5,150 research outputs found

    Streaming and 3D mapping of agri-data on mobile devices

    Get PDF
    Farm monitoring and operations generate heterogeneous AGRI-data from a variety of different sources that have the potential to be delivered to users ‘on the go’ and in the field to inform farm decision making. A software framework capable of interfacing with existing web mapping services to deliver in-field farm data on commodity mobile hardware was developed and tested. This raised key research challenges related to: robustness of data steaming methods under typical farm connectivity scenarios, and mapping and 3D rendering of AGRI-data in an engaging and intuitive way. The presentation of AGRI-data in a 3D and interactive context was explored using different visualisation techniques; currently the 2D presentation of AGRI- data is the dominant practice, despite the fact that mobile devices can now support sophisticated 3D graphics via programmable pipelines. The testing found that WebSockets were the most reliable streaming method for high resolution image/texture data. From our focus groups there was no single visualisation technique that was preferred demonstrating that a range of methods is a good way to satisfy a large user base. Improved 3D experience on mobile phones is set to revolutionize the multimedia market and a key challenge is identifying useful 3D visualisation methods and navigation tools that support the exploration of data driven 3D interactive visualisation frameworks for AGRI-data

    Prediction-Based Prefetching for Remote Rendering Streaming in Mobile Virtual Environments

    Get PDF
    Remote Image-based rendering (IBR) is the most suitable solution for rendering complex 3D scenes on mobile devices, where the server renders the 3D scene and streams the rendered images to the client. However, sending a large number of images is inefficient due to the possible limitations of wireless connections. In this paper, we propose a prefetching scheme at the server side that predicts client movements and hence prefetches the corresponding images. In addition, an event-driven simulator was designed and implemented to evaluate the performance of the proposed scheme. The simulator was used to compare between prediction-based prefetching and prefetching images based on spatial locality. Several experiments were conducted to study the performance with different movement patterns as well as with different virtual environments (VEs). The results have shown that the hit ratio of the prediction-based scheme is greater than the localization scheme in the case of random and circular walk movement patterns by approximately 35% and 17%, respectively. In addition, for a VE with high level of details, the proposed scheme outperforms the localization scheme by approximately 13%. However, for a VE with low level of details the localization based scheme outperforms the proposed scheme by only 5%

    From Capture to Display: A Survey on Volumetric Video

    Full text link
    Volumetric video, which offers immersive viewing experiences, is gaining increasing prominence. With its six degrees of freedom, it provides viewers with greater immersion and interactivity compared to traditional videos. Despite their potential, volumetric video services poses significant challenges. This survey conducts a comprehensive review of the existing literature on volumetric video. We firstly provide a general framework of volumetric video services, followed by a discussion on prerequisites for volumetric video, encompassing representations, open datasets, and quality assessment metrics. Then we delve into the current methodologies for each stage of the volumetric video service pipeline, detailing capturing, compression, transmission, rendering, and display techniques. Lastly, we explore various applications enabled by this pioneering technology and we present an array of research challenges and opportunities in the domain of volumetric video services. This survey aspires to provide a holistic understanding of this burgeoning field and shed light on potential future research trajectories, aiming to bring the vision of volumetric video to fruition.Comment: Submitte

    Network streaming and compression for mixed reality tele-immersion

    Get PDF
    Bulterman, D.C.A. [Promotor]Cesar, P.S. [Copromotor

    Prediction-based Prefetching for Remote Rendering Streaming in Mobile Virtual Environments

    Full text link

    A Telerehabilitation System for the Selection, Evaluation and Remote Management of Therapies

    Get PDF
    Telerehabilitation systems that support physical therapy sessions anywhere can help save healthcare costs while also improving the quality of life of the users that need rehabilitation. The main contribution of this paper is to present, as a whole, all the features supported by the innovative Kinect-based Telerehabilitation System (KiReS). In addition to the functionalities provided by current systems, it handles two new ones that could be incorporated into them, in order to give a step forward towards a new generation of telerehabilitation systems. The knowledge extraction functionality handles knowledge about the physical therapy record of patients and treatment protocols described in an ontology, named TRHONT, to select the adequate exercises for the rehabilitation of patients. The teleimmersion functionality provides a convenient, effective and user-friendly experience when performing the telerehabilitation, through a two-way real-time multimedia communication. The ontology contains about 2300 classes and 100 properties, and the system allows a reliable transmission of Kinect video depth, audio and skeleton data, being able to adapt to various network conditions. Moreover, the system has been tested with patients who suffered from shoulder disorders or total hip replacement.This research was funded by the Spanish Ministry of Economy and Competitiveness grant number FEDER/TIN2016-78011-C4-2R

    Analysis of user behavior with different interfaces in 360-degree videos and virtual reality

    Get PDF
    [eng] Virtual reality and its related technologies are being used for many kinds of content, like virtual environments or 360-degree videos. Omnidirectional, interactive, multimedia is consumed with a variety of devices, such as computers, mobile devices, or specialized virtual reality gear. Studies on user behavior with computer interfaces are an important part of the research in human-computer interaction, used in, e.g., studies on usability, user experience or the improvement of streaming techniques. User behavior in these environments has drawn the attention of the field but little attention has been paid to compare the behavior between different devices to reproduce virtual environments or 360-degree videos. We introduce an interactive system that we used to create and reproduce virtual reality environments and experiences based on 360-degree videos, which is able to automatically collect the users’ behavior, so we can analyze it. We studied the behavior collected in the reproduction of a virtual reality environment with this system and we found significant differences in the behavior between users of an interface based on the Oculus Rift and another based on a mobile VR headset similar to the Google Cardboard: different time between interactions, likely due to the need to perform a gesture in the first interface; differences in spatial exploration, as users of the first interface chose a particular area of the environment to stay; and differences in the orientation of their heads, as Oculus users tended to look towards physical objects in the experiment setup and mobile users seemed to be influenced by the initial values of orientation of their browsers. A second study was performed with data collected with this system, which was used to play a hypervideo production made of 360-degree videos, where we compared the users’ behavior with four interfaces (two based on immersive devices and the other two based on non-immersive devices) and with two categories of videos: we found significant differences in the spatiotemporal exploration, the dispersion of the orientation of the users, in the movement of these orientations and in the clustering of their trajectories, especially between different video types but also between devices, as we found that in some cases, behavior with immersive devices was similar due to similar constraints in the interface, which are not present in non-immersive devices, such as a computer mouse or the touchscreen of a smartphone. Finally, we report a model based on a recurrent neural network that is able to classify these reproductions with 360-degree videos into their corresponding video type and interface with an accuracy of more than 90% with only four seconds worth of orientation data; another deep learning model was implemented to predict orientations up to two seconds in the future from the last seconds of orientation, whose results were improved by up to 19% by a comparable model that leverages the video type and the device used to play it.[cat] La realitat virtual i les tecnologies que hi estan relacionades es fan servir per a molts tipus de continguts, com entorns virtuals o vídeos en 360 graus. Continguts multimèdia omnidireccional i interactiva són consumits amb diversos dispositius, com ordinadors, dispositius mòbils o aparells especialitzats de realitat virtual. Els estudis del comportament dels usuaris amb interfícies d’ordinador són una part important de la recerca en la interacció persona-ordinador fets servir en, per exemple, estudis de usabilitat, d’experiència d’usuari o de la millora de tècniques de transmissió de vídeo. El comportament dels usuaris en aquests entorns ha atret l’atenció dels investigadors, però s’ha parat poca atenció a comparar el comportament dels usuaris entre diferents dispositius per reproduir entorns virtuals o vídeos en 360 graus. Nosaltres introduïm un sistema interactiu que hem fet servir per crear i reproduir entorns de realitat virtual i experiències basades en vídeos en 360 graus, que és capaç de recollir automàticament el comportament dels usuaris, de manera que el puguem analitzar. Hem estudiat el comportament recollit en la reproducció d’un entorn de realitat virtual amb aquest sistema i hem trobat diferències significatives en l’execució entre usuaris d’una interfície basada en Oculus Rift i d’una altra basada en un visor de RV mòbil semblant a la Google Cardboard: diferent temps entre interaccions, probablement causat per la necessitat de fer un gest amb la primera interfície; diferències en l’exploració espacial, perquè els usuaris de la primera interfície van triar romandre en una àrea de l’entorn; i diferències en l’orientació dels seus caps, ja que els usuaris d’Oculus tendiren a mirar cap a objectes físics de la instal·lació de l’experiment i els usuaris dels visors mòbils semblen influïts pels valors d’orientació inicials dels seus navegadors. Un segon estudi va ser executat amb les dades recollides amb aquest sistema, que va ser fet servir per reproduir un hipervídeo fet de vídeos en 360 graus, en què hem comparat el comportament dels usuaris entre quatre interfícies (dues basades en dispositius immersius i dues basades en dispositius no immersius) i dues categories de vídeos: hem trobat diferències significatives en l’exploració de l’espaitemps del vídeo, en la dispersió de l’orientació dels usuaris, en el moviment d’aquestes orientacions i en l’agrupació de les seves trajectòries, especialment entre diferents tipus de vídeo però també entre dispositius, ja que hem trobat que, en alguns casos, el comportament amb dispositius immersius és similar a causa de límits semblants en la interfície, que no són presents en dispositius no immersius, com amb un ratolí d’ordinador o la pantalla tàctil d’un mòbil. Finalment, hem reportat un model basat en una xarxa neuronal recurrent, que és capaç de classificar aquestes reproduccions de vídeos en 360 graus en els seus corresponents tipus de vídeo i interfície que s’ha fet servir amb una precisió de més del 90% amb només quatre segons de trajectòria d’orientacions; un altre model d’aprenentatge profund ha estat implementat per predir orientacions fins a dos segons en el futur a partir dels darrers segons d’orientació, amb uns resultats que han estat millorats fins a un 19% per un model comparable que aprofita el tipus de vídeo i el dispositiu que s’ha fet servir per reproduir-lo.[spa] La realidad virtual y las tecnologías que están relacionadas con ella se usan para muchos tipos de contenidos, como entornos virtuales o vídeos en 360 grados. Contenidos multimedia omnidireccionales e interactivos son consumidos con diversos dispositivos, como ordenadores, dispositivos móviles o aparatos especializados de realidad virtual. Los estudios del comportamiento de los usuarios con interfaces de ordenador son una parte importante de la investigación en la interacción persona-ordenador usados en, por ejemplo, estudios de usabilidad, de experiencia de usuario o de la mejora de técnicas de transmisión de vídeo. El comportamiento de los usuarios en estos entornos ha atraído la atención de los investigadores, pero se ha dedicado poca atención en comparar el comportamiento de los usuarios entre diferentes dispositivos para reproducir entornos virtuales o vídeos en 360 grados. Nosotros introducimos un sistema interactivo que hemos usado para crear y reproducir entornos de realidad virtual y experiencias basadas en vídeos de 360 grados, que es capaz de recoger automáticamente el comportamiento de los usuarios, de manera que lo podamos analizar. Hemos estudiado el comportamiento recogido en la reproducción de un entorno de realidad virtual con este sistema y hemos encontrado diferencias significativas en la ejecución entre usuarios de una interficie basada en Oculus Rift y otra basada en un visor de RV móvil parecido a la Google Cardboard: diferente tiempo entre interacciones, probablemente causado por la necesidad de hacer un gesto con la primera interfaz; diferencias en la exploración espacial, porque los usuarios de la primera interfaz permanecieron en un área del entorno; y diferencias en la orientación de sus cabezas, ya que los usuarios de Oculus tendieron a mirar hacia objetos físicos en la instalación del experimento y los usuarios de los visores móviles parecieron influidos por los valores iniciales de orientación de sus navegadores. Un segundo estudio fue ejecutado con los datos recogidos con este sistema, que fue usado para reproducir un hipervídeo compuesto de vídeos en 360 grados, en el que hemos comparado el comportamiento de los usuarios entre cuatro interfaces (dos basadas en dispositivos inmersivos y dos basadas en dispositivos no inmersivos) y dos categorías de vídeos: hemos encontrado diferencias significativas en la exploración espaciotemporal del vídeo, en la dispersión de la orientación de los usuarios, en el movimiento de estas orientaciones y en la agrupación de sus trayectorias, especialmente entre diferentes tipos de vídeo pero también entre dispositivos, ya que hemos encontrado que, en algunos casos, el comportamiento con dispositivos inmersivos es similar a causa de límites parecidos en la interfaz, que no están presentes en dispositivos no inmersivos, como con un ratón de ordenador o la pantalla táctil de un móvil. Finalmente, hemos reportado un modelo basado en una red neuronal recurrente, que es capaz de clasificar estas reproducciones de vídeos en 360 grados en sus correspondientes tipos de vídeo y la interfaz que se ha usado con una precisión de más del 90% con sólo cuatro segundos de trayectoria de orientación; otro modelo de aprendizaje profundo ha sido implementad para predecir orientaciones hasta dos segundos en el futuro a partir de los últimos segundos de orientación, con unos resultados que han sido mejorados hasta un 19% por un modelo comparable que aprovecha el tipo de vídeo y el dispositivo que se ha usado para reproducirlo
    corecore