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On the Optimization of Distributed Compression in 

Multi-Relay Cooperative Networks 

Yinan Qi, Muhammad Ali Imran, Richard Demo Souza, and Rahim Tafazolli 

Abstract 

In this paper, we consider multi-relay cooperative networks for the Rayleigh fading channel, where each relay, 

upon receiving its own channel observation, independently compresses it and forwards the compressed information 

to the destination. Although the compression at each relay is distributed using Wyner-Ziv coding, there exists an 

opportunity for jointly optimizing compression at multiple relays to maximize the achievable rate. Considering 

Gaussian signalling, a primal optimization problem is formulated accordingly. We prove that the primal problem can 

be solved by resorting to its Lagrangian dual problem and an iterative optimization algorithm is proposed. The 

analysis is further extended to a hybrid scheme, where the employed forwarding scheme depends on the decoding 

status of each relay. The relays that are capable of successful decoding perform decode-and-forward and the rest 

conduct distributed compression. The hybrid scheme allows the cooperative network to adapt to the changes of the 

channel conditions and benefit from an enhanced level of flexibility. Numerical results from both spectrum and 

energy efficiency perspectives show that the joint optimization improves efficiency of compression and identify the 

scenarios where the proposed schemes outperform the conventional forwarding schemes. The findings provide 

important insights into the optimal deployment of relays in a realistic cellular network. 

Index Terms 

Multi-relay, decode-and-forward, compress-and-forward, Wyner-Ziv coding 

I INTRODUCTION 

Being considered as one of the potential enabling techniques for future communication 

networks, relaying gives rise to a plethora of interesting applications and new business 

opportunities. The relay model was first introduced by Van Der Meulen [1] and substantially 

developed by Cover and El Gamal [2]. Common relaying schemes including amplify-and-

forward (AF), decode-and-forward (DF), and compress-and-forward (CF) have been investigated 

for single relay systems [3]-[8]. 
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The study is then extended to multi-relay cooperative networks and analysis has been given in 

[9]-[14]. Cooperative diversity is analysed for AF in [9] and the sum rate and outage performance 

are studied for AF and DF, respectively, in [10] and [11]. An efficient pilot-based channel 

estimation scheme is proposed for multi-relay AF networks in [12]. Relay selection has also been 

widely investigated. In [13], selection criterion based on pairwise error probability is established 

for single carrier AF relay networks. The outage performance of DF based relay selection is 

analysed for cognitive relay networks and it is shown that the number of relays has a significant 

impact [14]. Recently, hybrid forwarding schemes have drawn lots of attention, where the relays 

adaptively switch between AF and DF depending on channel conditions and decoding status. It is 

shown that the enhanced flexibility improves not only the error performance but also achieves a 

significant throughput gain against conventional non-hybrid schemes [15]-[16]. However, most 

of these previous works on multi-relay cooperative networks are based on DF and AF, but CF is 

rarely addressed. The fundamental limit on the applicability of DF and AF is their high 

dependence on the quality of the source-relay links. With low quality source-relay links, for DF 

the relays might not be able to successfully decode the message and thus forward erroneous 

information to the destination, leading to error propagation. For AF, the relays amplify and 

forward noise and interference as well as the useful signals. Therefore AF is mainly useful in 

high-SNR environments.  

This paper considers a multi-relay cooperative CF network based on Wyner-Ziv compression. 

Wyner-Ziv compression is proposed in [17] and [18] and further extended to multiple nodes by 

Gastpar in [19]. In Wyner-Ziv compression, the relays independently compress their received 

signals from the source and forward the compressed information to the destination. At the 

destination, the compressed information is decompressed with the help of side information to 

reconstruct the relays' receptions, which are then combined to decode the source message. The 

information-theoretic framework of such cooperative networks is given in [20], [21] and 

extended by [22] from successive decompression and decoding to a joint operation. The problem 

of distributed compression at multiple nodes and recovering at the destination node with side 
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information has been an open problem even after three decades. However, it has been pointed out 

that Wyner-Ziv coding can achieve any point in the Berger-Tung rate region [23]. In [19], 

Gastpar has established an achievable rate region for this problem, which can be regarded as a 

direct extension of the Burger-Tung coding and so far is the tightest lower bound obtained to the 

best of authors' knowledge. For this reason, we choose Wyner-Ziv coding in this paper. Apart 

from the analysis in [20]-[22], we derive the achievable rate of such networks in the Rayleigh 

fading channel under half-duplex mode and notice that the achievable rate depends not only on 

the channel conditions but, more importantly, also on the design of the distributed compression 

scheme. Hence, the essence of this work is to optimize the distributed compression scheme to 

maximize the achievable rate. Moreover, in this work, different from [21], the relay-destination 

links are not assumed ideal, but they interfere with each other forming a multiple access channel. 

The contributions of this work can be summarized as follows: 

 The system model of the multi-relay cooperative CF network is presented and its 

achievable rate is derived by modelling the compression noise as Gaussian noise added to 

the reconstructed relays' observations, subject to certain constraints imposed by the 

multiple access channel between the relays and the destination; 

 It is shown that the achievable rate can be maximized by jointly optimizing the design of 

distributed compression at multiple relays and an achievable rate optimization problem is 

formulated upon this observation. Since this optimization problem is not in the standard 

concave form, we resort to its Lagrangian dual and prove that the duality gap between the 

primal and the dual problems is zero. Hence, a solution of the dual problem is also a 

solution of the primal problem. An iterative algorithm is then devised to search for the 

solution of the dual problem; 

 The analysis is further extended to a hybrid scheme, where the relays can dynamically 

switch between DF and CF depending on their decoding status. This hybrid scheme is more 

flexible and its achievable rate is derived and optimized. The information-theoretic analysis 

of such scheme has been conducted in [20] and [24], where in the latter work a unified 
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relay framework employing nested blocks combined with backward decoding is 

investigated. Different from these works, the contribution of this paper is focused on the 

optimization of distributed compression for those relays employing CF.  

The rest of the paper is organized as follows: In the next section, the system model is presented 

and the achievable rate is derived. The optimal design of distributed compression to maximize the 

achievable rate is given in Section III. The analysis is further extended to the hybrid CF/DF case 

in Section IV. Simulation results are presented from both spectrum and energy efficiency 

perspectives in Section V. The final section concludes the paper.  

In this paper, we use capital letters, e.g., X, for random variables and lower case letters, e.g., x, 

to represent the realization of the variables. Vectors are denoted by bold letters, e.g., X, and a 

superscript, e.g., X
n
, represents a vector with n elements (X1,…,Xn). Inequalities of vectors are 

element-wise, i.e., X>Y means Xi>Yi, ∀i. Calligraphic letters are used to denote sets, e.g., 

≡{1,…,L}, and the cardinality of a set  is ||.  is a subset of  and has a complementary set 

C
 where ∪C

= and ∩C
=∅. A set denoted as \i stands for a subset of , where the ith 

element is removed, and x denotes a set {x1,…,xi,…,x||}, ∀i∈. Mutual information and entropy 

are denoted as I (∙) and H (∙), respectively. All the logarithms are in base 2 and E{∙} denotes 

expectation. 

II SYSTEM MODEL 

Consider the multi-relay channel with L relays in Fig 1, where hsi and hid denote the channel 

between the source and the ith relay and the channel between the ith relay and the destination, 

respectively, and hsd stands for the source-destination channel. These channels are assumed to be 

quasi-static Rayleigh fading channels, i.e., they keep constant within one frame and change from 

frame to frame. The global channel state information (CSI) is assumed to be available at the 

destination. In a general multi-relay cooperative network, the relays can transmit and receive at 

the same time so that each relay will hear from the other relays. However, in this work, half-
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duplex mode with duplex ratio α is assumed, where the relays either transmit or receive at one 

time, thus they do not hear from each other. The duration of one complete frame is Tf, which is 

divided into two phases. During the first phase, the source broadcasts to the relays and the 

destination. On the contrary, the source is silent and all the relays transmit simultaneously to the 

destination in phase 2. It should be noted that the source can also transmit during phase 2. In such 

a case, a successive cancellation method should be used at the destination to retrieve the whole 

source message. In this paper, we assume that the source is silent during phase 2 for simplicity.  

 

Figure. 1 Muti-Relay System 

    A message w is encoded and transmitted to the destination. We define a codebook Xs
αn

 with αn 

elements independent and identically distributed (i.i.d.) according to circularly symmetric 

complex Gaussian (CSCG) distribution with power Ps and zero mean. During phase 1, the source 

broadcasts Xs
αn

 and the destination and relays receive, respectively, 

       
     

1
,
  , and 1

,

d sd s d

ri si s i

y j h x j n j
i j n

y j h x j n j


 
  

 
,    (1) 

where nd and ni are additive noises at the destination and the ith relay, respectively, following 

CSCG distribution with zero mean and variance 
2

d
  and 

2

i
 , respectively, and the superscript 

denotes phase. These noises are independent from each other and we assume that 
2 2

r i
  , ∀i∈. 

At the end of phase 1, the ith relay performs Wyner-Ziv coding and compresses the received 

Source 

Relay 1 

Relay 2 

Relay L-1 

Relay L 

Destination 

Phase 1 Phase 2 

hs1 

hs2 

hsL-1 

hsL 

h1d 

h2d 

hL-1d 

hLd 

hsd 
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signal into a bin index vi [18]-[19]. A codeword Xi
 (1-α)n

 is then defined for vi at the ith relay with 

(1-αn) i.i.d. elements following CSCG distribution with power Pr and zero mean. During the 

relay-transmit phase, the ith relay transmits Xi
 (1-α)n

 and the received signal at the destination is 

given as 

       2
,  

d id i d
i

y j h x j n j n j n


    .     (2) 

    At the destination, the compression indices are obtained first and then with the help of the side 

information, i.e.,
 1

d
y , the relays' observations are reconstructed by exploiting the signal 

correlation and combined with 
 1

d
y  to decode the message w.  

    The achievable rate of the multi-relay CF cooperative network is given by the following 

theorem. 

    Theorem 1: For the multi-relay cooperative network using Wyner-Ziv compression, the 

achievable rate is 

  1ˆ; ,
CF s r d

R I X Y Y  ,     (3) 

subject to constraints 

       1 2ˆ ˆ; | , 1 ; |
r r C d r d Cr r

I Y Y Y Y I X Y X   ,∀ ⊆,  

where ˆ
r

Y  is a set of auxiliary random variables and can be interpreted as the estimated 

observations of the relays.   

    Proof: The theorem can be proved by extending [20, theorem 3] from full-duplex to half-

duplex. The nonsingle letter bound on the rate RCF is given as 

      
1

ˆ; ,
n

CF s r d

j

nR I X j Y j Y j


  ,    (4) 

where  

               
1 1

ˆ ˆ; | , ; |
n n

r r C d r d Cr r
j j

I Y j Y j Y j Y j I X j Y j X j
 

  ,∀⊆.  

Xr and Yr denote the transmitted and received signals of all relays that belong to  and ˆ
riY  is an 

auxiliary random variable and can be interpreted as the estimated relay observation Yri. During 

the first phase, all relays are silent so that Xri[j]=0. On the other hand, in phase 2 the source is 
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silent and the relays only transmit so that Xs[j], Yri[j] and  ˆ
ri jY  are 0. Given that the channel is 

memoryless, (4) can be rewritten as, ignoring the index j, 

  1ˆ; ,
CF s r d

nR nI X Y Y ,      (5) 

subject to 

       1 2ˆ ˆ; | , 1 ; |
r r C d r d Cr r

nI Y Y Y Y nI X Y X   ,∀ ⊆.■ 

From the constraint equations of (5), it should be noted that not only the correlation between 

the relays' observations and the source information 
 1

d
Y  but also the correlation between the 

relays' observations themselves should be exploited. This is reflected by the fact that the mutual 

information on the left side of the constraint equations is conditioned on both 
 1

d
Y  and ˆ

Cr
Y , i.e., 

the reconstructed observations of other relays.  

With CSCG distributed codebooks, using Theorem 1 yields the following results. 

Proposition 1: With CSCG distributed codebooks, the multi-relay cooperative network using 

Wyner-Ziv compression achieves the rate up to  

0

2 2 2
log 1 s i s

CF
i

d r wi

P P
R

 


  

 
   

 
 ,     (6) 

subject to multiple constraints 

 2

2

1
log 1

id r
i

w

d

P

f





 



 
   

 
 


, ∀⊆, where 

       

     

2 2 2 2 2 2 2 2

0
,

2 2 2 2 2 2

0

,

log log

log

w s d r wi i s d r wk wi
ii k k i i

s d r wi i s d r wk
CC Cii k k i

f P P

P P

         

       

   

  

    
         

   

  
       

  

  

 

. 

Here 
2

wi
  is the variance of the compression noise at the ith relay, 

2

w
  is a set consisting of 

2

wi
 , 

∀ i ∈ , and γ0=|hsd|
2
, γi=|hsi|

2
 and γid=|hid|

2
.  
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    Proof: See Appendix A for the proof. ■ 

III. DISTRIBUTED COMPRESSION OPTIMIZATION 

    As shown in (6), the achievable rate RCF depends on the variances of the compression noise 

and thus the optimal distributed compression should optimize 2

wi
  jointly to maximize RCF 

subject to the identified constraint functions. The number of constraint functions, denoted as c, 

depends on the number of relays and for L relays, is given as 

,L i
i i

L
c c

i 

 
  

 
  .      (7) 

It is worth noting that in addition to the compression noise, eq. (6) should also be maximized 

with respect to the duplex ratio α. However, it is very difficult to optimize α and 2

w
  at the same 

time. Hence we maximize the achievable rate with a given α first and then optimize α 

numerically. The optimization problem can be formulated as, with fixed α, 

 

 

2

2 0

2 2 2

2 2 ,  1

maximize       log 1

subject to      ,  0,  

w

s i s
w

i r wid

wiwl l
l L

P P

f C i



 


  

 



 
  
 

 

   


  


,  ∀l  (8) 

where 

2

1
log 1 ,   ,  and ,  1

id r
l l li

l

d

P

C l l L




 


 
        

 
 
 


. 

For each l, there are cL,l different l, each corresponding to one constraint function. Since the 

maximization objective function is not in the standard concave form, we resort to its dual 

problem by formulating its Lagrangian dual as 

      2 2 2, c cT c c

w w w
L     λ λ C f ,     (9) 

with 
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   

            

1 1 1
1 1, ,

2 2 2 2 2 2

1 1 1
1 ,

,..., ,  ,..., ,  ,..., ,  ,..., ,

,..., , ,..., ,

T T
c c

L l l l L l l
c cL l L l

T
c

w w w w l w l w
cL l

C C

f f

 

     

   
      

   

 
   

 

λ λ λ λ C C C C

f f f f

 

where , and l l

j j
l   for 1≤j≤cL,l, 1≤l≤L. The dual function is then defined as a 

maximization function of (9) 

   2

2
max , c

w

w

L


 λ λ .     (10) 

    The dual problem takes the following form: 

 minimize    

subject to   

c

c

c c





λ

λ

λ 0
.      (11) 

    The dual objective function φ(λ
c
) is a convex function regardless of the concavity of the primal 

function  2

w
  [25]. If we can prove that the duality gap between the primal problem (8) and 

the dual problem (11) is zero, we can solve the primal problem by resorting to the dual problem 

because they have the same solution. 

    Theorem 2: The duality gap of the primal problem (8) and dual problem (11) is zero. 

Proof: The theorem is proved in Appendix B. ■ 

With Theorem 2, the primal problem can be solved by searching for the solution of the dual 

problem. At first, we need to find the optimal 2

w
  to maximize (9). Due to its high complexity, it 

is difficult to obtain a closed-form solution. A block-coordinate descent optimization algorithm is 

applied, where the objective function is optimized with respect to 
2

wi
  only while keeping other 

2

/w i
  unchanged [26]. This iterative optimization algorithm is conducted with respect to 

2

wi
  from 

i=1 to i=L successively in one iteration and the same procedure is repeated until 
2

w
  converges.  



10 
 

We define a set  as  1 1

1 1 1,
,..., ,..., ,..., ,...,l l L

L cL l
, where each element is a subset of . Then 

a subset of  is defined as i whose elements are those subsets containing i. It can be easily 

derived from (7) that  

|
i
|=(c+1)/2, |

i

C
|=(c-1)/2. 

It is proved in Appendix C that the maximization in (10) with respect to 2

wi
  only is equivalent 

to maximizing the following function: 

         2 2 2 2

2 0

ˆ max 1 log 1 log 1 log log 1c

wi i l wi l wi wiiij jl Cwi ij

A B


       





    
            

    
λ

,(12) 

where Ai and 
l ij

B  are given in Appendix C and  

,
2 2 2

1

/ , ,
cL l

wi wi r l li
j jll j

ij

      


  

    . 

Maximizing (12) can be solved by resorting to its derivatives in the following proposition.   

    Proposition 2: The optimal 2 *

wi
  is chosen from a set 

sub
 containing all the positive roots of a 

(c+1)/2 degree polynomial  2

,
,c

w i
q λ  given in Appendix D, expressed as  

 2 * 2

2 *

,arg max
wi wi

c

subwi

 


 λ      (13) 

where  2,c

wi
 λ  is defined in Appendix D.  

    Proof: See Appendix D for proof. ■ 

    For L=2, the closed-form optimal *2

wi
  can be derived and is given in Appendix D.  

    Once 2 *

w
  is obtained, the dual minimization problem (11) can be solved by successively 

optimizing elements of λ
c
. However, the range of λ

c
 is too large to be feasible. The following 

proposition defines the feasible searching range of λ
c
 as 0

c
≤λ

c
<1

c
. 
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    Proposition 3: If λ
c
≥1

c
,  ˆ 0c λ  and its maximum is achieved with 2

wi
  approaching +∞, 

i.e., the maximum of  ˆ c λ  is achieved with finite 
2

wi  only when λ
c
<1

c
. 

    Proof: See Appendix E for proof. ■ 

    Due to the convexity of φ(λ
c
), the subgradient method can be used for solving minimization 

problem (11) [25]. The searching direction of 
l
j

  is given as 

 
 

 2 * 2 *

c

l w l l w
j j j

l
j

g C f


 



  



λ
.    (14) 

The searching criterion is: if  2 *

l w
j

g  ≤0, increase 
l
j

 ; otherwise decrease 
l
j

 . The overall 

algorithm is given as 

Step 1: Initialize λ
c
min= 0

c
 and λ

c
max= 1

c
; 

Step 2: Let λ
c
=(λ

c
min+λ

c
max)/2; 

Step 3: Let t=1, initialize
1
  2 t

wi
 =+∞ from i=1 to L; 

Step 4: From i=1 to L, update  12 t

wi


  based on (13); 

Step 5: If 
   12 2t t

wi wi
i


  





  ,  12 * 2 t

w w
 


  and go to the next step; otherwise, 

t=t+1 and go to Step 4.  

Step 6: For 1≤j≤c, if  2 *

j w
g  ≤0, λj,min=λj; otherwise λj,max=λj; 

Step 7: If 
,max ,min

1

c

j j
j


  



  , λ
c
 converges to (λ

c
min+λ

c
max)/2 and the algorithm is 

finished; otherwise, go back to Step 2. 

IV. THE HYBRID CF/DF SCHEME 

In the previous section, we study the solution where each relay compresses its own observation 

independently using Wyner-Ziv coding. However, some of the relays might be able to decode the 

                                                           
1
 Ideally, the initial value of 

2

wi to start the iteration should be +∞. Practically we choose a large enough value 10
10

 

as the initial value.  εσ, ελ and ε are very small values. 
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message successfully and help the final decoding at the destination by re-encoding and 

forwarding the message. By allowing the relays to employ DF more flexibility can be provided. 

At the destination, the compression indices from CF relays are decoded first and then cancelled 

out from the received signal. The observations of the relays are reconstructed and then coherently 

combined with the residue signal to jointly decode the message from the source. In this section, 

we will consider this more flexible hybrid scheme, where each relay chooses DF or distributed 

compression depending on its own decoding status, i.e., if the ith relay successfully decodes the 

message, it applies DF; otherwise, CF is employed.  

If we define a subset of  as , and assume that the ith relay conducts DF as long as i∈. The 

achievable rate of such a case is given by the following theorem. 

Theorem 3: For a multi-relay cooperative network with L relays, if a subset of relays, denoted 

as , employs DF and the rest of the relays perform distributed compression, the achievable rate 

is up to 

           1 2ˆmin min ; , ; , 1 ; |
CDF s ri s C d r d C

r ri

R I X Y I X Y Y I X Y X  


   ,   (15) 

subject to 

       1 2ˆ ˆ; | , 1 ; |
r r C d r d Cr r

I Y Y Y Y I X Y X   , ∀ ⊆C
,  

where ∪C
=C

. 

    Proof: Same as Theorem 1, this theorem is a straightforward extension of [20, Theorem 4]. The 

nonsingle letter bound is 

                 
1

ˆmin min ; , , ; , |
n

CDF s ri s r C d C
r ri

j

nR I X j Y j I X j X j Y j Y j X j




 ,  (16) 

subject to 

               
1 1

ˆ ˆ; | , ; |
n n

r r C d r d Cr r
j j

I Y j Y j Y j Y j I X j Y j X j
 

  , ∀ ⊆C
.  

Due to the half duplex operation, we have 
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           1 2ˆmin min ; , ; , 1 ; |
CDF s ri s C d r d Cr ri

nR nI X Y nI X Y Y nI X Y X  


   , (17) 

subject to 

       1 2ˆ ˆ; | , 1 ; |
r r C d r d Cr r

nI Y Y Y Y nI X Y X   ,∀ ⊆C
. ■ 

    When decoding the compression indices, the messages from the relays belonging to subset 

are treated as noise. With CSCG distributed codebooks, it is proved in Appendix A that 

 0

_ 2 2 2 2 2
min min log 1 , log 1 1 log 1i s s i s id r

CDF
i

C iir d r wi d

P P P P
R

   
  

    


          
             

         
 

(18) 

subject to constraints 

 2

2

1
log 1

id r
i

Cw
id r d

i

P

f
P





  





 
   

  
 




,∀ ⊆C

,  

where 

       

     

2 2 2 2 2 2 2 2

0

,

2 2 2 2 2 2

0

,

log log

log

C s d r wi i s d r wk wiw
CC C iii k k i

s d r wi i s d r wk
CC Cii k k i

f P P

P P

         

       

  

  

    
              

  
       

  

  

 

. 

The DF subset  is not static but dynamically depends on the decoding status of each 

individual relay. The dynamic behaviour of set  is defined in the way that the relays that could 

decode the source message are included in  and the relays themselves decide if they are part of 

 or not. The achievable rate of the dynamic hybrid CF/DF scheme should be maximized with 

respect to the DF subset as 

 _
max

CDF CDF
R R      (19) 
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subject to the same constraint in (18). In (17), the CF part   1ˆ; ,
s C d

r

I X Y Y  can still be 

maximized with optimized distributed compression and the same optimization algorithm can be 

used for the hybrid CF/DF scheme.  

VI NUMERICAL RESULTS 

In this section, we evaluate the performance of the proposed non-hybrid CF and hybrid CF/DF 

schemes and compare their performance against the existing ones. In addition to the spectrum 

efficiency analysis, energy efficiency results based on practical power models are also presented 

to provide insights into optimal relay operation & deployment in realistic communication 

networks. Unless mentioned, the duplex ratio is optimized numerically. 

A. Spectrum Efficiency Analysis 

Fig 2 shows the outage probability for SNR setting E{Psγ0/
2

d }=E{Psγi/
2

r }=0dB and E{Prγid/

2

d }=30dB with the duplex ratio α=0.9. It is shown that at any target rate, the outage probability 

of different approaches follow the same order: hybrid CF/DF < CF 3 < CF 1 < direct transmission, 

which means that CF outperforms direct transmission and the performance can be further 

improved by the hybrid CF/DF scheme. However, the gain diminishes as the target rate increases. 

Fig. 3 plots the rates of the following forwarding schemes at peak values (outage probability = 

0.95) for 3 relays: 

 Jointly optimized CF: the received signals are independently compressed at the relays 

but the compression is jointly optimized using the proposed iterative algorithm; 

 Quantization and forward (QF) [27]: the relays' receptions are quantized only before 

being forwarded and no signal correlation is exploited; 

 Independent CF: the compression at each relay is optimized independently; 

 Upper limit: the upper bound when the variances of the compression noise approach 

zero in (6). 
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              Figure 2 Outage probability                                             Figure 3 Rates of CF and QF 

 
                  Figure 4 Rates of DF, CF and Hybrid CF/DF            Figure 5 Rates with different number of relays 

We notice that all schemes are able to approach the upper limit when the relay-destination 

links become very strong. The independent compression shows around 10dB gain against QF and 

this gain is more significant when the proposed joint optimization algorithm is employed, e.g., at 

a given rate 2.6bit/s/Hz, more than 40dB additional gain is achieved.  

Fig. 4 compares the rates of different forwarding schemes with SNR setting E{Psγ0/
2

d } 

=E{Psγi/
2

r }=0dB. The DF scheme is selective DF, where the relay only re-encodes and 

forwards the received message when the message is successfully decoded; otherwise, it remains 

silent. We notice that for selective DF, decoding at the relays tends to be erroneous at the low 

SNR region. Thus, in most of the cases, the relays keep silent during phase 2. If we let α 
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approach 1, the achievable rate of selective DF can approach direct transmission. For CF scheme, 

we can also let α approach 1 thus the compression noises approach infinity and the achievable 

rate of CF can approach direct transmission as well at the low SNR region. For hybrid CF/DF, at 

the low SNR region, the relays cannot decode the source message and they employ CF in most of 

the cases. Similarly, if we let α approach 1, the achievable rate of hybrid CF/DF will approach 

direct transmission. In short, at the low SNR region, all schemes including selective DF, pure CF 

and hybrid CF/DF approach the performance of direct transmission. However, when the relay-

destination links are of relatively good quality, the rate of DF saturates and the gains of CF and 

hybrid CF/DF become more remarkable.  

The gap between the hybrid scheme and the non-hybrid CF scheme becomes larger initially 

but eventually diminishes because CF is always the best choice with very strong relay-destination 

links. Fig. 5 plots the rates with different number of relays for SNR setting E{Psγ0/
2

d } =E{Psγi/

2

r }=0dB and E{Prγid/
2

d }=40dB. From 1 to 3 relays, the rate is improved by 11% and 15% for 

CF and hybrid CF/DF, respectively, but from 3 to 5 relays, the improvement is only 4% for both 

schemes. It implies that with growing of the cooperative network, the gain of adding new relays 

becomes only marginal.  

B. Energy Efficiency Analysis  

    Energy efficiency has become more and more important to support economic and sustainable 

future cellular networks. The energy efficiency analysis of relay systems has been investigated in 

[28]-[34]. In this paper, energy efficiency is evaluated in terms of consumed energy per 

transmitted bit. We consider a cellular network, assuming hexagon cells with radius rc. The relays 

are assumed to be deployed at the cell edge. The base station (BS) to relay and user equipment 

(UE) distances are assumed to be 0.95 rc and 0.99 rc, respectively. Each cell consists of 3 sectors 

operating on orthogonal frequency bands. Hence, the interference is only from neighbouring cells. 

The mean antenna gains of the transmit and receive antennas are assumed to be 14dB and 0dB 

and the pathloss model is given as 
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                 Figure 6 Energy efficiency (Joule/bit)                Figure 7 Energy efficiency with different number of relays 

PL(d) =15.3+37.6*log10(d), 

where d denotes distance [35]. The thermal noise power density is N0=-171dBm/Hz and the 

bandwidth B is assumed to be 10MHz.  

    The total energy consumption is composed of not only the transmission power but also the 

circuitry energy consumption of all involved nodes. During phase 1, the BS broadcasts and the 

consumed energy can be expressed as E
(1)

=αTf(Ps+Ps,tc+LPr,rc+Pd,rc), where Ps,tc is the circuitry 

power consumption of the BS while transmitting, Pr,rc and Pd,rc are the receiving circuitry power 

consumption of the relays and the UE, respectively. In the second phase, the relays transmit to the 

UE simultaneously and the BS is switched to sleep mode. The consumed energy is E
(2)

=(1-

α)Tf(LPr+LPr,tc+Pd,rc+Ps,sm), where Pr,tc is the circuitry power consumption of a transmitting relay 

and Ps,sm is the sleep mode power consumption of the BS. The overall energy efficiency in terms 

of Joule/bit can be expressed as E=(E
(1)

+E
(2)

)/BRTf. Based on the well defined power models of 

BS, relay and UE in [36]-[42], the power consumption values can be given as: Ps=19.95W, Ps,tc 

=204W, Pr=5.01W, Pr,tc =23.25W, Pr,tc =14.25W, Pd,tc =1.80W, and Ps,sm =75W. 

    Fig 6 illustrates energy efficiency in terms of Joule/bit for different schemes. We first notice 

that the CF scheme has less energy consumption per bit than the DF scheme when the relays and 

the UE are at the cell edge and the hybrid scheme always outperforms non-hybrid ones due to its 
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capability of adapting to the channel changes. We also notice that the energy efficiency 

improvement of adding more relays becomes more remarkable with increased cell radius rc. Fig. 

7 depicts energy efficiency of different number of relays for urban deployment (cell size 

rc=1000m) and rural deployment (cell size rc=20000m), respectively. Since the achieved capacity 

gain of adding more relays diminishes but the extra energy consumption of additional relays is 

almost constant, at certain point introducing more relays to the cooperative network will only 

cause extra energy expenditure with very small rate improvement. Therefore energy efficiency of 

the cooperative network actually decreases. In other words, there should be an optimal number of 

relays to be deployed to achieve the best energy efficiency as shown in the figure. 

VI CONCLUSIONS 

    In this paper, we investigate the performance of a multi-relay cooperative network employing 

distributed compression. The proposed scheme employs Wyner-Ziv compression and it is shown 

that the application of such a compression scheme gives rise to a compression noise variance 

optimization problem. This problem is solved by resorting to its dual problem using an iterative 

optimizing algorithm. The analysis is further extended to a hybrid scheme where the relays can 

choose from DF and CF adaptively. The proposed scheme is shown to be able to greatly improve 

the efficiency of compression by exploiting the signal correlation. In addition, significant gains 

can be obtained from both spectrum and energy efficiency perspectives by applying distributed 

compression, and further improvement can be achieved by allowing the relays to employ 

different forwarding schemes adaptively based on their own decoding status.  

APPENDIX A 

    The mutual information in (3) can be expressed as 

        1 1 1ˆ ˆ ˆ; , , , |
s r d r d r d s

I X Y Y H Y Y H Y Y X  ,    (A1) 

        
       

1 1 1

1 1

ˆ ˆ ˆ ˆ ˆ ˆ; | , | , | , ,

ˆ ˆ ˆ, , |

r r C d r C d r r C dr r r

r d C d r rr

I Y Y Y Y H Y Y Y H Y Y Y Y

H Y Y H Y Y H Y Y

 

  

,   (A2) 
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        2 2 2
; | | |

r d C d C d rr r
I X Y X H Y X H Y X  ,    (A3) 

∀ ⊆. According to [7] and [18], we can choose the auxiliary random variable ˆ
riY  of the form 

ˆ
ri ri i

Y Y W  , where Wi is independent of Yri and Yd and follows CSCG distribution with variance 

2

wi
  and zero mean, referred to as "compression noise". Hence 

          
11 2 2 2 2 2 2

0
,

ˆ , log
L

r d s d r wi i s d r wk
ii k k i

H Y Y e P P        


  

   
       

   
  . (A4) 

          
11 2 2 2 2 2 2

0

,

ˆ , log
C

C d s d r wi i s d r wkr
CC Cii k k i

H Y Y e P P        


  

   
         

   
  , (A5) 

      
11 2 2 2ˆ , | log

L

r d s d r wi
i

H Y Y X e   




  
   

  
 ,                         (A6)  

        2ˆ | log
r r wi

i

H Y Y e 


 
  

 
 ,       (A7) 

  2 2| log
d C d id rr

i

H Y X e P  


  
   

  
 ,                                         (A8) 

    2 2| log
d r d

H Y X e  .                                               (A9) 

Insert equations of (A4) and (A6) to (A1), 

  1 0

2 2 2

ˆ; , log 1 s i s

s r d
i

d r wi

P P
I X Y Y

 

  

 
   

 
 ,                                (A10) 

Insert (A4), (A5) and (A7) into (A2),  2

w
f   is obtained. Insert (A8) and (A9) to (A3), 

  2

2
; | log 1

id r
i

r d Cr
d

P

I X Y X






 
  
 
 


.    (A11) 

Then Proposition 1 is proved. 

    For the hybrid CF/DF case, the mutual information expressions are 
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     
2

2
; | log i s r

s ri ri ri s

r

P
I X Y H Y H Y X

 



 
    

 
,                          (A12) 

        1 1 1ˆ ˆ ˆ; , , , |
s C d C d C d sr r r

I X Y Y H Y Y H Y Y X  ,    (A13) 

        2 2 2
; | | |

r d C d C d rr r
I X Y X H Y X H Y X  ,   (A14) 

          1 1 1ˆ ˆ ˆ ˆ ˆ; | , , , |
r r C d C d C d r rr r r

I Y Y Y Y H Y Y H Y Y H Y Y   ,   (A15) 

        2 2 2
; | | |

r d C d C d Cr r r
I X Y X H Y X H Y X  ,    (A16) 

∀ C . The entropy expressions are given as 

  2 2| log
d C id r id r dr

i i

H Y X e P P   
 

  
    

  
  ,                         (A17) 

  2 2| log
d C id r dr

i

H Y X e P  


  
   

  
 .                                    (A18) 

Inserting (A4)-(A9) and (A17)-(A18) to (A12)-(A16) gives (18).  

APPENDIX B 

Let CX
c
 and CY

c
 be vectors of constraints. Let RCF,X and RCF,Y be the optimal solutions to the 

primal problem with constraints CX
c
 and CY

c
. We assume that codebooks X,i and Y,i with 

coding rate RX,i and RY,i, respectively, are used in the link between the ith relay-destination link 

and satisfy the constraints. Assuming another case where 

 1c c c

Z X Y
v v  C C C ,      (B1) 

with 0≤v≤1 and considering the idea of time-sharing, we also assume a case Z that at the ith relay, 

codebook Z,i is constructed by using the first vn symbols of the first codebook X,i and the last 

(1-v)n symbols of the second code book Y,i. The rate of this new codebook is 
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RZ,i=vRX,i+(1-v)RY,i,      (B2) 

and the constraint (B1) is also satisfied for case Z. Clearly, with the new code book, the rate can 

be achieved up to  

RCF,Z=vRCF,X +(1-v)RCF,Y.    (B3) 

It is pointed out in [43], lemma 10.4.1] that time-sharing of compression cannot decrease the 

compression noise. Since the compression noises are at the denominators of (8), it also means 

that (8) cannot be increased by time-sharing of compression. Let R
*

CF,Z be the optimal solution to 

the primal problem with constraints CZ
c
, we have  

R*CF,Z ≥RCF,Z = vRCF,X + (1-v)RCF,Y.     (B4) 

In addition, if we increase the constraint C
c
, the distortion, i.e., compression noise should be 

decreased in nature. Hence eq. (8) can be increased. It leads to the conclusion that Φ(∙) is a non-

decreasing concave function with regard to the constraint C
c
. 

    Let us define an image set : 

      1 2 2 2

0 1 0
, ,..., : ,1  and  for 0c

c i i w w w
z z z z f i c z         , (B5) 

and a line in this (c+1)-dimension space: 

 ,1
L i i

z C i c    ,      (B6) 

as shown in figure B1, where c is assumed to be 2 to demonstrate the concept clearly.  

 

Figure B1 Image set  (c=2) 
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The primal problem is to find the point in the image set which maximizes z0 subject to zi≤Ci, 

1≤i≤c. Hence the intersection point of the image set and the line 
L
 is the optimal solution to 

the primal problem because of the proven concavity and non-decreasing properties of function 

Φ(∙), denoted as 

     * 2 * 2 * 2 *

1
, ,...,

w w c w
P f f      ,     (B7) 

where 2 *

w
  maximizes the primal problem. To evaluate the dual function, we have, with fixed λ

c
, 

    2 2

2

maximize ,   

subject to 0

cT c c

w w

w

 



  



λ C f
.   (B8) 

This is equivalent to 

 

 

0
0

0

maximize    ,    

subject to    ,...,

c

i i i
i

c

z C z

z z




 




.     (B9) 

    The objective function  0
0

c

i i i
i

z C z


   is a hyperplane with slope λ
c
 and the problem 

corresponds to determining the lowest plane with slope λ
c
 which intersects with the image set . 

Again, due to the concavity and non-decreasing properties, the optimal value can be obtained 

from the hyperplane tangent to the image set at point P. The intersection point of the 

hyperplane with line 
L

 is the optimal value of φ(λ
c
), denoted as P'. A randomly selected 

hyperplane might not be able to make the duality gap zero as shown in the left of figure B1. 

However, among all the hyperplanes tangent to the image set , if we choose λ
c
* such that 

hyperplane is tangent to the image set at point P=P'=P*, the duality gap is zero. 

APPENDIX C 

    The Lagrangian function can be expressed as 

       

 

,
1 12

1

, , ,
1

1 1 1

ˆ ˆ, 1 , , |

ˆ ˆ, |

cL l
c

w l r d r d s
jl j

c c cL l L l L l

l lC d l l l l lr r rj j j j j j jl j l j l j

L H Y Y H Y Y X

H Y Y H Y Y C

 

  

 

     

 
   
 

   
     

   



  

λ

.  (C1) 
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    If we fix 2

\w i
 , maximizing  2 , c

w
L  λ  is equivalent to maximizing 

       

     

,
2 2 2 2 2 2 2 2 2

0
1 ,, ,

,
2 2 2 2 2 2

0
1 ,
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log

cL l

l s d r wi i s d r wk l s d r wk
jl j l l ii k k i k k l

cL l

l s d r wi i s d r wk
j lClC lCj ii k k ijj j
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P P

            

        

       

   

    
         

    

  
      

 
 

   

  

  

,
2

1

2 2 2
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log

cL l
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j ll l j i j

d r wi

 

  

   

  
  

 
 

 

   .(C2) 

C

i
does not contain element i. Hence maximizing the third term of (C2) is equivalent to 

maximizing  2log
l wi
jl

ij

 


  with fixed 2

/w i
 . The first and second terms of (C2) can be re-

organized as (C3) and (C4), respectively. 

 

     

,
2 2 2

1

,
2 2 2 2 2 2

0
1 ,, , ,
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1 log

cL l

l r wi r i
jl j

cL l

l s d r wk l s d r wk
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   
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       

 
   

 

    
        

    



  

, (C3) 

     

2 2 2

2 2 2 2 2 2

0

,
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l r wi r l ij jl C
ij
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,  (C4)  

where 
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∀ ,  l C

j i
i  . The second terms of (C3) and (C4) do not contain 2

wi
  and thus can be ignored 

when maximizing with respect to 2

wi
 . We normalize (C2) with 2

r
  and insert (C3)-(C5) to (C2) 

to give (12). 

APPENDIX D 

    Since the logarithm function is a monotonically increasing function, maximizing (12) can be 

further simplified as maximizing 

 

 
 

 
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1 1
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λ

λ

,   (D1) 

subject to 2

wi
 >0, where 

   
 

 
1

2 2 2 2, 1 1
l
jc i

wi wi i wi l wiijl C
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 
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 
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    The derivative of (D1) is given as,  

       
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where 
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We rewrite (D2) as 
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where 
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Thus letting (D3) be 0 is equivalent to letting 
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Combine (D1) to (D3), (D4) can be given as 
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Clearly,  2,c

wiq λ  is a polynomial function of 2

wi  and the term with the highest degree is 

        
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Therefore, the actual highest degree of  2,c

wiq λ  is  1 1 / 2C

i
c    and  2,c

wiq λ  has (c+1)/2 

roots, denoted as a set ={ 2

1w ,…,  
2

1 /2w c



 }. However, not all members of root set  are viable 

solutions. Since 2

wi  >0, only positive roots should be considered. We define sub as a subset of  

including only positive elements.  

Considering a special case that 2

wi →+∞, we have 
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which means +∞ is also a local maximum. Therefore, a new set is defined as sub={sub,+ ∞}.  

    Note that the members of sub only guarantee that the first derivative of  2,c

wi
 λ  is zero at 

those points thus can be regarded as local maximum or minimum. In order to make sure that only 

maximum is found, the optimal 2 *wi  should be chosen as 

 2 2*

2

,argmax c

wi wi

subwi


  


 λ .    (D8) 

    If L=2,  2,c

wiq λ can be expressed as 
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where either i=1 and j=2 or i=2 and j=1, and 
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Thus  2,c

wiq λ is a two degree polynomial. Similar to (D3), let  

  
2

2

1, 2, 3, 0i wi i ia a a    .     (D10) 

The viable solutions are discussed in the following table. 

Table-D1 

a1,i a2,i a3,i Solutions to  2,c

wiq λ  

>0 X >0  2,c

wiq λ >0 and  2,c

wi λ  is monotonically increasing with 

the maximum value achieved at +∞.  

>0 >0 ≤0 Same as above. 

>0 <0 ≤0 (D10) has two roots: 
3, 2,i ia a   . Function  2,c

wiq λ

intersects with q-axial at point (0, a3,i), where a3,i≥0. In such a 

case, 
3, 2,i ia a    is only a local maximum. If 2

wi  >

3, 2,i ia a   ,  2,c

wiq λ >0 and  2,c

wi λ  is monotonically 

increasing to achieve another maximum at +∞. Hence we 

need to compare two local maximums to find the global 

maximum. 

<0 X X (D10) has two roots: 
3, 2,i ia a   . Function  2,c

wiq λ  
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intersects with q-axial at point (0, a3,i), where a3,i≥0. Only the 

larger solution 
3, 2, 0i ia a     and serves as a global 

maximum. 

=0 ≥0 X  2,c

wi λ  is monotonically increasing to achieve another 

maximum at +∞. 

=0 <0 X (D10) has one root: - a3,i / a2,i, where the global maximum is 

achieved. 

X means either positive or negative.  

  

APPENDIX E 

    In order to maximize the Lagrangian dual (11), we can maximize the following equation 
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where 0,  ,  ,  1l l

l j j
j

l j       . For a particular 
l
j

 we have 
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 . (E2) 

For ∀i∈ l

j
, if we maximize the right term with respect to 2

wi
  only, following the similar 

derivation as in Appendix C, it is given as 
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 

.   (E3) 

The first derivative of u(∙) is given as 

    

   

2 2
2
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2 2 2

1 1

1 1
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
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

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
  

.    (E4) 

If 
l
j

 ≥1, the numerator of (E4) is 

     2 2 2 2 21 1 1 1 1
l wi i i wi wi i i wi i wi
j

A A A A A               .   (E5) 
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Since 2 0
wi

   and Ai>0, it follows that 
 2

2
0

wi

wi

u 







, which means that u(∙) is a monotonically 

increasing function of 2

wi
  and its maximum is achieved when 2

wi
   and given as 
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Hence 

    
,

1 1

1
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Considering 

 
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C ii
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we can conclude that if 1
l
j

  ,  
2

ˆarg max c

wi

  λ .  
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