3,605 research outputs found

    Linux XIA: an interoperable meta network architecture to crowdsource the future Internet

    Full text link
    With the growing number of proposed clean-slate redesigns of the Internet, the need for a medium that enables all stakeholders to participate in the realization, evaluation, and selection of these designs is increasing. We believe that the missing catalyst is a meta network architecture that welcomes most, if not all, clean-state designs on a level playing field, lowers deployment barriers, and leaves the final evaluation to the broader community. This paper presents Linux XIA, a native implementation of XIA [12] in the Linux kernel, as a candidate. We first describe Linux XIA in terms of its architectural realizations and algorithmic contributions. We then demonstrate how to port several distinct and unrelated network architectures onto Linux XIA. Finally, we provide a hybrid evaluation of Linux XIA at three levels of abstraction in terms of its ability to: evolve and foster interoperation of new architectures, embed disparate architectures inside the implementation’s framework, and maintain a comparable forwarding performance to that of the legacy TCP/IP implementation. Given this evaluation, we substantiate a previously unsupported claim of XIA: that it readily supports and enables network evolution, collaboration, and interoperability—traits we view as central to the success of any future Internet architecture.This research was supported by the National Science Foundation under awards CNS-1040800, CNS-1345307 and CNS-1347525

    Container-based network function virtualization for software-defined networks

    Get PDF
    Today's enterprise networks almost ubiquitously deploy middlebox services to improve in-network security and performance. Although virtualization of middleboxes attracts a significant attention, studies show that such implementations are still proprietary and deployed in a static manner at the boundaries of organisations, hindering open innovation. In this paper, we present an open framework to create, deploy and manage virtual network functions (NF)s in OpenFlow-enabled networks. We exploit container-based NFs to achieve low performance overhead, fast deployment and high reusability missing from today's NFV deployments. Through an SDN northbound API, NFs can be instantiated, traffic can be steered through the desired policy chain and applications can raise notifications. We demonstrate the systems operation through the development of exemplar NFs from common Operating System utility binaries, and we show that container-based NFV improves function instantiation time by up to 68% over existing hypervisor-based alternatives, and scales to one hundred co-located NFs while incurring sub-millisecond latency

    OSHI - Open Source Hybrid IP/SDN networking (and its emulation on Mininet and on distributed SDN testbeds)

    Full text link
    The introduction of SDN in IP backbones requires the coexistence of regular IP forwarding and SDN based forwarding. The former is typically applied to best effort Internet traffic, the latter can be used for different types of advanced services (VPNs, Virtual Leased Lines, Traffic Engineering...). In this paper we first introduce the architecture and the services of an "hybrid" IP/SDN networking scenario. Then we describe the design and implementation of an Open Source Hybrid IP/SDN (OSHI) node. It combines Quagga for OSPF routing and Open vSwitch for OpenFlow based switching on Linux. The availability of tools for experimental validation and performance evaluation of SDN solutions is fundamental for the evolution of SDN. We provide a set of open source tools that allow to facilitate the design of hybrid IP/SDN experimental networks, their deployment on Mininet or on distributed SDN research testbeds and their test. Finally, using the provided tools, we evaluate key performance aspects of the proposed solutions. The OSHI development and test environment is available in a VirtualBox VM image that can be downloaded.Comment: Final version (Last updated August, 2014

    Demystifying container networking

    Get PDF
    A cluster of containerized workloads is a complex system where stacked layers of plugins and interfaces can quickly hide what’s actually going on under the hood. This can result in incorrect assumptions, security incidents, and other disasters. With a networking viewpoint, this paper dives into the Linux networking subsystem to demystify how container networks are built on Linux systems. This knowledge of "how" allows then to understand the different networking features of Kubernetes, Docker, or any other containerization solution developed in the future

    Virtualization to build large scale networks

    Get PDF
    Abstract. There is not much research concerning network virtualization, even though virtualization has been a hot topic for some time and networks keep growing. Physical routers can be expensive and laborious to setup and manage, not to mention immobile. Network virtualization can be utilized in many ways, such as reducing costs, increasing agility and increasing deployment speed. Virtual routers are easy to create, copy and move. This study will research into the subjects of networks, virtualization solutions and network virtualization. Furthermore, it will show how to build a virtual network consisting of hundreds of nodes, all performing network routing. In addition, the virtual network can be connected to physical routers in the real world to provide benefits, such as performance testing or large-scale deployment. All this will be achieved using only commodity hardware

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    The Design and Implementation of a PCIe-based LESS Label Switch

    Get PDF
    With the explosion of the Internet of Things, the number of smart, embedded devices has grown exponentially in the last decade, with growth projected at a commiserate rate. These devices create strain on the existing infrastructure of the Internet, creating challenges with scalability of routing tables and reliability of packet delivery. Various schemes based on Location-Based Forwarding and ID-based routing have been proposed to solve the aforementioned problems, but thus far, no solution has completely been achieved. This thesis seeks to improve current proposed LORIF routers by designing, implementing, and testing and a PCIe-based LESS switch to process unrouteable packets under the current LESS forwarding engine
    • …
    corecore