
Virtualization to Build Large-Scale Networks 
 

 

 

 

 

 

 

 

 

 

University of Oulu 

Faculty of Information Technology and 

Electrical Engineering / Information 

Processing Science 

Master’s Thesis 

Niko Takkinen 

29.4.2019 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/344906049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

Abstract 

There is not much research concerning network virtualization, even though 

virtualization has been a hot topic for some time and networks keep growing. Physical 

routers can be expensive and laborious to setup and manage, not to mention immobile. 

Network virtualization can be utilized in many ways, such as reducing costs, increasing 

agility and increasing deployment speed. Virtual routers are easy to create, copy and 

move. This study will research into the subjects of networks, virtualization solutions 

and network virtualization. Furthermore, it will show how to build a virtual network 

consisting of hundreds of nodes, all performing network routing. In addition, the virtual 

network can be connected to physical routers in the real world to provide benefits, such 

as performance testing or large-scale deployment. All this will be achieved using only 

commodity hardware. 
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Abbreviations 

OLSR = Optimized Link State Routing 

OSPF = Open Shortest Path First 

BGP = Border Gateway Protocol 

TCP = Transmission Control Protocol 

IP = Internet Protocol 

PC = Personal Computer 

HW = Hardware 

OS = Operating System 

VM = Virtual Machine 

NIC = Network Interface Card 

GUI = Graphical User Interface 
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1. Introduction 

Networks, fast deployment and versatility are important subjects in the present day’s 

rapid software development cycles and interconnection of things. Not everything can be 

done in real physical environments, such as building a network of hundreds of nodes, 

which would be very expensive and time consuming, not to mention hard to operate. 

Virtualization has been a hot topic for some time now as well (Wang, Iyer, Dutta, 

Rouskas & Baldine, 2013) and it can be utilized in problems such as creating hundreds 

of nodes in a network, as it can be more cost effective. Furthermore, virtualization can 

be used effectively in business environments to e.g. improve resource utilization, lower 

costs and increase business agility. Virtual environments are easier to setup, modify and 

replicate, and don’t necessarily need its own dedicated hardware, because of 

advancements in commodity PC’s (Personal Computers’) hardware. Virtualization has 

advantages, such as encapsulation, that helps in testing and development processes 

because a single physical server can host many virtualized development environments 

(Bănică, Rosca & Stefan, 2007; “Virtualization Overview”, n.d.). 

The goal of the study is to first research virtualization, virtualization solutions and 

networking and then build a virtual environment capable of simulating very large 

networks consisting of hundreds of nodes, all the while using only commodity 

hardware. To understand these concepts, this study will first look at how computer 

networks and routing function. The study then looks at virtualization solutions in order 

to understand how virtualized networks function.  

Computers can connect to each other by either wired or wireless media. A system of 

interconnected computers and computerized peripherals is called computer network. 

The devices in a computer network can also be called nodes (“Introduction to Computer 

Networks”, n.d.). Nodes then communicate and share data with each other using these 

networks. A node always selects one path when it has multiple paths to reach a 

destination. This selection process is termed as Routing and it’s done by routers or by 

means of software processes. There are a few different types of routing, mainly unicast, 

broadcast and multicast routing. (“Data Communication”, n.d.). However, computer 

networks need more than models and different types of routing. They need routing 

protocols. Routing protocols are rules or standards that govern communications when 

computers send data back and forth (Maltz, Xie, Zhan, Zhang, Hjálmtýsson & 

Greenberg, 2004; Blank, 2006).  

Virtualization is not a new concept, as it was first introduced in the 1960s (Bănică et al., 

2007; Egi, Greenhalgh, Handley, Hoerdt, Huici, Mathy & Papadimitriou, 2010), 

however only recently has the hardware (HW) of commodity PC’s become powerful 

enough to make it feasible to run more complex virtualization solutions on a single PC 

(Egi, Greenhalgh, Handley, Hoerdt, Huici & Mathy, 2008). Virtualization generally 

refers to the abstraction of fundamental computing resources (Wang, Iyer, Dutta, 

Rouskas & Baldine, 2013) and it enables running multiple operating systems or 

software environments on a single hardware. Three distinct approaches to virtualization 

are discussed in this paper: hosted approach, hypervisor approach and container 

approach. Containers are somewhat new approach, but their usefulness is proven by the 

fact that Google uses them extensively (“Containers at Google”, n.d.). 
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Network virtualization is a part of virtualization and it can be done by e.g., virtualizing 

whole routers or Network Interface Cards (NICs). Virtual router has the same properties 

as a physical router, i.e. it has routing table, routing protocols, management interface, 

and so on (Rahore, Hidell & Sjodin, 2012), except it’s possible to have multiple virtual 

routers running on the same hardware platform, sharing the available resources (Wang 

et al., 2013). The virtualization technology ensures resource isolation among virtual 

routers, i.e. one virtual router should not be able to see or access resources, such as the 

routing table, of other virtual routers (Rahore et al, 2012). Rahore et al. (2012) have 

shown that hardware assisted virtual routers can achieve better aggregate throughput 

than a non-virtualized router on a multi-core platform.  

There isn’t much knowledge in the research community in regard to building large-scale 

virtual networks and with that knowledge in mind, the goal of the study is focused into 

the following two research questions: 

RQ1: What feasible virtualization solutions are available for creating a large-scale 

virtual environment for network routing? 

RQ2: How to build a flexible virtual environment that can simulate hundreds of 

nodes in a network, using only commodity hardware?  

This study uses the Design Science Research (DSR) method by Hevner, March, Park 

and Ram (2004) and the research questions reflect this design science nature in the 

paper, because the study tries to provide information for the research community while 

also producing an artifact to answer the research questions. The production of an artifact 

is important because this study is done for a company, specializing in networks and 

secure communications, that wishes to have research and a prototype done in this area. 

Thus, the organization and the DSR method both bring some requirements for the 

artifact. The requirements and the DSR methodology are explained in Chapter 3. 

The main contribution of this study is to show how an artifact has been built to simulate 

very large networks with an environment that is scalable and flexible, using commodity 

hardware. Furthermore, the study researches these technologies to provide an overview 

of how they work and how the artifact works. Lastly, instructions on building and using 

the artifact is provided in appendix A. 

The structure of the study is as follows: next will be discussed prior research related to 

this topic. Then research methods are shortly discussed, after which the artifacts 

implementation is shown. After implementation is the evaluation, where the artifact is 

analysed and evaluated, in addition to evaluation the study. The findings and their 

implications are then discussed. Lastly a conclusion is drawn. Furthermore, as 

mentioned, the artifacts instructions are in appendix A. 
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2. Prior research 

This chapter is based on prior literature and it will discuss technologies needed to 

understand what is included in building virtual networks. It will start with the subjects 

of networking, network engineering and protocols to get the basic idea of what networks 

are and what they consist of. Then the subjects of virtualization, network virtualization 

and, lastly, network traffic simulation are presented and explained. 

2.1 Computer Networks 

As mentioned in the Introduction, a system of interconnected computers and 

computerized peripherals such as printers is called computer network. These devices in 

a computer network can also be called nodes, and the computer network can further be 

called communication network or more simply as a network. This interconnection 

among nodes facilitates information sharing among them, because the nodes can send 

and receive data generated by other nodes on the network. The links connecting the 

nodes are called Communication channels. (“Introduction to Computer Networks”, 

n.d.). There are five different commonly recognized types of communication networks: 

Local Area Network (LAN), Metropolitan Area Network (MAN), Wide Area Network 

(WAN), Wireless Network, and Inter Network (Internet) (“Introduction to Computer 

Networks”, n.d.; “Data Communication”, n.d.). All except Wireless Networks are 

discussed next. 

Local Area Network (LAN) 

LANs are composed of inexpensive networking and routing equipment. It mostly 

operates on private IP addresses and does not involve heavy routing. LAN works under 

its own local domain and is controlled centrally.  (“Data Communication”, n.d.). LAN is 

designed for small physical areas such as an office or a group of buildings. LANs are 

used widely as it is easy to design, with e.g. different topologies such as Star or Ring 

topology, and to troubleshoot. Personal computers and workstations are connected to 

each other through LANs.  LAN networks are also widely used to share resources like 

printers or shared hard-drives. (“Introduction to Computer Networks”, n.d.). 

Metropolitan Area Network (MAN) 

MAN was developed in the 1980s. It’s basically a bigger version of LAN and uses the 

similar technology as LAN. It’s designed to extend over an entire city. It can be means 

to connecting a number of LANs into a larger network or it can be a single cable. It is 

mainly held and operated by single private company, such as Internet Service Providers 

(ISPs), or a public company. (“Introduction to Computer Networks”, n.d.; “Data 

Communication”, n.d.). However, it should be noted that MANs are more complex to 

design and maintain (“Computer Network”, n.d.).  

Wide Area Network (WAN) 

WAN can be a private network or a public leased network the same way as MAN. 

WAN is used for a network that covers large distance such as the states of a country. It’s 
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not easy to design and maintain. Communication medium used by WAN are the public 

switched telephone network (PSTN) or Satellite links. WAN operates on low data rates. 

(“Introduction to Computer Networks”, n.d.; “Data Communication”, n.d.). 

Inter Network (Internet) 

Inter Network, or Internet, is a combination of two or more networks. Inter network can 

be formed by joining two or more individual networks by means of various devices such 

as routers, gateways and bridges.  (“Introduction to Computer Networks”, n.d.). The 

Internet is the largest network on this planet, and it connects all WANs and can even 

have connections to LANs. Internet uses TCP/IP (Transmission Control Protocol and 

Internet Protocol) protocol suite where IP is used as its addressing protocol. Internet 

enables users to share and access enormous amounts of information worldwide. (“Data 

Communication”, n.d.). 

2.1.1 Network Engineering 

Network engineering is the art of planning, implementing and overseeing a computer 

network that supports certain wanted services (Rouse, 2018). It’s a complicated task 

involving software, firmware, chip level engineering, hardware, and electric pulses. To 

ease this task, the whole networking concept is divided into multiple layers, each layer 

involving some task and being independent of all other layers. Each layer does only 

specific work, yet almost all networking tasks depend on all these layers.  (“Data 

Communication”, n.d.). 

Layers share data and they depend on each other only to take input and send output. In a 

layered communication system, one layer of a host deals with the task done by or to be 

done by its peer layer at the same level on the remote host. The task is either initiated by 

layer at the lowest level or at the top most level. If the task is initiated by the topmost 

layer, it is passed on to the layer below it for further processing. The lower layer does 

the same thing, it processes the task and passes on to lower layer. If the task is initiated 

by lowermost layer, then this is done in reverse. Every layer groups together all 

procedures, protocols, and methods which it requires to execute its piece of task. 

(Blank, 2006; “Data Communication”, n.d.).  

One of the most famous layered communication architectures is the ISO-OSI model, 

commonly known as OSI model. ISO stands for International organization of 

Standardization and OSI stands for Open System Interconnection. The ISO-OSI model 

is a seven-layer architecture, as can be seen in figure 1, defining seven layers or levels 

in a complete communication system (Blank, 2006; “Data Communication”, n.d.; 

“Introduction to Computer Networks”, n.d.). The layers are: (1) Physical Layer, (2) 

Datalink Layer, (3) Network Layer, (4) Transport Layer, (5) Session Layer, (6) 

Presentation Layer and (7) Application Layer. 
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Figure 1. ISO-OSI model. 

Layers 2, 3 and 4 are further explained in detail, starting from layer 2, the Data Link 

layer. 

Data Link Layer 

Data link layer hides the details of underlying hardware and represents itself to upper 

layer as the medium to communicate. Data link layer works between two hosts which 

are directly connected in some sense. Data link layer is responsible for converting data 

stream to signals bit by bit and to send that over the underlying hardware. At the 

receiving end, Data link layer picks up data from hardware which are in the form of 

electrical signals, assembles them in a recognizable frame format, and hands over to 

upper layer. An important part of Data Link Layer is to provide layer-2 hardware 

addressing mechanism. Hardware address is assumed to be unique on the link, as the 

addresses, i.e. Media Access Control (MAC) addresses, are encoded into hardware at 

the time of manufacturing. (Blank, 2006; “Data Communication”, n.d.; “Introduction to 

Computer Networks”, n.d.). 

Network Layer 

As stated earlier, layer 3 in the OSI model is called Network layer. It manages options 

pertaining to host and network addressing, managing sub-networks, and 

internetworking. Furthermore, it takes the responsibility for routing packets from source 

to destination within or outside a subnet. Two different subnets may have different 

addressing schemes or non-compatible addressing types. Same with protocols, two 
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different subnets may be operating on different protocols which are not compatible with 

each other. Network layer has the responsibility to route the packets from source to 

destination, mapping different addressing schemes and protocols. As such, devices 

which work on Network Layer mainly focus on routing. (Blank, 2006; “Data 

Communication”, n.d.; “Introduction to Computer Networks”, n.d.).  

Layer 3 network addressing, or IP addressing, is one of the major tasks of Network 

Layer. Network addresses are always logical i.e. these are software-based addresses 

which can be changed. A network address always points to a node or it can represent a 

whole network and it’s always configured on network interface card (NIC) and is 

generally mapped by system with the MAC address of the machine for Layer-2 

communication. IP addressing provides mechanism to differentiate between hosts and 

network. Because IP addresses are assigned in hierarchical manner, a host always 

resides under a specific network. A host who needs to communicate outside its subnet, 

needs to know the destination network address, where the packet or data is to be sent. 

For this, hosts in different subnets need a mechanism to locate each other. The task can 

be done by Domain Name Server (DNS). DNS is a server which provides Layer-3 

address of remote host mapped with its domain name. When a host acquires the Layer-3 

Address (IP Address) of the remote host, it forwards all its packet to its gateway. A 

gateway is a router equipped with all the information which leads to route packets to the 

destination host. (Blank, 2006; “Data Communication”, n.d.; “Introduction to Computer 

Networks”, n.d.). Network routing is talked more in the next chapter. 

Transport Layer 

Transport layer is the 4
th

 layer of the OSI model. All modules and procedures pertaining 

to transportation of data or data stream are categorized into this layer. It offers peer-to-

peer and end-to-end connection between two processes on remote hosts. The layer takes 

data from upper layer, i.e. Application layer, and then breaks it into smaller size 

segments, numbers each byte, and hands over to lower layer, i.e. Network layer, for 

delivery. While doing this, it ensures that data is received in the same sequence in which 

it was sent. A process on one host identifies its peer host on remote network by means 

of TSAPs (Transport Service Access Points), also known as Port numbers or as ports. 

Port numbers are well defined and a process which is trying to communicate with its 

peer knows this in advance. For example, when a DNS client wants to communicate 

with remote DNS server, it always requests on port number 53. Transport layer has two 

main protocols, Transmission Control Protocol (TPC) and User Datagram Protocol 

(UDP) (Blank, 2006; “Data Communication”, n.d.; “Introduction to Computer 

Networks”, n.d.), which will be explained further on. 

2.1.2 Network Routing 

When a device has multiple paths to reach a destination, it always selects one path by 

preferring it over others. This selection process is termed as Routing. Routing is done by 

special network devices called routers or it can be done by means of software processes. 

Routers take help of routing tables, which have an address of destination network and 

method to reach the network. A router is always configured with some default route. A 

default route tells the router where to forward a packet if there is no route found for a 

specific destination.  Routers upon receiving a forwarding request, forwards packet to 

its next hop (adjacent router) towards the destination. The next router on the path 

follows the same thing and eventually the data packet reaches its destination. (“Data 
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Communication”, n.d.). Network routing has many properties and functionalities from 

which some major ones are explained next. 

Routing Types 

There are a few different types of routing, mainly unicast, broadcast and multicast 

routing. As the name implies, unicast is the transmission from a single sender to a single 

recipient, e.g. point-to-point. Broadcast packets on the other hand by default are not 

forwarded by any routers, meaning routers must be configured to forward broadcasts by 

e.g. creating broadcast domains. There are a few ways to go about this. One way is for 

the router to create a data packet and then send it to each host one by one using unicast, 

creating multiple copies of a single data packet with different destination addresses. 

This consumes bandwidth and all the destination addresses must be known. Another 

way is to flood received broadcast packets out of all interfaces. This is easy for the 

router’s CPU (Central Processing Unit) but may cause duplicate packet problems. 

Multicast routing is a special case of broadcast routing, because in multicast routing the 

data is only sent to nodes which want to receive the packets, i.e. the router must know 

that there are nodes somewhere in the network which wish to receive the multicast data. 

(“Data Communication”, n.d.). 

Traffic Engineering 

To enable smooth operation of a network, traffic engineering is needed. Most large IP 

networks run interior gateway protocols (IGPs), such as Open Shortest Path First 

(OSPF), that select paths based on static link weights. These weights are typically 

configured by the network operators. Routers then use these protocols to exchange link 

weights and construct a complete view of the network topology inside an autonomous 

system (AS). Then each router computes shortest paths (where the length of a path is the 

sum of the weights on the links) and creates the routing table, discussed earlier, to allow 

forwarding of each IP packet to the next hop in its route (Fortz, Rexford & Thorup, 

2002).  

Tunnelling 

If there are two geographically separate networks, such as in Inter Networks (Internet), 

that want to communicate with each other, they may deploy a dedicated line between 

them or they can pass their data through intermediate networks. Tunnelling is a 

mechanism by which two or more networks communicate with each other by going 

through intermediate networking complexities. It requires configuration at both ends. 

When data enters from one end of Tunnel, it is tagged. This tagged data is then routed 

inside the intermediate or transit network to reach the other end of Tunnel. When data 

exists the Tunnel, its tag is removed and delivered to the other part of the network. Both 

ends seem as if they are directly connected and tagging makes data travel through transit 

network without any modifications. (“Data Communication”, n.d.). 

2.2 Routing Protocols 

As mentioned in the Introduction, computer networks need more than models and 

different types of routing. They need routing protocols. Protocols are rules or standards 

that govern communications when computers send data back and forth, and when 
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multiple protocols work together the group is collectively known as a protocol suite or 

protocol stack (Maltz et al., 2004; Blank, 2006), such as TCP/IP (Blank, 2006). Both the 

sender and receiver, or simply hosts, involved in data transfer must recognize and 

observe the same protocol, and when they begin the communication, they first must 

agree on what protocols to use. (Blank, 2006).  

Routing protocols provide the intelligence that takes in physical links and transforms 

them into a network that enables packets to travel from one host to another. By 

constructing a collective distributed routing state, routing protocols create a “network-

wide intelligence” that transforms a collection of individual links and routers into an IP 

network. A network’s routing design is embodied in the configuration of these 

protocols. Routing designs are used to establish basic reachability and to deal with the 

following large and complex objectives and constraints: (1) providing resiliency and 

predictable behaviour; (2) maintaining stable and efficient internal operations; (3) 

maintaining contractual or business relationships between different administrative 

domains; (4) coping with complex interactions between a wide set of protocols, which 

run concurrently and overlap in functionality (Maltz et al., 2004). 

Routing protocols are typically classified as either Interior Gateway Protocols (IGPs) 

used to exchange information inside a network (such as OSPF and OLSR) or an 

Exterior Gateway Protocol (EGP) used to exchange information between networks 

(such as BGP). Both IGPs and EGPs share the common goal of exchanging routing 

information between routers but differ in the features and performance they provide 

(Maltz et al., 2004).   

Each router can use multiple protocols simultaneously; moreover, multiple instances of 

the same protocol may exist on a single router. To maintain boundaries on how routing 

information is shared, each routing protocol runs as a separate process on the router and 

is identified by a process-id. Furthermore, each router has one or more interfaces and 

each interface has one or more IP addresses and subnets that identify the set of other IP 

addresses directly reachable from that interface. Through routing protocols, routes can 

be learned dynamically. While different protocols exchange different types of routing 

information to convey routes between adjacent processes, the result is the processes 

learning routes (Maltz et al., 2004). For example, OSPF and IS-IS (Intermediate System 

- Intermediate System) use link-state advertisements and BGP uses path-vector records 

(“Understanding BGP”, n.d.).  

2.2.1 Network Layer Protocols 

As hinted earlier, different layers in the OSI model have different protocols they use. 

This sub-chapter explores three different Network layer protocols, starting with Internet 

Protocol Version 4. 

Internet Protocol Version 4 (IPv4) 

IPv4 is the fourth version of the Internet Protocol and it’s a 32-bit addressing scheme 

used as TCP/IP host addressing mechanism, as mentioned earlier. The main goal of IP 

addressing is then to enable every host on the TCP/IP network to be uniquely 

identifiable. IPv4 provides hierarchical addressing scheme which enables it to divide the 

network into sub-networks, each with well-defined number of hosts. IPv4 also has well-

defined address spaces to be used as private addresses (not routable on Internet), and 
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public addresses (provided by ISPs and are routable on internet). (“Data 

Communication”, n.d). 

TCP/IP Protocol Suite 

TCP/IP is a protocol suite that uses TCP and IP protocols. It was born to replace the 

“language” hosts spoke in ARPAnet to enable networking. The “language” to be 

replaced was NCP (Network Control Program), which had too many limitations and 

was not robust enough for the growing super network of ARPAnet. First came TCP in 

1974 and later in 1978 it had evolved into a suite of protocols called Transmission 

Control Protocol/Internet Protocol, i.e. TCP/IP. In 1982 it was decided that TCP/IP 

would replace NCP, which it did in 1983. This allowed ARPAnet to continue growing 

and even though in 1990 ARPAnet ceased to exist, from the roots of ARPAnet, the 

Internet began to rise. Since then TCP/IP has continued to evolve to meet the changing 

requirements of the Internet. (Blank, 2006).  

Surprisingly, TCP/IP doesn’t use the OSI model because TCP/IP was developed before 

the OSI model was published. Instead it uses a similar reference model developed by 

the US Department of Defense (DoD). This model has only four layers, but they 

incorporate the same ideas as the OSI model. This as can be seen from figure 2, where 

the OSI model is pictured on the left side and the DoD model is pictured on the right 

side. The layers in the TCP/IP model are: 

1. Application Layer 

2. Transport Layer  

3. Internet Layer 

4. Network Interface Layer 

 

Figure 2. OSI model on the left and DoD model on the right. 

TCP/IP’s Application Layer incorporates the same topics as the OSI models 

Application, Presentation and Session layers combined. The Transport Layer has the 

same topics as the OSI models Transport layer. The Internet Layer has same topics as 

the OSI models Network layer. Lastly, the Network Interface Layer has the same topics 

as the OSI models Data-Link and Physical layers combined. 
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Worth of note is the Internet Layer of the TCP/IP (or DoD) model. The Internet layer 

contains several protocols that are responsible for addressing and routing of packets, 

such as IP, ARP (Address Resolution Protocol), ICMP (Internet Control Message 

Protocol), and IGMP (Internet Group Message Protocol). (Blank, 2006). 

TCP/IP works by IP using ARP to get the hardware address of the destination host. If 

ARP does not find the IP address in ARP cache, the ARP protocol initiates an ARP 

request. This request is broadcast on the local network. If the target host is local, IP 

needs to get the hardware address for the target. If the target host is remote, IP looks in 

its routing table for an explicit route to that network. Routing table is a table that 

contains the addresses indicating the best routes to other networks. If there is an explicit 

route, IP needs to get the hardware address of the gateway listed in the routing table. If 

there is no explicit route, IP needs to get the hardware address for the default gateway. 

The default gateway then determines whether the target IP address is on one of its other 

interfaces or whether the default gateway needs to forward the packet to another router. 

(Blank, 2006).  The process model of TCP/IP is presented in figure 3. Eventually the 

destination is found. 

 

Figure 3. TCP/IP working methodology by Blank (2006). 

Even today, it’s still the standard for a communications protocol on the Internet. It can 

be installed and used on virtually every platform. TCP/IP is hardware and software 

independent; it has failure recovery and can handle high error rates. It’s an efficient 

protocol with low overhead, it can add new networks to the internetwork without 

service disruption, and furthermore, it has routable data, i.e. a single and meaningful 

addressing scheme. (Blank, 2006). 

Optimized Link State Routing (OLSR) Protocol 

Optimized link state routing protocol (OLSR) is used for mobile wireless networks. The 

protocol is based on the link state algorithm and it’s proactive, i.e. table-driven. To 

explain proactive protocols, let’s first discuss reactive protocols. In reactive routing 

approach, a routing protocol does not take the initiative for finding a route to a 

destination until it’s required. The protocol attempts to discover routes only “on-
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demand” by flooding its query in the network. This reduces control traffic overhead at 

the cost of increased latency. Proactive protocols instead are based on periodic 

exchange of control messages, causing control traffic overhead. Some messages are sent 

locally to enable a node to know its local neighbourhood, and some messages are sent in 

the entire network which permits exchanging the knowledge of topology among all the 

nodes of the network. Proactive protocols thus immediately provide the required routes 

when needed, at the cost of bandwidth. (“Data Communication”, n.d.; Jacquet, 

Muhlethaler, Clausen, Laouiti, Qayyum & Viennot, 2001).  

OLSR is a link-state protocol and the idea of a pure link state protocol is to flood the 

entire network with information of links each node has with its neighbour nodes. OLSR 

is an optimization of this, because instead only a subset of neighbour links are 

broadcasted through chosen selected nodes, called multipoint relays. Not having all 

neighbour links in a control message decreases its size and not transmitting these 

control messages through every node in the network reduces the number of 

retransmissions. In more detail, this is done by each node in the network selecting a set 

of nodes in its neighbourhood, which retransmits its packets. Neighbours of node N 

which are not in node N’s multipoint relays (MPRs) set, read and process the packet but 

do not retransmit the broadcast packet received from node N. This requires each node to 

maintain a set of neighbours called MPR Selectors. The selection of MPRs happens in 

such a manner that the set covers all the nodes that are two hops away. (“Data 

Communication”, n.d.; Jacquet et al., 2001). 

OLSR keeps the routes for all the destinations in the network, meaning that it’s 

particularly useful for large and dense networks. The protocol is designed to work in a 

completely distributed manner and thus does not depend upon any central entity. The 

protocol doesn’t require a reliable transmission for its control messages: each node 

sends its control messages periodically and can therefore sustain a loss of some packets 

from time to time. It also doesn’t need an in-order delivery of its messages: each control 

message contains a sequence number of most recent information, therefore the re-

ordering at the receiving end cannot make the old information interpreted as the recent 

one. Furthermore, OLSR protocol does hop by hop routing, i.e., each node uses its most 

recent information to route a packet. Therefore, when a node is moving, its packets can 

be successfully delivered to it.  (“Data Communication”, n.d.; Jacquet et al., 2001). 

2.2.2 Transport Layer Protocols 

As mentioned earlier, the OSI models transport layer uses TCP and UDP protocols. 

Also mentioned earlier, TCP is one of the most important protocols of Internet 

Protocols suite. It’s used most widely for data transmission. The way TCP works is that 

the receiver must always send either positive or negative acknowledgement about the 

data packet to the sender, so that the sender always knows whether the packet has 

reached its destination or if it needs to be resent. TCP also ensures that the packets reach 

the end destination in the same order as they were sent. Furthermore, TCP provides 

error-checking, recovery mechanism, end-to-end communication, flow control, quality 

of service (QoS) and full duplex server, i.e. it can perform the roles of both receiver and 

sender. (Blank, 2006; “Data Communication”, n.d.). 

UDP on the other hand involves the minimum amount of communication mechanisms. 

In UDP, the receiver of packets does not generate acknowledgements of the received 

packets and in turn, the sender doesn’t wait for any acknowledgements. As such, UDP 

is said to be an unreliable protocol, yet it provides best effort delivery mechanism 
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thanks to IP services. Furthermore, UDP is faster and easier to process, causing it to be 

a suitable protocol for streaming applications such as VoIP (Voice over Internet 

Protocol). (Blank, 2006; “Data Communication”, n.d.). 

2.3 Virtualization 

Virtualization is not a new concept, as it was first introduced in the 1960s to allow 

partitioning of large mainframe hardwares (Bănică et al., 2007; Egi et al., 2010). 

However, only during the last decade has PC hardware become powerful enough to 

make running multiple virtual machines (VMs) on one inexpensive box a practical 

suggestion (Egi et al., 2008). 

Virtualization as a term broadly describes the separation of resources for services from 

the underlying physical delivery of those services. In other words, virtualization refers 

to the abstraction of fundamental computing resources, giving the users an illusion of 

sole ownership (Wang et al., 2013). Virtualization allows multiple operating systems 

(OSs) to share a single physical interface, to maximize the utilization of computer 

system resources, such as I/O devices (Dong, Yang, Li, Liao, Tian & Guan, 2012). With 

virtual memory it’s possible, for example, to give software access to more memory than 

what is physically installed, via background swapping of data to disk storage. Similarly, 

virtualization can be applied to other IT (Information Technology) infrastructure layers, 

such as networks and applications (Bănică et al., 2007; “Virtualization Overview”, n.d.). 

These different virtualization techniques or technologies can be gathered under a term 

of virtual infrastructure. Virtual infrastructure then provides a layer of abstraction 

between computing, storage and networking hardware, and the applications, delivering 

greater IT resource utilization and flexibility (Bănică et al., 2007; “Virtualization 

Overview”, n.d.). According to Soltesz, Pötzl, Fiuczynski, Bavier and Peterson (2007) 

VMs are mostly used in software development and testing, but they can be used as part 

of a software architecture or services as well (“Containers at Google”, n.d) as each VM 

has their own set of virtual hardware, such as RAM (Random-Access Memory) and 

CPU, which then run the operating system and applications on top of it (Bănică et al., 

2007; Dong et al., 2012). 

Virtualization brings some advantages. The virtual machines’ operating system sees a 

consistent, normalized set of hardware regardless of the actual physical hardware, which 

is isolated from other virtual machines and the host computer. This is known as 

isolation (Bănică et al., 2007). Another advantage is the encapsulation of virtual 

machines, which allows saving, copying and provisioning a virtual machine (Bănică et 

al., 2007; “Virtualization Overview”, n.d.). Further advantages include partitioning, 

which means that computing resources are treated as a uniform pool that can be 

allocated to virtual machines in a controlled manner (Bănică et al., 2007). This brings 

the ability to run multiple operating systems on a single physical system and share the 

underlying hardware resources. 

Some realizations of these advantages include the possibility for a single machine in a 

data center to support many different network servers. Isolation ensures that if a virtual 

server is compromised the damage is limited and the faulty server does not exhaust all 

OS resources. Another clear advantage is that unused resources from one server can be 

used by another. Furthermore, perhaps most importantly, different administrators can 

manage different servers on the same hardware without needing to trust each other, thus 

enabling many new business models. (Egi et. al., 2008). 
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There are two typical approaches, or architectures, to virtualization. Hosted approach 

and hypervisor approach (“Virtualization Overview”, n.d.). Recently a third approach, 

containers, has risen. These three approaches are discussed next. 

2.3.1 Hosted Approach 

Hosted approach simply put means that the virtualization is done on top of a standard 

operating system. In hosted approach, the virtualization layer does not have a direct 

access to the hardware resources, as it has to run on top of an existing OS. Hypervisor, 

for example, does have direct access to the hardware resources, causing it to be more 

efficient than hosted approach, enabling greater scalability, robustness and performance. 

(“Virtualization Overview”, n.d.). The hosted approach for virtualization can be seen 

from figure 4. 

 

Figure 4. Hosted approach for virtualization. 

Other VM architectures range from hardware virtualization up to full software 

virtualization, including hardware abstraction layer VMs (such as Xen), system call 

VMs (such as Solaris and VServer), hosted VMs (such as VMWare GSX), emulators 

(such as QEMU), high-level language VMs (such as Java), and application-level VMs 

(such as Apache virtual hosting) (Soltesz et al., 2007). 

2.3.2 Hypervisor Approach 

A hypervisor runs on top of the physical hardware, being the first layer of software 

installed on a clean x86/x64-based system, which is why hypervisor approach is often 

also referred as a “bare metal” approach. Hypervisor virtualizes hardware resources to 

be shared among multiple guest operating systems. Hypervisors incur performance 

penalties, yet it offers flexibility and isolation among virtual instances. (Rahore et al., 

2012). Processors today support virtualization by virtualization hardware assist 

enhancements. Intel has “Intel VT” while AMD has “AMD-V” (Egi et al., 2008). They 

enable robust virtualization of the CPU functionality, especially so with multiple cores 

in the processor (Soltesz et al., 2007). There are some well-known hypervisor 
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virtualization solutions, mainly KVM (Kernel-based Virtual Machine) and Xen, which 

are introduced next. 

KVM is one example of full virtualization solution for Linux on x86 HW with either 

Intel VT or AMD-V virtualization extension. KVM consists of a loadable kernel 

module and a processor specific module. Using KVM, one can run multiple virtual 

machines running unmodified Linux or Windows images, as is illustrated in figure 5. 

Each virtual machine has private virtualized hardware: a network card, disk, graphics 

adapter, etc. KVM is a virtualization module in the Linux kernel that allows the kernel 

to function as a hypervisor. It was merged into the Linux kernel mainline in kernel 

version 2.6.20, which was released on February 5, 2007. KVM has also been ported to 

other operating systems such as FreeBSD and illumos in the form of loadable kernel 

modules. (Main Page, 2016). 

KVM was originally designed for x86 processors and has since been ported to S/390,
 

PowerPC, IA-64, and ARM. It provides hardware-assisted virtualization for a wide 

variety of guest operating systems including Linux, BSD, Solaris, Windows, Haiku, 

ReactOS, Plan 9, AROS Research Operating System and OS X. In addition, Android 

2.2, GNU/Hurd
 
 (Debian K16), Minix 3.1.2a, Solaris 10 U3 and Darwin 8.0.1, together 

with other operating systems and some newer versions of these listed, are known to 

work with certain limitations. (Main Page, 2016). 

 

Figure 5. KVM Hypervisor approach to virtualization. 

Xen is another popular hypervisor. It allows running many instances of an operating 

system or different operating systems in parallel on a single machine, or host.  In Xen, 

the hypervisor is designed with multilevel defense protocols as its architecture insulates 

VMs from each other. 

When talking of hypervisor, para-virtualization must be mentioned. Para-virtualization 

is when operating system compatibility is traded off against performance for certain 

CPU-bound applications running on system without virtualization hardware assist. 

Paravirtualized OS’s can run on a hypervisor and the guest OS or application is “aware” 

that it is running within a virtualized environment and has been modified to exploit this 
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(Dong et al., 2013), offering performance benefits. However, such modified guest OS 

cannot be migrated back to run on physical HW. (“Virtualization Overview”, n.d.). Both 

KVM and Xen support para-virtualization. KVM provides paravirtualization support for 

Linux, OpenBSD, FreeBSD, NetBSD, Plan 9 and Windows guests, using VirtIO API. 

This includes a paravirtual Ethernet card, disk I/O controller, balloon device, and a 

VGA graphics interface using SPICE or VMware drivers. (Main Page, 2016). 

2.3.3 Container Approach 

In a container-based approach, operating system resources (e.g. files, system libraries, 

routing table) are virtualized to create multiple isolated execution environments on top 

of same operating system. Each execution environment, i.e. container, may contain its 

own set of processes, file system, (virtual) network interfaces, routing tables etc.  

Containers isolate software from its environment and ensure that it works uniformly 

despite differences, for instance, between development and staging (“What is a 

Container”, n.d.).  

There are two types of containers offered, either application containers or system 

containers. Docker offers application containers and they say that an application 

container is a standard unit of software that packages up code and all its dependencies, 

so that the application can run quickly and reliably from one computing environment to 

another (“What is a Container”, n.d.). Linux Containers offer system containers, which 

propose an environment as close as possible as the one you'd get from a VM but with 

significantly less overhead (“Linux Containers”, n.d.). This is because system containers 

don’t need virtualized HW or Linux kernel, as all containers use the same Linux kernel 

that the hosting OS uses. Everything at Google runs in containers, from Gmail to 

YouTube to Search (“Containers at Google”, n.d.), which speaks volumes. However, 

according to Xen and Rahore, Hidell and Sjodin (2012), while container-based 

virtualization is considered more efficient in terms of performance, containers lack 

flexibility and security. Opening one system container’s kernel affects all the other 

containers. Furthermore, because system containers share a common kernel, non-Linux 

operating systems, like Windows, are not supported (Main Page, 2016).  

A Docker container image is a lightweight, standalone, executable package of software 

that includes everything needed to run an application: code, runtime, system tools, 

system libraries and settings. Docker container technology was launched in 2013 as an 

open source Docker Engine. It leveraged existing computing concepts around containers 

and specifically in the Linux world, primitives known as cgroups and namespaces. 

Docker's technology is unique because it focuses on the requirements of developers and 

systems operators to separate application dependencies from infrastructure. Success in 

the Linux world drove a partnership with Microsoft that brought Docker containers and 

its functionality to Windows Server. (“What is a Container”, n.d.). Figure 6. illustrates 

how Docker works; there is a Docker platform on top if which application containers 

can be run, free from the underlying operating system. 

Linux Containers, on the other hand, is actually an umbrella project behind LXC, LXD 

and LXFS, which provide the functionality of system containers. The goal of Linux 

Containers is to offer a distro and vendor neutral environment for the development of 

Linux container technologies. Using LXC it’s possible to create and manage system or 

application containers. It’s a low-level set of tools, templates, libraries and language 

bindings and it’s very flexible. LXD is built on top of LXC, giving the user an improved 

user experience in managing system containers, by using a single command line tool. It 
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Figure 6. Docker container architecture. 

works well over a network in a transparent way. LXFS is a simple userspace solution 

for overcoming challenges relating to running systemd based containers as a regular 

unprivileged user while still allowing system inside the container to interact with 

cgroups. Specifically, it provides (1) a set of files which can be bind-mounted over their 

/proc originals to provide CGroup-aware values, and (2) a cgroupfs-like tree which is 

container aware. (“Linux Containers”, n.d.).  

System container provides a shared, virtualized OS image consisting of a root file 

system, a set of system libraries and executables. Each container can be booted, shut 

down, and rebooted just like a regular operating system. Resources such as disk space, 

CPU guarantees, memory, etc. are assigned to each container when it is created, yet 

often can be dynamically varied at run time. To applications and the user of a container-

based system, the container appears just like a separate host. (Soltesz et al., 2007). 

Figure 7 illustrates a situation of having multiple containers on a single Linux operating 

system. 

  

Figure 7. System Container approach. 
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The main difference between application and system containers is that system 

containers contain virtually a fully capable operating system, whereas application 

containers contain only everything needed for running that certain application. 

2.3.4 Containers and Virtual Machines 

Containers and virtual machines have similar resource isolation and allocation benefits, 

but function differently because containers virtualize only the operating system or 

environment instead of also virtualizing the hardware. Containers take up less space 

than VMs (container images are typically tens of MBs in size), can handle more 

applications and require less hardware and operating systems. (“Linux Containers”, 

n.d.). 

Because hypervisors aim to provide full isolation between virtual machines, there’s no 

support for sharing between VM’s. They are often deployed to let a single machine host 

multiple, unrelated applications. Hypervisors strongly prefer full isolation over sharing. 

However, considering that having multiple VMs running the same kernel and similar 

operating systems, the degree of isolation comes at the cost of efficiency relative to 

running all applications on a single kernel. Contrast to this, container virtualization 

techniques enable efficient use of resources either in terms of performance or in terms 

of scalability (Soltesz et al., 2007). 

Containers approach to security isolation directly involves internal operating system 

objects, such as PIDs, UIDs and IPC, UNIX and so on. The basic techniques used to 

securely use these objects involve (1) separation of name spaces, i.e., contexts, and (2) 

access controls, i.e., filters. Access separated name spaces mean that global identifies 

live in completely different spaces, do not have pointers to objects outside their own 

name spaces and thus can’t get access to objects outside of its name space. Filters 

control access to kernel objects with runtime checks to determine whether the container 

has the appropriate permission. (Soltesz et al., 2007).  

The usage for container virtualization is based on the observation that sometimes it’s 

acceptable in real-world scenario to trade isolation for efficiency. Having only a single 

underlying kernel image will bring that efficiency (Soltesz et al., 2007). There exists no 

VM technology that achieves the ideal of maximizing both efficiency and isolation. It’s 

good to note though, that having both hypervisor and containers is a possibility as they 

are not mutually exclusive (Soltesz et al., 2007). Then one would have a hypervisor 

running VMs with containers inside. 

2.3.5 Performance of Containers and Hypervisor 

Soltesz et al. (2007) did several tests when comparing containers and hypervisors. For 

hypervisor technology they used Xen version 3.0.4 and for container technology they 

used VServer version 2.0.3-rc 1, both running on top of Linux Kernel 2.6.16.33. For 

reference, at the time of this study, the current version for Xen is 4.11, the current 

version for VServer is 2.6.22 and the current version for latest stable Linux Kernel is 

4.20.13. They measured network operations performance, along with disk and CPU 

performance. For all tests, VServer, i.e. container approach, performance was 

comparable to an unvirtualized Linux kernel. Yet, the comparison shows that although 

Xen3 included new features and optimizations, the overhead required by the virtual 

memory sub-system still introduced an overhead of up to 49% for shell execution. In 
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terms of absolute performance on server-type workloads, Xen3 lagged an unvirtualized 

system by up to 40% for network throughput while demanding a greater CPU load and 

50% longer for disk intensive workloads. (Soltesz et al., 2007). 

In their tests to test network operations performance, Soltesz et al. (2007) used Iperf, 

which is an established tool for measuring link throughput with TCP or UDP traffic. 

They used it to measure TCP bandwidth between a pair of systems. Both raw 

throughput and the CPU utilization were observed on the receiver, in two separate 

experiments to avoid measurement overhead interfering with throughput. On a 

multicore processor VServer compared closely to Linux, whereas Xen3 could not 

achieve line rate. Soltesz et al. (2007) explained that Xen3 saturated the CPU it shared 

with the host VM. 

To test disk performance, Soltesz et al. (2007) used DD benchmark to write a 6GB file 

to a scratch device. They found Linux and VServer to have identical performance, as the 

code path for both is basically identical. In contrast, for Xen3 they found significant 

slowdown for both uniprocessing and symmetric multiprocessing types of CPUs. This 

was due to additional buffering, copying, and synchronization between the host VM and 

guest VM to write blocks to disk. (Soltesz et al., 2007). 

A virtualization solution with strong isolation would partition the share of CPU time, 

buffer cache, and memory bandwidth perfectly among all active VMs and maintain the 

same aggregate throughput as the number of active VMs increased. However, for each 

additional VM, there is a linear increase in the number of processes and the number of 

I/O requests. Since it is difficult to perfectly isolate all performance effects, the intensity 

of the workload adds increasingly more pressure to the system and eventually, total 

throughput is reduced. Two factors contribute to the higher average performance of 

VServer: lower overhead imposed by the container approach and a better CPU 

scheduler for keeping competing VMs progressing at the same rate. As a result, there is 

simply more CPU time left to serve clients at increasing scale. (Soltesz et al., 2007). 

2.4 Network Virtualization 

Network virtualization has become a popular topic in recent years (Wang et al., 2013). 

This chapter will present an overview of network virtualization, what it is and how it’s 

accomplished. Then this chapter will present mature and experimental technologies 

concerning network virtualization. Lastly, the chapter will present an overview of how 

to simulate network traffic. 

Network virtualization is any form of partitioning or combining a set of network 

resources, and presenting it to users so that each user, through its set of the partitioned 

or combined resources, has a unique and separate view of the network (Wang et al., 

2013). Virtual networking allows to network virtual machines in the same way that one 

would network physical machines and it enables building complex networks within a 

single server host or across multiple server hosts, for production deployments or 

development and testing purposes (“Virtual Networking”, n.d.).  

A virtual network comprises three components: (1) virtual hosts, which run software 

and forward packets; (2) virtual links, which transport packets between virtual hosts; 

and (3) connectors to connect virtual hosts to virtual links in point-to-point or point-to-

multipoint -mode (Bhatia et al., 2008). In network virtualization, as in virtualization 

overall, there are different options on how to do it. Egi et al. (2008) refer to OS-level 
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virtualization, which is the same as system containers mentioned earlier, and say that 

they are an effective solution. Another way to do it is using hypervisors, such as Xen 

(Bhatia et al., 2008). 

Virtual switches allow virtual machines on the same server host to communicate with 

each other using the same protocols that would be used over physical switches. A 

virtual machine can be configured with one or more virtual Ethernet adapters, each of 

which each has its own IP address and MAC address. As a result, virtual machines have 

the same properties as physical machines from a networking standpoint. (“Virtual 

Networking”, n.d.). This is illustrated in figure 8. 

 

Figure 8. Example virtual network architecture by “Virtual Networking” (n.d.) 

The advantages of virtualization in general, e.g. isolation, encapsulation and 

independent administration, carry over to network virtualisation. Virtual LANs 

(VLANs) and Virtual Private Networks (VPNs) allow a single network to be subdivided 

and to have different, isolated users of the network. Extending the idea of true 

virtualisation to network resources and to routers has many benefits: a single virtual 

router platform can provide independent routing for multiple networks in a manner that 

permits independent management of those networks. (Egi et. al., 2008). 

Wang et al. (2013) recognize three different virtual network types: 

1) Overlay Networks  

2) Virtual Private Networks (VPN)  

3) Virtual Sharing Network (VSN) 

An overlay network is one built upon an existing network, mainly using tunnelling and 

encapsulation technologies. A VPN is an assembly of private networks that connect to 

each other but are isolated from public networks such as the Internet. VSN refers to 

technologies that support the sharing of physical resources among multiple network 

instances, while providing clear outlining between these instances.  
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Furthermore, Bhatia et al. (2008) recognized three design goals regarding network 

virtualization; (1) speed, (2) flexibility, and (3) isolation. Speed translates to the 

platform being able to forward packets at high rates. The packet forwarding rates should 

approach that of “native” kernel packet forwarding rates. Flexibility translates to the 

platform being able to allow experimenters to modify routing protocols, congestion 

control parameters, forwarding tables and algorithms, and, if possible, the format of the 

packets themselves. Isolation translates to the platform being able to allow multiple 

experiments to run simultaneously over a single physical infrastructure without 

interfering with each other’s namespaces or resource allocations. The design goals can 

be difficult to achieve, but they help in reducing costs, providing flexibility, and keeping 

up the pace with rapid development cycles (Bhatia et al., 2008).   

2.4.1 Mature Technologies 

There are three mature technologies used in network virtualization: link virtualization, 

router virtualization and NIC virtualization, which will be presented next. 

Link Virtualization 

Link virtualization can be done through multiplexing a physical channel or by 

virtualizing data paths. In physical channel multiplexing, the multiplexing performs a 

function very similar to virtualization, i.e. the physical medium is split into channels and 

the sender and receiver are under an illusion that they own the physical medium (Wang 

et al., 2013). Data path virtualization on the other hand refer to technologies that 

manipulate the packets carried on a channel, instead of manipulating the channel. Such 

a virtual link does not directly depend on the physical properties of the links, rather it is 

provisioned by nodes. Nodes use various technologies to direct data along these virtual 

links, i.e. data paths (Wang et al., 2013).  

Two popular technologies used in data path virtualization are labels and tunnelling. 

Labels might also be called tags or IDs and they occupy certain fields in a packet header 

and serve as identification and sharing mechanisms (Wang et al., 2013). Using these 

tags, nodes can traffic the packets to the right direction. This enables different VLANs 

to share a single physical device. Tunnels on the other hand, as mentioned, allow 

connecting network devices that are not physically near. Popular tunnelling 

technologies include generic routing encapsulation (GRE) tunnels and Internet Protocol 

security (IPsec) tunnels. Essentially, tunnels are overlay links and form the fundamental 

building blocks of overlay networks (Wang et al., 2013). 

Router Virtualization 

Rahore et al. (2012) explain that a virtual router is just like a physical router: is has a 

routing table, routing protocols, packet filtering rules, management interface, and so on. 

Multiple virtual routers can be running on the same hardware platform, sharing the 

available resources (Wang et al., 2013). This can be achieved using a virtualization 

technology that divides the system into multiple virtual environments i.e. system 

virtualization. A host environment is then responsible for allocating and managing 

resources to the virtual routers. The virtualization technology ensures resource isolation 

among virtual routers, i.e. one virtual router should not be able to see or access 

resources (e.g. the routing table) of other virtual routers (Rahore et al, 2012).  
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Virtual routers are often associated with performance penalties due to overhead from 

virtualization, but Rahore et al. (2012) propose a forwarding architecture for virtual 

routers based on multicore hardware where virtual routers can run in parallel on 

different CPU cores. This reduces resource contention among virtual routers and results 

in improved performance and isolation. However, hardware based I/O virtualization is 

essential for this architecture to work. Furthermore, they have shown that hardware 

assisted virtual routers can achieve better total throughput than a non-virtualized router 

on a multi-core platform.  

The aim when implementing a virtual router should be to keep a packet as deep as 

possible inside a cache hierarchy (i.e., close to the cores) while distributing the packet 

processing over as many spare cores as possible within the same cache hierarchy. This 

ensures that processing is not CPU-limited since multiple cores are in use, while 

reducing expensive accesses to main memory. A software router’s internal organization 

can be viewed as a graph of interconnected packet processing elements. (Egi et al., 

2010). 

According to Egi et al. (2008), it’s possible to compose a virtual software router in three 

different configurations where packet forwarding is under taken by using one of the 

following schemes: 

a) Common forwarding plane: Figure 9(a). 

b) Interface direct mapping: Figure 9(b). 

c) Hybrid forwarding plane: Figure 9(c).  

 

Figure 9. Composing virtual routers using hypervisors or containers, by Egi et al. (2008) 
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The first configuration, shown in figure 9(a), has a common forwarding domain for all 

virtual software routers on the box. This is probably best suited to situations where there 

is no need to isolate custom forwarding paths in separate domains for reasons of 

security. Using a common forwarding domain for a number of different virtual routers is 

very efficient and allows a large number of virtual routers to share the same interfaces. 

The second configuration, figure 9(b), directly maps interfaces into guest domains 

enabling forwarding planes to safely run untrusted forwarding paths. The third possible 

configuration, figure 9(c), is where a proportion of the packets from a set of interfaces is 

filtered in to a guest domain for further processing. (Egi et al., 2008). 

A critical issue for a virtual router platform is how to share interfaces between 

virtualised routers. If an interface needs to be shared between virtualised routers, there 

are three main options for doing so: 

 Use software to demultiplex the flows and process the packets as they arrive. 

 Use software to demultiplex the flows, but then requeue them on a per virtual router 

basis. This allows fairer scheduling between virtual routers. 

 Use hardware de-multiplexing in the NIC, and present multiple hardware queues to 

the OS. 

Simple software de-multiplexing has the great advantage of simplicity, and when all the 

forwarding planes are implemented in the same OS domain, this scales to very large 

numbers of virtual routers, as shown in Figure 10. Only when the CPU caches start to 

thrash does performance dip. (Egi et al., 2008). 

 

Figure 10. Forwarding rate and number of VMs, by Egi et al. (2008). 

The downside of simple software de-multiplexing is fairness. Packets are processed as 

far as the central queue in the order in which they arrive on the incoming interface, 

irrespective of the intended prioritization of the virtual routers. If fairness and isolation 

are required amongst shared forwarding engines, hardware packet classification is 

needed on the NIC. (Egi et al., 2008). 

The forwarding performance of modern software routers is rather good. An inexpensive 

modern x86 rack-mount server can forward minimum-sized packets at several gigabits 

per second and larger packets at much higher rates. The fundamental limit on 

forwarding performance is currently memory latency. Although these systems have 

huge memory bandwidth, they frequently cannot make use of this due to poor locality of 

reference in the DMA (Direct Memory Access) controller hardware and PCIe 

arbitration. Smarter hardware could make much better use of memory bandwidth. With 

more cores it may be feasible to turn off DMA and to dedicate cores to the role of 
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transferring data between the NICs and memory in the best way to maintain memory 

throughput. (Egi et al., 2008). 

NIC Virtualization 

According to Wang et al. (2013), NIC virtualization can either be software-enabled or 

hardware-assisted. In software-enabled NIC virtualization there are virtual NICs 

(vNICs), which are a software emulation of a physical NIC. Their IP and MAC 

addresses can be controlled. The most common vNIC clients include a virtual OS or an 

OS-level virtualization instance. A virtual switch (vSwitch) is a software emulation of a 

physical switch which, however, may not support all features of a physical switch. A 

vSwitch performs functions such as traffic switching, multiplexing, and scheduling and 

bridges vNICs with physical NIC(s) if needed.  

The links between vNIC and vSwitch are software-emulated links, which are not to be 

confused with the “virtual links”. The bandwidth of these emulated links is only limited 

by the processing capabilities of the host itself (Wang et al., 2013). Another way to 

virtualize NIC is with hardware-assisted virtualization, i.e. Single Root I/O 

virtualization, which is discussed next. 

SR-IOV 

A regular NIC only provides one peripheral component interconnect express (PCIe) 

channel, which usually becomes the I/O bottleneck in a VM-centric environment (Wang 

et al., 2013). To solve this, support for I/O virtualization has been provided by hardware 

on NICs, and this is known as Single Root I/O Virtualization, i.e. SR-IOV (Rahore et 

al., 2012). SR-IOV is an industry standard and the main idea is to offload packet 

handling from the system CPU, as is the case in normal I/O virtualization, to make them 

directly available inside a virtual router, i.e. packet handling is done by a vNIC running 

inside the physical NIC. More precisely, it allows a single physical NIC to create 

multiple NIC instances, known as Virtual Functions (VFs) (Dong et al., 2012; Wang et 

al., 2013), which provides an Ethernet-like interface (Rahore et al., 2012). Instead of 

connecting vNIC clients to a vSwitch, every VM can be directly mapped to a Virtual 

Function for direct access of NICs resources (Wang et al., 2013). SR-IOV can be used 

with hypervisor-based technologies, such as KVM. Furthermore, it also provides packet 

classification features, which can help improve in isolation. However, only a limited 

number of VFs are supported on top of a physical interface. For instance, the Intel 

1Gbps NIC supports 8 VFs per port whereas the 10Gbps NIC supports 64 VFs per port. 

(Rahore et al., 2012).  

SR-IOV generally provides performance benefits (Dong et al., 2012; Rahore et al., 

2012), such as better throughput, scalability, lower CPU utilization (Wang et al., 2013) 

and even resource sharing (Dong et al., 2012). Rahore et al. (2012) did a comparison of 

performance between macvlan and SR-IOV based virtual routers. Macvlan is a Linux 

network driver that exposes host interfaces directly to VMs or Containers running in the 

host and it has been integrated in Linux kernel since version 2.6.x (Rahore et al., 2012). 

Rahore et al. (2012) found that a higher forwarding performance is achieved using SR-

IOV and that SR-IOV scales better with the number of CPU cores used. With four CPU 

cores, SR-IOV achieved almost 32.33% better throughput than macvlan. Furthermore, 

they found that SR-IOV also results in better throughput than a nonvirtualized IP 

forwarder. 



29 

2.4.2 Experimental Technologies 

Wang et al. (2013) have researched experimental technologies that can help in network 

virtualization. They mentioned four experimental technologies, which are discussed 

next: PlanetLab, Emulab, VIOLIN and G-Lab. 

PlanetLab is a research testbed jointly established in 2002 by Princeton University, 

Intel, UC Berkeley, and the University of Washington. PlanetLab is composed of nodes, 

called PlanetNodes, that are dedicated servers running a customized Linux OS. These 

PlanetNodes are distributed around the world and they can spawn VM slices at users 

request. The communication between PlanetNodes happens through the Internet, i.e. 

PlanetLab forms an overlay network over the Internet. Due to the international 

distribution of nodes, testbeds of all sizes, topologies or geographical coverage may be 

requested and constructed. There are enhancements, such as VINI and Trellis, build to 

the PlanetLab to provide some extra functionality, such as tunneling between virtual 

nodes. (Wang et al., 2013).  

Emulab is a similar experimental research network testbed developed at the University 

of Utah. It mainly emulates network properties based on user requests over a physical 

network. Each physical site contains a set of Dummynet nodes, ns-Emulates (NSE) and 

PCs connected through a LAN. Dummynet is an emulation tool used to test networking 

protocols while NSE generates software-simulated traffic. (Wang et al., 2013). 

VIOLIN (internetworking on overlay infrastructure) is a software that is implemented 

within a user-mode Linux (UML) container, which runs in a PlanetLab slice. A UML 

container is a virtual host, a virtual switch, or a virtual router. VIOLIN is independent of 

PlanetLab and it extends UML to enable UDP tunnels between the UML containers. 

(Wang et al., 2013). 

German Lab (G-Lab) is an initiative on the Future Internet sponsored by the German 

Federal Ministry of Education and Research. It uses PlanetLab-compliant technology 

and has deployed a testbed in Germany. Based on G-Lab, a topology management tool 

provides a graphical user interface that allows users to design and use a virtual network 

by simply dragging and organizing network device and link icons. It’s operated under 

OneLab project, funded by the European Commission. The main goals of OneLab 

include extending PlanetLab to wireless environments and federating with more 

testbeds, such as G-Lab. (Wang et al., 2013). 

2.4.3 Simulation 

When virtualization is not enough, one can try to simulate. One such tool that can be 

used for network simulation is Scapy. Scapy is a Python-based interactive packet 

manipulation program that mainly does two things: sending packets and receiving 

answers. User defines a set of packets, Scapy sends them, receives answers, matches 

requests with answers and returns a list of packet couples (request, answer) and a list of 

unmatched packets. This enables the user to send, sniff and dissect and forge network 

packets. This capability further allows construction of tools that can probe, scan or 

attack networks. Scapy can handle most classical tasks like scanning, tracerouting, 

probing, unit tests or network discovery. Lastly, Scapy allows building more high-level 

functions, such as one that pings a whole network and gives a list of the machines that 

answer. (Scapy - About Scapy, n.d.). 
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3. Research Method 

This chapter describes the research problem and research method in further detail. The 

problem area is complicated but the research problem itself is quite simple.  

3.1 Research Problem 

Creating large-scale networks for testing or development purposes can be hard because 

of the amount of required hardware. It’s not cheap either, as special routers can be quite 

expensive. Setting up such a physical test environment with hundreds or thousands of 

nodes would take a long time and would require maintenance and much related 

supportive hardware, such as cables and power outlets or generators. Adding 

organizational time constraints to this makes it even less feasible.  

There are many things that can be tested regarding routing. One might want to test 

different network topologies and network types, such as WAN and LAN, in one 

network. One might want to also test different routing types, e.g. unicast and multicast. 

Then there are different communication and routing protocols at different levels of the 

OSI/ISO model, such as OLSR and OSPF. Lastly, there are all the different network 

routing features, such as tunnelling. Testing all of these features can’t be simply tested 

in a PlanetLab environment as it consists mainly of connections in the Internet. The 

company this study is done for has their own routing software and they are able to test 

the aspects of routing they want in small-scale environments, i.e. with physical devices 

and connections, but a problem arises when considering a use case where there are 

hundreds of nodes running the company’s routing software. It’s not possible to test in 

any normal test environment. However, the purpose of this study is not to create an 

artifact that supports testing of all the previously mentioned aspects of routing, but to 

create a platform that enables hosting hundreds of nodes and that can be extended later 

on to support more features as well. 

Furthermore, there is an additional problem in this study. There is no access to the 

Internet in the development and testing area of the organization, where the 

implementation was done. To work around this, a mirror has been implemented in the 

development and testing area, containing some packages for popular Linux OS’s such 

as Debian and Ubuntu. The mirror is not up to date because each packet must be 

scanned for security reasons by the organization before it can be used. This causes 

limitations on the study because not everything is available and those packages that are 

available might not be most recently updated. 

To begin to understand how it’s possible to build an environment, or a platform, that 

allows testing of such many nodes and network features, it must be understood what 

kind of virtualization technologies there are, how they differ and what capabilities they 

have. That and building the artifact constitute the main research problem in this study.  
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3.2 Artifacts Requirements 

As mentioned earlier, there are some requirements from the company and from a 

general description of what the artifact should be able to do. The requirements are 

shown in table 1. The main goal of the requirements is to ensure that the artifact is able 

to fulfil the main goal of the study, i.e. simulating many nodes. In the Evaluation 

chapter the artifact is evaluated against these requirements. 

Table 1. Requirements of the artifact. 

Requirement number and name Description 

R1: Large-scale Simulation The artifact must be able to simulate a network of 

many hundred nodes. 

R2: Encapsulation The virtual nodes must be encapsulated. 

R3: Configurability The artifact must be configurable. 

R4: Adaptability The artifact must be adaptable. 

R5: Outside Connection The artifact must be able to connect to physical 

devices outside the artifact. 

R6: Replicability of Nodes The virtual nodes must be easy to replicate. 

 

Furthermore, the company wanted a demonstration and instruction manual on how to 

create and use the artifact, but they are not part of the requirements for the artifact itself, 

and thus the demonstration is not take into consideration in this study. However, the 

instruction manual is in Appendix A, for replicability of this study.  

3.3 Design Science Research Method 

As mentioned in the Introductions, this study uses a Design Science Research 

methodology by Hevner et al. (2004) to design and produce an artifact that tries to 

answer a problem a company has. According Hevner et al. (2004), the design-science 

paradigm is to create “what is effective”, something of utility, and that these innovative 

creations are to be evaluated. The creation, or artifact, is to enable organizations to 

address important information-related issues. DSR in information systems has two 

processes, build and evaluate, and four types of artifacts: constructs, models, methods 

and instantiations. (Hevner et al., 2004). The artifact type built in this study is a 

construct.  

Hevner et al. (2004) have built a conceptual framework for understanding, executing, 

and evaluating IS research, which is shown in figure 11. The framework has three 

stakeholders: Environment, IS Research and Knowledge Base. Environment is where 

the problem exists, i.e. in this case the company who wants to find a way to simulate 

large networks. Generally, it consists of people, organizations and the technology they 

use. IS Research is the next stakeholder and it’s where the building and evaluating of 

the artifact happens. The artifact tries to solve the problem the Environment has. 

Environment is where from the IS research gets its purpose, or relevance, by giving IS 

research a problem to solve. Knowledge Base is the last stakeholder and it then provides 
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the foundations and methodologies for the IS Research. The foundations provide 

theories, frameworks, etc. for building the artifact, whereas the methodologies provide 

guidelines for the artifacts evaluation phase. Both the foundations and methodologies 

must be used with rigor. Lastly, the IS Research provides more information to the 

Knowledge Base at the completion of the research. (Hevner et al., 2004). This is the 

way that DSR benefits both the academics and the environment, by creating a solution 

to problem and also by adding to the existing knowledge base. 

Figure 11. Information Systems Research Framework by Hevner et al. (2004). 

The DSR methodology by Hevner et al. (2004) also has seven guidelines for conducting 

a design science research. The guidelines and their summaries are presented in table 2. 

The first guideline of a DSR study is to produce a working artifact in the form of a 

construct, a model, a method, or an instantiation. This ensures that something 

worthwhile is produced. The second guideline is to ensure that the artifact answers to 

some important and relevant business problem. In other words, that which is produced, 

is also useful. The third guideline is to use design evaluation methods to demonstrate 

the utility, quality and efficacy of the designed artifact. The fourth guideline is to have 

clear contributions in the research area, as often that is the ultimate assessment for any 

research, i.e. what new is contributed by the study. The fifth guideline is to use rigorous 

methods in both the construction and evaluation of the artifact, meaning that there needs 

to be a methodology to the production and evaluation of the artifact. The sixth guideline 

is to refine and make the problem real by defining the relevant means, ends and laws of 

the problem, and then utilize available means to reach desired ends while satisfying 

laws in the problem environment. The seventh, and last, guideline is to communicate the 

research in such way that the artifact can be constructed by others with similar 

organizational resources, and that others can decide themselves whether organization 

resources should be committed to constructing and using such artifact. In other words, 

communicate for technology-oriented as well was management-oriented audiences. 
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Table 2. DSR guidelines and their descriptions. 

Guideline Summary 

1. Design as an Artifact Produce a viable artifact in the form of a construct, a 

model, a method, or an instantiation. 

2. Problem Relevance Develop technology-based solutions to important and 

relevant business problems. 

3. Design Evaluation The utility, quality, and efficacy of a design artifact 

must be rigorously demonstrated via well-executed 

evaluation methods 

4. Research Contributions Provide clear and verifiable contributions in the areas 

of the design artifact, design foundations, and/or 

design methodologies 

5. Research Rigor Application of rigorous methods in both the 

construction and evaluation of the design artifact. 

6. Design as a Search Process Utilizing available means to reach desired ends while 

satisfying laws in the problem environment. 

7. Communication of Research Present the research effectively both to technology-

oriented as well as management-oriented audiences. 

 

Following the seven guidelines ensures an effective design-science research. These 

guidelines and how they have been accomplished in the study are discussed in Chapter 

5, Evaluation. 
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4. The Artifact 

This chapter is divided into two parts: planning and implementation. Planning chapter 

describes what happened before the actual implementation was started. Implementation 

chapter then describes how the artifact was implemented and what the artifact consists 

of. Worth of note is that the words “node” and “container” are used irreplaceable, as 

each container is supposed to also be a node. 

4.1 Planning  

Prior to the implementation, there were discussions about how to approach the subject 

of network virtualization and a few meetings were held within the organization 

concerning what technologies were available and what the artifact should be able to do. 

Furthermore, a weekly meeting was held between the author of this paper and three co-

workers, in which the progress and design choices were discussed. During the starting 

discussions it was considered whether to use hypervisor technology or container 

technology to achieve the first requirement, R1. Pictures of container and hypervisor 

approach were drawn, which are already shown in the Hypervisor Approach and 

Container Approach chapters, located in chapter 2.3. The capabilities of hypervisors or 

containers were not yet fully known, so an idea of simulating a backbone network using 

Scapy was introduced, as it had been used before in a similar work. The idea was to 

ensure that the requirement R1 was met. Networking styles and management options 

were compared between container approach and hypervisor approach because they 

differ, as can be seen from figure 12.  

 

Figure 12. (a) Container approach and (b) hypervisor approach to networking. 

From the first discussions the requirements were also drawn, which helped in deciding 

what technologies to use. The artifact had to be configurable in such a way that the 

fundamental blocks could be changed if the need arose to e.g. better simulate the router 

software developed by the organization. Resulting from the discussions, it was decided 
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to use hypervisor approach together with container approach, because regarding 

requirements R3 and R4, Configurability and Adaptability respectively, this was the 

best option for later on e.g. if integrating parts of the organizations router software. 

Furthermore, having a hypervisor brings better encapsulation (requirement R2) than 

having only containers. The fusion of hypervisor and container approach is shown in 

figure 13.  

 

Figure 13. Using hypervisor and container approach together. 

Furthermore, with a hybrid approach, the networking is logically clearer, as can be seen 

from figure 14. In the figure, each node is actually a container. When using VMs and 

containers within, it can be easier to modify the whole picture or add physical devices 

(requirement R5), because a VM is a full operating system whereas a container is not. 

It’s also possible to create a certain type of topology within a VM and then copy that 

VM to create more of that type of topology. Comparing to handling hundreds or 

thousands of containers in the same space, this seemed like an easier solution to 

manage. 
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Figure 14. Hybrid approach to networking. 

For hypervisor approach, KVM and Xen were initially considered but KVM was chosen 

because Xen was not available due to security reasons, as mentioned earlier. For 

container approach LXC and Docker were considered but LXC was chosen due to the 

need for system containers. System containers are more ready-made for this study’s 

purpose, such as including system architecture, network interfaces and being highly 

modifiable. 

Lastly, resulting from these discussions, a commodity PC was ordered to be used as a 

development platform for the artifact. The PC, called Virtualization PC from now on, 

had 1000 Gigabytes of SSD (Solid-State Drive) memory, CPU with 32 Gigabytes of its 

own memory, consisting of 12 cores. Furthermore, a NIC with four interfaces and SR-

IOV support was added to the PC. 

4.2 Implementation 

After the starting discussion, designs and decisions the implementation started with the 

Virtualization PC, which had a Linux OS Ubuntu 16.04. KVM was installed through the 

mirror repository. Using KVM, three host VMs were created, running Debian 9.6., i.e. 

Debian Stretch, because it was the only image available in the mirror repositories. Each 

VM was assigned 50 gigabytes of SSD, 1 gigabyte of CPU memory and 1 virtual CPU 

(vCPU). Then version 2.0.7 of LXC was installed on the host VMs using the mirror 

repository. This version was used because it was the latest version available for Debian 

9.6.  

Creating the containers was complicated because LXC required by default to have an 

internet connection to download modified images of OS’s to install, i.e., a packaged 

rootfs and meta information, rootfs.tar.xz and meta.tar.xz respectively. There was no 

option to use local images. Container creation was done in the end by creating the 

directory where LXC caches downloaded images and then inserting Debian rootfs.tar.xz 

and meta.tar.xz packages there. This caused LXC to think it had already downloaded the 

image and then proceeded to build a container from that cached image. Installing 

packages to the containers was not straight forward either, because the containers didn’t 

have access to the Internet. This was resolved by using “apt-get download” option in the 

host VM, then transferring the downloaded packages directly inside the containers 
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rootfs directories. Then the installation of packages was done locally in each container 

using bash scripts.  

Using LXC, up to 150 containers were configured and running in one host VM. 

Creating, configuring and managing that many containers required creation of bash 

scripts. One of these scripts was done to start a ping from a node to the next node, going 

through all the nodes except the last one. Depending on the ping configuration, e.g. 

packet size or transmitting speed, there were cases when the host CPU was running at 

maximum 400% or under 100%. However, the container-nodes were connected to each 

other through one bridge in the host, meaning all the traffic went through that single 

bridge.  

Later it was discovered that there was an Ubuntu 16.04, i.e. Ubuntu Xenial, image 

available. This enabled creating an Ubuntu VM from that image. It was learned from 

earlier VMs that more resources should be given to a VM, if there was need to run over 

100 containers efficiently simultaneously in the VM, which was a likely case. For the 

first Ubuntu VM it was given 5 virtual CPUs, up to a maximum of 6 if required, 8 

gigabytes of CPU memory and 100 gigabytes of SSD. During the implementation of the 

artifact a total of four VMs were created, all similar to the first one described above. 

The three VMs created after the first one had a bit less power in terms of performance, 

as they each had 2 vCPUs, 4 GB of RAM and 100 GB of SSD memory.  

Table 3. Artifacts hardware and VM specifications. 

Platform CPU cores / VCPU RAM (GB) SSD (GB) 

Virtualization PC 12 cores 32 1000 

VM 1 5 (up to 6) 8 100 

VM 2 2 4 100 

VM 3 2 4 100 

VM 4 2 4 100 

 

Having Ubuntu VM enabled downloading a newer version of LXC, LXD 3.0.3, from 

the mirror repository. LXD had more functions and was simpler and quicker to use than 

LXC. It was thought that having more options would help in achieving the requirements 

R3 and R4. Furthermore, LXD supported creating own OS images from local 

rootfs.tar.gz and meta.tar.gz files. 

4.2.1 Networking Between Nodes 

Using LXD in the new Ubuntu VM, more containers were created and configured, and 

each container was connected to another one by a bridge. Meaning that each “link” 

between nodes was done by creating a bridge. A bridge works the same way as a Layer 

2 switch, connecting two points together. A single bridge needed two virtual ethernet 

(veth) interfaces on the host and one interface on both of the two nodes that were to be 

connected. For example, creating a network of four nodes 1,2,3 and 4, where node 1 has 

a link to node 2 and node 3, and node 3 also has a link to node 4, would require three 
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bridges and six veths on the host. For each link, also an interface would be needed in 

each of the nodes. This example can be seen from a logical viewpoint in figure 15 and 

from networking viewpoint in figure 16.  

 

Figure 15. Network of four nodes, logical point of view. 

 

Figure 16. Network of four nodes, connected via bridges and veths. 

Using these bridges as links, it was possible to create any kind of network topology. 

Furthermore, Quagga was installed in each container. Quagga is a network routing 

software that provides implementations for many routing protocols, such as OSPF and 

BGP. Without routing functionalities from Quagga, node 3, for example, in the image 

above can’t see or ping node 2 because node 1 does not provide information regarding 

anything other than the link between it and node 3. Using Quagga, each container was 

able to perform network routing functions similar to any normal router, allowing node 3 

to see and ping node 2 and even more complicated network topologies to work.  

This was all in one VM, however, and a VM could only contain a certain number of 

nodes. This meant that, to enable the creation of very large networks, nodes needed to 

be able to see other nodes in other VMs as well. 
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4.2.2 Networking Between Virtual Machines 

Connecting VMs together was done by creating a bridge with DHCP (Dynamic Host 

Configuration Protocol) enabled in the Virtualization PC, by using KVM. This bridge 

was then attached to each VM, by creating a new interface in them. Through this bridge, 

each VM could then see each other. Then a profile was created in LXD that would, 

when taken into use by a container, bridge the containers interface and the VM’s 

interface together. The bridging in containers was done using macvlan. A macvlan 

driver is a separate Linux kernel driver that makes it possible to create virtual network 

interfaces, each virtual interface having its own MAC address. Adding this profile to 

containers across VMs would, together with OSPF, enable network routing between the 

VMs. This is illustrated in figure 17. 

 

Figure 17. Connecting containers from different VMs together. 

Because the bridge has DHCP service and the containers are bridged through the 

interface in the VM, each container attached to the VM bridge would get an appropriate 

IP address from the VM bridge to enable fast configuration.  

4.2.3 Networking Between Containers and the Real World 

Networking between virtual machines and the real world was also done with KVM, by 

using macvtap driver, as suggested by co-worker within the organization. A macvtap 

interface is a combination of macvlan and a tap interface. A tap interface is software-

only interface, where instead of passing frames to and from a physical Ethernet card, the 

frames are read and written by a user space program.  

Macvtap allowed to attach a VMs vNIC directly to a specified physical NIC on the 

Virtualization PC. A new interface was created in each VM to enable this, and this new 

interface was then attached to one interface on the physical NIC in the Virtualization 

PC. This meant that each VM had their own passthrough line to the physical NIC. Then 
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the same was done as when networking the VMs together, i.e. a profile was created in 

LXD that would, when added to a container, create a new interface in the container and 

bridge it to the interface in the VM. Lastly, each interface in the Virtualization PC’s 

NIC had to be configured without static IP or DHCP and put to manual mode. This 

would prevent the VM from accessing the passthrough line, allowing only the container 

attached to the interface to access the outside world. Thus, a route for a node to the 

outside world was created, fulfilling the requirement R5. This is illustrated in figure 18.  

 

Figure 18. Networking to the real world. 

To test the functionalities of OSPF routing, a laptop was attached to a physical router 

outside the Virtualization PC. This physical router also had OSPF routing enabled.  The 

laptop did not, however, as it did not require it, but it had a static IP outside any IP 

range used by the containers or VM’s. Each node was able to ping the laptop’s IP, 

meaning that the routing was successful. This was further tested with ping’s -R 

parameter, i.e. “Record route” -option, which displays the route buffer on returned 

packets, to see what path was taken. Traceroute tool was also used to determine that the 

correct route was taken.  With most containers, the route was a long one, because the 

packets first had to go through long chain topologies to the correct container that had 

access to the physical NIC. Then the packets would finally travel to the physical router 

that would route them to the laptop and the laptops replies to the containers. 

After this was done, it was time to analyze the artifact. The analyzation and it’s results 

are discussed in the following chapter. 
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5. Evaluation 

In this chapter the artifact is first analysed to provide insights into it and its 

performance. Then the artifact is evaluated against its requirements gathered from the 

organization and lastly the study is evaluated against the DSR methodology guidelines. 

5.1 Analysis 

Creating connections between containers creates many new interfaces in the host VM, 

as it requires two veths and one bridge per link. For example, creating a mesh network 

of ten nodes creates 9+8+7+6+5+4+3+2+1=45 links and each link requires three 

interfaces, making a total of 135 new interfaces in the host VM alone. In this scenario, 

each node would also have 9 interfaces to connect to of the other 9 nodes, bringing the 

total interface count to 135+9*10=225. Furthermore, there may be some additional 

interfaces needed, for example for communication between VM’s or to the real world. 

This is big number of interfaces to manage for only one full mesh topology of 10 nodes. 

Creating larger networks would bring even further interfaces, creating a problem of 

controllability. Using LXD, however, the bridges could be named when creating a link, 

whereas the veths would be given a random name by default. By naming the bridges, it 

was easier to control the networks. For example, a bridge that connects nodes 45 and 12 

would be named br12_45. This was done by creating bash scripts that would automate 

network creation based on parameters and name the links accordingly. Using the bridge 

names as parameters, further scripts could be made for controlling the networks. Many 

other scripts were created to help control the nodes. Furthermore, a python script was 

created by the study’s supervisor from the organization. The python script would output 

all the links between nodes and the interface the nodes were using for each link. 

When looking at the resource usage of the Virtualization PC, CPU power was not 

deemed to be a problem because with 12 cores each VM could be assigned 2 or 3 cores. 

Even if a VM had a hundred containers running and performing network routing, the 

VM’s CPU usage would be around 10%. The Virtualization PC’s CPU usage would be 

the same or less, depending whether all the cores were assigned to VM’s. Only when 

doing something operation-heavy, such as creating tens of containers, would the CPU 

usage rise to the maximum. 

What seemed to cause a problem was the amount of SSD storage each VM was given. 

As mentioned before, each VM was given 100 GB of SSD storage and having 150 

containers took 81% of the whole storage. When creating 200 nodes in a VM, it took 

97% of the VMs storage even when they had not been started or configured yet, so more 

storage needed to be added. After adding more storage and configuring the containers, it 

was deduced that each configured node required a bit less than 500 MB of SSD 

memory. Ubuntu 16.04 OS itself without graphical UI does not take much memory, a 

few GB’s only. However, this wasn’t really a problem, because the Virtualization PC 

had a total of 1000 GB’s of SSD storage, meaning that each VM could easily be given 

200 GB’s of storage each.  
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What really became a problem was the amount of RAM memory. As mentioned, the 

Virtualization PC had a total of 32 GB of RAM and each VM had a minimum of four, 

later increased to six or seven, GB’s of RAM memory. Even with seven GB’s of RAM 

on a VM, the RAM usage in that VM was at 100% all the time when running 150 or 

200 containers. The Virtualization PC’s RAM usage was very high as well because each 

VM had a big slice of the Virtualization PC’s RAM. For example, when each VM was 

given seven GB’s of RAM and they were at nearly 100% usage, Virtualization PC’s 

RAM usage was slightly over 90% as well. It was noticed that having around 100 

containers running caused RAM memory usage to be around 90%, which was an 

acceptable level. However, this meant that only around 400 containers, 100 in each VM, 

could be running in the Virtualization PC. It was not possible to lower RAM usage by 

e.g. increasing the amount of CPU cores given to a VM. 

For data gathering from containers, the study used LXD’s own commands, on top of 

which the previously mentioned Python script was built. For gathering data from VMs, 

the study used Glances software in the Virtualization PC as well as the “top” command 

in the VMs. Glances and “top” both show and monitor processes and system resource 

usage in Linux. 

5.2 Artifact Evaluation 

Next is evaluated and discussed how the artifact fulfils the requirements given to it. The 

requirements and their fulfilment status are summarized in table 4. Each requirement is 

discussed separately. 

Table 4. Artifacts requirements and their status. 

Requirement Fulfilment status 

R1: Large-scale simulation Questionable 

R2: Encapsulation of nodes Questionable 

R3: Configurability Fulfilled 

R4: Adaptability Fulfilled 

R5: Outside connection Fulfilled 

R6: Replicability of nodes Fulfilled 

 

R1: Large-scale simulation – Questionable 

This requirements fulfilment is questionable because it depends on exactly how many 

nodes are required. If a maximum of 400 nodes are required, this requirement is fulfilled 

as is but if more, e.g. thousands, of nodes are required, then the artifact does not fulfil 

this requirement. However, there is the option of running Scapy on some containers to 

simulate the network of thousands of nodes, but container nodes cannot be created more 

with the system hardware that are present in the artifact.  

R2: Encapsulation of nodes – Questionable 
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This requirement is also questionable because from networking and operating system 

point of view the containers are encapsulated. However, containers don’t have their own 

kernel or hardware so they can’t be classified as entirely encapsulated. If the said kernel 

or hardware is changed or broken somehow, all the containers are affected. However, 

this is lessened by the choice of using hypervisor together with containers. Each 

container runs inside a VM and VMs fulfil encapsulation by default, meaning that the 

containers are entirely encapsulated from other VM’s containers.  

R3: Configurability – Fulfilled 

Configurability requirement was fulfilled when choosing to use hypervisor and 

container approach, because together they bring many means to configure the artifact. 

Each VM can be configured differently and each system container runs a full Linux OS, 

meaning there is much that can be configured. Many things can be configured in the 

artifact itself as well, such as the number of VMs and the number of containers in each 

VM. Using Quagga means that different routing protocols can be used as well as 

different network topologies. Furthermore, new routing protocols can be installed as 

each node is a Linux OS environment. Lastly, even the container objects supported 

configuration through LXD’s own commands. For example, through LXD’s container 

configuration, a node could be given new interfaces, or set a static IP address in wanted 

interfaces. 

R4: Adaptability – Fulfilled 

This is similar to R3, because the containers use the VM’s kernel and hardware enabling 

each VM’s hardware and system settings to be adjusted differently to bring about 

fundamental differences between two VM’s containers, such as different kernel version 

in each VM. New VM’s can be added if new software needs to be tested and old ones 

can be deleted. Even other PCs running more VMs can be added and linked together, 

using the outside connection. There is room for growth. 

R5:  Outside connection – Fulfilled 

This requirement was fulfilled with the installation of bridges and routing protocol. It 

required a macvlan bridge between a containers interface and a VM’s interface, and a 

macvtap bridge between the VM’s interface and the Virtualization PC’s physical 

interface on its NIC. Lastly the requirement required a routing software to run in the 

container and a router outside. Without the routing protocol, however, it’s still an IP 

connection to the physical world. 

R6: Replicability of nodes – Fulfilled 

Replicability of nodes was fulfilled on two levels: container level and VM level. LXD 

itself provides a copying mechanism for containers and KVM also provides a copying 

mechanism for VMs, which also copy the containers within. Furthermore, LXD had 

separate profiles which could be created, edited, destroyed or attached to containers. A 

profile could even be attached during containers creation. These profiles supported 

different degrees of configuration, but more importantly, they enabled easy replication 

of nodes. Instead of fully copying a node, it was possible to create a node that would use 

the same configuration settings, but still be a separate node with it’s own ID’s, IP’s, etc. 
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5.3 DSR Study Evaluation 

The Design Science Research methodology guidelines are for conducting and ensuring 

an effective design science research. They concern the whole study, not just the artifact 

that is built as a part of the study. The guidelines, their descriptions and fulfilment 

statuses are summarized in table 5. Each guideline and the fulfilment status are 

discussed separately. 

1. Design as an Artifact – Accomplished 

The goal of this guideline was to ensure the study produces a viable artifact and this was 

accomplished because the produced artifact is a functionable construct. This was 

verified by the artifacts evaluation. 

2. Problem Relevance – Accomplished 

The organization that the artifact was developed for had a genuine need of finding a 

way to test their routers in very large networks. This problem was the starting point of 

this study and the study tries to fulfil that need by having created the artifact.  

Table 5. DSR guidelines, their description and fulfilment status. 

Guideline Description Status 

1. Design as an 

Artifact 

Produce a viable artifact in the form of a 

construct, a model, a method, or an instantiation. 

Accomplished 

2. Problem 

Relevance 

Develop technology-based solutions to important 

and relevant business problems. 

Accomplished 

3. Design 

Evaluation 

The utility, quality, and efficacy of a design 

artifact must be rigorously demonstrated via 

well-executed evaluation methods 

Questionable 

4. Research 

Contributions 

Provide clear and verifiable contributions in the 

areas of the design artifact, design foundations, 

and/or design methodologies 

Accomplished 

5. Research Rigor Application of rigorous methods in both the 

construction and evaluation of the design 

artifact. 

Not 

accomplished 

6. Design as a 

Search Process 

Utilizing available means to reach desired ends 

while satisfying laws in the problem 

environment. 

Accomplished 

7. Communication 

of Research 

Present the research effectively both to 

technology-oriented as well as management-

oriented audiences. 

Accomplished 
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3. Design Evaluation – Questionable 

The goal of this guideline was to ensure rigorous demonstration of the utility, quality 

and efficacy of the artifact by using well-executed evaluation methods. This was 

accomplished by using requirements for the artifact and then finding out if they have 

been met. However, not all parts, such as quality, were included in the requirements and 

it can be questioned whether the evaluation methods were well-executed. Thus, this 

guidelines status is questionable. 

4. Research Contributions – Accomplished 

The goal of this guideline was to ensure that the study provides clear and verifiable 

contributions in the areas of the design artifact. This guideline has been accomplished 

by providing information how the artifact was built, analysing what the artifact can do 

and what inhibitors there are for its usage. Furthermore, to enable verifiable 

contributions, instructions on the artifacts installation is provided in appendix A. 

5. Research Rigor – Not accomplished 

This is similar to the third guideline. The evaluation of the design artifact was 

accomplished questionably, however no clearly defined method for the construction of 

the artifact was used. Thus, this guidelines status is “Not accomplished”.  

6. Design as a Search Process – Accomplished 

This guideline has a notion of reaching the desired end goal while satisfying laws in the 

problem environment. The problems concerning the artifacts building and usage 

environment was discussed in Chapter 3.1., where it was mentioned that e.g. there was 

no Internet connection in the artifacts development environment. This guideline was 

indeed accomplished, as the artifact was built and was deemed working without 

breaking laws in the environment. 

7. Communication of Research – Accomplished 

For management-oriented audiences the artifact and what it can and can’t do are 

explained in Chapter 4. For technology-oriented audiences the appendix A and chapter 

2, Prior Research, come into play, as they describe more technically what the artifact 

consists of and how it works. For these reasons, this guideline is accomplished. 



46 

6. Discussion and Implications 

This chapter describes the findings and their implications as well as answers the 

research questions stated in Chapter 1.  

To start with, it is feasible to use commodity hardware for large-scale virtualization 

environment and it’s not necessary to use special, often expensive, hardware, such as 

servers or hardware specifically designed for virtualization. What seems to be the 

limiting factor when using commodity hardware for virtualization, is the amount of 

RAM there is. CPU usage as well as storage usage was not that limiting. CPU power 

and RAM are somewhat harder to increase, whereas storage is easy to get more of. With 

32 GB of RAM, 12-core CPU and 1 TB of SSD storage, it’s possible to create at least 

400 containers before RAM starts to fill up. Furthermore, because Linux Containers are 

system containers, they isolate software from its environment and ensure that it works 

uniformly (“What is a Container”, n.d.). This means that much more can be done with 

them than only network routing, such as hosting and running different services.  

As mentioned earlier, there isn’t much research concerning building large-scale virtual 

networks. This study’s research questions aim to shed some light into that subject, so 

the main implications of this study are the answers to the research questions.  

RQ1: What feasible virtualization solutions are available for creating a large-scale 

virtual environment for network routing? 

Hypervisors are a good solution, because they have a direct access to the hardware 

resources, meaning they are very efficient and enable great scalability, robustness and 

versatility (“Virtualization Overview”, n.d.). However, hypervisors produce overhead 

due to virtualization (Soltesz et al., 2007). The more VM’s there are, the more overhead 

is produced, even if it is a small amount per VM. Creating hundreds of VM’s is not a 

feasible solution due to the overhead and the amount of virtualized HW. This is why 

containers are useful, as they offer an environment close to one gotten from a VM but 

without the overhead that comes from running a separate kernel and simulating all the 

hardware (“Linux Containers”, n.d.). 

Using both of these approaches in combination is an option as well, as was done in this 

study. This enables even greater configurability and adaptability of the environment. 

The hosted approach is not feasible because it is too heavy as the virtualization layer 

does not have direct access to the hardware. 

RQ2: How to build a flexible virtual environment that can simulate hundreds of nodes 

in a network, using only commodity hardware?  

The detailed instructions for building an environment similar to what was done in this 

study are in appendix A, but the main steps are: 

1. Install and setup KVM  

2. Create and setup VMs and nodes 

3. Create networks using bridges 

4. Create a route outside using bridges and macvtap 
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KVM installation requires only a few commands to install a few packages. After KVM 

installation, a virtual router needs to be created to enable communication between 

Virtualization PC and the VMs. Then VM’s can be created, connected to the virtual 

router, and configured. VM configuration includes installing LXD version 3.0.3 and 

enabling proper Quagga functionality for when it is used later. After that, bash scripts 

can be used to create and configure nodes. Node configuration includes installing 

software packages from which Quagga is the most important.  

After nodes are created and configured, network creation using bridges can be 

performed. Different topologies can be made using scripts. After topologies are created, 

routing must be enabled on the nodes by configuring Quagga in each node, which 

consists of configuring zebra daemon and OSPF daemon. Communication between 

nodes in different VMs can also be done at this stage. All can be done using scripts, for 

ease of use. 

The last stage is creating a route to the real world. This can be done using only IP 

protocol, but for routing purposes this requires having an OSPF capable router in the 

real world. The process starts with creating macvtap interfaces that bridge VMs’ 

interfaces to the physical NIC. Then nodes’ interfaces are bridged to the VMs’ 

interfaces that are already bridged to the physical NIC. Lastly OSPF is enabled on the 

nodes’ interface.  
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7. Conclusions 

This was a study that used design science research methodology to research computer 

networks, routing protocols, virtualization and network virtualization in an attempt to 

understand how they work. That information was used in creating an artifact capable of 

running a virtualized network of many hundred nodes. The artifact was developed using 

a hybrid approach consisting of a hypervisor and system containers. Links between 

nodes and also into the real world were achieved by using bridges. The artifact was 

conceived for a company and had requirements to fulfil in order be useful. Most of the 

requirements were fulfilled while some were questionable depending on the definition 

of the requirement. DSR guidelines were followed and most of them were accomplished 

as well.  

The study contributes to the research community with information concerning the 

subjects of networking, virtualization and network virtualization, as well as with 

information regarding how to build an artifact capable of creating hundreds of network 

nodes using only commodity hardware. Furthermore, this information is useful for the 

organization this study was done for. This study has shown that each node in a network 

requires a certain amount of memory storage as well as CPU memory, also often called 

RAM. Approximately 500 MB of storage is required per node, and with 32 GB of RAM 

memory, 400 nodes were created and running while having around 90% CPU’s RAM 

usage. CPU processing power was not deemed to be very crucial.  

There are some limitations to the study. Major limitations include not meeting all the 

artifacts requirements or all the DSR guidelines. Further limitations include having old 

performance tests between hypervisors and containers. The technologies concerning 

hardware and virtualization have evolved since those tests and it might be beneficial to 

see the performance differences with current technologies. Furthermore, this study used 

KVM and Linux Containers which were not included in the tests, as the tests used Xen 

for hypervisor approach and VServer for container approach. Lastly, due to time 

limitations, there were not many tests performed with the artifact. 

For future research, as somewhat mentioned, it would be interesting to learn the 

performance differences between hypervisor and container approach with current 

technologies concerning both hardware and virtualization. Another topic for future 

research would be to study how to optimize the performance when using hypervisor 

approach together with container approach. For example, is it performance-wise better 

to have few well-equipped VM’s with plenty of containers or is there some kind of 

balance to be found? Lastly, future work might include integrating other routing 

protocols that are not supported by Quagga into the artifact, such as OLSR. 
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Appendix A. Artifact Instructions 

For the purpose of this document, containers will be called nodes to enforce the idea of 

using containers as nodes in a network.  

Virtual Machines Creation and Setup 

This part explains virtual machine creation and how to set them ready for node creation. 

It’s expected that the Virtualization PC is already configured with basic functions, such 

as working apt-get. 

Install KVM and Create VMs 

Run the following command in the Virtualization PC to install KVM: 

sudo apt-get install qemu-kvm libvirt-bin virt-manager bridge-utils 

ovmf libguestfs-tools sshpass 

 

Make sure that the current user is part of libvirt group, and reboot afterwards: 

sudo adduser ‘id –un’ libvirtd 

reboot 

 

Undefine the default pool used by KVM and define different pools for networks, images 

and VM’s (called guests): 

virsh pool-destroy default 

virsh pool-undefine default 

mkdir <name for network folder> 

mkdir <name for images folder> 

mkdir <name for VM’s folder> 

virsh pool-define-as –name networks --type dir –target <path to 

network folder> 

virsh pool-define-as –name images –type dir –target <path to images 

folder> 

virsh pool-define-as –name guests –type dir –target <path to guests 

folder> 

 

Then set autostart –flag up and start the pools. Do this for all three pools created in 

previous step. Move installation media to the images-pool’s folder before mounting 

them for VMs. 

virsh pool-autostart <pool name> 

virsh pool-start <pool name> 

mv <installation media> <path to images folder> 

 

Create control-bridge that the VM’s can connect to for communication:  

nano <xml file>.xml 

 

<network> 

 <name>network_name</name> 

 <bridge name=”interface_name” /> 
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 <ip address=’192.168.1.1’ netmask=’255.255.255.0’> 

  <dhcp> 

   <range start=’192.168.1.2’ 

end=’192.168.1.254’/> 

  </dhcp> 

 </ip> 

</network> 

 

virsh net-define <xml file>.xml 

virsh net-autostart <network_name in the xml file> 

virsh net-start <network_name in the xml file> 

 

Also, disable the default network: 

virsh net-stop default 

virsh net-autostart default --disable 

 

You can use virt-manager to create VM’s using GUI, or use virt: 

virt-install \ 

--connect qemu:///system \ 

--virt-type kvm \ 

--accelerate \ 

--boot uefi \ 

--ram <RAM in MB’s, e.g. 1024> \ 

--vcpus <vCPU’s, e.g. 2> \ 

--disk pool=guests,size=<storage size in 

GB’s>,bus=virtio,sparse=false,format=raw,cache=none \ 

--network <network_name> \ 

--cdrom <path to installation media, e.g. images folder> \ 

--name <name> \ 

--os-type linux \ 

 

Ensure that the created VM’s connect to the control-bridge using the --network 

parameter. Ensure good processing powers and memory. Storage, in gigabytes, should 

be at least half of the number of nodes planned to create, e.g. 100  planned nodes means 

50GB of storage. 

Configure VMs 

NOTE: From now on, all commands are supposed to be used in the chosen VM or all 

VMs. 

Set root password and allow root SSH login, for ease of access and usability:  

sudo passwd root 

nano /etc/default/sshd 

permitRootLogin = yes 

 

Enable proper quagga functionality when it is used later: 

sysctl fs.inotify.max_user_instances=2048 

 

Install LXD version 3.0.3: 

apt-get install liblxc1=3.0.3-0ubuntu1~16.04.1 

apt-get install lxcfs=3.0.3-0ubuntu1~16.04.1 

apt-get install lxd-client=3.0.3-0ubuntu1~16.04.1 

apt-get install lxd=3.0.3-0ubuntu1~16.04.1 
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In the organization, there is a folder called niko which has all the scripts created for the 

artifact and all software packages and images needed for the artifact. The artifact can be 

done without them, it’s only takes more time. This appendix is mainly meant for the 

organization. Copy the niko folder to each VM: 

scp -r niko/ <user>@<VM’s IP>:~/ 

 

Configure LXD 

Set LXD image updating off and add the user to LXD group: 

lxc config set images.remote_cache_expiry 100 

lxc config set images.auto_update_interval 100 

lxc config set images.auto_update_cached false 

usermod --append --groups lxd testuser 

 

If there is no Internet connection available, create new OS image for LXD: 

Note! This requires you to have the OS images meta.tar.xz (or meta.yaml) and 

rootfs.tar.xz. Meta.tar.xz can be created from meta.yaml with tar -cvzf 

meta.tar.xz metadata.yaml. Meta.yaml can be edited normally if needed. In this 

case the required files are in niko/ubuntu_image/ -folder. 

lxc image import ~/niko/ubuntu_image/meta.tar.xz \ 

~/niko/ubuntu_image/rootfs.tar.xz –alias ubuntu_nigel 

 

Edit the default profile nodes use when first created and remove the eth0 interface. New 

interfaces will be created for each link separately when creating links: 

lxc profile edit default 

<remove eth0 interface from the profile> 

 

Edit lxd-bridge to disable the default bridge LXD uses: 

nano /etc/default/lxd-bridge (lxd-bridge.upgraded if LXD 3.0.3) 
USE LXD BRIDGE = “false” 

LXC BRIDGE = “” 

Nodes Creation and Setup  

All the scripts used throughout this document are in niko/ folder. This part shows how 

to create and setup nodes.  

Create Nodes 

Nodes are created from a custom OS image which was imported to LXD earlier. The 

command requires only the custom OS image’s name and the node’s name. Nodes can 

be initiated or launched. The difference between these two is that the launch option also 

starts the node right away.  

lxc init <OS image> <node name> 

lxc launch <OS image> node name> 

 

For example, initiating node1 and launching node2: 

lxc init ubuntu_nigel node1 

lxc launch ubuntu_nigel node2 

 



54 

There is a bash script create_containers.sh that can initiate a wanted number of nodes: 

./create_containers.sh <starting node ID> <ending node ID> 

 

For example, creating 100 nodes with IDs from 1 to 100, e.g. node1, node2 …, 

node100: 

./create_containers.sh 1 100 

 

There is also a bash script create_and_setup_containers.sh that launches and installs 

some needed software packages to them: 

Note: This script starts the nodes as well, because nodes need to be running in order to 

install packages in them. Furthermore, this doesn’t install Quagga on the nodes. 

./create_and_setup_containers.sh <starting node ID> <ending node ID> 

 

Install Software 

To easily setup nodes it’s suggested to use the create_and_setup_containers.sh script. 

However, software packages, or any other file, can be transferred to nodes in three 

ways; scp over ssh, cp locally or LXD file pushing: 

scp <package> root@<node IP>:<directory where to copy> 

cp <package> /var/lib/lxd/containers/<node>/rootfs/<directory where to 

copy> 

lxc file push <package> <node>/<directory where to copy> 

 

For example, copying tcpdump-package to node50’s (IP e.g. 10.0.0.5) /tmp/ -folder 

using all variations: 

scp tcpdump-package root@10.0.0.5:/tmp/ 

cp tcpdump-package /var/lib/lxd/containers/node50/rootfs/tmp/ 

lxc file push tcpdump-package node50/tmp/ 

 

After the software package is in the node, it can be installed using dpkg in two ways; 

directly giving the executing command to the node, or opening bash inside the node and 

installing it locally: 

lxc exec <node> -- dpkg -i <package> 

 

lxc exec <node> bash 

dpkg -i <package> 

 

For example, installing the previously transferred tcpdump-package in the same 

node50’s /tmp -folder: 

lxc exec node50 -- dpkg -i /tmp/tcpdump-package 

 

lxc exec node50 bash 

dpkg -i /tmp/tcpdump-package  

 

Doing this manually to many different software packages and all nodes is time 

consuming, thus there are two scripts for installing software packages to nodes. The first 

bash script, called install_all_tools.sh, installs all required tools to the nodes specified. 

The installed software packages are in niko/ubuntu_packages/ -folder. The second bash 

script, install_tool.sh, installs a specified tool to all the nodes specified: 
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./install_all_tools.sh <starting node ID> <ending node ID> 

./install_tool.sh <starting node ID> <ending node ID> <software 

package> 

 

For example, installing all software packages and additionally installing tcpdump to 

nodes from 1 to 50: 

./install_all_tool.sh 1 50 

./install_tool.sh 1 50 ubuntu_packages/tcpdump-package 

 

Setup Quagga 

Quagga is installed separately from the other tools, because it requires configuration. To 

install quagga package, seven dependency packages need to be installed first in the 

following order: (1) libc-bin, (2) libblas-common, (3) libblas3, (4) liblinear3, (5) liblua, 

(6) libpcap, and (7) lua-lpeg. After they are installed, Quagga can be installed using any 

of the above-mentioned methods. Quagga consists of Zebra daemon that can run routing 

protocols, and routing protocol daemons that produce the routing protocol.  

In this case, zebra and OSPF daemon must be configured. First, bash must be started in 

the node that has Quagga installed. Then configuration file samples must be moved to 

Quagga folder. The text “.sample” must be removed from the configuration files names. 

Then zebra and OSPF daemon for Quagga must be enabled by modifying “daemons” 

file. A login password must be written for zebra and OSPF daemons. Furthermore, 

enable-password can be disabled for them. Lastly Quagga must be restarted: 

lxc exec <node> bash 

cd /etc/quagga/ 

cp /usr/share/doc/quagga/examples/*.conf.sample . 

mv ospfd.conf.sample ospfd.conf 

mv zebra.conf.sample zebra.conf 

nano daemons 

zebra=yes 

olsrd=yes 

nano ospfd.conf 

password zebra 

!enable password 

nano zebra.conf  

password zebra 

!enable password 

/etc/init.d/quagga restart 

 

This can be bothersome to do for all nodes separately, thus a bash script 

setup_quagga.sh installs and configures Quagga, i.e. zebra, and optional protocol 

daemon, for all wanted nodes: 

./setup_quagga.sh <starting node ID> <ending node ID> <optional 

protocol to be configured> 

 

In this case, zebra and OSPF daemon must be configured, for example, to nodes 1 to 

100: 

./setup_quagga.sh 1 100 ospf 
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Network Creation 

This chapter explains how to create networks between nodes within a single VM and 

then how to connect nodes between different VMs. Furthermore, it explains how to 

enable OSPF routing in nodes. 

Create Networks in Same VM 

This requires the creation of bridges, then attaching that bridge to two nodes. First 

create that bridge, then attach it to both nodes. Both nodes then need to add that new 

interface in their /etc/network/interfaces file: 

lxc network create br<from_node>_<to_node> 

lxc network attach <bridge> <first_node> 

lxc network attach <bridge> <second_node> 

lxc config show <first_node> | grep <bridge>.name | cut -d ' ' -f4 

printf “\nauto <interface>\niface <interface> inet dhcp” 

/var/lib/lxd/containers/<first_node>/rootfs/etc/network/interfaces 

lxc config show <second_node> | grep <bridge>.name | cut -d ' ' -f4 

printf “\nauto <interface>\niface <interface> inet dhcp” 

/var/lib/lxd/containers/<second_node>/rootfs/etc/network/interfaces 

lxc restart <first_node> 

lxc restart <second_node> 

 

For example, creating a bridge between nodes 1 and 2: 

lxc network create br1_2 

lxc network attach br1_2 node1 

lxc network attach br1_2 node2 

iface=$(lxc config show node1 | grep br1_2.name | cut -d ' ' -f4) 

printf “\nauto ${iface}\niface ${iface} inet dhcp” 

/var/lib/lxd/containers/node1/etc/network/interfaces 

iface=$(lxc config show node2 | grep br1_2.name | cut -d ' ' -f4) 

printf “\nauto ${iface}\niface ${iface} inet dhcp” 

/var/lib/lxd/containers/node2/etc/network/interfaces 

lxc restart node1 

lxc restart node2 

 

This can be done using bash script create_network_link.sh: 

./create_network_link.sh <from node> <to node>  

 

For example, creating a link between nodes 1 and 2:  

./create_network_link.sh 1 2 

 

Furthermore, chain and mesh topologies between multiple nodes can be created using 

bash scripts create_network_chain.sh and create_network_mesh.sh: 

./create_network_chain.sh <starting node ID> <ending node ID> 

./create_network_mesh.sh <starting node ID> <ending node ID> 

 

For example, creating a chain topology from node 1 to 20 and a mesh topology from 

node 20 to 25: 

./create_network_chain.sh 1 20 

./create_network_mesh.sh 20 25 

 

Enable OSPF in Nodes 
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This requires that Quagga has been installed and setup already in nodes. By default, the 

links between nodes are in different network spaces and there is no routing yet enabled. 

There are two ways to enable OSPF in interfaces; dynamic run-time configuration, or 

static configuration. To enable OSPF routing, each interface on a node that has a 

connection to other node must be added configured to OSPF daemon. To do this 

dynamically, first it must be known what the port is that OSPF daemon uses. Then 

telnet connection is to be formed on the port and OSPF daemon is to be configured to 

run on the wanted interface. This is done by using the following commands:  

nmap localhost 

telnet localhost 2604 

(password = zebra) 

enable 

conf t 

router ospf 

network <first three octets of interfaces IP>.0/<network prefix> area 

<area number> 

<same for second interface that has a link to another node> 

<same for third interface, etc.> 

exit 

 

For example, there is node77 that has 3 links to other nodes using the following 

interfaces and IPs: eth0 with IP of 10.211.23.44, eth1 with IP of 10.212.40.19, and eth2 

with IP of 10.4.11.5 

Enabling OSPF on that node would require: 

telnet localhost 2604 

(password = zebra) 

enable 

conf t 

router ospf 

network 10.211.23.0/24 

network 10.212.40.0/24 

network 10.4.11.0/24 

exit 

 

This must be done to all nodes and it does not last over rebooting a node. Thus, there is 

the second, static, way of configuring it. This requires to first write the interfaces that 

are to be used for OSPF to zebra.conf and ospfd.conf located at nodes /etc/quagga/ -

folder. Then Quagga must be restarted. Let’s use an example node 2 that has two 

interfaces, eth0 and eth1, connected to two other nodes with IP’s of 10.232.27.188/24 

and 10.167.30.149/24, respectively. They will all be in OSPF area 0. Then zebra.conf 

must consist of: 

hostname router 

password zebra 

!enable password zebra 

interface eth0 

 ip address 10.232.27.188/24 

 ipv6 nd suppress-ra 

interface eth1 

 ip address 10.167.30.149/24 

 ipv6 nd suppress-ra 

interface lo 

ip forwarding 

line vty 

 

And ospfd.conf must consist of: 
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hostname ospfd 

password zebra 

!enable password zebra 

log stdout 

interface eth0 

interface eth1 

interface lo 

router ospf 

 network 10.232.27.0/24 area 0.0.0.0 

 network 10.167.30.0/24 area 0.0.0.0 

line vty 

 

To save time, use the bash script conf_quagga.sh. For example, when enabling OSPF on 

all the nodes between, and including, nodes 1 and 50: 

./conf_quagga.sh 1 50 

 

Create Networks Between Nodes in Different VMs 

For a communication medium between VMs, it’s possible to use the virtual router 

created to enable communication between Virtualization PC, or a new one can be 

created for this specific purpose. If a new virtual router is created, the following steps 

are needed: (1) create a new network router with virsh, as was done in the beginning, (2) 

attach it to VMs, (3) shutdown VMs, and (4) start VMs. 

Attaching a virtual router or network to a VM creates a new interface in that VM. In the 

following example, a bridge has been created in the Virtualization PC, using virsh, and 

it has been attached to all VM’s, creating a new interface in them, called ens9. This 

information is needed in the next step. 

In any case, a new profile called betweenroute is made from the default LXD profile. 

This can be done using: 

lxd profile cp default betweenroute 

 

Ensure it has the following contents by using lxd profile edit betweenroute 

config: 

  environment.http_proxy: "" 

  user.network_mode: "" 

description: Default LXD profile 

devices: 

  eth0: 

    nictype: macvlan 

    parent: ens9 

    type: nic 

  root: 

    path: / 

    pool: default 

    type: disk 

name: betweenroute 

used_by: 

 

The parent parameter tells LXD which VM interface this new macvlan-type bridge 

will be attached to. The other end of that bridge is then attached to the node the profile 

is attached to. 

Then add the profile to the nodes you want, using lxd profile attach <node> 

betweenroute. Attaching the profile to a node creates a new interface in the node. 
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Modify the new interface in the nodes /etc/network/interfaces – file to get dhcp address 

from the router or add a static IP. Lastly, enable OSPF on that interface.  The steps after 

creating the betweenroute-profile can be done using a bash script:  

./conf_ospf_connection.sh <node> <ospf_area> between  

Route Creation to Outside 

NOTE: This is suggested to do last, i.e. when there is network topology between nodes 

and VMs. This requires to manually set IP address on the interface that a node will use 

for outside connection. If more links are created on a node that has a route outside, but 

the interface doesn’t have IP address, the newly created links won’t get an IP address. 

This is because the outroute link doesn’t have an address, making networking stuck to 

that point. One workaround is to remove the outroute profile from the node and restart 

the nodes, then all links created afterwards should work. Just remember to add the 

outroute profile when the topology creation is done. 

This chapter requires a router in the outside world if routing is to be tested. It needs to 

have an IP address and OSPF protocol configured and working. This will be explained 

using an example, where the real-world router has OSPF running, an IP address of 

10.0.10.10/24, and the Virtualization PC’s eth1 interface will be used. 

Creating Passthrough Bridge in Virtualization PC  

On the physical Virtualization PC, edit the interface you want to be used as a 

passthrough bridge, using nano /etc/network/interfaces. In this example, interface 

eth1 will be used as a passthrough bridge: 

allow-hotplug eth1 

auto eth1 

iface eth1 inet manual 

 

Create a passthrough bridge in a Virtualization PC, starting with a new xml file. Then 

use virsh to define and start that bridge. Start with creating the xml using using nano 
macvtap1-net.xml  

<network> 

 <name>macvtap-net1</name> 

 <forward mode="bridge"> 

  <interface dev="eth1"/> 

 </forward> 

</network> 

 

virsh net-define macvtap1_router.xml 

virsh net-autostart macvtap1-net 

virsh net-start macvtap1-net 

 

The VM must be made to use that newly created bridge. This can be achieved using 

either GUI or terminal. If GUI is used, shut down the VM’s and use virt-manager to add 

the network device to the VM using the following settings:  

Network source: host device eth1: macvtap 

source mode: Passthrough 

device model: virtio 

 

If terminal is used, use the command virsh edit <VM name> and add the following 

lines below the currently used interface: 
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<interface type='direct' trustGuestRxFilters='yes'> 

      <mac address='52:54:00:b5:25:6c'/> 

      <source dev='eth1' mode='passthrough'/> 

      <model type='virtio'/> 

      <address type='pci' domain='0x0000' bus='0x00' slot='0x09' 

function='0x0'/> 

</interface> 

 

It is suggested to use terminal, to ensure that multicast packets are transferred using the 

trustGuestRxFilters -parameter. 

Shutdown the VM and boot up, it should have a new interface (e.g. ens10) which is now 

a straight passthrough to eth1 on the Virtualization PC (set with virsh edit or virt-

manager). However, still on the VM you must edit /etc/network/interfaces to set that 

new interface to manual mode. The new interface must also be brought down and up to 

enable the new configuration. This can be achieved with: 

nano /etc/network/interfaces 

auto ens10 

iface ens10 inet manual 

ifdown ens10 

ifup ens10 

 

Connecting Nodes to the Passthrough Bridge 

The last step is to also connect nodes to the passthrough bridge. Start with copying the 

default LXD profile and then editing the new profile. This example creates a profile 

called outroute (used by scripts). 

lxc profile cp default outroute 

lxc profile edit outroute 

 

config 

  environment.http_proxy: "" 

  user.network_mode: "" 

description: Default LXD profile 

devices: 

  eth1: 

    nictype: macvlan 

    parent: ens10 

    type: nic 

  root: 

    path: / 

    pool: default 

    type: disk 

name: outroute 

used_by: 

 

lxc profile add <node ID> outroute 

 

Give the newly created interface on a node a static IP (in this case eth2 was created, 

even though the profile says eth1) using nano /etc/network/interfaces 

auto eth2 

iface eth2 inet static 

address 10.0.10.1/24 

 

Reboot the node and remember to enable OSPF on that new IP address, e.g. 

10.0.10.0/24 area 0 in this case. 
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Enabling OSPF can be done using a script, however the interfaces IP address must still 

be set manually. Enabling OSPF can be done by using the following script: 

./conf_ospf_connection.sh <node ID> <ospf_area> out 

Useful Commands and Scripts 

This chapter has useful scripts that might be needed when working with the artifact.  

Show Networks and Links 

There is a python script that parses all the links into a readable form. This has been 

further refined into a bash script links.sh: 

./links.sh <optional, nodeID> <optional, to nodeID> 

 

For example: 

./links.sh → shows all the links in the network and their information 

./links.sh 5 → shows all the links and their information that node5 has 

./links.sh 5 6 → shows the link and its information that is between node5 and 

node6 
 

LXD’s build-in “list” command also be used. For example: 

lxc ls → shows lxc information from all nodes 

lxc ls node10 → shows lxc information from all nodes whose name starts with 

“node10” 

lxc ls node10 . → shows lxc information from node10 

lxc ls node10* → shows lxc information from nodes 1, 10, 100, 1000, etc. 

lxc ls node1* → shows lxc information from nodes 1, 11, 111, etc. 
 

Deleting Bridges 

Deleting a link between two nodes requires to first bring stop the nodes, then detaching 

the nodes from the bridge lastly deleting the bridge. All are done through LXD:  

lxc stop node1 

lxc stop node2 

lxc network detach br1_2 node1 

lxc network detach br1_2 node2 

lxc network delete br1_2 

 

Or use the script delete_link.sh <first node> <second node>. There is also a 

script called delete_all_links.sh that takes starting node ID and ending node ID as a 

range parameter and deletes all links between, and including, the nodes in that range. 

For example, deleting all the links starting from node 10 and ending in node 20: 

./delete_all_links.sh 10 20 

 

Note: This doesn’t delete the interfaces settings from /etc/network/interfaces. This can 

be done by pushing a default interfaces –file to each node, using script push_file.sh. 

First the default interfaces-file must be created and then the script can be used for 

pushing any file to any directory in a range of nodes. For example, if an interfaces -file 

was created and wanted to be pushed to nodes 10 to 20 after deleting links between 

them: 
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./push_file.sh 10 20 interfaces /etc/network/ 

 

Configuring Nodes 

Quick info of a node: 

lxc info <node> 

 

Profile handling: 

lxc profile list 

lxc profile show <profile> 

lxc profile edit <profile> 

lxc profile apply <node> <profile>,<profile2>,... 

 

Node configuration: 

lxc config show <node> 

lxc config show –expanded <node> 

lxc config edit <node> 

lxc config set <node> <key> <value> 

 

Node are located at /var/lib/lxd/containers/ 

Controlling Nodes 

For starting, stopping, deleting or restarting created nodes, there scripts for each of 

them: 

./start_containers.sh <starting node ID> <ending node ID> 

./stop_containers.sh <starting node ID> <ending node ID> 

./delete_containers.sh <starting node ID> <ending node ID> 

./restart_containers.sh <starting node ID> <ending node ID> 

 

Commands inside node: 

lxc exec <node> bash 

lxc exec <node> <command>, may require the use of separators for parsing 
lxc exec <node> -- <complicated command> 

 

File control: 

lxc file pull <node>/<path> <destination/path> 

lxc file pull <node>/path> - 

lxc file push <source> <node>/<path> 

lxc file edit <node>/<path/and/file> 

 

Static IPs on Nodes 

Create a file /etc/default/dns.conf that will have each nodes’ static IP, using nano 
/etc/default/dns.conf 

dhcp-host=<node>,<IP> 

dhcp-host=<another node>,<another IP> 

 

Add that file into /etc/default/lxd-bridge to section LXD_CONFILE and restart lxd-

bridge service. Use nano /etc/default/lxd-bridge to add the location and then 

restart the service: 

LXD_CONFILE=”/etc/default/dns.conf” 
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service lxd-bridge restart 

 

Restart nodes. 

Each nodes’ IP can also be set manually one by one: 

lxc stop <node> 

lxc network attach <bridge or interface> <node> <nodes interface>  

lxc config device set <node> <nodes interface> ipv4.address <ip 

address> 

lxc start <node> 

 

For example, adding lxdbr0 interface from VM to eth0 interface in node5 and giving the 

eth0 a static IP address of 10.0.0.2: 

lxc stop node5 

lxc network attach lxcbr0 node5 eth0 

lxc config device set node5 eth0 ipv4.address 10.0.0.2 

lxc start node5 
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