640 research outputs found

    Wireless vehicular communications for automatic incident detection and recovery

    Get PDF
    Incident detection is the process by which an incident is brought to the attention of traffic operators in order to design and activate a response plan. To minimize the detection time is crucial to mitigate the incident severity for victims as well to reduce the risk of secondary crashes. Automated incident information dissemination and traffic conditions is useful to alert in-route drivers to decide alternative routes on unexpected traffic congestion and may be also used for the incident recovery process, namely to optimize the response plan including the “nearest” rescue teams, thereby shortening their response times. Wireless vehicular communications, notably the emergent IEEE 802.11p protocol, is the enabling technology providing timely, dependable and secure properties that are essential for the devised target application. However, there are still some open issues with vehicular communications that require further research efforts. This paper presents an overview of the state of the art in wireless vehicular communications and describes the field operational tests proposed within the scope of the upcoming FP7 project ICSI - Intelligent Cooperative Sensing for Improved traffic efficiency

    Open Platforms for Connected Vehicles

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Characterization and performance evaluation of 802.11p NICs

    Get PDF
    The automotive industry is scrambling to equip high- and middle-segment vehicles with communication capabilities that will enable the commercialization of connected vehicles in the near future. Although both IEEE and 3GPP are devel- oping new solutions, it is likely that IEEE 802.11p will be the protocol of choice. In this paper, we develop an open-source testing framework for IEEE 802.11p cards and character- ize the performance of Unex DHXA-222 cards in terms of throughput and packet loss, especially when different traffic classes, hence access categories, are selected

    Use of wireless, ad-hoc networks for proximity warning and collision avoidance in surface mines

    Get PDF
    Despite the record of progress achieved in the United States with respect to reducing fatal and non-fatal injuries in surface mines, both the number and severity of these injuries remain unacceptable. A large fraction of these injuries in surface mines are caused by collisions involving large haulage equipment such as trucks, dozers, and front-end loaders. There are two main contributing factors for these collisions: (i) the massive size of these vehicles, which causes several blind spots surrounding the vehicle for the driver, and (ii) the sheer momentum of these vehicles, which makes it hard to maneuver these vehicles and often necessitates a long response time to avoid collisions. The objective of this work is to investigate the use of different kinds of wireless networks in a distributed ad-hoc mode for providing timely warning about nearby personnel and vehicles, and to evaluate their performance using tests in an actual surface mine.;The contributions of this work are as follows: (i) A zone-based proximity warning system was developed and tested using low power IEEE 802.15.4 radios for detecting obstacles and vehicles at small distances (\u3c10m), with the information of the exact zone they are in, around the vehicle. (ii) For timely warning about approaching vehicles at relatively larger distances (10-100m), a GPS system was integrated with Wi-Fi (IEEE 802.11a/b/p) radios in an ad-hoc mode, where information about approaching vehicles can be known as soon as they come into range. A communication range test was performed in an actual surface mine setting to characterize the distances at which the warnings can be reliably received using each of the IEEE 802.11 family of radios. Both the proximity warning system and the Wi-Fi-based collision avoidance system were evaluated for feasibility at an operating surface coal mine in the southern United States

    Safety Applications and Measurement Tools for Connected Vehicles

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Performance evaluation of networking protocols for connected vehicles

    Get PDF
    Modern cars feature many embedded systems that monitor and manage all the critical sensors and actuators. The interconnection of such systems is a challenging task since the information to be exchanged is of mission-critical nature and affects the driving experience. The vehicle connectivity can be further extended with Vehicle-to-Vehicle (V2V) technology, which allows cars to exchange sensory information and even act on it. In this article a unified networking architecture is presented, starting from the inside of the vehicle and the interconnection of various control units and ultimately targeting Car-to-Car communications which enable smarter, safer and more efficient transportation. The researchers review and evaluate the performance of Power Line Communications as a solution for in-car networking. Then the safety-critical data as well as multimedia originating from each individual vehicle's in-car network are broadcasted to other neighbouring vehicles via IEEE 802.11p in a simulation environment featuring realistic vehicular mobility

    Evaluating the Impact of Transmission Range on the Performance of VANET

    Get PDF
    Recently, interest in the field of Vehicular Ad-hoc Networks (VANETs) has grown among research community to improve traffic safety and efficiency on the roads. Despite the many advantages, the transmission range in vehicular network remains one of the major challenges due to the unique characteristics of VANETs such as various communication environments, highly dynamic topology, high node mobility and traffic density. The network would suffer from a broadcast-storm in high vehicular density when a fixed transmission range in VANET is used, while in sparse vehicular density the network could be disconnected frequently. In this paper, we evaluated the impact of different transmission ranges and number of flows formed between vehicles in a highway scenario using AODV as routing protocol. In order to validate the simulation of VANET, traffic and network simulators (SUMO & NS-2) have been used. The performance was evaluated in terms of packet delivery ratio and end-to-end delay. The simulation results have shown that better performance was achieved in term of higher PDR and lower end-to-end delay for less than 500 meters transmission range. On the contrary, the PDR started to decrease and end-to-end delay increased when the transmission range exceeded 500 meters. The performance degraded as the number of flows increased
    corecore