277 research outputs found

    On the Performance of the Relay-ARQ Networks

    Full text link
    This paper investigates the performance of relay networks in the presence of hybrid automatic repeat request (ARQ) feedback and adaptive power allocation. The throughput and the outage probability of different hybrid ARQ protocols are studied for independent and spatially-correlated fading channels. The results are obtained for the cases where there is a sum power constraint on the source and the relay or when each of the source and the relay are power-limited individually. With adaptive power allocation, the results demonstrate the efficiency of relay-ARQ techniques in different conditions.Comment: Accepted for publication in IEEE Trans. Veh. Technol. 201

    Performance analysis of collaborative hybrid-arq protocols over fading channels

    Get PDF
    Impairments due to multipath signal propagation on the performance of wireless communications systems can be efficiently mitigated with time, frequency or spatial diversity. To exploit spatial diversity, multiple-antenna technology has been thoroughly investigated and emerged as one of the most mature communications areas. However, the need for smaller user terminals, which results in insufficient spacing for antenna collocation, tends to limit the practical implementation of this technology. Without compromising terminal dimensions, future wireless networks will therefore have to exploit their broadcast nature and rely on collaboration between single-antenna terminals for exploiting spatial diversity. Among cooperative schemes, Collaborative ARQ transmission protocols, prescribing cooperation only when needed, i.e., upon erroneous decoding by the destination, emerge as an interesting solution in terms of achievable spectral efficiency. In this thesis, an information theoretical approach is presented for assessing the performance of Collaborative Hybrid-ARQ protocols based on Space-Time Block Coding. The expected number of retransmissions and the average throughput for Collaborative Hybrid-ARQ Type I and Chase Combining are derived in explicit form, while lower and upper bound are investigated for Collaborative Hybrid-ARQ Incremental Redundancy protocol, for any number of relays. Numerical results are presented to supplement the analysis and give insight into the performance of the considered scheme. Moreover, the issue of practical implementation of Space-Time Block Coding is investigated

    Collaborative HARQ Schemes for Cooperative Diversity Communications in Wireless Networks

    Get PDF
    Wireless technology is experiencing spectacular developments, due to the emergence of interactive and digital multimedia applications as well as rapid advances in the highly integrated systems. For the next-generation mobile communication systems, one can expect wireless connectivity between any devices at any time and anywhere with a range of multimedia contents. A key requirement in such systems is the availability of high-speed and robust communication links. Unfortunately, communications over wireless channels inherently suffer from a number of fundamental physical limitations, such as multipath fading, scarce radio spectrum, and limited battery power supply for mobile devices. Cooperative diversity (CD) technology is a promising solution for future wireless communication systems to achieve broader coverage and to mitigate wireless channels’ impairments without the need to use high power at the transmitter. In general, cooperative relaying systems have a source node multicasting a message to a number of cooperative relays, which in turn resend a processed version message to an intended destination node. The destination node combines the signal received from the relays, and takes into account the source’s original signal to decode the message. The CD communication systems exploit two fundamental features of the wireless medium: its broadcast nature and its ability to achieve diversity through independent channels. A variety of relaying protocols have been considered and utilized in cooperative wireless networks. Amplify and forward (AAF) and decode and forward (DAF) are two popular protocols, frequently used in the cooperative systems. In the AAF mode, the relay amplifies the received signal prior to retransmission. In the DAF mode, the relay fully decodes the received signal, re-encodes and forwards it to the destination. Due to the retransmission without decoding, AAF has the shortcoming that noise accumulated in the received signal is amplified at the transmission. DAF suffers from decoding errors that can lead to severe error propagation. To further enhance the quality of service (QoS) of CD communication systems, hybrid Automatic Repeat-reQuest (HARQ) protocols have been proposed. Thus, if the destination requires an ARQ retransmission, it could come from one of relays rather than the source node. This thesis proposes an improved HARQ scheme with an adaptive relaying protocol (ARP). Focusing on the HARQ as a central theme, we start by introducing the concept of ARP. Then we use it as the basis for designing three types of HARQ schemes, denoted by HARQ I-ARP, HARQ II-ARP and HARQ III-ARP. We describe the relaying protocols, (both AAF and DAF), and their operations, including channel access between the source and relay, the feedback scheme, and the combining methods at the receivers. To investigate the benefits of the proposed HARQ scheme, we analyze its frame error rate (FER) and throughput performance over a quasi-static fading channel. We can compare these with the reference methods, HARQ with AAF (HARQ-AAF) and HARQ with perfect distributed turbo codes (DTC), for which correct decoding is always assumed at the relay (HARQ-perfect DTC). It is shown that the proposed HARQ-ARP scheme can always performs better than the HARQ-AAF scheme. As the signal-to-noise ratio (SNR) of the channel between the source and relay increases, the performance of the proposed HARQ-ARP scheme approaches that of the HARQ-perfect DTC scheme

    Performance Analysis and Cooperation Mode Switch in HARQ-based Relaying

    Get PDF
    We study the optimal, in terms of power-limited outage probability (OP), placement of the relay and investigate the effect of relay placement on the optimal cooperation mode of the source and the relay nodes. Using hybrid automatic repeat request (HARQ) based relaying techniques, general expressions for the OP and the average transmit power are derived. The results are then particularized to the repetition time diversity (RTD) protocol. The analytical expressions are used to find the transmit powers minimizing the power-limited OP. Our results demonstrate that adaptive power allocation reduces the OP significantly. For instance, consider a Rayleigh fading channel, an OP of 10^-3 and a maximum of 2 RTD-based retransmissions. Then, compared to equal power allocation, the required transmission signal-to-noise ratio (SNR) is reduced by 5 dB, if adaptive power allocation is utilized. Another important observation is that, depending on the relay positions and the total power budget, the system should switch between the single-node transmission mode and the joint transmission mode, in order to minimize the outage probability

    Cooperative retransmission protocols in fading channels : issues, solutions and applications

    Get PDF
    Future wireless systems are expected to extensively rely on cooperation between terminals, mimicking MIMO scenarios when terminal dimensions limit implementation of multiple antenna technology. On this line, cooperative retransmission protocols are considered as particularly promising technology due to their opportunistic and flexible exploitation of both spatial and time diversity. In this dissertation, some of the major issues that hinder the practical implementation of this technology are identified and pertaining solutions are proposed and analyzed. Potentials of cooperative and cooperative retransmission protocols for a practical implementation of dynamic spectrum access paradigm are also recognized and investigated. Detailed contributions follow. While conventionally regarded as energy efficient communications paradigms, both cooperative and retransmission concepts increase circuitry energy and may lead to energy overconsumption as in, e.g., sensor networks. In this context, advantages of cooperative retransmission protocols are reexamined in this dissertation and their limitation for short transmission ranges observed. An optimization effort is provided for extending an energy- efficient applicability of these protocols. Underlying assumption of altruistic relaying has always been a major stumbling block for implementation of cooperative technologies. In this dissertation, provision is made to alleviate this assumption and opportunistic mechanisms are designed that incentivize relaying via a spectrum leasing approach. Mechanisms are provided for both cooperative and cooperative retransmission protocols, obtaining a meaningful upsurge of spectral efficiency for all involved nodes (source-destination link and the relays). It is further recognized in this dissertation that the proposed relaying-incentivizing schemes have an additional and certainly not less important application, that is in dynamic spectrum access for property-rights cognitive-radio implementation. Provided solutions avoid commons-model cognitive-radio strict sensing requirements and regulatory and taxonomy issues of a property-rights model

    Data Transmission in the Presence of Limited Channel State Information Feedback

    Get PDF

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Finite-SNR Diversity-Multiplexing-Delay Tradeoff in Half-Duplex Hybrid ARQ Relay Channels

    No full text
    International audienceIn this paper, we consider a delay-limited hybrid automatic repeat request (HARQ) protocol that makes use of incremental redundancy over the three-node decode-and-forward (DF) relay fading channel where one source cooperates with a relay to transmit information to the destination. We provide an estimate of the diversity-multiplexing tradeoff (DMT) at finite signal to noise ratio (SNR) based on tight bounds on outage probabilities for two channel models. The results for the long term quasi-static channel highlight the distributed diversity, ie. the cooperative space diversity, and the HARQ coding gain, achieved by soft combining the successive transmitted punctured codewords via incremental redundancy. On the other hand, the results for the short term quasi-static channel illustrate the diversity gains obtained thanks to cooperative space diversity and time diversity, along with the HARQ coding gain. Using the DMT formulation, we show that equal power partitioning between the source and the relay nodes provides close to optimal performance. Furthermore, thanks to the extension of the finite-SNR DMT to the finite-SNR diversity-multiplexing-delay tradeoff, we show that, unlike the asymptotic SNR analysis, the ARQ delay, defined as the number of retransmissions rounds, impacts the performance of the HARQ relay protocol for high effective multiplexing gain

    On the optimization of distributed compression in multirelay cooperative networks

    Get PDF
    In this paper, we consider multirelay cooperative networks for the Rayleigh fading channel, where each relay, upon receiving its own channel observation, independently compresses it and forwards the compressed information to the destination. Although the compression at each relay is distributed using Wyner-Ziv coding, there exists an opportunity for jointly optimizing compression at multiple relays to maximize the achievable rate. Considering Gaussian signaling, a primal optimization problem is formulated accordingly. We prove that the primal problem can be solved by resorting to its Lagrangian dual problem, and an iterative optimization algorithm is proposed. The analysis is further extended to a hybrid scheme, where the employed forwarding scheme depends on the decoding status of each relay. The relays that are capable of successful decoding perform a decode-and-forward (DF) scheme, and the rest conduct distributed compression. The hybrid scheme allows the cooperative network to adapt to the changes of the channel conditions and benefit from an enhanced level of flexibility. Numerical results from both spectrum and energy efficiency perspectives show that the joint optimization improves efficiency of compression and identify the scenarios where the proposed schemes outperform the conventional forwarding schemes. The findings provide important insights into the optimal deployment of relays in a realistic cellular network
    • …
    corecore