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Abstract: An important supply chain research problem is the bullwhip effect where demand 

variability increases as one moves up the supply chain. This distorted information may lead to 

inefficiencies. In this paper we suggest a remedy to reduce the bullwhip effect. We focus on an 

inventory replenishment rule that reduces the variability of upstream orders and generates a 

smooth order pattern. However, dampening the order variability has a negative impact on 

customer service due to an increased inventory variance. We resolve this conflicting issue by 

taking the impact of the replenishment rule on lead times into account. A smooth order pattern 

generates shorter and less variable (production/replenishment) lead times, introducing a 

compensating effect on the inventory levels. We show that by including endogenous lead times 

in our analysis, the order pattern can be smoothed to a considerable extent without increasing 

stock levels, resulting in a win-win solution for both supply chain echelons. Finally we discuss 

several order smoothing approaches from an industrial perspective and comment how our 

results may influence these cases. 
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1 Introduction: the bullwhip problem 

A major cause of supply chain deficiencies is the bullwhip problem, which refers to the 

tendency of replenishment orders to increase in variability as it moves up a supply 

chain. Jay Forrester (1961) was among the first researchers to describe this 

phenomenon, then called ‘Demand Amplification’. Procter and Gamble first coined the 

phrase bullwhip effect to describe the ordering behaviour witnessed between customers 

and suppliers of Pampers diapers. While diapers enjoy a fairly constant consumption 

rate, P&G found that wholesale orders tended to fluctuate considerably over time. They 

observed further amplification of the oscillations of orders placed to their suppliers of 

raw material. 

A number of researchers designed games to illustrate the bullwhip effect. The most 

famous game is the “Beer Distribution Game”. This game has a rich history: growing 

out of the industrial dynamics work of Forrester and others at MIT, it is later on 

developed by Sterman in 1989. The Beer Game is by far the most popular simulation 

and the most widely used game in many business schools, supply chain electives and 

executive seminars. Simchi-Levi et al. (1998) developed a computerized version of the 

beer game, and several versions of the beer game are nowadays available, ranging from 

manual to computerized and even web-based versions (e.g. Chen and Samroengraja 

2000, Jacobs 2000). 

This bullwhip effect throughout the supply chain can lead to tremendous 

inefficiencies; excessive inventory investment, poor customer service, lost revenues, 

misguided capacity plans, ineffective transportation, and missed production schedules 

(Lee et al. 1997a). Lee et al. (1997b) identify five major operational causes of the 

bullwhip effect; the use of ‘demand signal processing’, non-zero lead times, order 

batching, supply shortages and price fluctuations. Our focus is on the issue of demand 
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signal processing, which refers to the practice of adjusting the parameters of the 

inventory replenishment rule. These rational adjustments may cause over-reactions to 

short-term fluctuations and lead to variance amplification. In other words, the 

replenishment rule used by the members of the chain may be a contributory factor to the 

bullwhip effect. Following the same line of argument it can be seen that the 

replenishment policy can also be used to reduce or tame the bullwhip effect. This is 

exactly what we aim to do in this contribution.  

The remainder of the paper is organized as follows. In the next section we describe 

our model and introduce notation. In section 3 we propose a replenishment policy that is 

able to dampen the order variability. This reduces the bullwhip effect in an effective 

manner. However, as will be explained in section 3, dampening the order variability 

may have a negative impact on customer service. We do find a win-win solution when 

we include the impact of the replenishment rule on the manufacturer’s lead times. This 

is done in section 4 where we show that a smooth order pattern generates shorter and 

less variable (production/replenishment) lead times, introducing a compensating effect 

on the safety stock. Section 5 numerically illustrates our findings. In section 6 we 

discuss other techniques to reduce order variability and illustrate with a practical 

application in industry. Section 7 concludes. 

 

2 Model description 

We consider a two echelon supply chain with a single retailer and a single 

manufacturer. Every period, the retailer observes customer demand, denoted by Dt, 

representing a finite number of items that customers buy from the retailer. We assume 

that customer demand Dt is identically and independently distributed (i.i.d.) over time. 
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If there is enough on-hand inventory available, the demand is immediately satisfied. If 

not, the shortage is backlogged. 

To maintain an appropriate amount of inventory on-hand, the retailer places a 

replenishment order with the manufacturer at the end of every period. The order 

quantity Ot is determined by the retailer's replenishment policy. We assume that the 

manufacturer does not hold a finished goods inventory, but instead produces on a make-

to-order basis. The replenishment orders of size Ot enter the production facility where 

they are processed on a first-come-first-served basis. Orders that arrive at a busy 

production facility must wait in a queue. We assume that the production times for a 

single product are i.i.d. random variables and to ensure stability (of the queue), we 

assume that the utilization of the production facility (average batch production time 

divided by average batch inter-arrival time) is strictly smaller than one. 

Once the complete batch (equal to the replenishment order) is produced, it is 

immediately sent to the retailer. The time from the moment the order arrives at the 

production system to the point that the production of the entire batch is finished, is the 

production or replenishment lead time, denoted by Tp. A schematic of our model is 

shown in figure 1. 

 

Manufacturer

Consumer Demand

Production/Replenishment Lead time Tp

Retailer
orders

Replenishment orders

0

200

400

600

800

1000

0 10 20 30 40 50 60 70 80

0

200

400

600

800

1000

0 10 20 30 40 50 60 70 80

Manufacturer

Consumer Demand

Production/Replenishment Lead time Tp

Retailer
orders

Replenishment orders

0

200

400

600

800

1000

0 10 20 30 40 50 60 70 80

0

200

400

600

800

1000

0 10 20 30 40 50 60 70 80

 

Figure 1: A two echelon supply chain modeled as a production/inventory system 
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3 Taming the bullwhip: order smoothing 

Due to the bullwhip effect, the retailer's orders Ot to the manufacturer tend to have a 

larger variance than the consumer demand Dt that triggers the orders. This order 

variability can have large upstream cost repercussions. The upstream manufacturer aims 

to smooth production and therefore he prefers minimal variability in the replenishment 

orders from the (downstream) retailer. The manufacturer not only prefers a level 

production schedule, the smoothed demand also allows him to minimize his raw 

materials inventory cost. Balakrishnan et al. (2004) emphasize the opportunities to 

reduce supply chain costs by dampening order variability.  

This has led to the creation of new replenishment rules that are able to generate 

smooth order patterns, which we call ‘smoothing replenishment rules’. Smoothing is a 

well-known method to reduce variability. A number of production level smoothing rules 

were developed in the 1950s and 1960s (e.g., Simon 1952, Magee 1958). The more 

recent work on smoothing replenishment rules can be found in Dejonckheere et al. 

(2003) and Balakrishnan et al. (2004). 

3.1 A smoothing replenishment policy 

Given the common practice in retailing to replenish inventories frequently (e.g. daily) 

and the tendency of manufacturers to produce to demand, we will focus our analysis on 

periodic review, base-stock or order-up-to replenishment policies. The standard 

periodic review base-stock replenishment policy is the (R,S) replenishment policy 

(Silver et al. 1998). At the end of every review period R, the retailer tracks his inventory 

position IPt, which is the sum of the inventory on hand (items immediately available to 

meet demand) and the inventory on order (items ordered but not yet arrived due to the 
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lead time) minus the backlog (demand that could not be fulfilled and still has to be 

delivered). A replenishment order is then placed to raise the inventory position to an 

order-up-to or base-stock level S, which determines the order quantity Ot; 

 

 Ot = S – IPt.         (1) 

 

A smoothing replenishment policy is a policy where the decision maker does not 

recover the entire deficit between the base-stock level and the inventory position in one 

time period (contrary to what happens in Eqn. (1)). Magee (1958) and Forrester (1961) 

propose to order only a fraction of the inventory deficit, resulting in the following 

ordering policy (see also Warburton 2004): 

 

 Ot = β · (S – IPt).        (2) 

 

Forrester (1961) refers to 1/β as the ‘adjustment time’ and hence explicitly 

acknowledges that the deficit recovery should be spread out over time.  

When customer demand is i.i.d., the base-stock level S is a fixed constant. Boute et 

al. (2007) show that Eqn. (2) gives rise to an autocorrelated order pattern, given by  

 

 Ot = (1-β) · Ot-1 + β · Dt.        (3) 

 

Hence, the retailer’s replenishment orders are  not statistically independent, because 

from Eq. (3) we derive that the correlation between the orders is equal to 

 

 corr(Ot, Ot-x) = (1 – β)
x
.       (4) 
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Moreover, Boute et al. (2007) demonstrate that the base-stock level S in Eqn. (2) is 

not only affected by lead time demand, as in the standard base-stock policy, but it also 

contains an additional ‘smoothing’ component. More specifically, the base-stock level is 

given by  

 

S = SS + [E(Tp)+ 1] · E(D) + (1-β)/β · E(D),     (5) 

 

where SS denotes the safety stock and E(Tp) and E(D) represent resp. the average 

lead time and average demand. 

It is notable that the replenishment rule described by Eqn. (3) is exactly the same as 

the exponential smoothing policy proposed by Balakrishnan et al. (2004) to decrease 

order variability. To examine the variability in orders created by our smoothing rule, we 

look at the ratio of the variance of the orders over the variance of demand (in the 

literature this variance ratio is commonly used as a measure for the bullwhip effect), 

which is in this case given by 

 

.
β-2

β

Var(D)

Var(O)
=                (6) 

 

Hence, if β = 1, these expressions reduce to the standard base-stock policy, where 

Ot=Dt; we chase sales and thus there is no variance amplification. For 1 < β < 2 we 

create bullwhip, i.e. the order variance is amplified compared to the demand variance. 

This tendency is often observed in reality, or when playing the Beer Distribution Game 

(Dejonckheere et al. 2003). For 0 < β < 1 we find that this replenishment rule generates 

a smooth replenishment pattern, i.e. it dampens the order variability. Under a fixed lead 
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time assumption such a smoothing policy is justified when production (or ordering) and 

holding costs are convex or when there is a cost of changing the level of production 

(Veinott 1966). When the production capacity is fixed and lead times result from a 

single server queueing system (as in the model described in this paper), this 

replenishment rule enables to smooth the manufacturer's production, resulting in shorter 

order-to-delivery times and more balanced, peak shaving production schedules, which 

are beneficial for the manufacturer. Besides the benefits realized through a smoother 

planning, the manufacturer also realizes cost savings on its own raw materials and/or 

component inventories (see Balakrishnan et al. 2004). 

 

3.2 Is smooth smart? 

Since the bullwhip effect has a number of highly undesirable cost implications, taming 

the bullwhip, or dampening the order variability, seems to be a dominating operations 

strategy. We have to be careful not to focus only on one side of the production 

smoothing ‘coin’ however. In developing a replenishment rule one has to consider the 

impact on the inventory variance as well. The manufacturer does benefit from smooth 

production, but dampening variability in orders may have a negative impact on the 

retailer's customer service due to inventory variance increases (Bertrand 1986, Disney 

and Towill 2003). 

Disney et al. (2006) quantify the variance of the net stock and compute the required 

safety stock as a function of the smoothing intensity. Their main conclusion is that when 

customer demand is i.i.d., order smoothing comes at a price - in order to guarantee the 

same fill rate, more investment in safety stock is required. As a consequence, retailers, 

driven by the goal of reducing inventory (holding and shortage/backlog) costs, prefer to 

use replenishment policies that chase demand rather than dampen consumer demand 
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variability. This leads to a tension between the preferred order variability of retailers 

and manufacturers. 

However, we can model a two echelon supply chain as a production-inventory 

system, as illustrated in Figure 1. This implies that a replenishment order generated by 

the retailer's inventory results in an arrival of a production order at the manufacturer. 

Hence the choice of the retailer's replenishment policy (amplifying or dampening 

customer demand variability in the replenishment orders) determines the arrival process 

of production orders at the manufacturer's production queue and as such it affects the 

distribution of the production lead times. According to the laws of factory physics 

(Hopp and Spearman 2001), a smooth order pattern will give rise to shorter and less 

variable lead times. This in turn exercises a downward effect on the retailer's inventory 

level, which may compensate the increase in inventory variance. The quest for a win-

win solution (smooth production and lower inventory levels) is the topic of the next 

section. 

 

4 In search of a win-win solution 

4.1 Impact of order variance dampening on lead times 

Most inventory models proposed in the literature take the replenishment lead time Tp as 

a fixed constant or as an exogenous variable with a given probability distribution (for 

example see Kim et al. 2006). However, the replenishment orders do in fact load the 

production facilities. The nature of this loading process relative to the available capacity 

and the variability it creates are the primary determinants of lead times in the production 

facility. Therefore the inventory control system should work with a lead time which is a 

good estimate of the real lead time, depending on the production load, the interarrival 
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rate of orders, and the variability of the production system (Hopp and Spearman 2001). 

Zipkin (2000, p.246) states: “to understand the overall inventory system, we need to 

understand the supply system. For this purpose we can and do apply the results of 

queueing theory”. 

It is essential to extend pure inventory systems with exogenous lead times to 

production-inventory systems with endogenous lead times. After all, inventory 

influences production by initiating orders, and production influences inventory by 

completing and delivering those orders to inventory. In Figure 2 the interaction between 

the retailer's replenishment policy and the manufacturer's production system is 

illustrated: the replenishment orders constitute the arrival process at the manufacturer's 

queue. The time until the order is produced (the sojourn time in the queueing system) is 

the time to replenish the order. This replenishment lead time is a prime determinant in 

setting the safety stock requirements for the retailer. 

 

 

Figure 2: Interaction between retailer's inventory system and manufacturer's production system 

  

To estimate the lead time distribution we develop a discrete time queueing model. 

By analyzing the characteristics of the replenishment orders, we implicitly analyse the 

characteristics of the production orders that arrive to the production system. In a 

periodic review base-stock policy, the arrival pattern consists of batch arrivals with a 

fixed interarrival time (equal to the review period, R=1) and with variable batch sizes. 

The supply system is bulk queue, which tends to be difficult to analyse (Chaudry and 
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Templeton 1983). Moreover as we can see from Eqn. (3), the batch sizes generated by 

our smoothing rule are not i.i.d., rather they are autocorrelated. Therefore the resulting 

queueing model is substantially different from the M/M/1 make-to-stock queue, as 

considered by, for example, Karaesmen et al. (2004). 

The analysis of our queueing model can be solved using matrix analytic methods 

(Neuts 1981, Latouche and Ramaswami 1999). These methods are popular as modeling 

tools because they can be used to construct and analyse a wide class of stochastic 

models. They are applied in several areas, of which the performance analysis of 

telecommunication systems is one of the most notable (Latouche and Ramaswami 

1999). In a separate paper, the authors of this paper discuss the solution procedure of 

this queueing model (see Boute et al. 2007). The results confirm our expectation that a 

smooth order pattern generates shorter and less variable lead times. 

4.2 Resulting impact on customer service and safety stock 

When demand is probabilistic, there is a definite chance of not being able to satisfy 

some of the demand directly from stock. Therefore, a buffer or safety stock is required 

to meet unexpected fluctuations in demand. The goal is to reduce inventory without 

diminishing the level of service provided to customers. When the retailer faces (and 

satisfies) a variable customer demand, but replenishes through a smooth order pattern, 

more safety stock is required to buffer the difference between usage and supply. A 

reduction of order variations comes with the cost of an increase in inventory variability 

(Bertrand 1986). 

When lead times are endogenously determined, however, dampening variability in 

orders affects the replenishment lead time distribution as well. A smooth order pattern 

generates shorter and less variable lead times, introducing a compensating effect on the 

required safety stock. The aim is to find values for the smoothing parameter 0 < β < 1 
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where the decrease in lead times compensates the increase in inventory variance. In that 

case we can smooth production without having to increase inventory levels to provide 

the same customer service.  

To do so, we characterize the inventory random variable and use it to find the safety 

stock requirements for the system. Since the inventory is controlled by stochastic lead 

times, the inventory is not necessarily replenished every period and we do not know 

exactly when a replenishment occurs. Moreover, the queueing analysis implies that it 

takes a longer time to produce (and consequently replenish) a larger order quantity. 

Hence the order quantity and its replenishment lead time are correlated, which has an 

impact on the calculation of the inventory distribution. Therefore, if we want to 

determine the inventory distribution and the corresponding safety stock requirements in 

an exact way, we need to take this correlation into account. 

We measure customer service with the fill rate, which is the proportion of the 

demand that can immediately be delivered from the inventory on hand (Zipkin 2000) 

 

.
demand expected

backorders ofnumber  expected
-1 rate Fill =         (7) 

  

To calculate the fill rate, we monitor the inventory on hand after customer demand is 

observed and we retain the number of shortages when a stock-out occurs. Therefore we 

observe the system at the end of every period t, after customer demand Dt is satisfied 

and after replenishment order Ot has been placed with the manufacturer. At that time 

there may be k ≥ 0 orders waiting in the production queue and there is always one order 

in service (since the observation moment is immediately after an order placement) 

which is placed k periods ago (Ot-k). Although k is a function of t, we write k (as 

opposed to k(t)) to simplify the notation. 
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The inventory on hand or net stock NSt is then equal to the initial inventory on hand 

plus all replenishment orders received so far minus total observed customer demand. At 

the end of period t, the order Ot-k is in service, and the orders placed more than k periods 

ago, i.e., Ot-i, i ≥ k+1, are already delivered in inventory, while customer demand is 

satisfied up to the current period t. Assuming the initial inventory level is equal to the 

base stock level S, the net stock after satisfying demand in period t is equal to 

 

∑∑
−

=

−

−

+=

−
−+=

1t

0i

it

1t

1ki

itt DOS NS .              (8) 

 

Substituting (3) into (8), we obtain 
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Boute et al. (2007) evaluate the steady state distribution of NSt. Some care must be 

taken when evaluating (9), however, as the value of Dt-k influences the age k of the 

order in service: the larger the demand size, the larger the order size and consequently 

the longer it takes to produce the order. Moreover, since the order quantity is also 

affected by previously realised customer demand, the demand terms Dt-i, i=k+1,...,t also 

influence the order's age k.  

From the steady state distribution of the inventory variable NS, we can easily deduct 

the expected number of backorders E(NS
–
), where NS

– = max{0,-NS}, and the 

corresponding fill rate realised with a given base-stock level S. In practice, decision 

makers often determine the minimal base-stock level that is required to achieve a target 

fill rate. From this base-stock level S, we then find the corresponding safety stock using 

Eqn. (5). 
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4.3 The bullwhip effect results in a lose-lose situation 

Note that the discussion above considers the situation where we smooth the 

replenishment orders, which implies a replenishment parameter β smaller than one in 

Eqn. (2). We may extend the analysis, however, to the case where the replenishment 

parameter β is larger than one, which implies an overreaction to the inventory deficit. 

This policy is often observed in reality and leads to order variance amplification, or 

equivalently, induces the bullwhip effect. 

When 1 < β < 2, the order pattern generated by the replenishment policy (2) is 

negatively correlated and it may generate negative order quantities. Since in our model 

it is not possible to send negative orders to production, we have to preclude the 

possibility of negative orders. The following restriction on β given the minimum 

demand Dmin and the maximum demand Dmax ensures that Ot ≥ 1 (we refer to Boute 

(2006) for a proof): 

  

Dmin + (1 – β) · Dmax ≥ 2 – β.       (10) 

 

What is the impact of the bullwhip effect on the performance in the supply chain? 

First of all, Disney et al. (2006) prove that the inventory variance increases as we either 

smooth the order pattern (β < 1) or amplify the orders (β > 1), compared to a pure chase 

sales policy where β = 1. This increased inventory variability inflates the safety stock 

requirements at the retailer.  

Moreover, this replenishment decision has an impact on the distribution of the lead 

times. More specifically, order variance amplification increases the variability at the 

production queue, which increases the lead times as a consequence.  This leads to higher 

safety stocks. In other words, the bullwhip effect leads to an increased inventory 
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variance, and additionally, it generates longer lead times, reinforcing the inflated safety 

stock requirements. This is clearly a lose-lose situation. 

 

5 Numerical example 

 

To illustrate our findings, we set up a numerical experiment where a retailer observes an 

i.i.d. random customer demand on a daily basis of between 11 and 30 products with an 

average of 20.5 units per day and a coefficient of variation of 0.135. The retailer 

satisfies this demand from his inventory on hand and replenishes with the smoothing 

replenishment rule given by Eqn. (2). We assume that the manufacturer’s production 

operates 24 hours per day and the production time of a single unit is geometrically 

distributed with an average of 64 minutes per unit. Hence the average production load is 

(20.5 x 64) / (24 x 60) = 0.91. 

The retailer has to determine the parameter β to control his inventory. When β = 1, 

the retailer places orders equal to demand and hence the variability in demand is 

transmitted to the manufacturer. This policy results in an average lead time of 0.67 

periods and a variance of 0.44. The safety stock required to provide a 98% fill rate is 

equal to 36.95 units. 

Suppose that the retailer chooses to smooth his orders with a parameter β = 0.4. This 

results in an order pattern which is four times less variable (Var(O)/Var(D) = 0.4/(2–

0.4) = 0.25). When we maintain the same lead time distribution, this smoothing decision 

would lead to an increase in inventory variance, since inventory absorbs the variability 

in demand while the replenishments are relatively steady. As a consequence a higher 

safety stock has to be kept in order to maintain the same fill rate. This is clearly a win-

lose situation: the manufacturer can smooth production, but at the expense of an 

increase in the retailer's inventory. 
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However, working with the same lead times, is incomplete. When the retailer 

smoothes his orders, he sends a less variable pattern to the manufacturer. This inevitably 

results in a different lead time distribution. Indeed, when we estimate the lead time 

distribution when we send a smooth order pattern with β = 0.4 to the manufacturer’s 

production, we observe a lower and less variable lead time distribution. The average 

lead time decreases to 0.49 and its variance equals 0.36. This in turn introduces a 

compensating effect on the required safety stock. We find that a safety stock of  36.41 is 

sufficient to provide a 98% fill rate, which is slightly lower than when we do not 

smooth the orders (β = 1). 

 
Figure 3 - left: Average lead times in function of the replenishment parameter β 

right: Safety stock required to ensure a 98% fill rate with endogenous lead times 

 

In Figure 3 we show the effect of order smoothing on the (average) lead times and 

safety stocks for a smoothing parameter β = 0.2 to β = 1.3. As β decreases, the average 

lead times decrease as well (Figure 3 – left). This is intuitively clear, as the order 

variability decreases with a smaller β, leading to a less variable arrival pattern at the 

queue and consequently decreasing lead times. When we include this effect of order 

smoothing on lead times, the safety stock becomes a U-shaped function of the 

smoothing intensity. We can smooth the replenishment orders to some extent without 

having to increase the safety stock, whilst maintaining customer service at the same 
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target level. Moreover, we can even decrease our safety stock when we smooth the 

order pattern (up to β = 0.35).  

As such we may obtain a win-win situation for both the retailer and the 

manufacturer. The manufacturer receives a less variable order pattern and the retailer 

can decrease his safety stock while maintaining the same fill rate. This Pareto-

improving policy may require contractual arrangements between the supply chain 

partners so that the lead time reduction is effectively implemented (Tsay 1999). 

However, as of a certain point (around β = 0.4) the safety stock increases sharply. 

When β approaches zero, the lead time reduction cannot compensate the increase in 

inventory variability anymore and the safety stock exceeds the safety stock that is 

required when the orders are not smoothed (β = 1). 

When β > 1, we observe that lead times increase further together with the safety 

stocks. Obviously, this is a lose-lose situation and needs to be avoided. 

This numerical example well illustrates the dynamics resulting from the retailer's 

inventory decision on the lead times and safety stocks. Obviously, the degree to which 

we should smooth and the exact amount of safety stock decrease depend on the 

observed demand pattern. 

 

6 Some practical examples of reducing order variability 

Order smoothing combined with endogenous lead times may create a win-win situation 

for both the retailer and the manufacturer. In order to effectively implement such a 

policy, the supply chain partners have to align their replenishment policies, i.e. the type 

of replenishment rule used and the setting of the ‘best’ parameter value (β). It is 

important to notice that such a strategy goes far beyond ‘information sharing’. In a 

practical setting, however, other coordination schemes may be used to achieve the same 
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objective. We therefore briefly discuss a range of other order variance reduction tools 

and add real life examples where applicable. An excellent overview can be found in 

Holweg et al. (2005). 

In a traditional supply chain, each level in the supply chain issues production orders 

and replenishes stock without considering the situation at either up- or downstream tiers 

of the supply chain. This is how most supply chains still operate, no formal 

collaboration between the retailer and supplier. Collaboration on the other hand can be 

installed through a wide range of concepts such as Collaborative Forecasting Planning 

and Replenishment (CPFR), Information Sharing, Vendor Managed Inventory (VMI, 

including Continuous Replenishment). A more drastic solution can be obtained by a 

redesign of the supply chain by eliminating echelons. Let us first focus on VMI. 

VMI eliminates one decision point and merges the replenishment decision with the 

production and materials planning of the supplier. Here, the supplier takes charge of the 

customer’s inventory replenishment on the operational level, and uses this visibility in 

planning his own supply operations (e.g. more efficient production schedules and 

transportation planning). With VMI, multi-echelon supply chains can act in the same 

way, dynamically, as a single echelon of a supply chain.  VMI often results in more 

frequent replenishments and consequently the order quantity variance is reduced. 

Economies in transportation can be obtained through an optimization of the route 

planning and with methods such as joint replenishment and inventory routing 

techniques. VMI is in other words an alternative to the smoothing replenishment policy 

proposed in this paper.  

We discuss two cases to illustrate the benefits of dampening the order variance. 

First, we analyse the ordering pattern of a bakery company focusing on authentic 

specialties in the biscuit and cake world: caramelized biscuits, waffles, frangipane, and 
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cake specialties among others. For certain products, a make-to-order policy is employed 

and the assumptions used in this paper are largely satisfied. In 2002, the firm introduced 

a VMI program implemented in the SAP software, referred to as “Customer 

Replenishment Planning” (CRP). In Figure 4 we show a graph of the shipments from 

the production facility to the distribution centre of a retailer (for one specific product) in 

the pre-CRP period (2001-mid 2002) and the shipments in the post-CRP period (mid 

2002-2005). The coefficient of variation of the shipment quantities went down from 

1.14 to 0.45 (a number observed for other products as well). We were also able to 

collect (post-CRP) data on the shipments from the distribution centre of the retailer to 

the different retail outlets. For the specific product discussed above, we obtain a 

coefficient of variation of 0.40. The company now benefits from a higher flexibility in 

its production planning and reduced its transportation costs considerably. Moreover, 

inventories decreased, improving the freshness of the products of the end consumer.  

 

Figure 4: The impact of VMI on the order variability for a selected product 
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The second case deals with a more traditional example of order smoothing of a UK 

grocery retailer. Here we were asked to identify and reduce the cause of workload 

variability in their own warehousing (cross docking) and transportation activities. We 

discovered that the replenishment algorithms that maintained stock levels at individual 

stores were the source of a bullwhip effect. There were several different replenishment 

algorithms in use, and we where able to introduce a proportional controller into half of 

them. These modified algorithms controlled 65% of the sales volume, but only 35% of 

product lines. In general these were the higher volume products. Figure 5 illustrates the 

performance of the system with a “before” and “after” simulation of a single product 

using real demand data for a single product from a single store. The company had 

identified that this modification had allowed a very significant reduction in contract 

staff in distribution centre and amount of third party logistics costs to meet the peak 

demand on certain days of the week.   

 

 

Figure 5: Smoothing in action in the UK grocery industry 
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In order to achieve this, the grocery retailer had accepted a slight increase in the 

target safety stock in their stores. That is, they assumed exogenous lead-times. But, in 

effect, that is all they could possibly do anyway, as they were ordering on day 1 for 

delivery in day 2.   This meant that the suppliers had to keep a stock of finished goods. 

Thus if the suppliers maintained this stock with a production system that operated as a 

queue (that is endogenous lead-times exist), then the retailer smoothing actions will 

have a beneficial effect on the supplier finished goods. The retailer may still gain by this 

– the manufacturer may be more willing to accept on-going calls for cost reductions. 

This clearly illustrates the power of variance reduction techniques be it through VMI 

programs or smoothing replenishment policies. 

 

7 Conclusions 

The bullwhip problem has been studied by many authors in recent years. Since the 

bullwhip effect has a number of highly undesirable cost implications, taming the 

bullwhip is a dominating operations strategy. Conventional bullwhip reduction is only 

one side of the coin, however. In developing a replenishment rule one has to consider 

the impact on the inventory variance as well. More specifically, dampening the 

variability in orders inflates the safety stock requirements due to the increased variance 

of the inventory levels. As a consequence, retailers, driven by the goal of reducing 

inventory (holding and shortage/backlog) costs, prefer to use replenishment policies that 

chase demand rather than dampen consumer demand variability.  

We have shown that by treating the lead time as an endogenous variable, we can 

turn this conflicting situation into a win-win situation. A smooth order pattern gives rise 

to shorter and less variable lead times. This introduces a compensating effect on the 
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retailer's inventory level. In this paper we showed that we can smooth the order pattern 

to a considerable extent without increasing stock levels. This may motivate the retailer 

to generate a smooth ordering pattern, resulting in a win-win solution for both supply 

chain echelons. We also highlight alternative mechanisms to achieve the same 

objectives. 
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