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Abstract: Long-term place recognition in outdoor environments remains a challenge due to high
appearance changes in the environment. The problem becomes even more difficult when the
matching between two scenes has to be made with information coming from different visual sources,
particularly with different spectral ranges. For instance, an infrared camera is helpful for night vision
in combination with a visible camera. In this paper, we emphasize our work on testing usual feature
point extractors under both constraints: repeatability across spectral ranges and long-term appearance.
We develop a new feature extraction method dedicated to improve the repeatability across spectral
ranges. We conduct an evaluation of feature robustness on long-term datasets coming from different
imaging sources (optics, sensors size and spectral ranges) with a Bag-of-Words approach. The tests
we perform demonstrate that our method brings a significant improvement on the image retrieval
issue in a visual place recognition context, particularly when there is a need to associate images from
various spectral ranges such as infrared and visible: we have evaluated our approach using visible,
Near InfraRed (NIR), Short Wavelength InfraRed (SWIR) and Long Wavelength InfraRed (LWIR).

Keywords: feature extraction; cross-spectral imaging; scene matching; visual place recognition

1. Introduction

Nowadays, cameras are widely used in outdoor robotics for tasks such as localization and
mapping. To ensure an efficient navigation in its environment, a robot needs a well-estimated
localization at all times, and ideally its navigation method should fit different sensors and not rely on
an exclusive one. Besides, we can imagine a fleet of agents evolving in the same area, with various
sensor devices: in a collaborative way, each agent should be able to share its map and to use map
information coming from others agents [1]. For such a purpose, chosen image descriptors have to be
suitable to each sensor and repeatable with others sensors.

A part of the localization problem based on computer vision refers to place recognition: some
images from a memory obtained during a first experience, called key-frames, are matched with images
acquired on the fly. This process serves to estimate at first an approximated position such as described
in [2,3]. This step aims to reduce the drift produced in SLAM (Simultaneous Localization And Mapping)
or to increase localization accuracy [4]. The visual place recognition process is also used as the loop
closure process as presented by Chapoulie in [5]. However, due to perceptual-aliasing in outdoor
environments as well as illumination, weather and seasonal variations, several contributions show
that this matching process is especially tricky [6–8].

Sensors 2017, 17, 1167; doi:10.3390/s17051167 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17051167
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 1167 2 of 22

In this paper, we offer an overview of the recent solutions put forward to handle the image
retrieval belonging to a visual place recognition process with a set of multimodal sensors. We propose
a new feature descriptor which improves results presented in the literature. We complement this new
descriptor definition with experimental results on local features applied to the long-term localization
problem with a Bag-of-Words approach and establish a benchmark including our algorithm and
the most popular ones. We show that our proposal outperforms the usual methods on datasets
with important constraints generated by images acquired in distinct spectral ranges (visible-NIR,
visible-SWIR and visible-LWIR).

We itemize our contributions as follows: firstly (Section 2), we lead an analysis of the
different state-of-art approaches facing multimodal datasets in the context of visual place recognition.
In a second phase (Section 3), we give details on the feature extractor we design and the reasons which
have led to such choices. In a third part (Section 4), we confront our proposal to several datasets used
in the visual place recognition community and an additional one we acquired to push further the
constraints to the limits. In a final part (Section 5), we draw conclusions on the works done and their
needs for future improvements.

2. Related Work

Classical approaches for localization, based only on visual data, deal with the same outline as
image retrieval frameworks: firstly, one or several chosen features are extracted from images, and then
an algorithm identifies the most discriminant data (mostly invariant to changes such as illumination),
and lastly the discriminant data is compared on the basis of a chosen metric (for example L1 distance).
Features used in the visual localization framework can be divided into two main categories: global
image descriptors and local features [2].

2.1. Images and Intermediates Representations

Several emerging methods rely directly on raw data from the camera. As a matter of fact, visual
sensors are particularly sensitive to high dynamic appearance changes in outdoor environments
(changes inherited from the illumination of the scene like sun visibility, shadows, etc.). A relevant
strategy performs a preprocessing step on raw images called illumination invariant transform before
computing a global description [9]. Some other authors choose as well global description of the images,
called image signatures, and compare directly these compact representations [6,8]. These methods give
interesting results but require that the query image and stored images share a very close point of view.

Local features, or point features, are heavily used in computer vision applications. Some benchmarking
on local features for general applications has already been done: reference [10] for instance or
more recently [11] which emphasizes evaluation on fast binary features. Compared to global image
descriptors, features points have some advantages. They can be used later for an estimation of relative
pose between two cameras through the computation of the fundamental or essential matrices as
explained in [12], and even to estimate a sparse 3D structure of the environment thanks to triangulation
(further explanations in [13]). These methods remain the core process of various SLAM systems as
depicted in a survey made in [14]. Nevertheless, the size of the data extracted from images depends
on the number of detected feature points whereas global image signatures have a fixed size.

A recent survey classifies Bag Of Words techniques as a third category [15]. Bag Of visual Words
(BoW) is one of the most common approach in robotics. The BoW approach is the result of an analogy
with words in textual retrieval: concepts developed for large full-text search engines are extended
to image retrieval in large database and object recognition [16,17]. Each image is represented as
a document containing words (the features). The set of visual words, or statistics obtained from this
set, is therefore coded as an intermediates representation of the image information, which is sometimes
called Mid-Level features [18]. A request on a corpus can be executed with one or several words from
the set and a ranking is established according to their distinctiveness across the documents. Bag Of
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Words and these techniques are globally efficient, but their complexity can be a burden for embedded
systems and fast computation requirements.

For a few years, the evolution of hardware capabilities, particularly GPU technologies, has incited
the revival of neural networks recipes. The computer vision community is showing a growing interest
to learned features thanks to improvements made on deep neural networks and their convolutional
variants. The dawn of deep learning on images tends to use full images as inputs and let the system
learn by itself an empirical model. The results-oriented deep learning approaches have brought relevant
performances on several common computer vision and classification problems. Results presented
in [19–21] for example outperform the previous methods. Some other authors substitute a smaller part
of the computer vision process: for example in [22], the author replaced only the feature description and
the metric steps by a deep neural network, compositing hence an implicit intermediates representation.

Nonetheless, deep learning attractiveness has major counterparts and suffers from non-negligible
drawbacks: deep convolutional neural networks are extremely greedy and require both huge datasets
to make the learning process succeed and massive computational resources. These holistic approaches
indeed are still seen as “black-boxes” and the underlying theory is an active research domain.

2.2. Features and Multimodality

Another source of problems may rise due to the diversity of sensors which leads to various
images of the real scene. As a matter of fact, different visual sensors have been used for the V-SLAM
(Visual-SLAM) task in the literature. For example, monoSLAM described in [23] proposes the use of
a single camera. In [24], the authors have developed a similar method with infrared monocular camera.
This sensor change raises another issue known by the community as multimodality. In addition to
the need of an invariance to appearance changes discussed above, the matching process has to be
extended further between data coming from sensors having different spectral ranges. Multimodal
image registration is a well documented research area for medical and aerial imaging but is quiet
recent in robotics domain.

Dedicated to visual servoing, the method described in [25] is a good example which focuses on
mutual information on whole images for registration and tracking. In [26], the authors use multimodal
image registration at the heart of a SLAM process. Reference [27] also proposes a multimodal approach
involving visible and thermal imaging systems and claims its performances in daylight as well as at
night. Nevertheless, both make use of two spectral ranges at the same time, that means using the same
mix of information coming from a particular set of sensors at all times. In this paper, we put forth
assumptions that the sensor set can change over time or between different agents and thus, the image
retrieval process should be tolerant to these changes.

Some other methods also deal with multimodality but instead of adapting algorithms from
medical imaging, they rather start from standard descriptors as SIFT or SURF usually used in computer
vision: Ricaurte et al. for instance evaluate feature points efficiency on both visible and infrared
spectra [28]. Other authors make further modifications on usual descriptors and claim that these new
descriptors are more robust to multimodal matching [29,30].

2.3. Visual Place Recognition Supervision

The image retrieval process is usually wrapped in an overall decision algorithm in the context
of a SLAM system: if the vision subsystem suggests some faulty image associations, these could
be balanced by an estimated position in a map and refined over the next sensors’ acquisitions.
The survey [2] gives details on maps and decision processes used in SLAM. The works presented here
keep the focus only on the image retrieval process without an overall reconsideration.

The most recent and probably closest publication to our work is [22]: in this paper, the authors
make the decision of substituting the feature points description and metric evaluation steps by different
Convolutional Neural Networks (CNN). They show that one of the proposed CNN provides slightly
better results than the traditional methods facing multimodality. However, they handle the feature
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point detection with various algorithms, SIFT (Scale Invariant Feature Transform) [31] and FAST (Features
from Accelerated Segment Test) [32], and various hand tuned parameters and state that it is still an
open issue. In this way, their CNN has been trained and evaluated on datasets whose image pairs
are rectified (same pixels resolution and strictly the same point of view). In our work, we make the
hypotheses that point of view of the same scene could vary. Furthermore, we evaluate our approach on
datasets with major appearance changes in order to estimate its robustness against long-term changes.
In this paper, we justify the use of Harris feature detector and propose a new feature descriptor which
improves experimental results dedicated to the visual place recognition problem and its extension to
multimodality. Compared to most papers which lead tests on two modalities (and sometimes three),
we propose a comparison between visible, near infrared (NIR), short-wavelength infrared (SWIR) and
long-wavelength infrared (LWIR).

3. Methodology

A traditional method in robotics to estimate a camera pose is the computation of the fundamental
matrix [13]. Thanks to a RANSAC (RANdom SAmple Consensus) strategy, this computation allows to
eliminate faulty feature point matchings. In Figure 1, we give an example of the remaining matched
SIFT points after the computation of the fundamental matrix. The SIFT descriptors disparity between
two spectral ranges is such that the algorithm does not converge to a satisfying solution. For that
reason, we opt for a procedure which is more widespread in the image retrieval community.

Figure 1. Fundamental matrix calculation made with extracted SIFT features. The numerous faulty
matchings pairs do not allow the algorithm to converge to a consistent result.

We detail our work in the following parts: in Section 3.1, we highlight the feature extraction process
and its sub-steps. We focus on the study of two main approaches to detect points of interest in images in
Section 3.2. We show that corner detectors are more suitable to multimodal datasets than patch-based
methods such as Differences-of-Gaussians. We draw the relevant consequences and propose a new
approach to describe the corners’ neighborhood, we call PHROG (Plural Histograms of Restricted
Oriented Gradients). We introduce the multiscale approach in Section 3.3. Specificities are given on the
description pattern used in Section 3.3 and how we extract information with a HOG-like description
in Section 3.4. In Section 3.5, we explain how a few additional computational steps can improve the
features similarity evaluation. Finally, Section 3.6 presents explanation on the Bag-of-Words retrieval
process we use. The method overview is represented in Figure 2.
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Figure 2. Overview of the method: PHROG features are extracted from a whole sequence considered
as the memory and a codebook is computed. Each image from a live sequence is then compared
consecutively with other images according to their histogram of visual words.

3.1. Features Extraction: Detection and Description

A usual way to extract relevant information from images is to choose a particular feature type:
features can be points, regions, edges or straight lines for example. Point-like interest operators are
the most common ones in SLAM or “Structure-From-Motion” applications mainly because they allow
further computation of geometrical relations between several images or a sparse 3D reconstruction of
the surrounding environment. Many different feature extractors methods have been proposed in the
literature. The computational process is usually divided into two parts: detection and description of the
feature point. The reader may refer to two surveys on detectors [33,34], a study on local descriptors [10]
and a comparative study on binary descriptors [11] to get practical details on the different algorithms
involved. Binary descriptors have been preferred for their computational speed, for a few years,
but face the “gradient reversal” problem raised by multimodality as explained in Section 3.4.

3.2. Preliminary Tests on Feature Point Detectors Repeatability

Historically, the first feature points detector methods were corner detectors: they use the close
neighborhood of each pixel to distinguish between corners and irrelevant pixels. References [35,36]
compute the “cornerness” map of an image thanks to the computation of auto-correlation matrices
and criterion on their eigenvalues. Later, studies have been led on detectors with the ability to estimate
a feature and its appropriated “scale” for description in order to enhance feature recognition even
if the viewpoint has changed. It results in methods like SIFT [31] or SURF [37] that respectively use
Difference-of-Gaussians or an approximated formula to find a feature and its scale. The features are
then closer to “patches of interest” rather than corners. These sets of connected pixels are generally
called blobs.

As observed in [22], objects in infrared images look different than in color images. Objects globally
loose their textures: for example, a screen printing with many colors and shapes seems homogeneous
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in infrared images (Figure 3). Another noteworthy example is that of vegetation which appears much
darker in visible imagery than in infrared one (a landscape looks “snowy” as in Figure 4).

Figure 3. Serigraphy in visible and infrared spectra: whereas the printed shapes are discernible in the
visible spectrum, the posters seem blank in the infrared spectrum.

Figure 4. A infrared-visible pair from our dataset introduced in section 4.5.

Knowing what happens globally to textures across different spectral ranges, we have decided
to validate the detection step itself in order to choose the best detection approach, namely corner
detection or patch of interest detection. We have taken pairs of images from the visible-LWIR dataset
introduced in [38]. Each pair has been adjusted in order to make viewpoints and resolutions of both
images (infrared and visible) exactly the same. We thus ran detection algorithms for each modality and
checked if the features are found in both modalities. We focused our tests on Harris corner detector
and Difference-of-Gaussians as implemented in the SIFT OpenCV library (http://opencv.org/releases.
html). We have considered the repeatability as the evaluation criterion, which is given, for each pair,
as a ratio between the number of points of interest detected at the same position in both images,
to the total number of points of interest returned by the algorithm in both images. The parameters
of each algorithm have been tuned to obtain the best results according to the following method:
we have computed the repeatability on a full sequence with several values for each detector parameter.
Figures 5 and 6 show the obtained results with Harris detector when tuning respectively the quality
level and the minimal distance between two contiguous detected points. The tuning of the quality ratio
can provide significant improvements on repeatability for some image pairs. Globally results are better
when a low quality level (equal to 0.0001) is chosen. Minimum distance between two pixels selected as

http://opencv.org/releases.html
http://opencv.org/releases.html
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features is a less determinant criterion on repeatability and we have chosen to keep a minimal distance
of 2 pixels in order to detect less points while preserving the repeatability.

We define a tolerance of two pixels in positions returned by each algorithm. Figure 7 gives the
repeatability results according to each pair of the visible-LWIR dataset [22]. For each image pair,
the repeatability is far better with a corner-like detection approach. We assume that these results are
due to the fact that object’s shapes are mostly the same in both modalities whereas textures tend to
differ. Corner-like features conception is more correlated to the object’s shapes than patch-like ones.
Hence we have chosen to use the Harris method as the detector procedure.
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Figure 5. Detector parameters tuning: repeatability for several “quality levels” according to each image
pair in the dataset.
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Figure 6. Detector parameters tuning: repeatability for different minimal distances (in pixels) ccording
to each image pair in the dataset.
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Figure 7. Detectors repeatability on LWIR dataset according to each image pair in the dataset.

3.3. Multiscale Description Pattern

Given the Harris nature, we have no prior information concerning the scale of the image patch to
describe. Hence, we have conceived to establish several descriptions at different scale levels. We call this
approach PHROG. As done by scale invariant features like SIFT, we compute a Pyramid of Gaussian for
that purpose: the first scale level is the original image. To compose next levels, we convolute the source
image with a 5× 5 Gaussian kernel to smooth and remove its high-frequency components. We then
down-sample the resulting image by taking one pixel out of every two in both directions. We make
new iterations like this according to the desired scale level number. During our experimentations,
as we get images from sensors having different resolutions and with varying viewpoints of the scene,
we evaluate the efficiency of PHROG with several numbers of scale description. We use Precision-Recall
curves and their AUC (Area Under the Curve) as an evaluation of the performance of PHROG with
different scale parameters. We give, in Figure 8, an example of the results obtained on the VPrice
dataset (which is introduced in Section 4.4). We find that 5 scale levels are appropriate because the
computation of supplementary levels brings no significant benefits on matching results and is a good
compromise for the memory cost of our proposal. We make no further corner refinement or additional
image interpolation.
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Figure 8. Precision-Recall curves and related Area Under The Curves (AUC) according to the number
of levels description used in PHROG when applied on the VPrice dataset.

3.4. Gradient Direction Invariant HoG Features

On each level, we compose a descriptor inspired by SIFT pattern (cf. Figure 9): we consider
a neighborhood of 4× 4 areas which are 4× 4 pixels sized. Central areas overlap each other so that
corner pixel (the center position of the feature) is included in 4 areas and each pixel remaining at
the same abscissa or ordinate belongs to 2 areas. Unlike SIFT descriptor, we make no additional
weighting on the pixels intensity value before the following processing: given the overlapping area,
the information from central pixels is already considered twice compared to the other pixels (even four
times for the central pixel).

4px

4px

pt

Figure 9. Pattern used during the description process. It defines areas to be extracted around a feature point.

For each given area, we compute a N-bins Histogram of Oriented Gradients. The “gradient
reversals” problem due to multispectral imaging is explained in [29]: a particular material has different
reflectance properties according to spectral ranges such that two different materials may have varying
responses when a scene is observed with several sensors. Particularly, an area of high contrast in
an image due to the edges of an object of one material in front of another object with a different material
may appear as its own negative with another sensor: white pixels in the first image appear as black
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in the second one and vice versa. If we compute HOG on both images, gradients will have the same
orientation and approximately the same norm but an opposed direction.

In order to handle the gradient reversals, we restricted a traditional HOG descriptor to a half-size
one of which opposed gradient directions are summed (Equations (1) and (2)). This concept is
exemplified in Figure 10: in this way, we keep in the descriptor the gradient orientation information
without its direction.

hi = ∑
k

αθk rk (1)

αθk =

{
1 if θk ∈ [ i

N π, i+1
N π] ∪ [ i

N π + π, i+1
N π + π]

0 else
(2)

with N, the chosen number of bins in the histogram, hi the ith bin, θk the orientation of the gradient
at pixel k and rk the magnitude of the gradient at pixel k. Coefficient αθk is equal to 1 when the
orientation of the gradient at pixel k is included in the interval [ i

N π, i+1
N π] or in its opposite direction

(in [ i
N π + π, i+1

N π + π]).

+

HOG feature

for a patch modified HOG

Figure 10. HOG feature to gradient reversals invariant HOG feature conversion: gradients with
opposing direction are added. Descriptors are hence twice smaller.

3.5. Hellinger Kernel on Descriptors

It has been proved in several studies that using Euclidean distance is not the best practice to
compare features which carry information in the form of histograms. For these particular cases, χ2 or
Hellinger measures are a better choice. In this way, authors from [39] propose some modifications
on SIFT descriptor and called it RootSIFT. The idea behind this tweaking is that comparing RootSIFT
descriptors with the help of Euclidean distance is the same than applying the Hellinger kernel on
original SIFT descriptors. We apply the same process on our histograms of gradients: given x1 and x2

two vectors with unit Euclidean norm (‖xi‖2 = 1), their Euclidean distance is given by Equations (3)
and (4):

dEucl(x1, x2) = ‖x1 − x2‖2 =
√
‖x1‖2

2 + ‖x2‖2
2 − 2x1

Tx2 (3)

dEucl(x1, x2) =
√

2− 2KEucl(x1, x2) (4)

where KEucl(x1, x2) = x1
Tx2 is the Euclidean kernel (or similarity). We would like to change this

similarity by the Hellinger kernel given in Equation (5):

KHell(x1, x2) =
N

∑
j=1

√
x1 jx2 j (5)

for x1 and x2 two L1 normalized histograms (∑N
j=1 xi j = 1 and xi j ≥ 0). An easy way to compute

Hellinger similarity on descriptors is to normalize the histograms vectors and square root each
histograms element. Thus, KEucl(

√
x1,
√

x2) =
√

x1
T√x2 = KHell(x1, x2) and using the Euclidean
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distance on these preprocessed descriptors is equivalent to making use of the Hellinger similarity on
initial descriptors.

3.6. Bag-of-Words Retrieval

A common strategy used for image retrieval is to compute a Bag-of-Words as explained in [16].
Used data are divided into two sets: the first composes the memory and the second one is referred to
as “live” or “online” sequence because this information is usually acquired progressively during the
localization process. Bag-of-Words retrieval takes advantage of a preprocessing step applied on images
from the memory part of the dataset. A global schema of the Bag-of-Words process is presented in
Figure 11. All feature points are first extracted from all images from the memory. A K-means algorithm
then separates the whole descriptors space in K clusters (from 1000 to 8000 clusters according to the
different test cases). The set of each cluster’s mean descriptor is outlined as the vocabulary. All the
descriptors are then quantized relatively to this vocabulary. Each word of the vocabulary is subsequently
weighted by a TF-IDF score (Term Frequency-Inverse Document Frequency). The calculation of TF-IDF
scores is a product of two terms:

• tfi,j (Term Frequency) is defined as follows (Equation (6)):

tfi,j ,
ni,j

∑
|I|
k=1 nk,j

(6)

where ni,j is the number of occurrences of the word having index i in the dictionary, in the image
having index j in the memory database, and |I| is the total number of images in the corpus.

• idfi (Inverse Document Frequency) is defined as follows (Equation (7)):

idfi , log
|I|

|{ij : wi ∈ ij}|
(7)

where |I| is the total number of images in the corpus and |{ij : wi ∈ ij}| is the number of images
where the word wi occurs.

Clustering in descriptors space (K-means clustering)

Set of features descriptors

Clusters center

Hard quantization Visual words histogram

Figure 11. Bag-of-Words approach: a “learning dataset” is first used to cluster extracted features in the
descriptor space. Features are then quantified according to nearest cluster. The resulting representation
of the images are visual words histograms.

Thus, scores tf-idfi,j = tfi,j × idfi allow us to specify words which are the most relevant both in
a given image from the memory and in the whole database. During the processing of the “on-line”
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sequence, we extract features from each frame and quantify them relatively to the dictionary computed
with memory sequence. The most relevant words found in the current image figure out the closest
image from the memory.

4. PHROG Applied to the Visual Place Recognition Problem

As mentioned in the introduction, several works and developments have been made to deal with
the long-term visual place recognition problem. These works focus on two main approaches: the first
one concerns with the image description itself and tried studies to improve the image matching one
by one. The other way considers a sequence and not only a single image. Thus, temporal coherence
allows to envision a filtering on faulty image matching. Works presented in this paper remain to the
first one. Our aim is to improve the matching of two images of the same scene when sensors with
different spectral ranges are used. In order to evaluate our method and usual well-known methods
in the literature, we use several datasets. Some come from recent available anterior works in the
community. We have prepared our own additional dataset to evaluate the different techniques against
increased constraints and difficulties.

For each test case, we take one modality from a dataset (being visible or infrared) and build
a codebook off-line. We refer to this subset as the “memory”. After a few experimentations, we have
determined that codebooks composed of 1000 words are a good compromise between efficiency and
computing speed. We refer to the other subset as the “live” sequence. It is composed of images from
the other modality composing the dataset. In other words, for each test case, the codebook is built
thanks to a single modality and the image retrieval step is always performed with another modality.
We try to match each image composing the live subset by founding the closest image in the memory
according to the histograms of words in each image. If both memory image returned by the algorithm
and live image come from the same pair, we consider the test as a true positive, else as a false positive.
We experiment this method on the following test cases presented in the next parts. We give for each
one the ratio between true positives and total number of live images in the dataset. We also show in
Figure 12 an example where our proposed algorithm fails because of dominant aliasing between both
scenes (shape of the railroad, building on the right side, background with mountains, etc.).

Figure 12. An example when the algorithm fails. The aliasing between the queried image (left side)
and the image in memory returned by the algorithm is major.

4.1. Experimental Setup

We have led the experimentations on a desktop computer running Ubuntu 16.04 LTS with an Intel
Core i7 processor and 8 GiBytes of RAM. We have limited to 10, 000 the number of feature points
detected in each frame. We have given details about the description pattern above (Figure 9), and the
HOG modification. A PHROG descriptor vector is thus 2 times smaller (64 values) than a SIFT one.
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With such parameters, computing a codebook of 1000 visual words lasts between one hour and two
hours depending on the considered dataset.

4.2. Experimentations on Visible and Near-InfraRed Images

The first dataset comes from EPFL (École Polytechnique Fédérale de Lausanne in Switzerland) and
is presented in [40]. It is composed of several sorted subsets: country, field, forest, indoor, mountain,
oldbuilding, street, urban and water. Each subset is composed of about 50 images pairs. Each pair is
comprised of a visible image and a near-infrared (NIR) counterpart. Images from each pair have been
rectified by the authors so that viewpoints and resolutions are strictly the same. A pair example is
given in Figure 13. We choose to focus on urban, street and country subsets which are closer to robotics
and navigation use-cases. The country subset was indeed used in [22] as the learning dataset for the
whole experimentations. We choose alternatively the NIR images and the visible set as the memory
and its live counterpart.

We give results in Table 1, Figures 14–16 for each subset and detector-descriptor association and
we show an example of a confusion matrix obtained on the urban dataset with PHROG (Figure 17).
We can easily see that the diagonal of the confusion matrix presents the lowest distances between
images: datasets have been synchronized in order to compute performance in a simple way. It allows us
to consider that images associated on the diagonal are the truth and the others are distances computed
for false matchings. This configuration of the confusion matrices makes possible the computation of
Precision-Recall (PR) curves and their AUC (Area Under The Curve). PR curves have been widely used
to evaluate search processes: a perfect classifier should present a PR curve going from (0, 1) to (1, 0)
points with an area as close as possible to 1. With such consideration, the best method from a set is the
one which presents the highest AUC.

Figure 13. A Visible-NIR pair from the “EPFL” dataset.

Table 1. Results (matching ratio) on Visible-NIR dataset.

Dataset

Urban Street CountryModality as Memory

Visible NIR Visible NIR Visible NIR

SIFT-SIFT 96% 94% 78% 66% 40% 34%
SIFT-GISIFT 98% 94% 70% 64% 34% 32%
FAST-SIFT 100% 100% 96% 96% 75% 76%
Harris-SIFT 100% 98% 88% 92% 73% 61%

Harris-GISIFT 100% 100% 90% 90% 69% 67%
Our Method 100% 100% 96% 94% 73% 80%
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Figure 14. Precision-Recall curves from the “urban” dataset and AUC (Area Under the Curve) for
each method.
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Figure 15. Precision-Recall curves from the “street” dataset and AUC (Area Under the Curve) for
each method.
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Figure 16. Precision-Recall curves from the “country” dataset and AUC (Area Under the Curve) for
each method.
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Figure 17. Confusion matrix between the memory sequence and the live sequence from the urban
dataset obtained with PHROG. Values in the matrix are the distances computed for each possible
image pair.

As it can be seen, NIR images are not so different from visible images. It appears that image
retrieval with traditional features gives very good matching ratios (see urban and street datasets). By the
way, results on country dataset are more disparate: one possible explanation is that vegetation is much
more present in this dataset and hence the gradient reversal problem appears more frequently than
with building and inorganic matters. PR curves show that PHROG is the best on “urban” and “street”
datasets: its AUC is higher by at least 9% than other evaluated methods. On the “country” dataset,
PHROG does not hit the best AUC but its precision remains the best when recall is low: it is significant
because it means that if the searching process returns only one result, PHROG gives the best answer.
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4.3. Experimentations on Visible and Long-Wavelength InfraRed Images

This part handles infrared images from a spectral range much further from visible spectrum than
the previous one. We used the visible and Long-Wavelength InfraRed dataset introduced in [22,38].
This spectral range is appreciated for its thermal response and its possible usage as night vision system.
This dataset encompasses outdoor view scenes of the Barcelona campus. Images from this dataset
have also been rectified by their authors so that resolutions and viewpoints are the same. An instance
from the dataset is given in Figure 18.

We try two situations by switching the modality used as the memory. The results are summed
up in Table 2 and Figure 19 presents the PR curves. We can observe that matching ratio are slightly
better when the LWIR subset is used as the source of the codebook composition. We suppose that
less textured images enhance the computation of the visual words dictionary. Besides, our descriptor
PHROG demonstrates its value on this dataset. PHROG gives significantly better results than the
other methods with exactly the same parameters than on the EPFL dataset. However, we can note
that AUC are very low (below 5%), even if the precision of PHROG is good when the recall is low.
It means that the distances between images for true and false matchings are very close from each other
but discriminant enough when there is a need to retrieve only one image. The further spectral ranges
are, higher the differences between two frames are and the less efficient the usual methods become.

Figure 18. A Visible-NIR pair from the “Barcelona dataset”.
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Figure 19. Precision-Recall curves from the “Barcelona” dataset and AUC (Area Under the Curve) for
each method.
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Table 2. Results (matching ratio) on Barcelona dataset.

Modality Used as Memory Set
Method LWIR Visible

SIFT-SIFT 9% 9%
SIFT-GISIFT 11% 9%
FAST-SIFT 22% 9%
Harris-SIFT 18% 20%

Harris-GISIFT 52% 38%
Our method 61% 56%

4.4. Experimentations on VPrice Dataset

In this part, we use a dataset which is composed of images picked up from the VPrice dataset
(https://roboticvision.atlassian.net/wiki/pages/viewpage.action?pageId=14188617); an example
from this dataset is given in the Figure 20. It has been designed to evaluate long-term place recognition.
Both sequences from the dataset have been taken using sensors dealing with the visible spectra but
at two different times so that seasonal changes are preponderant. Compared to the two previous
datasets, images are not rectified so that two images from the same pair have a different point of view.
References [7,17] present interesting results on this dataset but give no details on feature extractors
performance on single images: they only introduce an average accuracy of their respective method on
the whole sequences matching. We apply the same evaluation protocol without sequential approach
on this dataset and get the results presented in Table 3 and Figure 21.

Figure 20. An image pair from the “VPrice dataset”.

Table 3. Results (matching ratio) on VPrice dataset.

Method Efficiency

SIFT-SIFT 36%
SIFT-GISIFT 42%
FAST-SIFT 68%
Harris-SIFT 52%

Harris-GISIFT 47%
Our method 73%

Even if this dataset is quite challenging, PHROG feature permits an image retrieval task which
is faulty approximately only one time in four and outperforms the other methods we have tested.
PHROG presents the best AUC and the best precision when recall is low.

https://roboticvision.atlassian.net/wiki/pages/viewpage.action? pageId=14188617
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Figure 21. Precision-Recall curves from the “VPRiCE” dataset and AUC (Area Under the Curve) for
each method.

4.5. Experimentations on our Visible-SWIR Dataset

The last test case implies our own dataset. It has been made with a visible camera and a SWIR
sensor. This dataset is much more challenging because image resolution and viewpoints are not the
same. Evermore, one subset has been acquired several months later so that vegetation appearance is
very different (with and without leaves). Figure 22 is an instance of this dataset. The SWIR set, with the
smallest resolution, has been used as the memory first and the two modalities have been switched then.
Results are presented in Table 4 and Figure 23. Our method shows again good results compared to the
usual descriptors. A notable remark has to be made concerning the choice of the memory: results are
better when the SWIR composes the memory than the visible one. We assume that the low and noisy
resolution of the SWIR leads to less informative descriptors, and more general representations than
with the visible set. Nevertheless, these results are poor in absolute terms, AUC are very low and no
method raises significant results if we consider only the PR curves. We have taken this SWIR camera
to make a step further in a highly constrained situation. Obviously, this camera is not the best choice
to do when designing an embedded system, because of its low resolution compared to other devices,
the noise generated on the images and its little interest in low light situations. Indeed, the visual place
recognition problem requires additional process like filtering to refine matching with several incoming
images for example.

Table 4. Results (matching ratio) on Long-Term dataset.

Modality Used as Memory Set
Method SWIR Visible

SIFT-SIFT 15% 5%
SIFT-GISIFT 20% 10%
FAST-SIFT 15% 20%
Harris-SIFT 15% 10%

Harris-GISIFT 25% 15%
Our method 35% 15%
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Figure 22. A Visible-SWIR pair from our dataset.
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Figure 23. Precision-Recall curves from the “Long-Term” dataset and AUC (Area Under the Curve) for
each method.

5. Conclusions

Vision sensors have been investigated and valued for years in robotics, notably for outdoor
applications and autonomous navigation. Studies and implementations have been led with several
kind of cameras whose spectral sensibility differs. Each spectral range brings its strengths and
weaknesses, resulting in technical choices made according to the final purpose: for instance, a color
camera for road sign recognition, a near infrared one to enhance perception during foggy days
and thermal infrared for pedestrian detection or even visual localization at night. Owing to such
considerations, there is a diversity of systems processing variable kind of sensors data. In the pursuit
of cooperating systems sharing their information collected in the surrounding environment, there is
a need to design methods which are generalizable enough across spectral ranges.

Whereas a few works emphasize on these issues, we have considered in this paper the constraints
introduced by the sensor invariance need, particularly when robotics systems embed cameras with
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different spectral ranges. We have studied image retrieval approaches between a visible dataset
and an infrared one, being NIR, SWIR or LWIR. We have made these experimentations along with
the typical constraints studied in the long-term visual place recognition literature: viewpoint and
image resolution changes, long-term appearance evolution and illumination variations of the scene.
The developed work in this paper proposes a new feature description method: based on a scoping
study, we have determined that feature detectors dealing with contrasted shapes like Harris are
more appropriated to a cross-modality repeatability. We have proposed a description pattern with
a modified HOG feature which maximizes repeatability across different spectral ranges. This feature is
then extracted at several scales in order to face the viewpoint changes.

We have evaluated our proposal on several well-known datasets used for multimodal feature
benchmarking and one dedicated to visual place recognition. We have proposed another dataset
with a SWIR sensor whose attributes (resolution for example) are more challenging. In that way,
our paper presents experimental results on four kind of cameras with different spectral ranges, ensuring
that our proposal do not over-fit a particular couple of visible/IR sensors but is rather generalized.
We have noticed that some methods can be discriminant enough with a Bag-of-Word approach
and are relevant for long-term localization. By the way, multimodal association still necessitates
improvements, particularly when the sequences to be matched are more challenging due to the
rise of additive constraints (perceptual changes, distant spectral ranges, inconsistent resolutions,
noise, etc.). Our proposal shows interesting results which outperforms the traditional feature extractors.
Local features still remain an interesting solution for SLAM-like issue: combined with data storage and
retrieval methods (namely Bag-of-Words) for global localization and loop closure detection. As a future
work, we plan to make this new image descriptor method part of a global SLAM system. This overall
supervision will also permit to envision further an on-line visual localization process.
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