, (A.7)- (A.10) can be used. 

1 1 
- --+ Ts--
s z - I 
1 T5

2 z + I 
---+-----
s2 2 z2 - 2z + 1 

1 T'f z2 + 4z + 1 
---+--------
s3 6 z3 - 3z2 + 3z - 1 

1 T; z3 + llz2 + llz + 1 
- --+ ----------
s4 24 z4 - 4z3 + 6z3 - 4z + 1 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

Remark A.1 Note that care has to be taken in implementing the transfer functions (A.7) ­

(A.10), since very small sealing factors are involved, e.g., ~ = 6.7 x 10- 17 with f s = 5 kHz. 
The best results are obtained when unscaled trajectories are calculated which are a posteri­
ori scaled. As an example, ij a snap profile is available, the position can be computed by: 

x = Ts-4/24*lsim(tf ( [1 11 11 1], [1 -4 6 -4 1], Ts), snap) rather than putting ~ in­
side the transfer function. 

A second possibility is to rewrite (A.7) - (A.10) into state-space systems, resulting in the ma-
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trices: 

1 Ts 
T2 T3 T4 

0 ::..IL ::..IL ::..IL 
2 62 21 

0 1 Ts 'L_ 'L_ 0 
2 62 A= 0 0 1 Ts 'L_ B= 0 

2 
0 0 0 1 Ts 0 

(A.lla) 

0 0 0 0 0 1 

1 Ts 
T2 T 3 T4 

0 ::..IL ::..IL ::..IL 
2 62 21 

0 1 Ts 'L_ 'L_ 0 
2 62 C= 0 0 1 Ts 'L_ D= 0 

2 
0 0 0 1 Ts 0 

(A.llb) 

0 0 0 0 0 1 

The outputs of this system represent the fourth , third, second and first integral of the input 
(the final output is only direct feedthrough, hence equals the input). This has implications 
for the result in bath the time and the frequency domain, which is discussed next. 

A.2.1 Time Domain 

To illustrate the difference between the original and the alternative integration methods, a 
typical second order reference trajectory is designed. It appears that the alternative inte­
gration method results in a velocity and position that exactly coincide with the analytica! 
solution. In Figure A.4, it is shown that Euler and trapezoidal integration yield different re­
sults. The velocity profile resulting from Euler integration advances the analytica! solution by 
one sample, but the shape coincides. The shape of the velocity using trapezoidal integration, 
on the other hand, is slightly different. 

Looking at the position, it appears that all three shapes are approximately equal, but using 
Euler integration there is a 1.5 sample advance and using trapezoidal integration this is 0.5 
sample. Had integration been performed using fourth order profiles, the differences would 
have been even larger. 

A.2.2 Frequency Domain 

Next to the time domain advantages described in the previous section integrating according 
to (A.7)- (A.10) has another benefit. If the ZOH and sampler introduce additional zeros (see 
Section 3.5), these are typically located at the negative real axis (Áström et al. , 1984). If a 
zero at z ~ - l is inverted, this may result in a feedforward signal Uff which oscillates at the 
Nyquist frequency. However, looking at the Bode diagrams in Figure A.5, it becomes evident 
that this oscillation is excited much less by the trajectory computed by integrating according 
to (A.10). 
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t :1-1--~ 
0 5 10 15 20 

!:[1 • ':: 
0 5 10 15 20 

Figure A.4: Acceleration (upper), velocity 
(middle) and position (bottom) using Euler in­
tegration (gray, solid) , trapezoidal integration 
(grey, dash-dotted) and alternative integration 
method (black). 

Figure A.5: Bode-diagram of 4 backward Eu­
ler integrators in series (gray) and 4 continuous 
integrators with one ZOH and sampler (black). 
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APPENDIX B 

lnterpreting the Singular Values 
and Vectors 

Although the lifted system representation is increasingly used, there is in general little at­
tention for the meaning of the singular values and singular vectors. However, when the 
generalized inverse (Ben-lsrael and Greville, 1974) is calculated, these are important, since a 
number of singular directions is essentially discarded from the inverse. To gain more insight 
into what is actually removed, the interpretation of the singular values and singular vectors 
is investigated in this appendix. First, unstable poles and zeros are discussed, followed by the 
remaining singular vectors. 

B.1 Unstable poles and zeros 

In Hashemi and Hammond (1996); Lunenburg (2009), it is shown empirically that the singu­
lar values corresponding to unstable zeros are very small compared to the other 'clustered' 
singular values, but a mathematical explanation is lacking. In Dijkstra (2003) use is made of 
the notion that a zero implies that there exists some initial condition xo and a nonzero input 
signal uo for which the output is identically zero, i.e.: 

y = Juo + Joxo 

The corresponding singular value is then given by: 

(J) = IIJoxoll 
ao lluoll 

(B.l) 

(B.2) 

According to Skogestad and Postlethwaite (2005) uo is increasing exponentially, which im­
plies: 

lim lluoll = 00 
N->oo 

(B.3) 

and hence: 
. . IIJoxoll 

hm ao(J) = hm Il Il = 0 
N ->oo N ->oo Uo 

(B.4) 

This result is confirmed by Hashemi and Hammond (1996), where the converse is also shown: 
unstable poles in a system lead to singular values of the corresponding impulse response matrix 
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which are several orders of magnitude larger than the 'clustered' singular values. Again, this 
reference lacks a mathematica! proof, but using similar reasoning it can be argued that: 

(B.5) 

and 
lim llunll = 0 

N--+oo 
(B.6) 

which implies: 
. . IIJoxoll 

hm Cin(J) = hm Il Il N --+oo N ->oo Un 
= 00 (B.7) 

B.2 Singular Vectors 

In the previous section it is shown that the singular vectors corresponding to unstable poles 
and zeros are exponentially increasing or decreasing vectors. Still, it is not clear what the 
remaining singular values and vectors represent. First, the singular value decomposition is 
viewed in more detail. The matrices U, ~ and V resulting from the singular value decompo­
sition J = U~VT can be computed by using: 

U = eigenvectors of J JT 

~ = J diag ( eig (J JT)) 

V = eigenvectors of JT J 

(B.8) 

Since J is Toeplitz, JT J equals J JT transposed along the anti-diagonal. This implies that 
the eigenvalues and eigenvectors of JT J and J JT are equal but in reverse time (Dijkstra, 
2003): 

(B.9) 

A few input singular vectors from the convolution matrix of the NMP flexible cart system 
(Section 6.4) are plotted in Figure B.2. In this figure, it can be seen that the singular vectors 
represent harmonie oscillations with a specific frequency. To develop insight in the meaning 
of these singular vectors, the dominant frequency of the oscillations is determined for all 
singular vectors. Since every singular vector corresponds toa specific singular value, it is now 
possible to assign the singular values to a certain frequency. The result of this is plotted in 
Figure B.3: it appears that this resembles the Bode-magnitude diagram of the system. lf 
multiple frequencies have a substantial contribution to one singular vector, this means that 
the magnitude of the transfer function is equal at these frequencies. 

Remark B.1 Note that the singular vector corresponding to the smallest singular value, i.e., 
the singular value related to the NMP zero, is not an oscillation but an exponentially increasing 
vector ( see Figure B.1). Therefore, it is omitted from Figure B. 3. 

A formal derivation of these observations can be found in Dijkstra (2003). In this reference, 
the derivation is based on the limit case with infinitely large J. Choosing a truncated J leads 
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B.2. SINGULAR VECTORS 
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k 

Figure B.1: Singular vector corresponding to 
the NMP zero of the flexible cart system plotted 
on a logarithmic scale. 

Figure B.2: Fifth, twentieth, fortieth and sixti­
eth column of V. 

toa larger difference between the magnitude of the singular values and the magnitude of the 
frequency response function (FRF). This can be explained by the fact that the FRF is not 
properly defined for finite time. In case J is the impulse response matrix of a stable system, 
one could look at the length of the impulse response to obtain an estimate of the size of J 
necessary to give a reasonable estimate of the FRF. 

-50t==::::J ~ -100 . . . . 

-150 ~ - ~ ----- ~ --- - -~ 
1~ 1~ 1~ 

Figure B.3: Bode-diagram of the NMP system 
(black, solid) and singular values of the impulse 
response matrix (gray, crosses) . 

With this knowledge, it becomes clear what is discarded by using the pseudo-inverse. Remov­
ing the small singular values corresponding to the NMP zeros implies removing exponentially 
increasing ( hence unstable) components from the feedforward signal Uff. Besides t he NMP 
behavior, discarding small singular values in calculating the pseudo-inverse implies that cer­
tain frequencies that may be present in the reference signal r, will not be present in the 
feedforward signal Uff. 
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APPENDIX C 

FIR Filters 

C.1 Properties of FIR Filters 

A Finite lmpulse Response (FIR) filter is a discrete-time filter which owes its name to the fact 
that its impulse response settles to zero in a fini te number of sample intervals. The number of 
samples before the output settles to zero depends on the order of the FIR filter. The transfer 
function of a FIR filter is given by: 

n 

HFm = L fiz-i 
i=O 

(C.1) 

where n denotes the order of the FIR filter and f i are the filter coefficients. Basically, it can 
be seen as a transfer function with all its poles located at z = 0. This means that the output 
of a FIR filter is given by: 

y(k + n) = fou(k + n) + fiu(k + n - 1) + hu(k + n - 2) + ... + fnu(k) (C.2) 

This shows that if the input of the FIR filter is bounded, the output is also bounded. A 
schematic representation of a third order FIR filter is shown in Figure C.l. The output of an 
Infinite lmpulse Response (IIR) filter, on the other hand, not only depends on the past and 
present inputs, but also on the past outputs, meaning that not all poles are located at z = 0. 
Hence, if one or more poles are outside the unit disc, the IIR filter becomes unstable. 

u 
-------------------------------1 
i f--.-----1~ r----.---.t i 

1 

1 

1 

1 L..--------..< }------.t }------+! ly 
1 _______________________________ ! 

Figure C.1: Schematic representation of a third order FIR filter 
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C.2 A State-Space Representation 

A nnth-order FIR filter can also be written in a state-space representation: 

x (k + 1) = Ax(k) + Bu(k) 
(C.3) 

y(k) = Cx(k) + Du(k) 

with: 

0 1 0 0 0 
0 0 0 0 0 

A= B= 

0 0 0 1 0 
0 0 0 0 1 

C = [fn f n-1 h fi] D = [Jo] 

This confirms that all poles are located in z = 0, since the eigenvalues of A are zero. Note that 
a state-space representation is not unique, so other representations are possible as well. 

C.3 Interpretation of FIR Filter coefficients 

In Hennekens (2009) it is shown how FIR filter coefficients can be represented as gains of time 
derivatives of the input signal. Take, e.g., a feedforward filter: 

Then, it can be shown that this can be represented as a FIR filter with coefficients: 

(C.4) 

(C.5) 

(C.6) 

(C.7) 

(C.8) 

(C.9) 

FIR filters are inherently stable, which an advantageous property. Nevertheless, ( complex) 
poles are very hard to approximate using FIR filters. This is serious drawback, since it 
requires large order FIR filters which are difficult to implement in realtime. 
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