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Abstract

Wireless technology is experiencing spectacular developments, due to the emergence of in-

teractive and digital multimedia applications as well as rapid advances in the highly inte-

grated systems. For the next-generation mobile communication systems, one can expect

wireless connectivity between any devices at any time and anywhere with a range of mul-

timedia contents. A key requirement in such systems is the availability of high-speed and

robust communication links. Unfortunately, communications over wireless channels inher-

ently suffer from a number of fundamental physical limitations, such as multipath fading,

scarce radio spectrum, and limited battery power supply for mobile devices.

Cooperative diversity (CD) technology is a promising solution for future wireless communi-

cation systems to achieve broader coverage and to mitigate wireless channels’ impairments

without the need to use high power at the transmitter. In general, cooperative relaying sys-

tems have a source node multicasting a message to a number of cooperative relays, which

in turn resend a processed version message to an intended destination node. The destination

node combines the signal received from the relays, and takes into account the source’s origi-

nal signal to decode the message. The CD communication systems exploit two fundamental

features of the wireless medium: its broadcast nature and its ability to achieve diversity

through independent channels.

A variety of relaying protocols have been considered and utilized in cooperative wireless

networks. Amplify and forward (AAF) and decode and forward (DAF) are two popular

protocols, frequently used in the cooperative systems. In the AAF mode, the relay amplifies

the received signal prior to retransmission. In the DAF mode, the relay fully decodes the

received signal, re-encodes and forwards it to the destination. Due to the retransmission

without decoding, AAF has the shortcoming that noise accumulated in the received signal

is amplified at the transmission. DAF suffers from decoding errors that can lead to severe
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error propagation. To further enhance the quality of service (QoS) of CD communication

systems, hybrid Automatic Repeat-reQuest (HARQ) protocols have been proposed. Thus, if

the destination requires an ARQ retransmission, it could come from one of relays rather than

the source node.

This thesis proposes an improved HARQ scheme with an adaptive relaying protocol (ARP).

Focusing on the HARQ as a central theme, we start by introducing the concept of ARP.

Then we use it as the basis for designing three types of HARQ schemes, denoted by HARQ

I-ARP, HARQ II-ARP and HARQ III-ARP. We describe the relaying protocols, (both AAF

and DAF), and their operations, including channel access between the source and relay, the

feedback scheme, and the combining methods at the receivers.

To investigate the benefits of the proposed HARQ scheme, we analyze its frame error rate

(FER) and throughput performance over a quasi-static fading channel. We can compare

these with the reference methods, HARQ with AAF (HARQ-AAF) and HARQ with perfect

distributed turbo codes (DTC), for which correct decoding is always assumed at the relay

(HARQ-perfect DTC). It is shown that the proposed HARQ-ARP scheme can always per-

forms better than the HARQ-AAF scheme. As the signal-to-noise ratio (SNR) of the chan-

nel between the source and relay increases, the performance of the proposed HARQ-ARP

scheme approaches that of the HARQ-perfect DTC scheme.
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Chapter 1

Introduction

This chapter describes the background and motivation for this research work by briefly in-

troducing the field and explaining the principal research problems. A concise outline for the

remainder of the thesis is provided at the end of the chapter.

1.1 Background

Pick up any newspaper today and it is a safe bet that you will find an article somewhere relat-

ing to mobile communications, which are affecting virtually everyone’s life. To date, second-

generation (2G) communication systems, such as the Global System for Mobile communica-

tions (GSM), have been widely implemented across the globe, providing high-quality speech

service [1]. Since the evolution from 2G towards third-generation (3G) has not brought any

substantial new service, it is not enough to encourage the customers to change their equip-

ment [2]. Following the paradigm of generational changes, fourth-generation (4G) wireless

and mobile networks are beginning to pave the way for the future.

Basically, many prophetic visions have appeared in literature presenting the future genera-

tion as the ultimate boundary of the wireless mobile communication without any limit in its

potential, but not giving any practical designing rule and thus any definition of it. Recently,

a pragmatic methodology, centered on a user-centric approach, which leads to a novel vision



1.1 Background

of the 4G and the definition of its key features and technological development, has been pro-

posed [3, 4]. Along with this view, 4G will be a convergence platform that will provide clear

advantages in terms of bandwidth, coverage, power consumption and spectrum usage, thus

also offering a variety of new heterogeneous services. Although the core of this technology is

still cellular, the network architecture will predominantly rely on short-range communication

systems, wherein the users may cooperate in a completely distributed or cellular-controlled

fashion. Therefore, the concept of node cooperation introduces a new form of diversity, spa-

tial diversity, which results in an increased reliability of the communication, leading both to

the extension of the coverage and the minimization of the power consumption. Furthermore,

cooperative transmission strategies increase the end-to-end capacity and hence the spectral

efficiency of the system.

Actually, research on spectrally efficient wired/wireless communications has been gaining

momentum since the fundamental channel capacity findings of Shannon in 1948 [5]. In his

discovery, Shannon showed that there is a parameter intrinsic to a channel, referred to as

the channel capacity, that acts as the fundamental limit of the maximum information transfer

rate over a noisy channel. Also, he showed that arbitrarily reliable communication can be

achieved if we signal at information rates less than the channel capacity. However, Shannon

only gave an existence proof of his theory, which did not indicate a constructive scheme that

can approach this theoretical limit. Since the dawn of information theory, in the enduring

years, a large amount of research was conducted into the construction of specific codes with

good error-correcting capabilities and the development of efficient decoding algorithms for

these codes.

Turbo codes [6], as one of the most powerful types of forward-error-control (FEC) codes,

caused a great stir in the coding community and have prompted a great deal of research. A

turbo code is formed from the parallel concatenation of two constituent codes separated by

an interleaver. Each constituent code may be any type of FEC code used for conventional

data communications. The interleaver is a critical part of turbo codes; which should have the

capability of breaking up the low-weight input sequence so that the permuted sequence has a

large distance between the 1’s. Hence, even if the first encoder generates a low-weight output

sequence due to a certain low-weight input pattern, the second encoder is likely to generate

high-weight output sequences and the resulting overall codeword is still of high weight.

Because of this feature, turbo codes have exceptionally good performance, particularly at

moderate bit error rates (BER) and for large block lengths. In fact, for essentially any code

2
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rate and information block lengths greater than about 104 bits, turbo codes with iterative

decoding can achieve BERs as low as 10−5 at signal-to-noise ratios (SNRs) within 1 dB of

the Shannon limit [7].

Although turbo codes could achieve energy efficiencies within 1 dB of the Shannon capacity,

as a FEC code, turbo codes still have inevitable defects. When a received packet is detected in

error, it must be decoded, and the decoded packet has to be forwarded to the user regardless

of the decoding result. When the channel condition is worse, turbo decoders might even

produce worse results than uncoded systems, making it difficult to achieve high reliability in

FEC schemes [8].

The drawback of the FEC system can be overcome if it is combined with a retransmis-

sion scheme, ARQ. Such a combination is referred to as a hybrid ARQ (HARQ) [9, 10].

A straightforward HARQ scheme simply combines FEC and ARQ schemes together, and a

code is designed for simultaneous error correction and error detection. Once the received

codeword is detected in error and the designed error correcting capability cannot correct the

errors, the receiver requests a retransmission. This HARQ scheme is called type-I HARQ. To

accommodate different error protection requirements, or a channel with unknown or time-

varying parameters, a more flexible HARQ scheme is desirable. Unlike the type-I HARQ,

which has a fixed code rate, the type-II HARQ scheme uses continuous rate variations to

change from low to high error protection within a codeword. This is done by transmitting

supplemental code symbols, when they are needed. Such a scheme can provide a higher

throughput if the channel is quiet [7, 9].

Consequently, Hagenauer [11] introduced rate compatible punctured convolutional (RCPC)

codes with such an application in mind. A family of codes with particular rates is obtained

by puncturing a low rate code periodically. Therefore, RCPC-ARQ protocol falls into the

so-called class of incremental redundancy (IR) codes, in which parity check digits are incre-

mentally transmitted to adaptively meet the error performance requirements of the system.

A few years later, the use of turbo codes in an ARQ protocol was proposed [12], and the

rate-compatibility requirement of the turbo codes in a HARQ system was considered in [13]

to achieve a high throughput over an additive white Gaussian (AWGN) channel.

It has been shown that turbo codes can provide tremendous coding gains in AWGN channels

[6]. However, in fading environments, turbo codes lose much of their power, particularly in

3
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quasi-static fading channels [14]. To deal with fading effects, spatial diversity techniques

have been provided to effectively mitigate the performance deterioration without imposing

delay or bandwidth expansion [15]. Generally, spatial diversity is obtained when signals are

transmitted from antennas separated far enough to experience independent fading channels.

The multiple-input multiple-output (MIMO) technique is a successful example that can pro-

vide both spatial and temporal diversities to effectively mitigate the detrimental effects of

fading for point-to-point channels [16–18]. This system is implemented typically with an

antenna array at both the transmitter and receiver in conjunction with the employment of

space-time coding, aiming to create separate transmission paths subject to independent fades.

The advantages of the MIMO technique have been widely acknowledged. However, due to

size, cost, or hardware limitations, most wireless handsets may not be able to support multi-

ple transmission antennas. This problem restricted the performance gains and was solved by

a new form of spatial-temporal diversity, referred to as cooperative diversity (CD) [19–21],

wherein multiple users share antennas which form a virtual antenna array. A classic example

of the CD technique can actually be traced back to the groundbreaking work on the relay

channel in 1977 [22]. In this work, the author analyzed the capacity of the three-node net-

work consisting of a source, a relay and a destination. It was assumed that all nodes operate

in the same band, so the system can be decomposed into a broadcast channel from the view-

point of the source and a multiple access channel from the viewpoint of the destination, as

shown in Fig.1.1.

Figure 1.1: The relay channel
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1.2 Research Problems and Methodology

To fully exploit spatial diversity in the CD communication systems, a variety of relaying pro-

tocols were proposed in [21]. These protocols blend different fixed relaying modes, specif-

ically amplify and forward (AAF), which lets the relay amplify and retransmit this noise

version to the destination, and decode and forward (DAF), which allows the relay to decode

and re-encode the received message before forwarding it to the destination. With strategies

based upon adapting to channel state information (CSI) between cooperating source termi-

nals, selection relaying, as well as incremental relaying, which is exploiting limited feedback

from the destination terminal, were also developed in [21].

In the above methods, the relay repeats the received message symbols. Recently, a different

framework, called coded cooperation was extended by integrating the channel-coding into

the existing cooperation scheme [23], where the symbols are not repeated by the relay. The

idea of coded cooperation is to use the same overall rate for coding and transmission (thus

no more system resources are used), however, the coded symbols are re-arranged between

the source and relay such that better diversity is attained. In general, various channel coding

methods can be used within this coded cooperation framework. For example, in [23] RCPC

codes were employed. In [24] space-time codes were used and in [25] distributed turbo codes

were introduced.

A simple feedback HARQ protocol can further improve communication reliability in co-

operative communication systems. In such a system, the appropriate retransmitted signal

could come from the relay rather than the source [26]. Some studies on HARQ with relaying

protocols have appeared in literature. For example, in [27], a HARQ I-DAF scheme was pro-

posed. In this scheme, upon the reception of a negative acknowledgement (NAK), the relay

retransmits a copy of the original packet, received from the source, to the destination. In a

HARQ II-DAF scheme [28], the source broadcasts odd-numbered symbols of the codeword,

the relay first decodes the received message and then re-encodes it by using convolutional

codes. It then sends the parity check symbols, which form even-numbered symbols of the

codeword to the destination when it decodes correctly. In [29], a Pure-ARQ (which means

that if a packet is wrongly decoded, the receiver discards this packet and asks for a retrans-

mission from the source), HARQ I, HARQ II schemes with different cooperative strategies,

including DAF and AAF protocols, have been further investigated.
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A survey of the current state-of-the art in the CD communication systems shows that almost

all the existing HARQ schemes are based on the fixed relaying protocols, either AAF or DAF.

However, these HARQ schemes with an AAF or a DAF protocol suffer from either noise am-

plification or error propagation. In addition, there are limited studies on the performance of

the HARQ schemes for the CD communication systems. Preliminary works on the analysis

of HARQ schemes for cooperative communications have focused on the DAF [30] and IR

protocols [31]. In [30], a performance analysis of the HARQ I-DAF scheme with/without

using Chase combining [32] is presented. In [31], the IR protocol with RCPC code in a

two-user cooperative diversity system is analyzed.

In this thesis, we propose an improved HARQ scheme with an adaptive relaying protocol

(HARQ-ARP). The proposed HARQ-ARP scheme combines the retransmission mechanisms

(repetition coding and incremental redundancy), the distributed turbo coding (DTC) and the

adaptive relaying strategy, which is a combination of DAF and AAF. Based on the cyclic

redundancy check (CRC) codes, the relay decides which one of the relaying protocols will

be used during the retransmission. If the decoding result is correct, the relay uses a DAF

protocol to interleave the decoded signal, re-encode and forward it to the destination; other-

wise, the relay uses the AAF scheme. The ARP can effectively avoid the problem of both

error propagation and noise amplification encountered in current cooperative communica-

tion systems. In addition, since the decoding of the ARP at the receiver is the same as for

AAF and DAF, the decoding process of the ARP has the same complexity as non-adaptive

relaying protocols. Moreover, the feedback scheme used in this thesis entails broadcasting a

positive (ACK) or negative acknowledgement (NAK) from the destination to both the source

and relay. The decision about which one of the two transmits in case of NAK is based on the

number of NAKs.

The performance of the proposed ARP scheme in conjunction with type I, II and III HARQ

protocols is also analyzed. We derive pairwise error probabilities (PEP) and word error

probabilities (WEP) expressions for the proposed and reference schemes, including HARQ

with AAF (HARQ-AAF) scheme and HARQ with perfect distributed turbo codes (HARQ-

perfect DTC) scheme. Based on them, we develop a frame error rate (FER) expression and

a general throughput expression, which can be applied in each type of HARQ scheme. The

analytical results are validated by comparing with the simulation results. Both simulation

and analytical results show that the proposed HARQ-ARP scheme can achieve a superior

FER and throughput, relative to the reference methods in all SNR regions.
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1.3 Thesis Outline

As a guide to reading this thesis, its structure and contribution are briefly summarized as

follows.

Chapter 1 gives a short review of the history of the cooperative diversity communication

system and the hybrid ARQ applications in this system, as well as the motivation of our

work.

Chapter 2 provides some fundamental background related to this thesis. It covers the basic

elements of a digital communication system, fading channels, two basic categories of error

control schemes including FEC and ARQ, as well as their combination, a HARQ scheme.

Chapter 3 presents the concept of cooperative diversity and gives an introduction to the cur-

rent solution, CD techniques. Some classic relaying protocols of the CD communication

systems are briefly reviewed. The last part of this chapter introduces the coded cooperation

schemes.

Chapters 4 and 5 contain the main contribution of the thesis. In Chapter 4, we propose

three types of the HARQ-ARP protocols, including type I HARQ-ARP, type II HARQ-ARP

and type III HARQ-ARP, in a two-hop CD communication system. Rather than the source-

to-destination transmission, the relay takes part in the packet retransmission process. We

propose an adaptive relaying protocol, which overcomes the disadvantages of the fixed one.

The performance of the proposed and reference schemes is compared through simulations.

Chapter 5 deals with the performance analysis of our proposed HARQ-ARP scheme over a

quasi-static fading channel. We calculate the PEPs, WEPs, FER and a general throughput

expression, which can be applied in each type of HARQ scheme. In addition, the perfor-

mance comparison between the proposed scheme and reference schemes is investigated by

analytical and simulation results.

Chapter 6 concludes the thesis by summarizing the main results and discussing potential

future work.
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Chapter 2

Background

This chapter presents the ideas and techniques fundamental to the digital communication

systems. We start by providing a brief introduction to wireless channel characteristics and

fading channels. Then we proceed by reviewing two categories of techniques for controlling

transmission errors in data transmission systems. First technique includes forward-error

control (FEC), which covers redundancy check codes, convolutional codes and turbo codes

as well as associated decoding algorithms such as maximum likelihood (ML) decoding, the

Viterbi algorithm (VA) and iterative soft output Viterbi algorithm (SOVA) decoding. Second

technique introduces automatic repeat-reQuest (ARQ) scheme and the proper combination

of ARQ and FEC, which is referred to as a HARQ scheme.

2.1 Digital Communication Systems

Digital communication systems are becoming increasingly attractive because of the ever-

growing demand for data communication and because digital transmission offers data-processing

options and flexibilities not available with analog transmission. The block diagram of a typ-

ical digital communication system with basic elements is illustrated in Fig. 2.1 [33].

The source output may be either an analog signal, such as a video signal, or a digital signal,

such as the output of a teletype machine, which is discrete in time and has a finite number of
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output characters.

Figure 2.1: Block diagram of a typical digital communication system

To seek an efficient representation of the source output, the source encoder removes the un-

necessary redundancy from the source output by converting the output of either an analog

or a digital source into a sequence of binary digits, c, which is called information sequence.

When c is passed to the channel encoder, the channel encoder introduces controlled redun-

dancy into the binary information sequence, denoted by v, to overcome the effects of noise

and interference encountered during the transmission through the channel. The added redun-

dancy serves to increase the reliability of the received data and improves the fidelity of the

received signal. The digital modulator will transform v into appropriate electrical waveforms

suitable for transmission over the channel, based on the channel characteristics. Some of the

most commonly used modulation techniques are amplitude modulation (AM), phase-shift

keying (PSK) and frequency-shift keying (FSK). The modulated signal, x(t), will then be

sent to the channel for transmission.

The channel is the physical medium that is used to send the signal from the transmitter to the

receiver. The channel can be either atmosphere (in wireless transmission), or other physical

media, including wire lines, optical fiber cables and so on. During the transmission over the

channel, the transmitted signal is inevitably corrupted in a random manner by various pos-

sible mechanisms, such as thermal noise generated by electronic devices and atmospheric
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noise. Additive white Gaussian noise [33] is most often used to model the noise in commu-

nication systems.

At the receiving end of the digital communication systems, the digital demodulator processes

the corrupted transmitted waveform, r(t), and reduces the waveforms to a sequence of num-

bers that represent estimates of the transmitted data symbols. The channel decoder attempts

to reconstruct an estimate of the information sequence. As a final step, the source decoder

accepts the output sequence, ĉ, from the channel decoder and attempts to reconstruct the

original signal, with the knowledge of the source encoder used. Ideally, the produced esti-

mated sequence is a replica of the source information. In this thesis, the focus is placed on

mobile wireless channels characterized by fading, which will be elaborated in section 2.2.

2.2 Fading Channels

In wireless communications, the presence of reflectors in the environment surrounding a

transmitter and receiver creates multiple paths. As a consequence, the receiver will receive

the reflected, diffracted and scattered signals from all directions. The receiver sees the su-

perposition of multiple copies of the transmitted signal, which experienced differences in

attenuation delay and phase shift while traversing a different path; such a phenomenon is

called multipath fading [33]. This can result in either constructive or destructive interfer-

ence, amplifying or attenuating the signal power seen at the receiver.

2.2.1 Statistical Models for Fading Channels

Depending on the nature of the radio propagation environment, there are different models

describing the statistical behavior of the multipath fading envelope. In this section, we will

introduce Rayleigh and Rician fading models, used to describe signal variations in a multi-

path environment.

10
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2.2.1.1 Rayleigh Fading

Rayleigh fading is the most applicable to model heavily built-up city centers where there is

no line-of-sight (LOS) between the transmitter and receiver, and many buildings and other

objects attenuate, reflect, refract and diffract the signal [34].

The Rayleigh distribution is frequently used to model multipath fading with no direct LOS

path [35]. The square root of a sum of two zero-mean identically distributed Gaussian ran-

dom variables has a Rayleigh distribution [33]. It can be assumed that the real and imaginary

parts of the response are modeled by an independent and identically distributed zero-mean

Gaussian process, so the amplitude of the response is the sum of two such processes. If r is

defined as a Rayleigh distribution random variable, the probability density function (pdf) is

given by [33]

p(R)(r) =
r

σ2
e−r2/2σ2

, r > 0, (2.1)

where σ2 is the variance of two zero-mean identically distributed Gaussian random variables.

2.2.1.2 Rician Fading

Rician fading is a stochastic model for radio propagation anomaly caused by partial cancela-

tion of a radio signal. The received signal consists of a direct wave and a number of reflected

waves. The direct wave is a stationary non-fading signal and is called the specular coherent

component of the received signal [36]. The reflected waves are independent random mul-

tipath signals, which constitute the scattered component of the received signal. When the

number of reflected waves becomes large, the scattered component can be characterized as a

complex Gaussian random process with a zero mean and variance. If r is defined as a Rician

distribution random variable, the pdf of Rician is shown as below [37]:

p(r) =





r
σ2 e

−(r2+A2)
2σ2 I0

(
rA
σ2

)
r > 0, A > 0

0 otherwise,
(2.2)

where σ2 is the variance of two zero-mean identically distributed Gaussian random variables,

A denotes the peak magnitude of the non-faded signal component and I0(·) is the modified

Bessel function of the first kind and zero order [38]. The Rician distribution is often de-
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scribed in terms of a parameter K, which is defined as the ratio of the power in the specular

component to the power in the multipath signal, which is given by

K =
A2

2σ2
. (2.3)

As we can see, when K approaches zero, the Rician pdf approaches a Rayleigh pdf as given

in Eq.(2.1).

2.2.2 Slow and Fast Fading

In this thesis, we classify fading channels into fast and slow ones [35]. The term “fast

fading” is used for describing channels in which T0 < Ts, where T0 is the channel coherence

time, and Ts is the time duration in which the channel behaves in a correlated manner is

short compared with the time duration of a symbol. Therefore, it can be expected that the

fading character of the channel will change several times during the time span of a symbol,

leading to distortion of the baseband pulse shape. Fast fading causes the baseband pulse to

be distorted, often resulting in an irreducible error rate.

A channel is generally referred to as introducing slow fading if T0 > Ts. Here, the time

duration in which the channel behaves in a correlated manner is long compared with the time

duration of a transmission symbol. Thus, one can expect that the channel state to virtually

remain unchanged during the time in which a symbol is transmitted. The primary degradation

in a slow-fading channel, as with flat fading, is loss in SNR. A similar fading model can be

referred to as a quasi-static fading [39] if the fading coefficients change independently from

one frame to another.

Clearly, slow and fast fading stand for two extremes of actual fading scenarios.

2.3 Error Control Scheme - Forward Error Correction

In recent years, there has been an increasing demand for efficient and reliable digital data

transmission and storage systems. To reliably reproduce the data, a major concern of the
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system design is the control of errors. With his 1948 paper, “A Mathematical Theory of

Communication”, Shannon [5] demonstrated that, by proper encoding of the information,

errors induced by a noisy channel or storage medium can be reduced to any desired level

without sacrificing the rate of information transmission or storages, as long as the informa-

tion rate is less than the capacity of the channel. The fundamental philosophical contribution

inspired the subsequent research in the error control coding areas. One of these approaches is

the application of coding, that is, the use of error-correcting or error-detecting codes [40–42].

The error-correcting codes are used to combat transmission errors in an FEC communication

system by introducing more redundant parity bits. When the receiver detects the presence

of errors in a received packet, it attempts to correct the errors at first. If the receiver fails to

do so, the erroneous decoded message will be delivered to the user. However, for the error-

detecting codes, which are used in an ARQ communication system, only a few parity-check

bits are appended with the message. Later, the new packet is transmitted over the channel

to the receiver. At the receiver, if the decoding is unsuccessful, then the retransmission is

required.

In this section, we briefly reviews the classic error-correcting codes and the corresponding

decoding methods, which serve as the basis for the development and design of the coopera-

tive diversity systems.

2.3.1 Cyclic Redundancy Check Codes

One of the most common, and one of the most powerful, error-detecting codes is the cyclic

redundancy check [43], which belongs to the shortened cyclic codes. In conjunction with

ARQ protocol, CRC is used particularly in data communications. The basic idea can be

described as follows.

Given a block of f bits, or message, the transmitter generates (k − f)-bit parity-check bits,

known as a frame check sequence (FCS), such that the resulting frame, the coded message,

consisting of k bits, is exactly divisible by some predetermined number. The receiver then

divides the incoming frame by that number and, if there is no remainder, assumes there was

no error during the transmission.

To clarify the CRC algorithm, a way of viewing the CRC process is to express all values as
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polynomials in a dummy variable X , with binary coefficients. The coefficients correspond

to the bits in the binary number. Let us define

• T (X) = k-bit frame to be transmitted,

• D(X) = f -bit block of data, or message, the first f bits of T (X),

• P (X) = pattern of k − f + 1 bits; this is the predetermined divisor.

We would like T (X)/P (X) to have no remainder; T (X) can be exactly divisible by P (X).

It should be clear that
Xk−fD(X)

P (X)
= Q(X) +

R(X)

P (X)
. (2.4)

There is a quotient and a remainder. Then we can get

T (X) = Xk−fD(X) + R(X). (2.5)

At the receiver, to verify that there is no error during the transmission, consider

T (X)

P (X)
=

Xk−fD(X)

P (X)
+

R(X)

P (X)
. (2.6)

Substituting Eq.(2.4) into Eq.(2.6), we have

T (X)

P (X)
= Q(X) +

R(X)

P (X)
+

R(X)

P (X)
. (2.7)

Since any binary number added to itself modulo 2 yields zero, thus

T (X)

P (X)
= Q(X) +

R(X) + R(X)

P (X)
= Q(X). (2.8)

There is no remainder, and therefore T (X) is exactly divisible by P (X). A CRC-16 =

X16 + X15 + X2 + 1 [44] was adopted as our error detection system in this thesis.
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2.3.2 Convolutional Codes

A convolutional code is described by three integers, which are the number of input symbols,

k, the total number of output symbols, n, and memory order, m. The n-tuple emitted by

the convolutional encoding procedure is not only a function of an input k-tuple, but is also a

function of the previous m k-input tuples. Fig.2.2 [45] shows a simple rate 1/2 convolutional

code encoder, which is a linear feedforward shift register. The connection between the shift

register elements and the modulo 2 adders can be conveniently described by the following

two generator sequences:

g(1) = (g
(1)
0 g

(1)
1 g

(1)
2 ) = (101)

g(2) = (g
(2)
0 g

(2)
1 g

(2)
2 ) = (111). (2.9)

If c = (· · · , c−1, c0, c1, · · · , cl, · · · ) is the input data stream, then the two output sequences,

denoted by v(1) = (· · · , v
(1)
−1, v

(1)
0 , v

(1)
1 , · · · , v

(1)
l , · · · ) and v(2) = (· · · , v

(2)
−1, v

(2)
0 , v

(2)
1 , · · · , v

(2)
l , · · · )

can be obtained as

v(i) = c ∗ g(i), i = 1, 2 (2.10)

where ∗ denotes the convolutional operator.

Figure 2.2: A (2,1,2) convolutional encoder

The performance of a convolutional code depends on the decoding algorithm and distance

property. If a hard-decision decoding algorithm is used, the code performance is measured
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by Hamming distance. The minimum free distance of a convolutional code is defined as

the minimum Hamming distance between any two code sequences, which is the minimum

weight of all non-zero code sequences of any length. If a soft-decision decoding algorithm is

used, the code performance is measured by Euclidean distance. The minimum free Euclidean

distance is defined as the minimum Euclidean distance between any two code sequences. It

depends on both the convolutional code trellis and modulation type.

2.3.3 Maximum Likelihood Decoding

The above section explains the operation of a convolutional encoder. To consider the decod-

ing of a convolutional code, first, we describe the underlying theory of maximum likelihood

decoding, and then present a practical implementation of the decoding algorithm, the Viterbi

algorithm [7, 46].

In Fig.2.1, the task of the decoder is to produce an estimate ĉ of the information sequence c

based on the received sequence r. Since there is a one-to-one correspondence between the

information sequence c and the codeword v, the decoder can produce an estimate v̂ of the

codeword v. A decoding rule is a strategy for choosing an estimated codeword v̂ for each

possible received sequence r. If the codeword v is transmitted, a decoding error occurs if

and only if v̂ 6= v. Given that r is received, the conditional error probability of the decoder

is defined as [7]

P (E|r) , P (v̂ 6= v|r). (2.11)

Then the error probability of the decoder can be calculated as

P (E) =
∑

r

P (E|r)P (r), (2.12)

in which P (r) is the probability of the received sequence r and is independent of the de-

coding rule employed. Hence, an optimum decoding rule, which minimizes P (E), must

minimize P (E|r) in Eq.(2.11). Since minimizing P (v̂ 6= v|r) is equivalent to maximizing

P (v̂ = v|r), therefore, by using Bayes’ rule we get

P (v|r) =
P (r|v)P (v)

P (r)
. (2.13)
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So, v̂ is chosen as the most likely codeword, given that r is received. In most cases, all

information sequences, and hence all codewords, are equally likely in practice. Therefore,

maximizing Eq.(2.13) is equivalent to maximizing the P (r|v). A decoder that selects its

estimate by maximizing P (r|v) is called a maximum likelihood decoder.

2.3.4 Viterbi Algorithm

The Viterbi algorithm was proposed for the decoding of convolutional codes. It is applicable

as a solution to various communication estimation problems, as long as the system can be

modeled as a finite state machine (FSM) and represented by a time-invariant or time-varying

trellis diagram [47]. We consider the system model using convolutional codes. The VA

performs MLD by tracing through the trellis of the code. The trellis diagram of a (n,k,m)

convolutional code has 2km states and 2k branches leaving and entering each state.

Assume an information sequence c = (c0, c1, · · · , ch−1) of length kh, is encoded into a

codeword v = (v0, v1, · · · , vh+m−1) of length N = n(h + m). The received sequence is

denoted by r = (r0, r1, · · · , rh+m−1). As a result, the decoder needs to produce an estimate

v̂ of the codeword v based on the received sequence r. The criterion is to let the decoder

choose v̂ as the codeword v that maximizes the log-likelihood function logP (r|v) [7]

P (r|v) =
h+m−1∏

i=0

P (ri|vi), (2.14)

The equation is equivalent to

logP (r|v) =
h+m−1∏

i=0

logP (ri|vi), (2.15)

where logP (r|v) is called the path metric and logP (ri|vi) is the branch metrics for branch

i [45].

The VA traces through all possible paths in the trellis and at each step compares the metrics

of all paths entering each state and stores the path with the largest metric, called the survivor.

The survivor at each state is then stored along with its metric. The VA can be summarized as

follows:
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• Step 1. At time t = 1, compute the branch metric for the single branch entering each

state. Store the branch (the survivor) and its metric for each state.

• Step 2. Increase t by 1, compute the partial metric for each path entering a state by

adding the branch metric entering that state to the metric of the connecting survivor at

the preceding trellis depth. For each state, store the path with the largest metric (the

survivor) along with its metric, and eliminate all other paths.

• Step 3. Repeat Step 2 until the code sequence is decoded.

2.3.5 Turbo Codes

It is well known that using a serial concatenated two levels of coding, an inner and outer

code linked by an interleaver, can achieve a low error rate and dramatically decrease the

overall decoding complexity compared with that of a single code of the corresponding per-

formance [48]. The low complexity is attained by decoding each component code separately.

In decoding these concatenated codes, the inner decoder may use a soft-input soft-output

(SISO) decoding algorithm to produce soft decisions for the outer decoder.

Turbo codes employ a similar idea of concatenating two codes and separating them by a

random interleaver [6]. Rather than using a serial concatenation, two identical recursive

systematic convolutional (RSC) codes in turbo codes are connected in parallel. A block

diagram of a rate 1/3 turbo encoder is shown in Fig.2.3 [45]. In the encoder, the same

information sequence is encoded twice but in a different order. The first output sequence v0

is equal to the input sequence c since the encoder is systematic; the first RSC encoder also

produces the second parity sequence output, denoted by v1. The third output sequence v2 is

produced by the second RSC encoder with an interleaved version of the input sequence, c̃,

as the input.

Turbo and serial concatenated codes can be decoded by using a maximum a posteriori prob-

ability (MAP) algorithm and a soft output Viterbi algorithm. The MAP uses a decoding

criterion that minimizes the symbol or bit error probability, whereas the SOVA minimizes

the sequence error probability to generate soft output information [45].
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Figure 2.3: A rate 1/3 turbo encoder

2.3.6 Soft Output Viterbi Algorithm

The soft output Viterbi algorithm produces soft output to overcome the drawback of the VA,

which generates hard symbol estimates [49].

The SOVA estimates the soft output information for each transmitted binary symbol in the

form of the log-likelihood function Λ(ct), as follows:

Λ(ct) = log
Pr{ct = 1|rτ

1}
Pr{ct = 0|rτ

1}
, (2.16)

where rτ
1 is the received sequence and Pr{ct = i|rτ

1}, i = 0, 1, is the a posteriori probability

(APP) of the transmitted symbol, which is given by [45]

Pr{ct = 1|rτ
1} =

eΛt

1 + eΛt

Pr{ct = 0|rτ
1} =

1

1 + eΛt
. (2.17)

The SOVA decoder makes a hard decision by comparing Λ(ct) to a threshold value which is

equal to zero

ct =





1 ifΛ(ct) ≥ 0

0 otherwise.
(2.18)

The decoder selects the path x̂ with the minimum path metric µτ,min as the ML path in the
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same way as the VA. The probability of selecting this path is proportional to

Pr(c|rτ
1) = Pr(x|rτ

1) ∼ e−µτ ,min. (2.19)

Let us denote by µt,c the minimum path metric of the paths with the complementary symbol

to the ML symbol at time t. If the ML symbol at time t is 1, then its complementary symbol

is 0. Therefore, we can write

Pr(ct = 1|rτ
1) ∼ e−µτ ,min

Pr(ct = 0|rτ
1) ∼ e−µt,c . (2.20)

Let µ1
t represent the minimum path metric for all paths for which ct is 1 and µ0

t the minimum

path metric for all paths for which ct is 0. There are two cases to be considered to calculate

the logarithm ratio of each transmitted binary symbol.

1. If the ML estimate at time t is 1, its complementary symbol at time t is 0. Therefore,

µ1
t = µτ,min and µ0

t = µt,c.

2. If the ML estimate at time t is 0, its complementary symbol at time t is 1, giving

µ1
t = µt,c and µ0

t = µτ,min.

For both cases, the log-likelihood ratio (LLR) can be expressed as

log
Pr{ct = 1|rτ

1}
Pr{ct = 0|rτ

1}
∼ log

e−µt,c

e−µτ,min
= µτ,min − µt,c = µ0

t − µ1
t , (2.21)

Λ(ct) ∼ µ0
t − µ1

t . (2.22)

Then, the difference between the minimum path metric among all the paths with symbol 0

at time t and the minimum path metric among all the paths with symbol 1 at time t is the

soft output of the decoder. The sign of Λ(ct) determines the hard estimate at time t and its

absolute value represents the soft output information that can be used for decoding in the

next stage.
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2.3.7 Iterative SOVA Decoding of Turbo Codes

It is possible to use the SOVA algorithm to proceed with iterative decoding of turbo codes

[50]. The iterative turbo decoding consists of two component decoders serially concatenated

via an interleaver, identical to the one in the encoder. The block diagram of the iterative

SOVA decoder is shown in Fig.2.4.

The first SOVA decoder takes as input the received information sequence r0 and the received

parity sequence generated by the first encoder r1. The decoder then produces a soft output,

which is interleaved and used to produce an improved estimate of the APPs of the informa-

tion sequence, referred to as the extrinsic information (EI) for the second decoder.

The other two inputs to the second SOVA decoder are the interleaved received information

sequence r̂0 and the received parity sequence produced by the second encoder r2. The second

SOVA decoder also produces a soft output which is used to improve the estimate of the APPs

for the information sequence at the input of the first SOVA decoder in the next decoding

operation.

The EIs for the first and second decoders can be respectively given by [45],

Λ
(r)
2e (ct) = Λ

(r)
2 (ct)− 4r̃t,0 − Λ̃

(r)
1e (ct)

Λ
(r)
1e (ct) = Λ

(r)
1 (ct)− 4rt,0 − Λ̃

(r−1)
2e (ct), (2.23)

where Λ
(r)
1 (ct) and Λ

(r)
2 (ct) are the LLRs of the first and second SOVA decoders; they can be

calculated from Eqs.(2.21) and (2.22), respectively; rt,0 and r̃t,0 are the received information

signal and interleaved version of that respectively; Λ̃
(r−1)
2e (ct) and Λ̃

(r)
1e (ct) are the interleaved

version of the EIs for the first and second SOVA decoders respectively.

After a certain number of iterations, the decoders stop producing further performance im-

provements. At the last stage of decoding, the second decoder makes hard decisions based

on Eq.(2.18).
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Figure 2.4: An iterative turbo code decoder based on the SOVA algorithm
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2.4 Error Control Scheme - Automatic Repeat Request

In the previous section, we discussed some forms of FEC. This section is devoted to three

standard versions of the ARQ scheme, which is referred to as an error detection strategy:

• Stop-and-wait (SW) ARQ

• Go-back-N (GBN) ARQ

• Selective-repeat (SR) ARQ

2.4.1 Stop-and-wait ARQ

The SW scheme represents the simplest ARQ procedure. In an SW ARQ error-control sys-

tem, the transmitter sends a codeword to the receiver and waits for an acknowledgement, as

shown in Fig.2.5 [8]. An ACK from the receiver indicates that the transmitted codeword has

been successfully received, and the transmitter can send the next codeword. A NAK from the

receiver indicates that the transmitted codeword has been detected in error, the transmitter

needs to resend the previous codeword and waits for an acknowledgement. Retransmission

continues until the transmitter receives an ACK or the maximum retransmission number is

reached.

Figure 2.5: Stop-and-wait ARQ

The principal advantage of SW ARQ is its simplicity. But the inefficiency is its inevitable

disadvantage because of the idle time spent waiting for an acknowledgement of each trans-

mitted codeword. With the high data rates and utilization of satellite channels of long round-

trip delays, the continuous ARQ is established to replace the SW procedure.
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2.4.2 Go-back-N ARQ

In a go-back-N ARQ system [8], codewords are transmitted continuously. The transmitter

keeps sending a new codeword, as soon as it has completed sending one, without waiting for

an acknowledgment, as illustrated in Fig.2.6. The acknowledgment for a codeword arrives

after a round-trip delay, which is defined as the time interval between the transmission of a

codeword and the receipt of an acknowledgment for that codeword. The other N − 1 code-

words can be transmitted during this interval. The transmitter goes back to the codeword,

which is negatively acknowledged, and resends that specified codeword, say codeword i,

and subsequent N − 1 codewords that were transmitted during the round-trip delay. At the

receiver, the receiver discards the erroneously received codeword and the succeeding N − 1

codewords, regardless of whether they are error-free or not. Retransmission continues until

the codeword i is positively acknowledged, and then the transmitter proceeds to transmit new

codewords.

Figure 2.6: Go-back-N ARQ with N = 7

Because of the continuous transmission and retransmission of codewords, the go-back-N

ARQ scheme is more effective than the SW ARQ. However, it becomes ineffective when the

round-trip delay is large and the data transmission rate is high. This inefficiency is caused

by the retransmission of next N − 1 received codewords, even though many of them may be

error-free. This defect can be overcome by using selective-repeat ARQ.
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2.4.3 Selective-repeat ARQ

In a selective repeat ARQ system, codewords are also transmitted continuously, however,

the transmitter only resends those codewords that are negatively acknowledged, as shown in

Fig.2.7 [8]. Since the user needs to receive the codewords in the right order, a buffer has to

be provided at the receiver to store the error-free received codewords. When the repeated

transmitted codeword is successively received, the receiver can then release the error-free

codewords in consecutive order.

Figure 2.7: Selective-repeat ARQ

The selective-repeat ARQ is the most efficient scheme among the three basic ARQ schemes,

but it is also the most complex one to implement.

2.5 Error Control Scheme - Hybrid Automatic Repeat Re-

quest

The two categories of techniques for controlling transmission errors in data communication

systems have disadvantages. For example, in an FEC communication system,

• The received codeword needs to be decoded even it has been detected in error, and the

decoded message has to be delivered to the user, regardless of whether it is correct or

not.
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• To obtain high system reliability, a long powerful code must be used and a large col-

lection of error patterns must be corrected. This makes decoding difficult to implement

and expensive [9].

In contrast, in an ARQ communication system, the throughput is not constant and it falls

rapidly with increasing channel error rate, which is the primary weakness of the ARQ

scheme.

Drawbacks of FEC and ARQ schemes can be overcome if the two basic error control schemes

are properly combined. A HARQ scheme [9, 10, 51–53] is the approach to an error control

strategy, which incorporates both FEC and ARQ. The HARQ system consists of a FEC

subsystem contained in an ARQ system. By correcting the most frequently occurring error

patterns, the FEC system can reduce the frequency of retransmission, increasing the system

performance. However, when a less-frequent error pattern occurs and is detected, the receiver

requests a retransmission rather than passing the unreliably decoded message to the user.

This increases the system reliability. As a result, an appropriate combination of FEC and

ARQ can offer better system performance.

The HARQ scheme can be classified into three categories, namely the type-I HARQ (repeti-

tion coding) scheme, which includes a pure type-I HARQ scheme and type-I HARQ scheme

with Chase combining [32], the type-II HARQ (increment redundancy) scheme and type-III

HARQ (a modified HARQII) scheme.

2.5.1 Type-I HARQ Scheme

The design of type-I HARQ scheme consists of selecting a fixed code with a certain rate and

correction capability matched to the protection requirement of all the data to be transmitted

and adapted to the average or worst channel conditions to be expected [54]. With or with-

out using the buffer to store the previously received erroneous codeword, the type-I HARQ

scheme can be divided into two subtypes, the pure type-I HARQ scheme and type-I HARQ

scheme with Chase combining.
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2.5.1.1 Pure Type-I HARQ Scheme

A pure type-I HARQ scheme uses a code which is designed for simultaneous error correction

and error detection [8]. When a received codeword is detected in error, the receiver first

attempts to correct the errors. As long as the number of errors are within the designed error-

correcting capability of the code, the errors will be corrected and the decoded message will

be delivered to the user. If the receiver detects an uncorrectable error pattern, it rejects the

received codeword and asks for a retransmission. When the retransmitted same codeword

is received, the receiver attempts to correct the errors (if any) again. The procedure will

continue until the codeword is either successfully received or correctly decoded.

2.5.1.2 Type-I HARQ Scheme with Chase Combining

In 1977, Sindhu [55] discussed a scheme to use all the available packets at the receiver. The

basic idea behind this technique is that a received packet which is determined to contain

errors should not be discarded, because it contains useful information about the transmit-

ted packet. If the transmission of this packet is also in error, the collective information

present in the first packet and the retransmission can be used to correct certain errors in

the two packets. Therefore, a single combined packet is more reliable than any of its con-

stituent packets. Chase [32] further developed a practical and effective combining approach,

known as Chase combining, for overcoming the problem of obtaining reliable communica-

tions when the actual channel capacity is unknown. When combining, packets should be

weighted according to their relative reliability. Such a combining strategy can operate in a

very high-error environment to achieve error-free results for all channels with finite capacity.

These features were proved to be useful for a wide range of applications, as indicated in

other literature [13, 29, 30, 56, 57].

2.5.2 Type-II HARQ Scheme

The type-I HARQ scheme is best suited for the communication systems wherein a fairly

constant level of noise and interference is anticipated on the channel [8]. In this scenario, the

error symbols of the received codewords can be corrected by the designed error-correcting
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code, thereby greatly reducing the number of retransmissions and enhancing the system per-

formance. However, for a non-stationary channel in which the bit error rate changes, the

type-I HARQ scheme has some shortcomings:

• When the channel condition is good, which means the channel BER is low, the trans-

mission is smooth and no error correction is needed. Therefore, the extra designed

error-correcting code is wasted during each transmission.

• When the channel is very noisy, the error-correcting capability may become inade-

quate. As a result, the frequency of retransmission increases and thus reduces the

throughput.

The type-II HARQ scheme is proposed to overcome such drawbacks of the type-I HARQ

scheme. The basic idea is to design an adaptive HARQ scheme. When the channel is quiet,

the transmitted codeword includes the information symbols, none or a few parity symbols in

each transmission, and the system behaves like the ARQ system. However, if the channel

becomes noisy, as long as the receiver detects the errors in the received codeword, it saves

the erroneously received codeword in the buffer, and at the same time requests a retrans-

mission. During the retransmission procedure, the IR codes are transmitted to the receiver

until a powerful enough codeword is formed to achieve error-free decoding. This scheme is

indicated in Fig.2.8.

Figure 2.8: Type-II HARQ scheme
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The type-II HARQ scheme can be incorporated with a rate 1/2 convolutional code using

Viterbi decoding [58–60]. Rate 1/N convolutional codes are punctured periodically with

period P to obtain a family of codes with rate P/(P + l), where l can be varied between

1 and (N − 1)P [61, 62]. In [11], a concept of RCPC codes was proposed, where a rate

compatibility restriction implies that all the code symbols of a high rate punctured code are

used by lower rate codes. Since codes are compatible, rate variation within a data frame is

possible to achieve unequal error protection (UEP). Fig.2.9 depicts an example of an RCPC-

ARQ system.

Figure 2.9: An example of an RCPC-ARQ system

An extension of the RCPC concept is applied to the HARQ system employing rate-compatible

punctured turbo (RCPT) codes. The resulting system provides a powerful low-rate error cor-

rection capability at low SNR and outperforms the RCPC codes for sufficiently large block

size [13].

2.5.3 Type-III HARQ Scheme

The main drawback of the type-II HARQ scheme is that additional incremental code symbols

sent for a packet received with errors are not in general self-decodable [63]. The decoder has

to rely on both the previous received packets as well as the current additional incremental

code symbols for decoding, in situations wherein a current transmitted IR packet can be

lost or severely damaged as a result of interference. Kallel [63] modified the type-II HARQ

scheme by exploiting the complementary punctured convolutional (CPC) codes. Briefly,
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the CPC codes are composed of a set of equivalent codes with the same rate and distance

spectrum from the same original mother code. Due to its self-decodable property, the type-

III HARQ procedure has the choice of extracting the source information either from the last

received packet or by combining all previous packets, as is generally the case with the type-II

HARQ scheme.
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Chapter 3

Introduction to Cooperative Diversity

In wireless communication systems, significant attenuation and fading limit the channel ca-

pacity of a specific communication link or an entire network, which could hamper the ability

of a wireless network to deliver services with the same level of quality as that guaranteed

by a wired system. This challenge is compounded by growing demands from services that

require high data-rate transmission. One of the primary solutions is to create some form

of diversity by transmitting and processing redundant signals over essentially independent

channels. The multiple-input multiple-output and cooperative diversity techniques are two

well-known techniques to achieve transmission diversity.

Section 3.1 gives a brief review of the MIMO and CD techniques. A variety of CD pro-

tocols, including fixed, selection, and incremental relaying, are described in section 3.2.

Section 3.3 introduces two main coded cooperation schemes, the distributed rate compatible

convolutional codes, and distributed turbo coding schemes, which are widely used in the CD

communication systems.



3.1 Introduction

3.1 Introduction

3.1.1 Multiple-input Multiple-output Technique

Multiple-input multiple-output communication techniques have been an important area of

focus for the next-generation wireless systems because of their potential for high capacity,

increased diversity, and interference suppression [18].

A MIMO channel with nT transmitters and nR receivers is typically represented as a matrix

H of dimension nR×nT , where each of the coefficients [H]i,j represents the transfer function

from the jth transmitter to the ith receiver, as shown below:

H =




h1,1 h1,2 · · · h1,nT

h2,1 h2,2 · · · h2,nT

· · ·
hnR,1 hnR,2 · · · hnR,nT




. (3.1)

We denote the signal or symbol transmitted from the jth transmitter as xj , and collect all

such symbols into an nT -dimensional vector x. With this notation, the matrix model of the

channel is

y = Hx + n, (3.2)

where n is a vector of additive noise, and y is the vector of received data, with an element in

n and y for each receive antenna.

This system, as shown in Fig.3.1, is implemented with an antenna array at both the transmit-

ter and receiver in conjunction with using sophisticated coding, aiming to create separated

transmission paths that experience independent fades. The MIMO channel can be provi-

sioned for higher data rates, resistance to multipath fading, lower delays, and support for

multiple users.
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Figure 3.1: MIMO wireless link

3.1.2 Cooperative Diversity Technique

The MIMO technique is a successful method that can provide both spatial and temporal

diversities to effectively mitigate the detrimental effects of fading for point-to-point channels

[16, 17, 64, 65].

However, in reality, due to size, cost, or hardware limitations, the antenna array can hardly

be implemented on a small platform such as a mobile handset (size) or wireless sensor nodes

(size, power). Recently, a new form of spatial-temporal diversity has been created, namely

cooperative diversity, which allows single-antenna mobiles to reap some of the benefits of

MIMO systems [19–21]. The essence of the CD technique is that single-antenna mobiles

in a multi-user scenario can “share” their antennas in a manner that creates a virtual MIMO

system. Based on this virtual array, the devices are able to share their distributed resources

such as bandwidth and power by relaying each other’s data in a cooperative way. Fig.3.2

shows the basic idea behind this concept, where by two users cooperate with each other to

communicate with a remote base station. Since each user has an independent fading path to

the destination, spatial diversity is generated by transmitting signals from different locations.

When the direct path between the source and destination is in deep fade or blocked by an

obstacle, due to the broadcast nature of the wireless medium, the relay likewise experiences

33



3.2 Cooperative Diversity Protocols

better receive conditions than the destination and thus can offer the “overheard” information

to the destination. Therefore, the combined signals at the destination can increase the overall

received SNR.

Figure 3.2: A model of a cooperative communication technique

Since the cooperating partners in the CD communication systems are geographically sepa-

rated, the spacing between any pair of users, and hence their antennas, is wider than that of

a conventional MIMO system. Therefore, the CD technique is immunized not only against

small-scale channel fading but against large-scale channel fading.

3.2 Cooperative Diversity Protocols

In this section, we describe a variety of cooperative diversity protocols that can be utilized in

the network of Fig.3.2, including fixed, selection, and incremental relaying protocols.

3.2.1 Fixed Relaying Protocols

For the fixed relaying, the relay either amplifies its received signals subject to its power

constraint, or decodes, re-encodes and retransmits the message to the destination. The de-

scription for each of them is summarized as follows.

In a CD communication system, the source and relay transmit data through orthogonal chan-

nels [19, 20, 25, 39, 66, 67], which could be implemented through time, frequency or code-

division multiple access. In a time division duplexing (TDD) scheme, time is slotted and
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the CD communication process needs two time slots. In the first time slot, the source first

broadcasts its message to both the relay and destination. The received signals at the relay

and destination, at time t, denoted by ysr(t) and ysd(t) can be expressed as

ysr(t) =
√

Psrhsrx(t) + nsr(t), (3.3)

ysd(t) =
√

Psdhsdx(t) + nsd(t), (3.4)

where Psr, Psd are the received signal power at the relay and destination respectively.

Upon receiving ysr(t), during the next time slot, the relay processes the received signal and

sends it to the destination. Let xr(t) represent the signal transmitted from the relay at time t.

It satisfies the following transmit power constraint,

E(|xr(t)|2) ≤ Pr, (3.5)

where Pr is the transmitted power limit at the relay.

For the second time slot, the destination receives the signal as

yrd(t) = Grdhrdxr(t) + nrd(t). (3.6)

3.2.1.1 Amplify and Forward

For amplify and forward transmission, the appropriate channel model is Eq.(3.3)-Eq.(3.6).

Each user in this method receives a noisy version of the signal transmitted by its partner. The

user then amplifies the received signal and then forwards it to the destination. The signal

transmitted from the relay can be written as

xr(t) = µysr(t), (3.7)
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where µ is an amplification factor that depends on the transmit signal power, noise spectral

power density and fading attenuation. It can be calculated from Eqs.(3.3) and (3.5) as

µ ≤
√

Pr

|hsr|2Psr + N0

. (3.8)

The destination combines the signals sent by the source and relay as

wsdysd(t) + wrdyrd(t)

= wsd [hsds(t) + nsd(t)] + wrd {hrdµ [hsrs(t) + nsr(t)] + nrd(t)} , (3.9)

where the combining coefficients can be calculated as [68]

wsd =

√
Psdh

∗
sd

N0

, wrd =
µ
√

Psrh
∗
rdh

∗
sr

(µ2|hrd|2 + 1)N0

. (3.10)

Although noise is amplified by cooperation, the base station receives two independently

faded versions of the signal and can make a better decision on the detection of information.

3.2.1.2 Decode and Forward

For decode and forward transmission, the appropriate channel is again Eq.(3.3)-Eq.(3.6).

The relay decodes the received signal, then re-encodes and forwards it with power Pr to the

destination.

xr(t) =
√

Prx(t), (3.11)

The corresponding received signal at the destination can be expressed as

yrd(t) = Grdhrd

√
Prx(t) + nrd(t). (3.12)

3.2.2 Selection Relaying Protocol

In the fixed DAF protocol, the relay always forwards the decoded information to the desti-

nation. This protocol suffers performance loss if the relay cannot decode the transmitter’s
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signal correctly. To overcome the drawbacks of the fixed relaying transmission, the author

in [21] also proposed adaptive relaying protocols, including selection relaying and incremen-

tal relaying protocols.

The signal transmission in the selection relaying protocol still involves two time slots. In

the first time slot, each source sends information to its destination, and the information is

also received by other users in the network. In the second time slot, the relay decodes the

received information and forwards the decoded information symbols only if the amplitude

of the measured channel coefficient of source to the relay channel is larger than a certain

threshold, otherwise, the relay does not send and remains idle [21].

The wireless link in the network is subject to fading and additive noise. Although the fading

coefficients can be well estimated by the cooperation terminal, the additive noise is unknown

to the receiver. To take into account both the effect of channel fading and the effect of additive

noise, the author in [69] proposed an optimum threshold selection relaying scheme, which

adapts based on the received signal power at the relay terminal. The relay decides whether,

or not to forward the signal it receives from the source, by comparing the squared amplitude

of the received signal, normalized by the average noise power, with a certain threshold.

3.2.3 Incremental Relaying Protocol

Since the relay repeats all the time, the fixed and selection relaying make inefficient use of

the degrees of freedom of the channel. Using a single bit indicating the success or failure of

the direct transmission, from the source to the destination, the relay retransmits in an attempt

to exploit spatial diversity.

As an example, the source broadcasts its information to the relay and destination. After de-

coding the received signal, the destination indicates the received signal status (either correct

or erroneous) by broadcasting a single bit of feedback to the source and relay. If the SNR

between the source and destination channel is sufficiently high, the feedback indicates the

correctly received signal from the source, and the relay remains idle. Otherwise, based on

the received feedback from the destination, the relay needs to forward its received signal to

the destination using either the AAF or DAF transmission protocols.

This incremental relaying protocol can be treated as extensions of incremental redundancy,
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or HARQ, to the relay context. Since the relay rarely repeats, the protocol of this form makes

more efficient use of the degrees of freedom of the channel.

3.3 Coded Cooperation Schemes

Coded cooperation [23] is a method that integrates cooperation into channel-coding. Coded

cooperation works by transmitting different portions of each user’s codeword via two inde-

pendent fading paths. The idea is that each user tries to send incremental redundancy to

its partner. Whenever the case is impossible, the users automatically revert to a noncoop-

erative mode. Since the coded cooperation is managed automatically through code design,

there is no feedback involved between the users, thus allowing coded cooperation to achieve

efficiency.

3.3.1 Distributed Rate Compatible Convolutional Codes

In the distributed rate compatible convolutional codes scheme (also termed as user cooper-

ative coding [25]), each user encodes blocks of K source bits using a concatenation of a

CRC code followed by a prescribed code from a family of RCPC codes [23]. The length

of coded bits per block is N , so the overall code rate is R = K/N . The N coded bits are

divided into two segments, with the first segment being a punctured rate R1 codeword with

N1 = K/R1, and the second being the N2, which represents the remaining parity bits for the

rate R codeword, where N1 + N2 = N .

The users cooperate by dividing the transmission of their N -bit code words into two frames.

In the first frame, N1 is broadcasted by each user, and is received by the base station as well

as the partner. Each user thus receives a noisy version of the coded packet from its partner. If

the partner’s packet is successfully decoded based on the CRC check, the user calculates and

transmits the partner’s N2 remaining parity bits in the second frame. Otherwise, the user’s

own parity bits are transmitted. The framework of this scheme is illustrated as in Fig.3.3 [70].

The users act independently in the second frame, with no knowledge of whether their own

first frame was correctly decoded. As a result, there are four possible cooperative scenarios
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Figure 3.3: Block diagram of the distributed rate compatible puncture convolutional codes

for the second frame transmission: both users cooperate, neither user is cooperative, user 1

is cooperative but user 2 is not, and vice versa. A further comprehensive description and

analysis can be referred to in the literature [71, 72].

3.3.2 Distributed Turbo Codes

Since cooperative coding contains two code components, it is natural to apply turbo codes

[24]. For the sake of brevity, we omit the duplex transmission between the users, and only

consider a half-duplex transmission channel (from user 1 to user 2 ) for this scheme’s descrip-

tion. Recall that with turbo codes, the data is recursively encoded twice, first in its natural

order and again after being interleaved [73]. In a DTC scheme, each user employs a very

simple code, for example, a two-state rate 1/2 RSC code, and an interleaver is added to user

2. Upon successful decoding of the partner (user 1), the user 2 interleaves user 1’s source

symbols and re-encodes them. Thus, the uninterleaved encoding is present in the user 1 to

base station channel, while the interleaved encoding is present in the user 2 to base station
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channel. Then the users have cooperatively constructed a distributed turbo code [25, 39], the

base station can detect the code iteratively by using a standard turbo decoder. The imple-

mentation of coded cooperation using distributed turbo codes is shown in Fig.3.4.

Figure 3.4: Block diagram of the distributed turbo coding technique
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Chapter 4

Collaborative HARQ Schemes in

Wireless Networks

4.1 Introduction

In conventional wireless networks, traditional multihop protocols were treated as a cascade of

point-to-point links, with each radio directing its transmission to only a single receiver [74].

The quality of the signal received by the destination depends on various factors, for example,

path loss, fading and noise. To guarantee reliable transmission over a radio channel, ARQ

or HARQ protocols are usually adopted. The retransmission protocol specifies how data

packets that are not correctly received and detected by the destination must be retransmitted

from the source until they are successfully delivered. As other neighboring nodes do not

take part in the packet retransmission process, these ARQ/HARQ protocols are referred to

as non-collaborative.

However, one peculiar characteristic of the wireless networks is the inherent broadcast-

oriented nature of radio. Beside the intended destination, a signal transmitted by a source

may be also received by other neighboring nodes that are within earshot. In contrast with

non-collaborative ARQ/HARQ, retransmitted packets do not need to come from the original

source but could instead be sent by relays that overhear the transmission [26]. Therefore,
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the spatial diversity is provided by the relays and the protocol is referred to as collaborative

HARQ.

As a consequence, when the relay retransmits, various relaying protocols can be utilized in

cooperative wireless networks, including fixed, selection, incremental [21], compress and

forward [75] protocols etc. Compared with other relaying protocols, AAF and DAF are two

popular protocols and are frequently used in the cooperative systems [15, 76–78].

In an AAF scheme, each user receives a noise version of the signal transmitted by its partner.

Then the parter amplifies and retransmits this noise version. The destination combines the

packets sent by the user and partner, and makes a final decision on the transmitted packet.

In a DAF scheme, there are two possible policies to achieve transmission at the relay:

• Selection Transmission: The relay only retransmits if it decodes the received packet

from the source correctly.

• Persistent Transmission: The relay always retransmits, even if the decoded packet is

in error, which leads to severe error propagation.

Preliminary works on the HARQ schemes have focused on the AAF and DAF relaying pro-

tocols. In the HARQ I-DAF scheme, upon the reception of a negative acknowledgement

(NAK), the relay retransmits a copy of the original packet, received from the source to the

destination [27]. In the HARQ II-DAF scheme, the source broadcasts odd-numbered sym-

bols of the codeword, the relay re-encodes the source message to obtain and transmit even-

numbered symbols of the codeword to the destination when it decodes correctly [28]. In [29],

HARQ I, HARQ II schemes with different cooperative strategies, including DAF and AAF

protocols, have been further investigated.

Obviously, in wireless networks, an AAF protocol suffers from noise amplification and a

DAF protocol leads to error propagation if the decoding packet is in error at the relay.

In this chapter, a HARQ scheme based on an adaptive relaying protocol (ARP) is proposed.

It combines retransmission mechanisms, distributed turbo coding and an adaptive relaying

protocol. When the relay is required for retransmission, it transmits either a repeated packet

or a punctured packet to the destination, depending on the types of HARQ strategies used
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in the system. The relay switches the relaying protocol between AAF and DAF, depending

on the decoding result. If the decoding result at the relay is correct, the relay decodes the

received signal, and then interleaves, re-encodes and forwards it to the destination. The

signals received at the destination consist of a coded signal transmitted from the source

and a coded interleaved information transmitted from the relay. These two signals form a

distributed turbo code [25, 39]. Otherwise the relay amplifies and forwards the originally

received signal to the destination.

Moreover, we propose an efficient feedback strategy. Rather than using two feedback chan-

nels as in other HARQ relaying schemes, the proposed HARQ-ARP scheme has only one

broadcast feedback channel, from the destination to both the relay and source. According to

the number of received NAKs for each packet, the source and relay determine which one of

them will be used in the next time slot for retransmission. This can reduce the feedback load

and increase the transmission efficiency.

In this chapter, we mainly focus on the description of the proposed HARQ-ARP protocol.

The performance analysis for the proposed HARQ-ARP scheme is carried out in the next

chapter.

4.2 System Model

In this thesis, we study a typical two-hop relay network consisting of a source, a relay and a

destination, as shown in Fig. 3.2.

We consider a quasi-static fading channel, in which the fading coefficients are constant

within one transmission block, but change independently from one frame to another. Be-

cause of slow fading, accurate channel estimation is possible at the receiver [21, 79]. There-

fore, we assume perfect CSI at the relay and destination. The source, on the other hand, only

knows the statistics of fading, but not the current realization. Let “direct channel”, “inter-

user channel” and “relay channel” denote the channels between the source and destination,

the source and relay and the relay and destination, respectively. The fading coefficients of

the above three channels are independent. Similar to [21, 80], we assume that the source and

relay transmit orthogonal signals in a TDD scheme. Furthermore, we assume an errorless,
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low-capacity feedback channel over which the receiving destination can transmit an ACK or

a NAK signal to the source and relay.

The transmitted information binary stream with an appended CRC coded sequence, denoted

by U, is represented by

U = (u(1), · · · , u(t), · · · , u(l)), (4.1)

where u(t) is a binary symbol transmitted at time t and l is the frame length.

The binary information sequence U is first encoded by a channel encoder. For simplicity,

we consider a recursive systematic convolutional code with a code rate of 1/2 [6]. Let V
represent the corresponding codeword, given by

V = (V(1), · · · , V(t), · · · , V(l)), (4.2)

where V(t) = (u(t), v(t)) is the transmitted codeword, u(t) is the information symbol and

v(t) is the corresponding parity symbol, u(t), v(t) ∈ {0, 1}.

The binary symbol stream V is then mapped into a modulated signal stream. For binary

phase shift keying (BPSK) modulation, the modulated codeword, denoted by X, is given by

X = (X(1), · · · , X(l)), (4.3)

where X = (x(t, 1), x(t, 2)), x(t, j) ∈ {−1, +1}, t = 1, · · · , l, j = 1, 2 is the modulated

signal transmitted by the source at time 2(t− 1) + j.

We impose a half-duplex constraint, so the cooperative communication process needs two

time slots. In the first time slot, the source first broadcasts its message to both relay and

destination.

The received signal at the relay, denoted by ysr(t), can be described as

ysr(t) =
√

Psrhsrx(t) + nsr(t), (4.4)

where Psr = Ps · (Gsr)
2 is the received signal power at the relay; Ps is the source transmit

power, Gsr =
(

λc

4πd0

)(
dsr

d0

)−κ/2

[81] is the gain of the inter-user channel, dsr is the distance

between the source and relay, d0 is a reference distance; λc is the carrier wavelength and κ is
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a path-loss factor with values typically in the range 1 ≤ κ ≤ 4. hsr is the fading coefficient

of the inter-user channel. It is modeled as a zero-mean, independent circular symmetric

complex Gaussian random variable. Furthermore, nsr(t) is a zero mean complex Gaussian

random variable with the two-sided spectral density of N0/2.

Upon receiving ysr(t), in the next time slot, the relay processes the received signal and sends

it to the destination. Let xr(t) represent the signal transmitted from the relay at time t. It

satisfies the following transmit power constraint,

E(|xr(t)|2) ≤ Pr, (4.5)

where Pr is the transmitted power limit at the relay.

In the proposed scheme, the relay decodes the received signal from the source, interleaves

the decoded information symbols, re-encodes and then forwards it with power Pr to the

destination. Let Ũ = (ũ(1), · · · , ũ(t), · · · , ũ(l)) represent the interleaved version of U.

Let Ṽ = (Ṽ (1), · · · , Ṽ (l)) denote the codeword of Ũ, where Ṽ(t) = (ũ(t), ṽ(t)) is the

codeword of ũ(t). Ṽ is then mapped into a modulated signal stream X̃ = X̃(1), · · · , X̃(l),

where X̃(t) = (x̃(t, 1), x̃(t, 2)) , x̃t(j) is the modulated signal transmitted by the relay using

DTC, at time 2(t− 1) + j.

xr(t) =
√

Prx̃(t). (4.6)

The corresponding received signals at the destination at time 2t− 1 and 2t, transmitted from

the source and relay, can be expressed as

ysd(t) =
√

Psdhsdx(t) + nsd(t), (4.7)

yrd(t) = Grdhrdxr(t) + nrd(t), (4.8)

where Psd = Ps · (Gsd)
2 is the received signal power at the destination, Ps is the source

transmit power; Gsd =
(

λc

4πd0

)(
dsd

d0

)−κ/2

[81] is the gain of the direct channel, dsd is the

distance between the source and destination, d0 is a reference distance; λc is the carrier

wavelength and κ is a path-loss factor with values typically in the range 1 ≤ κ ≤ 4. Grd is

the channel gain of the relay channel. hsd and hrd are the fading coefficients of the direct and

relay channel, respectively. They are modeled as zero-mean, independent circular symmetric
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complex Gaussian random variables. Furthermore, nsd(t) and nrd(t) are zero mean complex

Gaussian random variables with the two-sided spectral density of N0/2.

The overall received signals at the destination are obtained as the sum of the coded source

signal, and the coded interleaved source signal transmitted from the relay. These two sig-

nals form a standard distributed turbo code, as shown in Fig. 3.4. The received signals’

expressions are given in Eqs.(4.7) and (4.8).

4.3 Collaborative HARQ with the ARP Scheme

In this section, we present the proposed three types of HARQ schemes with ARP, denoted

by HARQ I-ARP, HARQ II-ARP and HARQ III-ARP, where ARP represents a combination

of DAF and AAF. Since the HARQ II-ARP and HARQ III-ARP protocols follow the same

retransmission rules of HARQ I-ARP, we present the HARQ I-ARP scheme in detail, and

only the differences between the type I HARQ-ARP and type II/III HARQ-ARP schemes

are described in sections 4.3.2 and 4.3.3.

For the proposed HARQ-ARP scheme, when the relay needs to retransmit, it checks the CRC

of the broadcasted signals from the source. If the decoding result is correct, the relay adopts

DAF, otherwise, it employs AAF.

In the conventional HARQ relaying schemes, two acknowledgement feedback channels are

used, one from the destination to the source and the other from the relay to the source [28]. In

contrast, the proposed scheme only needs one feedback channel. The destination examines

the CRC check to determine the decoding result and then generates an ACK or a NAK signal,

broadcasting to both the relay and source.

The proposed ARP scheme has two attractive features in a practical application, for example,

• The relay can automatically adapt to the channel quality by simply switching between

the AAF and DAF without any need for the CSI to be fed back from the destination

to the relay or source. This feature is especially desirable in practical relay networks,

particularly in a large multi-hop network, where the feedback of CSI for adaptation is

impractical.
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• Compared with the non-adaptive relaying protocols: AAF and DAF, the ARP process-

ing at the relay and destination is the same as those protocols, so it does not add any

decoding complexity.

Without loss of generality, we consider a 1/2 RSC code as a mother code, Cm, in all the

HARQ-ARP schemes.

4.3.1 Type I HARQ with the ARP Scheme

In the HARQ I-ARP scheme, the transmitter retransmits the packet when the destination

receiver detects errors in the received packet. At the destination receiver, the previous er-

roneous packets are saved and combined with the current received packet, based on the

respective SNR [32]. The retransmission can either come from the source or relay.

The transmission procedure of the HARQ I-ARP protocol is shown in Fig. 4.1 and it consists

of the following steps:

1. The source broadcasts a packet to the relay and destination and also stores the trans-

mitted packet in the buffer.

2. The reception procedure at the destination:

a. If the packet is correctly decoded, an ACK will be broadcasted to the source and

relay. The transmitter goes to step 1 to send a new packet. The relay is inactive

in this case.

b. Otherwise, a NAK will be returned to both the source and relay. The source stays

in an idle state and the relay decodes the packet.

3. Actions at the relay: based on the CRC check value, the relay makes a decision to use

either the DAF or AAF relaying protocol.

a. If the CRC check is correct, the relay uses a DAF protocol. It interleaves the

estimated information symbols, re-encodes and forwards them to the destination.

b. If the relay cannot decode correctly, the relay uses an AAF protocol. It amplifies

the received signal and forwards it to the destination.
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Figure 4.1: The proposed HARQ scheme with ARP where the relay uses either AAF or DAF
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4. Actions at the destination:

a. If the relay uses a DAF protocol, the destination receives two copies of the sig-

nal, the coded signal from the source and coded interleaved signal from the relay.

Thus, a DTC codeword is formed. An iterative decoding method is used to re-

cover the source information. Following are the operations, within the iterative

decoding loop:

∗ If the decoded packet is correct, exit the iterative decoding loop.

∗ Otherwise, continue the decoding loop until the maximum number of iter-

ations is reached. If the decoded packet is still erroneous, exit the iterative

decoding loop.

b. If the relay uses an AAF protocol, the destination combines the previous error

packet from the source and current received packet from the relay.

c. Based on the decoding result, an ACK/NAK will be broadcasted to the source

and relay.

5. Actions at the source,

a. If an ACK is received, the protocol goes to step 1 to send a new packet.

b. Otherwise, if a NAK is received, a retransmission is required and the protocol

proceeds to send the stored packet until the maximum retransmission number is

reached. In that case, the source discards the packet and goes to step 1 to send

another new packet.

From the above protocol procedure, we can see that the broadcast negative acknowledgement

can determine whether the source or relay retransmits. Within the maximum number of

transmissions, N, if the number of NAKs is odd, the source stays in an idle state and relay

retransmits the received packet to the destination. If the number of NAKs is even, the source

retransmits the original packet to the destination and relay waits for the further feedback

from the destination. For example, at the first transmission, the source broadcasts a packet

to the relay and destination, if the destination can not decode properly, the destination will

send a NAK back to the source and relay. In this scenario, the received message at the

relay will be transmitted to the destination and the source will stay in the idle state. At

the destination, if the combined packets from the source and relay still can not be decoded
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Transmission time 1st 2nd 3rd

Information symbols 11111111 00000000 00000000
Parity symbols 01000010 10101000 00010101
Overall code rate 4/5 8/13 1/2

Table 4.1: Puncturing table for direct channel in a HARQ II-ARP scheme with a rate 4/5
code

correctly, the destination will broadcast the second NAK to the source and relay, then the

source will retransmit the message to the destination and the relay will not transmit. So

the source and relay alternatively transmit until the maximum retransmission number N is

reached. The proposed broadcast feedback channel strategy can reduce the feedback load,

increase the transmission efficiency and correspondingly decrease the transmission time.

4.3.2 Type II HARQ with the ARP Scheme

Unlike HARQ I-ARP, where the same data is repeated during each retransmission, HARQ

II-ARP uses a high-rate error control code. The source transmits incremental redundancy

symbols at each transmission step. According to the puncturing table, the relay and destina-

tion assemble previously received fragments of the packet to form a lower rate error control

code to recover the information.

Two families of RCPT codes [13] with puncturing period P = 8 are used in the proposed

HARQ II-ARP scheme, in which the optimal puncturing patterns are derived by using aver-

age distance spectra. Both code families employ a 4-state turbo code with generator polyno-

mial 5/7. To maximize capacity, the source and relay should transmit uncorrelated symbols,

but related to the same message [25]. Therefore, the source and relay encode/re-encode the

signal using different puncturing tables. The related puncturing matrices for the first to the

third transmission are shown in Tables 4.1-4.4. A zero in the puncturing table means that the

corresponding symbol of the packet is not transmitted.
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Transmission time 1st 2nd 3rd

Information symbols 11111111 00000000 00000000
Parity symbols 10000001 01010100 00101010
Overall code rate 4/5 8/13 1/2

Table 4.2: Puncturing table for relay channel in a HARQ II-ARP scheme with a rate 4/5 code

Transmission time 1st 2nd 3rd

Systematic bits 11111111 00000000 00000000
Parity bit 11001010 00100001 00010100
Overall code rate 2/3 4/7 1/2

Table 4.3: Puncturing table for direct channel in a HARQ II-ARP scheme with a rate 2/3
code

4.3.3 Type III HARQ with the ARP Scheme

The type III HARQ with the ARP scheme follows the same retransmission rules of the type

II HARQ with ARP scheme. The only difference is that the packet transmitted by the trans-

mitter is self-decodable, so the relay and destination can use either the latest received packet

or the combined received packets to recover the transmitted message [63]. In the proposed

scheme, the relay and destination use the current received packets to decode. If the decoding

result is not correct, the information symbols of all the received packets are combined by

using Chase combining [32], while the parity symbols are combined by using code combin-

ing [29]. Since a set of punctured convolutional codes were derived from the same original

low rate code with the same code rate and distance properties, when they are combined, the

combined codes yield at least the mother code, Cm.

The corresponding puncturing tables for various code rates with the puncturing period P = 8

are shown in Tables 4.5-4.8.

Transmission time 1st 2nd 3rd

Systematic bits 11111111 00000000 00000000
Parity bit 11010001 00100100 00001010
Overall code rate 2/3 4/7 1/2

Table 4.4: Puncturing table for relay channel in a HARQ II-ARP scheme with a rate 2/3 code

51



4.3 Collaborative HARQ with the ARP Scheme

Transmission time 1st 2nd 3rd

Information symbols 11111111 11111111 11111111
Parity symbols 01000010 10101000 00010101
Overall code rate 4/5 8/13 1/2

Table 4.5: Puncturing table for direct channel in a HARQ III-ARP scheme with a rate 4/5
code

Transmission time 1st 2nd 3rd

Information symbols 11111111 11111111 11111111
Parity symbols 10000001 01010100 00101010
Overall code rate 4/5 8/13 1/2

Table 4.6: Puncturing table for relay channel in a HARQ III-ARP scheme with a rate 4/5
code

Transmission time 1st 2nd 3rd

Systematic bits 11111111 11111111 11111111
Parity bit 11001010 00100001 00010100
Overall code rate 2/3 4/7 1/2

Table 4.7: Puncturing table for direct channel in a HARQ III-ARP scheme with a rate 2/3
code

Transmission time 1st 2nd 3rd

Systematic bits 11111111 11111111 11111111
Parity bit 11010001 00100100 00001010
Overall code rate 2/3 4/7 1/2

Table 4.8: Puncturing table for relay channel in a HARQ III-ARP scheme with a rate 2/3
code
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4.4 Simulation Results

In the previous section, we presented the proposed HARQ-ARP scheme for the CD com-

munication systems in wireless networks. In this section, we illustrate the performance of

the proposed scheme and compare it with another two reference schemes, HARQ with AAF

(HARQ-AAF) and HARQ with DAF (HARQ-DAF).

In order to present equitable comparisons, we apply persistent transmission principles to

all HARQ schemes, including HARQ-AAF, HARQ-ARP and HARQ-DAF schemes. The

simulation conditions are summarized in Fig. 4.2, where the direct and relay channels have

the same SNR, which varies from 0 to 14 dB, while the inter-user channel is variable from 0

to 24 dB.

Fig.4.3 shows the FER comparison of various HARQ I schemes. It is shown that HARQ

I-DAF is superior to HARQ I-AAF by around 4 dB at FER = 10−2, due to an additional

coding gain with the DTC structure. We also observe that HARQ I-ARP outperforms HARQ

I-DAF by around 1.5 dB at FER = 10−2. When HARQ I-DAF cannot decode the received

signal correctly, the relay switches to HARQ I-AAF to forward the amplified signal to the

destination, which circumvents the error propagation introduced by HARQ I-DAF scheme

in this scenario. The destination can thus successfully decode some combined signals from

the relay and source. The limited gain comes from HARQ I-AAF’s contribution.

Figs. 4.4 and 4.5 compare the FER performance of various HARQ II schemes. Unlike the

HARQ I scheme, HARQ II-AAF’s performance is significantly better than HARQ II-DAF’s

performance. In Fig. 4.4, at FER = 10−1, the SNR gain is by around 2.5 dB, and in Fig. 4.5,

at FER = 10−1, the SNR gain is by around 2 dB, while the gain increases as the FER

decreases. The reason behind this phenomenon is that when the relay receives the first trans-

mitted high code rate punctured packet from the source, the relay cannot correctly decode it

most of the time. The process of decoding, interleaving and re-encoding introduces serious

propagation errors. Even after three transmissions, the decoding error can still occur at the

relay.

On the same figures, it is also observed that HARQ II-ARP still has the best performance.

For example, in Fig. 4.4, at FER = 10−2 HARQ II-ARP can provide SNR gains of about 1

dB and 6.5 dB compared to HARQ II-AAF and HARQ II-DAF; in Fig. 4.5, at FER = 10−2
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Figure 4.2: Simulation conditions
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Figure 4.3: FER comparison of HARQ I-AAF, HARQ I-DAF and HARQ I-ARP schemes in
a quasi-static fading channel with SNR 0-8 dB of the inter-user channel

HARQ II-ARP can provide SNR gains of about 0.8 dB and 5 dB compared to HARQ II-AAF

and HARQ II-DAF. In the HARQ II-ARP scheme, when the decoding result at the relay is

correct, the DTC scheme provides a high coding gain and this improves its performance

significantly.

In Figs. 4.6 and 4.7, a similar FER performance comparison is shown for the HARQ III

schemes. We observe that HARQ III-ARP is superior to HARQ III-AAF and HARQ III-

DAF by around 1.5 dB and 4 dB at FER = 10−2 in Fig. 4.6, and by around 1.5 dB and 2.8

dB at FER = 10−2 in Fig. 4.7, respectively. In addition, HARQ III-AAF’s performance is

still better than HARQ III-DAF’s performance, due to the same reason as for HARQ II.
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Figure 4.4: FER comparison of HARQ II-AAF, HARQ II-DAF and HARQ II-ARP schemes
in a quasi-static fading channel with SNR 0-8 dB of the inter-user channel; the puncturing
rates for the first transmission are 4/5

Figure 4.5: FER comparison of HARQ II-AAF, HARQ II-DAF and HARQ II-ARP schemes
in a quasi-static fading channel with SNR 0-8 dB of the inter-user channel; the puncturing
rates for the first transmission are 2/3
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Figure 4.6: FER comparison of HARQ III-AAF, HARQ III-DAF and HARQ III-ARP
schemes in a quasi-static fading channel with SNR 0-8 dB of the inter-user channel; the
puncturing rates for the first transmission are 4/5

Figure 4.7: FER comparison of HARQ III-AAF, HARQ III-DAF and HARQ III-ARP
schemes in a quasi-static fading channel with SNR 0-8 dB of the inter-user channel; the
puncturing rates for the first transmission are 2/3
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4.5 Conclusion

In this chapter, we studied the collaborative HARQ schemes for the cooperative diversity

systems in wireless networks. According to the decoding result at the relay, we proposed

an adaptive relaying protocol over the quasi-static fading channel. The proposed HARQ-

ARP scheme combines the retransmission mechanisms (repetition coding and incremental

redundancy), the distributed turbo coding and the proposed adaptive relaying strategy. Based

on the different HARQ strategies, Chase combining and code combining were applied at the

receiver. The simulation results indicated that the proposed HARQ-ARP scheme can achieve

a superior FER compared to the reference schemes in all SNR regions.
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Chapter 5

Performance Analysis of Collaborative

HARQ Schemes in Wireless Networks

In the previous chapter, we proposed an adaptive relaying protocol and used it in the collab-

orative HARQ protocols for the CD communication systems. In this chapter, we present a

theoretical analysis of the proposed HARQ-ARP scheme. The pairwise error probabilities

(PEP) and word error probabilities (WEP) for all the HARQ schemes are derived for BPSK

over a quasi-static fading channel. We then give a general throughput and FER expression

for each HARQ scheme. Finally, we compare the performance with the reference systems,

the HARQ-AAF scheme and HARQ-perfect DTC scheme, in which the received packet at

the relay is assumed to be correct.

5.1 WEPs of the Relaying Protocols in the HARQ I Schemes

The calculation of the traditional union bound requires knowing the code distance spectrum,

which necessitates an exhaustive search of the code trellis. Due to the high complexity of

this search, similar to [82, 83], we consider an average upper bound. In order to calculate the

WEP of HARQ-ARP, we need to know the probability of the erroneous or correctly received

packet at the relay, that is, the probability of using either the HARQ-AAF or HARQ-perfect
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DTC scheme at the relay. The corresponding WEPs of each type of relaying scheme are

shown as follows.

5.1.1 WEP of HARQ I-AAF

Let γ
(n)
AAF represent the instantaneous received SNR of the nth combined packets from an

AAF relay. Then we have

γ
(n)
AAF = γsd

n∑
i=1

|h(i)
sd |2 +

1

2

n∑
i=1

H
(i)
2 , (5.1)

where γsd = Psd

N0
, H

(i)
2 = (1

2

∑2
p=1

1
λp

)−1 is called the harmonic mean of variables [66] λp,

p = 1, 2, λ1 = |h(i)
sr |2γsr, and λ2 = |h(i)

rd |2γrd, γsr = Psr

N0
, γrd = Prd

N0
. h

(i)
sd , h

(i)
sr , h

(i)
rd are the

fading coefficients of the direct, inter-user, and relay channel at the nth transmission attempt,

respectively. n is the maximum transmission attempt.

The PEP that the decoder makes a wrong decision by selecting an erroneous sequence with

the Hamming distance d1 of the combined packet at the receiver, for the HARQ I-AAF

scenario, denoted by PAAF−I
n (d1), is given by [24, 84]

PAAF−I
n (d1) = E

[
Q

(√
2d1γAAF

)]

≤ E


Q




√√√√2d1γsd

n∑
i=1

|h(i)
sd |2


 Q




√√√√d1

n∑
i=1

H
(i)
2





 . (5.2)

The PEP of HARQ I-AAF scheme at the first transmission attempt, PAAF−I
1 (d1), can be

calculated as

PAAF−I
1 (d1) ≤ E

[
Q

(√
2d1γsd|h(1)

sd |2
)

Q

(√
d1H

(1)
2

)]

≤ (d1γsd)
−1E

[
Q

(√
d1H

(1)
2

)]

= (d1γsd)
−1fm(d1), (5.3)
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where

fm(d1) = E

[
Q

(√
d1H

(1)
2

)]
. (5.4)

The function Q(x) is defined as

Q(x) =
1√
2π

∫ ∞

x

e−y2/2dy. (5.5)

The closed form expression of fm(d1) can be calculated by using the moment generating

function (MDF) of the Harmonic mean of two exponential random variables [66]. At high

SNR, fm(d1) can be approximated as [39, 68]

fm(d1) =

(
1

γsr

+
1

γrd

)
(d1)

−1. (5.6)

By substituting Eq.(5.6) into Eq.(5.3), we have

PAAF−I
1 (d1) ≤ 1

(γsd)

(
1

γsr

+
1

γrd

)
(d1)

−2. (5.7)

Following similar calculations as in Eq.(5.3) to Eq.(5.7), Eq.(5.2) can be further generally

written as

PAAF−I
n (d1) ≤ 1

(γsd)n

(
1

γsr

+
1

γrd

)n

(d1)
−2n. (5.8)

Let PF,AAF−I represent the average WEP upper bound for combined packets from the direct

and relay channel at the destination in the HARQ I-AAF scheme. Then we have

PF,AAF−I =
4l∑

d1=d1,min

A(d1)P
AAF
n (d1)

=
1

(γsd)
n

(
1

γsr

+
1

γrd

)n 4l∑

d1=d1,min

A(d1)
1

(d1)2n
, (5.9)
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where A(d1) =
∑l

j=1

(
l
j

)
p(d1|j),

(
l
j

)
is the number of words with Hamming weight j and

p(d1|j) is the probability that an input word with Hamming weight j produces a codeword

with Hamming weight d1.

5.1.2 WEP of HARQ I-perfect DTC

Let γ
(n)
DTC represent the instantaneous received SNR of the nth combined packets from a DAF

relay using perfect DTC, then we have

γ
(n)
DTC = γsd

n∑
i=1

|h(i)
sd |2 + γrd

n∑
i=1

|h(i)
rd |2. (5.10)

The average PEP of incorrectly decoding a combined packet using DTC at the nth transmis-

sion attempt with Hamming weight d, denoted by P
(Perfect−I)
n (d), can be calculated as

P (Perfect−I)
n (d) = E


Q




√√√√2d1γsd

n∑
i=1

|h(i)
sd |2 + 2d2γrd

n∑
i=1

|h(i)
rd |2







= E


Q




√√√√2d1γsd

n∑
i=1

|h(i)
sd |2


 Q




√√√√2d2γrd

n∑
i=1

|h(i)
rd |2







≤ 1

(γsd)n

1

(γrd)n
(d1)

−n(d2)
−n, (5.11)

where d1 and d2 are the Hamming weights of the erroneous packets with Hamming weight

d, transmitted from the source and relay respectively, such that d = d1 + d2.

Let PF,Perfect−I represent the average WEP upper bound for combined packets from the

direct and relay channels at the destination in the HARQ I-perfect DTC scheme. Then we

have

PF,Perfect−I =
4l∑

d=d,min

A(d)P (Perfect)
n (d)

=
1

(γsd)n

1

(γrd)n

4l∑

d=d,min

A(d)
1

(d1)n(d2)n
. (5.12)
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5.1.3 WEP of HARQ I-ARP

The ARP is the combination of AAF and DAF. Therefore, to obtain the WEP of ARP, at first,

we need to calculate the probability of a scenario using either AAF or perfect DTC at the

relay.

Let PF,sr−I(dsr, γsr|h(n)
sr ) be the conditional PEP of incorrectly decoding a packet into an-

other packet with Hamming distance of dsr in the inter-user channel at the nth transmission

attempt. Then we have

PF,sr−I(dsr, γsr|h(n)
sr ) = Q




√√√√2dsrγsr

n∑
i=1

|h(i)
sr |2


 . (5.13)

Let PF,sr−I(γsr|hsr) represent the conditional WEP in the inter-user channel for the HARQ

I scheme, so

PF,sr−I(γsr|h(n)
sr ) =

2l∑

dsr=dsr,min

A(dsr)PF,sr−I(dsr, γsr|h(n)
sr )

=
1

(γsr)n

2l∑

dsr=dsr,min

A(dsr)(dsr)
−n, (5.14)

where dsr,min is the minimum code Hamming distance.

Let P (ARP−I) represent the average PEP at high SNR for the ARP scheme at the relay. At
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the first transmission attempt, it can be approximated as

P
(ARP−I)
1 (d)

≤ E
{

PF,sr−I(dsr, γsr|h(1)
sr )PAAF

1 (d1) +
[
1− PF,sr−I(dsr, γsr|h(1)

sr )
]
P

(Perfect)
1 (d)

}

≤ E

{
PF,sr−I(dsr, γsr|h(1)

sr )Q

(√
2d1γsd|h(1)

sd |2
)

Q

(√
d1H

(1)
2

)

+
[
1− PF,sr−I(dsr, γsr|h(1)

sr )
]
Q

(√
2d1γsd|h(1)

sd |2
)

Q

(√
2d2γrd|h(1)

rd |2
)}

≤ 1

d1γsd

E

{
PF,sr−I(dsr, γsr|h(1)

sr )Q

(√
d1H

(1)
2

)

+
[
1− PF,sr−I(dsr, γsr|h(1)

sr )
]
Q

(√
2d2γrd|h(1)

rd |2
)}

≤ 1

d1γsd

{
f(d1) +

(
1− 1

γsr

∑2l
dsr=dsr,min

A(dsr)
1

dsr

d2γrd

)}
, (5.15)

where

f(d1) = E




2l∑

dsr=dsr,min

A(dsr)Q

(√
2dsrγsr|h(1)

sr |2
)

Q

(√
d1H

(1)
2

)
 . (5.16)

The calculation of f(d1) in Eq.(5.16) depends on the product of two Q-functions, and both

of them have the relationship with γsr. Therefore, we cannot approximate Q

(√
d1H

(1)
2

)
as

we did in Eq.(5.6). By observing the expression of H
(1)
2 , we can see that

H
(1)
2 =

[
1

2

(|h(1)
sr |2γsr

)−1
+

(
|h(1)

rd |2γrd

)−1
]−1

≈ 2min
{
|h(1)

sr |2γsr, γrdh
(1)
rd |2

}
. (5.17)
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By using the above approximation, we can get

f(d1)

≈ E




2l∑

dsr=dsr,min

A(dsr)Q

(√
2dsrγsr|h(1)

sr |2
)

Q

(√
2d1min

{
|h(1)

sr |2γsr, γrdh
(1)
rd |2

})


≤
2l∑

dsr=dsr,min

A(dsr)
1

γsr

[
1

(dsr + d1)
+

1

γrddsr(dsr + d1)

]
. (5.18)

By substituting Eq.(5.18) into Eq.(5.15), we have Eq.(5.19):

P
(ARP−I)
1 (d) ≤ 1

d1γsd





2l∑

dsr=dsr,min

A(dsr)
1

γsr

[
1

(dsr + d1)
+

1

γrddsr(dsr + d1)

]

+
1− 1

γsr

∑2l
dsr=dsr,min

A(dsr)
1

dsr

d2γrd

}

=
1

d1γsd

1

d2γrd


1 +

γrd

γsr

2l∑

dsr=dsr,min

A(dsr)
d2

dsr + d1


 . (5.19)

Since the fading coefficients are independent during the retransmission attempts, the PEP of

HARQ I-ARP of the nth transmission can be generally written as

P (ARP−I)
n (d) =

1

(γsdγrdd1d2)n


1 +

(
γrd

γsr

)n 2l∑

dsr=dsr,min

A(dsr)
(d2)

n

(dsr + d1)n


 . (5.20)

Then the average WEP upper bound in the HARQ I-ARP scheme can be expressed as

PF,ARP−I ≤
4l∑

d=d,min

A(d)P (ARP−I)
n (d)

≤ 1

(γsd)n(γrd)n

4l∑

d=d,min

A(d)×




1

(d1)n(d2)n


1 +

(
γrd

γsr

)n 2l∑

dsr=dsr,min

A(dsr)
(d2)

n

(dsr + d1)n






 . (5.21)
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5.2 WEPs of the Relaying Protocols in the HARQ II Schemes

Compared with the HARQ I schemes, the only difference when calculating the WEP of the

relaying protocols in the HARQ II schemes is the nth combined packet Hamming weight. In

the HARQ I relaying schemes, the transmitter sends the repetition code in each transmission,

so the nth combined codeword Hamming weight is fixed. However, in the HARQ II relaying

schemes, with the transmitted incremental redundancy during the retransmission attempts,

the nth combined packet Hamming weight changes.

5.2.1 WEP of HARQ II-AAF

Following a similar calculation to that in Eq.(5.2), the PEP for HARQ II-AAF, denoted by

PAAF−II
n (d

(n)
1 ), is given by

PAAF−II
n (d

(n)
1 ) = E

[
Q

(√
2d

(n)
1 γAAF

)]

≤ E


Q




√√√√2γsd

n∑
i=1

d
(i)
1 |h(i)

sd |2

 Q




√√√√
n∑

i=1

d
(i)
1 H

(i)
2







≤ E

[
Q

(√
2γsd

(
(d

(0)
1 + d

(1)
1 )|h(1)

sd |2 + · · ·+ d
(n)
1 |h(n)

sd |2
))

×

Q

(√
(d

(0)
1 + d

(1)
1 )H

(1)
2 + · · ·+ d

(n)
1 H

(n)
2

)]

≤ 1

(γsd)n

(
1

γsr

+
1

γrd

)n

(d
(0)
1 + d

(1)
1 )−2 · · · (d(n)

1 )−2, (5.22)

where d
(0)
1 and d

(1)
1 are the Hamming weight of the information symbols and parity symbols

of the first transmitted code C1, d
(i)
1 is the Hamming weight of incremental redundancy in

the ith transmission. If we assume that the maximum transmission attempts are n, d1 =

d
(0)
1 + d

(1)
1 + · · ·+ d

(n)
1 , which is the Hamming weight of the mother code Cm.
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The average WEP upper bound for the HARQ II-AAF scheme can be expressed as

PF,AAF−II =
4l∑

d
(n)
1 =d

(n)
1,min

A(d
(n)
1 )PAAF−II

n (d
(n)
1 )

=
1

(γsd)
n

(
1

γsr

+
1

γrd

)n 4l∑

d
(n)
1 =d

(n)
1,min

A(d
(n)
1 )

1

(d
(0)
1 + d

(1)
1 )2 · · · (d(n)

1 )2
,(5.23)

where A(d
(n)
1 ) is the number of codewords with Hamming weight d(n)

1 , d(n)
1,min is the combined

packet for the nth previous retransmission attempts.

5.2.2 WEP of HARQ II-perfect DTC

Similarly to that in Eq.(5.11), for perfect DTC used in the HARQ II scheme, the PEP can be

calculated as

P (Perfect−II)
n (d(n))

= E


Q




√√√√2γsd

n∑
i=1

d
(i)
1 |h(i)

sd |2 + 2γrd

n∑
i=1

d
(i)
2 |h(i)

rd |2






≤ 1

(γsd)n(γrd)n
(d

(0)
1 + d

(1)
1 )−1 · · · (d(n)

1 )−1(d
(0)
2 + d

(1)
2 )−1 · · · (d(n)

2 )−1. (5.24)

The WEP of perfect DTC used in the HARQ II scheme is given by

PF,Perfect−II (5.25)

=
4l∑

d(n)=d(n),min

A(d(n))P (Perfect−II)
n (d(n))

=
1

(γsd)n(γrd)n

4l∑

d(n)=d(n),min

A(d(n))
1[

(d
(0)
1 + d

(1)
1 ) · · · d(n)

1

] [
(d

(0)
2 + d

(1)
2 ) · · · d(n)

2

] .
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5.2.3 WEP of HARQ II-ARP

In the HARQ II-ARP scheme, the conditional PEP of incorrectly decoding a codeword into

another codeword in the inter-user channel at the nth transmission attempt can be computed

in a similar way to that in Eq.(5.13), so

PF,sr−II(d
(n)
sr , γsr|h(n)

sr ) = Q




√√√√2γsr

n∑
i=1

d
(i)
sr |h(i)

sr |2

 . (5.26)

Furthermore, the average PEP of the HARQ II-ARP scheme, similarly to Eq.(5.19) at high

SNR, is given as

P (ARP−II)
n (d(n)) (5.27)

≤ E
{

PF,sr−II(d
(n)
sr , γsr|h(n)

sr )PAAF−II
n (d

(n)
1 )

+
[
1− PF,sr−II(d

(n)
sr , γsr|h(n)

sr )
]
P (Perfect−II)

n (d(n))
}

≤ 1[
(γsd)n

(
d

(0)
1 + d

(1)
1

)
· · · d(n)

1

] [
(γrd)n

(
d

(0)
2 + d

(1)
2

)
· · · d(n)

2

] ×



1 +

(
γrd

γsd

)n 2l∑

d
(n)
sr =d

(n)
sr ,min

A(d(n)
sr )

(
d

(0)
2 + d

(1)
2

)
· · · d(n)

2[(
d

(0)
sr + d

(1)
sr

)
+

(
d

(0)
1 + d

(1)
1

)]
· · ·

(
d

(n)
sr + d

(n)
1

)


 .

Then, the average WEP upper bound for the HARQ II-ARP scheme can be written as

PF,ARP−II (5.28)

≤
4l∑

d(n)=d(n),min

A(d(n))P (ARP−II)
n (d(n))

≤ 1

(γsd)n(γrd)n

4l∑

d(n)=d(n),min

A(d(n))





1[(
d

(0)
1 + d

(1)
1

)
· · · d(n)

1

] [(
d

(0)
2 + d

(1)
2

)
· · · d(n)

2

]×


1 +

(
γrd

γsr

)n 2l∑

dsr=d
(n)
sr ,min

A(d(n)
sr )

(
d

(0)
2 + d

(1)
2

)
· · · d(n)

2[(
d

(0)
sr + d

(1)
sr

)
+

(
d

(0)
1 + d

(1)
1

)]
· · ·

(
d

(n)
sr + d

(n)
1

)





 .
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5.3 WEPs of the Relaying Protocols in the HARQ III Schemes

As we presented in section 4.3.3, the HARQ III scheme uses the current received packet to

decode, because of its self-decodable property. The receiver only combines all the received

packets together for decoding if the decoding result is not correct. Since each transmitted

packet contains the information symbols and different parity symbols, the Hamming weight

calculation of the combined codes, at the nth transmission attempt, is thus different.

5.3.1 WEP of HARQ III-AAF

Similarly to Eq.(5.22), the PEP for the HARQ III-AAF scheme, denoted by PAAF−III
n (d

(n)
1 ),

can be expressed as

PAAF−III
n (d

(n)
1 )

= E

[
Q

(√
2d

(n)
1 γAAF

)]

≤ E


Q




√√√√2γsd

(
n∑

i=1

(d
(0)
1 + d

(i)
1 )|h(i)

sd |2
)

 Q




√√√√
(

n∑
i=1

(d
(0)
1 + d

(i)
1 )H i

2

)





≤ 1

(γsd)n

(
1

γsr

+
1

γrd

)n
[

n∏
i=1

(d
(0)
1 + d

(i)
1 )

]−2

. (5.29)

The WEP of the HARQ III-AAF is given by

PF,AAF−III

=
4l∑

d
(n)
1 =d

(n)
1 ,min

A(d
(n)
1 )PAAF−III

n (d
(n)
1 )

=
1

(γsd)
n

(
1

γsr

+
1

γrd

)n 4l∑

d
(n)
1 =d

(n)
1 ,min

A(d
(n)
1 )

1[∏n
i=1(d

(0)
1 + d

(i)
1 )

]2 . (5.30)
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5.3.2 WEP of HARQ III-perfect DTC

Following a similar analysis to that in Eq.(5.24), for the perfect DTC in the HARQ III

scheme, the PEP can be calculated as

P (Perfect−III)
n (d(n))

= E


Q




√√√√2γsd

n∑
i=1

d
(i)
1 |h(i)

sd |2 + 2γrd

n∑
i=1

d
(i)
2 |h(i)

rd |2






≤ 1

(γsd)n(γrd)n

1∏n
i=1(d

(0)
1 + d

(i)
1 )

∏n
i=1(d

(0)
2 + d

(i)
2 )

. (5.31)

The WEP of the perfect-DTC used in the HARQ III scheme, is given by

PF,Perfect−III

=
4l∑

d(n)=d(n),min

A(d(n))P (Perfect−III)
n (d(n))

=
1

(γsd)n(γrd)n

4l∑

d(n)=d(n),min

A(d(n))
1∏n

i=1(d
(0)
1 + d

(i)
1 )

∏n
i=1(d

(0)
2 + d

(i)
2 )

. (5.32)

5.3.3 WEP of HARQ III-ARP

Following a similar analysis to that in Eq.(5.27), the average PEP of the HARQ III-ARP

scheme at high SNR is given as

P (ARP−III)
n (d(n))

≤ E
{

PF,sr−III(d
(n)
sr , γsr|h(n)

sr )PAAF−III
n (d

(n)
1 )

+
[
1− PF,sr−III(d

(n)
sr , γsr|h(n)

sr )
]
P (Perfect−III)

n (d(n))
}

≤ 1[
(γsd)n

∏n
i=1

(
d

(0)
1 + d

(i)
1

)] [
(γrd)n

∏n
i=1

(
d

(0)
2 + d

(i)
2

)] ×



1 +

(
γrd

γsd

)n 2l∑

d
(n)
sr =d

(n)
sr ,min

A(d(n)
sr )

∏n
i=1

(
d

(0)
2 + d

(i)
2

)

∏n
i=1

[(
d

(0)
sr + d

(i)
sr

)
+

(
d

(0)
1 + d

(i)
1

)]


 .(5.33)
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Then, the average WEP upper bound for the HARQ III-ARP scheme can be written as

PF,ARP−III

≤
4l∑

d(n)=d(n),min

A(d(n))P (ARP−III)
n (d(n))

≤ 1

(γsd)n(γrd)n

4l∑

d(n)=d(n),min

A(d(n))





1[∏n
i=1

(
d

(0)
1 + d

(i)
1

)] [∏n
i=1

(
d

(0)
2 + d

(i)
2

)]×


1 +

(
γrd

γsr

)n 2l∑

dsr=d
(n)
sr ,min

A(d(n)
sr )

∏n
i=1

(
d

(0)
2 + d

(i)
2

)

∏n
i=1

[(
d

(0)
sr + d

(i)
sr

)
+

(
d

(0)
1 + d

(i)
1

)]





 . (5.34)

5.4 Throughput Analysis

In this section, we analyze the throughput of various HARQ schemes. The average through-

put, denoted by RAV can be calculated as in [11, 13],

RAV =
P

P + lav

k

k + nc + m
(5.35)

where lav is the average number of additional transmitted symbols per P information sym-

bols, k is the number of information symbols, nc is the length of CRC check symbols for

error detection, and m is the number of tail symbols. The factor k/(k + nc + m) is the loss

in the throughput due to the added parity symbols for error detection and the tail symbols to

each transmitted packet.

Eq.(5.35) applies to all the HARQ schemes, including the HARQI (repetition coding), HAR-

QII and HARQIII (incremental redundancy) schemes. In this thesis, the source and relay use

same code rate during each transmission. Therefore, the length of each transmitted packet

is the same. Let Pi denote the average number of additional transmitted symbols for each

transmission attempt, and let P
F

(i)
SD

, P
F

(i)
com

denote the probability of the decoded combined

packets from direct channel containing errors, and the decoded combined packets from di-

rect and relay channels containing errors, at the ith transmission attempt, i = 1, 2, · · · , n,
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respectively. Clearly, with the HARQ relaying schemes, in general, we have lav

lav = P1+P1PF
(1)
SD

+P2PF
(1)
com

+· · ·+PiPF
(i)
SD

+Pi+1PF
(i)
com

+· · ·+Pn−1PF
(n−1)
SD

+PnP
F

(n−1)
com

,

(5.36)

where P
F

(i)
com

can be expressed for the three types of HARQ schemes, given by Eqs.(5.9),

(5.23) and (5.30) for the HARQ-AAF scheme, by Eqs.(5.12), (5.25) and (5.32) for the

HARQ-perfect DTC scheme and by Eqs.(5.21), (5.28) and (5.34) for the HARQ-ARP scheme,

respectively.

The term P
F

(i)
SD

can be calculated similarly to that in Eq.(5.2) or in Eq.(5.11), depending on

the relaying protocols. For example, in the HARQI schemes, the general expression of P
F

(n)
SD

for the HARQ-AAF scheme is given by

P
F

(n)
SD ,AAF−I

≤ E


Q




√√√√2d1γsd

n∑
i=1

|h(i)
sd |2


 Q

(√
d1H

(n−1)
2

)


≤ 1

(γsd)n(γrd)n−1

4l∑

d1=d1,min

A(d1)
1

(d1)(2n−1)

{
1 + (

γrd

γsr

)n−1

}
. (5.37)

In the HARQI perfect-DTC scheme, P
F

(n)
SD

is given by

P
F

(n)
SD ,P erfect−I

≤ E


Q




√√√√2d1γsd

n∑
i=1

|h(i)
sd |2


 Q




√√√√2d2γrd

n−1∑
i=1

|h(i)
rd |2







≤ 1

(γsd)n(γrd)(n−1)

4l∑

d=d,min

A(d)
1

(d1)n(d2)(n−1)
. (5.38)

Following a similar calculation to that in Eq.(5.15), the P
F

(n)
SD ,ARP−I

in HARQI-ARP can be
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expressed as

P
F

(n)
SD ,ARP−I

≤ E



PF,sr−I(dsr, γsr|h(i)

sr )Q




√√√√2d1γsd

n∑
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|h(i)
sd |2 + d1H

(n−1)
2




+
[
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sr )
]
Q


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√√√√2d1γsd
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|h(i)
sd |2 + 2d2γrd
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|h(i)
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






≤ 1

(γsd)n(γrd)n−1

4l∑

d=d,min

A(d)
1

(d1)n(d2)n−1

{
1 +

(
γrd

γsr

)n−1

×

2l∑

dsr=dsr,min

A(dsr)
(d2)

n−1

(dsr + d1)n−1



 . (5.39)

Therefore, the P
F

(i)
SD

for three types of HARQ schemes, can be generally expressed as fol-

lows:

P
F

(n)
SD ,AAF−p

=
1

(γsd)n(γrd)n−1

4l∑

d1=d
(n)
1,min

A(d1)
{

θ(γ)D
′
p

}
, (5.40)

P
F

(n)
SD ,P erfect−p

=
1

(γsd)n(γrd)n−1

4l∑

d=d(n),min

A(d)Dp, (5.41)

P
F

(n)
SD ,ARP−p

=
1

(γsd)n(γrd)n−1

4l∑

d=d(n),min

A(d) {θ(γ)DpSp} , (5.42)

where D
′
p in Eq.(5.44), Dp in Eq.(5.45), and Sp in Eq.(5.46) represent the coefficients for

the above P
F

(i)
SD

expressions, p represents the protocol type number, denoted by I, II and III,

respectively; and

θ(γ) = 1 +

(
γrd

γsr

)n−1

, (5.43)
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D
′
I =

1

(d1)2n−1

D
′
II =

1[(
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1 · · · d(n)

1

)] [(
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)] , (5.44)
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1 · · · d(n)

1

)] [(
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)] , (5.45)
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. (5.46)

Substituting Eq.(5.36) into Eq.(5.35), we can obtain the average throughput expression.

5.5 Performance Comparison between HARQ-ARP and HARQ-

perfect DTC

In this thesis, we apply the same code to all HARQ relaying schemes, so the code distance

spectrum is fixed during the comparison.
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To evaluate the performance between HARQ-ARP and HARQ-perfect DTC, we need to in-

vestigate the expression P
F

(i)
com

and P
F

(i)
SD

for various HARQ schemes. To make this compar-

ison clear and easy to follow, first we give the general expression of WEPs for three types of

HARQ-ARP by Eqs.(5.21), (5.28) and (5.34) and HARQ-perfect DTC by Eqs.(5.12), (5.25)

and (5.32)

PF,ARP−p =
1

(γsd)n(γrd)n

4l∑

d(n)=d(n),min

A(d(n))CpRp, (5.47)

PF,Perfect−p =
1

(γsd)n(γrd)n

4l∑

d(n)=d(n),min

A(d(n))Cp, (5.48)

where Cp in Eq.(5.49) and Rp in Eq.(5.50) represent the coefficients for the above WEP

expressions.
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1

(d1)n(d2)n

CII =
1[

(d
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(1)
1 ) · · · (d(n)

1 )
] [
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]
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1 + d

(i)
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] [∏n
i=1(d

(0)
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] , (5.49)
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(i)
sr

)
+

(
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

 . (5.50)

Clearly, for the HARQ-ARP scheme, the FER expression of the unsuccessful decoding at
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the destination at the nth transmission attempt is

P
(n)
FER,ARP = P

(1)
SD,ARP−pP

(1)
F,ARP−p · · ·P (n)

SD,ARP−pP
(n)
F,ARP−p

=
n∏

i=1

P
(i)
SD,ARP−p

n∏
i=1

P
(i)
F,ARP−p. (5.51)

For the HARQ-perfect DTC scheme, the FER expression can be similarly expressed as

P
(n)
FER,Perfect =

n∏
i=1

P
(i)
SD,Perfect−p

n∏
i=1

P
(i)
F,Perfect−p. (5.52)

Since the additional transmitted symbols for each transmission attempt Pi, and the probabil-

ity of decoding a packet in the first transmission from the direct channel P
F

(1)
SD

in Eq.(5.36) are

the same for both schemes, we only need to study the expression P
(i)
F,ARP−p and P

(i)
F,Perfect−p,

i = 1, 2, · · · , n for the HARQ-ARP by Eq.(5.47) and HARQ-perfect DTC schemes by

Eq.(5.48), respectively; and P
(i)
SD, i = 2, · · · , n given by Eq.(5.41) for the HARQ-perfect

DTC scheme and Eq.(5.42) for the HARQ-ARP, respectively.

It can be noted that as γsr increases, (γrd

γsr
) → 0, Sp in Eq.(5.46) and Rp in Eq.(5.50) approach

one, so the value of the P
(i)
F,ARP−p in Eq.(5.47) and P

F
(i)
SD,ARP−p

in Eq.(5.42) approach the

value of the P
(i)
F,Perfect−p in Eq.(5.48) and P

F
(i)
SD,Perfect−p

in Eq.(5.41), respectively.

As each item in Eqs.(5.51) and (5.52) has the same relationship, we conclude that the per-

formance of HARQ-ARP approaches HARQ-perfect DTC in the high γsr region.

5.6 Performance Comparison between HARQ-ARP and HARQ-

AAF

In this section, we compare the performance between HARQ-ARP and HARQ-AAF. In order

to analyze their performance, we can follow a similar analysis in section 5.5. The HARQ-

ARP is based on a DTC scheme, and we need to evaluate its distance spectrum, which

makes the analysis and comparison complicated and more difficult. However, it is well
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known that the turbo codes outperform convolutional codes at medium to high SNRs [45].

We also observed that both HARQ-AAF and HARQ-ARP with a DAF scheme (the relay

fully decodes the received signal, re-encodes and forwards it to the destination) are based

on convolutional codes, and it is easy to compare the performance of these two schemes.

Motivated by this, in this thesis, we compare the performance of the HARQ-ARP with a

DAF scheme and the HARQ-AAF scheme.

We will demonstrate that the performance of HARQ-ARP with a DAF scheme is superior to

the HARQ-AAF scheme. As a result, the HARQ-ARP with a DTC scheme exhibits better

performance than the HARQ-AAF scheme. For the HARQ-ARP with a DAF scheme, the

signals transmitted from the source and relay are the same codes, so their Hamming weights

of the erroneous packets are the same. Therefore, following the similar WEP calculations

that we used for the ARP-DTC scheme in Eqs.(5.21), (5.28), and (5.34), the WEP of ARP-

DAF for each type of HARQ scheme can be generally calculated as

PF,ARP
DAF−p =

1

(γsd)n(γrd)n

4l∑

d1=d
(n)
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′
p
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}
, (5.53)

where R
′
p in Eq.(5.53) can be expressed as in Eq.(5.54)
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 , (5.54)

and the P
F

(i)
SD

for the HARQ ARP-DAF schemes is given by

P
F

(n)
SD ,ARP

DAF−p
=

1

(γsd)n(γrd)n−1

4l∑

d1=d
(n)
1 ,min

A(d)
{

θ(γ)D
′
pS

′
p

}
, (5.55)
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where

S
′
I =





2l∑

dsr=dsr,min

A(dsr)
(d1)

n−1

(dsr + d1)n−1





S
′
II =





2l∑

dsr=d
(n−1)
sr,min

A(d(n−1)
sr )

(
d

(0)
1 + d

(1)
1

)
· · · d(n−1)

1[(
d

(0)
sr + d

(1)
sr

)
+

(
d

(0)
1 + d

(1)
1

)]
· · ·

(
d

(n−1)
sr + d

(n−1)
1

)





S
′
III =





2l∑

dsr=d
(n−1)
sr,min

A(d(n−1)
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sr

)
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(
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1
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
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

. (5.56)

In addition, the general expression of the HARQ-AAF schemes by Eqs.(5.9), (5.23) and

(5.30), can be written as

PF,AAF−p =
1

(γsd)n(γrd)n

4l∑

d1=d
(n)
1 ,min

A(d1)C
′
p.

{
1 +

(
γrd

γsr

)n}
. (5.57)

Following a similar analysis to that in section 5.5, the FER expressions for the HARQ ARP-

DAF and HARQ-AAF schemes are given by

P
(n)

FER,ARP
DAF

=
n∏

i=1

P
F

(i)
SD,ARP

DAF−p

n∏
i=1

P
(i)

F,ARP
DAF−p

. (5.58)

P
(n)
FER,AAF =

n∏
i=1

P
(i)
SD,AAF−p

n∏
i=1

P
(i)
F,AAF−p. (5.59)

Since R
′
p ≤ 1 and S

′
p ≤ 1 , which have been proved in Appendix B, by comparing PF,ARP

DAF−p

in Eq.(5.53) with PF,AAF−p in Eq.(5.57) and P
F

(n)
SD ,AAF−p

in Eq.(5.40) with P
F

(n)
SD ,ARP

DAF−p
in

Eq.(5.55), it is obvious that PF,ARP
DAF−p ≤ PF,AAF−p and P

F
(n)
SD ,AAF−p

≤ P
F

(n)
SD ,ARP

DAF−p
for each

item in the above two FER expressions. So the ARP-DAF can achieve a smaller error rate
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compared to AAF under the same γsr and γrd values, such as

P
(n)

FER,ARP
DAF

≤ P
(n)
FER,AAF . (5.60)

Furthermore, the PF,ARP
DTC

and PF,AAF
have a similar relationship:

P
(n)

FER,ARP
DTC

≤ P
(n)
FER,AAF . (5.61)

From the above analysis, it has been shown that the HARQ-ARP with DTC performs better

than the HARQ-AAF.

5.7 Simulation Results

In this section, we present the performance comparison for various HARQ schemes. In all

simulations, data are grouped into a frame of length 130 symbols, including 16 CRC check

symbols and 2 tail symbols. A four-state rate 1/2 RSC code with generators (5, 7)8 is used

with BPSK modulation. At the receiver, a soft output Viterbi algorithm (SOVA)/Viterbi

algorithm (VA) decoder is used. The maximum retransmission number is set to n = 3 and

the maximum number of iterations is set to 8. The direct and relay channels have the same

SNR, which varies from 0 to 14 dB, while the inter-user channel is variable from 0 to 24 dB.

In order to present equitable comparisons, we apply the persistent transmission principle at

the relay. Since the relay always transmits in the HARQ AAF and HARQ ARP-DAF/DTC

schemes, so the relay in the HARQ DAF-DTC scheme transmits even though the received

packet from the source is decoded in error.

Fig. 5.1 compares the FER results obtained by the analysis developed in this thesis and

simulations. The FER results are presented for the HARQ I-perfect DTC scheme, which is

used as the performance lower bound for the proposed HARQ I-ARP scheme. The analytical

FER results are calculated for the first term in the bound sum in Eq.(5.48), and for asymptotic

values of γsd, γrd, for which the number of paths
∑4l

d(n)=d(n),min A(d(n)) has not a big effect

on the performance and thus was assumed to be 1. The two curves have the same slope
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and the match could be improved by calculating the coefficient
∑4l

d(n)=d(n),min A(d(n)) and

including more levels from the expression in Eq.(5.48).

Fig. 5.2 shows the FER comparison of various HARQ I schemes. As an example, it is shown

that the ARP-DAF outperforms the AAF in the whole γrd region, and the performance of the

ARP-DTC is much better than the ARP-DAF due to an addtional coding gain with the DTC

structure. The simulation results also prove our analysis in section 5.5, that is, the ARP-DTC

scheme can achieve a high error rate reduction compared to AAF under the same γsr and γrd

values. In addition, we can see from Eqs.(5.42) and (5.47) that as γsr increases, θγSp and

Cp come close to one. So P
(n)
FER,ARP → P

(n)
FER,Perfect, thus the ARP-DTC approaches the

perfect DTC scheme. This trend can be noticed from the simulation results shown in these

two figures.

Figs. 5.3, 5.4, 5.5 and 5.6 compare the FER performance of various HARQ II and HARQ

III schemes with the two RCPT families we introduced in sections 4.3.2 and 4.3.3. Similar

to the HARQ I scheme, the ARP-DTC’s performance is significantly better than the AAF’s

performance in the whole γrd region. When the γsr increases, the FER of ARP-DTC comes

close to the perfect DTC as well.

Figs. 5.7, 5.8, 5.9 and 5.10 show the throughput performance of the HARQ I, HARQ II

and HARQ III schemes with 8 and 24 dB of the inter-user channel. The simulation results

confirm our performance analysis in sections 5.5 and 5.6. We can see that the ARP with

DTC scheme provides a better throughput than the AAF scheme. The throughput increases

as the γsd increases, and as the γsr increases to 24 dB, the performance of ARP-DTC tends

to reach the perfect-DTC.

Fig. 5.11 compares the throughput of various HARQ ARP-DTC schemes. In a relatively

high SNR range, the destination can correctly decode the highest rate packets at the first

transmission and thus reduce the number of retransmissions. Therefore, the HARQ II ARP-

DTC achieves a higher throughput efficiency than the other HARQ ARP-DTC schemes.

Also, the throughput of the HARQ III ARP-DTC scheme is better than that of the HARQ I

ARP-DTC scheme. This is because in the type III scheme the packet with punctured symbols

is transmitted, which reduces the total symbols of transmission. However, at low SNRs, in

the range of 0-4 dB, the HARQ I ARP-DTC scheme outperforms the other two schemes, due

to its high SNR gain.
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5.7 Simulation Results

Figure 5.1: Comparisons between FER performance based on analysis and simulations for
HARQ I-perfect DTC, which is used as the performance lower bound for the proposed
HARQ I-ARP scheme

Figure 5.2: FER comparison of HARQ I AAF, HARQ I perfect-DTC, HARQ I ARP-DAF
and HARQ I ARP-DTC schemes in a quasi-static fading channel with SNR 8 dB and 24 dB
of the inter-user channel
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5.7 Simulation Results

Figure 5.3: FER comparison of HARQ II AAF, HARQ II perfect-DTC, and HARQ II ARP-
DTC schemes in a quasi-static fading channel with SNR 8 dB and 24 dB of the inter-user
channel; the puncturing rates for the first transmission are 4/5

Figure 5.4: FER comparison of HARQ II AAF, HARQ II perfect-DTC, and HARQ II ARP-
DTC schemes in a quasi-static fading channel with SNR 8 dB and 24 dB of the inter-user
channel; the puncturing rates for the first transmission are 2/3
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5.7 Simulation Results

Figure 5.5: FER comparison of HARQ III AAF, HARQ III perfect-DTC, and HARQ III
ARP-DTC schemes in a quasi-static fading channel with SNR 8 dB and 24 dB of the inter-
user channel; the puncturing rates for the first transmission are 4/5

Figure 5.6: FER comparison of HARQ III AAF, HARQ III perfect-DTC, and HARQ III
ARP-DTC schemes in a quasi-static fading channel with SNR 8 dB and 24 dB of the inter-
user channel; the puncturing rates for the first transmission are 2/3
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5.7 Simulation Results

Figure 5.7: Throughput comparison of HARQ I AAF, HARQ I perfect-DTC, HARQ I ARP-
DAF and HARQ I ARP-DTC schemes in a quasi-static fading channel with SNR 8 dB of the
inter-user channel

Figure 5.8: Throughput comparison of HARQ I AAF, HARQ I perfect-DTC, HARQ I ARP-
DAF and HARQ I ARP-DTC schemes in a quasi-static fading channel with SNR 24 dB of
the inter-user channel
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5.7 Simulation Results

Figure 5.9: Throughput comparison of HARQ II AAF, HARQ II perfect-DTC, and HARQ
II ARP-DTC schemes in a quasi-static fading channel with SNR 8 dB and 24 dB of the
inter-user channel; the puncturing rates for the first transmission are 4/5

Figure 5.10: Throughput comparison of HARQ III AAF, HARQ III perfect-DTC, and HARQ
III ARP-DTC schemes in a quasi-static fading channel with SNR 8 dB and 24 dB of the inter-
user channel; the puncturing rates for the first transmission are 4/5
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5.8 Conclusion

Figure 5.11: Throughput comparison of HARQ ARP schemes in a quasi-static fading chan-
nel with SNR 24 dB of the inter-user channel; the puncturing rates for the first transmission
are 4/5

5.8 Conclusion

In this chapter, we investigated the performance of three types of HARQ ARP schemes.

The exact WEPs for HARQ AAF, HARQ perfect-DTC and HARQ ARP were derived and

the general throughput expression of each relaying scheme was developed. Based on the

analysis, it was shown that each type of HARQ ARP outperforms the HARQ AAF in the

whole γrd region, due to the contribution of the turbo coding gain. As the γsr increases with

the inter-user channel, the performance of the HARQ ARP approaches the HARQ perfect-

DTC scheme. In addition, we showed, from the throughput comparison of the three types

of HARQ ARP schemes, that the HARQ II ARP achieved higher throughput in a relatively

higher SNR range.
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Chapter 6

Conclusions

This thesis has studied collaborative HARQ schemes for the cooperative wireless networks.

The main goals were to provide a better understanding of HARQ protocols used in the co-

operative communication systems and develop a robust HARQ scheme by using an adaptive

relaying protocol and distributed coding scheme.

Chapters 1, 2 and 3 provided the background knowledge. Specifically, Chapter 1 gave a

broad overview of the research field, aiming to explain the goals of this work and outline

the remaining chapters. Chapter 2 covered the basic elements of a digital communication

system, fading channels, classic error control coding schemes as well as associated decoding

algorithms. Chapter 3 introduced the knowledge of the cooperative communications. We

reviewed the various relaying protocols used in the cooperative diversity (CD) communica-

tion systems, including amplify and forward (AAF), decode and forward (DAF), selection

relaying and incremental relaying protocols.

Chapter 4 presented our proposed collaborative HARQ strategies for the CD communication

systems. An adaptive relaying protocol (ARP) was proposed and was used together with

type I, II, and III HARQs. The proposed ARP takes merits of the fixed relaying protocols and

avoids their disadvantages. By using distributed coding scheme in the proposed scheme, we

improved the reliability of the systems through not only diversity benefit but also a coding

advantage. The simulation results indicated that the proposed HARQ with ARP (HARQ-

ARP) scheme outperforms the reference HARQ schemes in all SNR regions by 1 ∼ 6 dB.



6.1 Future Work

Chapter 5 provided the performance analysis of the proposed HARQ-ARP scheme. We an-

alyzed the performance of the HARQ relaying schemes by two figures of merit: the average

throughput RAV and frame error rate (FER). We derived the pairwise error probabilities

(PEP) and word error probabilities (WEP) of the HARQ with AAF (HARQ-AAF), HARQ

with perfect distributed turbo codes (HARQ-perfect DTC) and HARQ-ARP schemes. Based

on the derived PEPs and WEPs for each scheme, we obtained a general throughput ex-

pression, which can be used for any of these schemes. In addition, we derived a general

FER expression for the collaborative HARQ systems and used it to compare between the

proposed HARQ-ARP scheme and the reference schemes. The theoretical analysis is vali-

dated through simulations. The analytical and simulation results show that the HARQ-ARP

scheme achieves better performance than HARQ-AAF scheme. As the quality of the inter-

user channel is improved, the performance of HARQ-ARP approaches the HARQ-perfect

DTC scheme.

6.1 Future Work

In this thesis, we only consider a single relay network. In practical systems, there might be a

number of relays between the source and destination. To the best of our knowledge, no gen-

eral framework for designing collaborative HARQ protocols for multi-hop relay networks

has been developed. The design of collaborative HARQ schemes includes several elements,

such as, component codes design, optimal puncturing pattern, path selection and power allo-

cation. They can be optimized by using union bound and code distance spectra. This presents

a big challenge and will be a promising topic to be considered in future research.

In addition, most existing research in HARQ has considered an incremental redundancy (IR)

scheme to provide a lower code rate and a higher throughput. Although the use of an IR

scheme is a promising solution to achieve a higher throughput, its decoding is very complex.

The complexity of such a decoding grows at least as O(k/R), where k is the information

bits and R is the rate of the low rate code [85]. Luby [86] circumvented this problem by

designing rateless codes, also known as Luby Transform (LT) codes, which are not obtained

by puncturing standard block codes. Unlike conventional codes, LT codes encode and trans-

mit the source information in an infinitely long codestream. The codes have the special

property that a receiver can recover the original information from unordered subsets of the

88



6.1 Future Work

codestream, once the total obtained mutual information from multiple sources marginally

exceeds the entropy of the source information. LT codes have been suggested for use in sin-

gle relay links [87, 88], and broadcast and multicast applications [89] in wireless networks,

however, their use in cooperative multi-relay wireless networks has not been analyzed yet.

Therefore, it would also be worth investigating the performance of the LT codes on a multi-

hop CD communication system.
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Appendix A

The Derivation of Eq. (5.18)

To simplify the calculation, we use x to denote γsr|hsr|2, y to denote γrd|hrd|2, respectively.

The pdf of x and y can be calculated as [33]

p(x) =
1

γsr

e
−x
γsr , (A.1)

p(y) =
1

γrd

e
−y
γrd , (A.2)

f(d1) ≈ E




2l∑
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where

ϕ(d1) ≤
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By substituting the result of Eq.(A.4) into Eq.(A.3), we can obtain the final result as in
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Eq.(5.18),

f(d1) ≈ E




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dsr=dsr,min

A(dsr)
1

γsr

[
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
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Appendix B

Proof of Inequality (5.54)

In this section, we only show the proof of inequality of R
′
1−I at the first transmission attempt

in the HARQI scheme. The nth transmission expressions of R
′
1, R

′
2 and R

′
3 in HARQI,

HARQII and HARQIII schemes can be proved in a similar way.

As shown in Eq.(5.14), P
(1)
F,sr−I represents the conditional WEP in the inter-user channel at

the first transmission attempt, therefore, we have

P
(1)
F,sr−I =

2l∑

dsr=dsr,min

A(dsr)E

[
Q

(√
2dsrγsr|h(1)

sr |2
)]

≤ 1. (B.1)

Then we arrive at

P
(1)
F,sr−IQ
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2d1γsr|h(1)

sr |2
)
≤ Q
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2d1γsr|h(1)

sr |2
)

. (B.2)

To simplify the calculation, we still use x denote γsr|hsr|2. By averaging the above inequality



with regard to |hsr|2, we get
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Therefore, we have R
′
1−I ≤ 1.
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