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Abstract

Sensor array processing techniques have been an important research area in recent years.

By using a sensor array of a certain configuration, we can improve the parameter estima-

tion accuracy from the observation data in the presence of interference and noise. In this

thesis, we focus on sensor array processing techniques that use antenna arrays for beam-

forming, which is the key task in wireless communications, radar and sonar systems.

Firstly, we propose a low-complexity robust adaptive beamforming (RAB) technique

which estimates the steering vector using a Low-Complexity Shrinkage-Based Mismatch

Estimation (LOCSME) algorithm. The proposed LOCSME algorithm estimates the co-

variance matrix of the input data and the interference-plus-noise covariance (INC) ma-

trix by using the Oracle Approximating Shrinkage (OAS) method. Secondly, we present

cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) al-

gorithms. The proposed algorithms are based on the exploitation of the cross-correlation

between the array observation data and the output of the beamformer. Thirdly, we pro-

pose distributed beamforming techniques that are based on wireless relay systems. Algo-

rithms that combine relay selections and SINR maximization or Minimum Mean-Square-

Error (MMSE) consensus are developed, assuming the relay systems are under total relay

transmit power constraint. Lastly, we look into the research area of robust distributed

beamforming (RDB) and develop a novel RDB approach based on the exploitation of

the cross-correlation between the received data at the relays and the destination and a

subspace projection method to estimate the channel errors, namely, the cross-correlation

and subspace projection (CCSP) RDB technique, which efficiently maximizes the out-

put SINR and minimizes the channel errors. Simulation results show that the proposed

techniques outperform existing techniques in various performance metrics.
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Chapter 1

Introduction

Contents
1.1 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Problem Statements

In important applications such as wireless communications, radar, sonar and biomedical

processing, sensor array processing is indispensably and commonly used to filter signals

in the space-time field by exploiting their spatial characteristics [1–3]. The advantages of

sensor array processing include the following: the signal-to-interference-plus-noise ratio

(SINR) is enhanced compared to using a single sensor, the directions of arrivals (DoAs)

and waveforms of the emitted signal sources can be determined and parameters can be

measured precisely in high dimensional spaces [1]. The main goal of sensor array signal

processing is the estimation of parameters and extraction of information by fusing tem-

poral and spatial information, captured via sampling a wavefield with a set of judiciously

1



CHAPTER 1. INTRODUCTION

placed sensors [1].

The topic we are particularly interested in sensor array processing is beamforming

technique, which can be categorized as traditional or centralized beamforming and dis-

tributed beamforming techniques. In traditional beamforming, we aim to combine the

measurements from an antenna array to maximize its gain in a specific direction [1]. In

distributed beamforming, we have a relay system which can be also treated as an array

composed by a set of antenna elements with distributed locations. The relay nodes (or

antennas) are also independent processing units if there is no cooperation among them-

selves [88]. The advantages of distributed beamforming include an increase in the range

of communications and a reduction in the network power consumptions, to overcome

obstacles like poor channel and relay processing. However, estimation procedures of

some crucial parameters like steering vectors, channel statistics and data covariance ma-

trices can be challenging, especially if the implementations are considered under dynamic

and unstable environments, which leads to the development of robust beamforming tech-

niques. There has been an intensive research on robust beamforming methods, but still

computational complexity and estimation precision are some unavoidable challenges.

1.2 Motivations

Both environmental effects and internal factors can affect the overall system performance.

In traditional beamforming, the steering vector may suffer mismatch due to environmental

uncertainties like look direction and pointing errors, source wavefront distortion, near-far

field problem, signal fading and scattering, as well as non-environmental factors like im-

perfect array calibration and distorted antenna shape [7]. In distributed beamforming, the

channel state information (CSI) is normally unknown (mismatched) in practical scenar-

ios, which may be caused by limited channel feedback or outdate channel states [80]. In

order to mitigate the effects of mismatch and preserve the precision of parameter estima-

tion, we have developed novel methods and algorithms that aim to maximize the system

performance and keep low computational complexities. Those methods and algorithms

have been shown to obtain excellent performance in both simulations and analysis.

2
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1.3 Contributions

• A cross-correlation and subspace projection method for estimating the desired sig-

nal steering vector mismatch is developed. The approach first computes the cross-

correction vector of the system output and array observation data. The subspace

is constructed as an eigensubspace. We show that projecting the cross-correlation

vector onto the subspace gives superior estimation precision especially at medium

to high input signal-to-noise ratios (SNRs). An iterative shrinkage method that

approximates the cross-correlation vector and shrinkage coefficient is devised to

improve the estimation accuracy of the steering vector mismatch. The above ap-

proaches are combined together and named as low-complexity shrinkage-based

mismatch estimation (LOCSME) robust adaptive beamforming (RAB) algorithm.

• Adaptive algorithms that are based on stochastic gradient (SG) and conjugate gra-

dient (CG) approaches for the batch LOCSME algorithm have been devised and

named as LOCSME-SG, LOCSME-CCG and LOCSME-MCG, where CCG stands

for conventional conjugate gradient and MCG stands for modified conjugate gra-

dient. LOCSME-SG does not require matrix inversions or costly recursions to up-

date the beamforming weights adaptively. In particular, the sample covariance ma-

trix (SCM) is estimated only once using a knowledge-aided (KA) linear shrinkage

algorithm along with the computation of the beamforming weights based on the

estimated steering vector through SG recursions. LOCSME-CCG and LOCSME-

MCG algorithms not only update the beamforming weights, but can also estimate

the mismatched steering vector sequentially in every snapshot, to further improve

estimation precision.

• Novel RAB algorithms that are based on low-rank and cross-correlation techniques

is proposed. Firstly, a linear system (considered in high dimension) involving the

mismatched steering vector and the statistics of the sampled data is constructed.

Then we iteratively compute an orthogonal Krylov subspace whose model order

is determined by both the minimum sufficient rank, which ensures no information

loss when capturing the signal of interest (SoI) with interferers, and an execute-

and-stop criterion, which automatically avoids overestimating the number of bases

of the computed subspace. The estimated vector that contains the cross-correlation

between the array observation data and the beamformer output is projected onto the

3



CHAPTER 1. INTRODUCTION

Krylov subspace, in order to update the steering vector mismatch, resulting in the

proposed orthogonal Krylov subspace projection mismatch estimation (OKSPME)

method.

• Based on the OKSPME method, we have also devised adaptive stochastic gradient

(SG), CCG and MCG algorithms derived from the proposed optimization problems

to reduce the cost for computing the beamforming weights, resulting in the pro-

posed OKSPME-SG, OKSPME-CCG and OKSPME-MCG RAB algorithms. We

remark that the steering vector is also estimated and updated using the CG-based

recursions to produce an even more precise estimate. Derivations of the proposed

algorithms are presented and discussed along with an analysis of their computa-

tional complexity. Moreover, we develop an analysis of the mean squared error

(MSE) between the estimated and the actual steering vectors for the general ap-

proach of using a presumed angular sector associated with subspace projections.

This analysis mathematically describes how precise the steering vector mismatch

can be estimated. Upper and lower bounds are derived and compared with the exist-

ing approaches in the literature. Another analysis on the computational complexity

of the proposed and existing algorithms is also provided.

• A joint maximum SINR (MSINR) distributed beamforming and restricted greedy

search relay selection (RGSRS) algorithm with a total relay transmit power con-

straint is proposed, which iteratively performs relay selection and optimizes the

beamforming weights at the relay nodes and maximizing the output SINR at the

destination, provided that the second-order statistics of the CSI is perfectly known.

Specifically, we devise a relay selection scheme based on a greedy search and com-

pare it to other schemes like restricted random relay selection (RRRS) and restricted

exhaustive search relay selection (RESRS). The RRRS scheme selects a fixed num-

ber of relays randomly from all relays. The RESRS scheme employs the exhaustive

search method that runs every single possible combination among all relays aiming

to obtain the set with the best SINR performance. The proposed RGSRS scheme is

developed from a greedy search method with a specific optimization problem that

works in iterations and requires SINR feedback from the destination.

• A novel robust distributed beamforming (RDB) technique is proposed. In this situ-

ation, the system CSI is imperfectly known at the relays, where the channel errors

are modeled using an additive matrix perturbation method. We also assume that

4
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there is no direct link between the signal sources and the destination. With a total

relay transmit power constraint and an objective of maximizing the output SINR,

we exploit the cross-correlation between the received data at the relays and the

system output, a subspace projection method to estimate the channel errors and

develop the cross-correlation and subspace projection (CCSP) RDB technique. A

performance analysis regarding of the channel estimation MSE is provided for the

proposed technique and simulations show an excellent performance as compared to

previously reported algorithms.

1.4 Thesis Outline

Chapter 2 introduces the background theory relevant to the work presented in this thesis,

which includes the topics of sensor array processing, traditional beamforming and related

conventional adaptive beamforming algorithms, robust beamforming, steering vector mis-

matches and related RAB algorithms, and distributed beamforming (relay networking),

cooperative relay systems, SINR maximization, relay selection and robust distributed

beamforming.

Chapter 3 introduces a novel low complexity RAB algorithm named LOCSME and

its system model, a cross-correlation and eigen-subspace projection approach as well as

an iterative shrinkage method used for estimating the steering vector mismatch, novel

SG and CG based adaptive algorithms that avoid costly matrix inversions and iteratively

estimate the beamforming weight vector.

Chapter 4 introduces a novel low-rank RAB method named OKSPME based on di-

mensionality reduction techniques, which is based on the idea of constructing an orthog-

onal Krylov subspace and solving for the steering vector mismatch recursively where the

model order is also determined automatically with constraints. SG and CG based adap-

tive algorithms based on the batch OKSPME method are devised to further reduce the

computational complexity.

Chapter 5 presents the system model for distributed beamforming and novel relay se-

lection algorithms combined with a maximum output SINR driven algorithm named as

5
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MSINR.

Chapter 6 details a RDB technique that exploits the cross-correlation between the re-

ceived data at the relays and the system output, a subspace projection method to estimate

the channel errors and develop the CCSP RDB technique, which is superior in minimizing

the channel mismatch and maximizing the system output SINR.

Chapter 7 gives a summary of this thesis and discuss potential future work.

1.5 Notations

In all expressions and equations of this thesis, lowercase non-bold letters represent scalar

values whereas bold lowercase and upper case letters represent vectors and matrices, re-

spectively. (.)∗, (.)T , (.)−1 and (.)H denote the complex conjugate operator, the transpose

operator, matrix inversion operator and the Hermitian transpose operator, respectively. |.|,
||.||, and ||.||F denote the absolutely value of a scalar, the Euclidean norm of a vector or

matrix and the Frobenius norm of a vector or matrix, respectively. � represents the Schur-

Hadamard product. E[.] denotes the expectations. .! denotes factorial operator. tr(.) and

diag(.) denote the trace and the diagonal entry of a matrix, respectively. sup. and inf.

denote the supreme and infimum bounds of a certain set. An identity matrix of size M is

represented by IM .
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2.1 Introduction

This Chapter briefly reviews the background knowledge in terms of sensor array process-

ing on both centralized and distributed beamforming techniques, as well as some typi-

cal robust adaptive beamforming (RAB) techniques. Firstly, sensor array configurations

are discussed and then the optimum minimum variance distortionless response (MVDR)

bramformer is reviewed. Secondly, we describe the research area of RAB techniques,

where the details of steering vector mismatch are introduced and some of the most im-

portant existing RAB methods and algorithms are reviewed and discussed. Lastly, we

introduce the research topic of distributed beamforming, where the fundamentals of relay
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networking, relay selection, centralized and cooperative relay systems, as well as robust

distributed beamforming are introduced.

2.2 Sensor Array Processing

Sensor array processing aims to process data collected at sensor elements in order to

extract useful information, suppress interference and estimate parameters. In order to

describe a discrete-time sensor array model using linear algebra, two commonly used

array geometries, namely, the uniform linear array (ULA) and the Uniform Circular Array

(UCA), are briefly introduced.

2.2.1 Uniform Linear Array

The ULA is the simplest and the most commonly used sensor array structure. As shown

in Fig. 2.1, M antenna elements are located in an axis with uniform spacing equal to

d. A single source signal has DoA θ thus the corresponding steering vector is repre-

sented by a(θ) = [a1(θ), · · · , aM(θ)]T . The sensors take samples from the source sig-

nal at time instant i as x(i) = [x1(i), · · · , xM(i)]T . The phase delay τ between two

adjacent sensors is equal to e−
j2πd sin θ

λ , where λ is the wavelength of the wavefront. If

we select the sensor at the edge which firstly receives the coming signal as the ref-

erence sensor, then the steering vector can be represented in terms of time delays as

a(θ) = [1, e−
j2πd sin θ

λ , · · · , e− j(M−1)2πd sin θ
λ ]T . Therefore, the discrete-time signal model

for a scenario with K source signals is given by

x(i) = A(θ)s(i) + n(i),

where s(i) ∈ CK×1 are source signals, θ = [θ1, · · · , θK ]T ∈ RK is a vector containing

the directions of arrivals (DoAs), A(θ) = [a(θ1), · · · , a(θK)] ∈ CM×K is the matrix

which contains the steering vector for each DoA, n(i) ∈ CM×1 is assumed to be complex

Gaussian noise with zero mean and variance σ2
n.

10
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2.2.2 Uniform Circular Array

The structure of UCA is shown in Fig. 2.2. The total number of M antenna sensors are

uniformly located on a planar circle. The sensor elements are usually assumed isotropic.

Therefore the element spacing can be obtained by the Sampling Theorem as d 6 λ
2
. The

discrete-time signal model for a UCA is given by xm(i) = e
j2πd sin θ

λ
cos(θ−γm) sin(φ)s(i) +

nm(i), where s(i) is the zero-mean and complex narrowband signal source with power

σ2
s , each of nm(i) is assumed to be zero-mean, spatially and temporally white Gaussian

process and independent of s(i). γm = 2π(m − 1)/N is the angle of the kth sensor

measured counterclockwise from the x axis. The azimuth angle θ ∈ [0, 2π) is measured

counterclockwise from the x axis and the elevation angle φ ∈ [0, π) is measured down

from the z axis, which is perpendicular to the x-y plane [25].

θ

τ

(M − 1)τ

d

x1(i)

x2(i)

xM (i)

Figure 2.1: Uniform Linear Array

2.3 Beamforming

When referring to beamforming, we usually consider the traditional or centralized beam-

forming techniques, which are essentially signal processing techniques specified for using

sensor arrays for directional signal transmission and reception. In traditional beamform-

ing, we aim to combine the measurements from a uniformly configured antenna array to
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y

x
1

2M/2

M/2+1

M/2+2
M

O

Figure 2.2: Uniform Circular Array

maximize its gain in a specific direction, by phasing the array in a certain angle so that the

desired signal(s) are enhanced and the undesired signal(s) or interferer(s) are attenuated

or rejected. The most popular optimum beamformer is known as the MVDR (or Capon)

beamformer [1], which is introduced in the following subsection.

2.3.1 MVDR Optimum Beamformer

The MVDR optimum beamformer aims to retrieve or extract a desired signal (signal of

interest (SoI)) in a given direction and frequency with unit gain, while the weights are

chosen to minimize the output power with a single linear constraint, which preserves the

SoI and attenuates the interferences and noise [4]. In this case, the desired signal is not

distorted [5] and the beamforming weight vector w = [w1, · · · , wM ]T is determined by

wMVDR = argmin
w

E[|y|2] subject to wHa = 1, (2.1)

where y = wHx is the beamformer output a corresponds to the steering vector of the

SoI. By employing the Lagrange multiplier method, we need to minimize the Lagrangian

function as described by

L(w, λ) = E[|y|2] + λ(wHa− 1) + λ∗(aHw − 1)

= E[|wHxxHw] +Re{λ}(wHa− 1) = E[|wHRw] +Re{λ}(wHa− 1), (2.2)
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where x is the array observation data and λ here is the Lagrange multiplier. Take the

partial derivative of the above equation with respect to w and equal it to zero, the weight

vector is obtained as

wMVDR = −λR−1a. (2.3)

Substituting (2.3) into the linear constraint, λ is obtained as

λ = −(aHR−1a)−1. (2.4)

Combining (2.3) and (2.4) then we have the optimum MVDR weight as the following:

wMVDR =
R−1a

aHR−1a
. (2.5)

2.4 Adaptive Beamforming Algorithms

In adaptive beamforming, the statistics (e.g. the covariance matrix) are usually unknown

and may change over time and need to be estimated from the available data [1, 4]. There

are several approaches to learning the unknown statistics. One approach is to estimate

the covariance matrix of the antenna observation data (e.g. implemented with Sampled

Matrix Inversion (SMI) [1], which results in a SMI beamformer) [1]. Another approach

is based on an optimization problem and employs conventional adaptive algorithms (e.g.

Stochastic Gradient (SG) and Conjugate Gradient (CG) [21, 23, 24]) to realize the adap-

tation of beamforming weights, which usually requires a low computational complexity

but converges slower than the SMI beamformer [1].

Fig. 2.3 describes the systematic diagram of an adaptive beamformer. Different from

the optimum beamformer, the covariance matrix R̂ is unknown and needs to be esti-

mated in order to obtain the beamformer weights. One typical approach is to use the SMI

method. In SMI, the covariance matrix is computed from the array observation data and

referred to the Sampled Covariance Matrix (SCM) described by

R̂ =
1

K

K∑
k=1

x(k)xH(k), (2.6)

and its weight vector is computed as

wSMI =
R̂−1a

aHR̂−1a
. (2.7)

13



CHAPTER 2. LITERATURE REVIEW

θ(DoA)

wavefront

1 2 M

w1(i) w2(i) wM(i)

P

Beamformer

array output
feedback

Figure 2.3: Adaptive Beamformer

However, in real applications, the SMI approach will usually include a diagonal loading

(DL) term (i.e. σ2IM , where σ2 is a constant and IM is an identity matrix of size M ) [1].

Therefore, (2.6) is reformulated as

R̂ =
1

K

K∑
k=1

x(k)xH(k) + σ2IM . (2.8)

The DL technique is an attractive modification to SMI beamformers because of its sim-

plicity and potential performance improvement especially in a strong interference level

situation. Even for a fixed DL, the loading level σ2 needs to be appropriately selected,

which can be done by evaluating the signal and interference levels [1].

2.4.1 MVDR-LMS Adaptive Algorithm

The least mean squares (LMS) adaptive algorithm belongs to the class of stochastic gradi-

ent (SG) methods. In this case, we consider deriving the LMS algorithm directly from the

MVDR beamformer using the SG approach. To satisfy the MVDR beamforming criterion

we have the following optimization problem:

minimize
w(i)

wH(i)R(i)w(i)

subject to wH(i)a = 1,

(2.9)
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where i denotes the time instant. Applying the SG recursion on its Lagrangian function

[1], we have

w(i+ 1) = w(i)− µ∇L(w(i), λ) = w(i)− µ(x(i)y∗(i) + λa), (2.10)

where µ is the step size, λ is the Lagrange multiplier and∇ denotes the gradient operator.

Substituting (2.10) into the constraint of (2.9), we have

(wH(i)− µ(x(i)y∗(i) + λa))Ha = 1. (2.11)

Solving equation (2.11), we can obtain the Lagrange multiplier λ:

λ =
−aHx(i)y∗(i)

aHa
. (2.12)

Substituting λ back into (2.10) and simplifying the result, the beamforming weight adap-

tation of MVDR-LMS algorithm is derived as

w(i+ 1) = w(i)− µy∗(i)(IM +
aaH

aHa
)x(i). (2.13)

2.4.2 MVDR-RLS Adaptive Algorithm

For the recursive least squares (RLS) algorithm, the optimization problem is defined as

minimize εy(i) =
i∑
l=1

µi−l|y(l)|2

subject to wH(i)a = 1,

(2.14)

where i is the current time index, µ is the forgetting factor and y(l) = wH(i)x(l). Again

by using the method of Lagrange multipliers, a Lagrangian cost function L is introduced

L =
i∑
l=1

µi−lwH(i)x(l)xH(l)w(i) + λ(wH(i)a− 1) + λ∗(aHw(i)− 1). (2.15)

Taking the partial derivative of (2.15) with respect to w(i) and equating the term to zero,

we obtain

w(i) =
Φ−1(i)a

aHΦ−1(i)a
= Λ(i)Φ−1(i)a, (2.16)

where Φ(i) =
i∑
l=1

µi−lx(l)xH(l) is the exponentially weighted sampled covariance matrix

and Λ(i) = (aHΦ−1(i)a)−1. To realize the recursion, Φ(i) is expressed as

Φ(i) = µΦ(i− 1) + x(i)xH(i). (2.17)
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By using the Matrix Inversion Lemma for (2.17), we have the following

Φ−1(i) = Φ−1(i− 1)− µ2Φ−1(i− 1)x(i)xH(i)Φ−1(i− 1)

1 + µ−1xH(i)Φ−1(i− 1)x(i)
. (2.18)

Let us define the following matrix quantities

P(i) = Φ−1(i) (2.19)

and

g(i) =
µ−1P(i− 1)x(i)

1 + µ−1xH(i)P(i− 1)x(i)
, (2.20)

where g(i) is the gain vector, then (2.18) can be reexpressed as

P(i) = µ−1P(i− 1)− µ−1g(i)xH(i)P(i− 1). (2.21)

Multiplying both sides by x(i) and simplifying the terms, we have

g(i) = P(i)x(i) = Φ−1(i)x(i). (2.22)

The weight vector is computed as

w(i) = Λ(i)P(i)a. (2.23)

After substituting (2.21) into (2.23), we then have the weight update equation as

w(i) =
Λ(i)

µΛ(i− 1)
(I− g(i)xH(i))w(i− 1), (2.24)

which completes the MVDR-RLS adaptive algorithm [1].

2.4.3 MVDR-CG Adaptive Algorithm

We have already introduced the LMS and RLS algorithms under the MVDR criterion for

adaptive beamforming. In fact, LMS has the advantage of simplicity but can not achieve

good convergence performance as compared to RLS; while RLS demands a higher com-

putational cost even though it has a high performance in convergence speed. In this sub-

section, we review the CG adaptive algorithm which efficiently overcomes the disadvan-

tages in LMS and RLS algorithms. Based on the linear constrained minimum variance

(LCMV) criterion [1, 4], we start from the following optimization problem:

v = argmin
v

J(v), (2.25)

16



CHAPTER 2. LITERATURE REVIEW

where v ∈ CM×1 is the CG-based weight vector. A convex cost function J(v) can be

described by [21, 23, 24]

J(v) =
1

2
vHRv −Re{aHv}. (2.26)

where Re{.} denotes the real part. The cost function is constructed in a quadratic form

so that its gradient in terms of v describes the deviation of a from Rv [21]. By taking

the gradient of (2.26) with respect to v, equating it to a null vector and rearranging the

expression we have

v = R−1a. (2.27)

In order to derive the algorithm, we need to designate the snapshot index i and the iteration

index k which is iteratively executed within each snapshot. Similar to the RLS algorithm,

the data covariance matrix is estimated in a recursive fashion as:

R̂(i) = λR̂(i− 1) + x(i)xH(i), (2.28)

where λ is the forgetting factor, which is close to, but smaller than 1. Taking the gradient

of (2.26) with respect to vk(i) and choosing its negative direction, we obtain the negative

gradient:

gk(i) = a− R̂(i)vk(i). (2.29)

The definition for the CG-based weight vector is given by [21, 23, 24]

vk(i) = vk−1(i) + αk(i)pk(i), (2.30)

where αk(i) is obtained by substituting (2.30) into (2.26) and taking the gradient with

respect to αk(i), which gives

αk(i) =
gHk (i)pk(i)

pHk (i)R̂(i)pk(i)
, (2.31)

and the direction vector pk(i) is updated by [21, 23, 24]

pk(i+ 1) = gk(i) + βk(i)pk(i), (2.32)

where βk(i) is given by [21, 23, 24]

βk(i) =
gHk (i)gk(i)

gHk−1(i)gk−1(i)
. (2.33)

After K iterations, the CG adaptive beamformer weight vector can be computed as

w(i) =
vK(i)

aHvK(i)
. (2.34)

Note that at the beginning of the next snapshot, gk(i + 1) and pk(i + 1) must be reset to

a− R̂(i+ 1)vK(i) and gk(i+ 1), respectively [1].
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2.5 Robust Adaptive Beamforming

In this section, an explanation why RAB techniques are important for handling steering

vector uncertainties and models for steering vector mismatch are provided. Furthermore,

the most recent developed RAB algorithms are introduced and discussed.

2.5.1 Steering Vector Mismatch

When adaptive beamforming algorithms are applied to practical problems, the signal-to-

interference-plus-noise ratio (SINR) performance may degrade when the data sample size

is small and the convergence rate may reduce as the desired signal is presented in the

training data [7]. Most importantly, the SINR performance of adaptive beamformers can

suffer significant degradation because the underlying assumptions on the environment,

signal sources or sensor array are usually non-ideal. This leads to a mismatch in the

steering vector. To overcome the problem of steering vector mismatch, RAB techniques

become a popular research area and various RAB algorithms have been developed.

In practical applications, different categories of steering vector mismatch include look

direction and signal pointing errors, imperfect calibration and distorted antenna shape,

manifold mismodeling due to source wavefront distortions, near-far field problem, signal

fading and local scattering [7, 10].

Desired signal look direction mismatch is the simplest case for either modeling or

handling. In this mismatch model, there exists an error for the DoA of the desired source

signal (in some cases we also consider the interference signals). The error can be ei-

ther a constant degree deviation or described by its statistical properties (e.g. uniform

distribution within a certain range [14, 15]).

Near-far field mismatch is essentially caused by the spatial signature of the desired

signal, which is assumed to be located in the near field of the antenna array, so that

neither the array geometry nor the distance between the geometry center of the array and

the signal source is negligible. In the case of ULA, the source is assumed to be located
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on the line drawn from this geometrical center point in the normal direction to the array

aperture, which is determined by the signal wavelength λ and the number of sensors M .

The choice for the distance must be compatible with the array geometry parameters and

also depends on M and λ [7].

In the local scattering mismatch case as shown in Fig. 2.4 [9], we consider the source

signal distributed (or scattered) due to the multipath scattering effect caused by the pres-

ence of local scatterers [15]. This problem can be divided into two categories in terms of

the signal signatures, called the coherent local scattering and incoherent local scattering.

object
base station array

θi

2δi
Mobile i

Figure 2.4: Local Scattering Effect of Detecting a Moving Object from a Base Station Array

In coherent local scattering [7], the source signal is assumed to have time-invariant

signature and the corresponding steering vector is modeled as

a = p +
L∑
k=1

ejϕkb(θk), (2.35)

where p corresponds to the direct path while b(θk)(k = 1, · · · , L) corresponds to the

scattered paths. The angles θk(k = 1, · · · , L) are randomly and independently drawn in

each simulation run from a uniform generator with mean 10◦ and standard deviation 2◦.

The angles ϕk(k = 1, · · · , L) are independently and uniformly taken from the interval

[0, 2π] in each simulation run. Notice that θk and ϕk change from trials while remaining

constant over snapshots [7].

In incoherent local scattering [7], the source signal is assumed to have time-varying
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signature and the corresponding steering vector is modeled by

a(i) = s0(i)p +
L∑
k=1

sk(i)b(θk), (2.36)

where sk(i)(k = 0, · · · , L) are i.i.d zero mean complex Gaussian random variables in-

dependently drawn from a random generator. The angles θk(k = 0, · · · , L) are drawn

independently in each simulation run from a uniform generator with fixed mean value

and standard deviation. This time, sk(i) changes both from run to run and from snapshot

to snapshot [7, 15].

2.5.2 Existing RAB Algorithms

In this subsection, we focus on the recently reported RAB algorithms. In [10], RAB

design principles based on MVDR criterion have been discussed and summarized. These

principles basically include: the generalized sidelobe canceller, diagonal loading [8, 9],

eigenspace projection [18], worst-case optimization [7,19] and steering vector estimation

with presumed prior knowledge [11, 12].

The robust Capon beamformer (RCB) as discussed in [8] utilizes a diagonal loading

method in which the loading factor is calculated based on a presumed uncertainty set for

the SoI. It firstly started from an estimate of the desired signal power which is given by

σ̃2 =
1

aHR−1a
, (2.37)

where a is the mismatched steering vector and R is the data covariance matrix. Further-

more, the RCB approach leads to the optimization problem given by

min
a

aHR−1a

subject to (a− ā)HC−1(a− ā) 6 1,
(2.38)

where both ā and C−1 are given. In the algorithm steps, an eigendecomposition technique

and Newton’s method are required to deliver an estimate of the loading factor λ, which

further helps with the estimation of the desired signal power σ̃2. This method has a

complexity of O(M3) and is difficult to achieve a satisfactory SINR performance.
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Several of the most well-known online optimization programming based RAB ap-

proaches include the worst-case optimization method [7], the sequential quadratic pro-

gramme (SQP) method [12] and the method in [11], all of which aim to solve online

optimization programmes (i.e. second order cone programme (SOCP) and semi-definite

programme (SDP)) with presumed prior knowledge so that to obtain an estimate for the

desired signal steering vector. The worst-case optimization method and [11] use the same

uncertainty constraint for the steering vector mismatch as in the RCB method. How-

ever, the SQP method uses a presumed steering vector that belongs to an uncertainty set

A , {p+e, ‖e‖ 6 ε} where p is the presumed steering vector, e is the mismatch and ε is

a known constant to restrict the uncertainty range. The presumed steering vector p is then

iteratively updated by adding the orthogonal part of the error e and by enforcing that the

updated version of p orthogonal to a subspace matrix P⊥p , which is also orthogonal to the

actual steering vector p+e. This process can be expressed as an optimization programme

described by
min
e

(p + e)HR̂−1(p + e)

subject to pHe = 0,P⊥p (p + e) = 0

(p + e)HC̄(p + e) 6 pHC̄p,

(2.39)

where R̂ is the SCM and C̄ =
∫̄
θ

p(θ)pH(θ)dθ, where θ̄ is the complement of θ, which is

the angular sector in which the desired signal is assumed to be located, p(θ) is the steering

vector associated with a particular direction θ, [11, 12, 14]. However, because of the very

high computational cost (at least O(M3.5)) for the online optimization programmes, the

methods of [7,11,12] lack computation efficiency. Additionally, the direct implementation

of SCM in both the optimization objective function and computation for the weight may

reduce the accuracy and final SINR performance.

Some recent design approaches have considered combining different design principles

together to improve RAB performance. In the algorithms of [14, 15], the data covariance

matrix and the desired signal steering vector are separately and sequentially estimated. In

both of these algorithms, the steering vector is estimated using the SQP method. However,

the data covariance matrix in [14] is estimated by a linear shrinkage model expressed as

R̃ = β̂R̂ + α̂I, (2.40)

where R̂ is the SCM, β̂ and α̂ are positive shrinkage parameters which are derived by min-

imizing the mean squared error (MSE) MSE(R̃) = E[‖R̃−R‖2
], where R is the actual
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covariance variance rather than the SCM [14]. Essentially this shrinkage method belongs

to the class of diagonal loading approaches with the loading factor α̂/β̂ computable and

adaptable. The algorithm in [15] approaches the covariance matrix estimation in a totally

different way, which directly estimates the interference-plus-noise covariance(INC) ma-

trix R̃i+n based on a INC matrix reconstruction method. It employs the Capon spatial

spectrum estimator

P̂ (θ) =
1

dH(θ)R̂−1d(θ)
, (2.41)

where θ can be any possible angle, d(θ) is the steering vector associated with angle θ and

R̂ is the SCM. Furthermore, it is used for the INC matrix reconstruction as

R̃i+n =

∫
θ̄

P̂ (θ)d(θ)dH(θ)d(θ). (2.42)

The outstanding performance of [15] can be extremely close to the optimum SINR. How-

ever, it has high potential computational cost when the number of sample points taken

within the angular sector θ̄ is large.

The common point of all the above algorithms introduced is the difficulty of estimating

the steering vector in a computationally efficient way. Efforts have been made to avoid

high complexity especially with online optimization programmes and an attractive algo-

rithm named low-complexity mismatch estimation (LOCME) has been developed in [13].

LOCME aims to estimate the steering vector mismatch with a cost ofO(M3) and does not

require any optimization programme or additional information from the steering vector.

It describes the estimation of the array steering vector as the projection onto a prede-

fined subspace of the correlation between the beamforming output signal and the array

observation vector as [13]

â =
√
M

Pd

‖Pd‖ , (2.43)

where P is the eigensubspace projection matrix which can be obtained if the angular range

in which the steering vector is located is known and d is cross-correlation vector between

the array observation data x and the beamformer output y, which is computed directly by

d = E[xy].
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2.6 Distributed Beamforming

Distributed beamforming has been widely investigated in wireless communications and

array processing in recent years [66–68]. It is key for situations in which the channels be-

tween the sources and the destination have poor quality so that devices cannot communi-

cate directly and the destination relies on relays that receive and forward the signals [67].

Other advantages of distributed beamforming include the ability to significantly increase

system power gain and save energy [66]. This section discusses the concepts and prin-

ciples of distributed beamforming as well as the typical optimization criteria used. The

concept and principles of relay selection and robust distributed beamforming are also pre-

sented and discussed.

2.6.1 Distributed Beamforming and Wireless Relay Networks

Distributed beamforming can be modelled as a relay network in which we consider a sin-

gle or multiple (K) signal sources at the base station, a set of (M ) distributed relays, each

of which consists of only one sensor or antenna, and a destination. It is assumed that

the quality of the channels between the signal sources and the destination is very poor so

that direct communications is not possible. The M relays receive information transmitted

by the signal sources and then retransmit to the destination as a beamforming procedure,

in which a simple two-step amplify-and-forward (AF) protocol or decode-and-forward

(DF) protocol can be applied for cooperative communications. In an AF protocol, the

relay nodes send out amplified and phased versions of their received signals, which re-

quires much less delays and relay power consumptions. In a DF protocol, the relay nodes

operate as a black box that decode the received signal and re-encode them before trans-

mitting, which ensures higher security but is less efficient in terms of delay and energy

consumption. There are other protocols like compress-and-forward (CF) which involves

quantization procedures and is not efficient in many situations, in CF, the relays quan-

tize the received signal in one block and transmits the encoded version of the quantized

received signal in the following block, which requires very high complexity if the quanti-

zation level is high or many blocks are used.
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The relay network system can be modelled as shown in Fig. 2.5, assuming that an AF

protocol is considered.

K signal sources

M relays

destination

F

g

noise ν

noise n

Figure 2.5: System Model of Relay Network

In the first step, the sources transmit the signals to the relays as

x = Fs + ν, (2.44)

where s = [s1, s2, · · · , sK ] ∈ C1×K are signal sources with zero mean, [.]T denotes the

matrix transpose operator, sk =
√
Pks, E[|s|2] = 1, Pk is the transmit power of the kth

signal source, k = 1, 2, · · · , K, s is the information symbol. Without loss of generality

we can assume s1 as the desired signal while the others are treated as interferers. F =

[f1, f2, · · · , fK ] ∈ CM×K is the channel matrix between the signal sources and the relays,

fk = [f1,k, f2,k, · · · , fM,k]
T ∈ CM×1, fm,k denotes the channel between the mth relay and

the kth source (m = 1, 2, · · · ,M , k = 1, 2, · · · , K). ν = [ν1, ν2, · · · , νM ]T ∈ CM×1

is the complex Gaussian noise vector at the relays and σ2
ν is the noise variance at each

relay (νm ˜ CN(0, σ2
ν)), where CN(.) refers to complex Gaussian distribution. The vector

x ∈ CM×1 represents the received data at the relays. In the second step, the relays transmit

y ∈ CM×1 which is an amplified and phase-steered version of x, which can be written as

y = Wx, (2.45)

where W = diag[w1, w2, · · · , wM ] ∈ CM×M is a diagonal matrix whose diagonal entries

denote the beamforming weights. The signal received at the destination is given by

z = gTy + n, (2.46)
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where z is a scalar, g = [g1, g2, · · · , gM ]T ∈ CM×1 is the complex Gaussian channel

vector between the relays and the destination, n (n ˜ CN(0, σ2
n), and we assume that

σ2
n = σ2

ν) is the noise at the destination and z is the received signal at the destination.

Note that both F and g are modeled as Rayleigh distributed (i.e., both the real and

imaginary coefficients of the channel parameters have Gaussian distribution). Using the

Rayleigh distribution for the channels, we also consider distance based large-scale chan-

nel propagation effects that include distance-based fading (or path loss) and shadowing.

Distance-based fading represents how a signal is attenuated as a function of the distance

and can be highly affected by the environment [69, 70]. An exponential based path loss

model can be described by

γ =

√
L√
dρ
, (2.47)

where γ is the distance based path loss, L is the known path loss at the destination, d is

the distance of interest relative to the destination and ρ is the path loss exponent, which

can vary due to different environments and is typically set within 2 to 5 [69, 70], with a

lower value representing a clear and uncluttered environment which has a slow attenuation

and a higher value describing a cluttered and highly attenuating environment. Shadow

fading describes the phenomenon where objects can obstruct the propagation of the signal

attenuating the signal further, and can be modeled as a random variable with probability

distribution given by [69, 70]

β = 10(
σsN (0,1)

10
), (2.48)

where β is the shadowing parameter, N (0, 1) means the Gaussian distribution with zero

mean and unit variance, σs is the shadowing spread in dB. The shadowing spread reflects

the severity of the attenuation caused by shadowing, and is typically given between 0dB

to 9dB [69, 70]. The channels modeled with both path-loss and shadowing are described

by

F = γβF0, (2.49)

g = γβg0, (2.50)

where F0 and g0 denote the Rayleigh distributed channels without path-loss and shadow-

ing [69, 70].
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2.6.2 Optimization Criteria for Distributed Beamforming

Constraints are usually applied to relay systems in order to achieve desired objectives

with environmental or self restrictions, which basically can be described as a single op-

timization problem. According to the literature, there are three different categories of

optimization problems for relay systems. The first one involves the minimization of the

total transmit power of the relays subject to constraints on the quality of service (QoS),

which is usually referred to the system output SNR or SINR in distributed beamforming

systems. In this scenario, the optimization problem can be expressed as

min
w

PT

subject to SNR(or SINR) ≥ γ,
(2.51)

where w is the beamforming weight vector, PT is the total transmit power, γ(γ > 0) is a

predefined constant indicating the minimum required output SNR or SINR. It minimizes

overall transmit power while ensuring the QoS is satisfied at the destination.

In the second scenario, the optimization problem is described as

max
w

SNR(or SINR)

subject to PT ≤ PT,max,
(2.52)

which maximizes the output SNR or SINR while ensuring the total transmit power PT

does not exceed the threshold or the maximum allowable total transmit power PT,max.

In the third scenario, we have the following optimization problem:

max
w

SNR(or SINR)

subject to Pm ≤ PT,max for m = 1, 2, · · · ,M,
(2.53)

where Pm,max is the maximum allowable transmit power of the mth relay, from which

each of the individual relay is constrained with a power limit. It should be emphasized

that here we have M constraints in total instead of a single one.
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2.6.3 Centralized and Cooperative Relay Networks with an MMSE

Consensus Approach

For a centralized and cooperative relay network, we can always consider a minimum mean

squared error (MMSE) consensus approach [71]. Assuming there are no interferers, then

we define ŝm = φmxm and

φm = arg min
φm

E[|s1 − φmxm|2] =
f ∗mP1

|fm|2P1 + σ2
n

, (2.54)

where P1 is the desired signal power. Then we define s̃m = ŝm
E[|ŝm|2]

and the normalized

relay weight w̃m as wmφm
E[|ŝm|2]

, so that the total transmission power can be expressed as∑M
m=1E[|w̃ms̃m|2] =

∑M
m=1 |w̃m|2. Therefore, the following optimization problem under

a total power constraint is considered

min
w̃m

M∑
m=1

κmE[|s1 − gmw̃ms̃m|2]

subject to
M∑
m=1

|w̃m|2 ≤ PT ,

(2.55)

where κm > 0 and the solution of (2.55) is given by

w̃m =
g∗m

λ/κm + |gm|2
√

γm
γm + 1

P1, (2.56)

where λ is the Langrange multiplier and γm = |fm|2P1

Pn
.

In order to solve the optimization problem in (2.55), an MMSE consensus approach is

employed to enable local information exchange and cooperations among the relay nodes.

Suppose information is shared by all relays and each relay has an individual auxiliary

beamforming vector denoted as w̃m = [w̃1,m, w̃2,m, · · · , w̃m,m]T , then (2.55) can be re-

formulated as follows:

min
{w̃m}

M∑
m=1

κmE[|s1 − gmw̃m,ms̃m|2]

subject to ||w̃m||2 ≤ PT , w̃m = w,m = 1, 2, · · · ,M,

(2.57)

where the second constraint is a consensus constraint to impose all weight vectors to be

the same. Then a dual-decomposition method is applied to decompose (2.57) to M sub-
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optimization problems for each relay node as follows:

min
w̃m

M∑
m=1

κmE[|s1 − gmw̃m,ms̃m|2]

subject to ||w̃m||2 ≤ PT , w̃m = w.

(2.58)

Suppose each relay node is connected to a subset of relay nodes denoted by Mm. The

second constraint in (2.58) can be replaced by w̃m = w̃q, q ∈ Mm so that (2.58) can be

reformulated as

min
w̃m

E[|s1 − gmwms̃m,1|2] + λm(i)(||w̃m||2 − PT )

+
∑
q∈Mm

τTm,q(w̃m − w̃q),
(2.59)

where λm(i) and τm,q are Lagrange multipliers.The proposed algorithmic solution relies

on the computation of the optimal weights and Lagrange multipliers at the mth relay as

w̃t,m =



g∗m
λm(i)+|gm|2 ( g∗m

λ/κm+|gm|2

√
γm
γm+1

P1 −
∑
q∈Mm

τm,q;m

2
),

if t = m

−
∑
q∈Mm

τm,q;t

2λm(i)
,

if t 6= m

(2.60)

where τm,q;t denotes the tth element of τm,q. The Lagrange multipliers are updated as

follows

λm(i) = |λm(i− 1) + µλ(||w̃m||2 − PT )|, (2.61)

τm,q(i) = τm,q(i− 1) + µτ (um − uq), (2.62)

where µλ and µτ are step sizes with small positive values, um = [|w1,m|, · · · , |wM,m|]T

and i is the time index.

2.6.4 Generalized Relay Networks with SNR Maximization Ap-

proaches

As discussed before, there are two criteria used for maximizing the system output SNR -

the total relay transmit power constraint and individual relay power constraint. With the

assumption that the second-order statistics of the CSI is perfectly known, [72] proved that
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the system SNR maximization problem with a total relay transmit power constraint has a

closed-form solution. It also showed that in the case of individual relay power constraints,

the beamforming problem can be approximately written as a semidefinite programming

(SDP) problem which can be efficiently solved using interior point methods.

The total relay transmit power can be rewritten as follows

PT =
M∑
m=1

E[|ym|2] =
M∑
m=1

|wm|2E[|xm|2] = wHDw, (2.63)

where w = [w1, w2, · · · , wM ]T , D = P1diag([E[|f1|2], E[|f2|2], · · · , E[|fM |2]]) + PnI.

With the assumption that the relay noise ν1, ν2, · · · , νM , the destination noise n and the

channel coefficients g1, g2, · · · , gM are all independent from each other, the total noise

power can be expressed by

Pz,n = E[
M∑

l,m=1

wmw
∗
l gmgl

∗]E[|νm|2] + E[|n|2] = wHQw + Pn, (2.64)

where Q = PnE[ggH ]. The power of the signal component P1 can be expressed as

Pz,1 = P1E[
M∑

l,m=1

wmw
∗
l fmgmfl

∗gl
∗]E[|s|2] = wHRw, (2.65)

where R = P1E[(f � g)(f � g)H ]. Therefore, the optimization problem for the SNR

maximization with total relay constraint can be expressed by [72]

max
w

wHRw

wHQw + Pn

subject to wHDw ≤ PT .

(2.66)

To solve the above optimization problem, the weight vector is rewritten as

w =
√
pD−1/2w̃, (2.67)

where w̃ satisfies w̃Hw̃ = 1. Then (2.66) can be rewritten as

max
{p,w̃}

pw̃HR̃w̃

pw̃HQ̃w̃ + Pn

subject to ||w̃||2 = 1, p ≤ PT ,

(2.68)

where R̃ = D1/2RD1/2 and Q̃ = D1/2QD1/2. As the objective function in (2.68)

increases monotonically with p regardless of w̃, which means the objective function is
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maximized when p = PT , hence (2.68) can be simplified as:

max
w̃

PT w̃HR̃w̃

PT w̃HQ̃w̃ + Pn

subject to ||w̃||2 = 1,

(2.69)

or equivalently as

max
w̃

PT w̃HR̃w̃

w̃H(PnI + PT Q̃)w̃

subject to ||w̃||2 = 1,

(2.70)

in which the objective function is maximized when w̃ is chosen as the principal eigenvec-

tor of (PnI + PT Q̃)−1R̃, which leads to the solution

w =
√
PTD1/2P{(PnI + D1/2QD1/2)−1D1/2RD1/2}, (2.71)

and the maximum achievable SNR is given by

SNRmax = PTλmax{(PnI + D1/2QD1/2)−1D1/2RD1/2}, (2.72)

where λmax is the maximum eigenvalue.

Differently, we consider the following optimization problem for the scenario of indi-

vidual relay power constraint as discussed in [67, 72]:

max
w

wHRw

wHQw + Pn

subject to Dmm|wm|2 ≤ Pm, for m = 1, 2, · · · ,M,

(2.73)

where Pm is the maximum allowable transmit power for the mth relay and Dmm refers to

the mth diagonal entry of matrix D. By defining X = wwH , (2.73) can be rewritten as

max
X

tr(RX)

tr(QX) + Pn

subject to DmmXmm ≤ Pm, for m = 1, 2, · · · ,M,Rank(x) = 1,x � 0,

(2.74)

where Xmm refers to the mth diagonal entry of X. By using the idea of semidefinite

relaxation and dropping the non-convex rank-one constraint, (2.75) can be reformulated

as
max
{X,t}

t

subject to tr(X(R− tQ)) ≥ Pnt,

Xmm ≤ Pm/Dmm, for m = 1, 2, · · · ,M,x � 0.

(2.75)
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It should be emphasized that for any value of t, the set of feasible X is convex. The

problem (2.75) can be solved as a semidefinite programming (SDP) using interior points

methods. The computational complexity and efficiency may vary based on the dynamics

of solving an online convex programming with certain softwares.

2.6.5 Distributed Beamforming with Relay Selection

Distributed relays help by increasing system coverage and reducing power consumption.

However, in most scenarios relays are either not ideally distributed in terms of locations or

the channels involved with some of the relays have poor quality. Possible solutions can be

categorized in two approaches. One is to adaptively adjust the power of each relay accord-

ing to the qualities of its associated channels, known as adaptive power control or power

allocation. Some power control methods based on channel magnitude and relative analy-

sis has been studied in [73,75]. An alternative solution is to use relay selection, which se-

lects a number of relays according to a criterion of interest while discarding the remaining

relays. In [77], several optimum single-relay selection schemes and a multi-relay selec-

tion scheme using relay ordering based on maximizing the output SNR under individual

relay power constraints are developed and discussed, but the beamforming weights are

not optimized to enhance the SINR maximization. The work in [78] proposed a low-cost

greedy search method for the uplink of cooperative direct sequence code-division multi-

ple access systems, which approaches the performance of an exhaustive search. In [79],

multi-relay selections algorithm have been developed to maximize the secondary receiver

in a two-hop cognitive relay network.

From a general point of view, random relay selection is the simplest and most non-

restrictive approach. With random relay selection, we choose the relays randomly. This

can be done either by selecting a fixed number of random relays, or, with the number of

selections to be decided randomly. We take a random decision for each relay that if it is

to cooperate in the network with equal probability (i.e.,p(αm = 0) = p(αm = 1) = 0.5,

where α = [α1, α2, · · · , αM ]T ∈ {0, 1}M×1 denotes the relay selection vector whose

element equals either 0 which means the corresponding relay is unselected, or 1 which

means the corresponding relay is selected). In case a fixed number of relays are required,

the relay selection vector α is also randomly chosen, however, with a fixed number of
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ones and zeros (number of ones= Mfix, which is predefined).

Another popular approach is based on the exhaustive search method, in which we test

every possible combination among all the relays, which means the change of status that

each relay is chosen or not will contribute to a different possible combination. Also, if

a minimum number of relays are required, then we can predefine Mmin as the minimum

required number of relays as an additional restriction. The exhaustive search method is

expected to find out the best set of relays. However, the complexity can be extremely high

depending on the total number of relays.

2.6.6 Robust Distributed Beamforming

In most practical scenarios, the channels that connect the signal sources and the relays

may suffer quality degradation because of inevitable measurement, feedback delays, out-

dated channel parameters, estimation and quantization errors in CSI [96–99] as well as

propagation effects, which lead to an imperfect system CSI, which further results in unsat-

isfactory system performance or even system failure. Because of the above reasons, RDB

techniques are hence in demand to reduce or mitigate the channel errors or uncertainties

and preserve the relay system performance. In the literature, very limited work has been

done in the research area of RDB. Most of the existing techniques adopt a worst-case opti-

mization design to constraint the system SNR and aim to minimize the total relay transmit

power as in a convex optimization problem [98, 103, 104]. Similar approaches also start

with the same optimization problem and then reformulate it so that it can be solved with

using a convex semi-definite programme (SDP) relaxation method [94, 96, 97, 108]. The

intriguing work in [96] models the channel errors on their covariance matrices as a type

of matrix perturbation. However, all of these existing techniques designate to minimize

the total relay transmit power with constraints on the QoS (e.g. SNRs, SINRs). If we

denote the channel uncertainties or errors as E = [e1, · · · , eK ] ∈ CM×K (If that only the

sources-to-destination channel F is considered for mismatch, whereas g is not affected),

then we have

f̂k = fk + ek, k = 1, 2, · · · , K, (2.76)

where fk and f̂k are the kth true and mismatched channel components of F, respectively.

ek for any k = 1, · · · , K follows a Gaussian distribution. Then, in a worst-case scenario
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we assume that ek falls in a hyper-spherical uncertainty set so that it satisfies the norm

constraint ||ek|| ≤ εk, where εk is a user-defined constant. The error uncertainly set can

be hence written as

Ak = {ζk|ζk = fk + ek, ||ek|| ≤ εk}, k = 1, · · · , K. (2.77)

Then the optimization problem that aims to minimize the total relay transmit power with

a SNR contraint can be generally described by

min
w

PT

subject to SNR > η,
(2.78)

where η is the minimum requirement for the system input SNR.

2.7 Summary

This chapter has firstly reviewed the background theories of sensor array processing and

beamforming techniques. Then, introductions to the existing work in the literatures on the

conventional adaptive beamforming algorithms and robust adaptive beamforming tech-

niques have been presented. Lastly, the problem of distributed beamforming for wireless

communication systems and the existing approaches and techniques have been discussed.

This chapter is provided as a background support to the rest of the chapters where sig-

nificant improvements and developments as well novel techniques are proposed. In the

following chapters, we firstly introduce novel cost-efficient robust adaptive beamform-

ing methods that based on recursive shrinkage methods, cross-correlation exploitations,

subspace projections and low-rank techniques. Then, distributed beamforming and relay

selection methods and robust distributed beamforming techniques are proposed.
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CHAPTER 3. LOW-COMPLEXITY SHRINKAGE-BASED MISMATCH ESTIMATION (LOCSME)

ALGORITHMS FOR ROBUST ADAPTIVE BEAMFORMING

3.1 Introduction

Sensor array signal processing techniques and their applications to wireless communica-

tions, sensor networks and radar have been widely investigated in recent years. Adaptive

beamforming is one of the most important topics in sensor array signal processing which

has applications in many fields. However, adaptive beamformers may suffer performance

degradation due to small sample data size or the presence of the desired signal in the train-

ing data. In practical environments, desired signal steering vector mismatch problems like

signal pointing errors [18], imprecise knowledge of the antenna array, look-direction mis-

match or local scattering may even lead to more significant performance loss [7].

3.1.1 Prior and Related Work

In order to address these problems, robust adaptive beamforming (RAB) techniques have

been developed in recent years. Popular approaches include worst-case optimization [7],

diagonal loading [8, 9, 37], and eigen-decomposition [18, 19]. However, general RAB

designs have some limitations such as their ad hoc nature, high probability of subspace

swap at low SNR and high computational cost [11].

Further recent works have looked at approaches based on combined estimation proce-

dures for both the steering vector mismatch and interference-plus-noise covariance (INC)

matrix to improve RAB performance. The worst-case optimization methods in [7,33–35]

solve an online semi-definite programming (SDP) while using a matrix inversion to esti-

mate the INC matrix. The method in [12] estimates the steering vector mismatch by solv-

ing an online sequential quadratic program (SQP) [12], while estimating the INC matrix

using a shrinkage method [12]. Another similar method which jointly estimates the steer-

ing vector using SQP and the INC matrix using a covariance reconstruction method [15],

presents outstanding performance compared to other RAB techniques. However, their

main disadvantages include the high computational cost associated with online optimiza-

tion programming, the matrix inversion or reconstruction process, and slow convergence.
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ALGORITHMS FOR ROBUST ADAPTIVE BEAMFORMING

3.1.2 Contributions

In this chapter, we develop an RAB algorithm with low complexity, which requires very

little in terms of prior information, and has a superior performance to previously reported

RAB algorithms. Our technique estimates the steering vector using a low-complexity

shrinkage-based mismatch estimation (LOCSME) algorithm [31]. LOCSME estimates

the covariance matrix of the input data and the INC matrix using the oracle approximat-

ing shrinkage (OAS) method. The only prior knowledge that LOCSME requires is the

angular sector in which the desired signal steering vector lies. Given the sector, the sub-

space projection matrix of this sector can be computed in very simple steps [11–13, 15].

In the first step, an extension of the OAS method [16] is employed to perform shrinkage

estimation for both the cross-correlation vector between the received data and the beam-

former output and the received data covariance matrix. LOCSME is then used to estimate

the mismatched steering vector and does not involve any optimization program, which

results in a lower computational complexity. In a further step, we estimate the desired

signal power using the desired signal steering vector and the received data. As the last

step, a strategy which subtracts the covariance matrix of the desired signal from the data

covariance matrix estimated by OAS is proposed to obtain the INC matrix. The advan-

tage of this approach is that it circumvents the use of direction finding techniques for the

interferers, which are required to obtain the INC matrix.

Then, we develop a stochastic gradient (SG) adaptive version of the LOCSME tech-

nique [31], denoted LOCSME-SG, which does not require matrix inversions or costly

recursions to update the beamforming weights adaptively. In particular, the SCM is

estimated only once using a knowledge-aided (KA) shrinkage [20, 32] algorithm along

with the computation of the beamforming weights based on the estimated steering vector

through SG recursions. Moreover, we also develop an adaptive LOCSME technique based

on the conjugate gradient (CG) adaptive algorithm, resulting in CG type algorithms, de-

noted LOCSME-CCG and LOCSME-MCG. Different from LOCSME-SG, the CG type

algorithms not only updates the beamforming weights, but can also estimate the mis-

matched steering vector, which sequentially performs the estimation of the mismatched

vector by LOCSME in every snapshot. An analysis shows that both LOCSME-SG and

LOCSME-CG achieve one degree lower complexity than the original LOCSME. Simu-

lations also show an excellent performance which benefits from the precise estimation
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provided by the shrinkage approach. Our contributions are summarized as follows:

• The derivation of LOCSME batch algorithm.

• The development of LOCSME type SG and CG algorithms.

• An investigation of the effect of shrinkage on the estimation accuracy of the algo-

rithms.

• A study of the performance and the complexity of the proposed and existing algo-

rithms.

This chapter is organized as follows. The system model and problem statement are de-

scribed in Section 3.2. The derivation of the LOCSME algorithm and steering vector mis-

match estimation are provided in Section 3.3. Section 3.4 presents the proposed adaptive

LOCSME-SG algorithm whereas Section 3.5 presents the proposed LOCSME-CCG and

LOCSME-MCG algorithms. Section 3.6 provides the shrinkage and complexity analyses.

Section 3.7 presents the simulation results. Section 3.8 gives the summary.

3.2 System Model and Problem Statement

Consider a linear antenna array of M sensors and K narrowband signals which impinge

on the array. The data received at the ith snapshot can be modeled as

x(i) = A(θ)s(i) + n(i), (3.1)

where s(i) ∈ CK×1 are uncorrelated source signals, θ = [θ1, · · · , θK ]T ∈ RK is a vector

containing the directions of arrival (DoAs), A(θ) = [a(θ1) + e, · · · , a(θK)] ∈ CM×K is

the matrix which contains the steering vector for each DoA and e is the steering vector

mismatch of the desired signal, n(i) ∈ CM×1 is assumed to be complex Gaussian noise

with zero mean and variance σ2
n. The beamformer output is

y(i) = wHx(i), (3.2)
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where w = [w1, · · · , wM ]T ∈ CM×1 is the beamformer weight vector, where (·)H de-

notes the Hermitian transpose. The optimum beamformer is computed by maximizing

the signal-to-interference-plus-noise ratio (SINR) given by

SINR =
σ2

1|wHa1|2
wHRi+nw

. (3.3)

where σ2
1 is the desired signal power, Ri+n is the INC matrix. Assuming that the steering

vector a1 is known precisely (a1 = a(θ1)), then problem (3.3) can be cast as an optimiza-

tion problem
minimize

w
wHRi+nw

subject to wHa1 = 1,
(3.4)

which is known as the MVDR beamformer or Capon beamformer [1, 4]. The optimum

weight vector is given by wopt =
R−1
i+na1

aH1 R−1
i+na1

. Since Ri+n is usually unknown in practice, it

can be replaced by the SCM of the received data as

R̂i+n(i) =
1

i

i∑
k=1

x(k)xH(k). (3.5)

The problem we are interested in solving is how to design low-complexity robust adap-

tive beamforming algorithms that can preserve the SINR performance in the presence of

uncertainties in the steering vector of a desired signal.

3.3 Batch LOCSME Algorithm

In this section, the proposed LOCSME algorithm for estimating the desired signal steer-

ing vector is introduced. The idea of LOCSME is to estimate the steering vector and the

INC matrix separately as in previous approaches. The estimation of the steering vector is

described as the projection onto a predefined subspace matrix of an iteratively shrinkage-

estimated cross-correlation vector between the beamformer output and the array observa-

tion. The INC matrix is obtained by subtracting the desired signal covariance matrix from

the data covariance matrix estimated by the OAS method.
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3.3.1 Steering Vector Estimation using LOCSME

The cross-correlation between the array observation vector and the beamformer output

can be expressed as

d = E{xy∗}. (3.6)

We assume and emphasize that when w is determined such that the interference are suffi-

ciently canceled such that they felled much below the noise floor and σ2
1 that they could be

considered to be negligible, in which case we have |aHmw| � |aH1 w| for m = 2, · · · , K,

all signal sources and the noise have zero mean, and the desired signal and every interferer

are independent from each other. By substituting (3.1) and (3.2) into (3.6), we suppose

the interferers are sufficiently canceled such that they fall much below the noise floor and

the desired signal power is not affected by the interference so that d can be rewritten as

d = E{σ1
2aH1 wa1 + nnHw}. (3.7)

In order to eliminate the unwanted part of d and obtain an estimate of the steering vector

a1, d can be projected onto a subspace [13] that collects information about the desired

signal. Here the prior knowledge amounts to providing an angular sector range in which

the desired signal is located, say [θ1 − θe, θ1 + θe]. The subspace projection matrix P is

given by

P = [c1, c2, · · · , cp][c1, c2, · · · , cp]H , (3.8)

where c1, · · · , cp are the p (which can be chosen manually by the user) principal eigen-

vectors of the matrix C, which is defined by [12]

C =

θ1+θe∫
θ1−θe

a(θ)aH(θ)dθ. (3.9)

At this point, LOCSME will use the OAS method to compute the correlation vector d

iteratively. The aim is to devise a method that estimates d more accurately with the help

of the shrinkage technique. An accurate estimate of d can help to obtain a better estimate

of the steering vector. Let us define

F̂ = ν̂I, (3.10)

where ν̂ = tr(Ŝ)/M and Ŝ = diag(xy∗) ∈ CM×M is a diagonal matrix. Then, a reason-

able tradeoff between covariance reduction and bias increase can be achieved by shrinkage
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of Ŝ towards F̂ [16] and subsequently using it in a vector shrinkage form, which results

in

d̂ = ρ̂diag(F̂) + (1− ρ̂)diag(Ŝ), (3.11)

which is parameterized by the shrinkage coefficient ρ̂. If we define D̂ = diag(d̂) then

the goal is to find the optimal value of ρ̂ that minimizes the mean square error (MSE) of

E[‖D̂(i)− F̂(i− 1)‖2
] in the ith snapshot, by taking the time index into account which

leads to

d̂(i) = ρ̂(i)diag(F̂(i)) + (1− ρ̂(i))diag(Ŝ(i)), (3.12)

ρ̂(i+ 1) =
(1− 2

M
)tr(D̂(i)Ŝ∗(i)) + tr(D̂(i))tr(D̂∗(i))

(i+ 1− 2
M

)tr(D̂(i)Ŝ∗(i)) + (1− i
M

)tr(D̂(i))tr(D̂∗(i))
, (3.13)

where matrix Ŝ(i) is estimated using the sample correlation vector (SCV) as

Ŝ(i) = diag
(1

i

i∑
k=1

x(k)y∗(k)
)
. (3.14)

As long as the initial value of ρ̂(0) is between 0 and 1, the iterative process in (3.12) and

(3.13) is guaranteed to converge [16]. Once the correlation vector d̂ is obtained by the

above OAS method, the steering vector is estimated by

â1(i) =
Pd̂(i)

‖Pd̂(i)‖2

, (3.15)

where â1(i) gives the final estimate of the steering vector.

3.3.2 Interference-Plus-Noise Covariance Matrix Estimation

In order to compute the output SINR using (3.3), the INC matrix has to be estimated. The

data covariance matrix (which contains the desired signal) is required. The SCM in (3.5)

is necessary as a preliminary approximation. In the next step, similar to using OAS to

estimate the cross-correlation vector d̂, the SCM is also processed with the OAS method

as a further shrinkage estimation step. Let us define the following quantity

F̂0 = ν̂0I, (3.16)

where ν̂0 = tr(R̂)/M . Then, we use the shrinkage form again

R̃ = ρ̂0F̂0 + (1− ρ̂0)R̂. (3.17)
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By minimizing the MSE described by E[‖R̃(i)− F̂0(i− 1)‖2
], we obtain the following

recursion

R̃(i) = ρ̂0(i)F̂0(i) + (1− ρ̂0(i))R̂(i), (3.18)

ρ̂0(i+ 1) =
(1− 2

M
)tr(R̃(i)R̂(i)) + tr2(R̃(i))

(i+ 1− 2
M

)tr(R̃(i)R̂(i)) + (1− i
M

)tr2(R̃(i))
. (3.19)

Provided the initial value of ρ̂0(0) is between 0 and 1, the iterative process in (3.18) and

(3.19) is guaranteed to converge [16]. In order to eliminate the unwanted information of

the desired signal in the covariance matrix and obtain the INC matrix, the desired signal

power σ2
1 must be obtained, which can be estimated directly using the desired signal

steering vector. Let us rewrite the received data as

x =
K∑
k=1

aksk + n. (3.20)

Pre-multiplying the above equation by aH1 , we have

aH1 x = aH1 a1s1 + aH1

( K∑
k=2

aksk + n
)
. (3.21)

Here we assume that each of the interferers is orthogonal or approximately orthogonal to

the desired signal. Specifically, the steering vector of each of the interferers is orthog-

onal (âH1 (i)ak(i) = 0, k = 2, 3, · · · , K), or approximately orthogonal (âH1 (i)ak(i) �
âH1 (i)â1(i), k = 2, 3, · · · , K) to the desired signal steering vector (i.e., â1(i)), so that

âH1 (i)ak(i) (k = 2, 3, · · · , K) approaches zero and the term
K∑
k=2

âH1 (i)ak(i)sk(i) in (3.21)

can be neglected, resulting in

aH1 x = aH1 a1s1 + aH1 n. (3.22)

Taking the expectation of E[|aH1 x|2], we obtain

E[|aH1 x|2] = E[(aH1 a1s1 + aH1 n)∗(aH1 a1s1 + aH1 n)]. (3.23)

If the noise is statistically independent from the desired signal, then we have

E[|aH1 x|2] = |aH1 a1|2|s1|2 + aH1 nnHa1, (3.24)

where |s1|2 is the desired signal power which can be replaced by its estimate σ̂2
1 , nnH

represents the noise covariance matrix Rn which can be replaced by σ2
nIM . Replacing a1

by its estimate â1(i) the desired signal power estimate is given by

σ̂2
1(i) =

|âH1 (i)x(i)|2 − âH1 (i)â1(i)σ2
n

|âH1 (i)â1(i)|2 . (3.25)
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As the last step, the desired signal covariance matrix is subtracted and the INC matrix is

given by

R̃i+n(i) = R̃(i)− σ̂2
1(i)â1(i)âH1 (i). (3.26)

The advantage of this step compared to SMI and existing methods is that it does not

require direction finding and is suitable for real-time applications. With the estimates for

the steering vector and the INC matrix, the beamformer is computed by

ŵ(i) =
R̃−1
i+n(i)â1(i)

âH1 (i)R̃−1
i+n(i)â1(i)

. (3.27)

Table 3.1 summarizes LOCSME in steps. From a complexity point of view, the main

computational cost is due to the norm computations of the covariance matrix and the INC

matrix and weight vector computation. Each of these steps has a complexity of O(M3).

Additionally, compared to the previous RAB algorithms in [11], [12], [12] and [15] which

have complexity equal or higher than O(M3.5), LOCSME has a lower cost (O(M3)).

3.4 Stochastic Gradient LOCSME Type Algorithm

In this section, we develop SG adaptive strategies based on the LOCSME robust beam-

forming technique, resulting in the proposed LOCSME-SG algorithm. CCG and MCG

based RAB algorithms named LOCSME-CCG and LOCSME-MCG are introduced in the

next section. These algorithms are developed for implementation purposes and are espe-

cially suitable for dynamic scenarios. In these adaptive algorithms, we employ the same

recursions as in LOCSME to estimate the steering vector and the desired signal power,

whereas the estimation procedures of the INC matrix and the beamforming weights are

different. In particular, LOCSME-SG employs a low-cost KA shrinkage method to esti-

mate the INC matrix and the weight vector update equation is derived from a reformulated

optimization problem.
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Table 3.1: Proposed LOCSME Algorithm

Initialize:

C =
θ1+θe∫
θ1−θe

a(θ)aH(θ)dθ

[c1, · · · , cp]: p princical eigenvectors of C

Subspace projection P = [c1, · · · , cp][c1, · · · , cp]H

R̂(0) = 0; Ŝ(0) = 0; w(0) = 1;

ρ̂(1) = ρ(0) = ρ̂0(1) = ρ0(0) = 1;

For each snapshot index i = 1, 2, · · · :

R̂(i) = 1
i

i∑
k=1

x(k)xH(k)

Ŝ(i) = diag
(

1
i

i∑
k=1

x(k)y∗(k)
)

ν̂(i) = tr(Ŝ(i))/M

F̂(i) = ν̂(i)I

d̂(i) = ρ̂(i)diag(F̂(i)) + (1− ρ̂(i))diag(Ŝ(i))

D̂(i) = diag(d̂(i))

ρ̂(i+ 1) =
(1− 2

M
)tr(D̂(i)Ŝ∗(i))+tr(D̂(i))tr(D̂∗(i))

(i+1− 2
M

)tr(D̂(i)Ŝ∗(i))+(1− i
M

)tr(D̂(i))tr(D̂∗(i))

â1(i) = Pd̂(i)

‖Pd̂(i)‖2
ν̂0(i) = tr(R̂(i))/M

F̂0(i) = ν̂0(i)I

R̃(i) = ρ̂0(i)F̂0(i) + (1− ρ̂0(i))R̂(i)

ρ̂0(i+ 1) =
(1− 2

M
)tr(R̃(i)R̂(i))+tr2(R̃(i))

(i+1− 2
M

)tr(R̃(i)R̂(i))+(1− i
M

)tr2(R̃(i))

σ̂2
1(i) =

|âH1 (i)x(i)|2−âH1 (i)â1(i)σ2
n

|âH1 (i)â1(i)|2

R̃(i) = R̃(i) + ‖R̃(i)‖2I
R̃i+n(i) = R̃(i)− σ̂2

1(i)â1(i)âH1 (i)

R̃i+n(i) = R̃i+n(i) 2σ2
n

‖R̃i+n(i)‖2

ŵ(i) =
R̃−1
i+n(i)â1(i)

âH1 (i)R̃−1
i+n(i)â1(i)
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3.4.1 INC Matrix Estimation with a Knowledge-Aided Shrinkage

Method

With the estimate of the desired signal power we subtract unwanted information of the in-

terferences out from the array received data to obtain a modified array observation (MAO)

vector. Consider a simple substraction step as

xi+n(i) = x(i)− σ̂1(i)â1(i). (3.28)

Then the INC matrix can be estimated by

R̂i+n(i) = xi+n(i)xHi+n(i). (3.29)

Now, we employ the idea of KA shrinkage method [20, 32] to help with our INC estima-

tion. By applying a linear shrinkage model to the INC matrix, we have

R̆i+n(i) = η(i)R0 + (1− η(i))R̂i+n(i), (3.30)

where R0 is an initial guess for the INC matrix, η(i) is the shrinkage parameter and η(i) ∈
(0, 1). Here the shrinkage parameter is expected to be adaptively estimated. Employing

an idea of adaptive filtering [20, 32], it is possible to set y0f (i) = [R0â1(i)]Hx(i) and

ŷf (i) = [R̂i+n(i)â1(i)]Hx(i). To restrict η(i) to a value greater than 0 and less than 1, a

sigmoidal function is employed:

η(i) = sgm[ε(i)] =
1

1 + e−ε(i)
, (3.31)

where ε(i) is updated as [20, 32]

ε(i+ 1) = ε(i)− µε
(σε + q(i))

(η(i)|y0f (i)− ŷf (i)|2

+Re{(y0f (i)− ŷf (i))ŷ∗f (i)})η(i)(1− η(i)), (3.32)

where µε is the step size while σε is a small positive constant, and q(i) is updated as [20,32]

q(i+ 1) = λq(i)(1− λq)|y0f (i)− ŷf (i)|2, (3.33)

where λq is a forgetting factor. The above steps formulate a completed INC matrix esti-

mation in a single iteration.
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3.4.2 Adaptive Computations of Beamforming Weight Vector

Now we resort to an SG adaptive strategy to reduce the complexity required by the matrix

inversion. The optimization problem (3.4) can be re-expressed as

minimize
w(i)

wH(i)(R̃(i)− σ̂2
1(i)â1(i)âH1 (i))w(i)

subject to wH(i)â1(i) = 1.

(3.34)

Then we can express the SG recursion as

w(i+ 1) = w(i)− µ ∂L
∂w(i)

, (3.35)

where L = wH(i)(x(i)xH(i) − σ̂2
1(i)â1(i)âH1 (i))w(i) + λ(wH(i)â1(i) − 1). By substi-

tuting L into the SG equation (3.35) and letting wH(i + 1)â1(i + 1) = 1, λ is obtained

as

λ =
2(σ̂2

1(i)âH1 (i)â1(i)− y(i)xH(i)â1(i))

âH1 (i)â1(i)
. (3.36)

By substituting λ back into (3.35) again, the weight update equation for LOCSME-SG is

obtained as

w(i+ 1) = (I−µσ̂2
1(i)â1(i)âH1 (i))w(i)−µ(σ̂2

1(i)â1(i) +y∗(i)(x(i)− âH1 (i)x(i)â1(i)

âH1 (i)â1(i)
)).

(3.37)

The adaptive SG recursion circumvents a matrix inversion when computing the weights

using (3.27), which is unavoidable in LOCSME. Therefore, the computational complex-

ity is reduced from O(M3) in LOCSME to O(M2) in LOCSME-SG. The proposed

LOCSME-SG algorithm is summarized in Table 3.2.

3.5 Conjugate Gradient LOCSME Type Algorithms

In this section, we develop CG adaptive strategies based on the LOCSME robust beam-

forming technique, resulting in the LOCSME-CCG and LOCSME-MCG algorithms.
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Table 3.2: Proposed LOCSME-SG Algorithm

Initialize:

C =
θ1+θe∫
θ1−θe

a(θ)aH(θ)dθ

[c1, · · · , cp]: p principal eigenvectors of C

P = [c1, · · · , cp][c1, · · · , cp]H

l̂(0) = 0; w(0) = 1; ρ̂(1) = ρ(0) = 1;

For each snapshot index i = 1, 2, · · · :

l̂(i) = 1
i

i∑
k=1

x(k)y∗(k)

Steering vector mismatch estimation

ν̂(i) =
∑M

m=1 lm(i)/M

d̂(i) = ρ̂(i)ν̂(i) + (1− ρ̂(i))̂l(i)

ρ̂(i) =
(1− 2

M
)d̂H(i−1)̂l(i−1)+

∑
d̂(i−1)

∑∗ d̂(i−1)

(i− 2
M

)d̂H(i−1)̂l(i−1)+(1− i
M

)
∑

d̂(i−1)
∑∗ d̂(i−1)

â1(i) = Pd̂(i)

‖Pd̂(i)‖2
Desired signal power estimation

σ̂2
1(i) =

|âH1 (i)x(i)|2−|âH1 (i)â1(i)|σ2
n

|âH1 (i)â1(i)|2

Computation of INC matrix

xi+n(i) = x(i)− σ̂1(i)â1(i)

R̂i+n(i) = xi+n(i)xHi+n(i)

R̆i+n(i) = η(i)R0 + (1− η(i))R̂i+n(i)

y0f (i) = [R0â1(i)]Hxi+n(i)

ŷf (i) = [R̂i+n(i)â1(i)]Hxi+n(i)

yf (i) = η(i)y0f (i) + (1− η(i))ŷf (i)

η(i) = 1
1+e−ε(i)

ε(i+ 1) = ε(i)− µε
(σε+q(i))

(η(i)|y0f (i)− ŷf (i)|2

+R{(y0f (i)− ŷf (i))ŷ∗f (i)})η(i)(1− η(i))

q(i+ 1) = λq(i)(1− λq)|y0f (i)− ŷf (i)|2

Computation of beamformer weights

w(i+ 1) = (I− µσ̂2
1(i)â1(i)âH1 (i))w(i)

−µ(σ̂2
1(i)â1(i) + y∗(i)(x(i)− âH1 (i)x(i)â1(i)

âH1 (i)â1(i)
))

End snapshot
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3.5.1 LOCSME-CCG algorithm

In order to introduce CG-based adaptive algorithms, we specifically divide them into

two different algorithms, namely, LOCSME-CCG and its modified version LOCSME-

MCG. In the approach of LOCSME-CCG, the SCV l̂(i) is replaced by an estimate with a

forgetting factor λ, which is a constant scalar less than and close to 1 as

l̂(i) = λ̂l(i− 1) + x(i)y∗(i), (3.38)

before we employ it into the vector shrinkage method. The INC matrix is also estimated

directly with this forgetting factor as

R̂(i) = λR̂(i− 1) + x(i)xH(i). (3.39)

In order to derive CG-based recursions we need to reformulate the cost function that needs

to be minimized in [24] as follows

minimize
â1(i),v(i)

J = vH(i)(R̂(i)− σ̂2
1(i)â1(i)âH1 (i))v(i)−R{âH1 (i)v(i)}, (3.40)

where v(i) is the CG-based weight vector. In LOCSME-CCG, we require a run of N

iterations in each snapshot. In the nth iteration, â1,n(i) and vn(i) are updated as follows

â1,n(i) = â1,n−1(i) + αâ1,n(i)pâ1,n(i), (3.41)

vn(i) = vn−1(i) + αv,n(i)pv,n(i), (3.42)

where pâ1,n(i) and pv,n(i) are direction vectors updated by

pâ1,n+1(i) = gâ1,n(i) + βâ1,n(i)pâ1,n(i), (3.43)

pv,n+1(i) = gv,n(i) + βv,n(i)pv,n(i), (3.44)

where gâ1,n(i) and gv,n(i) are the negative gradients of the cost function in terms of â1(i)

and v(i), respectively, which are expressed as

gâ1,n(i) = − ∂J
∂â1,n(i)

= σ̂2
1(i)vn(i)vHn (i)â1,n(i) + vn(i), (3.45)

gv,n(i) = − ∂J
∂vn(i)

= gv,n−1(i)− αv,n(i)(R̂(i)− σ̂2
1(i)x(i)xH(i))pv,n(i). (3.46)
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The scaling parameters αâ1,n(i), αv,n(i) can be obtained by substituting (3.41) and (3.42)

into (3.40) and minimizing with respect to αâ1,n(i) and αv,n(i), respectively. The solu-

tions are given by

αâ1,n(i) = −
gHâ1,n−1(i)pâ1,n(i)

σ̂2
1(i)pHâ1,n

(i)vn(i)vHn (i)pâ1,n(i)
, (3.47)

αv,n(i) =
gHv,n−1(i)pv,n(i)

pHv,n(i)(R̂(i)− σ̂2
1(i)â1,n(i)âH1,n(i))pv,n(i)

. (3.48)

The parameters βâ1,n(i) and βv,n(i) should be chosen to provide conjugacy for direction

vectors [21, 24] which results in

βâ1,n(i) =
gHâ1,n

(i)gâ1,n(i)

gHâ1,n−1(i)gâ1,n−1(i)
, (3.49)

βv,n(i) =
gHv,n(i)gv,n(i)

gHv,n−1(i)gv,n−1(i)
. (3.50)

After â1,n(i) and vn(i) are updated for N iterations, the beamforming weight vector w(i)

can be computed by

w(i) =
vN(i)

âH1,N(i)vN(i)
, (3.51)

while the estimated steering vector is also updated to â1,N(i). Table 3.3 summarizes the

LOCSME-CCG algorithm.

3.5.2 LOCSME-MCG algorithm

In LOCSME-MCG, we let only one iteration be performed per snapshot [21, 24], which

further reduces the complexity compared to LOCSME-CCG. Here we denote the CG-

based weights and steering vector updated by snapshots rather than inner iterations as

â1(i) = â1(i− 1) + αâ1(i)pâ1(i), (3.52)

v(i) = v(i− 1) + αv(i)pv(i). (3.53)

As can be seen, the subscripts of all the quantities for inner iterations are eliminated. Then,

we employ the degenerated scheme to ensure αâ1(i) and αv(i) satisfy the convergence

bound [24] given by

0 ≤ pHâ1
(i)gâ1(i) ≤ 0.5pHâ1

(i)gâ1(i− 1), (3.54)
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Table 3.3: Proposed LOCSME-CCG Algorithm

Initialize:

C =
θ1+θe∫
θ1−θe

a(θ)aH(θ)dθ, [c1, · · · , cp]: p principal eigenvectors of C

P = [c1, · · · , cp][c1, · · · , cp]H

l̂(0) = 0; R̂(0) = I; w(1) = v0(1) = 1; ρ̂(1) = ρ(0) = 1; λ = 0.98;

For each snapshot index i = 1, 2, · · · :
l̂(i) = λ̂l(i− 1) + x(i)y∗(i)

R̂(i) = λR̂(i− 1) + x(i)xH(i)

Steering vector mismatch estimation

ν̂(i) =
∑

l̂(i)/M

d̂(i) = ρ̂(i)ν̂(i) + (1− ρ̂(i))̂l(i)

ρ̂(i) =
(1− 2

M
)d̂H(i−1)̂l(i−1)+

∑
d̂(i−1)

∑∗ d̂(i−1)

(i− 2
M

)d̂H(i−1)̂l(i−1)+(1− i
M

)
∑

d̂(i−1)
∑∗ d̂(i−1)

â1(i) = Pd̂(i)

‖Pd̂(i)‖2
Desired signal power estimation

σ̂2
1(i) =

|âH1 (i)x(i)|2−|âH1 (i)â1(i)|σ2
n

|âH1 (i)â1(i)|2

CCG-based estimations of steering vector mismatch and beamformer weights

â1,0(i) = â1(i)

gâ1,0(i) = σ̂2
1(i)v0(i)vH0 (i)â1,0(i) + v0(i)

gv,0(i) = â1,0(i)− R̂(i)v0(i)

pâ1,0(i) = gâ1,0(i); pv,0(i) = gv,0(i)

For each iteration index n = 1, 2, · · · , N :

αâ1,n(i) = − gHâ1,n−1(i)pâ1,n
(i)

σ̂2
1(i)pHâ1,n

(i)vn(i)vHn (i)pâ1,n
(i)

, αv,n(i) =
gHv,n−1(i)pv,n(i)

pHv,n(i)(R̂(i)−σ̂2
1(i)â1,n(i)âH1,n(i))pv,n(i)

â1,n(i) = â1,n−1(i) + αâ1,n(i)pâ1,n(i), vn(i) = vn−1(i) + αv,n(i)pv,n(i)

gâ1,n(i) = σ̂2
1(i)vn(i)vHn (i)â1,n(i) + vn(i)

gv,n(i) = gv,n−1(i)− αv,n(i)(R̂(i)− σ̂2
1(i)x(i)xH(i))pv,n(i)

βâ1,n(i) =
gHâ1,n

(i)gâ1,n
(i)

gHâ1,n−1(i)gâ1,n−1(i)
, βv,n(i) =

gHv,n(i)gv,n(i)

gHv,n−1(i)gv,n−1(i)

pâ1,n+1(i) = gâ1,n(i) + βâ1,n(i)pâ1,n(i), pv,n+1(i) = gv,n(i) + βv,n(i)pv,n(i)

End iteration

computation of beamformer weights

v0(i+ 1) = vN (i)

w(i) = vN (i)

âH1,N (i)vN (i)

End snapshot
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0 ≤ pHv (i)gv(i) ≤ 0.5pHv (i)gv(i− 1). (3.55)

Instead of updating the negative gradient vectors gâ1(i) and gv(i) in iterations, now we

utilize the forgetting factor to re-express them in one snapshot as

gâ1(i) = (1− λ)v(i) + λgâ1(i− 1) + σ̂2
1(i)αâ1(i)v(i)vH(i)pâ1(i)− x(i)xH(i)â1(i),

(3.56)

gv(i) = (1− λ)â1(i) + λgv(i− 1)− αv(i)(R̂(i)

− σ̂2
1(i)â1(i)âH1 (i))pv(i)− x(i)xH(i)v(i− 1). (3.57)

Pre-multiplying (3.56) and (3.57) by pHâ1
(i) and pHv (i), respectively, and taking expecta-

tions we obtain

E[pHâ1
(i)gâ1(i)] = E[pHâ1

(i)(v(i)− x(i)xH(i)â1)(i)] + λE[pHâ1
(i)gâ1(i− 1)]

− λE[pHâ1
(i)v(i)] + E[αâ1(i)p

H
â1

(i)σ̂2
1(i)v(i)vH(i)pâ1(i)], (3.58)

E[pHv (i)gv(i)] = λE[pHv (i)gv(i− 1)]− λE[pHv (i)â1(i)]

− E[αv(i)pHv (i)(R̂(i)− σ̂2
1(i)â1(i)âH1 (i))pv(i)], (3.59)

where in (3.59) we have E[R̂(i)v(i− 1)] = E[â1(i)]. After substituting (3.59) back into

(3.55) we obtain the bounds for αv(i) as follows

(λ− 0.5)E[pHv (i)gv(i− 1)]− λE[pHv (i)â1(i)]

E[pHv (i)(R̂(i)− σ̂2
1(i)â1(i)âH1 (i))pv(i)]

≤E[αv(i)]

≤ λE[pHv (i)gv(i− 1)]− λE[pHv (i)â1(i)]

E[pHv (i)(R̂(i)− σ̂2
1(i)â1(i)âH1 (i))pv(i)]

. (3.60)

Then we can introduce a constant parameter ηv ∈ [0, 0.5] to restrict αv(i) within the

bounds in (3.60) as

αv(i) =
λ(pHv (i)gv(i− 1)− pHv (i)â1(i))− ηvpHv (i)gv(i− 1)

pHv (i)(R̂(i)− σ̂2
1(i)â1(i)âH1 (i))pv(i)

. (3.61)

Similarly, we can also obtain the bounds for αâ1(i). For simplicity let us define

E[pHâ1
(i)gâ1(i − 1)] = A, E[pHâ1

(i)v(i)] = B, E[pHâ1
(i)x(i)xH(i)â1(i)] = C and

E[pHâ1
(i)σ̂2

1(i)v(i)vH(i)pâ1(i)] = D. Substituting equation (3.58) into (3.54) gives

λ(B − A)−B + C

D
≤E[αâ1(i)]≤

λ(B − A)−B + C + 0.5A

D
, (3.62)
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in which we can introduce another constant parameter ηâ1 ∈ [0, 0.5] to restrict αâ1(i)

within the bounds in (3.62) as

E[αâ1(i)] =
λ(B − A)−B + C + ηâ1A

D
, (3.63)

or

αâ1(i) = [λ(pHâ1
(i)v(i)− pHâ1

(i)gâ1(i− 1))− pHâ1
(i)v(i)

+ pHâ1
(i)x(i)xH(i)â1(i) + ηâ1p

H
â1

(i)gâ1(i− 1)]/[σ̂2
1(i)pHâ1

(i)v(i)vH(i)pâ1(i)]. (3.64)

Then we can update the direction vectors pâ1(i) and pv(i) by

pâ1(i+ 1) = gâ1(i) + βâ1(i)pâ1(i), (3.65)

pv(i+ 1) = gv(i) + βv(i)pv(i), (3.66)

where βâ1(i) and βv(i) are updated by

βâ1(i) =
[gâ1(i)− gâ1(i− 1)]Hgâ1(i)

gHâ1
(i− 1)gâ1(i− 1)

, (3.67)

βv(i) =
[gv(i)− gv(i− 1)]Hgv(i)

gHv (i− 1)gv(i− 1)
. (3.68)

Finally we can update the beamforming weights by

w(i) =
v(i)

âH1 (i)v(i)
, (3.69)

The LOCSME-MCG algorithm is summarized in Table 3.4. The MCG approach em-

ploys the forgetting factor λ and constant η for estimating α(i), which means its perfor-

mance may depend on a suitable choice of these parameters. However, it requires much

lower complexity for the elimination of inner recursions compared to CCG and presents

a similar performance in the simulations.

3.6 Performance Analysis

This section investigates the effects of shrinkage approaches and the computational com-

plexity of the proposed algorithms. Firstly we rewrite the vector shrinkage recursions
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Table 3.4: Proposed LOCSME-MCG Algorithm

Initialize:

C =
θ1+θe∫
θ1−θe

a(θ)aH(θ)dθ, [c1, · · · , cp]: p principal eigenvectors of C

P = [c1, · · · , cp][c1, · · · , cp]H

l̂(0) = 0; R̂(0) = I; w(1) = v(0) = 1; ρ̂(1) = ρ(0) = 1;

λ = 0.95; ηv = ηâ1
= 0.1;

gv(0) = pv(1) = R̂(0)v(1); gâ1
(0) = pâ1

(1) = v(0);

For each snapshot index i = 1, 2, · · · :
l̂(i) = λ̂l(i− 1) + x(i)y∗(i)

R̂(i) = λR̂(i− 1) + x(i)xH(i)

Steering vector mismatch estimation

ν̂(i) =
∑

l̂(i)/M

d̂(i) = ρ̂(i)ν̂(i) + (1− ρ̂(i))̂l(i)

ρ̂(i) =
(1− 2

M
)d̂H(i−1)̂l(i−1)+

∑
d̂(i−1)

∑∗ d̂(i−1)

(i− 2
M

)d̂H(i−1)̂l(i−1)+(1− i
M

)
∑

d̂(i−1)
∑∗ d̂(i−1)

â1(i) = Pd̂(i)

‖Pd̂(i)‖2
Desired signal power estimation

σ̂2
1(i) =

|âH1 (i)x(i)|2−|âH1 (i)â1(i)|σ2
n

|âH1 (i)â1(i)|2

MCG-based estimations of steering vector mismatch and beamformer weights

αâ1
(i) = [λ(pHâ1

(i)v(i)− pHâ1
(i)gâ1

(i− 1))− pHâ1
(i)v(i) + pHâ1

(i)x(i)xH(i)â1(i)

+ηâ1
pHâ1

(i)gâ1
(i− 1)]/[σ̂2

1(i)pHâ1
(i)v(i)vH(i)pâ1

(i)]

αv(i) = λ(pHv (i)gv(i−1)−pHv (i)â1(i))−ηvpHv (i)gv(i−1)

pHv (i)(R̂(i)−σ̂2
1(i)â1(i)âH1 (i))pv(i)

â1(i) = â1(i− 1) + αâ1
(i)pâ1

(i)

v(i) = v(i− 1) + αv(i)pv(i)

gâ1
(i) = (1− λ)v(i) + λgâ1

(i− 1) + σ̂2
1(i)αâ1

(i)v(i)vH(i)pâ1
(i)− x(i)xH(i)â1(i)

gv(i) = (1− λ)â1(i) + λgv(i− 1)− αv(i)(R̂(i)− σ̂2
1(i)â1(i)âH1 (i))pv(i)− x(i)xH(i)v(i− 1)

βâ1
(i) =

[gâ1
(i)−gâ1

(i−1)]Hgâ1
(i)

gHâ1
(i−1)gâ1

(i−1)

βv(i) = [gv(i)−gv(i−1)]Hgv(i)
gHv (i−1)gv(i−1)

pâ1
(i+ 1) = gâ1

(i) + βâ1
(i)pâ1

(i)

pv(i+ 1) = gv(i) + βv(i)pv(i)

Computation of beamformer weights

w(i) = v(i)

âH1 (i)v(i)

End snapshot
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into a matrix shrinkage recursion. Then we employ an eigen-decomposition approach to

examine the eigenvalues dispersion for the vector shrinkage and matrix shrinkage cases

by exploring the MSE of their eigenvalues [30], and give reasons why shrinkage gives an

important contribution to the performance. Then we present a complexity analysis for the

proposed algorithms and comparisons to the existing RAB algorithms. It is clear that the

proposed algorithms achieve one degree lower complexity than most of the existing ones.

3.6.1 Shrinkage Analysis

First of all, we modify the vector shrinkage formula (3.12) to the following full rank

matrix form

D̂(i) = ρ̂(i)V̂(i) + (1− ρ̂(i))L̂(i), (3.70)

where V̂(i), D̂(i) and L̂(i) are all diagonal matrix, having each of their diagonal entries

identical to ν̂(i), elements of the optimal shrinkage estimator d̂(i) and elements of the

SCV l̂(i), respectively, whereas all the three matrices have their other entries equal to zero.

Associated with (3.18), it can be seen they share the same linear shrinkage formula. Now,

we carry out eigenvalue decompositions for every matrix in (3.12). Since the eigenvalues

of a diagonal matrix are simply its diagonal entries, the eigenvalues of D̂(i), V̂(i) and

L̂(i) can be expressed as

{d̂1(i), · · · , d̂M(i)}, (3.71)

{ν̂(i), · · · , ν̂(i)}, (3.72)

{l̂1(i), · · · , l̂M(i)}, (3.73)

respectively. Since in each iteration, D̂(i − 1) and V̂(i) are estimated (known) qualities

and L̂(i) is the quantity to be estimated, we have

E[‖L̂(i)− V̂(i)‖2
] = E[‖L̂(i)− D̂(i− 1) + D̂(i− 1)− V̂(i)‖2

]

= E[‖L̂(i)− D̂(i− 1)‖2
]+E[‖D̂(i− 1)− V̂(i)‖2

]+2E[〈L̂(i)−D̂(i−1), D̂(i−1)−V̂(i)〉]

= E[‖L̂(i)− D̂(i− 1)‖2
]+‖D̂(i− 1)− V̂(i)‖2

+2〈E[L̂(i)−D̂(i−1)], D̂(i−1)−V̂(i)〉,
(3.74)

where 〈, 〉 denotes the inner product (i.e., element-wise products between two matrices in

this case, or known as Hadamard product) and we have E[L̂(i)] = D̂(i − 1), then the
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inner product term in the above equation equals 0, which yields the following

E[‖L̂(i)− ν̂(i)I‖2
]− ‖D̂(i− 1)− ν̂(i)I‖2

= E[‖L̂(i)− D̂(i− 1)‖2
]. (3.75)

Equation (3.75) can be interpreted in terms of the eigenvalues of the matrices if we rewrite

it as

E
[ 1

M

M∑
m=1

(l̂m(i)−ν̂(i))2
]
− 1

M

M∑
m=1

(d̂m(i−1)−ν̂(i))2 = E[‖L̂(i)− D̂(i− 1)‖2
]. (3.76)

Note that in (3.76), ν̂(i) actually represents the mean value of the SCV l̂(i) or the diagonal

entries of matrix V̂(i). Similarly to the matrix shrinkage in (3.18), we can carry on the

same analysis even though the matrices are no longer diagonal but will lead to a more

general result. Assuming the eigenvalues of the matrices R̃(i), F̂0(i), and R̂(i) are

{λ1(i), · · · , λM(i)}, (3.77)

{f1(i), · · · , fM(i)}, (3.78)

{γ1(i), · · · , γM(i)}, (3.79)

respectively. Then we have

E[‖R̂(i)− F̂0(i)‖2
] = E[‖R̂(i)− R̃(i− 1) + R̃(i− 1)− F̂0(i)‖2

]

= E[‖R̂(i)− R̃(i− 1)‖2
]+E[‖R̃(i− 1)− F̂0(i)‖2

]+2E[〈R̂(i)−R̃(i−1), R̃(i−1)−F̂0(i)〉]

= E[‖R̂(i)− R̃(i− 1)‖2
]+‖R̃(i− 1)− F̂0(i)‖2

+2〈E[R̂(i)−R̃(i−1)], R̃(i−1)−F̂0(i)〉,
(3.80)

where the inner product term equals 0 because of E[R̂(i)] = R̃(i− 1), which results in

E[‖R̂(i)− F̂0(i)‖2
]− ‖R̃(i− 1)− F̂0(i)‖2

= E[‖R̂(i)− R̃(i− 1)‖2
]. (3.81)

Noting that F̂0(i) = ν̂0(i)I, then (3.81) is equivalent to

E[‖R̂(i)− ν̂0(i)I‖2
]− ‖R̃(i− 1)− ν̂0(i)I‖2

= E[‖R̂(i)− R̃(i− 1)‖2
], (3.82)

which can be rewritten in an alternative form as

E[
1

M

M∑
m=1

(γm(i)− ν̂0(i))2]− 1

M

M∑
m=1

(λm(i− 1)− ν̂0(i))2 = E[‖R̂(i)− R̃(i− 1)‖2
].

(3.83)
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Because the expectation on the right hand side of equation (3.76) and (3.83) are always

non-negative, so we have their left hand side always equal or larger than 0, which yields

E
[ 1

M

M∑
m=1

(l̂m(i)− ν̂(i))2
]
≥ 1

M

M∑
m=1

(d̂m(i− 1)− ν̂(i))2, (3.84)

E
[ 1

M

M∑
m=1

(γm(i)− ν̂0(i))2
]
≥ 1

M

M∑
m=1

(λm(i− 1)− ν̂0(i))2. (3.85)

Since we also know that

E[ν̂(i)] =
1

M

M∑
m=1

d̂m(i− 1), (3.86)

E[ν̂0(i)] =
1

M

M∑
m=1

λm(i− 1), (3.87)

which express the expected mean of the eigenvalues of the sampled matrix L̂(i) and R̂(i)

in snapshot i, respectively. Then equations (3.84) and (3.85) indicate that the expected

MSE of the eigenvalues of L̂(i) or R̂(i) in snapshot i is always larger or equal to those of

the optimal shrinkage estimator D̂(i−1) or R̃(i−1) obtained from the previous snapshot.

In other words, the eigenvalues of the sampled matrix are more dispersedly distributed

(here we should have d̂1(i− 1) > l̂1(i) > 0, d̂m(i− 1) < l̂m(i) and λ1(i− 1) > γ1(i) >

0, λm(i − 1) < γm(i)) based on their expected mean value than those of the optimal

shrinkage estimator from the last snapshot. Shrinking the sampled matrix to a matrix

with less dispersed eigenvalues can lead to an improved covariance matrix estimator as

reported in [17].

3.6.2 Complexity Analysis

In this part, we analyze the computational complexity in terms of flops (total number of

additions and multiplications) required by the proposed RAB algorithms. The proposed

RAB algorithms avoid costly matrix inversion and multiplication procedures, which are

unavoidable in the existing RAB algorithms. The complexity comparison among different

algorithms are listed in Table 3.5. It should be noted that LOCSME-CCG has its complex-

ity dependent on the number of inner iterations N , which can be properly selected within

the range of 5− 10. However, the low-complexity worst-case (LCWC) algorithm of [19]

also requiresN inner iterations per snapshots, which significantly varies in different snap-

shots and is usually much larger than the value of N in the proposed LOCSME-CCG
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Table 3.5: Complexity Comparison

RAB Algorithms Flops/snapshot

LOCSME [31] 4M3 + 3M2 + 20M

RCB [8] 2M3 + 11M2

Algorithm of [12] M3.5 + 7M3 + 5M2 + 3M

LOCME [13] 2M3 + 4M2 + 5M

LCWC [19] N(2M2 + 7M)

LOCSME-SG 15M2 + 30M

LOCSME-CCG (5 + 8N)M2 + (21 + 32N)M

LOCSME-MCG 13M2 + 77M

algorithm. It is clear that our proposed algorithms have one degree lower complexity in

terms of the number of sensors M , which are dominated by O(M2), resulting in great

advantages when M is large. Fig. 3.1 gives illustrations of the complexity comparison of

the listed algorithms, where the values of N for [19] and the proposed LOCSME-CCG

are selected as 50 and 10, respectively.
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Figure 3.1: Complexity versus number of sensors
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3.7 Simulations

The simulations are carried out under both coherent and incoherent local scattering mis-

match [9] scenarios. A uniform linear array (ULA) of M = 12 omnidirectional sensors

with half wavelength spacing is considered. 100 repetitions are executed to obtain each

point of the curves and a maximum of i = 300 snapshots are observed. The desired signal

is assumed to arrive at θ1 = 10◦ while there are other two interferers impinging on the an-

tenna array from directions θ2 = 30◦ and θ3 = 50◦. The signal-to-interference ratio (SIR)

is fixed at 0dB. For the curves with the optimum beamforming in each of the compar-

isons, we employ the MVDR beamformer and assume that the DoA of the desired signal

is perfectly known (without mismatch) and that the covariance matrix of the received data

is also perfectly known perfectly so that the output SINR can be directly computed with

(3.3). For our proposed algorithms, the angular sector in which the desired signal is as-

sumed to be located is chosen as [θ1 − 5◦, θ1 + 5◦] and the number of eigenvectors of the

subspace projection matrix p is selected manually with the help of simulations. The re-

sults focus on the beamformer output SINR performance versus the number of snapshots,

or a variation of input SNR (−10dB to 30dB).

3.7.1 Mismatch due to Coherent Local Scattering

If we choose the number of scatters as 4, then the steering vector of the desired signal

affected by a time-invariant coherent local scattering effect is modeled as

a1 = p +
4∑

k=1

ejϕkb(θk), (3.88)

where p corresponds to the direct path while b(θk)(k = 1, 2, 3, 4) corresponds to the

scattered paths. The angles θk(k = 1, 2, 3, 4) are randomly and independently drawn in

each simulation run from a uniform generator with mean 10◦ and standard deviation 2◦.

The angles ϕk(k = 1, 2, 3, 4) are independently and uniformly taken from the interval

[0, 2π] in each simulation run. Notice that θk and ϕk change from trials while remaining

constant over snapshots.

Fig. 3.2 and Fig. 3.3 illustrate the performance comparisons of SINR versus snapshots
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and SINR versus SNR, respectively, in terms of the mentioned RAB algorithms in the

last section under coherent scattering case. Specifically to obtain Fig. 3.2, we assume the

noise power is known and select µ = 0.2, µε = 1, σε = 0.001, λq = 0.99, R0 = 10I for

LOCSME-SG, λ = 0.95 for LOCSME-CCG and λ = 0.95, η = 0.2 for LOCSME-MCG.

However, selection of these parameters may vary according to different input SNR as in

Fig. 3.3. The proposed algorithms outperform the other algorithms and are very close to

the standard LOCSME, especially for LOCSME-CCG and LOCSME-MCG.
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Figure 3.2: Coherent local scattering, SINR versus snapshots
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Figure 3.3: Coherent local scattering, SINR versus SNR

In Fig. 3.4, we use an maximum likelihood (ML)-based method to estimate the noise

power in LOCSME, LOCSME-SG, LOCSME-CCG and LOCSME-MCG in the same
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scenario of Fig. 3.2. It is clear that no noticeable differences between their performance

can be observed by comparing Fig. 3.2 and Fig. 3.4.
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Figure 3.4: coherent local scattering, SINR versus snapshots

3.7.2 Mismatch due to Incoherent Local Scattering

In the incoherent local scattering case, the desired signal has a time-varying signature and

the steering vector is modeled by

a1(i) = s0(i)p +
4∑

k=1

sk(i)b(θk), (3.89)

where sk(i)(k = 0, 1, 2, 3, 4) are i.i.d zero mean complex Gaussian random variables in-

dependently drawn from a random generator. The angles θk(k = 0, 1, 2, 3, 4) are drawn

independently in each simulation run from a uniform generator with mean 10◦ and stan-

dard deviation 2◦. This time, sk(i) changes both from run to run and from snapshot to

snapshot.

Fig. 3.5 and Fig. 3.6 illustrate the performance comparisons of SINR versus snapshots

and SINR versus SNR, respectively, in terms of the mentioned RAB algorithms in the last

section under incoherent scattering case. To obtain Fig. 3.5, we select µ = 0.1, µε = 5,

σε = 0.001, λq = 0.99, R0 = 50I for LOCSME-SG, λ = 0.99 for LOCSME-CCG and

λ = 0.95, η = 0.3 for LOCSME-MCG. However, we have optimized the parameters to

give the best possible performance at different input SNRs.
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Figure 3.5: incoherent local scattering, SINR versus snapshots
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Figure 3.6: incoherent local scattering, SINR versus SNR

Differently from the coherent scattering results, all the algorithms have a certain level

of performance degradation due to the effect of incoherent local scattering model, in

which case we have the extra system dynamics with the time variation, contributing to

more environmental uncertainties in the system. However, over a wide range of input

SNR values, the proposed algorithms are still able to outperform the other RAB algo-

rithms. One point that needs to be emphasized is, most of the existing RAB algorithms

experience significant performance degradation when the input SNR is high (i.e. around

or more than 20dB), which is explained in [15] that the desired signal always presents

in any kind of diagonal loading technique. However, the proposed algorithms have im-
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Table 3.6: Changes of Interferers

Snapshots DoAs

0− 150 θ1 = 10◦, θ2 = 30◦, θ3 = 50◦.

150− 300 θ1 = 15◦, θ2 = 25◦, θ3 = 35◦.

proved the estimation accuracy, so that the high SNR degradation is successfully avoided

as can be seen in Fig. 3.5 and Fig. 3.6.

We assess the SINR performance versus the number of snapshots of the selected al-

gorithms in a specific time-varying scenario with the desired signal operating at 12 dB.

The scenario is characterized by a set of source signals which have associated DoAs from

the beginning of their operation until 150 snapshots. The DoAs of these source signals

suddenly change at 150 snapshots but remain the same powers, which requires the beam-

forming algorithms to adjust to the new environment as described in Table 3.6. The result

of this scenario is shown in Fig. 3.7.
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Figure 3.7: Scenario with incoherent local scattering and time-varying DoAs

In addition, it should also be emphasized that performance comparisons with the con-

ventional adaptive algorithms (i.e. SG, CCG or MCG without combined to LOCSME)

are not included, as they are not recognized as RAB algorithms and have much worse

performance in the presence of uncertainties. Actually, as mentioned in the introduc-

tion, it has already been shown that conventional adaptive beamforming algorithms are
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extremely sensitive to the statistical characteristics of the sampled data (i.e. data size and

data accuracy). Especially, when these algorithms suffer environment uncertainties (i.e.

steering vector mismatch), significant further performance degradation is unavoidable.

3.8 Summary

This chapter introduces low-complexity adaptive RAB algorithms developed from the

LOCSME RAB method. In each of these algorithms, we have derived recursions for the

weight vector update and exploited effective shrinkage methods, both of which require

low complexity without losing any noticeable performance. Additionally, in the CG-

based RAB algorithms we have enabled the estimation for the mismatch steering vector

inside the CG recursions to enhance the robustness. Both complexity and performance

comparisons are provided and analyzed. Simulation results have shown that the proposed

algorithms achieved excellent output SINR performance and are suitable for operation in

high input SNR.
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4.1 Introduction

Some beamforming systems in advanced applications require antenna arrays with a very

large number of sensor elements, which leads to the increase of computational complexity

and the decrease of the convergence rate for computing the parameters of the beamformer.
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In the case of large sensor arrays the above mentioned RAB methods may encounter

problems for their application. This is because in these RAB algorithms, a cubic (i.e.,

O(M3)) or greater computational cost is required to compute the beamforming param-

eters. Therefore, dimensionality reduction (or rank-reduction) methods [47]- [60] have

been developed to reduce the complexity and improve the convergence rate.

4.1.1 Prior and Related Work

In the recent years, great efforts have been devoted to the investigation of robust dimen-

sionality reduction techniques for RAB. The beamspace approach of [48] projects the

data onto a lower dimension subspace by using a beamspace matrix, whose columns are

determined by linearly independent constrained optimization problems. A more effective

approach (i.e., [41]- [45], [49], [50], [62]) is based on preprocessing the array observation

data using a Krylov subspace. However, there are different ways to generate the Krylov

subspace and the choice usually depends on the cost and the performance. The Arnoldi

method [38, 39, 46] and the Lanczos iterations [38–40] are typical approaches used to

generate orthogonal Krylov subspaces, whereas [44] also introduces a method to generate

non-orthogonal ones. However, the main challenge in these techniques is the model order

determination. Specifically, the model order must be properly chosen to ensure robustness

to over-determination of the system model order [42]. Another effective approach to di-

mensionality reduction is the joint iterative optimization (JIO) techniques [51]- [56], [57]-

[60], [85], [63], [64], which employ a subspace projection matrix and jointly and itera-

tively optimize the bases of the subspace and the beamformer weights. The work in [52]

has developed a recursive least squares (RLS) adaptive algorithm based on widely-linear

processing using the JIO technique. The study in [54] has devised efficient stochastic

gradient (SG) and RLS RAB algorithms from a modified JIO (MJIO) scheme.

4.1.2 Contributions

In this chapter, we propose and study novel RAB algorithms that are based on low-rank

and cross-correlation techniques. In the proposed techniques, we exploit the prior knowl-
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edge that the steering vector mismatch of the desired signal is located within an angular

sector which is assumed known. The proposed algorithms are based on the exploitation

of the cross-correlation between the array observation data and the output of the beam-

former, which avoids costly optimization procedures. We firstly construct a linear system

(considered in high dimension) involving the mismatched steering vector and the statis-

tics of the sampled data. Then we employ an iterative full orthogonalization method

(FOM) [38, 39] to compute an orthogonal Krylov subspace whose model order is deter-

mined by both the minimum sufficient rank [42], which ensures no information loss when

capturing the signal of interest (SoI) with interferers, and the execute-and-stop criterion

of FOM [38, 39], which automatically avoids overestimating the number of bases of the

computed subspace. The estimated vector that contains the cross-correlation between the

array observation data and the beamformer output is projected onto the Krylov subspace,

in order to update the steering vector mismatch, resulting in the proposed orthogonal

Krylov subspace projection mismatch estimation (OKSPME) method.

Furthermore, based on the OKSPME method, we have also devised adaptive stochastic

gradient (SG), conventional conjugate gradient (CCG) and modified conjugate gradient

(MCG) algorithms derived from the proposed optimization problems to reduce the cost for

computing the beamforming weights, resulting in the proposed OKSPME-SG, OKSPME-

CCG and OKSPME-MCG RAB algorithms. We remark that the steering vector is also

estimated and updated using the CG-based recursions to produce an even more precise

estimate. Derivations of the proposed algorithms are presented and discussed along with

an analysis of their computational complexity.

Moreover, we develop an analysis of the mean squared error (MSE) between the esti-

mated and the actual steering vectors for the general approach of using a presumed angular

sector associated with subspace projections. This analysis mathematically describes how

precise the steering vector mismatch can be estimated. Upper and lower bounds are de-

rived and compared with the approach in [12]. Another analysis on the computational

complexity of the proposed and existing algorithms is also provided.

In the simulations, we consider local scattering scenarios (both coherent and incoher-

ent) to model the mismatch effects. We also study the performance of the proposed algo-

rithms by testing the output signal-to-interference-plus-noise ratio (SINR) of the beam-
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former with respect to training snapshots and different input SNRs. The number of sensor

elements and interferers is also varied and compared in each scenario to provide a com-

prehensive performance study. In summary, the contributions of this part of the work

are:

• The proposed OKSPME RAB method.

• The development of the modified SG and CG type OKSPME RAB algorithms.

• An analysis of the computational complexity and the MSE performance of the pro-

posed and existing RAB algorithms.

The remaining sections of this chapter are organized as follows: The system model and

problem statement are described in Section 4.2. Section 4.3 introduces the proposed OK-

SPME method, whereas Section 4.4 introduces the proposed OKSPME, OKSPME-SG,

OKSPME-CCG and OKSPME-MCG robust adaptive algorithms. Section 4.5 provides

the MSE analysis of the steering vector estimation and the complexity analysis. Section

4.6 presents and discusses the simulation results. Section 4.7 gives the summary.

4.2 System Model and Problem Statement

Let us consider a linear antenna array of M sensors and K narrowband signals which

impinge on the array. The data received at the ith snapshot can be modeled as

x(i) = A(θ)s(i) + n(i), (4.1)

where s(i) ∈ CK×1 are uncorrelated source signals, θ = [θ1, · · · , θK ]T ∈ RK is

a vector containing the directions of arrival (DoAs) and [.]T denotes the transpose,

A(θ) = [a(θ1)+e, · · · , a(θK)] = [a1, · · · , aK ] ∈ CM×K is the matrix which contains the

steering vector for each DoA and e is the steering vector mismatch of the desired signal,

n(i) ∈ CM×1 is assumed to be complex Gaussian noise with zero mean and variance σ2
n.

The beamformer output is given by

y(i) = wHx(i), (4.2)
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where w = [w1, · · · , wM ]T ∈ CM×1 is the beamformer weight vector, where (·)H denotes

the Hermitian transpose. The optimum beamformer is computed by maximizing the SINR

and is given by

SINR =
σ2

1|wHa1|2
wHRI+Nw

. (4.3)

where σ2
1 is the desired signal power, RI+N is the interference-plus-noise covariance

(INC) matrix. The problem of maximizing the SINR in (4.3) can be cast as the following

optimization problem:
minimize

w
wHRI+Nw

subject to wHa1 = 1,
(4.4)

which is known as the MVDR beamformer or Capon beamformer [1, 8]. The optimum

weight vector is given by

wopt =
R−1
I+Na1

aH1 R−1
I+Na1

.

Since RI+N is usually unknown in practice, it can be replaced by the sample covariance

matrix (SCM) of the received data as

R̂(i) =
1

i

i∑
k=1

x(k)xH(k). (4.5)

Using the SCM for directly computing the weights will lead to the sample matrix

inversion (SMI) beamformer wSMI = R̂−1a1

aH1 R̂−1a1
. However, the SMI beamformer requires

a large number of snapshots to converge and is sensitive to steering vector mismatches

[7, 11]. As previously mentioned, most of the conventional and existing RAB algorithms

are computationally costly especially when encountering arrays with a very large number

of sensors. Therefore, the RAB design problem we are interested in solving includes the

following aspects:

• To design cost-efficient algorithms that are robust against values of SNRs and in-

terferers in the presence of uncertainties in the steering vector of a desired signal.

• The proposed algorithms must preserve their robustness and low-complexity fea-

tures for large sensor arrays.
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4.3 Proposed OKSPME Method

In this section, the proposed OKSPME method is introduced. This method aims to con-

struct a linear system involving only known or estimated statistics and then projects an

estimated cross-correlation vector between the array observation data and the beamformer

output onto an orthogonal Krylov subspace, in order to update the steering vector mis-

match with reduced complexity. The SCM of the array observation data is estimated

by (4.5). The cross-correlation vector between the array observation data and the beam-

former output can be expressed as d = E[xy∗] (where [.]∗ denotes complex conjugation)

or equivalently as

d = E[(As + n)(As + n)Hw]. (4.6)

We assume and emphasize that when w is determined such that the interference are suf-

ficiently canceled such that they felled much below the noise floor and σ2
1 that they could

be considered to be negligible, in which case we have |aHk w| � |aH1 w| for k = 2, · · · , K
and all signals have zero mean, the cross-correlation vector d can be rewritten as

d = E[(As + n)(s∗1a
H
1 w + nHw)]. (4.7)

Note that we also assume that the desired signal is uncorrelated from the interferers and

the noise, i.e., E[sks
∗
1] = 0 and E[skaks

∗
1a

H
1 w] = 0 for k = 2, · · · , K. With this assump-

tion the desired signal power is not statistically affected by the interference and (4.7) can

be rewritten as

d = E[σ1
2aH1 wa1 + nnHw], (4.8)

where σ2
1 = |s1s

∗
1| = |s1|2, which can be estimated by the sample cross-correlation vector

(SCV) given by

d̂(i) =
1

i

i∑
k=1

x(k)y∗(k). (4.9)

4.3.1 Desired Signal Power Estimation

In this subsection, we describe an iterative method for the desired signal power (σ2
1) es-

timation based on our work in [31], which can be accomplished by directly using the

desired signal steering vector. In the adopted method, we need to choose an initial guess
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for the steering vector mismatch within the presumed angular sector, say â1(0) and set

â1(1) = â1(0). By adding the snapshot index i, we have

x(i) = â1(i)s1(i) +
K∑
k=2

ak(i)sk(i) + n(i), (4.10)

where â1(i) (i = 1, 2, · · · ) designate the estimate of the initial guess of the steering vector

at the ith snapshot.

Pre-multiplying the above equation by âH1 (i) we have

âH1 (i)x(i) = âH1 (i)â1(i)s1(i) +
K∑
k=2

âH1 (i)ak(i)sk(i) + n(i). (4.11)

Here we assume that each of the interferers is orthogonal or approximately orthogo-

nal to the desired signal (i.e., the correlation coefficients between each of the interfer-

ers and the desired signal is close to zero). Specifically, the steering vector of each of

the interferers is orthogonal (âH1 (i)ak(i) = 0, k = 2, 3, · · · , K), or approximately or-

thogonal (|âH1 (i)ak(i)| � |âH1 (i)â1(i)|, k = 2, 3, · · · , K) to the desired signal steering

vector (i.e., â1(i)), so that âH1 (i)ak(i) (k = 2, 3, · · · , K) approaches zero and the term
K∑
k=2

âH1 (i)ak(i)sk(i) in (4.11) can be neglected, resulting in

âH1 (i)x(i) = âH1 (i)â1(i)s1(i) + âH1 (i)n(i). (4.12)

Taking the expectation of |âH1 (i)x(i)|2, we obtain

E[|âH1 (i)x(i)|2] = E[(âH1 (i)â1(i)s1(i) + âH1 (i)n(i))∗(âH1 (i)â1(i)s1(i) + âH1 (i)n(i))].

(4.13)

Assuming that the noise is statistically independent from the desired signal, then we

have

E[|âH1 (i)x(i)|2] = |âH1 (i)â1(i)|2E[|s1(i)|2] + âH1 (i)E[n(i)nH(i)]â1(i), (4.14)

where E[n(i)nH(i)] represents the noise covariance matrix Rn(i) that can be replaced

by σ2
nIM , where the noise variance σ2

n can be easily estimated by a specific estimation

method. A possible approach is to use a Maximum Likelihood (ML) based method as

in [36]. Replacing the desired signal power E[|s1(i)|2] and the noise variance σ2
n by their
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estimates σ̂2
1(i) and σ̂2

n(i), respectively, we obtain

σ̂2
1(i) =

|âH1 (i)x(i)|2 − |âH1 (i)â1(i)|σ̂2
n(i)

|âH1 (i)â1(i)|2 . (4.15)

The expression in (4.15) has a low complexity (O(M)) and can be directly imple-

mented if the desired signal steering vector and the noise level are accurately estimated.

4.3.2 Orthogonal Krylov Subspace Approach for Steering Vector

Mismatch Estimation

An orthogonal Krylov subspace strategy is proposed in order to estimate the mismatch

with reduced cost and deal with situations in which the model order is time-varying.

Our idea is based on constructing a linear system, which considers the steering vector

mismatch as the solution, and solving it by using an iterative Krylov subspace projection

method. To this end, consider a general high-dimensional linear system model given by

Ba1 = b, (4.16)

where B ∈ CM×M and b ∈ CM×1. Then we need to express B and b only using

available information (known statistics or estimated parameters), so that we can solve the

linear system with the Krylov subspace of order m (m�M ) described by

Km = span{b,Bb,B2b, · · · ,Bmb}. (4.17)

Taking the complex conjugate of (4.12), we have

xH(i)â1(i) = âH1 (i)â1(i)s∗1(i) + nH(i)â1(i). (4.18)

Pre-multiplying both sides of (4.18) by the terms of (4.10), then adding an extra term

δIâ1(i) (where δ is a small positive number defined by the user) and simplifying the

terms, we obtain

(x(i)xH(i) + δI)â1(i) ≈ â1(i)âH1 (i)â1(i)s1(i)s∗1(i) + n(i)nH(i)â1(i). (4.19)

Replacing x(i)xH(i) + δI by R̂(i), s1(i)s∗1(i) by σ̂2
1(i) and n(i)nH(i) by σ̂2

n(i)IM , we

obtain

R̂(i)â1(i) ≈ â1(i)âH1 (i)â1(i)σ̂2
1(i) + (σ̂2

n(i) + δ)â1(i)︸ ︷︷ ︸
b̂(i)

, (4.20)
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Table 4.1: Arnoldi-modified Gram-Schmidt algorithm

[39]

For j = 1, 2, · · · do:

Compute uj = R̂tj

For l = 1, 2, · · · , j, do:

hl,j =< uj, tl >

uj = uj − hl,jtl
End do.

Compute hj,j+1 = ‖uj‖.
If hj,j+1 = 0 or j ≥ K + 1,

set m = j;

break;

Else compute tj+1 =
uj

hj,j+1
.

End do.

in which by further defining the expression on the right-hand side as b̂(i), we can rewrite

(4.20) as

R̂(i)â1(i) ≈ b̂(i). (4.21)

As can be seen, (4.21) shares the same form as the linear system of equations in (4.16)

and b̂(i) can be expressed in terms of â1(i), σ̂2
1(i) and σ̂2

n(i) whereas R̂(i) can be es-

timated by (4.5). In the following step, we employ the Arnoldi-modified Gram-Schmidt

algorithm from the FOM method [38,39] associated with the minimum sufficient rank cri-

terion discussed in [42] to compute an orthogonal Krylov subspace. We define a residue

vector to represent the estimation error in the ith snapshot as

r̂(i) = b̂(i)− R̂(i)â1(i), (4.22)

and let

t1(i) =
r̂(i)

‖r̂(i)‖ . (4.23)

Then the Krylov subspace bases can be computed using the modified Arnoldi-modified

Gram-Schmidt algorithm as in Table 4.1 (the snapshot index i is omitted here for simplic-

ity).
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In Table 4.1, <,> denotes the inner product of two vectors and the parameters hl,j

(l, j = 1, 2, · · · ,m) are real-valued coefficients, the model order is determined once if

one of the following situations is satisfied:

• The execute-and-stop criterion [42] of the original Arnoldi-modified Gram-Schmidt

algorithm is satisfied (i.e., hj,j+1 = 0).

• The minimum sufficient rank for addressing the SoI and interferers is achieved (i.e.,

j ≥ K + 1, where K is the number of signal sources), so that no more subspace

components are necessary for capturing the SoI from all the existing signal sources.

Now by inserting the snapshot index, we have

T̂(i) = [t1(i), t2(i), · · · , tm(i)], (4.24)

and the Krylov subspace projection matrix is computed by

P̂(i) = T̂(i)T̂H(i). (4.25)

It should be emphasized that the Krylov subspace matrix T̂(i) obtained here is con-

structed by starting with the residue vector r̂(i). In other words, T̂(i) is constructed in

a way that it consists of the estimation error of the steering vector. In order to extract

the estimation error information and use it to update the steering vector mismatch, we

can project the SCV d̂(i) in (4.9) onto P̂(i) and add the estimation error to the current

estimate of â1(i) as

â1(i+ 1) = â1(i) +
P̂(i)d̂(i)

‖P̂(i)d̂(i)‖
. (4.26)

4.3.3 INC Matrix and Beamformer Weight Vector Computation

Since we have estimated both the desired signal power σ̂2
1(i) and the mismatched steering

vector in the previous subsections, the INC matrix can be obtained by subtracting the

desired signal covariance matrix out from the SCM as

R̂I+N(i) = R̂(i)− σ̂2
1(i)â1(i)âH1 (i). (4.27)
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The beamformer weight vector is computed by

ŵ(i) =
R̂−1
I+N(i)â1(i)

âH1 (i)R̂−1
I+N(i)â1(i)

, (4.28)

which has a computationally costly matrix inversion R̂−1
I+N(i). The proposed OKSPME

method is summarized in Table 4.2. In the next section, we will introduce adaptive algo-

rithms to avoid matrix inversions and reduce the complexity.

4.4 Proposed Adaptive Algorithms

This section presents adaptive strategies based on the OKSPME robust beamforming

method, resulting in the proposed OKSPME-SG, OKSPME-CCG and OKSPME-MCG

algorithms, which are especially suitable for dynamic scenarios. In the proposed adaptive

algorithms, we estimate the desired signal power and its steering vector with the same re-

cursions as in OKSPME, whereas the estimation procedure of the beamforming weights

is different. In particular, we start from a reformulated optimization problem and use SG

and CG-based adaptive recursions to derive the weight update equations, which reduce

the complexity by an order of magnitude as compared to that of OKSPME.

4.4.1 OKSPME-SG Adaptive Algorithm

We resort to an SG adaptive strategy and consider the following optimization problem:

minimize
w(i)

wH(i)(R̂(i)− R̂1(i))w(i)

subject to wH(i)â1(i) = 1,

(4.29)

where R̂(i) can be written as x(i)xH(i) and R̂1(i) represents the desired signal covariance

matrix and can be written as σ̂2
1(i)â1(i)âH1 (i).

Then we can express the SG recursion as

w(i+ 1) = w(i)− µ ∂L
∂w(i)

, (4.30)
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Table 4.2: Proposed OKSPME method

Initialization:

ŵ(0) = 1;

Choose an initial guess â1(0) within the sector and set â1(1) = â1(0);

For each snapshot i = 1, 2, · · · :

R̂(i) = 1
i

i∑
k=1

x(k)xH(k)

d̂(i) = 1
i

i∑
k=1

x(k)y∗(k)

Step 1. Compute the desired signal power

σ̂2
1(i) =

|âH1 (i)x(i)|2−|âH1 (i)â1(i)|σ̂2
n(i)

|âH1 (i)â1(i)|2

Step 2. Determine the Krylov subspace

b̂(i) = â1(i)âH1 (i)â1(i)σ̂2
1(i) + σ̂2

n(i)â1(i)

r̂(i) = b̂(i)− R̂(i)â1(i)

t1(i) = r̂(i)
‖r̂(i)‖

Apply the algorithm in Table 4.1 to determine m and t1(i),· · · ,tm(i)

T̂(i) = [t1(i), t2(i), · · · , tm(i)]

Step 3. Update the steering vector

P̂(i) = T̂(i)T̂H(i)

â1(i+ 1) = â1(i) + P̂(i)d̂(i)

‖P̂(i)d̂(i)‖

â1(i+ 1) = â1(i+ 1)/‖â1(i+ 1)‖
Step 4. Compute the weight vector

R̂I+N (i) = R̂(i)− σ̂2
1(i)â1(i)âH1 (i)

ŵ(i) =
R̂−1
I+N (i)â1(i)

âH1 (i)R̂−1
I+N (i)â1(i)

End snapshot
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where L = wH(i)(x(i)xH(i)− σ̂2
1(i)â1(i)âH1 (i))w(i) +Re{λL}(wH(i)â1(i)− 1) and µ

is the step size.

By substituting L into the SG equation (4.30) and letting wH(i + 1)â1(i + 1) = 1,

Re{λL} is obtained as

Re{λL} =
2(σ̂2

1(i)âH1 (i)â1(i)− y(i)xH(i)â1(i))

âH1 (i)â1(i)
. (4.31)

By substitutingRe{λL} in (4.30) again, the weight update equation for OKSPME-SG

is obtained as

w(i+ 1) = (I− µσ̂2
1(i)â1(i)âH1 (i))w(i)

− µ(σ̂2
1(i)â1(i) + y∗(i)(x(i)− âH1 (i)x(i)â1(i)

âH1 (i)â1(i)
)).

(4.32)

The adaptive SG recursion circumvents a matrix inversion when computing the

weights using (4.28), which is unavoidable in OKSPME. Therefore, the computational

complexity is reduced from O(M3) in OKSPME to O(M2) in OKSPME-SG. It is

also important that the step size µ should satisfy 0 < µ < 1
σ̂2
1(i)

to guarantee that

I − µσ̂2
1(i)â1(i)âH1 (i) is always a positive-definite matrix so that (4.32) is ensured con-

verging to a solution. To implement OKSPME-SG, Step 1, Step 2 and Step 3 from Table

4.2 and (4.32) are required.

4.4.2 OKSPME-CCG Adaptive Algorithm

In this subsection, the OKSPME-CCG algorithm is proposed. In CG-based approaches,

we usually employ a forgetting factor (e.g. λ) to estimate the second-order statistics of

the data or the SCM [1, 24], which can be expressed by

R̂(i) = λR̂(i− 1) + x(i)xH(i), (4.33)

whereas the SCV d̂(i) can be estimated with the same forgetting factor as described by

d̂(i) = λd̂(i− 1) + x(i)y∗(i). (4.34)

75



CHAPTER 4. ORTHOGONAL KRYLOV SUBSPACE PROJECTION MISMATCH ESTIMATION

FOR ROBUST ADAPTIVE BEAMFORMING

The proposed optimization problem that leads to the OKSPME-CCG algorithm is de-

scribed by

minimize
â1(i),v(i)

J = vH(i)(R̂(i)− R̂1(i))v(i)− âH1 (i)v(i), (4.35)

where v(i) is the CG-based weight vector. In OKSPME-CCG, we require N iterations

for each snapshot. In the nth iteration, â1,n(i) and vn(i) are updated as follows

â1,n(i) = â1,n−1(i) + αâ1,n(i)pâ1,n(i), (4.36)

vn(i) = vn−1(i) + αv,n(i)pv,n(i), (4.37)

where pâ1,n(i) and pv,n(i) are direction vectors updated by

pâ1,n+1(i) = gâ1,n(i) + βâ1,n(i)pâ1,n(i), (4.38)

pv,n+1(i) = gv,n(i) + βv,n(i)pv,n(i), (4.39)

where gâ1,n(i) and gv,n(i) are the negative gradients of the cost function in terms of â1(i)

and v(i), respectively, which are expressed as

gâ1,n(i) = − ∂J
∂â1,n(i)

= σ̂2
1(i)vn(i)vHn (i)â1,n(i) + vn(i), (4.40)

gv,n(i) = − ∂J
∂vn(i)

= gv,n−1(i)− αv,n(i)(R̂(i)− σ̂2
1(i)x(i)xH(i))pv,n(i). (4.41)

The scaling parameters αâ1,n(i), αv,n(i) can be obtained by substituting (4.36) and

(4.37) into (4.35) and minimizing the cost function with respect to αâ1,n(i) and αv,n(i),

respectively. The solutions are given by

αâ1,n(i) = −
gHâ1,n−1(i)pâ1,n(i)

σ̂2
1(i)pHâ1,n

(i)vn(i)vHn (i)pâ1,n(i)
, (4.42)

αv,n(i) =
gHv,n−1(i)pv,n(i)

pHv,n(i)(R̂(i)− σ̂2
1(i)â1,n(i)âH1,n(i))pv,n(i)

. (4.43)

The parameters βâ1,n(i) and βv,n(i) should be chosen to provide conjugacy for direc-

tion vectors [24], which results in

βâ1,n(i) =
gHâ1,n

(i)gâ1,n(i)

gHâ1,n−1(i)gâ1,n−1(i)
, (4.44)

βv,n(i) =
gHv,n(i)gv,n(i)

gHv,n−1(i)gv,n−1(i)
. (4.45)
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After â1,n(i) and vn(i) are updated for N iterations, the beamforming weight vector

w(i) can be computed by

w(i) =
vN(i)

âH1,N(i)vN(i)
(4.46)

The computational cost of OKSPME-CCG algorithm is O(NM2), which is higher than

the cost required in OKSPME-SG due to the inner iterations at every snapshot. The

proposed OKSPME-CCG is summarized in Table 4.3.

4.4.3 OKSPME-MCG Adaptive Algorithm

In OKSPME-MCG, we let only one iteration be performed per snapshot, which fur-

ther reduces the complexity compared to OKSPME-CCG. Here we denote the CG-based

weights and steering vector updated by snapshots rather than inner iterations as

â1(i) = â1(i− 1) + αâ1(i)pâ1(i), (4.47)

v(i) = v(i− 1) + αv(i)pv(i). (4.48)

As can be seen, the subscripts of all the quantities for inner iterations are eliminated.

Then, we employ the degenerated scheme to ensure αâ1(i) and αv(i) satisfy the conver-

gence bound [24] given by

0 ≤ pHâ1
(i)gâ1(i) ≤ 0.5pHâ1

(i)gâ1(i− 1), (4.49)

0 ≤ pHv (i)gv(i) ≤ 0.5pHv (i)gv(i− 1). (4.50)

Instead of updating the negative gradient vectors gâ1(i) and gv(i) in iterations, now

we utilize the forgetting factor to re-express them in one snapshot as

gâ1(i) = (1− λ)v(i) + λgâ1(i− 1) + σ̂2
1(i)αâ1(i)v(i)vH(i)pâ1(i)− x(i)xH(i)â1(i),

(4.51)

gv(i) = 1−λ)â1(i)+λgv(i−1)−αv(i)(R̂(i)−σ̂2
1(i)â1(i)âH1 (i))pv(i)−x(i)xH(i)v(i−1).

(4.52)
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Table 4.3: Proposed OKSPME-CCG algorithm

Initialization:

ŵ(1) = v0(1) = 1; λ;

Choose an initial guess â1(0) within the sector and set â1(1) = â1(0);

For each snapshot i = 1, 2, · · · :

R̂(i) = 1
i

i∑
k=1

x(k)xH(k)

d̂(i) = 1
i

i∑
k=1

x(k)y∗(k)

Step 1 from Table 4.2

Step 2 from Table 4.2

Step 3 from Table 4.2

Steering Vector and Weight Vector Estimations

â1,0(i) = â1(i)

gâ1,0(i) = σ̂2
1(i)v0(i)vH0 (i)â1,0(i) + v0(i)

gv,0(i) = â1,0(i)− R̂(i)v0(i)

pâ1,0(i) = gâ1,0(i); pv,0(i) = gv,0(i)

For each iteration index n = 1, 2, · · · , N :

αâ1,n(i) = − gHâ1,n−1(i)pâ1,n
(i)

σ̂2
1(i)pHâ1,n

(i)vn(i)vHn (i)pâ1,n
(i)

αv,n(i) =
gHv,n−1(i)pv,n(i)

pHv,n(i)(R̂(i)−σ̂2
1(i)â1,n(i)âH1,n(i))pv,n(i)

â1,n(i) = â1,n−1(i) + αâ1,n(i)pâ1,n(i)

vn(i) = vn−1(i) + αv,n(i)pv,n(i)

gâ1,n(i) = σ̂2
1(i)vn(i)vHn (i)â1,n(i) + vn(i)

gv,n(i) = gv,n−1(i)− αv,n(i)(R̂(i)− σ̂2
1(i)x(i)xH(i))pv,n(i)

βâ1,n(i) =
gHâ1,n

(i)gâ1,n
(i)

gHâ1,n−1(i)gâ1,n−1(i)

βv,n(i) =
gHv,n(i)gv,n(i)

gHv,n−1(i)gv,n−1(i)

pâ1,n+1(i) = gâ1,n(i) + βâ1,n(i)pâ1,n(i)

pv,n+1(i) = gv,n(i) + βv,n(i)pv,n(i)

End iteration

v0(i+ 1) = vN (i)

w(i) = vN (i)

âH1,N (i)vN (i)

End snapshot
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Pre-multiplying (4.51) and (4.52) by pHâ1
(i) and pHv (i), respectively, and taking expec-

tations we obtain

E[pHâ1
(i)gâ1(i)] = E[pHâ1

(i)(v(i)− x(i)xH(i)â1)(i)] + λE[pHâ1
(i)gâ1(i− 1)]

− λE[pHâ1
(i)v(i)] + E[αâ1(i)p

H
â1

(i)σ̂2
1(i)v(i)vH(i)pâ1(i)], (4.53)

E[pHv (i)gv(i)] = λE[pHv (i)gv(i− 1)]− λE[pHv (i)â1(i)]

− E[αv(i)pHv (i)(R̂(i)− σ̂2
1(i)â1(i)âH1 (i))pv(i)], (4.54)

where in (4.54) we have E[R̂(i)v(i − 1)] = E[â1(i)]. After substituting (4.54) in (4.50)

we obtain the bounds for αv(i) as follows

(λ− 0.5)E[pHv (i)gv(i− 1)]− λE[pHv (i)â1(i)]

E[pHv (i)(R̂(i)− σ̂2
1(i)â1(i)âH1 (i))pv(i)]

≤E[αv(i)]

≤ λE[pHv (i)gv(i− 1)]− λE[pHv (i)â1(i)]

E[pHv (i)(R̂(i)− σ̂2
1(i)â1(i)âH1 (i))pv(i)]

. (4.55)

Then we can introduce a constant parameter ηv ∈ [0, 0.5] to restrict αv(i) within the

bounds in (4.55) as

αv(i) =
λ(pHv (i)gv(i− 1)− pHv (i)â1(i))− ηvpHv (i)gv(i− 1)

pHv (i)(R̂(i)− σ̂2
1(i)â1(i)âH1 (i))pv(i)

. (4.56)

Similarly, we can also obtain the bounds for αâ1(i). For simplicity let us define

E[pHâ1
(i)gâ1(i − 1)] = A, E[pHâ1

(i)v(i)] = B, E[pHâ1
(i)x(i)xH(i)â1(i)] = C and

E[pHâ1
(i)σ̂2

1(i)v(i)vH(i)pâ1(i)] = D. Substituting (4.53) into (4.49) gives

λ(B − A)−B + C

D
≤E[αâ1(i)]≤

λ(B − A)−B + C + 0.5A

D
, (4.57)

in which we can introduce another constant parameter ηâ1 ∈ [0, 0.5] to restrict αâ1(i)

within the bounds in (4.57) as

E[αâ1(i)] =
λ(B − A)−B + C + ηâ1A

D
, (4.58)

or

αâ1(i) = [λ(pHâ1
(i)v(i)− pHâ1

(i)gâ1(i− 1))− pHâ1
(i)v(i)

+ pHâ1
(i)x(i)xH(i)â1(i) + ηâ1p

H
â1

(i)gâ1(i− 1)]/[σ̂2
1(i)pHâ1

(i)v(i)vH(i)pâ1(i)]. (4.59)
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Then we can update the direction vectors pâ1(i) and pv(i) by

pâ1(i+ 1) = gâ1(i) + βâ1(i)pâ1(i), (4.60)

pv(i+ 1) = gv(i) + βv(i)pv(i), (4.61)

where βâ1(i) and βv(i) are updated by

βâ1(i) =
[gâ1(i)− gâ1(i− 1)]Hgâ1(i)

gHâ1
(i− 1)gâ1(i− 1)

, (4.62)

βv(i) =
[gv(i)− gv(i− 1)]Hgv(i)

gHv (i− 1)gv(i− 1)
. (4.63)

Finally we can update the beamforming weights by

w(i) =
v(i)

âH1 (i)v(i)
, (4.64)

The MCG approach employs the forgetting factor λ and constant η for estimating α(i),

which means its performance may depend on a suitable choice of these parameters. The

proposed OKSPME-MCG algorithm requires a complexity ofO(M2). However, the cost

is usually much lower compared to CCG approach for the elimination of inner recursions

and it presents a similar performance in most studied scenarios. From an implementation

point of view, the choice of using the CCG and MCG algorithms is based on the station-

arity of the system: the CCG algorithm is more suitable for scenarios in which the system

is stationary and we can compute the beamformer with K iterations while the MCG algo-

rithm is suggested for non-stationary scenarios as we only run one iteration per snapshot

and can track variations in the environment. Table 4.4 summarizes the OKSPME-MCG

algorithm.

4.5 Analysis

In this section, we present an analysis of the following aspects of the proposed and exist-

ing algorithms:

• An analysis of the MSE between the estimated and actual steering vectors for the

general approach that employs a presumed angular sector.
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Table 4.4: Proposed OKSPME-MCG algorithm

Initialization:

ŵ(1) = v(0) = 1; λ; ηv = ηâ1
;

Choose an initial guess â1(0) within the sector and set â1(1) = â1(0);

gv(0) = pv(1) = â1(1); gâ1
(0) = pâ1

(1) = v(0);

For each snapshot i = 1, 2, · · · :

R̂(i) = 1
i

i∑
k=1

x(k)xH(k)

d̂(i) = 1
i

i∑
k=1

x(k)y∗(k)

Step 1 from Table 4.2

Step 2 from Table 4.2

Step 3 from Table 4.2

Steering Vector and Weight Vector Estimations

αâ1
(i) = [λ(pHâ1

(i)v(i)− pHâ1
(i)gâ1

(i− 1))− pHâ1
(i)v(i)

+pHâ1
(i)x(i)xH(i)â1(i) + ηâ1

pHâ1
(i)gâ1

(i− 1)]

/[σ̂2
1(i)pHâ1

(i)v(i)vH(i)pâ1
(i)]

αv(i) = λ(pHv (i)gv(i−1)−pHv (i)â1(i))−ηvpHv (i)gv(i−1)

pHv (i)(R̂(i)−σ̂2
1(i)â1(i)âH1 (i))pv(i)

â1(i) = â1(i− 1) + αâ1
(i)pâ1

(i)

v(i) = v(i− 1) + αv(i)pv(i)

gâ1
(i) = (1− λ)v(i) + λgâ1

(i− 1)

+σ̂2
1(i)αâ1

(i)v(i)vH(i)pâ1
(i)− x(i)xH(i)â1(i)

gv(i) = (1− λ)â1(i) + λgv(i− 1)− αv(i)(R̂(i)

−σ̂2
1(i)â1(i)âH1 (i))pv(i)− x(i)xH(i)v(i− 1)

βâ1
(i) =

[gâ1
(i)−gâ1

(i−1)]Hgâ1
(i)

gHâ1
(i−1)gâ1

(i−1)

βv(i) = [gv(i)−gv(i−1)]Hgv(i)
gHv (i−1)gv(i−1)

pâ1
(i+ 1) = gâ1

(i) + βâ1
(i)pâ1

(i)

pv(i+ 1) = gv(i) + βv(i)pv(i)

w(i) = v(i)

âH1 (i)v(i)

End snapshot
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• MSE analysis results of the proposed OKSPME method and the SQP method in [12]

and their relationships and differences.

• A complexity analysis for the proposed and existing algorithms.

4.5.1 MSE analysis

Firstly, we present the MSE analysis of the general approach that employs a presumed

angular sector. Since we have the steering vector estimate â1(i) in the ith snapshot, by

denoting the true steering vector as a1, we can express the MSE of the estimate â1(i) as

MSE{â1(i)} = tr(E[(â1(i)−a1)(â1(i)−a1)H ]) = E[(â1(i)−a1)H(â1(i)−a1)]. (4.65)

In the approach that employs an angular sector, we usually choose an initial guess (i.e.,

â1(0)) from the presumed sector. Let us express the accumulated estimation error as

ê(i) = â1(i)− â1(0), (4.66)

then (4.65) can be rewritten as

MSE{â1(i)} = E[(â1(0) + ê(i)− a1)H(â1(0) + ê(i)− a1)]. (4.67)

The initial guess â1(0) can be described as the true steering vector plus a guess error

vector (i.e., ε):

â1(0) = a1 + ε. (4.68)

Taking expectation of both sides of the above, we have

E[â1(0)] = a1 + E[ε]. (4.69)

Substituting (4.68) into (4.67), taking into account that the accumulated estimation error

is uncorrelated with the initial guess error and simplifying the expression, we obtain

MSE{â1(i)} = E[εHε] + E[εH ]E[ê(i)] + E[êH(i)]E[ε] + E[êH(i)ê(i)]. (4.70)

Furthermore, it should be emphasized that both ε and ê(i) are in vector forms, which

means that their second-order statistics can be re-expressed in terms of their first-order

statistics of their Euclidean norms. Then we can re-express (4.70) as

MSE{â1(i)} = E[‖ε‖2] + E[‖ê(i)‖2] + 2E[εH ]E[ê(i)]. (4.71)
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Since both ‖ε‖ and ‖ê(i)‖ are scalars we have

E[‖ε‖2] = Var[‖ε‖] + E2[‖ε‖], (4.72)

E[‖ê(i)‖2] = Var[‖ê(i)‖] + E2[‖ê(i)‖]. (4.73)

At this stage, we can employ Popoviciu’s inequality [61] to obtain the upper bounds for

the variances of the norms of the random vectors ε and ê(i), which are given by

Var[‖ε‖] ≤ (sup‖ε‖ − inf‖ε‖)2

4
, (4.74)

Var[‖ê(i)‖] ≤ (sup‖ê(i)‖ − inf‖ê(i)‖)2

4
. (4.75)

However, the last term in (4.71) is not analytical when conducting a norm analysis. Ac-

tually, E[ε] depends on how the presumed sector is chosen: if the sector is chosen in an

unbiased manner (i.e., the true steering vector lies in the centre of the sector), then we

have E[ε] = 0 by symmetry criterion, in which case we can omit the last terms of (4.71).

For convenience of carrying out the norm analysis as the next step, we focus on the un-

biased case only, so that the MSE only depends on the expectation, the infimum and the

supremum of ‖ε‖ and ‖ê(i)‖. In Fig. 4.1, we utilize Euclidean geometry to illustrate the

relationships among the norms of the errors and the norm of the steering vector, which is

a fixed parameter due to the re-normalization procedure after it is estimated each time.

According to Fig. 4.1, we can use θ (i.e., half of the angular sector, assumed less than

π/4) and ‖a1‖ to obtain E[‖ε‖] by the following (any angular parameter appeared in the

equations should be measured in radians rather than degrees): ‖ε‖ is equivalent to the

chord length which corresponds to the arc of a variable τ , which can be any value from 0

to θ with equal probability, in other words, the choice of τ is uniformly distributed within

[0, θ]. If the sample size of the selected ε is large enough, we can approximately describe

its probability density function (pdf) as a continuous function given by

f(τ) =
1

θ
. (4.76)

Meanwhile, we are also able to calculate the chord length ‖ε‖ from a simple geometric

criterion as

‖ε‖ = 2‖a1‖ sin
τ

2
. (4.77)

Then the expectation of ‖ε‖ can be computed by

E[‖ε‖] =

θ∫
0

‖ε‖f(τ)dτ, (4.78)
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from which after simplification we obtain

E[‖ε‖] =
8‖a1‖ sin2 θ

4

θ
. (4.79)

At this point, we can also compute the variance of ‖ε‖ by using (4.79) as

Var[‖ε‖] =

θ∫
0

(‖ε‖ − E[‖ε‖])2f(τ)dτ, (4.80)

from which after simplification we obtain

Var[‖ε‖] = 2‖a1‖2(1− sin θ

θ
− 32 sin4 θ

4

θ2
). (4.81)

In addition, it is clear that we have inf‖ε‖ = 0 and sup‖ε‖ = 2‖a1‖ sin θ
2
, which can be

substituted in (4.74) and result in

Var[‖ε‖] ≤ ‖a1‖2 sin2 θ

2
. (4.82)

We can see that the right-hand side of (4.81) satisfies the inequality in (4.82). After

substituting (4.79) and (4.81) in (4.72), we obtain

E[‖ε‖2] = 2‖a1‖2(1− sin θ

θ
). (4.83)

||a1||

a1

ǫ

θi

θ

â1(i) â1(0)
ê(i)

Figure 4.1: Euclidean norm interpretation of the MSE

Regarding the computation of the norm of the accumulated estimation error ‖ê(i)‖,
we need to emphasize that even though the steering vector is always re-normalized each

time after it is updated, the piecewise estimation error in each snapshot does not directly
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||a1||

ê(1)

â1(0)â1(i)

θi

ê(i)− ê(i− 1)
...

â1(1)â1(i− 1)

Figure 4.2: Update scheme of the SQP method

||a1||

â1(0)â1(i)

θi

... â1(1)

â1(i− 1) ê(1)

ê(i)− ê(i− 1)

Figure 4.3: Update scheme of the OKSPME method

update the steering vector to its normalized version, which means it is inappropriate to

calculate the estimation error by geometric methods directly from Fig. 4.1 because the

accumulated estimation error partially comes from the unnormalized steering vectors.

However, we can obtain the infimum and supremum values for ‖ê(i)‖ if we assume the

update scheme is unidirectional (i.e., the steering vector is updated from â1(0) to â1(i) in

a single direction within the sector), with the unnormalized steering vectors considered.

We firstly look at the SQP method scenario in [12]. The steering vector update scheme

is shown in Fig. 4.2. It is necessary to emphasize that now we focus on the angular sector

range of θi (i.e., the angle difference between the initially guessed steering vector and its

estimate in the ith snapshot) rather than θ. In [12], an online-optimization program was

used to iteratively solve for the piecewise estimation error in every snapshot, which was
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always orthogonal to the current steering vector estimate. Let us consider that at each

time instant the steering vector is updated, its direction changes by θi,k, where i is the

snapshot index and k (1 ≤ k ≤ i) is the index for the kth update. Since the total direction

change in a snapshot is θi, then we have

θi =
i∑

k=1

θi,k, (4.84)

and the norm of the accumulated estimation error is no greater than the sum of the norms

of all the piecewise estimation errors, which is given by the inequality

‖ê(i)‖ ≤
i∑

k=1

‖a1‖ tan θi,k. (4.85)

If we assume θi is less than π/2, then the right-hand side of (4.85) achieves its maximum

value when θi,k = tan θi, which is also the supremum of ‖ê(i)‖ and equals

‖ê(i)‖max = ‖a1‖ tan θi. (4.86)

On the other hand, we notice that the piecewise estimation error vector can never enter

into the angular sector, but at most move along with the arc if the number of iterations

is large enough. In this case, we can approximately and geometrically illustrate the arc

length corresponding with θi as the lower bound by taking the limit i→∞, i.e.,

lim
i→∞
‖ê(i)‖ = θi‖a1‖, (4.87)

which is actually the infimum of ‖ê(i)‖ and cannot be achieved since the number of

snapshots or iterations are always limited in practical situations. By combining (4.86)

and (4.87), ‖ê(i)‖ is bounded by

inf‖ê(i)‖ = θi‖a1‖ < ‖ê(i)‖ ≤ ‖a1‖ tan θi = sup‖ê(i)‖. (4.88)

Different from the SQP method, the proposed OKSPME method utilizes the Krylov

subspace and the cross-correlation vector projection approach to extract the error infor-

mation then use it to update the steering vector. From (4.9) we have

d̂(i) =
1

i

i∑
k=1

x(k)y∗(k) =
1

i

i∑
k=1

x(k)(wH(k)x(k))∗

=
1

i

i∑
k=1

x(k)xH(k)w(k) =
1

i

i∑
k=1

R̂(k)w(k). (4.89)
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Note that an initialization for vector d̂ or matrix R̂ should be considered to ensure R̂ is

full-rank and invertible, which can be done by either setting d̂(0) = δIw(0) or R̂(0) = δI.

We also know that

w(k) =
R̂−1(k)â1(k)

âH1 (k)R̂−1(k)â1(k)
=

R̂−1(k)â1(k)

σ̂2
1(k)

. (4.90)

Pre-multiplying (4.90) by R̂(k) on both sides we obtain

R̂(k)w(k) =
â1(k)

σ̂2
1(k)

, (4.91)

which is then substituted in (4.89) and results in

d̂(i) =
1

i

i∑
k=1

â1(k)

σ̂2
1(k)

, (4.92)

where σ̂2
1(k) is a scalar, which means the SCV contains the direction of the desired signal

steering vector. Projecting d̂(i) onto the Krylov subspace represented by P̂(i) is therefore

similar to projecting â1(i). In our method, the estimation of d̂(i) is separate from the

update of â1(i), which means the steering vector estimation error used for the updates is

obtained from d̂(i), so that in the kth (1≤k < i) snapshot, the error does not have to be

orthogonal to â1(k), but should be orthogonal to another potentially better estimate â1(j)

(1≤k < j≤i), resulting in a situation where the error is located inside the sector (see

Fig. 4.3). There are two benefits in the case which the error is inside the sector: faster

convergence rate and smaller estimation error. We can obtain the infimum and supremum

values in a similar way. By applying the inequality that the norm of the accumulated

estimation error is no greater than the sum of the norms of all the piecewise estimation

errors, we have

‖ê(i)‖ ≤
i∑

k=1

‖a1‖ sin θi,k, (4.93)

where the parameters θi,k (k = 1, 2, · · · , i) satisfy the constraint in (4.84). However, the

right-hand side of (4.93) achieves its maximum value when all these parameters are equal

(i.e., θi,1 = θi,2 = · · · = θi,i = θi
i

) and it is given by

‖ê(i)‖max = i‖a1‖ sin
θi
i
, (4.94)

The right-hand side of (4.94) can be treated as a function of i which is an increasing

function on i = 1, 2, · · · ,∞. Therefore, we can take the limit of it to obtain the upper

bound of ‖ê(i)‖max, and so as to ‖ê(i)‖. In fact, when i → ∞, the piecewise estimation
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error moves along the arc corresponding with θi, resulting in the upper bound obtained is

the same as the lower bound of the SQP method case, which is given by the right-hand

side expression of (4.87) and defines the supremum of ‖ê(i)‖ in this case. Since we have

already assumed that θi is less than π/2 so that ê(i) must be inside of the angular sector

but its Euclidean norm cannot be smaller than the orthogonal distance between â1(0) to

â1(i), so this orthogonal distance can define the lower bound of ‖ê(i)‖, which is actually

the infimum and calculated by ‖a1‖ sin θi. Then, in the OKSPME method, ‖ê(i)‖ is

bounded by

inf‖ê(i)‖ = ‖a1‖ sin θi ≤ ‖ê(i)‖ < θi‖a1‖ = sup‖ê(i)‖. (4.95)

By taking expectations of both (4.88) and (4.95), we obtain

E[θi]‖a1‖ < {E[‖ê(i)‖]}SQP ≤ ‖a1‖ tan(E[θi]), (4.96)

‖a1‖ sin(E[θi]) ≤ {E[‖ê(i)‖]}OKSPME < E[θi]‖a1‖. (4.97)

On the other side, by substituting (4.88) and (4.95) in (4.75), we obtain

0 ≤ {Var[‖ê(i)‖]}SQP ≤
‖a1‖2(tan θi − θi)2

4
, (4.98)

0 ≤ {Var[‖ê(i)‖]}OKSPME ≤
‖a1‖2(θi − sin θi)

2

4
. (4.99)

Substituting (4.96), (4.98) and (4.97), (4.99) in (4.73), respectively, we have

E2[θi]‖a1‖2 < {E[‖ê(i)‖2]}SQP ≤
‖a1‖2(tan θi − θi)2

4
+ ‖a1‖2 tan2(E[θi]), (4.100)

‖a1‖2 sin2(E[θi]) ≤ {E[‖ê(i)‖2]}OKSPME <
‖a1‖2(θi − sin θi)

2

4
+ E2[θi]‖a1‖2.

(4.101)

However, E[θi] also has its lower and upper bounds. Since our analysis focuses on the

unbiased case only as mentioned, the true steering vector is located in the center of the

angular sector and the estimate â1(i) is always closer to the center than â1(0). Let us

assume that even if the estimate â1(i) always happens to be very close to either edge of

the sector, no matter how â1(0) is chosen within the sector, θi will vary from 0 to 2θ with

equal probability, or equivalently, uniformly distributed within [0, 2θ), in which case we

can obtain the upper bound for E[θi] by taking the average between 0 to 2θ, which is

obtained as θ. On the other hand, if we assume that the estimate â1(i) always happens

to be exactly at the center of the sector, resulting in that θi can only vary from 0 to θ, or
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uniformly distributed within [0, θ] in which caseE[θi] = θ/2, resulting in the lower bound

of E[θi] is θ/2. Therefore, the upper and lower bounds for MSE{â1(i)} can be further

obtained by substituting E[θi]max → θ, [θi]max → 2θ and E[θi]min = θ/2, [θi]min = 0

into the upper and lower bounds of (4.100) and (4.101) respectively, resulting in

θ2

4
‖a1‖2 < {E[‖ê(i)‖2]}SQP <

‖a1‖2(tan 2θ − 2θ)2

4
+ ‖a1‖2 tan2 θ, (4.102)

‖a1‖2 sin2 θ

2
≤ {E[‖ê(i)‖2]}OKSPME <

‖a1‖2(2θ − sin 2θ)2

4
+ θ2‖a1‖2. (4.103)

Finally, by combining the expectation of the mean-squared initial guess error E[‖ε‖2] in

(4.83) with (4.102) and (4.103), we obtain the bounds for the MSE of the steering vector

estimate MSE{â1(i)} as

(2− 2 sin θ

θ
+
θ2

4
)‖a1‖2 < {MSE{â1(i)}}SQP

< (2− 2 sin θ

θ
+

(tan 2θ − 2θ)2

4
+ tan2 θ)‖a1‖2, (4.104)

(2− 2 sin θ

θ
+ sin2 θ

2
)‖a1‖2 ≤ {MSE{â1(i)}}OKSPME

< (2− 2 sin θ

θ
+

(2θ − sin 2θ)2

4
+ θ2)‖a1‖2. (4.105)

From (4.104) and (4.105), we can see that the MSEs now only depend on two parameters:

the norm of the true steering vector and the angular sector spread. The lower and upper

bounds of the proposed OKSPME method are lower than those of the SQP method. As

mentioned before, it is important that the presumed angular sector spread 2θ must be less

than π/2 (i.e., 90◦) to ensure the previous assumption of θi < π/2 is always valid.

4.5.2 Complexity Analysis

The computational complexity analysis is discussed in this subsection. We measure the

total number of additions and multiplications (i.e., flops) in terms of the number of sensors

M performed for each snapshot for the proposed algorithms and the existing ones and list

them in Table 4.5 (we assume the noise power is known so does not need to be estimated

for ease of comparison). Note that the SQP method in [12] has a highly-variant computa-

tional complexity in different snapshots, due to the online optimization program based on
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Table 4.5: Complexity Comparison

RAB Algorithms Flops

LOCSME [31] 4M3 + 3M2 + 20M

RCB [8] 2M3 + 11M2

SQP [12] O(M3.5)

LOCME [13] 2M3 + 4M2 + 5M

LCWC [19] 2nM2 + 7nM

OKSPME
M3 + (4m+ 11)M2

+(3m2 + 5m+ 20)M

OKSPME-SG
(4m+ 7)M2

+(3m2 + 5m+ 33)M

OKSPME-CCG
(4m+ 8n+ 8)M2

+(3m2 + 5m+ 33n+ 29)M

OKSPME-MCG
(4m+ 14)M2

+(3m2 + 5m+ 86)M

random choices of the presumed steering vector. However, it is usually in O(M3.5). The

complexity of the LCWC algorithm in [19] often requires a much larger n than that in

the proposed LOCSME-CCG algorithm. It is obvious that all of the proposed algorithms

have their complexity depending on the Krylov subspace model order m, which is deter-

mined from Table 4.1 and is no larger than K + 1. For the convenience of comparison,

we eliminate all parameters except M by setting them to common values (the values of n

in LCWC and OKSPME-CCG is set to 50 and 5 respectively, m = K + 1 where K = 3)

and illustrate their complexity with M varying from 10 to 100 as shown in Fig. 4.4. As

can be seen that the proposed OKSPME-SG and OKSPME-MCG algorithms have lower

complexity than the other algorithms.

4.6 Simulations

In this section, we present and discuss the simulation results of the proposed RAB al-

gorithms by comparing them to some of the existing RAB techniques. We consider a

uniform linear array (ULA) of omnidirectional sensors with half wavelength spacing. To
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Figure 4.4: Complexity Comparison

produce all the figures (if unspecified in a few scenario), 100 repetitions are executed to

obtain each point of the curves and a maximum of i = 300 snapshots are observed. The

desired signal is assumed to arrive at θ1 = 10◦. The signal-to-interference ratio (SIR)

is fixed at 0dB. As the prior knowledge, the angular sector in which the desired signal

is assumed to be located is chosen as [θ1 − 5◦, θ1 + 5◦]. The results focus on the beam-

former output SINR performance versus the number of snapshots, or a variation of input

SNR (−10dB to 30dB) and both coherent and incoherent local scattering mismatch [9]

scenarios are considered.

4.6.1 Mismatch due to Coherent Local Scattering

All simulations in this subsection consider coherent local scattering. With time-invariant

coherent local scattering, if we choose the number of scatters as 4, the steering vector of

the desired signal is modeled as

a1 = p +
4∑

k=1

ejϕkb(θk), (4.106)

where p corresponds to the direct path while b(θk)(k = 1, 2, 3, 4) corresponds to the

scattered paths. The angles θk(k = 1, 2, 3, 4) are randomly and independently drawn
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in each simulation run from a uniform generator with mean 10◦ and standard deviation

2◦. The angles ϕk(k = 1, 2, 3, 4) are independently and uniformly taken from the interval

[0, 2π] in each simulation run. Both θk and ϕk change from trials while remaining constant

over snapshots.

We firstly compare our proposed methods with some classical RAB methods (i.e.,

standard diagonal loading method with a fixed loading factor equal to 10 times the noise

variance, the RCB method in [8] which estimates the loading factor iteratively, and the

method that solves an online quadratic optimization programming, which refers to the

SQP method [12]). The numbers of sensors and signal sources (including the desired

signal) are set to M = 10 and K = 3, respectively. For this case only, we set the

interferences-to-noise ratio (INR) to 20dB and illustrate the SINR performance versus

snapshots within 100 snapshots in Fig. 4.5. The two interferers are arranged to be in the

directions of θ2 = 30◦ and θ3 = 50◦, respectively. The other user-defined parameters,

if unspecified, (e.g. the step size µ and the forgetting factor λ) are manually optimized

to give the best algorithm performance, which is also applied for the other simulation

scenarios.

0 20 40 60 80 100
−15
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S
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R
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Figure 4.5: Coherent local scattering, SINR versus snapshots, M = 10, K = 3, INR =

20dB

We then set the number of sensors to M = 12, the number of signal sources as (in-

cluding the desired signal) K = 3 and illustrate the SINR versus snapshots and the SINR

versus input SNR performance in Fig. 4.6 and Fig. 4.7 respectively. The two inter-
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Table 4.6: Changes of Interferers

Snapshots
Number of Interferers

(K − 1)
DoAs

0− 150 2 θ2 = 30◦, θ3 = 50◦.

151− 300 5
θ2 = 20◦, θ3 = 30◦, θ4 = 40◦,

θ5 = 50◦, θ6 = 60◦.

ferers are arranged to be in the directions of θ2 = 30◦ and θ3 = 50◦, respectively. In

either Fig. 4.6 or Fig. 4.7, we can see that the proposed OKSPME method has a very

similar or slightly better performance compared to the LOCSME algorithm of [31] and

both of them have the best performance. Furthermore, the proposed OKSPME-CCG and

OKSPME-MCG algorithms also achieve very close performance to OKSPME.

In Fig. 4.8, we assess the SINR performance versus snapshots of those selected al-

gorithms in a specific time-varying scenario which encounters a halfway redistribution of

the interferers at a certain snapshot. In this case, the number of sensors is kept atM = 12,

whereas the details of the interferers are given in Table 4.6.

In Figs. 4.9 and 4.10, we set the number of signal sources to K = 3, but increase

the number of sensors from M = 12 to M = 40 and study the SINR versus snapshots

and the SINR versus input SNR performance of the selected and proposed dimensionality

reduction RAB algorithms, respectively. We set the reduced-dimension as D = 4 for the

beamspace based algorithm [48] in all simulations. This time, it is clear that the proposed

OKSPME, OKSPME-SG, OKSPME-CCG and OKSPME-MCG algorithms all have a

certain level of performance degradation compared to the scenario where M = 12. The

proposed OKSPME based algorithms achieve better performances than the beamspace

approach.
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Figure 4.6: Coherent local scattering, SINR versus snapshots, M = 12, K = 3
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Figure 4.7: Coherent local scattering, SINR versus SNR, M = 12, K = 3

4.6.2 Mismatch due to Incoherent Local Scattering

In this case, the desired signal affected by incoherent local scattering has a time-varying

signature and its steering vector is modeled by

a1(i) = s0(i)p +
4∑

k=1

sk(i)b(θk), (4.107)
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Figure 4.8: Coherent local scattering, SINR versus snapshots, M = 12
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Figure 4.9: Coherent local scattering, SINR versus snapshots, M = 40, K = 3

where sk(i)(k = 0, 1, 2, 3, 4) are i.i.d zero mean complex Gaussian random variables in-

dependently drawn from a random generator. The angles θk(k = 0, 1, 2, 3, 4) are drawn

independently in each simulation run from a uniform generator with mean 10◦ and stan-

dard deviation 2◦. At this time, sk(i) changes both from run to run and from snapshot to

snapshot. In order to show the effects caused by incoherent scattering only, we set the

parameters M = 40 and K = 3, study the SINR versus SNR performance of the selected

algorithms in Fig. 4.11 and compare the results with Fig. 4.10. As a result, a performance
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Figure 4.10: Coherent local scattering, SINR versus SNR, M = 40, K = 3

degradation is observed for all the studied algorithms. This is because the time-varying

nature of incoherent scattering results in more dynamic and environmental uncertainties

in the system, which increases the steering vector mismatch.
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Figure 4.11: Incoherent local scattering, SINR versus SNR, M = 40, K = 3
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4.7 Summary

We have developed the OKSPME algorithm based on the exploitation of cross-correlation

mismatch estimation and the orthogonal Krylov subspace. In addition, low complexity

RAB algorithms, OKSPME-SG, OKSPME-CCG and OKSPME-MCG have been devel-

oped to enable the beamforming weights to be updated recursively without matrix inver-

sions. A detailed steering vector estimation MSE analysis for the general RAB design

approach that relies on a presumed angular sector as prior knowledge has been provided.

The computational complexity of the proposed and some of the existing algorithms have

been compared and discussed. Simulation results have shown that the proposed algo-

rithms have robustness against different choices of user-defined parameters and environ-

mental effects, and achieved excellent output SINR performance especially in medium-

high input SNR values.
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5.1 Introduction

Distributed beamforming has been widely investigated in wireless communications and

array processing in recent years [66–68]. It is key for situations in which the channels be-

tween the sources and the destination have poor quality so that devices cannot communi-

cate directly and the destination relies on relays that receive and forward the signals [67].
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5.1.1 Prior and Related Work

The work in [68] formulates an optimization problem that maximizes the output signal-to-

interference-plus-noise ratio (SINR) under individual relay power constraints. The work

in [69, 72] focuses on the optimization of weights of all relays to increase the SINR in

relay networks. Another related work [80] derives a reference signal based scheme that

only uses local channel state information (CSI). The approach in [88] proposes an MMSE

consensus cooperative relay networking scheme to exchange data among all the relays

under a total power constraint, which limits the total power of all relays regardless of the

power allocation. While local communications among the relays are enabled, the ability to

mitigate fading effects in wireless channels of the network can be improved [73]. Further

earlier works in [89] and [90] explored local communications, while avoiding network

centralized processing, which is not desirable and always comes along with the use of

total power constraints [88].

However, in most scenarios relays are either not ideally distributed in terms of loca-

tions or the channels involved with some of the relays have poor quality. Possible solu-

tions can be categorized in two approaches. One is to adaptively adjust the power of each

relay according to the qualities of its associated channels, known as adaptive power con-

trol or power allocation. Some power control methods based on channel magnitude and

relative analysis has been studied in [70,91]. An alternative solution is to use relay selec-

tion, which selects a number of relays according to a criterion of interest while discarding

the remaining relays. In [73, 74, 81], several optimum single-relay selection schemes and

a multi-relay selection scheme using relay ordering based on maximizing the output SNR

under individual relay power constraints are developed and discussed, but the beamform-

ing weights are not optimized iteratively and synchronously to enhance the SINR maxi-

mization. The work in [75,76] proposed a low-cost greedy search method for the uplink of

cooperative direct sequence code-division multiple access systems, which approaches the

performance of an exhaustive search. In [82], a combined cooperative beamforming and

relay selection scheme that only selects two relays is proposed for physical layer security.
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5.1.2 Contributions

In this chapter, we propose a joint MSINR distributed beamforming and restricted greedy

search relay selection (RGSRS) algorithm with a total relay transmit power constraint

which iteratively optimizes both the beamforming weights at the relay nodes, maximizing

the ouput SINR at the destination, provided that the CSI is perfectly known. Specifically,

we devise a relay selection scheme based on a greedy search and compare it to other

schemes like restricted random relay selection (RRRS) and restricted exhaustive search

relay selection (RESRS). The RRRS scheme selects a fixed number of relays randomly

from all relays. The RESRS scheme employs the exhaustive search method that runs

every single possible combination among all relays aiming to obtain the set with the best

SINR performance. The proposed RGSRS scheme is developed from a greedy search

method with a specific optimization problem that works in iterations and requires SINR

feedback from the destination. The proposed relay selection methods are compared with

the scenario without relay selection and the results show significant improvements in

terms of SINR and bit-error-rate (BER) performances of the proposed algorithm. The

computational cost of all algorithms are analyzed.

This chapter is organized as follows: Section 5.2 presents the system model. Section

5.3 introduces the joint MSINR beamforming and relay selection approach. Section 5.4

derives the joint MSINR and RGSRS algorithm. Section 5.5 presents the simulations and

Section 5.8 gives the summary.

5.2 System Model

We consider a wireless communication network consisting of K signal sources (one de-

sired signal with the others as interferers), M distributed single-antenna relays and a des-

tination. It is assumed that the quality of the channels between the signal sources and the

destination is very poor so that direct communications is not possible and their links are

negligible. The M relays receive information transmitted by the signal sources and then

retransmit to the destination as a beamforming procedure, in which a two-step amplify-

and-forward (AF) protocol (as shown in Fig. 5.1) is considered as required for cooperative
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communications.

K signal sources

M relays

destination

F

g

noise ν

noise n

Figure 5.1: System model.

In the first step, the sources transmit the signals to the relays as

x = Fs + ν, (5.1)

where s = [s1, s2, · · · , sK ] ∈ C1×K are signal sources with zero mean, [.]T denotes

the transpose, sk =
√
Pkξk, E[|ξk|2] = 1, Pk is the transmit power of the kth sig-

nal source, ξk (k = 1, 2, · · · , K) is the information symbol. Without loss of general-

ity we can assume s1 as the desired signal while the others are treated as interferers.

F = [f1, f2, · · · , fK ] ∈ CM×K is the channel matrix between the signal sources and the re-

lays, fk = [f1,k, f2,k, · · · , fM,k]
T ∈ CM×1, fm,k denotes the channel between themth relay

and the kth source (m = 1, 2, · · · ,M , k = 1, 2, · · · , K). ν = [ν1, ν2, · · · , νM ]T ∈ CM×1

is the complex Gaussian noise vector at the relays and σ2
ν is the noise variance at each

relay (νm ˜ CN(0, σ2
ν)). The vector x ∈ CM×1 represents the received data at the relays.

In the second step, the relays transmit y ∈ CM×1 which is an amplified and phase-steered

version of x, which can be written as

y = Wx, (5.2)

where W = diag[w1, w2, · · · , wM ] ∈ CM×M is a diagonal matrix whose diagonal entries

denote the beamforming weights. The signal received at the destination is given by

z = gTy + n, (5.3)

where z is a scalar, g = [g1, g2, · · · , gM ]T ∈ CM×1 is the complex Gaussian channel

vector between the relays and the destination, n (n ˜ CN(0, σ2
n), σ2

n = σ2
ν) is the noise at
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the destination and z is the received signal at the destination. Note that we consider both

F and g are modeled in Rayleigh distribution [77, 78].

5.3 Proposed Joint MSINR Beamforming and Relay Se-

lection

In many cases of relay networking, some of the relays are quite far away from either the

signal sources or the destinations, which means they may contribute to degraded network

performance due to their poor performance for receiving and transmitting signals. The

aim of joint maximum SINR beamforming and relay selection is to compute the beam-

forming weights according to the maximum SINR criterion and optimize the relay system

by discarding the relays with poor performance and making the best use of the relays with

good channels in order to improve the overall system performance.

A joint SINR maximization problem with relay selection using a total relay transmit

power constraint encountering interferers can be generally described as

Sopt = arg max
α,w

SINR(S,H,Ps,Pr, PT ,α,w)

subject to
M∑
m=1

α2
mPr,m ≤ PT ,

αm ∈ {0, 1},m = 1, 2, · · · ,M

(5.4)

where Sopt is the optimum relay set of sizeMopt (1 ≤Mopt ≤M ) and SINR is a function

of S,H,Ps,Pr and PT , where S is the original relay set of size M ,H is the set containing

parameters of the CSI (i.e., H = {F,g, σ2
ν}), Ps = [Ps,1, Ps,2, · · · , Ps,K ] ∈ R1×K , k =

1, 2, · · · , K, Pr = [Pr,1, Pr,2, · · · , Pr,M ]T ∈ RM×1, m = 1, 2, · · · ,M , Pr,m refers to the

transmit power of the mth relay (Note that before selection we have
∑M

m=1 Pr,m ≤ PT

and we consider that each relay cooperates with its full power as long as it is selected), PT

is the maximum allowable total transmit power of all relays, α = [α1, α2, · · · , αM ]T , αm

(m = 1, · · · ,M ) is the relay cooperation parameter which determines whether the mth

relay cooperates or not. The received signal at the mth relay is:

xm =
K∑
k=1

√
Ps,ksfm,k + νm, (5.5)
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then the transmitted signal at the mth relay can be written as:

ym = αmwmxm. (5.6)

Note that we can express the transmit power at the mth relay Pr,m as E[|ym|2]

so that the total relay transmit power can be written as
∑M

m=1E[|ym|2] =∑M
m=1E[|αmwmxm|2] or in matrix form as (αH �wH)D(α�w) where D = diag(α�

(
∑K

k=1 Ps,k[E[|f1,k|2], E[f2,k|2], · · · , E[fM,k|2]]) + σ2
n) is a full-rank matrix, where � de-

notes the Schur-Hadamard product which computes element-wise multiplications. The

signal received at the destination can be expanded by substituting (5.5) and (5.6) in (5.3),

which gives

z =
M∑
m=1

αmwmgm
√
Ps,1fm,1s︸ ︷︷ ︸

desired signal

+
M∑
m=1

αmwmgm

K∑
k=2

√
Ps,kfm,ks︸ ︷︷ ︸

interferers

+
M∑
m=1

αmwmgmνm + n︸ ︷︷ ︸
noise

.

(5.7)

By taking expectations of the components of (5.7), we can compute the desired signal

power Pz,1, the interference power Pz,i and the noise power Pz,n at the destination as

follows:

Pz,1 = E[
M∑
m=1

(αmwmgm
√
Ps,1fm,1s)

2] = Ps,1

M∑
m=1

α2
mE[w∗m(fm,1gm)(fm,1gm)∗wm],

(5.8)

Pz,i = E[(
M∑
m=1

(αmwmgm

K∑
k=2

√
Ps,kfm,ks)

2] = σ2
n(1 + α2

m

M∑
m=1

E[w∗mgmg
∗
mwm]), (5.9)

Pz,n = E[
M∑
m=1

(αmwmgmνm + n)2] =
K∑
k=2

Ps,k

M∑
m=1

α2
mE[w∗m(fm,kgm)(fm,kgm)∗wm],

(5.10)

where ∗ denotes complex conjugation. The SINR is computed as:

SINR =
Pz,1

Pz,i + Pz,n
=

(αH �wH)R1(α�w)

σ2
n + (αH �wH)(Q +

∑K
k=2 Rk)(α�w)

. (5.11)
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5.3.1 Computation of Weights

By defining α�w = w̃, the original problem in (5.4) can be cast in terms of solving for

w̃ as:

max
w̃

w̃HR1w̃

σ2
n + w̃H(Q +

∑K
k=2 Rk)w̃

s.t. w̃HDw̃ ≤ PT ,

Rank(w̃w̃H) = Rank(ααH),

αm ∈ {0, 1},m = 1, 2, · · · ,M,

(5.12)

where R1, Q and Rk are covariance matrices that are associated with the desired signal,

the noise at the relays and the kth interferer and defined by Ps,1E[(α� f1 � g)(α� f1 �
g)H ] ∈ CM×M , σ2

nE[(α� g)(α� g)H ] ∈ CM×M , Ps,kE[(α� fk � g)(α� fk � g)H ] ∈
CM×M , respectively. They are such defined so that their ranks are equal to the number

of non-zero elements of α. The second constraint indicates and ensures w̃ has the same

number of zero elements as α and Rank denotes the rank operator. At this point, we use

an alternating optimization strategy to obtain the solutions for both w and α, i.e., we fix

the vector w and optimize α and vice-versa in an alternating fashion. The number of

iterations of this alternating optimization depends on both the minimum required number

of relays, which is a user defined parameter, and if the maximum SINR is achieved, which

is determined by the system feedback. The problem in (5.12) can be solved with respect

to w in a closed-form solution as in the total power constraint SNR maximization problem

similarly to [69], with the assumption that the second-order statistics of the CSI (i.e., H)

is perfectly known. Then, a closed-form solution for w̃ is obtained by

w̃ =
√
PTD−

1
2P{E}, (5.13)

and the corresponding SINR is

SINR = PTλmax{E}, (5.14)

where P{.} denotes the principal eigenvector operator, λmax{.} denotes the largest eigen-

value of the argument, E = (σ2
nI + PTD−

1
2 (Q +

∑K
k=2 Rk)D

− 1
2 )−1D−

1
2 R1D

− 1
2 has the

same rank as R1. It is easy to observe that once we know α, we can compute the opti-

mum weights and SINR from (5.13) and (5.14), respectively, by using only the currently

selected relay nodes and their weights. The weight optimization steps are detailed in

Table. 5.1.
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5.3.2 Relay Selection

In order to solve the problem in (5.12) with respect to α, we consider

max
α

SINR

subject to
M∑
m=1

α2
mPr,m ≤ PT ,

αm ∈ {0, 1},m = 1, 2, · · · ,M

(5.15)

that can be solved with algorithms like greedy search and exhaustive search, which can

be determined by the designer. Note that α is obtained before w is computed in each

recursion. An alternative way that computes w before obtaining α also works but the

above equations will be different. This joint MSINR beamforming and relay selection

method requires output SINR comparisons and feedback from the destination to the relay

nodes as a form of information exchange, which is similar to [73], but weight optimization

is neglected in their work.

5.4 Proposed Joint MSINR and RGSRS Algorithm

The joint MSINR and RGSRS algorithm employs alternating optimization [83–86] it-

erations. We consider a user-defined parameter Mmin as a restriction to the minimum

number of relays that must be used to allow a higher flexibility for the users to control

the number of relays. Before the first iteration all relays are considered (i.e., S(0) = S).

Consequently, we solve the following problem once for each iteration in order to cancel

the relay with worst performance from the set S(i− 1) and evaluate SINR(i):

S(i) = arg max
α(i)

SINR(i)

subject to
M∑
m=1

α2
m(i)Pr,m(i) ≤ PT ,

αm(i) ∈ {0, 1},

||α(i)||1 = M − i,

||α(i)−α(i− 1)||1 = 1,

M − i ≥Mmin, y

(5.16)
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Table 5.1: Beamforming weight vector optimization

1) Choose α.

With α and the CSI, compute the following quantities

using the selected relay nodes in each iteration:

The desired signal related covariance matrix :

2) R1 = Ps,1E[(α� f1 � g)(α� f1 � g)H ]

The interferers related covariance matrices for k = 2, · · · , K:

3) Rk = Ps,kE[(α� fk � g)(α� fk � g)H ] ∈ CM×M

The noise related covariance matrix:

4) Q = σ2
nE[(α� g)(α� g)H ]

The transmit power related full-rank matrix D:

5) D = diag(α� (
∑K

k=1 Ps,k

[E[|f1,k|2], E[f2,k|2], · · · , E[fM,k|2]]) + σ2
n)

The defined matrix E:

6) E = (σ2
nI + PTD−

1
2 (Q +

∑K
k=2 Rk)D

− 1
2 )−1D−

1
2 R1D

− 1
2

Optimize and obtain the beamforming weight vector w̃:

7) w̃ =
√
PTD−

1
2P{E}

Compute the output SINR at the destination:

8) SINR = PTλmax{E}
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Table 5.2: Joint MSINR and RGSRS Algorithm

step 1: Initialize Sopt = S(0), α(0) = 1 and obtain

SINRopt = SINR(0) using Table. 5.1.

step 2:

for i = 1, · · · ,M −Mmin

solve the optimization problem (5.16) to obtain α(i),

S(i) and compute SINR(i) using Table. 5.1.

compare SINR(i) to SINR(i− 1),

if SINR(i) > SINR(i− 1)

update Sopt = S(i) and SINRopt = SINR(i).

else

keep Sopt = S(i− 1) and SINRopt = SINR(i− 1).

break.

end if.

end for.

where SINR(i) = SINR(S(i − 1),H,Ps,Pr(i − 1), PT ) and can be computed by

(5.14). If the SINR in the current iteration is higher than that in the previous iteration

(i.e. SINR(i) > SINR(i − 1)), then the selection process continues; if SINR(i) ≤
SINR(i − 1), we cancel the selection of the current iteration and remain the relay set

S(i−1) and SINR(i−1). The joint MSINR and RGSRS algorithm can be implemented

as in Table. 5.2.

At this point, we analyze the computational complexity required by the relay selection

algorithms. The MSINR based method for SINR driven beamforming weights optimiza-

tion has a cost of O(M3) since matrix inversions and eigen-decompositions are required.

However, M is usually not large so that attentions should be paid to the computational

cost caused by the number of iterations required in these relay selection algorithms. As

can be seen in table. 5.3, for the joint MSINR and RRRS algorithm, there is no weight

vector or relay selection vector optimization required, which means there is only one it-

eration and the complexity is simply O(M3). The joint MSINR and RESRS algorithm

has the highest computational cost due to the fact it almost searches for all possible com-

binations of the relays even though an extra restriction of the minimum number of relays
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Table 5.3: Complexity Comparison

Algorithms Computational Cost

Joint MSINR and RRRS O(M3)

Joint MSINR and RESRS
∑M

c=Mmin

M !
(M−c)!c! O(M3)

Joint MSINR and RGSRS ≤ (2M−i+1)i
2 O(M3)

required is added in our case. With a restriction of that at least Mmin relays must be

selected, the number of iterations is
∑M

c=Mmin

M !
(M−c)!c! . In the joint MSINR and RGSRS

algorithm, (5.16) is solved once per iteration, which can be done by disabling only one

relay while enabling all the others and computing and comparing their output SINRs. The

total number of iterations is no greater than (2M−i+1)i
2

). The proposed joint MSINR and

RGSRS algorithm has much lower complexity compared to the joint MSINR and RESRS

algorithm when the value of M is large.

5.5 Simulations

For the MSINR relay selection algorithms, we compare the joint MSINR and relay se-

lection algorithms to the scenario without relay selection in terms of their SINR and bit

error rate (BER) performances. The parameters used for all scenarios include: number

of signal sources K = 3, the path loss exponent ρ = 2, the power path loss from signals

to the destination L = 10dB, shadowing spread σs = 3dB, PT = 1dBW. Fig. 5.2-a

illustrates the SINR versus SNR (from 0dB to 20dB) performance of the compared algo-

rithms, in which the total number of relays and interference-to-noise ratio (INR) are fixed

at M = 8 and INR=10dB, respectively. Fig. 5.2-b illustrates how the SINR varies when

the total number of relays in the network increases, in which the input SNR=10dB and

INR=10dB are fixed. In this case, a minimum total number of relays observed is chosen

as M = 3, whereas the maximum is at M = 10. For each of the above two scenarios, 500

repetitions are carried out for each algorithm. In Fig. 5.3, we evaluate the BER versus

SNR performance of all algorithms using binary phase shift keying (BPSK) for the sys-

tem and test all algorithms with 100000 bits, while keeping INR=10dB. For all the above

scenarios, we fix the number of randomly selected relays at 3 for the joint MSINR and

random relay selection algorithm, the minimum required selected relays also at 3 for the
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other algorithms. As observed, the joint MSINR and RESRS and the joint MSINR and

RGSRS algorithms have the best performance.
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Figure 5.2: SINR versus SNR and M.
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Figure 5.3: BER versus SNR.

5.6 Summary

We have proposed relay selection approaches and developed efficient algorithms for dis-

tributed beamforming. We have proposed a joint MSINR and RGSRS algorithm for dis-

tributed beamforming which is derived based on a greedy search relay selection scheme.
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The computational costs of the proposed algorithms hava been analyzed and compared

to prior work that employ RRRS and RESRS schemes. The results have shown excellent

SINR and BER performances of the proposed algorithm which are very close to the joint

MSINR and RESRS algorithm.
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Robust Distributed Beamforming
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6.1 Introduction

In most scenarios encountered and even when the relays are ideally distributed in terms of

locations, the channels observed by the relays may suffer quality degradation because of

inevitable measurement, estimation and quantization errors in CSI [97] as well as propa-

gation effects. These impairments result in imperfect CSI that can affect most distributed

beamforming methods, which either fail to work properly or cannot provide satisfactory

performance. In this context, robust distributed beamforming (RDB) techniques are hence
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in demand to mitigate the channel errors or uncertainties and preserve the relay system

performance.

6.1.1 Prior and Related Work

The studies in [94, 96, 97, 108] minimize the total relay transmit power under an over-

all quality of service (QoS) constraint, using a convex semi-definite programme (SDP)

relaxation method. The works in [94, 97] consider the channel errors as Gaussian ran-

dom vectors with known statistical distributions between the source to the relay nodes

and the relay nodes to the destination, whereas [96] models the channel errors on their

covariance matrices as a type of matrix perturbation. The work in [98, 103, 104] presents

a robust design, which ensures that the SNR constraint is satisfied in the presence of

imperfect CSI by adopting a worst-case design and formulates the problem as a convex

optimization problem that can be solved efficiently. Similar approaches that use worst-

case method can also be found in conventional beamforming as in [7, 109]. The study

in [99] discusses multicell coordinated beamforming in the presence of CSI errors, where

base stations (BSs) collaboratively mitigate their intercell interference (ICI), in which an

optimization problem that minimizes the overall transmission power subject to multiple

QoS constraints is considered and solved using semi-definite relaxation (SDR) and the

S-Lemma. The work in [107] provides a study of systematic analytical framework for

the convergence of a general set of adaptive schemes and their tracking capability with

stochastic stability.

6.1.2 Contributions

In this work, unlike most of the existing RDB approaches, we aim to maximize the system

output SINR subject to a total relay transmit power constraint using an approach that ex-

ploits the cross-correlation between the beamforming weight vector and the system output

and then projects the obtained cross-correlation vector onto a subspace computed from the

statistics of second-order imperfect channels, namely, the cross-correlation and subspace

projection (CCSP) RDB technique. Unlike our previous work on centralized beamform-
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ing [100], the CCSP RDB technique is distributed and has marked differences in the way

the subspace processing is carried out. In the CCSP RDB method, the covariance ma-

trices of the channel errors are modeled by a certain type of additive matrix perturbation

methods [93], which ensures that the covariance matrices are always positive-definite. We

consider multiple signal sources and assume that there is no direct link between them and

the destination. We also consider that the errors only exist between the signal sources

and the relays. The channel error is decomposed and estimated for each signal originat-

ing from a source at each time instant separately. The proposed CCSP RDB technique

shows outstanding SINR performance as compared to the existing distributed beamform-

ing techniques, which focus on transmit power minimization over a wide range of system

input SNR values.

In summary, the main contributions of our work are:

• The proposed CCSP RDB technique.

• A performance analysis of the proposed and existing RDB related techniques.

• A simulation study of the proposed and existing RDB algorithms in several scenar-

ios of interest.

This chapter is organized as follows. Section 6.2 presents the system model. In Section

6.3, the proposed CCSP RDB method is introduced. Section 6.4 present the performance

analysis. Section 6.5 presents and discusses the simulation results. Section 6.6 gives the

summary.

6.2 System Model

We consider the same relay system model as in Fig. 5.1. The received signal at the mth

relay can be expressed as:

xm =
K∑
k=1

√
Ps,ksfm,k + νm, (6.1)
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then the transmitted signal at the mth relay is given by

ym = wmxm. (6.2)

The transmit power at the mth relay is equivalent to E[|ym|2] so that can be written

as
∑M

m=1E[|ym|2] =
∑M

m=1E[|wmxm|2] or in matrix form as wHDw where D =

diag(
∑K

k=1 Ps,k[E[|f1,k|2], E[f2,k|2], · · · , E[fM,k|2]] + Pn) is a full-rank matrix. The sig-

nal received at the destination can be expanded by substituting (6.1) and (6.2) in (5.3),

which yields

z =
M∑
m=1

wmgm
√
Ps,1fm,1s︸ ︷︷ ︸

desired signal

+
M∑
m=1

wmgm

K∑
k=2

√
Ps,kfm,ks︸ ︷︷ ︸

interferers

+
M∑
m=1

wmgmνm + n︸ ︷︷ ︸
noise

. (6.3)

By taking expectation of the components of (6.3), we can compute the desired signal

power Pz,1, the interference power Pz,i and the noise power Pz,n at the destination as

follows:

Pz,1 = E
[ M∑
m=1

(wmgm
√
Ps,1fm,1s)

2
]

= Ps,1

M∑
m=1

E
[
w∗m(fm,1gm)(fm,1gm)∗wm

]
, (6.4)

Pz,i = E
[ M∑
m=1

(wmgm

K∑
k=2

√
Ps,kfm,ks)

2
]

=
K∑
k=2

Ps,k

M∑
m=1

E
[
w∗m(fm,kgm)(fm,kgm)∗wm

]
,

(6.5)

Pz,n = E
[ M∑
m=1

(wmgmνm + n)2
]

= Pn(1 +
M∑
m=1

E
[
w∗mgmg

∗
mwm

]
), (6.6)

where ∗ denotes complex conjugation. By defining

Rk , Ps,kE[(fk � g)(fk � g)H ]

for k = 1, 2, · · · , K and

Q , PnE[ggH ]

, the SINR is computed as:

SINR =
Pz,1

Pz,i + Pz,n
=

wHR1w

Pn + wH(Q +
∑K

k=2 Rk)w
. (6.7)

In order to introduce uncertainties or errors E = [e1, · · · , eK ] ∈ CM×K to the chan-

nels, we emphasize that only channel F is considered whereas g is not affected, in which

case we have

f̂k = fk + ek, k = 1, 2, · · · , K, (6.8)
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where f̂k is the kth mismatched channel component of F, ek for any k = 1, · · · , K follows

a Gaussian distribution so that its covariance matrix Rek = eke
H
k is diagonal. In fact, the

second-order statistics of any Gaussian distributed vector is diagonal and so as we can

directly impose the effects of the uncertainties to all the matrices associated with fk in

(6.7). By using an additive Frobenius norm matrix perturbation method as introduced

in [93], thus we can have the following

R̂k = Rk + Rek = Rk + ε||Rk||F IM , k = 1, · · · , K, (6.9)

D̂ = D + ε||D||F IM , (6.10)

where R̂k and D̂ are the matrices perturbed after the channel mismatch effects are taken

into account, ε is the perturbation parameter uniformly distributed within (0, εmax] where

εmax is a predefined constant which describes the mismatch level. The matrix IM rep-

resents the identity matrix of dimension M and it is clear that R̂k and D̂ are positive

definite, i.e. R̂k � 0(k = 1, · · · , K) and D̂ � 0. At this point, according to (6.7), the

robust optimization problem that aims to maximize the output SINR with a total relay

transmit power constraint can be written as

max
w

wHR̂1w

Pn + wH(Q +
∑K

k=2 R̂k)w

subject to wHD̂w ≤ PT .

(6.11)

The optimization problem (6.11) shares a similar form to the optimization problem dis-

cussed in [69] and hence can be solved in a closed form using an eigen-decomposition

method that only requires quantities or parameters with known second-order statistics.

6.3 Proposed CCSP RDB Algorithm

In this section, the proposed CCSP RDB algorithm is introduced. The algorithm works

iteratively and is based on the exploitation of cross-correction vector between the relay

received data and the system output, as well as the construction of an eigen-subspace. By

projecting the so obtained cross-correlation vector onto the subspace, the channel errors

can be efficiently eliminated at its best and the result leads to an precise estimate of the
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mismatched channels. To do this, the iteration index i is introduced and the sample cross-

correlation vector (SCV) q̂(i) in the ith iteration can be estimated by

q̂(i) =
1

i

i∑
j=1

x(j)z∗(j). (6.12)

Then, we break down the mismatched channel matrix F̂(i) to K components as F̂(i) =

[f̂1(i), f̂2(i), · · · , f̂K(i)] and for each of them we construct a separate projection matrix.

For the kth (1 ≤ k ≤ K) component, we firstly compute the covariance matrix for f̂k(i)

directly and take it as an estimate of the true channel covariance matrix instead of the

mismatched channel covariance matrix as

R̂f̂k
(i) =

1

i

i∑
j=1

f̂k(j)f̂
H
k (j). (6.13)

Here we take an approximation for the time-averaged estimate of the covariance matrix

so that we have 1
i

i∑
j=1

fk(j)f
H
k (j) ≈ 1

i

i∑
j=1

f̂k(j)f̂
H
k (j) and Rfk(i) = 1

i

i∑
j=1

f̂k(j)f̂
H
k (j). Then

the error covariance matrix Rek(i) can be computed as

Rek(i) = ε||Rfk(i)||F IM . (6.14)

In order to eliminate or reduce the errors ek(i) from f̂k(i), the SCV obtained in (6.12) can

be projected onto a subspace given by

Pk(i) = [c1,k(i), c2,k(i), · · · , cN,k(i)][c1,k(i), c2,k(i), · · · , cN,k(i)]H , (6.15)

where c1,k(i), c2,k(i), · · · , cN,k(i) are the N principal eigenvectors of the error spectrum

matrix Ck(i), which is defined by

Ck(i) ,

εmax∫
ε→0+

E[f̂k(i)f̂
H
k (i)]dε =

εmax∫
ε→0+

E[(fk(i) + ek(i))(fk(i) + ek(i))
H ]dε. (6.16)

Assuming ek(i) is uncorrelated with fk(i) and ε follows a uniform distribution over the

sector (0, εmax] and approximating fk(i)f
H
k (i) ≈ Rfk(i) and ek(i)e

H
k (i) ≈ Rek(i), then

(6.16) can be simplified as

Ck(i) =

εmax∫
ε→0+

(Rfk(i) + Rek(i))dε = εmaxRfk(i) +
ε2max

2
||Rfk(i)||F IM . (6.17)

Then the mismatched channel component is then estimated by

f̂k(i) =
Pk(i)q̂(i)

‖Pk(i)q̂(i)‖2

. (6.18)
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To this point, all the K channel components of f̂k(i) are obtained so that we have

F̂k(i) = [f̂1(i), f̂2(i), · · · , f̂K(i)]. In the next step, we use the so obtained channel com-

ponents to provide estimates for the matrix quantities R̂k(i) (k = 1, · · · , K) and D̂(i) in

(6.11) as follows:

R̂k(i) = Ps,kE[(f̂k(i)� g(i))(f̂k(i)� g(i))H ], (6.19)

D̂(i) = diag
( K∑
k=1

Ps,k[E[|f̂1,k(i)|2], · · · , E[f̂M,k(i)|2]] + Pn

)
. (6.20)

To proceed further, we define Û(i) = Q(i) +
∑K

k=2 R̂k(i) (where Q(i) =

PnE[g(i)gH(i)]), so that (6.11) can be written as

max
w(i)

wH(i)R̂1(i)w(i)

Pn + wH(i)Û(i)w(i)

subject to wH(i)D̂(i)w(i) ≤ PT .

(6.21)

To solve the optimization problem in (6.21), the weight vector is rewritten as

w(i) =
√
pD−1/2(i)w̃(i), (6.22)

where w̃(i) satisfies w̃H(i)w̃(i) = 1. Then (6.21) can be rewritten as

max
p,w̃(i)

pw̃H(i)R̃1(i)w̃(i)

pw̃H(i)Ũ(i)w̃(i) + Pn

subject to ||w̃(i)||2 = 1, p ≤ PT ,

(6.23)

where R̃1(i) = D̂−1/2(i)R̂1(i)D−1/2(i) and Ũ(i) = D̂−1/2(i)Û(i)D̂−1/2(i). As the

objective function in (6.23) increases monotonically with p regardless of w̃(i), which

means the objective function is maximized when p = PT , hence (6.23) can be simplified

to

max
w̃(i)

PT w̃H(i)R̃1(i)w̃(i)

PT w̃H(i)Ũ(i)w̃(i) + Pn

subject to ||w̃(i)||2 = 1,

(6.24)

or equivalently as

max
w̃(i)

PT w̃H(i)R̃1(i)w̃(i)

w̃H(i)(PnIM + PT Ũ(i))w̃(i)

subject to ||w̃(i)||2 = 1,

(6.25)

in which the objective function is maximized when w̃(i) is chosen as the principal eigen-

vector of (PnIM +PT Ũ(i))−1R̃1(i) [69], which leads to the solution for the weight vector
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of the distributed beamformer with channel errors given by

w(i) =
√
PT D̂−1/2(i)P{(PnIM + D̂−1/2(i)Û(i)D̂−1/2(i))−1D̂−1/2(i)R̂1(i)D̂−1/2(i)},

(6.26)

where P{.} denotes the principal eigenvector corresponding to the largest eigenvalue.

Then the maximum achievable SINR of the system in the presence of channel errors is

given by

SINRmax = PTλmax{(PnIM + D̂−1/2(i)Û(i)D̂−1/2(i))−1D̂−1/2(i)R̂1(i)D̂−1/2(i)},
(6.27)

where λmax is the maximum eigenvalue. The steps of the proposed CCSP RDB algorithm

are detailed in Table 6.1.

6.4 Analysis

This section presents a performance analysis of the proposed CCSP RDB algorithm in

terms of the mean square error (MSE) for the channels. In the MSE analysis, we make

assumptions that the channel components fk, k = 1, · · · , K, the error vectors ek, k =

1, · · · , K, and the noise ν, n are all uncorrelated with each other. We then investigate

the MSE using two different approaches, one obtains a general pair of upper and lower

bounds that are based on the spread of the channel covariance matrix for the channel

error model adopted, whereas the other approach focuses on the procedure of subspace

projection that involves the SCV and leads to a problem related to the study of principal

component analysis (PCA), which has been a popular research topic in computer science,

statistics and theoretical mathematics.

6.4.1 MSE Analysis

In this section, we carry out a general MSE analysis of the channel errors associated with

the distributed beamforming problem. In particular, we firstly aim to obtain a pair of

upper and lower bounds for all methods that model the channel error covariance matrix

as an addictive perturbation based on the Frobenius norm of the true channel covariance
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Table 6.1: Proposed CCSP RDB Algorithm

Initialization:

w(0) = 1; q̂(0) = 1; R̂k(0) = IM for k = 1, · · · ,K; εmax; N ; PT . For iteration i = 1, 2, · · · :
Compute the SCV as:

q̂(i) = ((i− 1) · q̂(i− 1) + x(i)z∗(i))/i

For k = 1, · · · ,K:

Approximate the covariance matrix for the kth channel component as:

Rfk(i) ≈ ((i− 1) · R̂f̂k
(i− 1) + f̂k(i)f̂

H
k (i))/i

Compute the error spectrum matrix for f̂k(i):

Ck(i) = εmaxRfk(i) + ε2max
2 ||Rfk(i)||F IM

Compute N principal eigenvectors of C

and obtain [c1,k, c2,k, · · · , cN,k]
Compute the projection matrix for f̂k(i):

Pk(i) = [c1,k, c2,k, · · · , cN,k][c1,k, c2,k, · · · , cN,k]H

Estimate f̂k(i) by subspace projection:

f̂k(i) = Pk(i)q̂(i)
‖Pk(i)q̂(i)‖2

Compute R̂k(i):

R̂k(i) = Ps,kE[(f̂k(i)� g(i))(f̂k(i)� g(i))H ]

End of k.

Compute quantities D̂(i), Q(i) and Û(i):

D̂(i) = diag(
∑K

k=1 Ps,k[E[|f̂1,k(i)|2], E[|f̂2,k(i)|2], · · · , E[f̂M,k(i)|2]] + Pn)

Q(i) = PnE[g(i)gH(i)]

Û(i) = Q(i) +
∑K

k=2 R̂k(i)

Obtain the beamformer weight vector:

w(i) =
√
PT D̂

−1/2(i)P{(PnIM + D̂−1/2(i)Û(i)D̂−1/2(i))−1D̂−1/2(i)R̂1(i)D̂−1/2(i)}
Compute the system output SINR:

SINRmax = PTλmax{(PnIM + D̂−1/2(i)Û(i)D̂−1/2(i))−1D̂−1/2(i)R̂1(i)D̂−1/2(i)}
End of i.
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matrix and a matrix perturbation parameter ε as in (6.14). According to the definition, the

MSE of f̂k is given by

MSE{f̂k}1 , tr(E[(f̂k − fk)(f̂k − fk)
H ])

= tr(E[eke
H
k ]) = tr(E[Rek ]) = tr(

εmax
2
E[||Rfk ||F ]IM) =

εmaxM

2
E[||Rfk ||F ]. (6.28)

Furthermore, the Frobenius norm of any positive definite matrix can be expressed as the

square root of the sum of its squared eigenvalues, which results in

||Rfk ||F =

√√√√ M∑
m=1

λ2
m,k, (6.29)

where λm,k refers to the mth eigenvalue of matrix Rfk .

Let us now denote the eigenvalue spread of the matrix Rfk as σλ,k, which is defined

by |λmax,k − λmin,k|, where λmax,k and λmax,k refer to the maximum eigenvalue and

the minimum eigenvalue of Rfk , respectively. Then we can obtain a lower bound for

min{∑M
m=1 λ

2
m,k}, by assuming λ1,k, λ2,k, · · · , λm,k, · · · , λM,k (λm,k 6= λmax,k) → 0+,

which yields the following relations for the lower bound on the MSE of f̂k:

min{
M∑
m=1

λ2
m,k} > (M − 1)λ2

min,k + λ2
max,k

= (M − 1)(λmax,k − σλ,k)2 + λ2
max,k = Mλ2

max,k − 2(M − 1)σλ,kλmax,k + (M − 1)σ2
λ,k.

(6.30)

On the other hand, we can also obtain an upper bound for max{∑M
m=1 λ

2
m,k}, by assuming

λ1,k, λ2,k, · · · , λm,k, · · · , λM,k (λm,k 6= λmax,k) → λ−max,k, which yields the following

relations for the upper bound on the MSE of f̂k:

max{
M∑
m=1

λ2
m,k} < (M − 1)λ2

max,k + λ2
min,k

= (M − 1)λ2
max,k + (λmax,k − σλ,k)2 = Mλ2

max,k − 2σλ,kλmax,k + σ2
λ,k. (6.31)

By substituting (6.29) to (6.30) and (6.31), we have

min{||Rfk ||F} >
√
Mλ2

max,k − 2(M − 1)σλ,kλmax,k + (M − 1)σ2
λ,k, (6.32)

max{||Rfk ||F} <
√
Mλ2

max,k − 2σλ,kλmax,k + σ2
λ,k. (6.33)
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Since we have min{||Rfk ||F} ≤ E[||Rfk ||F ] ≤ max{||Rfk ||F}, then we can obtain the

upper and lower bounds for E[||Rfk ||F ] by substituting the relations in (6.30) and (6.31)

in (6.32) and (6.33), resulting in√
Mλ2

max,k − 2(M − 1)σλ,kλmax,k + (M − 1)σ2
λ,k < E[||Rfk ||F ] <√
Mλ2

max,k − 2σλ,kλmax,k + σ2
λ,k, (6.34)

which is then substituted in (6.28) and yields the bounds for the MSE:

εmaxM

2

√
Mλ2

max,k − 2(M − 1)σλ,kλmax,k + (M − 1)σ2
λ,k < MSE{f̂k}1 <

εmaxM

2

√
Mλ2

max,k − 2σλ,kλmax,k + σ2
λ,k. (6.35)

The bounds described in (6.35) give a basic idea about how the Frobenius norm of the

kth component channel matrix Rfk is constrained with respect to its maximum (principal)

eigenvalue λmax,k and the eigenvalue spread σλ,k of ||Rfk ||F . If we take the lower bounds

as the Minimum MSE (MMSE) of the channel components and compute the overall sys-

tem MMSE, then we can obtain the system MMSE with respect to F̂ as following:

MMSE{F̂} =
K∑
k=1

MMSE{f̂k}

=
εmaxM

2

K∑
k=1

√
Mλ2

max,k − 2(M − 1)σλ,kλmax,k + (M − 1)σ2
λ,k. (6.36)

At this point, we can compute the MMSE for the system output by directly substituting

(6.36) in (5.1), (5.2), (5.3), and obtain

MMSE{z} = gTW(F̂s + ν) + n. (6.37)

Here we simply replace F̂ by a diagonal matrix MMSE{F̂}IM which is characterized by

its MMSE, and we obtain

MMSE{z} = gTW(
εmaxM

2

K∑
k=1

(Mλ2
max,k−2(M−1)σλ,kλmax,k+(M−1)σ2

λ,k)
−1/2s+ν)+n.

(6.38)

Furthermore, from [102] we know that the MMSE of the system SINR can be associated

with its actual value, provided that the channels and input data have Gaussian distribution,

which is given by

SINR =
1

MMSE{z} − 1. (6.39)
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By substituting (6.38) in (6.39) we obtain

SINR = 1/
(
gTW

(εmaxM
2

K∑
k=1

(Mλ2
max,k

− 2(M − 1)σλ,kλmax,k + (M − 1)σ2
λ,k)

−1/2s + ν
)

+ n
)
− 1. (6.40)

Equation (6.40) presents a relation between the system output SINR and the maximum

eigenvalue λmax,k of matrix Rfk and its spread σλ,k. In order to study how the MSE

bounds vary with the values of the matrix spread and the maximum eigenvalue, we set

total number of relays and signal sources M = 8, εmax = 0.2. Then we test two cases

with σλ,k = 0.9λmax,k and σλ,k = 0.5λmax,k and illustrate the variations of those bounds

in Fig. 6.1 and Fig. 6.2, respectively. Because we use linear relations between σλ,k and

λmax,k, proportional relations between the MSE bounds and λmax,k are reflected as can

be seen in Fig. 6.1 with Fig. 6.2. In addition, we generate the sensor array data and

compute the actual MSE values of the proposed CCSP RDB algorithm, according to the

above conditions and compare the results to the analytical bounds in those two figures

as well. The practical results are obtained by taking the average MSE result from k =

1, · · · , K and the same system parameters used for obtaining Fig. 6.6 in the Simulations

section, except that the system input SNR is set to 10dB. The sets of matrix eigenvalues

are captured and selected to be as close as possible to the analytical conditions assumed

for ease of comparison. Also, by comparing the values and variations of the MSE bounds

in these two figures, we can see that there is not obvious difference between the upper

bounds. However, with a smaller eigenvalue spread σλ,k, the lower bound gets closer

to the upper bound. The practical results obtained by using generated sensor array data

indicate that only with smaller λmax,k, the MSE gets closer to the upper bound.

6.4.2 Cross-Correlation and Subspace Projection Analysis

In this section, we present the performance analysis of the proposed CCSP RDB tech-

nique. In particular, this analysis is specific to the cross-correlation and subspace pro-

jection method used. At first we aim to exploit the properties of the cross-correlation

vector q(i) estimated in (6.12). For convenience purposes, we omit the time index i in the
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Figure 6.1: MSE bounds versus λmax,k, σλ,k = 0.9λmax,k
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Figure 6.2: MSE bounds versus λmax,k, σλ,k = 0.5λmax,k

following analysis. By definition, we have

q , E[z∗x] = E[(gTWx + n)∗x] = E[(gHW∗x∗ + n∗)(F̂s + ν)]. (6.41)

Since W is diagonal, we have W∗ = WH . With the assumption that the noise n is

uncorrelated with s and ν, the terms E[n∗F̂s] and E[n∗ν] are equal to zero and hence can
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be discarded. Then from (6.41) we have

q = E[gHW∗x∗F̂s + gHW∗x∗ν]

= E[gHW∗(F̂∗s∗ + ν∗)F̂s + gHW∗x∗ν]

= E[F̂ssHF̂HWg] + E[ννHWg], (6.42)

where F̂ = [f̂1, · · · , f̂K ] is the mismatched channel matrix and s = [s1, · · · , sK ]T . Now

we expand the expressions for both F̂ and s in (6.42), assuming the signal sources are

uncorrelated with each other. Then we obtain

q = E[(
K∑
k=1

f̂ksk)(
K∑
k=1

f̂ksk)
HWg] +E[ννHWg] = E[

K∑
k=1

sks
∗
k f̂k f̂

H
k Wg] +E[ννHWg].

(6.43)

At this stage, we substitute f̂k = fk + ek in (6.43). It should be noticed that E[Wg] is a

deterministic quantity and E[sks
∗
k] and E[ννH ] can be replaced by Ps,k and Pn, respec-

tively. Furthermore, with the assumption that fk is uncorrelated with ek, (6.43) can be

simplified to:

q = E[
K∑
k=1

Ps,kfkf
H
k +eke

H
k Wg]+PnWg = (

K∑
k=1

Ps,kE[(Rfk+Rek)]+Pn)Wg. (6.44)

Here we define the kth cross-correlation vector component as

qk , (Ps,kE[(Rfk + Rek)] + Pn)Wg, (6.45)

q ,
K∑
k=1

qk. (6.46)

In order to introduce the cross-correlation vector and subspace projection approach, we

substitute (6.46) in f̂k = Pkq (assuming it is already normalized as in (6.18)) and obtain

f̂k = Pk

K∑
k=1

qk. (6.47)

If we assume that there is no error extracted by projecting any cross-correlation vector

component ql generated from the channel components f̂l (1 ≤ l 6= k ≤ K) onto the

subspace projection matrix Pk so that Pkql = 0, then (6.47) can be simplified to

f̂k = Pkqk = Pk(Ps,kE[(Rfk + Rek)] + Pn)Wg. (6.48)

From the MSE definition in (6.28), we have MSE{f̂k}2 = tr(E[(f̂k − fk)(f̂k − fk)
H ]) =

E[(f̂k − fk)
H(f̂k − fk)]. After substituting (6.48) in (6.28) we have

MSE{f̂k}2 = E[(Pk(Ps,kE[(Rfk + Rek)] + Pn)Wg − fk)
H

(Pk(Ps,kE[(Rfk + Rek)] + Pn)Wg − fk)]. (6.49)
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After expanding (6.49), we obtain

MSE{f̂k}2 = E[gHW(Ps,kRfk + Ps,kRek + Pn)PH
k Pk(Ps,kRfk + Ps,kRek + Pn)Wg]

− 2E[fHk Pk(Ps,kRfk + Ps,kRek + Pn)Wg] + E[fHk fk]. (6.50)

It should be noticed that PH
k Pk = Pk = PH

k as the projection of a subspace projection

matrix onto itself results in the same projection matrix. In addition, we have fHk Pk = fHk

in the second term of (6.50), which can be simply verified. Since we have fk = E[Pkqk]

by pre-multiplying both sides by PH
k then we have PH

k fk = E[PH
k Pkqk] = E[Pkqk] =

fk. Then by taking the Hermitian transpose on both sides gives fHk Pk = fHk . Therefore,

(6.50) can be rewritten as

MSE{f̂k}2 = E[gHW(Ps,kRfk + Ps,kRek + Pn)Pk(Ps,kRfk + Ps,kRek + Pn)Wg]

− 2E[fHk (Ps,kRfk + Ps,kRek + Pn)Wg] + E[fHk fk]. (6.51)

After expanding the internal multiplications and eliminating the uncorrelated ones with

the assumption that g is uncorrelated with fk and taking into account that fk is normalized,

i.e. E[fHk fk] = 1, we obtain

MSE{f̂k}2 = E[gHW(P 2
s,kRekPkRek + PnPs,kPkRek + P 2

nPk)Wg + 1]. (6.52)

With (6.14), further simplifications can be made so we have

MSE{f̂k}2 = E[(P 2
s,kε

2||Rfk ||2F + PnPs,kε||Rfk ||F + P 2
n)gHWPkWg + fHk fk]

= (
1

3
P 2
s,kε

2
maxE[||Rfk ||F ]2 +

1

2
PnPs,kεmaxE[||Rfk ||F ] + P 2

n)gHWE[Pk]Wg + 1

(6.53)

which monotonically increases with respect to E[||Rfk ||F ]. However, the results of the

analysis can become more interesting if we compare the MSE obtained in the above two

approaches. Let us denote them as MSE{f̂k}1 (described in (6.28)) and MSE{f̂k}2 (de-

scribed in (6.53)), respectively, and gHWE[Pk]Wg as τ . If we compute their difference

we have

MSE{f̂k}2 −MSE{f̂k}1 = (
1

3
P 2
s,kε

2
maxE[||Rfk ||F ]2 +

1

2
PnPs,kεmaxE[||Rfk ||F ] + P 2

n)τ

+ 1− M

2
εmaxE[||Rfk ||F ]. (6.54)
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If we take the partial derivative of (6.54) with respect to τ , then we have
∂{MSE{f̂k}2−MSE{f̂k}1}

∂τ
> 0 which implies that MSE{f̂k} is proportionally and mono-

tonically increasing with respect to τ . From (6.33) we have max{||Rfk ||F} <√
Mλ2

max,k − 2σλ,kλmax,k + σ2
λ,k <

√
Mλmax,k, which yields

MSE{f̂k}2 −MSE{f̂k}1 < (
1

3
P 2
s,kε

2
maxMλ2

max,k +
1

2
PnPs,kεmax

√
Mλmax,k + P 2

n)τ

+ 1− M

2
εmax
√
Mλmax,k. (6.55)

In other words, if the right-hand side of (6.55) is less than 0 or τ satisfies

τ <
M
2
εmax
√
Mλmax,k − 1

1
3
P 2
s,kε

2
maxMλ2

max,k + 1
2
PnPs,kεmax

√
Mλmax,k + P 2

n

, (6.56)

then MSE{f̂k}2 − MSE{f̂k}1 < 0 is true for all possible values of E[||Rfk ||F ], which

indicates a smaller MSE result from approach 2 (MSE{f̂k}2) as compared to approach 1

(MSE{f̂k}1). Interestingly, this indicates that using prior knowledge about the mismatch

in the form of cross-correlation and subspace processing can result in smaller values of

MSE. However, the only term of τ that has to be determined is the subspace projection

matrix Pk, which is dependent on its subspace properties and can be further exploited

using PCA methods that can be found in the literature [101].

6.5 Simulations

In the simulations, we compare the proposed CCSP RDB algorithm for the case where

the perfect CSI is known, the case where no robust method is used when the CSI is

imperfect and for the cases where the CSI is imperfect and the several existing robust

approaches [7, 80, 96–99, 103, 104, 107, 108] (i.e. worst-case SDP online programming)

are used. The simulation metrics considered include the system output SINR versus input

SNR as well as the maximum allowable total transmit power PT . We also examine the

incoherent scenarios, where some of the interferers are strong enough as compared to the

desired signal and the noise. In all simulations, the system input SNR is known and can

be controlled by adjusting only the noise power. Both of the channels F and g follow

the Rayleigh distributed whereas the mismatch is only considered for F. The shadowing

and path loss effects are taken into account where the path loss exponent ρ = 2, the
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source-to-destination power path loss L = 10dB and the shadowing spread σs = 3dB.

The total number of relays and signal sources are set as M = 8 and K = 3, respectively.

The system interference-to-noise ratio (INR) is fixed at 10dB or otherwise specified. The

number of principal components is manually selected to optimize the performance for the

proposed CCSP RDB algorithm. A total number of 100 snapshots is considered.

At first, we examine the SINR performance in terms of a variation of input SNRs (i.e.

−10dB to 20dB), while limiting the maximum allowable transmit power to PT = 1dBW,

for all the compared cases. The powers of interferers are equally spared by he interferers

at this moment. We illustrate their SINR versus SNR performances with different values

of the mismatch parameter εmax, i.e. εmax = 0.2, εmax = 0.5 and εmax = 1.0 in Fig.

6.3, Fig. 6.4 and Fig. 6.5, respectively. The worst-case SDP method is adopted from

[96], in which the values of εmax are set to be consistent for all the mismatched matrix

quantities. The results show that the proposed CCSP RDB method perfectly preserves

the robustness against the increase of channel error level and behave close to the case

of perfect CSI, whereas the worst-case SDP method suffers performance degradations

against the increase of channel error levels.
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Figure 6.3: SINR versus SNR, PT = 1dBW, εmax = 0.2, INR=10dB

Secondly, we examine the SINR performance with respect to a variation of maximum

allowable total transmit power PT (i.e. 1dBW to 5dBW) by fixing the SNR at a certain

level (i.e. SNR=10dB). We still consider the same INR and all interferers have the same

power. This time, we fix the perturbation parameter at εmax = 0.5 for all compared
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Figure 6.4: SINR versus SNR, PT = 1dBW, εmax = 0.5, INR=10dB
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Figure 6.5: SINR versus SNR, PT = 1dBW, εmax = 1.0, INR=10dB

algorithms. In Fig. 6.6, it shows the output SINR increases as we lift up the limit for the

maximum allowable transmit power and it makes a substantial difference when a robust

approach is used. The proposed CCSP RDB method still outperforms the worst-case SDP

algorithm and perform close to the case where we have a perfect CSI.

In the last example, we increase the system INR from 10dB to 20dB. We still consider

K = 3 users (which means there are two interferers in total) but rearrange the powers

of the interferers so that one of them is much stronger than the other. Specifically, we

examine the compared algorithms in an incoherent scenario and set the power ratio of
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Figure 6.6: SINR versus PT , SNR=10dB, εmax = 0.5, INR=10dB

the stronger interferer over the weaker one to 10. The maximum allowable total transmit

power PT and the perturbation parameter εmax are fixed at 1dBW and 0.2, respectively.

We observe the SINR performance versus SNR for these algorithms and illustrate the

results in Fig. 6.7. Then we fix the system SNR at 10dB and observe the output SINR

performance versus snapshots as in Fig. 6.8. It can be seen that all the algorithms have

performance degradations due to the adoption of strong interferers as well as their power

distribution. However, the proposed CCSP RDB algorithm has excellent robustness in

terms of the system output SINR against the presences of strong interferers with unbal-

anced power distribution. Especially with relative high system SNRs, the CCSP RDB

algorithm is able to perform extremely close to the case of perfect CSI.

6.6 Summary

We have devised a novel RDB approach based on the exploitation of the cross-correlation

between the received data from the relays at the destination and the system output as well

as a subspace projection method to estimate the channel errors. In the proposed CCSP

RDB method, a total relay transmit power constraint has been applied to the system with

the objective of maximizing the output SINR. A performance analysis of the CCSP RDB

technique has been carried out. The proposed CCSP RDB method does not require any

129



CHAPTER 6. ROBUST DISTRIBUTED BEAMFORMING TECHNIQUES

−10 −5 0 5 10 15 20
−40

−30

−20

−10

0

10

20

SNR (dB)

S
IN

R
 (

dB
)

 

 

perfect CSI
imperfect CSI
worst−case SDP
proposed method

Figure 6.7: SINR versus SNR, PT = 1dBW, εmax = 0.2, INR=20dB
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Figure 6.8: SINR versus snapshots, PT = 1dBW, εmax = 0.2, SNR=10dB, INR=20dB

online optimization procedure and the simulation results show an excellent performance

as compared to the existing approaches.
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7.1 Conclusions

In this thesis, sensor array beamforming algortihms as well as relay selection techniques

have been investigated for applications of conventional beamformers and distributed

beamforming using relay networks. For conventional beamforming, low-complexity RAB

techniques that are based on shrinkage methods, eigen subspace projection and Krylov

subspace projection techniques have been proposed. For distributed beamforming, coop-

erative relay networks with relay selections and output SINR maximization techniques

and robust distributed beamforming techniques have been proposed. The corresponding

system models have been described and the techniques have been introduced in an al-

gorithmic manner. Moreover, computational complexity and performance analysis and

practical simulations have also been presented for those techniques.

In Chapter 3, low-complexity RAB techniques based on shrinkage methods have been

proposed. We have firstly derived a LOCMSE batch algorithm to estimate the desired sig-

nal steering vector mismatch, in which the INC matrix is also estimated with a recursive
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matrix shrinkage method. Then we have developed low-complexity adaptive recursive

versions of SG and CG to update the beamforming weights from a series of modified op-

timization problems, resulting in low-cost LOCSME-SG, LOCSME-CCG and LOCSME-

MCG robust adaptive algorithms. An analysis of the effect of shrinkage on the estimation

procedure has been developed to have a deep investigation on how it affects the estimation

accuracy and shown to provide better performance. A computational complexity compar-

ison has also been presented and discussed for the proposed and existing algorithms. In

the simulations, a diverse set of scenarios have been considered and the performance of

the proposed algorithms has been illustrated and discussed.

In Chapter 4, cost-effective low-rank RAB techniques have been proposed. The tech-

niques include a batch OKSPME method and novel RAB algorithms that are based on

the exploitation of the cross-correlation between the array observation data and the output

of the beamformer, while using a Krylov subspace. In OKSPME, we have constructed

a general linear equation considered in large dimensions whose solution helps to update

the steering vector mismatch. Then, an FOM method that aims to form an orthogonal

Krylov subspace has been introduced to iteratively estimate the steering vector mismatch

in a reduced-dimensional subspace, so that the system complexity can be significantly

reduced and controlled when dealing with high dimension subspaces or large sensor ar-

rays. Adaptive algorithms based on SG and CG techniques have been derived based on

reformulated optimization problems to update the beamforming weights, for the purpose

of further reducing the complexity in weight vector computations. In the simulations, we

have considered multiple scenarios including both time-invariant and time-varying cases

and the results have shown excellent performance in terms of the output SINR of the

proposed RAB algorithms among all the compared RAB methods.

In Chapter 5, relay selection methods for distributed beamforming have been proposed.

Specifically, we have proposed joint MMSE consensus relay and selection schemes with

a total power constraint and local communications among the relays for a network with

cooperating sensors, then we have devised greedy relay selection algorithms named

LMMSEC-G and SMMSEC-G, based on the MMSE consensus approach that optimize

the network performance. Moreover, we have also proposed the MSINR relay selection

algorithms for distributed beamforming, with a total relay transmit power constraint that

iteratively optimizes both the beamforming weights at the relays nodes, maximizing the
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SINR at the destination, which are named as RGSRS relay selection algorithm. The pro-

posed greedy relay selection scheme has also been compared to other schemes like RRRS

and RESRS. A complexity analysis has been provided and simulation results have shown

that the proposed algorithms achieve excellent BER and SINR performances.

In Chapter 6, we have proposed a novel CCSP RDB technique, which does not require

any online optimization procedure as compared to previously reported RDB algorithms.

The CCSP RDB approach relies on a total relay transmit power constraint and aims to

maximize the output SINR. The channel errors are modeled using an additive matrix per-

turbation method, which results in degradation of the system performance. A performance

analysis of the proposed CCSP robust technique has also been provided.

7.2 Future Work

Many of the methods and algorithms introduced in this thesis have potential applications

in other systems and scenarios outside the scope of this thesis, and there is further work

and analysis that could be considered to extend the work that has been covered. RAB and

RDB techniques are mainly designed for the preservation of performance of beamforming

and relay systems. However, the error or mismatch estimation methods can be used in

many other areas like biomedical signal processing, applied mathematics, estimation and

detection techniques.

The LOCSME and OKSPME RAB techniques in Chapter 3 and 4 can be also com-

bined with widely-linear signal processing, where noncircular signals or data models and

their associated augmented statistics must be considered for optimal performance. Specif-

ically, the linear shrinkage method from LOCSME can be extended to take non-linear

parameters or coefficients into account so as to fit non-linear data model or processes,

in which case the complexity may have some increase. Since the steering vector mis-

match estimation is independent from the estimation of the covariance matrix, the matrix

shrinkage method in LOCSME can be employed in the covariance matrix estimation of

OKSPME, which can be also implemented in an adaptive mechanism.

In the applications of compressive sensing, where sparse signal models and systems
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are considered, in which case it is still possible to derive sparse versions of signal esti-

mation and reconstruction algorithms based on LOCSME or OKSPME. Interestingly, if

the exploitation of the cross-correlation between the sensor array observation data and the

system output and the subspace projection approaches work well for sparse systems, then

we can make full use of the information from a limited number of available sensors to im-

prove the accuracy of signal estimation and the quality of reconstruction without requiring

much computational complexity. In other words, to preserve or enhance the system per-

formance using the output SNR or SINR metrics. Similar MSE or MMSE analysis will

also be possible to evaluate the system performance.

Besides the greedy-like search based relay selection algorithms in this thesis, it is also

possible to combine the cooperative MMSE consensus method with many other search

algorithms like genetic algorithms. A comprehensive comparison considering multiple

aspects including computational complexity, system capacity, compatibility and perfor-

mance of interest among all the typical relay selection search algorithms (greedy search,

exhaustive search, random search etc.) should be carried out. In addition, the proposed

CCSP RDB technique can be associated with adaptive algorithms like SG or CG to reduce

the complexity and make it implementable and practical in most applications.
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Glossary

AF amplify-and-forward

BER bit-error-rate

BPSK binary phase shift keying

CCG conventional conjugate gradient

CCSP cross-correlation and subspace projection

CF compress-and-forward

CG conjugate gradient

LCMV linear constrained minimum variance

CSI channel state information

DF decode-and-forward

DL diagonal loading

DoA direction of arrival

FOM full orthogonalization method

INC interference-plus-noise covariance

INR interferences-to-noise ratio

JIO joint iterative optimization

KA knowledge-aided

LCWC low-complexity worst-case

LMS least mean squares

LOCME low-complexity mismatch estimation

LOCSME low-complexity shrinkage-based mismatch estimation

MAO modified array observation

MCG modified conjugate gradient

MJIO modified joint iterative optimization
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ML maximum likelihood

MMSE minimum mean squared error

MSE mean squared error

MSINR maximum signal-to-interference-plus-noise ratio

MVDR minimum variance distortionless response

OAS oracle approximating shrinkage

OKSPME orthogonal Krylov subspace projection mismatch estimation

PCA principal component analysis

QoS quality of service

RAB robust adaptive beamforming

RCB robust Capon beamformer

RDB robust distributed beamforming

RESRS restricted exhaustive search relay selection

RGSRS restricted greedy search relay selection

RLS recursive least squares

RRRS restricted random relay selection

SCM sample covariance matrix

SCV sample correlation vector

SDP semi-definite programme

SDR semi-definite relaxation

SG stochastic gradient

SINR signal-to-interference-plus-noise ratio

SIR signal-to-interference ratio

SMI sampled matrix inversion

SNR signal-to-noise ratio

SOCP second order cone programme

SoI signal of interest

SQP sequential quadratic programme

UCA uniform circular array

ULA uniform linear array
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