273 research outputs found

    Energy harvesting AF relaying in the presence of interference and Nakagami-m fading

    Get PDF
    Energy-harvesting relaying is a promising solution to the extra energy requirement at the relay. It can transfer energy from the source to the relay. This will encourage more idle nodes to be involved in relaying. In this paper, the outage probability and the throughput of an amplify-and-forward relaying system using energy harvesting are analyzed. Both time switching and power-splitting harvesting schemes are considered. The analysis takes into account both the Nakagami-mm fading caused by signal propagation and the interference caused by other transmitters. Numerical results show that time switching is more sensitive to system parameters than power splitting. Also, the system performance is more sensitive to the transmission rate requirement, the signal-to-interference-plus-noise ratio in the first hop and the relaying method

    Outage probability analysis for hybrid TSR-PSR based SWIPT systems over log-normal fading channels

    Get PDF
    Employing simultaneous information and power transfer (SWIPT) technology in cooperative relaying networks has drawn considerable attention from the research community. We can find several studies that focus on Rayleigh and Nakagami-m fading channels, which are used to model outdoor scenarios. Differing itself from several existing studies, this study is conducted in the context of indoor scenario modelled by log-normal fading channels. Specifically, we investigate a so-called hybrid time switching relaying (TSR)-power splitting relaying (PSR) protocol in an energy-constrained cooperative amplify-and-forward (AF) relaying network. We evaluate the system performance with outage probability (OP) by analytically expressing and simulating it with Monte Carlo method. The impact of power-splitting (PS), time-switching (TS) and signal-to-noise ratio (SNR) on the OP was as well investigated. Subsequently, the system performance of TSR, PSR and hybrid TSR-PSR schemes were compared. The simulation results are relatively accurate because they align well with the theory

    Outage Analysis of Energy Harvested Relay-Aided Device-to-Device Communications in Nakagami Channel

    Get PDF
    In this paper, we obtain a low-complexity closed-form formula for the outage probability of the energy-harvested decode-and-forward (DF) relay-aided underlay Device-to-device (D2D) communications in Nakagami fading channel. By proposing a new idea which finds the power splitting factor in simultaneous wireless information and power transfer (SWIPT) energy-harvesting system such that the transmit power of the relay node in the second time slot is fixed in a pre-defined value, the obtained closed-form expression is valid for both energy-harvested and non-energy-harvested scenarios. This formula is based on n-point generalized Gauss-Laguerre and m-point Gauss-Legendre solutions. It is shown that n is more effective than m for reducing the formula complexity. In addition to a good agreement between the simulation results and numerical analysis based on normalized mean square error (NMSE), it is indicated that (n, m)=(1, 4) and (n, m)=(1, 2) are the appropriate choices, respectively for 0.5≤ µ <0.7 and µ ≥0.7, where µ is the fading factor. As shown in this investigation, increasing the average distance between D2D pairs and cellular user (lower interference), is the reason for decreasing the outage probability. Furthermore, it is clear that increasing the Nakagami fading factor is the reason for decreasing the outage probability

    Multi-points cooperative relay in NOMA system with N-1 DF relaying nodes in HD/FD mode for N user equipments with energy harvesting

    Get PDF
    Non-Orthogonal Multiple Access (NOMA) is the key technology promised to be applied in next-generation networks in the near future. In this study, we propose a multi-points cooperative relay (MPCR) NOMA model instead of just using a relay as in previous studies. Based on the channel state information (CSI), the base station (BS) selects a closest user equipment (UE) and sends a superposed signal to this UE as a first relay node. We have assumed that there are N UEs in the network and the N-th UE, which is farthest from BS, has the poorest quality signal transmitted from the BS compared the other UEs. The N-th UE received a forwarded signal from N - 1 relaying nodes that are the UEs with better signal quality. At the i-th relaying node, it detects its own symbol by using successive interference cancellation (SIC) and will forward the superimposed signal to the next closest user, namely the (i + 1)-th UE, and include an excess power which will use for energy harvesting (EH) intention at the next UE. By these, the farthest UE in network can be significantly improved. In addition, closed-form expressions of outage probability for users over both the Rayleigh and Nakagami-m fading channels are also presented. Analysis and simulation results performed by Matlab software, which are presented accurately and clearly, show that the effectiveness of our proposed model and this model will be consistent with the multi-access wireless network in the future.Web of Science82art. no. 16

    Outage Performance of Generalized Cooperative NOMA Systems with SWIPT in Nakagami-m Fading

    Get PDF
    This paper investigates cooperative non-orthogonal multiple access (NOMA) with simultaneous wireless informationand power transfer (SWIPT) radio networks. A decode-andforward relay deserves a base station to transmit informationto two users. Two access schemes are addressed: direct andrelay assisted transmission (DRAT) where a line-of-sight existsbetween the source and destination, and non-direct and relayassisted transmission (nDRAT) where the only access to the finalusers is through the relay. New closed-form expressions of outageprobability are derived at these schemes. A generalization usingNakagami-m fading channels in considered, in order to present acomplete cover of relayed NOMA systems with energy harvestingbehavior in small scale fading.We consider the impact of time splitting fraction, power allocation and channel parameters on system maintainability andevaluate its maximum data rate transmission with full autonomy.By comparing the two schemes, cooperative NOMA with energyharvesting (EH) in nDRAT scenario outperforms transmissionwith direct link in terms of outage probability and transmissiondata rate

    Outage performance of underlay cognitive radio networks over mix fading environment

    Get PDF
    In this paper, the underlay cognitive radio network over mix fading environment is presented and investigated. A cooperative cognitive system with a secondary source node S, a secondary destination node D, secondary relay node Relay, and a primary node P are considered. In this model system, we consider the mix fading environment in two scenarios as Rayleigh/Nakagami-m and Nakagami-m/Rayleigh Fading channels. For system performance analysis, the closed-form expression of the system outage probability (OP) and the integral-formed expression of the ergodic capacity (EC) are derived in connection with the system's primary parameters. Finally, we proposed the Monte Carlo simulation for convincing the correctness of the system performance

    Performance analysis for power-splitting energy harvesting based two-way full-duplex relaying network over nakagami-m fading channel

    Get PDF
    Energy harvesting relay network is considered as the promising solution for a wireless communication network in our time. In this research, we present and demonstrate the system performance of the energy harvesting based two-way full-duplex relaying network over Nakagami-m fading environment. Firstly, we propose the analytical expressions of the achievable throughput and outage probability of the proposed system. In the second step, the effect of various system parameters on the system performance is presented and investigated. In the final step, the analytical results are also demonstrated by Monte-Carlo simulation. The numerical results demonstrated and convinced the analytical and the simulation results are agreed with each other
    corecore