23 research outputs found

    Discrete interferences optimum beamformer in correlated signal and interfering noise

    Get PDF
    This paper introduces a significant special situation where the noise is a collection of D-plane interference signals and the correlated noise of D+1 is less than the number of array components. An optimal beamforming processor based on the minimum variance distortionless response (MVDR) generates and combines appropriate statistics for the D+1 model. Instead of the original space of the N-dimensional problem, the interference signal subspace is reduced to D+1. Typical antenna arrays in many modern communication networks absorb waves generated from multiple point sources. An analytical formula was derived to improve the signal to interference and noise ratio (SINR) obtained from the steering errors of the two beamformers. The proposed MVDR processor-based beamforming does not enforce general constraints. Therefore, it can also be used in systems where the steering vector is compromised by gain. Simulation results show that the output of the proposed beamformer based on the MVDR processor is usually close to the ideal state within a wide range of signal-to-noise ratio and signal-to-interference ratio. The MVDR processor-based beamformer has been experimentally evaluated. The proposed processor-based MVDR system significantly improves performance for large interference white noise ratio (INR) in the sidelobe region and provide an appropriate beam pattern

    Adaptive Illumination Patterns for Radar Applications

    Get PDF
    The fundamental goal of Fully Adaptive Radar (FAR) involves full exploitation of the joint, synergistic adaptivity of the radar\u27s transmitter and receiver. Little work has been done to exploit the joint space time Degrees-of-Freedom (DOF) available via an Active Electronically Steered Array (AESA) during the radar\u27s transmit illumination cycle. This research introduces Adaptive Illumination Patterns (AIP) as a means for exploiting this previously untapped transmit DOF. This research investigates ways to mitigate clutter interference effects by adapting the illumination pattern on transmit. Two types of illumination pattern adaptivity were explored, termed Space Time Illumination Patterns (STIP) and Scene Adaptive Illumination Patterns (SAIP). Using clairvoyant knowledge, STIP demonstrates the ability to remove sidelobe clutter at user specified Doppler frequencies, resulting in optimum receiver performance using a non-adaptive receive processor. Using available database knowledge, SAIP demonstrated the ability to reduce training data heterogeneity in dense target environments, thereby greatly improving the minimum discernable velocity achieved through STAP processing

    Airborne Radar Interference Suppression Using Adaptive Three-Dimensional Techniques

    Get PDF
    This research advances adaptive interference suppression techniques for airborne radar, addressing the problem of target detection within severe interference environments characterized by high ground clutter levels, levels, noise jammer infiltration, and strong discrete interferers. Two-dimensional (2D) Space-Time Adaptive Processing (STAP) concepts are extended into three-dimensions (3D) by casting each major 2D STAP research area into a 3D framework. The work first develops an appropriate 3D data model with provisions for range ambiguous clutter returns. Adaptive 3D development begins with two factored approaches, 3D Factored Time-Space (3D-FTS) and Elevation-Joint Domain Localized (Elev-JDL). The 3D adaptive development continues with optimal techniques, i.e., joint domain methods. First, the 3D matched Filter (3D-MF) is derived followed by a 3D Adaptive Matched Filter (3D-AMF) discussion focusing on well-established practical limitations consistent with the 2D case. Finally, a 3D-JDL method is introduced. Proposed 3D Hybrid methods extend current state-of-the-art 2D hybrid methods. The initial 3D hybrid, a functional extension of the 2D technique, exhibits distinct performance advantages in heterogeneous clutter. The final 3D hybrid method is virtually impervious to discrete interference

    Aperture-Level Simultaneous Transmit and Receive (STAR) with Digital Phased Arrays

    Get PDF
    In the signal processing community, it has long been assumed that transmitting and receiving useful signals at the same time in the same frequency band at the same physical location was impossible. A number of insights in antenna design, analog hardware, and digital signal processing have allowed researchers to achieve simultaneous transmit and receive (STAR) capability, sometimes also referred to as in-band full-duplex (IBFD). All STAR systems must mitigate the interference in the receive channel caused by the signals emitted by the system. This poses a significant challenge because of the immense disparity in the power of the transmitted and received signals. As an analogy, imagine a person that wanted to be able to hear a whisper from across the room while screaming at the top of their lungs. The sound of their own voice would completely drown out the whisper. Approaches to increasing the isolation between the transmit and receive channels of a system attempt to successively reduce the magnitude of the transmitted interference at various points in the received signal processing chain. Many researchers believe that STAR cannot be achieved practically without some combination of modified antennas, analog self-interference cancellation hardware, digital adaptive beamforming, and digital self-interference cancellation. The aperture-level simultaneous transmit and receive (ALSTAR) paradigm confronts that assumption by creating isolation between transmit and receive subarrays in a phased array using only digital adaptive transmit and receive beamforming and digital self-interference cancellation. This dissertation explores the boundaries of performance for the ALSTAR architecture both in terms of isolation and in terms of spatial imaging resolution. It also makes significant strides towards practical ALSTAR implementation by determining the performance capabilities and computational costs of an adaptive beamforming and self-interference cancellation implementation inspired by the mathematical structure of the isolation performance limits and designed for real-time operation

    Efficient Robust Adaptive Beamforming Algorithms for Sensor Arrays

    Get PDF
    Sensor array processing techniques have been an important research area in recent years. By using a sensor array of a certain configuration, we can improve the parameter estimation accuracy from the observation data in the presence of interference and noise. In this thesis, we focus on sensor array processing techniques that use antenna arrays for beamforming, which is the key task in wireless communications, radar and sonar systems. Firstly, we propose a low-complexity robust adaptive beamforming (RAB) technique which estimates the steering vector using a Low-Complexity Shrinkage-Based Mismatch Estimation (LOCSME) algorithm. The proposed LOCSME algorithm estimates the covariance matrix of the input data and the interference-plus-noise covariance (INC) matrix by using the Oracle Approximating Shrinkage (OAS) method. Secondly, we present cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. The proposed algorithms are based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer. Thirdly, we propose distributed beamforming techniques that are based on wireless relay systems. Algorithms that combine relay selections and SINR maximization or Minimum Mean-Square- Error (MMSE) consensus are developed, assuming the relay systems are under total relay transmit power constraint. Lastly, we look into the research area of robust distributed beamforming (RDB) and develop a novel RDB approach based on the exploitation of the cross-correlation between the received data at the relays and the destination and a subspace projection method to estimate the channel errors, namely, the cross-correlation and subspace projection (CCSP) RDB technique, which efficiently maximizes the output SINR and minimizes the channel errors. Simulation results show that the proposed techniques outperform existing techniques in various performance metrics

    Adaptive radar detection in the presence of textured and discrete interference

    Get PDF
    Under a number of practical operating scenarios, traditional moving target indicator (MTI) systems inadequately suppress ground clutter in airborne radar systems. Due to the moving platform, the clutter gains a nonzero relative velocity and spreads the power across Doppler frequencies. This obfuscates slow-moving targets of interest near the "direct current" component of the spectrum. In response, space-time adaptive processing (STAP) techniques have been developed that simultaneously operate in the space and time dimensions for effective clutter cancellation. STAP algorithms commonly operate under the assumption of homogeneous clutter, where the returns are described by complex, white Gaussian distributions. Empirical evidence shows that this assumption is invalid for many radar systems of interest, including high-resolution radar and radars operating at low grazing angles. We are interested in these heterogeneous cases, i.e., cases when the Gaussian model no longer suffices. Hence, the development of reliable STAP algorithms for real systems depends on the accuracy of the heterogeneous clutter models. The clutter of interest in this work includes heterogeneous texture clutter and point clutter. We have developed a cell-based clutter model (CCM) that provides simple, yet faithful means to simulate clutter scenarios for algorithm testing. The scene generated by the CMM can be tuned with two parameters, essentially describing the spikiness of the clutter scene. In one extreme, the texture resembles point clutter, generating strong returns from localized range-azimuth bins. On the other hand, our model can also simulate a flat, homogeneous environment. We prove the importance of model-based STAP techniques, namely knowledge-aided parametric covariance estimation (KAPE), in filtering a gamut of heterogeneous texture scenes. We demonstrate that the efficacy of KAPE does not diminish in the presence of typical spiky clutter. Computational complexities and susceptibility to modeling errors prohibit the use of KAPE in real systems. The computational complexity is a major concern, as the standard KAPE algorithm requires the inversion of an MNxMN matrix for each range bin, where M and N are the number of array elements and the number of pulses of the radar system, respectively. We developed a Gram Schmidt (GS) KAPE method that circumvents the need of a direct inversion and reduces the number of required power estimates. Another unavoidable concern is the performance degradations arising from uncalibrated array errors. This problem is exacerbated in KAPE, as it is a model-based technique; mismatched element amplitudes and phase errors amount to a modeling mismatch. We have developed the power-ridge aligning (PRA) calibration technique, a novel iterative gradient descent algorithm that outperforms current methods. We demonstrate the vast improvements attained using a combination of GS KAPE and PRA over the standard KAPE algorithm under various clutter scenarios in the presence of array errors.Ph.D

    A survey on hybrid beamforming techniques in 5G : architecture and system model perspectives

    Get PDF
    The increasing wireless data traffic demands have driven the need to explore suitable spectrum regions for meeting the projected requirements. In the light of this, millimeter wave (mmWave) communication has received considerable attention from the research community. Typically, in fifth generation (5G) wireless networks, mmWave massive multiple-input multiple-output (MIMO) communications is realized by the hybrid transceivers which combine high dimensional analog phase shifters and power amplifiers with lower-dimensional digital signal processing units. This hybrid beamforming design reduces the cost and power consumption which is aligned with an energy-efficient design vision of 5G. In this paper, we track the progress in hybrid beamforming for massive MIMO communications in the context of system models of the hybrid transceivers' structures, the digital and analog beamforming matrices with the possible antenna configuration scenarios and the hybrid beamforming in heterogeneous wireless networks. We extend the scope of the discussion by including resource management issues in hybrid beamforming. We explore the suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, and identify the exciting future challenges in this domain

    Radar Signal Processing for Interference Mitigation

    Get PDF
    It is necessary for radars to suppress interferences to near the noise level to achieve the best performance in target detection and measurements. In this dissertation work, innovative signal processing approaches are proposed to effectively mitigate two of the most common types of interferences: jammers and clutter. Two types of radar systems are considered for developing new signal processing algorithms: phased-array radar and multiple-input multiple-output (MIMO) radar. For phased-array radar, an innovative target-clutter feature-based recognition approach termed as Beam-Doppler Image Feature Recognition (BDIFR) is proposed to detect moving targets in inhomogeneous clutter. Moreover, a new ground moving target detection algorithm is proposed for airborne radar. The essence of this algorithm is to compensate for the ground clutter Doppler shift caused by the moving platform and then to cancel the Doppler-compensated clutter using MTI filters that are commonly used in ground-based radar systems. Without the need of clutter estimation, the new algorithms outperform the conventional Space-Time Adaptive Processing (STAP) algorithm in ground moving target detection in inhomogeneous clutter. For MIMO radar, a time-efficient reduced-dimensional clutter suppression algorithm termed as Reduced-dimension Space-time Adaptive Processing (RSTAP) is proposed to minimize the number of the training samples required for clutter estimation. To deal with highly heterogeneous clutter more effectively, we also proposed a robust deterministic STAP algorithm operating on snapshot-to-snapshot basis. For cancelling jammers in the radar mainlobe direction, an innovative jamming elimination approach is proposed based on coherent MIMO radar adaptive beamforming. When combined with mutual information (MI) based cognitive radar transmit waveform design, this new approach can be used to enable spectrum sharing effectively between radar and wireless communication systems. The proposed interference mitigation approaches are validated by carrying out simulations for typical radar operation scenarios. The advantages of the proposed interference mitigation methods over the existing signal processing techniques are demonstrated both analytically and empirically

    Real-Time Narrowband and Wideband Beamforming Techniques for Fully-Digital RF Arrays

    Get PDF
    Elemental digital beamforming offers increased flexibility for multi-function radio frequency (RF) systems supporting radar and communications applications. As fully digital arrays, components, and subsystems are becoming more affordable in the military and commercial industries, analog components such as phase shifters, filters, and mixers have begun to be replaced by digital circuits which presents efficiency challenges in power constrained scenarios. Furthermore, multi-function radar and communications systems are exploiting the multiple simultaneous beam capability provided by digital at every element beamforming. Along with further increasing data samples rates and increasing instantaneous bandwidths (IBW), real time processing in the digital domain has become a challenge due to the amount of data produced and processed in current systems. These arrays generate hundreds of gigabits per second of data throughput or more which is costly to send off-chip to an adjunct processor fundamentally limiting the overall performance of an RF array system. In this dissertation, digital filtering techniques and architectures are described which calibrate and beamform both narrowband and wideband RF arrays on receive. The techniques are shown to optimize one or many parameters of the digital transceiver system to improve the overall system efficiency. Digitally beamforming in the beamspace is shown to further increase the processing efficiency of an adaptive system compared to state of the art frequency domain approaches by minimizing major processing bottlenecks of generating adaptive filter coefficients. The techniques discussed are compared and contrasted across different hardware processor modules including field-programmable gate arrays (FPGAs), graphical processing units (GPUs), and central processing units (CPUs)

    Contextual Beamforming: Exploiting Location and AI for Enhanced Wireless Telecommunication Performance

    Full text link
    The pervasive nature of wireless telecommunication has made it the foundation for mainstream technologies like automation, smart vehicles, virtual reality, and unmanned aerial vehicles. As these technologies experience widespread adoption in our daily lives, ensuring the reliable performance of cellular networks in mobile scenarios has become a paramount challenge. Beamforming, an integral component of modern mobile networks, enables spatial selectivity and improves network quality. However, many beamforming techniques are iterative, introducing unwanted latency to the system. In recent times, there has been a growing interest in leveraging mobile users' location information to expedite beamforming processes. This paper explores the concept of contextual beamforming, discussing its advantages, disadvantages and implications. Notably, the study presents an impressive 53% improvement in signal-to-noise ratio (SNR) by implementing the adaptive beamforming (MRT) algorithm compared to scenarios without beamforming. It further elucidates how MRT contributes to contextual beamforming. The importance of localization in implementing contextual beamforming is also examined. Additionally, the paper delves into the use of artificial intelligence schemes, including machine learning and deep learning, in implementing contextual beamforming techniques that leverage user location information. Based on the comprehensive review, the results suggest that the combination of MRT and Zero forcing (ZF) techniques, alongside deep neural networks (DNN) employing Bayesian Optimization (BO), represents the most promising approach for contextual beamforming. Furthermore, the study discusses the future potential of programmable switches, such as Tofino, in enabling location-aware beamforming
    corecore