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Abstract

This paper considers a production line with two unreliable batch machines and a finite buffer.
Batch machines process a set of parts simultaneously; the maximum number in the set is the
size of the machine. The purpose of this paper is twofold: (i) to present a model of this
system and its exact analysis; (ii) to present new qualitative insights and interpretations of
system behavior. We demonstrate new generalized conservation of flow and flow rate-idle time
relationships. We also present various performance measures of interest such as production rate,
machine efficiencies, probabilities of blocking and starvation, and expected in-process inventory.
We demonstrate an equivalence property and describe deadlock behavior. The effect of the
sizes of machines on the performance measures is examined, new phenomena and insights are
established, and possible interpretations are presented.

1 Introduction

1.1 System description

In this paper, we present a model, and its exact analysis, of a production line consisting of two

unreliable batch machines and a finite buffer (Figure 1). Batch machines process many parts

simultaneously. Ovens in semiconductor fabrication or composite part production are important

examples. Other examples include computer numerical code (CNC) machines in computer aided

manufacturing, automated guided vehicle (AGV) in material handling systems, and vehicles in

dispatch stations.
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Figure 1: A production line with two unreliable batch machines and a finite buffer

Unlike earlier research on production lines, we assume that each machine has a size which is

not necessarily equal to 1. The size of Machine i is Ci and it is defined as the maximum number of

parts (or jobs or items) that a machine can process at a time when it is operational. The behavior

of Machine i is characterized by three exponentially distributed random variables: the service time

of batches (with mean 1/µi), the time to fail (with mean 1/pi — abbreviated MTTF), and the time

to repair (with mean 1/ri — abbreviated MTTR).

1.2 Related literature

Lines with unreliable batch servers and finite buffers appear in a wide variety of settings in the

areas of semiconductor manufacturing processes [2, 3, 15, 40, 55], computer aided manufacturing

[36], transportation systems [41], and various related areas.

In semiconductor wafer fabrication processes, furnaces or deposition processes accumulate jobs

in a buffer, and then process them as a batch of predetermined size [2, 15, 55]. In the burn-in

operation in manufacturing processes of very large-scale integrated (VLSI) circuits, VLSI chips

are usually processed in batches [40]. In computer aided manufacturing, items to be processed

are coded and collected into groups prior to processing [36]. In transportation problems such as

dispatching, products arriving at a station are dispatched in batches by a vehicle [41]. About

78 percent of all manufacturing activities in the United States fall into the classification of batch

production, with batch sizes ranging from less than 10 to many thousands [24].

The analysis of two-machine one-buffer lines is of great importance because it has been used as

the building block of decomposition analysis of larger lines (see, e.g., [18, 20, 29, 30, 31, 33, 39, 44,

45]), and such performance analysis is vital to the design, operation, optimization, and continuous

improvement of the corresponding real systems (see, e.g., [9, 32]). We hope that the model studied

Analysis of a Production Line with Two Unreliable Batch Machines 2
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here will be used in that way.

In this paper, we address both exact analytic and computational aspects of a production line

with two unreliable batch machines and a finite buffer. The purpose of this paper is twofold: (i) to

present a model of this system and its exact analysis; (ii) to present new qualitative insights and

interpretations of system behavior. Some surprising observations are described.

This research examines the following questions: What is the effect of the sizes of machines on

performance measures of interest? What are the appropriate definitions of starvation and blocking

for a system with batches? Do versions of conservation of flow and flow rate-idle time relationships

hold in this kind of system? What is the equivalence property of this system? Is it possible for this

system to be in deadlock? Is this system always ergodic? If not, is there any way to compute the

performance measures when this system is not ergodic? Are there new behavioral phenomena of

this system? If so, how can we interpret them?

Let us review some related works in the following categories: (i) references that dealt with

analytical evaluation of production lines (or flow lines) with machines and buffers (ii) references

that dealt with batch servers or batch machines.

All previous research on flow line evaluation assume that parts are processed singly or that

the sizes of batches are the same. We define single-item machines as machines which have size

1. Much previous research on the analytical evaluation of two-machine flow lines can be found in

[5, 7, 8, 19, 21, 25, 26, 27, 28, 43, 51, 56, 57, 59, 60] and others. Many references on the analytical

evaluation of production lines can be found in surveys [4, 9, 20, 31, 52]. Practical applications of

lines with unreliable single-item machines and finite buffers to industry can be found in [10, 53], and

elsewhere. Fundamental equivalence properties in manufacturing networks under the assumption

that parts are processed singly are found in [1, 49, 50] and Chapter 5 in [31].

Buzacott and Shanthikumar (Section 7.7.6. of [9]) consider job shops with bulk job transfers.

They assume that the sizes of batches are the same and present an approximate analysis of their

system. Connors et al. [17] present an open queueing network model for semiconductor manu-

facturing processes. Though they consider batch machines in their model, they do not consider

finite buffers and they do not incorporate machine failure and repair. References that dealt with

various types of single-stage queueing models with batch arrivals and batch services can be found in

[6, 13, 16, 22, 23, 54] and the references therein. The studies on optimal scheduling problems for a

perfectly reliable batch machine or for a production line with perfectly reliable batch machines can

be found in [3, 37, 40, 42], and their references. The literature on inventory systems with batching

can be found in [11, 14], and the references therein. Haut de Sigy [38] develop a stochastic dynamic
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programming model to determine the loading policy of a batch machine followed by a serial machine

in a single product system. Glassey and Wang [34] demonstrate how to use forecasting information

to reduce the average waiting time of a lot in a batch work station where the batch sizes are the

same. To the best of authors’ knowledge, there has been no research which presented analytical

modeling and exact analysis of the system of Figure 1.

1.3 Contribution

The primary contributions of this paper can be summarized as follows:

1. We model a new kind of system that incorporates two unreliable batch machines, which may

have different sizes.

2. We present definitions of starvation and blocking (Section 2.1.2), which generalize those in

[31] for lines with unreliable single-item machines and finite buffers.

3. We investigate deadlock behavior (including the phenomenon of deadlock, the condition for

deadlock, and the prevention of deadlock) in this system (Section 2.1.3). Deadlock cannot be

observed in lines with two unreliable single-item machines and a finite buffer.

4. We demonstrate generalized conservation of flow (Theorem 2 of Section 4.4) and flow rate-idle

time relationships (Theorem 1 of Section 4.3).

5. We offer a new proof of conservation of flow (Theorem 2 of Section 4.4). We also present

an interpretation of our conservation of flow theorem based on Little’s law [46] (Remark 2 of

Section 4.4.)

6. We demonstrate an equivalence property (Theorem 3 of Section 4.5).

7. We determine cases in which the system is not ergodic and we explain how to compute the

performance measures when the system is not ergodic (Section 5).

8. We perform a numerical analysis of the system. We develop code in MATLAB that produces

numerically stable performance measures of interest (e.g., production rate, efficiencies of

machines, starvation and blocking probabilities, and expected in-process inventory) in a short

time for most cases (Section 6).

Analysis of a Production Line with Two Unreliable Batch Machines 4
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9. Based on our code, we present numerical results and their qualitative interpretations. Based

on the theoretical and numerical results presented, new relationships between the sizes of

machines and performance measures in unreliable batch production line with a finite buffer,

have been identified and interpreted (Sections 7 and 8).

Finally, to verify our results, we match the results of the single-item special case of this system

with those of the single-item model of [31] both analytically and numerically. The results match

perfectly. We also perform a simulation to verify our performance measures, which is not shown

here. Our computational experience shows that the average absolute relative percentage differences

between our exact mean values and simulation estimates were within 1.1%. Our computational

experience further shows that all the exact numerical results obtained in this paper are consistent

with our analytical formulae and results presented in this paper (Section 7).

1.4 Outline

The rest of this paper is organized as follows: In Section 2, we describe the preliminary issues and

the assumptions of our system. We present a set of balance equations, stationary probabilities

and the expressions of performance measures in Section 3. In Section 4, we show some theoretical

results. Section 5 discusses the issue of calculating performance measures when the system is not

ergodic. Section 6 briefly exhibits our computational scheme. In Section 7, we present sample

numerical results and qualitative observations. Finally, Section 8 concludes this paper.

2 System and Assumptions

2.1 Preliminary issues

In this section, we present some preliminary issues which should be clarified in lines with unreliable

batch machines and finite buffers.

2.1.1 Control policy of each machine

In this subsection, we present the control policy of each machine in production lines with unreliable

batch machines and finite buffers (Figure 1).

By convention, we assume that an inexhaustible supply of parts is available upstream of Machine

1 in the line, and an unlimited storage area is present downstream of Machine 2. Under this setting,

we assume that Machine i can process a batch of Ci parts if it is operational and that number of

Part I --- Full Batches 5
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parts or spaces are available. However, we must establish rules for what do to with the machine

when fewer than Ci parts or spaces are available. We call this kind of rule a control policy. There

are at least two possible control policies, called full-batch and partial-batch for each machine:

Control policies for Machine 1

(1) Full-batch:

• If there are at least C1 spaces in the buffer and Machine 1 is available, Machine 1 processes

a batch of C1 parts simultaneously.

• If there are fewer than C1 spaces in the buffer and Machine 1 is available, Machine 1 does

not operate. It is idle until there are at least C1 spaces.

(2) Partial-batch:

• If there are at least C1 spaces in the buffer and Machine 1 is available, Machine 1 processes

a batch of C1 parts simultaneously.

• If there are s (0 < s < C1) spaces in the buffer and Machine 1 is available, Machine 1

processes a batch of s parts simultaneously.

Control policies for Machine 2

(1) Full-batch:

• If there are at least C2 parts in the buffer and Machine 2 is available, Machine 2 processes

a batch of C2 parts.

• If there are fewer than C2 parts in the buffer and Machine 2 is available, Machine 2 does

not operate. It is idle until there are at least C2 parts.

(2) Partial-batch:

• If there are at least C2 parts in the buffer and Machine 2 is available, Machine 2 processes

a batch of C2 parts.

• If there are s < C2 parts in the buffer and Machine 2 is available, Machine 2 works on a

batch of s parts.

In this paper, we assume the full-batch control policy for each machine. The partial-batch

policy for each machine is studied in [12].

Analysis of a Production Line with Two Unreliable Batch Machines 6
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2.1.2 Generalized definitions of starvation and blocking

In this subsection, we present new generalized definitions of starvation and blocking in lines with

unreliable batch machines and finite buffers. In lines with unreliable single-item machines and finite

buffers, the definitions of starvation and blocking are as follows [31]: A machine is starved if its

upstream buffer is empty. It is blocked if its downstream buffer is full.

However, in lines with batch machines that operated with the full-batch policy, these definitions

are no longer adequate. We generalize the definitions of the starvation and blocking as follows:

Machine i is starved if the number of parts in its upstream buffer is less than Ci. It is blocked if

the number of parts in its downstream buffer is greater than N − Ci.

2.1.3 Deadlock

In this subsection, we present an important phenomenon of this system which has no counterpart

in single-item systems. For this purpose, let us define the following two sets:

A = {n;N − C1 + 1 ≤ n ≤ N}, B = {n; 0 ≤ n ≤ C2 − 1}.

From the definitions of the full-batch control policy, and the generalized definitions of blocking

and starvation presented in Sections 2.1.1 and 2.1.2, Machine 1 is blocked if n ∈ A, and Machine 2 is

starved if n ∈ B. Therefore, if A∩B is not empty, blocking and starvation occur simultaneously for

n ∈ A∩B = {n; N −C1 +1 ≤ n ≤ N, and 0 ≤ n ≤ C2 −1}. If both blocking and starvation occur

simultaneously, the line stops permanently. This is deadlock. When the system is in deadlock, the

production rate of the system drops to zero, the blocking and starvation probabilities are equal to

1, and efficiencies of machines are equal to zero. To prevent deadlock, A∩B = ∅. This will be true

if C1 + C2 ≤ N + 1.

2.2 Assumptions

In this section, we present the set of assumptions that define the system.

(1) We assume that an inexhaustible supply of parts is available upstream of Machine 1 in the

production line, and an unlimited storage area is present downstream of Machine 2.

(2) We adopt the full-batch control policy for each machine presented in Section 2.1.1 for both

machines. We also adopt the new generalized definitions of starvation and blocking defined

in Section 2.1.2.
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(3) We assume that Machine i can process exactly Ci parts simultaneously if it is operational,

where Ci denotes the size of Machine i(i = 1, 2). Ci is a positive integer. Note that C1 and

C2 are not necessarily the same.

(4) Parts enter the system at Machine 1 in batches of fixed size C1, then go to the buffer, then

go to Machine 2, and then exit the system in batches of fixed size C2.

(5) Service, failure and repair times of a batch for Machine i(i = 1, 2) are exponential random

variables with parameters µi, pi, and ri; these quantities are called the service rate, failure

rate and repair rate, respectively.

(6) The buffer between the machines has a finite size N .

(7) Machine 1 never starves, and Machine 2 is never blocked.

(8) Operational dependent failures: A machine fails only while processing a batch.

(9) Batches are not destroyed or rejected at any stage in the line. Partly processed batches are

not added into or taken out of the line. When a machine breaks down, the batch it was

operating on waits for the machine to be repaired so that processing of a batch can resume.

(10) C1 + C2 ≤ N + 1. (See Section 2.1.3.)

The state of the system at time t is denoted by (n(t), α1(t), α2(t)), where n(t) represents the

number of parts in the buffer at time t, αi(t) (i = 1, 2) denotes the repair state of Machine i at

time t. If Machine i is operational (ie, not under repair) at time t, αi(t) = 1. Otherwise αi(t) = 0,

i = 1, 2.

3 Balance equations and performance measures

In this section, we present a condition for this system to be ergodic and a set of balance equations

for the stationary distribution. We also present the expressions for performance measures of the

system.

3.1 Ergodicity condition

Proposition 1 Ergodicity condition

The system is ergodic if and only if C1 and C2 are relatively prime.

Analysis of a Production Line with Two Unreliable Batch Machines 8
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Proof: We define h as the maximum common divisor of C1 and C2. Let {n(t); t ≥ 0} be a buffer

level process. Then we have

n(t) = n(0) + C1A(t) − C2D(t), t ≥ 0, (1)

where A(t) and D(t), respectively, represent the numbers of arrivals and departures of batches

during interval (0, t]. A(t) and D(t) are non-negative integers.

1 Assume h > 1.

It then follows that

n(t) = n(0) + C1A(t) − C2D(t) = n(0) mod h. (2)

Therefore, {(n(t), α1(t), α2(t), t ≥ 0} is not ergodic because the stationary distribution of a

buffer level depends on the initial buffer level n(0) through equation (2).

2 Assume h = 1.

Consider s(0) = (n(0), α1(0), α2(0)) and s∗ = (n∗, α∗

1, α
∗

2) where s∗ is not a transient state. It

is possible to construct a sequence of transitions

s(0) = (n(0), α1(0), α2(0)) → s(t1) = (n(t1), α1(t1), α2(t1)) → s(t2) = (n(t2), α1(t2), α2(t2)) → ... → s∗

for any s(0) and s∗. The sequence is constructed as follows:

1. If α1(0) 6= 1 or α2(0) 6= 1, the first or the first two transitions bring (α1, α2) to (1,1).

2. If n(0) < C2, the next set of transitions are enough Machine 1 operations such that n ≥ C2.

If n(0) > N − C1, the next set of transitions are enough Machine 2 operations such that

n ≤ N − C1.

3. If n > n∗, the next transition is a Machine 2 operation, so n is decreased by C2. If n < n∗,

the next transition is a Machine 1 operation, so n is increased by C1.

4. Repeat Step 3 until n = n∗. This will occur eventually because C1 and C2 are relatively

prime, and because n can always be expressed as n = n(0) + D1C1 − D2C2 where D1 is the

number of times that M1 is operated and D2 is the number of times that M2 is operated.

From Theorem 8.6 of [48], for any n∗ and n(0), there exist integers D1 and D2 such that

n∗ − n(0) = D1C1 − D2C2.

Part I --- Full Batches 9
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5. The last one or two transitions bring (α1, α2) from (1,1) to (α∗

1, α
∗

2).

Since the system can get from any initial state to any non-transient final state the system is

ergodic. In the finite-state Markov process {(n(t), α1(t), α2(t)); t ≥ 0}, there is a set of transient

states, and a single final class which is irreducible. Thus, a unique stationary distribution exists.

Remark 1 When h 6= 1, consider the transformed process {(m(t), α1(t), α2(t)); t ≥ 0} associated

with the original process {(n(t), α1(t), α2(t)); t ≥ 0} where m(t) is the unique integer that satisfies

m(t)h ≤ n(t) < (m(t) + 1)h

Note that

n(t) = m(t)h + e (3)

where e is an integer that is determined by n(0). It is given by

0 ≤ e < h
n(0) = m(0)h + e

(4)

The transformed process {(m(t), α1(t), α2(t)); t ≥ 0} is equivalent to {(n(t), α1(t), α2(t)); t ≥ 0}

when we replace Ci by Ci/h and N by M where M is the largest integer such that

N ≥ Mh + e (5)

This is because the only values that n(t) can take are given by (3), and the transition rates among the

states in the original system are the same as those among corresponding states in the transformed

system. The transformed system can be thought of as one whose parts are sets of h parts in the

original system.

The transformed system is ergodic. This is because of how we constructed the sizes of the

machines. Since the original sizes were reduced by their greatest common divisor, the new sizes are

relatively prime. Therefore all the results derived in this paper for ergodic systems apply to the

transformed system.

In the rest of the paper, we assume that C1 and C2 are relatively prime so that the system is

ergodic unless we explicitly state otherwise (such as in Section 5). We also assume that the system

has reached its steady state.

Analysis of a Production Line with Two Unreliable Batch Machines 10
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3.2 Balance equations

We define the stationary distribution P (n, α1, α2) as follows:

P (n, α1, α2) ≡ lim
t→∞

P{(n(t), α1(t), α2(t)) = (n, α1, α2)}, 0 ≤ n ≤ N, αi = 0, 1.

In this subsection, we present a set of balance equations of this system. We assume

P (n, α1, α2) ≡ 0, for n < 0 and P (n, α1, α2) ≡ 0, for n > N. (6)

We distinguish four sets of equations, corresponding to the values of α1 and α2:

Case 1 α1 = 0, α2 = 0 :

P (n, 0, 0)(r1 + r2) = P (n, 1, 0)p1 + p(n, 0, 1)p2, for C2 ≤ n ≤ N − C1. (7)

P (n, 0, 0)(r1 + r2) = P (n, 1, 0)p1, for 0 ≤ n ≤ C2 − 1. (8)

P (n, 0, 0)(r1 + r2) = P (n, 0, 1)p2, for N − C1 + 1 ≤ n ≤ N. (9)

Discussion: The left hand sides of these equations represent the rate at which the system leaves

state (n, 0, 0). They reflect the fact that the system leaves state (n, 0, 0) only when the repair of

a machine is complete. The right hand sides represent the rates at which the system enters state

(n, 0, 0). The explanations of the ranges of buffer level in the right hand sides are as follows:

Recall that we define the following two sets in Section 2.1.3:

A = {n;N − C1 + 1 ≤ n ≤ N}, B = {n; 0 ≤ n ≤ C2 − 1}.

For n ∈ A, Machine 1 is blocked (subsection 2.1.2), so that it cannot fail (by Assumption 8). For

n ∈ B, Machine 2 starves (subsection 2.1.2), so that it cannot fail (by Assumption 8). From these

observations and the assumption (10) in Section 2, we get the following three cases:

(i) For n ∈ AC ∩ BC = {n;C2 ≤ n ≤ N − C1},

For this case, neither blocking (of Machine 1) nor starvation (of Machine 2) occurs. Thus, both

machines can fail (by Assumption 8). From this observation, the system can reach state (n, 0, 0)

either from state (n, 1, 0) if machine 1 fails or from state (n, 0, 1) if Machine 2 fails. This argument

leads to (7).

(ii) For n ∈ AC ∩ B = {n; 0 ≤ n ≤ C2 − 1},

For this case, Machine 1 cannot be blocked and Machine 2 is starved. Thus, Machine 1 can fail,

while the Machine 2 cannot fail. From this observation, the system can reach state (n, 0, 0) only

from state (n, 1, 0) if Machine 1 fails. This argument leads to (8).

Part I --- Full Batches 11
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(iii) For n ∈ A ∩ BC = {n;N − C1 + 1 ≤ n ≤ N},

For this case, Machine 1 is blocked and Machine 2 cannot starve. Thus, Machine 1 cannot fail,

while Machine 2 can fail. From this observation, the system can reach state (n, 0, 0) only from state

(n, 0, 1) if Machine 2 fails. This argument leads to (9).

The other sets of equations can be obtained similarly:

Case 2 α1 = 0, α2 = 1 :

P (n, 0, 1)(r1 + µ2 + p2) = P (n, 0, 0)r2 + P (n, 1, 1)p1 + P (n + C2, 0, 1)µ2,

for C2 ≤ n ≤ N − C1. (10)

P (n, 0, 1)r1 = P (n, 0, 0)r2 + P (n, 1, 1)p1 + P (n + C2, 0, 1)µ2,

for 0 ≤ n ≤ C2 − 1. (11)

P (n, 0, 1)(r1 + µ2 + p2) = P (n, 0, 0)r2 + P (n + C2, 0, 1)µ2,

for N − C1 + 1 ≤ n ≤ N. (12)

Case 3 α1 = 1, α2 = 0 :

P (n, 1, 0)(p1 + µ1 + r2) = P (n − C1, 1, 0)µ1 + P (n, 0, 0)r1 + P (n, 1, 1)p2,

for C2 ≤ n ≤ N − C1. (13)

P (n, 1, 0)(p1 + µ1 + r2) = P (n − C1, 1, 0)µ1 + P (n, 0, 0)r1,

for 0 ≤ n ≤ C2 − 1 (14)

P (n, 1, 0)r2 = P (n − C1, 1, 0)µ1 + P (n, 0, 0)r1 + P (n, 1, 1)p2,

for N − C1 + 1 ≤ n ≤ N (15)

Case 4 α1 = 1, α2 = 1 :

P (n, 1, 1)(p1 + p2 + µ1 + µ2) = P (n − C1, 1, 1)µ1 + P (n + C2, 1, 1)µ2 + P (n, 1, 0)r2 + P (n, 0, 1)r1,

for C2 ≤ n ≤ N − C1. (16)

P (n, 1, 1)(p1 + µ1) = P (n − C1, 1, 1)µ1 + P (n + C2, 1, 1)µ2 + P (n, 1, 0)r2 + P (n, 0, 1)r1,

for 0 ≤ n ≤ C2 − 1. (17)

Analysis of a Production Line with Two Unreliable Batch Machines 12
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P (n, 1, 1)(p2 + µ2) = P (n − C1, 1, 1)µ1 + P (n + C2, 1, 1)µ2 + P (n, 1, 0)r2 + P (n, 0, 1)r1,

for N − C1 + 1 ≤ n ≤ N. (18)

Normalization condition
N∑

n=0

1∑

α1=0

1∑

α2=0

P (n, α1, α2) = 1. (19)

Special case: When C1 = C2 = 1, the above balance equations are reduced to those presented in

[31] for lines with single-item machines.

Once we compute the stationary probabilities (see Section 6 for our computational scheme), we

can compute the performance measures of interest using the formulas presented in Section 3.3.

3.3 Performance measures

Efficiency Efficiency Ei is defined as the probability that Machine i is operating on a batch, or

the long-run fraction of time in which Machine i produces batches. E1 and E2 can be expressed as

follows:

E1 =

N−C1∑

n=0

1∑

α2=0

P (n, 1, α2), (20)

E2 =
N∑

n=C2

1∑

α1=0

P (n, α1, 1). (21)

Isolated efficiency The isolated efficiency ei of Machine i is given by

ei =
ri

ri + pi
, (22)

and it represents the long-run fraction of time that Machine i is operational.

Probabilities of blocking and starvation The stationary probabilities of blocking and star-

vation, PB and PS , respectively, are:

PB =
N∑

n=N−C1+1

1∑

α2=0

P (n, 1, α2). (23)

PS =

C2−1∑

n=0

1∑

α1=0

P (n, α1, 1). (24)
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Production rate The production rate of Machine i, Pi, is given by

Pi = µiCiEi. (25)

Isolated production rate The isolated production rate of Machine i, ρi, is given by

ρi = µiCiei, (26)

and it represents what the production rate of Machine i would be if it were never impeded by other

machines or buffers.

Expected in-process inventory The expected in-process inventory in the buffer can be written

as follows:

n̄ =
N∑

n=0

1∑

α1=0

1∑

α2=0

nP (n, α1, α2). (27)

4 Theoretical results

In this section, we present some theoretical results about this system.

4.1 Transient states

We present the transient states of this system in Lemma 1, which generalize the results in p. 101

of [31].

Lemma 1 Identification of transient states

P (n, 0, 0) = P (n, 1, 0) = 0, for 0 ≤ n ≤ C2 − 1. (28)

P (n, 0, 0) = P (n, 0, 1) = 0, for N − C1 + 1 ≤ n ≤ N. (29)

Proof of (28):

(1) Combining (8) and (14), we get

P (n, 0, 0)r2 + P (n, 1, 0)(µ1 + r2) = P (n − C1, 1, 0)µ1, for 0 ≤ n ≤ C2 − 1. (30)

We consider the following two cases:

Case 1 C1 ≥ C2

Analysis of a Production Line with Two Unreliable Batch Machines 14
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For this case, the term P (n − C1, 1, 0)µ1 in the right side of (30) automatically disappears since

n − C1 < 0 under the condition that 0 ≤ n ≤ C2 − 1 and C1 ≥ C2. So we get

P (n, 0, 0)r2 + P (n, 1, 0)(µ1 + r2) = 0, for C1 ≥ C2, 0 ≤ n ≤ C2 − 1. (31)

Since probabilities are nonnegative, we get

P (n, 0, 0) = P (n, 1, 0) = 0, for C1 ≥ C2, 0 ≤ n ≤ C2 − 1. (32)

Case 2 C1 < C2

For this case, (30) can be divided into the following two equations:

P (n, 0, 0)r2 + P (n, 1, 0)(µ1 + r2) = 0, for 0 ≤ n ≤ C1 − 1. (33)

P (n, 0, 0)r2 + P (n, 1, 0)(µ1 + r2) = P (n − C1, 1, 0)µ1, for C1 ≤ n ≤ C2 − 1. (34)

Since probabilities are nonnegative, we get the following from (33):

P (n, 0, 0) = P (n, 1, 0) = 0, for C1<C2 , 0 ≤ n ≤ C1 − 1. (35)

All that remains is to show that P (n, 0, 0) = P (n, 1, 0) = 0 for C1 ≤ n ≤ C2 − 1. First, suppose

C1 ≤ n < min(C2 − 1, 2C1). Then n − C1 < C1, so (34) implies that

P (n, 0, 0) = P (n, 1, 0) = 0 for C1 ≤ n < min(C2 − 1, 2C1)

Suppose that we have already established that

P (n, 0, 0) = P (n, 1, 0) = 0 for (K − 1)C1 ≤ n < min(C2 − 1,KC1)

for integer K, and that KC1 ≤ n < min(C2 − 1, (K + 1)C1). Then, since (K − 1)C1 ≤ n − C1 <

min(C2 − 1,KC1), (34) implies that

P (n, 0, 0) = P (n, 1, 0) = 0 for KC1 ≤ n < min(C2 − 1, (K + 1)C1)

Eventually KC1 > C2 − 1, and the process stops. Equation (28) is proved by induction.

Proof of (29):

(2) Combining (9) and (12), we get

P (n, 0, 0)r1 + P (n, 0, 1)(r1 + µ2) = P (n + C2, 0, 1)µ2, for N − C1 + 1 ≤ n ≤ N. (36)

We consider the following two cases:
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Case 1 C1 < C2

For this case, it can be seen that the term P (n + C2, 0, 1)µ2 in the right side of (36) automatically

disappears since n + C2 > N under the condition that N − C1 + 1 ≤ n ≤ N and C1 < C2. So we

get

P (n, 0, 0)r1 + P (n, 0, 1)(r1 + µ2) = 0, for C1 < C2, N − C1 + 1 ≤ n ≤ N. (37)

Since probabilities are nonnegative, we get

P (n, 0, 0) = P (n, 0, 1) = 0, for C1 < C2, N − C1 + 1 ≤ n ≤ N. (38)

Case 2 C1 ≥ C2

For this case, (36) can be divided into the following two equations:

P (n, 0, 0)r1 + P (n, 0, 1)(r1 + µ2) = 0, for N − C2 + 1 ≤ n ≤ N. (39)

P (n, 0, 0)r1 + P (n, 0, 1)(r1 + µ2) = P (n + C2, 0, 1)µ2, for N − C1 + 1 ≤ n ≤ N − C2. (40)

Since probabilities are nonnegative, we get the following from (39):

P (n, 0, 0) = P (n, 0, 1) = 0, for C1 ≥ C2, N − C2 + 1 ≤ n ≤ N. (41)

All that remains is to show that P (n, 0, 0) = P (n, 0, 1) = 0, for N − C1 + 1 ≤ n ≤ N − C2.

First, suppose max(N − C1 + 1, N − 2C2) < n ≤ N − C2. Then N − C2 < n + C2 ≤ N , so (40)

implies that

P (n, 0, 0) = P (n, 0, 1) = 0 for max(N − C1 + 1, N − 2C2) < n ≤ N − C2.

Then, suppose that we have already established that

P (n, 0, 0) = P (n, 1, 0) = 0 for max(N − C1 + 1, N − SC2) < n ≤ N − (S − 1)C2.

for integer S, and that max(N − C1 + 1, N − (S + 1)C2) < n ≤ N − SC2. Then, since max(N −

C1 + 1, N − SC2) < n + C2 ≤ N − (S − 1)C2 implies that

P (n, 0, 0) = P (n, 1, 0) = 0 for max(N − C1 + 1, N − SC2) < n ≤ N − (S − 1)C2

Eventually N − SC2 > N − C1 + 1, and the process stops. Equation (29) is proved by induction.
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4.2 Repair frequency equals failure frequency

Lemma 2 states that the rate of transition from the set of states in which Machine 1 is under repair

to the set of states in which Machine 1 is operational is equal to the rate of transitions in the

opposite direction. It states the same for Machine 2. Lemma 2 generalizes similar results on p. 102

of [31] for single-item machines.

Lemma 2 Repair frequency equals failure frequency

r1

N∑

n=0

1∑

α2=0

P (n, 0, α2) =p1

N−C1∑

n=0

1∑

α2=0

P (n, 1, α2). (42)

r2

N∑

n=0

1∑

α1=0

P (n, α1, 0) =p2

N∑

n=C2

1∑

α1=0

P (n, α1, 1). (43)

Proof:

(i) Adding Equations (7)–(12), we get

N∑

n=0

P (n, 0, 0) (r1 + r2) +

N∑

n=0

P (n, 0, 1)r1 +

N∑

n=C2

P (n, 0, 1)(µ2 + p2)

= p1

N−C1∑

n=0

P (n, 1, 0) + p2

N∑

n=C2

P (n, 0, 1) + r2

N∑

n=0

P (n, 0, 0)

+p1

N−C1∑

n=0

P (n, 1, 1) + µ2

N∑

n=0

P (n + C2, 0, 1). (44)

Using the convention that P (n, 0, 1) = 0 for n > N , it can be seen that (44) is equivalent to

r1

N∑

n=0

P (n, 0, 0) + r1

N∑

n=0

P (n, 0, 1) = p1

N−C1∑

n=0

P (n, 1, 0)+p1

N−C1∑

n=0

P (n, 1, 1), (45)

from which we get (42).

(ii) Adding Equations (7)–(9), (13)–(15), we get

N∑

n=0

P (n, 0, 0) (r1 + r2) +

N∑

n=0

P (n, 1, 0)r2 +

N−C1∑

n=0

P (n, 1, 0)(µ1 + p1)

= p1

N−C1∑

n=0

P (n, 1, 0) + p2

N∑

n=C2

P (n, 0, 1) + r1

N∑

n=0

P (n, 0, 0)

+p2

N∑

n=C2

P (n, 1, 1) + µ1

N∑

n=0

P (n − C1, 1, 0). (46)
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Using the convention that P (n, 1, 0) = 0 for n < 0, it can be seen that (46) can be written as

r2

N∑

n=0

P (n, 0, 0) + r2

N∑

n=0

P (n, 1, 0) = p2

N∑

n=C2

P (n, 0, 1)+p2

N∑

n=C2

P (n, 1, 1), (47)

from which we get (43). This completes the proof.

4.3 Generalized flow rate-idle time relationships

In Theorem 1, we present generalized flow rate-idle time relationships.

Theorem 1 Flow rate-idle time relationships

E1 = e1P (n ≤ N − C1) =
r1

r1 + p1

(1 − PB). (48)

E2 = e2P (n ≥ C2) =
r2

r2 + p2

(1 − PS). (49)

where PB and PS are defined in (23) and (24).

Proof:

(i) Let D1 =
N−C1∑
n=0

1∑
α2=0

P (n, 0, α2).

Using (20) and Lemma 1, it can be seen that

E1 + D1 =

N−C1∑

n=0

1∑

α1=0

1∑

α2=0

P (n, α1, α2) = 1 − PB , (50)

where PB is as defined in (23).

Taking the transient states (i.e., P (n, 0, 0) = P (n, 0, 1) = 0, for N −C1 +1 ≤ n ≤ N) into account,

we can express (42) as follows:

r1D1 = p1E1. (51)

Combining (50) and (51), we get

E1 =
r1

r1 + p1

(1 − PB). (52)

Combining (23) and (52), we get (48).

(ii) Let D2 =
N∑

n=C2

1∑
α1=0

P (n, α1, 0).

Using (21), it can be seen that

E2 + D2 =

N∑

n=C2

1∑

α1=0

1∑

α2=0

P (n, α1, α2) = 1 − PS , (53)
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where PS is as defined in (24).

Taking the transient states (i.e., P (n, 0, 0) = P (n, 1, 0) = 0, 0 ≤ n ≤ C2 − 1) into account, we can

express (43) using the notation E2 and D2 as follows:

r2D2 = p2E2. (54)

Combining (53) and (54), we get

E2 =
r2

r2 + p2

(1 − PS). (55)

Combining (24) and (55), we get (49).

4.4 Generalized conservation of flow

Lemma 3 is helpful in demonstrating a generalized form of conservation of flow.

Lemma 3 Balance equations

For 0 ≤ n ≤ C2 − 1,

µ1

1∑

α2=0

P (n, 1, α2) = µ1

1∑

α2=0

P (n − C1, 1, α2) + µ2

1∑

α1=0

P (n + C2, α1, 1). (56)

For C2 ≤ n ≤ N − C1,

µ1

1∑

α2=0

P (n, 1, α2) + µ2

1∑

α1=0

P (n, α1, 1) = µ1

1∑

α2=0

P (n − C1, 1, α2) + µ2

1∑

α1=0

P (n + C2, α1, 1). (57)

For N − C1 + 1 ≤ n ≤ N ,

µ2

1∑

α2=0

P (n, α1, 1) = µ1

1∑

α2=0

P (n − C1, 1, α2) + µ2

1∑

α1=0

P (n + C2, α1, 1), (58)

where P (n, α1, α2) ≡ 0, for n < 0 and P (n, α1, α2) ≡ 0, for n > N .

Proof:

i) For 0 ≤ n ≤ C2 − 1,

Adding Equations (8), (11), (14) and (17) and simplifying them gives (56).

ii) For C2 ≤ n ≤ N − C1,

Adding Equations (7), (10), (13), and (16) and simplifying them gives (57).

iii) For N − C1 + 1 ≤ n ≤ N ,

Adding Equations (9), (12), (15) and (18) and simplifying them gives (58).
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In Theorem 2, we prove a statement of conservation of flow which generalizes that of [31] for

single-item systems. Due to the complexity of the range of buffer levels and the existence of batch

transition terms in balance equation, it is not easy to use induction as was done earlier. We therefore

present a new proof of conservation of flow in the following theorem.

Theorem 2 Conservation of flow:

Since there is no creation or destruction of batches, flow is conserved. That is,

P = µ1C1

N−C1∑

n=0

1∑

α2=0

P (n, 1, α2) = µ2C2

N∑

n=C2

1∑

α1=0

P (n, α1, 1), (59)

which can also be written

P = µ1C1E1 = µ2C2E2. (60)

Proof: Multiplying (56), (57), and (58) by n and summing over n, we get

µ1

N−C1∑

n=0

1∑

α2=0

nP (n, 1, α2) + µ2

N∑

n=C2

1∑

α1=0

nP (n, α1, 1)

= µ1

N∑

n=0

1∑

α2=0

nP (n − C1, 1, α2) + µ2

N∑

n=0

1∑

α1=0

nP (n + C2, α1, 1), (61)

from which we get

µ1

N−C1∑

n=0

1∑

α1=0

nP (n, 1, α2) + µ2

N∑

n=C2

1∑

α1=0

nP (n, α1, 1)

= µ1

N∑

n=0

1∑

α2=0

(n − C1)P (n − C1, 1, α2) + µ2

N∑

n=0

1∑

α1=0

(n + C2)P (n + C2, α1, 1)

+µ1C1

N∑

n=0

1∑

α2=0

P (n − C1, 1, α2) − µ2C2

N∑

n=0

1∑

α1=0

P (n + C2, α1, 1). (62)

In (62), it can be seen that the terms

µ1

N∑

n=0

1∑

α1=0

(n − C1)P (n − C1, 1, α2),

µ2

N∑

n=0

1∑

α1=0

(n + C2)P (n + C2, α1, 1),

Analysis of a Production Line with Two Unreliable Batch Machines 20



Chang and Gershwin June 28, 2005

µ1C1

N∑

n=0

1∑

α2=0

P (n − C1, 1, α2),

and

µ2C2

N∑

n=0

1∑

α2=0

P (n + C2, α1, 1)

can be simplified as follows:

µ1

N∑

n=0

1∑

α2=0

(n − C1)P (n − C1, 1, α2) = µ1

N∑

n=C1

1∑

α2=0

(n − C1)P (n − C1, 1, α2) (63)

because P (n, 1, 0) = P (n, 1, 1) = 0, for n < 0.

µ2

N∑

n=0

1∑

α1=0

(n + C2)P (n + C2, α1, 1) =µ2

N−C2∑

n=0

1∑

α1=0

(n + C2)P (n + C2, α1, 1) (64)

because P (n, 0, 1) = P (n, 1, 1) = 0, for n > N.

µ1C1

N∑

n=0

1∑

α2=0

P (n − C1, 1, α2) = µ1C1

N∑

n=C1

1∑

α2=0

P (n − C1, 1, α2) (65)

because P (n, 1, 0) = P (n, 1, 1) = 0, for n < 0.

µ2C2

N∑

n=0

1∑

α1=0

P (n + C2, α1, 1) = µ2C2

N−C2∑

n=0

1∑

α1=0

P (n + C2, α1, 1). (66)

because P (n, 0, 1) = P (n, 1, 1) = 0, for n > N.

Incorporating (63)–(66) into (62), we get

µ1

N−C1∑

n=0

1∑

α2=0

nP (n, 1, α2) + µ2

N∑

n=C2

1∑

α1=0

nP (n, α1, 1)

= µ1

N∑

n=C1

1∑

α1=0

(n − C1)P (n − C1, 1, α2) + µ2

N−C2∑

n=0

1∑

α2=0

(n + C2)P (n + C2, α1, 1)

+µ1C1

N∑

n=C1

1∑

α1=0

P (n − C1, α1, 1) − µ2C2

N−C2∑

n=0

1∑

α2=0

P (n + C2, 1, α2). (67)

In (67), it can be seen that

µ1

N−C1∑

n=0

1∑

α2=0

nP (n, 1, α2) = µ1

N∑

n=C1

1∑

α2=0

(n − C1)P (n − C1, 1, α2). (68)
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µ2

N∑

n=C2

1∑

α1=0

nP (n, α1, 1) = µ2

N−C2∑

n=0

1∑

α1=0

(n + C2)P (n + C2, α1, 1). (69)

µ1C1

N∑

n=C1

1∑

α1=0

P (n − C1, α1, 1) = µ1C1E1. (70)

µ2C2

N−C2∑

n=0

1∑

α1=0

P (n + C2, 1, α2) = µ2C2E2. (71)

Incorporating (68)–(71) into (67), we get

0 = µ1C1E1 − µ2C2E2, (72)

from which

µ1C1E1 = µ2C2E2. (73)

This completes the proof.

Remark 2 An interpretation of conservation of flow based on Little’s law.

If we treat Machine 2 as a system, it satisfies the assumptions of Little’s law (Little [46]). Under

assumption (9) in Section 2, it can be seen that µ1C1E1 is the effective arrival rate of parts (i.e., the

arrival rate of parts that are accepted by Machine 2). Also the mean number of parts in Machine 2

is given by E2C2 + (1−E2)0 = E2C2. Under the assumptions in Section 2, the mean sojourn time

in Machine 2 of a part is given by 1

µ2
. Finally, applying Little’s law [46] to Machine 2, we get

L = λW ⇔ E2C2 = µ1C1E1 ·
1

µ2

, (74)

from which we get the new generalized conservation of flow.

4.5 Equivalence property

In the following theorem, we demonstrate an equivalence property.

Theorem 3 Equivalence property

Consider the following two lines with two unreliable batch machines and a finite buffer:

Line 1

The parameters are given by N , C1, C2, p1, p2, r1, r2, µ1, and µ2. The performance measures of

interest are given by P1, P2, E1, E2, PB, PS, and n̄.
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Line 2

The parameters are given by N , C∗

1 , C∗

2 , p∗1, p∗2, r∗1, r∗2, µ∗

1, and µ∗

2, where C∗

1 , C∗

2 , p∗1, p∗2, r∗1, r∗2,

µ∗

1, and µ∗

2 satisfy C∗

1 = C2, C∗

2 = C1, p∗1 = p2, p∗2 = p1, r∗1 = r2, r∗2 = r1, µ∗

1 = µ2, and µ∗

2 = µ1.

The performance measures are given by P ∗

1 , P ∗

2 , E∗

1 , E∗

2 , P ∗

B, P ∗

S , and n̄∗.

Then, we have the following equivalence relationships:

P1 = P2 = P ∗

1 = P ∗

2 , E1 = E∗

2 , E2 = E∗

1 , PB = P ∗

S , PS = P ∗

B, and n = N − n̄∗.

Proof:

Let P (i, α1, α2) be the probability distribution of the state (i, α1, α2) of the line 1, where i (0 ≤

i ≤ N) denotes the number of parts in the buffer, α1 denotes the repair state of Machine 1, and

α2 denotes the repair state of Machine 2 in line 1. We also define P ∗(j, α∗

1, α
∗

2) as the probability

distribution of the state (j, α∗

1, α
∗

2) of line 2, where j (0 ≤ i ≤ N) denotes the number of parts in

the buffer, α∗

1 denotes the repair state of Machine 1, and α∗

2 denotes the repair state of Machine 2

in line 2.

Following arguments similar to those of Section 3, we can derive a set of balance equations for

line 2. For example, the balance equation of line 2 corresponding to the equation (7) in Section 3.2

is:

P ∗(n, 0, 0)(r2 + r1) = P ∗(n, 1, 0)p2 + P ∗(n, 0, 1)p1, for C1 ≤ n ≤ N − C2. (75)

By comparing two sets of balance equations, it can be shown that

P (n, α1, α2) = P ∗(N − n, α∗

1, α
∗

2), for 0 ≤ n ≤ N. (76)

Using (76) and the definitions of the performance measures of line 2, we get the following:

E∗

1 =

N−C∗
1∑

n=0

1∑

α∗
2
=0

P ∗(n, 1, α∗

2) =

N−C2∑

n=0

1∑

α1=0

P (N − n, α1, 1) =

N∑

m=C2

1∑

α1=0

P (m,α1, 1) = E2. (77)

E∗

2 =

N∑

n=C∗
2

1∑

α∗
1
=0

P ∗(n, α∗

1, 1) =

N∑

n=C1

1∑

α2=0

P (N − n, 1, α2) =

N−C1∑

m=0

1∑

α2=0

P (m, 1, α2) = E1. (78)

P ∗

1 = µ∗

1C
∗

1E∗

1 = µ2C2E2 = P2, P ∗

2 = µ∗

2C
∗

2E∗

2 = µ1C1E1 = P1. (79)

P ∗

B =

N∑

n=N−C∗
1
+1

1∑

α∗
2
=0

P ∗(n, 1, α∗

2) =

N∑

n=N−C2+1

1∑

α1=0

P (N − n, α1, 1) =

C2−1∑

m=0

1∑

α1=0

P (m,α1, 1) = PS .

(80)
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P ∗

S =

C∗
2
−1∑

n=0

1∑

α∗
1
=0

P ∗(n, α∗

1, 1) =

C1−1∑

n=0

1∑

α2=0

P (n, 1, α2) =
N∑

m=N−C1+1

1∑

α1=0

P (m, 1, α2) = PB . (81)

n̄∗ =

N∑

n=0

1∑

α∗
1
=0

1∑

α∗
2
=0

nP ∗(n, α∗

1, α
∗

2) = N −
N∑

m=0

1∑

α1=0

1∑

α2=0

mP (m,α1, α2) = N − n̄∗. (82)

This completes the proof.

5 Computing performance measures when the system is not er-

godic

The theoretical results and computational method of this paper are not applicable to non-ergodic

systems. Remark 1 of Section 3.1 shows that when the system is not ergodic, ie, when h, the

greatest common divisor of C1 and C2, is greater than 1, there is a transformed system whose

behavior is identical with that of the original system, and which is ergodic. In this section, we show

how to use the transformed system to obtain performance measures for the original system.

Assume that all the lines considered in this section have the same machine transition rate

parameters, µ1, r1, p1, µ2, r2, p2. Define P (N,C1, C2;n(0)) to be the production rate of the two-

machine line with those rates, with machine sizes C1 and C2, buffer size N , and initial buffer level

n(0). Define n̄(N,C1, C2;n(0)) to be the average inventory of that system. When the system is

ergodic, we will suppress the last argument.

5.1 Production rate

The production rate is given by

P (N,C1, C2;n(0)) = hP (M,C1/h,C2/h) (83)

where M and e are defined in Remark 1 of Section 3.1. The factor of h comes from the fact that

the transformed system is producing batches of parts, where each part is itself a set of h parts of

the original system.

Define e∗ to be the unique integer such that 0 ≤ e∗ < h and and h is a divisor of N − e∗. There

is a unique integer M ∗ that satisfies

N = M∗h + e∗ (84)

Comparing (5) and (84), we have
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M∗h + e∗ ≥ Mh + e

or

(M∗ − M)h ≥ e − e∗

If e−e∗ ≥ 0, then this inequality is satisfied only by M = M ∗−1. If e−e∗ < 0, then this inequality

is satisfied only by M = M ∗. Consequently, there are two possible values for the production rate

determined in (83): hP (M ∗, C1/h,C2/h) and hP (M ∗ − 1, C1/h,C2/h).

5.2 Average inventory

The average inventory is given by

n̄(N,C1, C2;n(0)) = hn̄(M,C1/h,C2/h) + e (85)

Note that e can have h different values, depending on n(0). Therefore n̄(N,C1, C2;n(0)) could

have h different values for different n(0).

5.3 Example

In this section, we provide an example to show how to compute the performance measures of this

system exactly when it is not ergodic.

Let N = 60 and C2=11. (This example is used in Section 7.2.) The system is not ergodic when

C1 =11, 22, 33, 44, or 55 since C1 and C2 are not relatively prime at these points (Section 3.1).

We present our method for calculating the performance measures only when C1 =11. The cases for

C1 = 22, 33, 44, and 55 can be handled similarly. We verified our results using simulation, which

is not described here.

In this case, h = 11. From (84), M ∗ = 5 and e∗ = 5.

When the initial buffer level is a multiple of 11, the buffer level is only allowed to be a multiple

of 11 at any time during the evolution of this system. This is because the buffer level can only

increase by 11 and it can only decrease by 11.

In general

1. When the initial buffer level n(0) is given by 0 or 11 or 22 or 33 or 44 or 55, the set of all

possible buffer levels during the evolution of this model is given by {0, 11, 22, 33, 44, 55}.

From (3) and (4), e = 0 and M = 5.
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2. When the initial buffer level n(0) is given by 1 or 12 or 23 or 34 or 45 or 56, the set of all

possible buffer levels during the evolution of this model is given by {1, 12, 23, 34, 45, 56}.

e = 1 and M = 5.

3. When the initial buffer level n(0) is given by 2 or 13 or 24 or 35 or 46 or 57, the set of all

possible buffer levels during the evolution of this model is given by {2, 13, 24, 35, 46, 57}.

e = 2 and M = 5.

4. When the initial buffer level n(0) is given by 3 or 14 or 25 or 36 or 47 or 58, the set of all

possible buffer levels during the evolution of this model is given by {3, 14, 25, 36, 47, 58}.

e = 3 and M = 5.

5. When the initial buffer level n(0) is given by 4 or 15 or 26 or 37 or 48 or 59, the set of all

possible buffer levels during the evolution of this model is given by {4, 15, 26, 37, 48, 59}.

e = 4 and M = 5.

6. When the initial buffer level n(0) is given by 5 or 16 or 27 or 38 or 49 or 60, the set of all

possible buffer levels during the evolution of this model is given by {5, 16, 27, 38, 49, 60}.

e = 5 and M = 5.

7. When the initial buffer level n(0) is given by 6 or 17 or 28 or 39 or 50, the set of all possible

buffer levels during the evolution of this model is given by {6, 17, 28, 39, 50}. e = 6 and

M = 4.

8. When the initial buffer level n(0) is given by 7 or 18 or 29 or 40 or 51, the set of all possible

buffer levels during the evolution of this model is given by {7, 18, 29, 40, 51}. e = 7 and

M = 4.

9. When the initial buffer level n(0) is given by 8 or 19 or 30 or 41 or 52, the set of all possible

buffer levels during the evolution of this model is given by {8, 19, 30, 41, 52}. e = 8 and

M = 4.

10. When the initial buffer level n(0) is given by 9 or 20 or 31 or 42 or 53, the set of all possible

buffer levels during the evolution of this model is given by {9, 20, 31, 42, 53}. e = 9 and

M = 4.

11. When the initial buffer level n(0) is given by 10 or 21 or 32 or 43 or 54, the set of all possible

buffer levels during the evolution of this model is given by {10, 21, 32, 43, 54}. e = 10 and

M = 4.
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The total number of all possible buffer levels in Cases 1–6 is given by 6. The total number of

all possible buffer levels in Cases 7–11 is given by 5. Cases 1–6 behave exactly like a two-machine,

one-buffer single-item line with buffer size 5 in which the part is a batch of 11 parts; and Cases

7–11 are like such a line with buffer size 4. From this,

Production rate in Case 1 = Production rate in Case 2 = ... = Production rate in Case 5

= Production rate in Case 6 > Production rate in Case 7 = Production rate in Case 8 = ... =

Production rate in Case 10 = Production rate in Case 11.

Thus, depending on the total number of all possible buffer levels, we have two groups. For

each case above, we can transform the original line into a corresponding reduced line using the

transformation presented in Section 3.1. Then, we can compute the exact performance measures

of the original line using the results of corresponding reduced lines as follows:

(1) Production rate of original line

• For cases 1–6:

We first calculate the production rate of a line with C1 =1, C2 =1, N=5, and the other

parameters (r1, r2, µ1, µ2, p1, p2) exactly the same as those in the original line. We then

multiply it by 11 to obtain the corresponding production rate of the original line.

• For cases 7–11:

We first calculate the production rate of a line with C1 =1, C2 =1, N=4, and the other

parameters (r1, r2, µ1, µ2, p1, p2) are exactly the same as those in the original line. We then

multiply it by 11 to obtain the corresponding production rate of the original line.

Thus depending on two groups, production rate can take two values when C1 = 11. Readers

are referred to Figure 6 of Section 7.

(2) Expected in-process inventory in the buffer of original line

• For cases 1-6:

Using an argument similar to the one used in calculating production rates, we can calculate

the expected in-process inventory in the buffer of original line using that of the reduced line

with C1 =1, C2 =1, N=5, and the other parameters (r1, r2, µ1, µ2, p1, p2) are exactly the same

as those in the original line:

n̄ = 11n̄(5, 1, 1) + e (86)
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• For cases 7-11:

Using an argument similar to the one used in calculating production rates, we can calculate

the expected in-process inventory in the buffer the original line using that of the reduced

line with C1 =1, C2 =1, N=4, and the other parameters (r1, r2, µ1, µ2, p1, p2) are exactly the

same as those in the original line:

n̄ = 11n̄(4, 1, 1) + e (87)

Thus depending on n(0), the expected in-process inventory can take one of 11 different values when

C1 = 11. Readers are referred to Figure 10 of Section 7.

6 Computational scheme

In this section, we briefly comment on a computational scheme to compute stationary probabilities

when the system is ergodic. Non-ergodic cases are treated by finding an associated ergodic system,

as described in the previous section.

It is not clear how to solve the balance equations using a technique like that presented in pp.

105–111 of [31]. This is because of the batch transition terms and the complexity of the ranges

of buffer levels. Although we can insert a guess of a solution (the product form) into the balance

equations, the resulting equations are so messy and complex (depending on the relationship between

C1, C2, and N) that we no longer expect to find a solution of this type. Instead, we use an efficient

numerical technique to solve the balanced equations and the normalization condition.

Step 1 We write the balance equations and normalization condition into the following form:

Ax = b, (88)

where A and b denote the matrix and column vector constructed from the balance equations and

the normalization condition, and x denotes the column vector of state probabilities.

Remark 4 When C1 and C2 are relatively prime, the system is ergodic (Section 3). Thus under this

assumption, there exists a unique solution which satisfies the balance equations and the normal-

ization condition simultaneously, which means that matrix A has a full column rank. Otherwise,

we use the transformation of Section 3.1 and obtain multiple solutions.

Remark 5 The dimensionality of x, and therefore the number of equations and unknowns in (88)

is linear in NC1C2.
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Step 2 When matrix A has a full column rank, (88) has the following unique solution [58]:

x = A+b, (89)

where A+ denotes the pseudoinverse of A, and it is given by

A+ = (ATA)−1AT . (90)

Remark 6. The best way to compute A+ is to use singular value decomposition ([58] and [47]).

For this purpose, we first decompose the matrix A into the following form:

A = USVT , (91)

where U and V are orthogonal matrices, and S is a diagonal matrix with real, non-negative singular

values ([58], p. 354). We then insert (86) into (87), and get the following expression for A+:

A+ = V(ST S)−1STUT . (92)

Remark 7 The primary advantage of singular value decomposition in solving simultaneous equa-

tions is that it can be applied to any matrix A (even one that is ill-conditioned), producing stable

solutions without accumulating rounding errors [35].

Remark 8 Based on the scheme presented in this paper, we wrote MATLAB code. The numerical

results in all figures presented in the next section were obtained very quickly. We encountered no

problem in producing the numerical results even with parameters (e.g., N=120, C1 = 50, C2 = 59)

that lead to very large A matrices. See Section 7, for example.

7 Sample numerical results and qualitative observations

We have confirmed all the theoretical results in Section 4 via extensive numerical results.

7.1 Numerical results: Effect of buffer size on performance measures

In this section, we present some numerical results. In Figures 2–5, we set C1 = 2, p1 = 0.01, p2 =

0.009, r1 = 0.09, r2 = 0.08, µ1 = 1.1, µ2 = 1.0, and we varied C2 and N .

In Figures 2–5, Machine 2 is the bottleneck when C2 = 1, and Machine 1 is the bottleneck when

C2 ≥ 3. Figure 2 shows that the production rate tends to increase and saturate as the buffer size
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Figure 2: The effect of buffer size on the production rate.
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Figure 3: The effect of buffer size on the efficiencies of Machine 1 and Machine 2.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

The buffer size

Th
e 

bl
oc

kin
g 

pr
ob

ab
ilit

y

The size of machine 2 = 1
The size of machine 2 = 3
The size of machine 2 = 5

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

The buffer size

Th
e 

st
ar

va
tio

n 
pr

ob
ab

ilit
y The size of machine 2 = 1

 The size of machine 2 = 3
 The size of machine 2 = 5

Figure 4: The effect of buffer size on the blocking and starvation probabilities.
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Figure 5: The effect of buffer size on the expected in-process inventory in the buffer.

increases. Figure 3 shows that the efficiencies of Machine 1 and Machine 2 tend to increase and

saturate as the buffer size increases. Figure 4 shows that the blocking probability of Machine 1 and

the starvation probability of Machine 2 tend to decrease and saturate as the buffer size increases.

Figure 5 shows that the expected in-process inventory tends to increases as the buffer size increases.

7.2 Numerical results and qualitative interpretations: Effect of machine sizes

on performance measures

In this section, we evaluate the example described in Section 5. We set N = 60, C2=11, p1 = 0.01,

p2 = 0.009, r1 = 0.09, r2= 0.08, µ1 = 1.1, µ2 = 1.0, and we vary C1. Machine 1 is a bottleneck for

1 ≤ C1 ≤ 9, Machine 2 is a bottleneck for 10 ≤ C1 ≤ 50.

For 51 ≤ C1 ≤ 53, the system is in deadlock. This is because the condition C1 + C2 ≤ N + 1

is violated for C1 ≥ 51. In Figures 6–10, the production rate and efficiencies are zero, and the

blocking and starvation probabilities are 1, for C1 ≥ 51.

The system is not ergodic when C1 = 11, 22, 33, or 44. In each of those cases, the performance

measures can take multiple values. The actual value depends on the initial buffer level. As men-

tioned in Section 5, the line has two possible production rates when C1 is 11. These rates are 11

times those of lines with two non-batch machines and one buffer in which the buffer size is either

5 or 4 and the other parameters (r1, r2, µ1, µ2, p1, p2) are the same as those in the original line.

The expected in-process inventories when C1 is 11 are calculated from equations (86) and (87)

in Section 5. Depending on n(0) in (86) and (87), the expected-in-process inventory can take 11

different values at non-ergodic points. The other cases can be handled similarly.

Figure 6 shows the effect of the size of Machine 1 on the production rate of the line. When

Machine 1 is the bottleneck, the larger C1, the larger the production rate. When Machine 2 is the
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bottleneck, however, the effect of increasing C1 on the production rate is more complicated. When

Machine 2 becomes the bottleneck, the continued increase of the size of Machine 1 leads to the

increase of the production rate at a much slower rate until C1 = 28. For C1 > 28, the production

rate tends to decrease slowly until it suddenly drops to zero due to deadlock. This decrease does

not occur in systems with batches of size 1. Why does the production rate of the line tend to

decrease after a certain point?
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Figure 6: The effect of the size of machine 1 on the production rate.

One possible explanation is as follows: Machine 1 is forced to wait as long as there is not

enough space in the buffer for the C1 parts it will produce. Thus, the larger the size of Machine

1, the higher the blocking probability of Machine 1, and the longer the periods of blocking. Also,

whenever Machine 1 is blocked, Machine 2 processes the parts in the buffer in batches until it has

created enough spaces in the buffer for the blocking of Machine 1 to end. Thus, the longer the

duration of a blocking period of Machine 1, the smaller the mean number of parts in the buffer right

after the completion of a blocking period of Machine 1, and therefore the higher the probability

that Machine 2 (the bottleneck machine) starves soon after a completion of blocking of Machine

1. Therefore, the increase of the size of Machine 1 would eventually lead to a small increase of

the starvation probability of the bottleneck machine and consequently a decrease of the production

rate. We confirm this interpretation via exact numerical results (Figure 9).

In Figure 7, we compare the production rate of the line with that of a line in which Machine

2 and the buffer are the same as those of the original line. Machine 1 of the new line has size 1

and the same r1 and p1 as that of Machine 1 of the original line. The speed µ′

1 is given by C1µ1,

where C1 and µ1 are the size and speed of Machine 1 of the original line. As a result, the isolated
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Figure 7: An approximation of the production rate
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Figure 8: The effect of the size of Machine 1 on the efficiencies

production rates of the two Machines 1s are the same. Figure 7 shows that the production rate of

the two lines are extremely close until C1 ≈ 6.

Figure 8 shows the effect of the size of Machine 1 on the efficiencies. Regardless of which

machine is a bottleneck, the larger the size of Machine 1, the lower the efficiency of Machine 1,

which is consistent with our comments on Figure 6. The effect of the size of Machine 1 on the

efficiency of Machine 2 can similarly be explained by the comments on Figure 6.

Figure 9 presents the effect of the size of Machine 1 on the blocking and starvation probabili-

ties. Note that blocking and starvation probabilities are negatively correlated with efficiencies of

Machines 1 and 2 by Theorem 1. Thus the behavior in Figure 8 can similarly be explained by the

comments presented in Figure 8.
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Figure 9: The effect of the size of Machine 1 on the blocking and starvation probabilities
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Figure 10: The effect of the size of Machine 1 on the expected in-process inventory in the buffer
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Figure 11: (a) The effect of the size of Machine 1 on the production rate of the line under the condition
that µ1 = 50/C1 (b) The effect of the size of Machine 2 on the production rate of the reversed line with
µ2 = 50/C2.

Figure 10 presents the effect of the size of Machine 1 on the expected in-process inventory in

the buffer. The behavior shown in Figure 10 can be explained by the comments about Figures 7–9.

The expected in-process inventories when C1 is 11 are calculated from equations (86) and (87) in

Section 5. Note that depending on n(0) in (86) and (87), the expected-in-process inventory takes

11 values at non-ergodic points.

In Figures 11(a)–16(a), we set N = 120, C2=59, p1 = 0.009, p2 = 0.01, r1 = 0.08, r2= 0.09,

µ2 = 1.0. We vary C1 from 1 to 50 and choose µ1 = 50/C1, so µ1C1 = 50. Note that the system

under consideration is always ergodic in this range. Figures 11(b)–16(b) present the corresponding

numerical results for the reversed system: we set N = 120, C1=59, p2 = 0.009, p1 = 0.01, r2 =

0.08, r1= 0.09, µ1 = 1.0. We vary C2 from 1 to 50 and choose µ2 = 50/C2, so µ2C2 = 50. Figures

11–16 imply that it is better to have a fast machine making small batches than a slow machine

making large batches, if the isolated throughput (µiCiri/(ri + pi)) of the machine is fixed.

Figure 11(a) shows that the production rate of the line tends to decrease as we increase C1 (and

decrease µ1). The explanation for this behavior may be the same as the explanation for Figure

6. As C1 increases, the probability of starving Machine 2 increases. Figure 12(a) shows that the

efficiency of Machine 1 tends to decrease as we increase C1 (and decrease µ1). Figure 13(a) shows

that the efficiency of Machine 2 tends to decrease as we increase C1 (and decrease µ1). Figure 14(a)

shows that the blocking probability tends to increase as we increase C1 (and decrease µ1). Figure

15(a) shows that the starvation probability tends to increase as we increase C1 (and decrease µ1).

Figure 16(a) shows that the expected in-process inventory in the buffer tends to decrease as we

increase C1 (and decrease µ1).

Finally, comparing Figures 11(a)–16(a) with Figures 11(b)–16(b) confirms Theorem 3.
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Figure 12: (a) The effect of the size of Machine 1 on the efficiency of machine 1 under the condition that
µ1 = 50/C1 (b) The effect of the size of Machine 2 on the efficiency of machine 2 of the reversed line under
the condition that µ2 = 50/C2.
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Figure 13: (a) The effect of the size of Machine 1 on the efficiency of machine 2 under the condition that
µ1 = 50/C1 (b) The effect of the size of Machine 2 on the efficiency of machine 1 of the reversed line under
the condition that µ2 = 50/C2.
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Figure 14: (a) The effect of the size of Machine 1 on the blocking probability under the condition that
µ1 = 50/C1 (b) The effect of the size of Machine 2 on the starvation probability of the reversed line under
the condition that µ2 = 50/C2.
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Figure 15: (a) The effect of the size of Machine 1 on the starvation probability under the condition that
µ1 = 50/C1. (b) The effect of the size of Machine 2 on the blocking probability of the reversed line under
the condition that µ2 = 50/C2.
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Figure 16: (a) The effect of the size of Machine 1 on the expected in-process inventory in the buffer under
the condition that µ1 = 50/C1. (b) The effect of the size of Machine 2 on the expected in-process inventory
in the buffer of the reversed line under the condition that µ2 = 50/C2.
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8 Conclusions

In this paper, we have discussed the analytical modeling and exact analysis of a production line

with two unreliable batch machines and a finite buffer when the machines may have different

batch sizes. We have presented new conservation of flow and flow rate-idle time relationships,

which generalize those in pp. 99–100 of [31] for the single-item two-machine line. We have also

presented various performance measures of interest such as production rate, efficiencies of machines,

probabilities of blocking and starvation and expected in-process inventory. We have established

formulas for calculating the limiting values of performance measures of this system. We have

demonstrated an equivalence property and described deadlock behavior. Numerical results and

their qualitative interpretations have been presented. We have established relationships between

the sizes of machines and performance measures of this system. New phenomena and insights are

investigated and interpreted.

The important relationships between the batch sizes and some performance measures that were

observed in the examples in this paper can be summarized as follows:

1. The effect of the sizes of machines on the production rate:

1) If Machine i is a bottleneck, the larger the size of Machine i, the larger the production

rate of the line.

2) If Machine 2 is a bottleneck, and the size of Machine 1 is relatively small (e.g., less than

N/2), the increase of the size of Machine 1 leads to the increase of the production rate up

to a certain point. After that, the production rate tends to decrease slowly until it suddenly

drops to zero due to deadlock. This behavior is investigated and interpreted in Section 7.

2. The effect of the sizes of machines on the blocking and starvation probabilities:

1) Regardless of which machine is a bottleneck, the larger the size of Machine 1, the higher

the blocking probability. (Similarly, regardless of which machine is a bottleneck, the larger

the size of Machine 2, the higher the starvation probability).

2) If Machine 2 is a bottleneck, and the size of Machine 1 is relatively small (e.g., less than

N/2), an increase of the size of Machine 1 leads to a decrease of the starvation probability of

Machine 1 up to a certain point. After that, the starvation probability of Machine 1 tends

to increase slowly until it suddenly becomes 1 due to deadlock. This behavior is investigated

and interpreted in Section 7.
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3. Under the condition that isolated throughput µiCiri

ri+pi
of Machine i is fixed, the production rate

of the line decreases as we increase Ci (and decrease µi), i=1,2. That is, it is better to have

small fast machines than large slow machines. This behavior is interpreted in Section 7.

Acknowledgments

This was partially supported by the Korea Research Foundation (KRF) under Grant No. R05-

2004-000-10393-0. It was also partially supported by the Singapore-MIT Alliance (SMA).

References

[1] M.H. Ammar, S.B. Gershwin, Equivalence relations in queuing models of fork/join networks,

Performance Evaluation, Special Issue on Queueing Networks with Finite Capacities, 10 (1989),

233-245.

[2] F. Avram, W.M. Wein, A product design problem in semiconductor manufacturing, Operations

Research 40 (1992), 986-998.

[3] J.H. Ahmadi, R.H. Ahmadi, S. Dasu, C.S. Tang, Batching and scheduling jobs on batch and

discrete processors, Operations Research 40(4) (1992), 750-763.

[4] T. Altiok, Performance Analysis of Manufacturing Systems, Springer-Verlag, New York, 1997.

[5] O. Berman, Efficiency and production rate of a transfer line with two machines and a finite

storage buffer, European Journal of Operations Research 9 (1982), 295-308.

[6] G.R. Bitran, D. Tirupati, Approximations for product departures from single-server station

with batch processing and multi-product queues, Management Science 35(7) (1989), 851-878.

[7] J.A. Buzacott, Markov chain analysis of automatic production line with buffer stock, Ph.D.

thesis, University of Birmingham, 1967.

[8] J.A. Buzacott, Methods of reliability analysis of production systems subject to breakdowns,

in: Operations Research and Reliability, ed. D. Grouchko, Turin, Italy (1969), 211-232.

[9] J.A. Buzacott, J.G. Shanthikumar, Stochastic Models of Manufacturing Systems, Prentice

Hall, Englewood Cliffs, New Jersey 1993.

Part I --- Full Batches 39



Chang and Gershwin June 28, 2005

[10] M. Burman, S.B. Gershwin, C. Suyematsu, Hewlett-Packard uses Operations Research to im-

prove the design of a printer production line, INTERFACES 28(1), January-February, (1998),

24-36.

[11] G.P. Cachon, Exact evaluation of batch-ordering inventory policies in two-echelon supply

chains with periodic review, Operations Research 49(1), (2001), 1446-1460.

[12] S.H. Chang, S.B. Gershwin, Modeling and exact analysis of a production line with unreliable

batch machines and finite buffers: Part 2 – Partial batches, Working paper, Massachusetts

Institute of Technology, Cambridge, MA (2005).

[13] S.H. Chang, T. Takine, Factorization and stochastic decomposition properties in bulk queues

with generalized vacations, to appear in Queueing Systems 50(2-3), (2005), 165-183.

[14] F. Chen, Y. Feng, D. Simchi-Levi, Uniform distribution of inventory positions in two-echelon

periodic review systems with batch-ordering policies and independent demand, European Jour-

nal of Operations Research 140(3), (2002), 648-654.

[15] H. Chen, J.M. Harrison, A. Mandelbaum, A. van Ackere, L.M. Wein, Empirical evaluation

of a queueing network model for semiconductor wafer fabrication, Operations Research 36(2),

(1988), 202-215.

[16] J.W. Cohen, The Single Server Queue, North Holland, Amsterdam, 1982.

[17] D.P. Connors, G.E. Feigin, D.D. Yao, A queueing network model for semiconductor manufac-

turing, IEEE Transactions on Semiconductor Manufacturing 9, (1996), 412-427.

[18] Y. Dallery, R. David., X.L. Xie. An efficient algorithm for analysis of transfer lines with

unreliable machines and finite buffers, IIE Transactions 20, (1988), 280-283.

[19] Y. Dallery, R. David, X.L. Xie, Approximate analysis of transfer lines with unreliable machines

and finite buffers, IEEE Transactions on Automatic Control 34(9), (1989), 943-953.

[20] Y. Dallery, S.B. Gershwin, Manufacturing flow line systems: A review of models and analytical

results, Queueing Systems Theory and Applications, Special Issue on Queueing Models of

Manufacturing Systems 12(1-2), (1992), 3-94.

[21] Y. Dallery, On modeling failure and repair times in stochastic models of manufacturing systems

with generalized exponential distributions, Queueing Systems 15, (1994), 199-209.

Analysis of a Production Line with Two Unreliable Batch Machines 40



Chang and Gershwin June 28, 2005

[22] R. Deb, R.F. Serfozo, Optimal control of batch service queues, Advances in Applied Probability,

5(2), (1973), 340-361.

[23] J.H. Dshalalow, Queueing systems with state dependent parameters, In Frontiers in Queue-

ing: Models and Applications in Science and Engineering, ed. J.H. Dshalalow, CRC press,

Amsterdam, 1997, 61-116.

[24] P.J. Egbelu, Unit load design and its impact on manufacturing systems performance, J.M.A.

Tanchoco (Ed.), Material Flow Systems in Manufacturing, Chapman and Hall, London, 1994.

[25] S.B. Gershwin, I.C. Schick, Modeling and analysis of two- and three-stage transfer lines with

unreliable batch machines and finite buffers, Technical Report LIDS-R-979, Massachusetts

Institute of Technology, Cambridge, MA (1980a).

[26] S.B. Gershwin, I.C. Schick, Continuous model of an unreliable two-stage material flow sys-

tem with a finite interstage buffer, Technical Report LIDS-R-1039, Massachusetts Institute of

Technology, Cambridge, MA (1980b).

[27] S.B. Gershwin, O. Berman, Analysis of production lines consisting of two unreliable machines

with random processing times and a finite storage buffer, AIIE Transactions 13(1), 2-11, March

(1981).

[28] S.B. Gershwin, I.C. Schick, Modeling and analysis of three-stage transfer lines with unreliable

machines and finite buffers, Operations Research 31, (1983), 354-380.

[29] S.B. Gershwin, An efficient decomposition method for the approximate evaluation of tandem

queues with finite storage space and blocking, Operations Research 35(2), (1987), 291-305.

[30] S.B. Gershwin, Assembly/Disassembly systems: An efficient decomposition algorithm for tree

structured networks, IIE Transactions 23(4), (1991), 302-314.

[31] S.B. Gershwin, Manufacturing Systems Engineering, Englewood Cliffs, New Jersey: PTR

Prentice Hall, 1994.

[32] S.B. Gershwin, Design and operations of manufacturing system: the control-point policy, IIE

Transactions 32, (2000), 891-906.

[33] S.B. Gershwin, M.H. Burman, A decomposition method for analyzing inhomogeneous assem-

bly/disassembly systems, Annals of Operations Research 93, (2000), 91-116.

Part I --- Full Batches 41



Chang and Gershwin June 28, 2005

[34] C.R. Glassey, W.W. Weng, Dynamic batching heuristic for simultaneous processing, IEEE

Transactions on Semiconductor Manufacturing 4(2), (1991), 77-82.

[35] G.H. Golub, C.F. van Loan, Matrix Computations, 2nd edn., The John Hopkins University

Press, 1989.

[36] M.P. Groover, Automation, Production Systems, and Computer Integrated Manufacturing,

Second Edition, Prentice Hall, 2001.

[37] N.G. Hall, C.N. Potts, Supply chain scheduling: batching and delivery, Operations Research,

51, (2003), 566-584.

[38] R.J. de Haut de Sigy, Loading control policy for a batch machine, Technical report LMP90-001,

Massachusetts Institute of Technology, Cambridge, MA (1990).

[39] S. Helber, H. Jusi, A new decomposition approach for non-cyclic continuous material flow lines

with a merging flow of material, Annals of Operations Research, 125(1-4), (2004), 117-139.

[40] D.S. Hochbaum, D. Landy, Algorithms and heuristics for scheduling semiconductor burn-in

operations, Operations Research 45(6), (1997), 874-885.

[41] E. Ignall, P. Kolesar, Operating characteristics of a simple shuttle bus under local dispatching

rule, Operations Research 20, (1972), 1077-1088.

[42] S.M.R. Iravani, J.A. Buzacott, M J.M. Posner, Operations and shipment scheduling of a batch

on a flexible machine, Operations Research 51(4), (2003), 585-601.

[43] M.A. Jafari, J.G. Shanthikumar, Exact and approximate solutions to two-stage production

lines with general uptime and downtime distributions, IIE Transactions 19(4), (1987), 412-

419.

[44] V.S. Kouikoglou, Sensitivity analysis and decomposition of unreliable production lines with

blocking, Annals of Operations Research 93, (2001), 245-264.

[45] R. Levantesi, A. Matta, T. Tolio, Performance evaluation of continuous production lines with

machines having different processing times and multiple failure modes, Performance Evaluation

51(2-3), (2003), 247-268.

[46] J.D.C. Little, A proof for the queueing formula: L = λW , Operations Research 9, (1961),

383-387.

Analysis of a Production Line with Two Unreliable Batch Machines 42



Chang and Gershwin June 28, 2005

[47] MATLAB, The Language of Technical Computing, The Math Works, Inc, 1999.

[48] G. D. Mostow, J. H. Sampson, and J.-P. Meyer, Fundamental Structures of Algebra, McGraw-

Hill, 1963.

[49] E. J. Muth, The reversibility property of production lines, Management Science 25(2), (1979),

152-158.

[50] G.F. Newell, Approximate Behavior of Tandem Queues, Springer-Verlag, 1979.

[51] Y. Pan, S.B. Gershwin, Modeling and analysis of production lines with and without preven-

tative maintenance, Laboratory for Information and Decision Systems Report LIDS-P-1294,

Massachusetts Institute of Technology, Cambridge, MA, April, 1983.

[52] H.T. Papadopoulous, C. Heavy, J. Browne, Queueing Theory in Manufacturing System Anal-

ysis and Design, London, Chapman & Hall, 1993.

[53] A. Patchong, T. Lemoine, G. Kern, Improving car body production at PSA Peugeot Citroen,

INTERFACES 33(1), Jan-Feb, (2003), 36-49.

[54] W.B. Powell, P. Humblet, The bulk service queue with a general control strategy: theoretical

analysis and a new computational procedures, Operations Research 34, (1986), 267-275.

[55] SEMATECH, 2002, Semiconductor manufacturing process. July, http://www.sematech.org/

public/news/mfgproc/mfgproc.htm

[56] I.C. Schick, S.B. Gershwin, Modeling and analysis of unreliable transfer lines with finite in-

terstage buffers, In Complex Material Handling and Assembly Systems, Vol. IV, Report ESL-

FR-834-6, Electronic Systems Laboratory, Massachusetts Institute of Technology, Cambridge,

MA, 1978.

[57] J.G. Shanthikumar, C.C. Tien, An algorithmic solution to two-stage production lines with

possible scrapping of units, Management Science 29(9), (1983), 1069-1086.

[58] G. Strang, Introduction to Linear Algebra, Third Edition, Wellesley-Cambridge Press, Box

812060, Wellesley, MA 02482, 2003.

[59] T. Tolio, S.B. Gershwin, A. Matta, Analysis of two-machine lines with multiple failure modes,

IIE Transactions 34(1), January, (2002), 51-62.

Part I --- Full Batches 43



Chang and Gershwin June 28, 2005

[60] M.H. Veatch, L.M. Wein, Optimal control of two-station tandem production/inventory system,

Operations Research 42(2), March-April, (1994), 337-350.

Analysis of a Production Line with Two Unreliable Batch Machines 44


