1,510 research outputs found

    Holonic supply chain:a study from family-based manufacturing perspective

    Get PDF
    In the contemporary business environment, to adhere to the need of the customers, caused the shift from mass production to mass-customization. This necessitates the supply chain (SC) to be effective flexible. The purpose of this paper is to seek flexibility through adoption of family-based dispatching rules under the influence of inventory system implemented at downstream echelons of an industrial supply chain network. We compared the family-based dispatching rules in existing literature under the purview of inventory system and information sharing within a supply chain network. The dispatching rules are compared for Average Flow Time performance, which is averaged over the three product families. The performance is measured using extensive discrete event simulation process. Given the various inventory related operational factors at downstream echelons, the present paper highlights the importance of strategically adopting appropriate family-based dispatching rule at the manufacturing end. In the environment of mass customization, it becomes imperative to adopt the family-based dispatching rule from the system wide SC perspective. This warrants the application of intra as well as inter-echelon information coordination. The holonic paradigm emerges in this research stream, amidst the holistic approach and the vital systemic approach. The present research shows its novelty in triplet. Firstly, it provides leverage to manager to strategically adopting a dispatching rule from the inventory system perspective. Secondly, the findings provide direction for the attenuation of adverse impact accruing from demand amplification (bullwhip effect) in the form of inventory levels by appropriately adopting family-based dispatching rule. Thirdly, the information environment is conceptualized under the paradigm of Koestler's holonic theory

    Inventory models with lateral transshipments : a review

    Get PDF
    Lateral transshipments within an inventory system are stock movements between locations of the same echelon. These transshipments can be conducted periodically at predetermined points in time to proactively redistribute stock, or they can be used reactively as a method of meeting demand which cannot be satised from stock on hand. The elements of an inventory system considered, e.g. size, cost structures and service level denition, all in uence the best method of transshipping. Models of many dierent systems have been considered. This paper provides a literature review which categorizes the research to date on lateral transshipments, so that these dierences can be understood and gaps within the literature can be identied

    Evaluating Obselete Inventory Policies in a Hospital\u27s Supply Chain

    Get PDF
    Numerous organizations are currently facing inventory management problems including distributing inventory on time and maintaining the appropriate inventory level to satisfy the end user. Organizations understand the importance of inventory accuracy as any error will increase the purchasing and holding costs affecting investment decisions. Lack of information about effective measures that will allow management to make important business decisions motivated this research to identify a decision criterion for warehouse management. A feasible solution of calculating the carrying cost ratio from purchasing and holding cost is the main objective of this thesis. The carrying cost ratio will allow managers to make critical decisions on supply-chain management. Similar to the carrying cost ration, this thesis also provides a methodology for warehouse management using inventory turns that can be used to identify obsolete inventory. Friedman’s Rank test was performed to validate the decision using primary turns for the dataset obtained from a local hospital. Recommendations have been made to the hospital to facilitate their supply chain that will result in the reduction of excessive inventory. A reduced carrying cost ratio demonstrates consolidating commodities into fewer facilities. The future benefits for the current organization include a reduce building and facility costs, decrease in annual operating budgets, reduction in warehouse operational cost, improvement in labor productivity, warehouse space utilization, and establish performance measures. In conclusion, findings from this research will allow organization to move towards the one-echelon model known as Just-In-Time (JIT) system

    Multi-Echelon Inventory Optimization and Demand-Side Management: Models and Algorithms

    Get PDF
    Inventory management is a fudamental problem in supply chain management. It is widely used in practice, but it is also intrinsically hard to optimize, even for relatively simple inventory system structures. This challenge has also been heightened under the threat of supply disruptions. Whenever a supply source is disrupted, the inventory system is paralyzed, and tremenduous costs can occur as a consequence. Designing a reliable and robust inventory system that can withstand supply disruptions is vital for an inventory system\u27s performance.First we consider a basic type of inventory network, an assembly system, which produces a single end product from one or several components. A property called long-run balance allows an assembly system to be reduced to a serial system when disruptions are not present. We show that a modified version is still true under disruption risk. Based on this property, we propose a method for reducing the system into a serial system with extra inventory at certain stages that face supply disruptions. We also propose a heuristic for solving the reduced system. A numerical study shows that this heuristic performs very well, yielding significant cost savings when compared with the best-known algorithm.Next we study another basic inventory network structure, a distribution system. We study continuous-review, multi-echelon distribution systems subject to supply disruptions, with Poisson customer demands under a first-come, first-served allocation policy. We develop a recursive optimization heuristic, which applies a bottom-up approach that sequentially approximates the base-stock levels of all the locations. Our numerical study shows that it performs very well.Finally we consider a problem related to smart grids, an area where supply and demand are still decisive factors. Instead of matching supply with demand, as in the first two parts of the dissertation, now we concentrate on the interaction between supply and demand. We consider an electricity service provider that wishes to set prices for a large customer (user or aggregator) with flexible loads so that the resulting load profile matches a predetermined profile as closely as possible. We model the deterministic demand case as a bilevel problem in which the service provider sets price coefficients and the customer responds by shifting loads forward in time. We derive optimality conditions for the lower-level problem to obtain a single-level problem that can be solved efficiently. For the stochastic-demand case, we approximate the consumer\u27s best response function and use this approximation to calculate the service provider\u27s optimal strategy. Our numerical study shows the tractability of the new models for both the deterministic and stochastic cases, and that our pricing scheme is very effective for the service provider to shape consumer demand

    The role of European «ro-ro» port terminals in the automotive supply chain management

    Get PDF
    http://www.sciencedirect.com/science/article/B6VG8-4V5XNYN-2/2/e3b9cc9ae1d3da27edb4977da8fc19e

    Warehousing and Inventory Management in Dual Channel and Global Supply Chains

    Get PDF
    More firms are adopting the dual-channel supply chain business model where firms offer their products to customers using dual-channel sales (to offer the item to customers online and offline). The development periods of innovative products have been shortened, especially for high-tech companies, which leads to products with short life cycles. This means that companies need to put their new products on the market as soon as possible. The dual-channel supply chain is a perfect tool to increase the customer’s awareness of new products and to keep customers’ loyalty; firms can offer new products online to the customer faster compared to the traditional retail sales channel. The emergence of dual-channel firms was mainly driven by the expansion in internet use and the advances in information and manufacturing technologies. No existing research has examined inventory strategies, warehouse structure, operations, and capacity in a dual-channel context. Additionally, firms are in need to integrate their global suppliers base; where the lower parts costs compensate for the much higher procurement and cross-border costs; in their supply chain operations. The most common method used to integrate the global supplier base is the use of cross-dock, also known as Third Party Logistic (3PL). This study is motivated by real-world problem, no existing research has considered the optimization of cross-dock operations in terms of dock assignment, storage locations, inventory strategies, and lead time uncertainty in the context of a cross-docking system. In this dissertation, we first study the dual-channel warehouse in the dual-channel supply chain. One of the challenges in running the dual-channel warehouse is how to organize the warehouse and manage inventory to fulfill both online and offline (retailer) orders, where the orders from different channels have different features. A model for a dual-channel warehouse in a dual-channel supply chain is proposed, and a solution approach is developed in the case of deterministic and stochastic lead times. Ending up with numerical examples to highlight the model’s validity and its usefulness as a decision support tool. Second, we extend the first problem to include the global supplier and the cross-border time. The impact of global suppliers and the effect of the cross-border time on the dual-channel warehouse are studied. A cross-border dual-channel warehouse model in a dual-channel supply chain context is proposed. In addition to demand and lead time uncertainty, the cross-border time is included as stochastic parameter. Numerical results and managerial insights are also presented for this problem. Third, motivated by a real-world cross-dock problem, we perform a study at one of the big 3 automotive companies in the USA. The company faces the challenges of optimizing their operations and managing the items in the 3PL when introducing new products. Thus, we investigate a dock assignment problem that considers the dock capacity and storage space and a cross-dock layout. We propose an integrated model to combine the cross-dock assignment problem with cross-dock layout problem so that cross-dock operations can be coordinated effectively. In addition to lead time uncertainty, the cross-border time is included as stochastic parameter. Real case study and numerical results and managerial insights are also presented for this problem highlighting the cross-border effect. Solution methodologies, managerial insights, numerical analysis as well as conclusions and potential future study topics are also provided in this dissertation
    corecore