392 research outputs found

    IMPACT ASSESSMENT OF IMAGE FEATURE EXTRACTORS ON THE PERFORMANCE OF SLAM SYSTEMS

    Get PDF
    This work evaluates an impact of image feature extractors on the performance of a visual SLAM method in terms of pose accuracy and computational requirements. In particular, the S-PTAM (Stereo Parallel Tracking and Mapping) method is considered as the visual SLAM framework for which both the feature detector and feature descriptor are parametrized. The evaluation was performed with a standard dataset with ground-truth information and six feature detectors and four descriptors. The presented results indicate that the combination of the GFTT detector and the BRIEF descriptor provides the best trade-off between the localization precision and computational requirements among the evaluated combinations of the detectors and descriptors

    Visual 3-D SLAM from UAVs

    Get PDF
    The aim of the paper is to present, test and discuss the implementation of Visual SLAM techniques to images taken from Unmanned Aerial Vehicles (UAVs) outdoors, in partially structured environments. Every issue of the whole process is discussed in order to obtain more accurate localization and mapping from UAVs flights. Firstly, the issues related to the visual features of objects in the scene, their distance to the UAV, and the related image acquisition system and their calibration are evaluated for improving the whole process. Other important, considered issues are related to the image processing techniques, such as interest point detection, the matching procedure and the scaling factor. The whole system has been tested using the COLIBRI mini UAV in partially structured environments. The results that have been obtained for localization, tested against the GPS information of the flights, show that Visual SLAM delivers reliable localization and mapping that makes it suitable for some outdoors applications when flying UAVs

    Using regions of interest to track landmarks for RGBD simultaneous localisation and mapping

    Get PDF
    The simultaneous localisation and mapping (SLAM) algorithm have been widely used for autonomous navigation of robots. A type of visual SLAM that is popular among the researchers is RGBD SLAM. However processing immense image data to identify and track landmarks in RGBD SLAM can be computationally expensive for smaller robots. This dissertation presents an alternate method to reduce the computational time. The proposed algorithm extracts features from a region of interest (ROI) to track landmarks for RGBD SLAM. This strategy is compared to the traditional method of extracting features from an entire image. The ROI algorithm is implemented via a pre-processing algorithm, which is then integrated into the RGBD SLAM framework. The pre-processing pipeline implements image processing algorithms in three stages to process the data. Stage one uses a ROI algorithm to detect ROIs in an image. For visual SLAM such as RGBD SLAM, objects that are highly detailed are used as landmarks. Hence the ROI algorithm is designed to detect ROIs containing highly detailed objects. Stage two extracts features from the image and stage three uses feature matching algorithms to re-identify a ROI. Once a ROI has been successfully re-identified, it is stored and categorised as a landmark for RGBD SLAM. Scale invariant feature transform (SIFT), speeded up robust features (SURF) and orientated FAST and rotated BRIEF (ORB) are three feature extraction algorithms that are used in stage two. The outcomes from this study revealed that the pipeline was able to successfully create a database of landmarks which can be re-identified in subsequent frames. In addition, the results showed that when the pipeline is configured such that SURF features are used with a bigger ROI, RGBD SLAM produced more accurate results in determining the position of the robot compared to the traditional method of extracting features from an entire image. However, this strategy requires more computational time. The findings further revealed that this strategy still out performs the traditional method when the number of features extracted is reduced. This indicated that this strategy performs more robustly compared to the traditional method in environments that can contain few features. The method presented in this study did not improve the computational time of RGBD SLAM but did improve the accuracy in localizing the robot

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Interest point detectors for visual SLAM

    Get PDF
    In this paper we present several interest points detectors and we analyze their suitability when used as landmark extractors for vision-based simultaneous localization and mapping (vSLAM). For this purpose, we evaluate the detectors according to their repeatability under changes in viewpoint and scale. These are the desired requirements for visual landmarks. Several experiments were carried out using sequence of images captured with high precision. The sequences represent planar objects as well as 3D scenes

    PHROG: A Multimodal Feature for Place Recognition

    Get PDF
    International audienceLong-term place recognition in outdoor environments remains a challenge due to high appearance changes in the environment. The problem becomes even more difficult when the matching between two scenes has to be made with information coming from different visual sources, particularly with different spectral ranges. For instance, an infrared camera is helpful for night vision in combination with a visible camera. In this paper, we emphasize our work on testing usual feature point extractors under both constraints: repeatability across spectral ranges and long-term appearance. We develop a new feature extraction method dedicated to improve the repeatability across spectral ranges. We conduct an evaluation of feature robustness on long-term datasets coming from different imaging sources (optics, sensors size and spectral ranges) with a Bag-of-Words approach. The tests we perform demonstrate that our method brings a significant improvement on the image retrieval issue in a visual place recognition context, particularly when there is a need to associate images from various spectral ranges such as infrared and visible: we have evaluated our approach using visible, Near InfraRed (NIR), Short Wavelength InfraRed (SWIR) and Long Wavelength InfraRed (LWIR)

    A Non-Rigid Map Fusion-Based RGB-Depth SLAM Method for Endoscopic Capsule Robots

    Full text link
    In the gastrointestinal (GI) tract endoscopy field, ingestible wireless capsule endoscopy is considered as a minimally invasive novel diagnostic technology to inspect the entire GI tract and to diagnose various diseases and pathologies. Since the development of this technology, medical device companies and many groups have made significant progress to turn such passive capsule endoscopes into robotic active capsule endoscopes to achieve almost all functions of current active flexible endoscopes. However, the use of robotic capsule endoscopy still has some challenges. One such challenge is the precise localization of such active devices in 3D world, which is essential for a precise three-dimensional (3D) mapping of the inner organ. A reliable 3D map of the explored inner organ could assist the doctors to make more intuitive and correct diagnosis. In this paper, we propose to our knowledge for the first time in literature a visual simultaneous localization and mapping (SLAM) method specifically developed for endoscopic capsule robots. The proposed RGB-Depth SLAM method is capable of capturing comprehensive dense globally consistent surfel-based maps of the inner organs explored by an endoscopic capsule robot in real time. This is achieved by using dense frame-to-model camera tracking and windowed surfelbased fusion coupled with frequent model refinement through non-rigid surface deformations
    corecore