POLITECNICO DI TORINO
Repository ISTITUZIONALE

Safety Applications and Measurement Tools for Connected Vehicles

Original
Safety Applications and Measurement Tools for Connected Vehicles / Malinverno, Marco. - (2021 Mar 26), pp. 1-180.

Availability:
This version is available at: 11583/2895395 since: 2021-04-19T11:24:15Z

Publisher:
Politecnico di Torino

Published
DOI:

Terms of use:
Altro tipo di accesso

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

16 July 2022

Scuola di Dottorato ~ Doctoral School
WHAT YOU ARE, TAKES YOU FAR

Doctoral Dissertation
Doctoral Program in Electric, Electronic and
Communication Engineering (XXXIII cycle)

Safety Applications and
Measurement Tools for
Connected Vehicles

Marco Malinverno

* %k ok k% Kk &

Supervisors
Prof. Claudio Ettore Casetti, Supervisor
Prof. Carla Fabiana Chiasserini Co-supervisor
Prof. Nicola Amati Co-supervisor

Doctoral Examination Committee:

Prof. Claudia Campolo, Universita Mediterranea di Reggio Calabria
Prof. Michele Segata, Libera Univesita di Bolzano

Prof. Pietro Manzoni, Universitat Politécnica de Valéncia

Prof. Raphael Frank, Université du Luxembourg

Prof. Paolo Giaccone, Politecnico di Torino

Politecnico di Torino
February, 2021

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to the
original author.

I hereby declare that, the contents and organisation of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Marco Malinverno
Turin, February, 2021

www.creativecommons.org

Summary

The automotive industry is in the middle of a technological revolution, which in the
coming years will see every vehicle connected through Vehicle-to-Everything (V2X)
technologies. The most important standardization bodies have done their part to usher
in this slow but inexorable transition: IEEE, with the WAVE stack (Wireless Access in
Vehicular Environment) and ETSI, with the ITS-G5 stack, have contributed to defining
the foundations of the ITS (Intelligent Transportation System) scenario for US and Eu-
rope. The network access technology to be adopted to enable such communications is
at the center of a major debate in the scientific community: IEEE proposed a protocol
coming from the 802.11 wireless-LAN family, while 3GPP proposed a solution derived
from the cellular networks (C-V2X).

All these technologies will enable an incredible number of applications, which will
overturn the mobility experience in all of its forms. The main topics of this thesis
are V2X communications, and after an initial analysis on the main solutions already
developed, it presents and discusses original contributions ranging from the world of
network simulation to that of V2X embedded devices.

Simulations tools plays a pivotal role in the automotive industry: because of the
complexity and the high deployment costs of vehicular applications, it is usually con-
venient to extensively test them by simulation. This thesis introduces MS-VAN3T, an
open source ETSI ITS-G5 model for the ns-3 simulator that, coupled with SUMO (Simu-
lation of Urban Mobility), allows the reproduction of complex vehicular scenarios. MS-
VANS3T can be used to develop any kind of application and comes with the possibility
of transparently changing the underlying access technology.

Day-0 applications will leverage V2X technologies to improve road safety. For this
reason, MS-VAN3T is used in this thesis to develop a collision avoidance system that,
leveraging Cooperative Awareness Messages (CAMs) and Decentralized Environmental
Notification Messages (DENMs) can warn vehicles and vulnerable users about possible
future collisions. The information generated by the system is then used to build an
automatic strategy, which allows vehicles to autonomously assess the collision risk and
take appropriate reactions to avert the collisions.

In response to the growing demand for V2X solutions enabling the aforementioned
applications, this thesis proposes an open source testing platform that can be used to
assess the performance of V2X Wireless Network Interface Cards (WNICs), and that

enables a fully working 802.11p communication. The proposed platform is composed
of a patched modified version of OpenWrt, an OS that is widely used for embedded
devices, and it is used to test the throughput, the radio range and other important KPIs
of off-the-shelf low-cost WNICs.

One of the key parameters for vehicular networks, which must be constantly mea-
sured to guarantee a reliable service, is latency. Being capable of measuring such a
parameter can be very important in providing applications with acceptable perfor-
mances. Although several solutions exist in literature, such as ping or other mea-
surement platforms, they are typically bound to a specific protocol, such as ICMP, or
require additional hardware or software capabilities other than the testing application.
In this thesis, a novel lightweight, flexible, and custom latency measurement protocol is
presented. The protocol, named LaMP (Latency Measurement Protocol), is completely
agnostic of lower-layer protocols and enables micro-second precise latency measure-
ments. The first open source tool leveraging LaMP, called LaTe (Latency Tester), is
presented as well. LaMP and LaTe, which are constantly updated and added with new
features, are used to validate and test the above-mentioned V2X platform. This thesis
presents the most important results of such an analysis, and highlights the importance
of open source solutions for the performance assessment of technologies for connected
vehicles.

Acknowledgements

This work was fully supported by the interdepartmental center CARS@PoliTo, the Cen-
ter for Automotive Research and Sustainable mobility of Politecnico di Torino.

Contents

1 Introduction

1.1
1.2
1.3

2.1

2.2

2.3

2.4
2.5

Research motivation and objectives
Main contributions
Outline of thethesis

Communication protocols for connected cars

V2X - Vehicle to Everything
2.1.1 Current spectrum regulation for ITS
DSRC-based protocols
221 WAVE . . . e
Higherlayers
Transport and Network layers
Data-link layers oo L.
Accesslayers
Security services L Lo
222 ITS-G5 o
Application and Facilities layers
Transport and Network layers
Accesslayers
Security services L oo
223 802.11p. e
MAClayer
Physicallayer
2.24 Toward the next generation of 802.11 vehicular protocols
Cellular-based protocols
23.1 LTE-V2X
Transmissionmode 3 L.
Transmissionmode 4
232 5G-V2X ..
Interoperability study o o
Related work and comparison studies

11
12
14

3 MS-VAN3T: amulti-stack simulation framework for VANET applications

4

testing in ns-3 47
3.1 Introduction 47
3.2 MS-VANST framework architecture 49
3.2.1 Facilities layersmodel o L. 50

3.22 V2I/V2Nscenarios 52

323 V2Vscenarios 54

3.3 Building applications on top of MS-VAN3T 54
3.3.1 V2I/V2N application: Area Speed Advisory 54

3.3.2 V2V application: Emergency Vehicle Alert 57

3.4 Simulating with MS-VAN3T 59
3.4.1 V2I/V2N application performances 59

3.4.2 V2V application performances 60

3.43 Access technologies performances 61
802.11p. . . . o e 63

LTE . . . 65

C-V2X o 67

3.5 Emulating with MS-VAN3T 69
3.6 Futurework 70
V2X-supported collision avoidance systems 73
4.1 ICRW according to ETSI: an overview 74
41.1 Functional requirements 74

4.1.2 Operational requirements 75

4.2 ICRW application: the Collision Avoidance Service 75
4.2.1 Centralized solution 77

4.2.2 Distributed solution L. 78

4.2.3 The Collision Avoidance Algorithm 79

43 System validation through simulations 80
43.1 Purely vehicular scenario 81
Simulation results - centralized solution 82

Simulation results - distributed solution 85

43.2 Vehicles and vulnerableusers 90
Simulationresults. oL, 91

4.4 CAS as an enabler for autonomous driving systems 94
44.1 Virtual safety shield 95

442 Reaction to DENMs generated by CAS 96

443 Evasive maneuver pseudocode, 97

444 Simulationresults. Lo L 99

5 Open source solutions for V2X-enabled embedded devices 103

5.1 Embedded devices for IEEE 802.11p communication: state of the art . . 104

5.2 Testbed description 106
52.1 MAClayer. 107

5.2.2 Physicallayer oo 108

5.3 Performance evaluation L. 109
5.3.1 Throughput and packet loss measurements 109

5.3.2 Traffic classes and access categories 111

5.3.3 Received power and connectivity measurements 113

5.4 LaMP: a novel protocol for precise latency measurements 115
5.4.1 Existing solutions for precise latency measurement 115

5.4.2 LaMP protocol description 116

Type of packets defined inLaMP 118

5.5 LaTe: the first LaMP-compliant application 120
5.5.1 Protocol and tool validation 121

5.6 Latency measurement in V2X-enabled embedded devices using LaTe . 122

6 Conclusions 129
A CA and DEN basic service models in MS-VAN3T 131
A.1 CA basic service implementation. 131
A1l CAMencoding 132

A.1.2 CAM Transmission Management 138

A.1.3 CAM decoding and Reception Management 141

A.2 DEN basic service implementation 143
A.2.1 DENM encoding and Transmission Management 144

A.2.2 DENM decoding and Reception Management 156

B The Collision Avoidance Algorithm 161
B.1 Introduction 161
B.2 Collision Avoidance Algorithm pseudocode 161
B3 T2Cthreshold 163
B.4 S2Cthreshold 164
Bibliography 171

Chapter 1

Introduction

The first heartbeat of the automotive industry is dated back in 1886, when the German
engineer Karl Benz had the crazy idea of creating a vehicle for the transport of people
capable of moving without the need for horse towing, paving the way to one of the
most robust and resilient industry in the world. After around twenty years, in 1913,
Henry Ford, a man who was determined to build motor cars for the multitude, installed
the first assembly line for the mass production of an entire automobile: its invention
pulled down drastically the time and the costs of the industry and delivered into the
hands of the people the first affordable motorized vehicles. Nowadays, after the advent
of the new communication techniques and with the raise of the so-called Industry 4.0,
the concept of vehicle can no longer be associated with that of a merely mechanical
device. The vehicles today are something more complex, devices that take advantage of
a numbers of different technologies that are constantly shifting the concept of mobility
toward a safer, greener and smarter paradigm.

During the last couple of decades, the academic and industrial players devoted to
the automotive world developed an increasing interest on Vehicular Ad-Hoc Networks
(VANETs). Because of their peculiar characteristics, it was not possible to reuse the
existing communication protocols: extremely dynamic topologies, variable densities,
high bandwidth demand with ultra low latency expected, and relatively high power
availability, make vehicular networks something more than a derivation or a variant of
Mobile Ad-Hoc Networks (MANETs). For these reasons, the main standardization bod-
ies focused their resources in creating new solutions and new protocols able to bear with
the tight specifications that the multitude of applications leveraging vehicular commu-
nications will require.

The concepts of Vehicle-to-Everything (V2X) and of connected vehicles encompass
all the communications demands of the vehicular world. V2X refers to a technology (or,
more precisely, to a set of technologies) enabling the wireless data exchange between
the vehicle and any other entity in its surroundings. Therefore, the general definition
of V2X can be separated into a multitude of sub-cases depending on the particular field

Introduction

of application. The most important include: Vehicle-to-Vehicle (V2V) for the inter-
vehicles communications; Vehicle-to-Pedestrian (V2P) to facilitate the interaction with
pedestrians; Vehicle-to-Infrastructure (V2I) referred to the communications with the
road-side facilities as well as to the communications with the telecom operator infras-
tructures; Vehicle-to-Network (V2N) for the communication with the network-based
services and applications. The term connected vehicles, instead, identifies those vehi-
cles equipped with V2X sensors.

The two main standardization bodies competing in this field of research are the
European Telecommunication Standards Institute (ETSI) and the Institute of Electrical
and Electronics Engineers (IEEE), whose efforts resulted in two standards defining as
many communication stacks for vehicular networking. The solution proposed by ETSI,
mainly pushed in the European market, is the so-called Intelligent Transportation Sys-
tem (ITS)-G5; on the other hand IEEE proposed for the US market the Wireless Access
for Vehicular Environment (WAVE) protocol stack. The two standards are different im-
plementation of the so-called Dedicated Short-Range Communications (DSRC) and are
based on the IEEE 802.11p access layer, a particular Wi-Fi-based amendment thought for
the vehicular world. Recently, an emerging access technology named C-V2X (Cellular-
V2X) was proposed by the Third Generation Partnership Project (3GPP), promising a
solution natively integrated with the raising 5G networks, able to tackle the demand-
ing requirements of vehicular applications. The solution proposed by 3GPP has been
designed to have the flexibility of replacing 802.11p in DSRC protocols.

Since the proposal of C-V2X, the scientific and industrial communities are struggling
to find out which, among the two access solutions proposed, is the one that best suits
the vehicular scenarios needs. Some of the studies focuses on the protocols’ network
performances, proposing analysis on the Packet Drop Ratio (PDR), end-to-end latency,
throughput etc., while some others concentrate on the protocols’ maturity, on their scal-
ability or on their integration with the next generation networks. The vast majority of
these studies, with the exception of some rare cases, are performed in laboratory us-
ing simulation tools. Using these software it is possible to recreate complex scenarios,
even with thousands of connected vehicles, allowing the analysis of the network per-
formances and the prototyping of innovative applications at extremely reduced costs.

In this thesis, a novel simulation framework for vehicular networking is developed
and released as an open source project; the proposed framework, named MS-VAN3T,
is then used to prototype and test some of the most interesting use cases for vehicular
communication, such as a Intersection Collision Risk Warning (ICRW) application for
vehicles and vulnerable users. At the same time, the need for accessible and afford-
able V2X solutions triggered the development of open source software and hardware
platforms for the assessment and analysis of communication performances in vehicular
scenarios.

10

1.1 — Research motivation and objectives

1.1 Research motivation and objectives

Provided the pivotal role of vehicular communications in the future of mobility and
the growing attention that the industrial and academic worlds are taking in vehicular
applications, this thesis aims at developing innovative software and hardware solutions
for V2X, and to provide tools and frameworks capable of speeding up the applications
prototyping and testing.

The intense usage of network and mobility simulators for the analysis of vehicular
applications have paved the way to the development of an open source collection of V2X
frameworks for ns-3 (network simulator 3), named MS-VAN3T. Beyond the benefits that
a repository including all the state-of-the art frameworks for vehicular communication
can bring (above all, in terms of development and coding time), the repository compre-
hends a novel model for the ETSIITS-GS5 stack. By using the tool provided it is possible
to test any kind of vehicular application by changing dynamically the underlying ac-
cess protocol, switching from 802.11p to C-V2X or, if a centralized solution is required,
to LTE. Furthermore, the ITS-G5 model produces ETSI-compliant packets that can be
easily encapsulated, through the use of appropriate hardware-in-the-loop techniques,
into real packets, turning the proposed system into a V2X emulator.

As the next step of this work, the aforementioned framework is used to develop
a Collision Avoidance Service. This application is conceived to exploit the informa-
tion present in the vehicular messages to identify and, eventually, alert vehicles and
pedestrians set on a collision course. The analysis has been performed by varying the
underlying access schemes, the technologies’ penetration rate and other important pa-
rameters, and confirmed the importance of developing new solutions (especially in the
field of vehicular safety) for V2X communications.

Alongside with the development of applications and frameworks in a simulated en-
vironment, this thesis aims to collect and present the efforts that have been made to
realize affordable solutions for the implementation and assessment of vehicular commu-
nications using V2X-enabled embedded devices. Basically, a solution based on off-the-
shelves available devices is presented. The proposed architecture, composed both by
hardware and software components, allows the creation of standard-compliant 802.11p
devices that may be used as access layer either for WAVE or ITS-G5 implementations;
the software running on top of'it, a custom version of a Linux distribution named Open-
Wrt, is open source and available for download in GitHub. Being latency one of the
key parameter to be analysed in V2X networks, especially in safety-related applica-
tions, a novel application-layer protocol for latency measurements is then proposed.
This protocol, named LaMP (Latency Measurement Protocol), provide timestamps with
micro-seconds granularity that can be used to perform precise measurements. The first
applications running on top of LaMP, named LaTe (Latency Tester), has been developed
and used to assess and measure the performance, in terms of latency, of the proposed
hardware platform.

11

Introduction

1.2 Main contributions

The main contributions of this thesis can be summarized as follows:

« Study and analysis of the main solutions proposed by ETSI, IEEE and 3GPP for
vehicular communications, namely WAVE, ITS-G5, 802.11p and C-V2X. This the-
sis gives a panoramic on the technologies and solutions that have been developed
during the last couple of decades, for the world of connected vehicles and, in gen-
eral, of V2X. This part includes a description of the various layers composing IEEE
WAVE and ETSI ITS-G5, trying to highlight similarities and differences.

« Design, development and validation of a multi-stack framework for vehicular net-
works in the ns-3 simulator, called MS-VAN3T. The proposed solution provides the
scientific community with a powerful simulation tool that implements the ETSI
ITS-G5 stack, and that includes a collection of the state-of-the-art access layer
models for V2X. MS-VAN3T includes an integration with SUMO (Simulation of
Urban MObility), and comes with a couple of applications (one for V2I, the other
for V2V communication), which can be used by fellow researchers as a develop-
ment baseline; additionally, the project is entirely open source and published on
GitHub [github-v2i, github-v2v]. At the time of writing, MS-VAN3T is the only
solution for vehicular simulation that implements the ETSI ITS-G5 stack in ns-3
and that allows the user to transparently switch the underlying access technology.

« Performance evaluation of the V2X access technologies present in MS-VAN3T. The
proposed framework is used to test the available models (namely, LTE, 802.11p
and C-V2X) for what concerns delay, delay jitter and Packet Drop Ratio (PDR).
The results are then analyzed to draw conclusions on each technology, and to
highlight their advantages and weaknesses.

« Design, development and testing of a Collision Avoidance Service (CAS) based on
the information present in vehicular messages. The idea behind CAS puts its ba-
sis on the Intersection Collision Risk Warning application defined by ETSI in TS
101 539-2 [34]; the service is thought to offer protection to collisions of both vehi-
cles and vulnerable users, and is developed in a centralized and distributed version
(thus, deployed in V21, V2V and V2P scenarios). CAS leverages on the information
carried by Cooperative Awareness Messages (CAMs), which are periodic messages
that every ITS-G5-compliant entity must generate to advertise its information (ki-
netic, status, role, etc.) to the surrounding neighbors. CAS extracts the position,
speed, heading and acceleration information from CAMs and use them to project
the trajectory in the future. Each generated trajectory is analyzed and, in case a
future collision is detected, the warning information is encoded and sent via De-
centralized Environmental Notification Messages (DENMs), which are messages
defined by ETSI carrying information about asynchronous events. As for now,
there are no other solutions that have been developed to mitigate the collision risk

12

1.2 — Main contributions

(between vehicles and between vehicles and vulnerable users) leveraging only on
the information exchanged via radio interface.

Development and testing of an automatic collision avoidance strategy that, based
on the information generated by CAS, can override the control of the vehicle and
change its trajectory to avert the collision. The whole architecture (CAS and eva-
sive strategy) is implemented in MS-VANS3T, and tested through extensive simu-
lation campaigns. The results are encouraging and highlight the importance of
developing new safety applications relying on vehicular communication.

Design, development and validation of an open source platform, based on off-the-
shelves devices and on the Linux distribution OpenWrt, for the IEEE 802.11p access
layer implementation and analysis. The project, available on GitHub [77], can po-
tentially be used by anyone who is interested in building custom V2X devices
and to test the performances of commercial Wireless Network Interface Cards
(WNICs). In this thesis, the testing platform is built using PC Engine’s APU1D
embedded boards and Unex’s DHXA-222 WNIC. The system is then analyzed in
its network performances, including throughput, packet loss, radio range and ex-
perienced delay.

Design and development of an application-layer protocol thought for micro-seconds
precise latency measurement, named LaMP. This protocol is developed to match
the need of precise and accurate measurements of the delay experienced at ap-
plication layer. Other solutions, such as the widely-known ICMP protocol, have
the problem of returning a latency value that is not the same that would measure
an application running on top of the same system. Indeed, ICMP is implemented
at layer 3 of the ISO/OSI stack, and some of the actions needed to deliver the in-
formation at the higher layers are actually time consuming. Therefore, protocols
like LaMP are fundamental in the precise assessment of network performances of
vehicular networks, but also in the assessment of the network performance of the
myriad of applications enabled by URLLC (Ultra Reliable Low Latency Communi-
cations, one of the tenet of 5G).

Implementation of the first application running on top of LaMP, named LaTe; the
proposed software can be used to assess the latency that an application running
on the device under test would experience, with a micro-second granularity. LaTe,
that at the time of writing gives the possibility of testing the system on UDP over
IPv4 in wired and wireless interfaces, can also be used to assess the performance
of the EDCA (Enhanced Distributed Channel Access) implementation by selecting
the Access Category where the LaMP messages are exchanged. In this work, LaTe
is also used to validate, from the point of view of the latency, the aforementioned
open source platform for V2X-enabled embedded devices. Also in this case, the
entire project is open source, with the official LaMP specification and the LaTe
source code that can be found in [58].

13

Introduction

Part of the work included in this thesis was presented through several contribu-
tions in international conferences renown in the VANETs community. In particular, the
project of the simulation framework MS-VAN3T was included in the paper “A Multi-
stack Simulation Framework for Vehicular Applications Testing” [66] presented in the
workshop DIVANet (hosted at ACM MSWiM’20). The development of the vehicular
collision avoidance system is discussed and presented, using different simulation frame-
work and in different architectures, in the paper “Performance Analysis of C-V2I-Based
Automotive Collision Avoidance” [64] (WoWMoM’18) and in “Support of Safety Ser-
vices through Vehicular Communications: The Intersection Collision Avoidance Use
Case” [13] (AEIT Automotive’18). The extension of the service to vulnerable users,
together with a study on the possible network architecture enabling the system, was
firstly proposed in “Edge-Based Collision Avoidance for Vehicles and Vulnerable Users:
An Architecture Based on MEC” [63], published in the peer-reviewed magazine IEEE
VTM. The development of collision-averting strategies enabled by V2X-based safety
services was instead proposed, although following different schemes, in “An Edge-
Based Framework for Enhanced Road Safety of Connected Cars” [65], a work published
in IEEE Access in 2020.

The first implementation of the platform for the evaluation and the performance
analysis of V2X-enabled embedded devices was instead proposed in “Characterization
and Performance Evaluation of IEEE 802.11p NICs” [82], presented in the ACM Mo-
biHoc workshop TOP-Cars’19. The aforementioned testing platform was used for the
realization of an interactive demonstration, hosted in WoWMoM’19, where the 802.11p-
based testbed was used to enable the multiplayer gaming sessions running in two PCs.
The demonstration attendees were able to play an online multiplayer game, with the
PCs directly connected through 802.11p in OCB mode (“Demo: Open Source Platform
for IEEE 802.11p NICs Evaluation” [83]). The LaMP and LaTe projects (which are ac-
tively being developed), were presented in the VTC-2019-fall conference, in the paper
“A Flexible, Protocol-Agnostic Latency Measurement Platform” [81], which introduces
the basic idea behind the custom protocol and the general architecture of the measure-
ment software.

Moreover, some research contributions were supported and financed by Euro-
pean Projects, such as the work on the Collision Avoidance Service, supported by
5G-TRANSFORMER (ID 761536) and the work on LaMP and LaTe, financed by 5G-
CARMEN (ID 825012).

1.3 Outline of the thesis

This thesis starts, in Chapter 2, with a detailed description of the protocol stacks for
VANETs proposed by IEEE and by ETSI (respectively, WAVE and ITS-G5). The descrip-
tion of the various layers of the two solutions follows a top-down approach, starting
from the application layer and by going down in the stack to the physical layer. This
part gives also an overview on the two V2X access technologies, namely IEEE 802.11p

14

1.3 — Outline of the thesis

and 3GPP C-V2X, and on the current state-of-the-art on VANETS.

In Chapter 3, the multi-stack simulation framework MS-VANS3T is presented and
described in detail. Two applications, namely area speed advisor and emergency vehicle
alert, are used to showcase the potentiality of the V2I and V2V communication models
and to provide fellow researchers with a solid development baseline.

Chapter 4 introduces and describes the CAS system in its centralized and distributed
version. Moreover, it proposes a novel strategy that, based on the information generated
by CAS, can take automatic actions avert the collisions.

The open source platform for V2X-enabled embedded devices, and the LaMP and
LaTe projects are presented in Chapter 5. This part describes the hardware and software
components used to build the platform; the LaMP protocol is developed starting from
the need for micro-second precise latency measurements. It is used to develop the
software LaTe, an open source tool which is used, in this thesis, to measure the latency
of the V2X platform.

Finally, Chapter 6 concludes the thesis.

15

16

Chapter 2

Communication
protocols for connected cars

The fundamental idea behind the concept of connected cars, and in general of VANETs,
is to enable the connections among all the road players (e.g. cars, bicycles, road signs,
semaphores, etc.) and to improve the current mobility experience through a myriad of
applications, ranging from safety to infotainment. The pivotal element of such a vision
is a strong, robust and scalable vehicular network, responsible for the fulfillment of the
tight requirements imposed by the overlying applications.

The concept of a vehicular communication system leveraging the wireless technol-
ogy is not new, but in the last years we have witnessed an important increase in the
efforts made by the scientific and industrial communities. The main reasons for this
sprint have to be found on the last decades’ advances in the communication technolo-
gies, on the profuse standardization efforts made by ETSI, IEEE and 3GPP, and on the
slow but inexorable shifting toward the future of mobility.

This chapter is devoted to the presentation of the protocols that have been realized
for the vehicular networks. After a brief introduction on the concept of V2X, the two
communication stacks proposed by IEEE and ETSI, namely WAVE and ITS-GS5, are il-
lustrated following a top-down approach. Then, the two access layer solutions, IEEE
802.11p and 3GPP C-V2X are presented.

2.1 V2X - Vehicle to Everything

As the name suggests, V2X refers to a bunch of communication technologies enabling
omnidirectional connection between the vehicle and its surroundings. An non-exhaustive
subset of use cases for V2X are Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I),
Vehicle-to-Pedestrian (V2P) and Vehicle-to-Network (V2N). The aim is to create links
among the various players of transportation, such as vehicles, trucks, pedestrian, road

17

Communication protocols for connected cars

and network infrastructure, to push the creation of innovative applications in the con-
text of Intelligent Transportation System (ITS) and, in general, to promote the develop-
ment of new models and paradigms for the automotive mobility.

The applications enabled by vehicular networking can be classified into 3 main
groups: 1) Road safety applications, 2) Traffic efficiency and management applications and
3) Infotainment applications [56]. Road safety applications, due to the socio-economic
impact that car accidents and car injuries have worldwide, are the most promising in
terms of market penetration. Groundbreaking services such as Intersection Collision
Avoidance, Emergency Vehicle Warning and Cooperative Lane-Merging, are going to
be effective even if entirely based on vehicular communication systems (i.e., without
the integration or the fusion with other sensors such as cameras or LIDARs), and are
designed to tackle the global plague of road accidents (that, according to WHO, kill
more that 1.35 million people per year [42]). Traffic efficiency and management appli-
cations focus instead on efficiently manage the traffic flow, to reach the goals of a more
sustainable and smart mobility. Some example of these applications are Green Light
Optimal Speed Advisory, Cooperative Adaptive Cruise Control and Platooning. Info-
tainment services, which will include Social Network feature integration, gamification
strategies or marketing purposes will instead boost the final user experience, enabling
a multitude of innovative services that will change the user perception of mobility.

At the time of writing, the available communication protocols for V2X can be either
based on Wireless Local Area Network (WLAN) or on cellular network. WLAN-based
standards, such as WAVE and ITS-G5, use IEEE 802.11p as access layers. Cellular-based
standards such as C-V2X, reuse instead the upper layer standardized by IEEE and ETSI,
by changing the access layer and enabling a native communication with the cellular
network infrastructure.

2.1.1 Current spectrum regulation for ITS

To promote and facilitate the development of vehicular technologies, the various spec-
trum management organizations dedicated the 5.9 GHz band for the exclusive usage of
ITS services.

In US, the spectrum has been reserved by the Federal Communications Commis-
sion (FCC). FCC allocated 75 MHz for vehicular communications, from 5.850 to 5.925
GHz [39], as shown in Figure 2.1a. The band is divided into seven channels, 10 MHz
each, with a 5 MHz guard band. The channels are divided into Control Channel (CCH)
and Service Channel (SCH), with the first used for service advertisement and control
messages, while the second is used to transmit all the applications and services data.
Channels 174, 176, 180 and 182 are reserved for normal applications, while channels
172 and 184 are reserved for safety-related applications [18].

In Europe, the regulatory entity for vehicular networks is the European Commission,
that with the Commission Decision 2008/671/EC [6] and with further harmonization

18

2.1 - V2X - Vehicle to Everything

Control
Service Channels Channel Service Channels

Safety

applications

Safety s

applications

CH 172 CH 174 CH 176 CH 178 CH 180 CH 182 CH 184

5.850 GHz
5.855 GHz
5.865 GHz
5.875 GHz
5.885 GHz
5.895 GHz
5.905 GHz
5.915 GHz
5.925 GHz

(a) FCC spectrum allocation for the 5.9 GHz band.

Control Service
Service Channels Channel Channel Reserved
Safety s Safety

applications applications

CH 172 CH 174 CH 176 CH 178 CH 180 CH 182 CH 184

5.925 GHz ‘S=miaaaaaaaaannyy

soeciine o> | ITS-G5A | ITS-G5A | ITS-G5B | [TS-G5B | ITS-G5B | ITS-G5D | ITS-G5D
pecifications

2 2 2 2 2 2 2

o o (U] o (L] o o

8 8 g2 8 8 8 a

Q Q] Q 4])])]

al wn wn wn wn Ll al

(b) EU spectrum allocation for the 5.9 GHz band.

Figure 2.1: 5.9 GHz spectrum allocation for the US and EU markets.

introduced by the European Conference of Postal and Telecommunications Adminis-
trations (CEPT), assigned the band from 5.855 to 5.925 GHz to vehicular applications
[18]. The current spectrum allocation follows the recommendation in [31, 32], where
the band is still divided in 7 channels as shown in Figure 2.1b. Channel 172 and 174 are
used in non-safety applications, channel 178 still serves as CCH, while 176 and 180 are
intended for safety applications. Channels 182 and 184 are reserved for future usage. In
Europe, the de-facto standard for vehicular communication ITS-G5 introduced (through
the EN 602 663 standard [28]) a fine-grained SCH assignment through the definition of

4 types of channel:
« ITS-G5A: Channels 172 and 174, for non-safety related applications.
« ITS-G5B: Channels 176, 178 and 180, for safety related applications.

« ITS-G5C: Channels in the 5.6 GHz band, for infrastructure-based broadband radio
access networks.

« ITS-G5D: Channels 182 and 184 for future ITS applications.

Although in this work the focus will be on European and US standards, it is impor-
tant to mention that other regulatory entities belonging to independent countries are

19

Communication protocols for connected cars

adopting custom policies. For example, in Korea the Telecommunication Technology
Association (TTA) allocated the same spectrum with respect to Europe and US, but with
different SCH and CCH division [102]. At the same time, countries like China made
completely different decisions: the Bureau of Radio Regulation (BRR) stated that the
only standard adoptable for ITS safety application in China is C-V2X and allocated only
two channels (namely 182 and 184) [102]. In Japan, instead, safety applications com-
municate in a single channel allocated in the band 755.5-764.5 MHz while non-safety
applications have reserved the band between 5.770 and 5.850 GHz, that is divided into
fourteen channels of 5 MHz each [102].

2.2 DSRC-based protocols

As previously introduced, DSRC defines the protocol stack for the realization of V2X
systems. In a DSRC system two classes of devices are defined: on-board units (OBU)
and road-side units (RSU) [60]. Therefore, the type of communication enabled by DSRC
are of type V2V (between OBUs) and V2I (between OBUs and RSUs).

2.2.1 WAVE

WAVE provides a communication stack that is optimized for the vehicular environ-
ment, adopting both customized and general-purpose elements. The WAVE stack is
defined, in its different layers, by the set of IEEE 1609 standards, by IEEE 802.2 at Logi-
cal Link Control (LLC) layer, and by IEEE 802.11p. A data plane is defined for protocols
carrying higher layer information, while a management plane is defined to support the
information transfer among the different layers. Although WAVE defines also the lower
layers of the communication stack (MAC - Medium Access Control - and Physical), a
standard-compliant WAVE device does not preclude the device from including other
radios, protocol stacks, or other communication technologies, as specified in [47]. The
higher layer (Application, Presentation and Session in the ISO/OSI reference model),
are not officially defined in WAVE. However, the IEEE 1609.x family of standards have
been developed cooperatively with the Society of Automotive Engineers (SAE), which
defined the set of messages and their utilization in the vehicular environment, especially
for what concerns safety applications. The IEEE 1609.x family defines the architecture,
communication model, management structure and security mechanisms for the WAVE
stack, from the transport to part of the MAC layer. Finally, 802.11p describes the MAC
and physical layer to be adopted. The detailed layered structure of WAVE can be seen
in Figure 2.2, where the WAVE-defined architecture is enclosed in the black dashed
rectangle.

This section is intended to give a high level view of the IEEE 1609.x family, reporting
the main aspects and functionalities that have been standardized, without going into
the details of all the procedures and interfaces. For further information, the reader is
referred to the original IEEE standards [47, 48, 49, 50].

20

2.2 — DSRC-based protocols

Non - Safety Corresponding
Safety Applications Applications I1SO/0SI Stack Layer
A A
r 1 r 1
SAE 12735/12945 Deflfmed.by Applllcatlon -
application Presentation — Session
' Yoo e e e 1
! Transport and Transport Layer — 1
WAVE Transport

: Management | Network Layer — TCP/UDP i :
1 Entity (WME) WSMP — |EEE 1
1 - |EEE 1609.3 — 1
. 1609.3 Network Layer Network !
| IPv6 .
1 1
: LLC Layer — :
1 MLME 1609.3 and 802.2 1
1 Extension — 1
1 IEEE 1609.4 1
1 MAC Extension Layer — IEEE 1609.4 Data Link 1
I 1
1 1
! MLME — [EEE !
1 - -

X 802.11p MAC Layer — IEEE 802.11p :
1 1
X PLME - IEEE !
' 802.11p Physical Layer — IEEE 802.11p Physical X
1 |

Management Plane Data Plane

Figure 2.2: Layered structure of the WAVE protocol stack. Although the higher layers
(Application, Presentation and Session of the ISO/OSI reference model) are not defined
by the WAVE standards, the stack has been cooperatively designed with SAE which pro-
vided a message layer for safety-related application designed for the VANETS scenarios,
namely SAE J2735 and SAE]J2945.

Higher layers

Although WAVE does not specify the higher layers message format, the SAE standards
J2735 and J2945 [86, 87] have been thought to meet the requirements of the DSRC
environment where the resources, especially in terms of bandwidth, are limited. For
these reasons, they designed a message sublayer for safety-related applications where
the information are enveloped in short packets that can be frequently and efficiently
broadcasted in an unacknowledged delivery mode. To maximize the overall C-ITS
(Cooperative-ITS) system capacity, it is required a dense encoding of information in
defining the messages, that is achieved through Abstract Syntax Notation revision One
(ASN.1) encoding. In the J2735 standard, 17 message types are defined having purposes
ranging from safety to GPS (Global Positioning System) correction. This work will only
focus on Basic Safety Message (BSM), and will shortly introduce two alert messages,
namely Emergency Vehicle Alert (EVA) and Intersection Collision Avoidance (ICA).
BSMs are used by most of the vehicular applications to exchange safety data regard-
ing the state of the vehicle. These messages are filled with data contents required by
safety and non-safety applications, and broadcasted at high frequency to surrounding

21

Communication protocols for connected cars

vehicles and road entities. To avoid a rapid congestion of the channel, the transmission
rate is adaptive and depends on the congestion control algorithms adopted. The maxi-
mum transmission frequency is set to 10 Hz. A BSM is divided into two parts: the first
shall be included in each BSM and includes information such as Latitude, Longitude,
Speed, Heading, etc. The second part is optional, and includes additional safety-related
data such as path history, path prediction, exterior light status etc.

EVA messages are used by emergency vehicles to broadcast warning messages no-
tifying nearby vehicles that an emergency situation is happening in the vicinity. This
type of message contains data fields to describe the event and provide advice and rec-
ommendations for the surrounding vehicles.

ICA messages are instead used to broadcast the information concerning potential
collisions. They are delivered by other vehicles or by RSUs when entering a dangerous
intersection without the right of way.

Transport and Network layers

The Network and Transport layer in WAVE are defined (in part) in the IEEE 1609.3
standard [49]. In particular, two different data-plane protocol stacks are defined, shar-
ing the common Data-link and Physical layers: the first, used only by safety-related
application, is the so called WAVE Short Message Protocol (WSMP), carrying WAVE
Short Messages (WSM). The latter is the classic IPv6 stack, using either UDP or TCP as
transport medium.

WSMP has been designed to allow vehicular applications to control the physical
characteristic used for the message dissemination (e.g., transmitting power or channel
number). The addressing of messages is performed using PSID (Provider Service Iden-
tifier), a unique ID identifying the source/target application. At receiving side, if the
PSID value read in a received message represents a service not in the interests of the
WSM recipient, then the corresponding message is not processed. The flow of WSMP
message exchange can be summarized in 3 points:

1. A vehicular application generates a WSM, addressing it to the broadcast MAC
address.

2. The application, depending on the particular service it is providing, selects the ap-
propriate radio resources and parameters to be used for transmission, and invokes
the appropriate request to trigger WSMP to deliver the WSM data to the lower
layers.

3. At the receiver side, the message traverses the communication stack and, if the
PSID is of interest, it is delivered to the appropriate application. At this point, the
application can continue the message exchange using either unicast or broadcast
MAC addresses.

22

2.2 — DSRC-based protocols

Version PSID Extension Fields gzm::fl\g Length ﬁzmoza;)a
1 byte 1-4 byte variable 1 byte 2 bytes variable
mandatory
el Data Rate | Tx Power
i 3 bytes 3 bytes
optional 3 bytes y 4

Figure 2.3: Structure of WSM header [57].

The structure of a WSM header can be seen in Figure 2.3. The protocol overhead
is between 5 bytes and 20 bytes [57], with optional and mandatory fields which are
described in the next paragraph.

1. Version: contains the WSMP version (4 bit) and 4 reserved bits. It can be used to
assess the compatibility of received WSMs.

2. PSID: similarly to the concept of UDP or TCP ports, the PSID identifies the service
(or the application) the payload is associated with.

3. Extension Field: defines the channel to be used, the data rate at which transmitting
the packet and the transmission power.

4. WSM WAVE Element ID: marks the end of the optional Extension Fields and indi-
cates the WSM Data format.

5. Length: contains the size of the payload in bytes (ranging from 0 to 4095 bytes).

Beside WSMP, WAVE supports IP version 6. IPv6 was selected over IPv4 for the
known scalability issues that IPv4 has in case of large-scale addressing system with
millions of devices. Normally, IPv6 is adopted when the overlying application needs
IP-related features, such as routing of the packets over the Internet hosts. The WAVE
standard does not give clear indications on the transport nor on the higher layer pro-
tocols that should be deployed when using IPv6. The two protocols normally adopted
at transport layer are TCP or UDP, with the latter advantaged for its resilience and
suitability to VANETS’ highly volatile scenarios.

For what concerns the management plane at the Transport and Network layers, IEEE
1609.3 defines the WAVE Management Entity (WME). WME is in charge of facilitating
the management functions at this layer: it accepts service requests from the high layer
entities, and provides access to specific channels. Thus, WME is in charge of managing
the channel access for the higher layer, meaning that it has to tune the radio transceivers
to specific channels during different time slots, by directly interacting with the MAC
layer management entity (MLME).

23

Communication protocols for connected cars

Another important function of WSE is the transmission and reception management
of WAVE Service Advertisement (WSA) messages (intended to carry information about
one or more vehicular services offered in an area) through WSMP. Example of services
that may use WSA messages to advertise their presence to the neighbors are tolling,
navigation, gaming, restaurant information etc. [57]. The ITS entity providing these
services may be either a RSU or a vehicle, thus the only categorization possible can
be made by looking at the possible roles in the WSA functionality. It is possible to
distinguish between:

« Provider, assumed by a device transmitting WSAs, therefore indicating the avail-
ability for data exchange on one or more channels.

« User, assumed by a device monitoring for received WSAs, and potentially inter-
ested in starting a data exchange.

A WAVE device may assume one, both or neither role [49].

Data-link layers

In these layers several functionalities are implemented, starting from the LLC sublayer.
In LLC, the EtherType (a 2-octet field of the header) is used to determine the overlying
Network layer protocol (in WAVE, either WSMP or IPv6). LLC is partly defined in IEEE
802.2, while its peculiar use in WAVE is defined in IEEE 1609.3 [49]. The hexadecimal
values indicating WSPM and IPv6 are respectively 0x86DC and 0x88DD. In transmis-
sion, the LLC sublayer sets the “Type” field of the LLC header to one of the two possible
values. Similarly, in reception LLC reads the “Type” field and determines whether the
payload should be dispatched to the IPv6 stack or to WSMP.

As already mentioned in previous sections, WAVE utilizes the 802.11p standard for
its channel access layers (MAC and Physical). However, in WAVE the MAC sublayer is
extended by IEEE 1609.4 [50], defining the channel coordination in support for multi-
channel operations. The general purpose of a MAC sublayer is to define the rules for
accessing the underlying transmission medium, so that it can be fairly shared among
the upper layers [57]. In WAVE, devices communicate in the so called OCB (Outside
the Context of an 802.11 Basic Service Set) mode, a transmission mode allowing direct
communication. In OCB mode, as opposed to the normal 802.11 operations where all
data frames are sent between STAs (802.11 stations) belonging to the same BSS, the
communication is limited to STAs not belonging to any BSS. This allows the elimination
of any overhead caused by the intermediary phases of data transmission, where the
STAs communicates with the Access Point and vice versa, enabling a low latency and
low overhead communication that is suitable for the DSRC environment.

The channel coordination feature defined in IEEE 1609.4 enables data transmission
and reception involving multiple devices on multiple channels. The channel switch-
ing feature is however optional: a device is permitted to communicate through the
same channel all the time. The main goal of IEEE 1609.4 standard is to find a way in

24

2.2 — DSRC-based protocols

Synchronization period — 100 ms Synchronization period — 100 ms
[0) [0) [0) [0)
f f f f
) f9) 3] QO
S S S S
= CCH Interval = SCH Interval = CCH Interval = SCH Interval
I=g I=g [=g [=g
[} o o o
P 2 < P
l & & &,
>
4 ms 50 ms

Figure 2.4: Time division in WAVE, allowing fast and efficient channel switching [57].

which multiple devices, transmitting in multiple channels, can efficiently talk to each
other. The solution involves the 5.9 GHz channel partition and the time division (de-
picted in Figure 2.4). As described in Section 2.1.1, the channel in which WAVE op-
erates is logically divided into a Control Channel (CCH) and several Service Channels
(SCH). The CCH is used as “rendezvous” channel, where all the devices tune periodi-
cally, exchanging management and control information. All the other SCHs are used
for the applications-related data. The time division concept, instead, assumes that all
the devices are synchronized through GPS. Thanks to this synchronization, the time is
divided into alternating CCH and SCH intervals, allowing periodic rendevouz and effi-
cient data transmission. As an example, a device with a single Physical layer is allowed
to transmit priority data on a CCH during a time slot, and immediately switch to the
transmission of higher layer traffic on a SCH the next time slot.

Another service standardized in IEEE 1609.4 is the channel routing for data and man-
agement frames, that allows the prioritization of data based on the combination of upper
layer priority information and message type. Furthermore, this functionality permits
the correct setting of the transmission power based on the message type to be trans-
mitted.

All the mechanisms here described are coordinated by the MLME Extension present
in IEEE 1609.4, that allows systems with multiple radios to effectively switch among the
available channels, keeping them synchronized with the other devices. Moreover, the
extended MLME maintains the Management Information Base (MIB), a register con-
taining configuration and status information about the MAC and Physical resources
available for transmission.

Access layers

The access layers of WAVE (MAC and Physical), are described in IEEE 802.11p [51] and
reported in the dedicated Section 2.2.3.

25

Communication protocols for connected cars

! Certificate Revocation List Peer-to-peer Certificate !
i Verification Entity — CRLVE Distribution Entity — P2PCDE :
WAVE Interal Security Services_ _ ' =T T T T T S-S S-S -sssss-ssssses N
I | TCcP/upp
I WME WSMP
I [IPv6 |
Station 1
B Security ! SSeCl..lre D:tss : MLME [LLC]
anagemen ervice — f :
Entity — SSME | Extension \ MAC Extension ‘
|
1 [MLME H MAC]
|
I [PLME H Phy]
_____________ 1
L ¥ J L Y J
Management Plane Data Plane

Figure 2.5: WAVE Security Services.

Security services

One of the most challenging aspect for vehicular network is surely represented by se-
curity. In WAVE, the IEEE 1609.2 standard is the one taking care of it, by defining stan-
dard mechanisms for authenticating and encrypting messages, especially for WSMs
and WSAs. The security services introduced by IEEE 1609.2 consist of WAVE Internal
Security Services and WAVE Higher Layer Security Services [48], as shown in Figure
2.5.

The two Internal Security Services are:

« Secure Data Service (SDS): in charge of turning normal Protocol Data Units (PDUs)
into Secured Protocol Data Units (SPDUs) (and viceversa, in reception), and to
manage their transmission among the various entities. The additional data over-
head introduced by this service, when the PDU is turned into SPDU, is called Se-
curity Envelope. The types of SPDU that may be generated by this service are
unsecured, signed and encrypted. An unsecured SPDU, as the name suggests, does
not introduce any signature or cryptography mechanism to improve security. A
signed SPDU provides instead digital signature security features, including:

a) Authenticity - to be sure about the sender identity.

b) Authorization - to be sure that the sender as the rights to claim the required
service.

c) Integrity - to be sure that the data has not been altered during the transmis-
sion.

d) Non-repudiation - the ability to be able to proof authenticity, authorization,
and integrity to third party authorities when requested.

26

2.2 — DSRC-based protocols

An encrypted SPDU provides instead confidentiality, i.e., the assurance that the
content of the message will be read only by the intended recipient.

SDS may implement multiple layers of cryptography on its SPDUs, so to ensure
all the properties mentioned above.

» Station Security Management Entity (SSME): in charge of managing all the infor-
mation about certificates. SSME manages both the information of the certificates
for which the private key is internally stored in the SDS, and the information of the
certificates held by other peer entities and external Certificate Authorities (CA).

The WAVE Higher Layer Security Services are:

« Certificate Revocation List Verification Entity (CRLVE): in charge of validating the
incoming CRLs, and passing the related information to SSME. Therefore, when a
certificate is revoked by the CA the information will pass through CRLVE to SSME.
From this point on, every packet signed with the revoked signature is considered
invalid and discarded.

« Peer-to-peer Certificate Distribution Entity (P2PCDE): in charge of managing the
cooperation with other secured peer entities, for the distribution of certificates
needed for SPDU verification. This functionality is triggered when a device re-
ceives a SPDU with an unknown certificate, and generates a request to peer de-
vices to provide the necessary information to complete the chain. The updated
list of certificates is sent through PDUs. The P2PCDE service is also designed to
mitigate the risk of channel flooding, by limiting the number of responses to a
request.

The security mechanisms introduced by IEEE 1609.2 have been designed to meet the
DSRC capacity requirements, and to ensure a secure connection even in unacknowl-
edged mode. The drawback of this efficient implementation is the impossibility of hav-
ing one-to-one secure sessions, which often involves handshake procedures that are
impossible to be implemented in vehicular scenarios.

2.2.2 ITS-G5

ITS-GS5 is the set of communication protocols for the vehicular environment that ETSI
thought for the European market. It has been developed since 2007, and its architecture
is very similar to that of WAVE, with many technologies that are identical or derived
by the American set of standards. The ITS-G5 is defined, in its different layers, by
a number of ENs (European Norms) and TSs (Technical Specifications) which define
higher and middle layers. As access technology, ITS-G5 relies officially on the IEEE
802.11p standard. However, with EN 303 613 [30] ETSI showed that the access layers
limitations imposed by the previous standards may be overcome, paving the way for

27

Communication protocols for connected cars

ETSI EN 302 665 Corresponding
Classification I1SO/OSI Stack Layer
Safety and non-safety applications N L
— ETSI TS 101 539-# Applications Application
Facilities Layer — CA and DEN Basic e . .
Services — ETS EN 302 637-# Facilities Presentation — Session
Transport Layer —BTP | Transport Layer — Transport
— ETSI EN 302 636-# TCP/UDP) P
) Networking
e d Transport
ETSITS 103 175 Network Layer — _ an
ETSI TS 102 797-# || GeoNetworking — ETSI s e Network
ETSI TS 102 723-# EN 302 636-# IPv6
DCC -
ETSI TS 102 687
ETSI TS 103 175
Data Link
LLC and MAC —
IEEE 802.11e Access
IEEE 802.11p
Physical Layer — IEEE 802.11p Physical
L ¥ J L . J
Management Plane Data Plane

Figure 2.6: Layered structure of the ITS-G5 protocol stack. ETSI EN 302 665 [29] di-
vides the ITS device architecture into 4 layers: applications, facilities, networking and
transport and access. The “4” symbol in the image represents multiple documents with
consecutive enumeration.

the interconnection among the higher layers previously standardized and the access
layers defined in cellular-based technologies (such as LTE-V2X).

The general architecture of an ITS station is introduced in EN 302 665 [29], and it
subdivides the communication stack into several layers:

« Applications layer, with some technical specifications on main safety-related ap-
plications (TS 101 539-1/2/3 [33, 34, 35]).

« Facilities layer, which covers the ISO/OSI layer 6 and 5 (Presentation and Session),
defining the set of Basic Services and the V2X message format CAM (Coopera-
tive Awareness Message) and DENM (Decentralized Environmental Notification
Message) as described in TS 102 637-1 and EN 302 637-2/3 [36, 26, 27].

« Networking and Transport layer, which corresponds to layer 4 and 3 of the ISO/OSI
stack. The reference standard is EN 302 636 [21, 22, 23, 24, 25], where the Basic
transport Protocol and the Geonetworking layers are defined, and which also al-
lows TCP/UDP on top of IPv6 for non-safety-related communications.

« Access layer, covering layer 2 and 1 of the IOS/OSI stack, where the Decentralized

28

2.2 — DSRC-based protocols

Congestion Control (DCC) mechanism is defined (TS 102 687 and TS 103 175 [37,
52]), and the MAC and Physical layers are taken from 802.11p.

The resulting architecture can be seen in Figure 2.6.

Asin 2.2.1, this Section gives an high level overview of each layer of ITS-G5, without
delving into the details of procedures and interfaces. For further information the reader
is referred to the standards present in the ETSI online library [20].

Application and Facilities layers

Differently from WAVE, where the standardization starts from the Transport layer, ITS-
G5 extends its scope to the higher layers of the stack, and starts with the definition of
a basic set of applications dedicated to road safety. In [33, 34, 35], some of the most
important applications based on the Cooperative Awareness (CA) and on the Decen-
tralized Environmental Notification (DEN) basic services are presented and described.
In particular, [33] introduces the Road Hazard Signaling (RHS) application thought for
the increased awareness of both ITS stations and drivers, through the dissemination
of CAMs and DENMs signaling the presence of hazardous situations. [34] includes
instead the guidelines for an Intersection Collision Risk Warning Application (ICRWA)
still based on messages entirely exchanged through radio interfaces. The considered use
cases includes the turning collision warning also called left turn assistant, the merging
collision risk warning, a mode for vehicles with missing radio connectivity and several
others, still related with intersections. Similarly, [35] describes another class of appli-
cations, the Longitudinal Collision Risk Warning Application (LCRWA), and the way in
which the players using such application should communicate among themselves.

Beside the basic set of applications, ITS-G5 defines in the higher layers of the stack
the so-called Facilities layer. The aim of this layer is to provide support to I'TS applica-
tions which can share generic functions and data according to their respective opera-
tional requirements [29]. The standard introduces an additional breakdown of this part
of the stack, by defining 3 different sublayers:

1. Application Support, providing functionalities to support the overlying applica-
tions. CA, DEN and SAM (Service Announcement Message - correspondent of
WAVE’s WSA) basic services belong to this layer.

2. Information Support, that stores and maintains the data for Local Dynamic Map
(LDM), used in C-ITS for cooperative perception.

3. Communication Support, that provides the tools for lower layer independence,
allowing the deployment of different access technologies (like LTE or C-V2X) and
different network protocols (non-IP based).

Due to the importance that CAMs and DENMs have in the topics covered by this the-
sis, the two entities managing their creation will be introduced in the next paragraphs.

29

Communication protocols for connected cars

CAM
TS PDU header Basic Container High Freguency Low Frequency Special \{ehlcle
Container Container Container

mandatory | conditional

Figure 2.7: Format of a CAM message, as specified in [26]. Some of the fields are manda-
tory, others depend on the originating ITS-S type and dynamics.

The CA basic service, as defined in [26], is the facilities layer entity that operates
the CAM protocol. It provides two important services: the CAMs transmission and the
CAMs reception. For these purposes, this layer should integrate the following func-
tionalities:

« CAM encoding, following the ASN.1 specification included in the standard.
« CAM decoding, to correctly parse the information sent by other stations.

« CAM transmission management, including the activation and termination of CAM
transmission operations and the determination of the CAM frequency.

« CAM reception management, to trigger the CAM decoding, and eventually dis-
patching the CAM information to the application requesting it.

CAMs are always transmitted in the CCH in a single-hop fashion (i.e., it is not pos-
sible for a third-party entity to re-transmit a CAM message). The CAMs frequency is
dependent on the generating vehicle dynamics, and it is thought to mitigate the chan-
nel congestion. The CAM inter-arrival time is set between 100 ms and 1 second. The
general idea is to increase the frequency of fast-moving or fast-turning vehicles, and at
the same time to reduce the dissemination frequency of those vehicles which are still or
slowly proceeding. In this way the cooperative awareness granularity is preserved even
when vehicles are moving fast (e.g., in highways), and the general position perception
is less scattered.

The standard also defines the CAM format, which is represented in Figure 2.7. Beside
the I'TS PDU header, which includes information to uniquely identify the generating I'TS
station, 4 different containers (2 mandatory and 2 conditionally present) are defined.

1. Basic Container, it provides the basic information of the originating ITS station
such as type and last known reference position.

2. High Frequency Container, that contains all the fast-changing status information
of the generating ITS station such as speed, position, heading, acceleration etc.

30

2.2 — DSRC-based protocols

DENM

Situation Container Location Container A la carte Container

Management

ITS PDU header R
Container

mandatory | optional

Figure 2.8: Format of a DENM message, as specified in [27]. The Management Container
is mandatory, while all the others are optional.

3. Low Frequency Container, including static or slow-changing vehicle data, like the
vehicle’s role or the exterior light status. Due to the low volatility of such infor-
mation, this container is not always included.

4. Special Vehicle Container, a conditional set of information included only by deter-
mined classes of vehicle (special transport, emergency and rescue vehicles etc.).

All the fields present in the CAM messages are defined in a special common data dic-
tionary [38].

The DEN basic service, as defined in [27], is an application support module provided
by the Facilities layer that operates the DENM protocol. Differently from the CA basic
service, which periodically generates CAMs without the interaction of the higher layers,
the DEN basic service is triggered by the applications and provides an asynchronous
tool to notify information to other ITS stations. In transmission, the DEN basic service
should provide the primitives to generate, update or terminate the DENM. In reception,
it should dispatch the received information to the higher layers, when necessary. The
information carried in a DENM are related to events that have potential impact on road
safety or on traffic condition. For the nature of these events, it may happen that DENM
are not associated with the generating ITS station, but with the event itself. For these
reasons, it has been necessary to define multiple types of DENM: new DENM, when
the event is new; update DENM, used to refresh the information of a certain event;
cancellation DENM, to signal the termination of the situation that triggered the initial
DENM.

Differently from CAMs, a DENM can be forwarded by a third-party entity. The
DENM format can be seen in Figure 2.8. Beside the ITS PDU, already introduced for
CAMs messages, it is possible to identify the following Containers:

1. Management Container, providing information related to the DENM management
and DENM protocol, such as the action ID, the detection time, the event position
etc. This is the only mandatory Container present in a DENM.

31

Communication protocols for connected cars

GeoNetworking

MAC header LLC header
header

Security header

BTP-PDU

mandatory

BTP-A ‘ Source Port Destination Port

Destination Port
Info

optional

BTP-B | Destination Port

Figure 2.9: Structure of a BTP-PDU encapsulated into the full ITS-G5 frame [25].

2. Situation Container, which includes information describing the detected event
through special causeCode, and through qualitative scale.

3. Location Container, describing in detail the location of the detected event.

4. A la carte container, which contains additional information not included in other
containers, such as the event lane position, the external temperature, road works
presence etc.

As for CAMs, all the field present in DENMs are defined and described in the com-
mon data dictionary [38].

Transport and Network layers

The Network and Transport layers in ITS-G5 are mainly standardized in EN 302 636-1/5
[21, 22, 23, 24, 25]. ITS-G5 uses Basic Transport Protocol (BTP) at Transport layer, and
GeoNetworking (GN) at the Network layer. In case it is required, it is possible for the
services to rely on the classic TCP/UDP over IPv6 or even TCP/UDP IPv6 over GN.

BTP is a Transport layer protocol that, similarly to UDP, provides a connectionless
end-to-end transport service for ITS ad-hoc networks. The delivery of PDUs among
BTP entities is not guaranteed, thus no reception acknoledgement nor reordering func-
tionalities are provided. It allows the DEN and CA basic services to access the lower
layer of the stack, i.e., GN.

The BTP-PDU is shown in Figure 2.9, when encapsulated in a frame comprising the
lower layer headers (MAC, LLC and GN). The BTP header can be of two types: BTP-
A and BTP-B, depending on the type of service. If there is the need for an interactive
session (i.e., if the intended recipient is required to reply), then the BTP-A header should
be used, including source and destination ports. If instead the session is non-interactive
the BTP-B header should be used, including only destination port and information. CA
and DEN basic services make use of BTP-B header, since the receiver is not needed to
reply to CAM and DENM messages.

32

2.2 — DSRC-based protocols

[Source [

(b) GeoBroadcast addressing scheme, to send packets to all the nodes in a destination area.

Source

(c) Topologically-scoped Broadcast, to broadcast packets to all the n-hop neighbors. In this
example, a 2-hop forwarding is implemented.

Figure 2.10: GN addressing schemes for unicast and broadcast transmissions.

Due to the volatile nature of VANETs, the network protocol adopted in ITS-G5
should be able to provide communication even without the help of a coordinating entity.
GN is a family of protocols (initially proposed for MANETS, then adapted to VANETS)
that utilizes geographical positions to route the information and, therefore, to dissem-
inate data packets. In ITS-G5, GN provides a connectionless fully distributed protocol
that can bear with rapid modifications of the network topology, and that can work
with intermittent or even without infrastructure access. GN has been thought to sup-
ports the periodic transmission of safety messages, to provide multi-hop forwarding
functionalities and normal unicast transmission for classic IP-based services. Unlike
conventional networks, where addressing and routing are purely based on addresses
represented by numbers, string or hexadecimals, in GN every node has a partial view
of the surrounding area and every packet sent carries the geographical address of the
intended destination (unicast or broadcast). Whenever a node receives a packet, it reads

33

Communication protocols for connected cars

the geographical information and decides whether it is necessary to forward the packet
or not. By using GN it is possible, for example, to forward a packet to a specific area
(e.g., an area affected by a flooding), and alert only the vehicles present in that specific
location.

GN mainly provides three types of addressing schemes, as shown in Figure 2.10:

1. GeoUnicast, to send unicast packets. When a vehicle wants to send a unicast
packet, it determines the destination’s position and includes it in the GN header.
Thus, the packet is sent and continuously forwarded until it reaches the intended
destination.

2. GeoBroadcast, to broadcast a packet in a certain area. As in GeoUnicast, the gen-
erating node should include the destination area in the GN header, and the packet
is forwarded until it reaches the intended area.

3. Topologically-scoped broadcast, to broadcast a packet from the source to all nodes
in the n-hop neighborhood. CA basic service, with its CAM protocol, is an example
of topologically-scoped broadcast (more precisely, of a single-hop broadcast since
the CAMs cannot be re-forwarded).

Access layers

One of the core functionalities of ITS-G5 is the so called Decentralized Congestion Con-
trol. DCC is a mechanism that prevents C-ITS stations to flood the channel and that
guarantees a stable and reliable service even in highly dense scenarios. DCC works by
tuning the MAC and Physical layer parameters depending on channel quality indica-
tors such as the Channel Busy Ratio (CBR). Differently from WAVE, in ITS-G5 there is
no alternating access scheme.

In ITS-G5 the MAC-layer reference protocol is 802.11p, that introduces an important
feature allowing a fine grained Quality of Service selection for the overlying applica-
tions, namely the Enhanced Distributed Channel Access (EDCA) protocol. In particular,
with EDCA data are assigned to 4 different MAC queues, depending on the Access Cat-
egory (AC) and that represent different levels of priority. The 4 ACs are Background
(BK), Best Effort (BE), Video (VI) and Voice (VO).

Each queue that wants to transmit data, should contend the access to the physical
layer. To do so, the protocol requires the queue to wait for the channel to be idle for at
least AIFS (Arbitration Inter-Frame Spacing), a time period that depends on the AC. In
case of virtual collisions, the queue should backoff for a period of time still depending
on its AC (the higher the AC, the lower the backoff), and that is extracted as a random
variable in an interval called Contention Window (CW). More details on EDCA can be
found in Section 2.2.3.

Thus, the channel access scheme will be directly controlled by DCC, which will set
the parameters of the different ACs, but also other parameters such as transmission
power, packets intervals, and sensitivity of the radio, by taking ad-hoc decisions.

34

2.2 — DSRC-based protocols

minChannelLoad(1s) >= 15% minChannelLoad(1s) >= 40%
/\A //—\A

Relaxed Active Restricted

D)
maxChannellLoad(1s) < 15% maxChannelLoad(1s) < 40%

Figure 2.11: State machine of DCC based on CBR sensing.

The DCC algorithms may implement one or several among the following techniques
to reduce the channel load:

1.

Transmit Power Control (TPC), in which the output power is altered to adjust the
current channel load. This allows, for example, to reduce the interference range
achieved by an ITS station transmitting V2X packets.

Transmit Rate Control (TRC), in which the transmitting ITS station regulates the
time between consecutive packets, thereby reducing the transmission frequency.

Transmit Datarate Control (TDC), in which the transmission datarate is changed,
to allow for example to reduce the time in which the station is transmitting (by
increasing the datarate).

DCC Sensitivity Control (DSC), in which the channel is sensed to determine (based
on the list of sensitivity present in [37]) whether the transmitter is clear to send
or not.

Transmit Access Control (TAC), in which, in case of high channel occupancy, the
transmission policies become more restrictive for ITS stations transmitting many
packets.

By monitoring the CBR, ITS-G5 DCC classifies the channel into 3 different states: re-
laxed, active or restricted. The resulting state machine can be seen in Figure 2.11, where
each state has its associated parameters (EDCA, tranmit power, carrier sense threshold,
modulating and coding scheme) and where the transitions among states depend on the
minimum or maximum channel load computed in predefined time intervals.

Below DCC ITS-G5 implements 802.11p, described in Section 2.2.3. Differently from
WAVE, which does not admit other access technologies rather than 802.11p, ITS-G5
adopts a more relaxed strategy. In fact, during the last few years there have been several
amendments released by ETSI to integrate 3GPP’s solutions in the ITS-G5 stack, as
detailed in ETSI EN 303 613 [30] and related documents.

35

Communication protocols for connected cars

Security services

The approach taken by ETSI to define the security profile of ITS-G5 is different with re-
spect to that taken by IEEE for WAVE: ETSI defines, in [53], a range of security services
which should be supported by an ITS entity to guarantee secure connection between
itself and other entities, that are then detailed in their interfaces and protocol in other
ad-hoc documents. Each of the services defined operate within multiple layers of the
stack, and is coordinated through a security management entity. A non exhaustive list
of services defined is reported below:

« Security associations management. This functionality gives the opportunity to
establish a secure communication between I'TS stations, so that they can exchange
secured V2X packet.

« Single message services. This set of services are in charge of securing the trans-
mission or reception of a single message (e.g., CAM and DENM) by providing
functions to authorize, validate, encrypt and decrypt messages.

« Integrity services. In charge of computing and checking messages’ checksum.

« Enrollment and Authorization. These services should guarantee the ITS entity to
request credentials to Enrollment Authorities and authorization tickets to Autho-
rization Authorities. The credentials are needed to be trusted by other entities,
while authorization tickets are needed to access the various ITS services.

2.2.3 802.11p

IEEE 802.11p is the standard originally adopted for vehicular communications both in
WAVE and ITS-G5. Its MAC and Physical layers are largely based on two other 802.11
amendments: 802.11a, from which it derived the 5 GHz band and the OFDM (Orthog-
onal Frequency-Division Multiplexing), and 802.11e, from which it inherited some im-
portant Quality of Service (QoS) features. At-a-glance, 802.11p defines a method to ex-
change data packets that does not requires the STAs to belong to any BSS. The so called
OCB mode introduced in 802.11p enables a distributed access scheme that is suitable
for the volatile environment generally present in VANETs. Although 802.11p is an ad-
justment of other Wi-Fi-based protocols, due to the different nature of the problems
addressed it can be considered as a standalone architecture.

MAC layer

The major revisions and adjustments that allow 802.11p to be suited for the vehicular
environment, are to be found at MAC layer. Rapid changes in the network topology,
coupled with the need of an efficient and reliable connection, forced IEEE to recon-
figure the channel access technique. In normal 802.11 network, STAs communicate in

36

2.2 — DSRC-based protocols

AC CWonin CW,.x AIFSN
AC BK CW, . CW, 9
AC BE Wi CWax 6
AC VI (CWp+1)/2 - 1 W, 3
AC VO (CWpu+1)/4-1 (CWyyu+1)/2 -1 2

Table 2.1: Default EDCA parameter, as specified in [51].
Parameter Value
SlotTime 13 ps
SIFSTime 32 ps
CWoin 15
CW, 1023

Table 2.2: Default values for SlotTime, SIFSTime, CW,,;, and CW,,, as specified in [51].

the context of the BSS of belonging. All the communications are directed to and from
the Access Point, which is identified and reached through its MAC address (called, in
802.11, BSSID). In the “p” amendment it is possible, regardless the BSS, to use BSSID
wildcards, and all the communications happens directly among STAs, without the need
for a coordinating Access Point. This way of accessing the channel is called OCB mode
(Outside the Context of a BSS).

Another important feature enabled at the MAC layer of 802.11p (and partially intro-
duced in previous sections) is EDCA, that allows the prioritization of data according to
4 different access categories (AC):

1. AC_BK: Background;
2. AC_BE: Best Effort;
3. AC VI: Video;

4. AC_VO: Voice;

802.11p implements 4 transmit queues, each corresponding to a different AC. Each
queue should contend the access to the channel by waiting for it to be idle for AIFSN
(AIFS Number) periods; AIFSN is calculated as:

AIFSN[AC] = AIFSN[N] x SlotTime + SIFSTime (2.1)

Each AC is associated to a different AIFSN, the higher the priority, the lower AIFS.
In case of virtual collision the queue should implement a backoff strategy, by extracting
a random value between CW,,;, and CW,,,,, (Contention Window min or max). The
standard set the default values for CW and AIFS, as shown in Table 2.1. These strategies,
combined together, allow the system to respect the queues’ priority, and at the same

37

Communication protocols for connected cars

Parameter Value
Frequency band 5.9 GHz
Channel size 10 MHz
Number of used data subcarriers 52
Number of used pilot subcarriers 4
OFDM symbol period 8 ps
Cyclic prefix 1.6 ps
FFT symbol period 6.4 ps
MCS BPSK, QPSK, 16QAM, 64QAM
Available data rate 3,4.5,6,9,12, 18, 24, 27 Mbps

Table 2.3: Physical layer parameters for 802.11p, as standardized in [51].

time (through the CW extraction randomness) prevent the higher priority queues to
monopolize the channel. This 4-layer priorities scheme is enhanced by the so called
Alternate EDCA, which introduces 2 more layers of priority (namely, Video alternate
and Voice alternate) offering a more granular differentiation among ACs.

The standard values reported in [51] for CW,,;,, CW,y,4, SlotTime, SIFSTime that al-
lows the computation of the parameter in Table 2.1, can be seen in Table 2.2.

Physical layer

The Physical layer in 802.11p derives from that of 802.11a, with some modifications
needed to tackle the peculiar characteristics of VANETs. In particular, to counteract the
effects of multi-path fading and Doppler effect (which may cause inter symbol inter-
ference), the channel used are reduced from 20 MHz to 10 MHz. OFDM, in 802.11p, is
based on 64 orthogonal subcarriers and it supports datarates from 3 Mb/s to 27 Mb/s
(depending on the Modulation and Coding Scheme - MCS). The MCS determines also
the minimum sensitivity required to correctly demodulate the received signal. The pos-
sible modulations are BPSK, QPSK, 16QAM and 64QAM. The main characteristics of the
802.11p Physical layer are resumed in Table 2.3.

2.2.4 Toward the next generation of 802.11 vehicular protocols

The fact that IEEE 802.11p has more than 10 years of history has its pros and cons. The
pros are mainly linked to the wide testing and proof of concepts that have been made
during these years. The cons are instead relative to the fast obsolescence to which this
type of technologies incur in a relatively short time. As already introduced, 802.11p
derived Physical and MAC layer from 802.11a and 802.11e. In the meantime, the 802.11
family was added with new protocols (802.11n/ac/ax) that extremely improved the per-
formance at the access layers. For that reason, in 2018 IEEE formed a new Working
Group which primary objective is to create the new generation of 802.11-based V2X

38

2.3 — Cellular-based protocols

protocol, namely 802.11bd. The standardization is still ongoing and the main features
required for the new protocol are summarized as follows [45, 72]:

« Increase the throughput, by providing at least a mode that doubles the 802.11p
throughput.

« Increase the communication range, by providing at least a mode that doubles the
802.11p communication range.

+ Re-design of OFDM numerology, by optimizing the tone spacing and guard dura-
tion interval, to efficiently meet the vehicular mobility requirements.

« Multiple Input Multiple Output (MIMO) and Low Density Parity Check (LDPC)
support.

« Implementation of midambles, i.e., control sequences in the middle of the packet
to improve the contrast to Doppler effect.

+ Retro-compatibility with legacy 802.11p, with guaranteed fairness in the channel
access.

2.3 Cellular-based protocols

Cellular-based solutions for V2X communications are getting more and more atten-
tion from the industry and academic world. Although standardization started almost
ten years later with respect to IEEE 802.11p, the V2X solution proposed by 3GPP is
promising under multiple aspects. Improved radio range, possibility to use Uu inter-
face to connect to the cellular infrastructure, higher scalability, and broader possibilities
in terms of involved players, are among the most important advantages introduced by
cellular V2X (C-V2X). The approach is different with respect to WAVE and ITS-G5: the
scope of 3GPP is to integrate the V2X communication inside the cellular infrastructure;
for this reason, C-V2X does not cover any of the higher layers of the communication
stack, and focuses only on the channel access protocols (Data Link and Physical layer).

3GPP embedded the concept of V2X for cellular networks in Release 14 [1], where
it introduced two modes of operation:

a) through PC5 interface, which supports one-to-many communications and enables
direct connection among UEs (User Equipments);

b) through Uu interface, which enables the communication with the network infras-
tructure, namely, with the eNB (E-UTRAN NodeB), which plays the role of base
station in LTE network.

Communication through PC5 interface is supported over the sidelink, and can be either
coordinated by a eNB (under network coverage, also called transmission mode 3), or in

39

Communication protocols for connected cars

a complete independent way (out of network coverage, also called transmission mode
4). Therefore, through the PC5 interface it is possible to enable V2V-based applications.
Communication through Uu is only supported under network coverage, with the UE
receiving V2X messages (unicast or broadcast) through the downlink, and sending V2X
messages via uplink. Through the Uu interface, it is possible to have access to the
solid edge computing capabilities, to cloud applications, and in general to V2N-based
services.

In Release 14, 3GPP mostly provides data transport for the messages used by the basic
road safety services already introduced in previous sections (CAMs, DENMs, BSMs etc.)
and specifies the reference architecture for LTE-based V2X systems.

Release 15 [2] provides instead the service requirements to enhance the support
for a wider set of V2X scenarios, like vehicle platooning, advanced driving, extended
sensor and remote driving. Among the most important functionalities introduced by
Release 15, there is the support for Carrier Aggregation (CA) for transmission mode
4, the support for 64-QAM modulation, improved message generation frequency, and
other improvements including the initial integration of V2X services in 5G networks.

Finally, Release 16 [3] (that, at the time of writing, is at its draft stage) introduces
requirements related to vehicle QoS support, allowing the V2X applications to be timely
notified of expected change in QoS (predictive QoS), and specifies the advanced V2X
services enabled by 5G networks.

In the next sections, the integration of V2X services in 4G and 5G networks are
presented.

2.3.1 LTE-V2X

The first definition of LTE-V2X appeared in Release 14, as a derivation of Release 12’s
Device-to-Device communication (D2D). LTE-V2X access layer consists of NAS (Non-
Access Stratum), RRC (Radio Resource Control), PDCP (Packet Data Convergence Pro-
tocol), RLC (Radio Link Control), MAC and Physical layers. This section will mainly
focus on MAC and Physical layer.

The channel where direct messages are exchanged in LTE-V2X is called sidelink (as
opposed to uplink and downlink). It can be provided in any LTE band within the ITS
spectrum, and it is the medium where the nodes communicate with or without the
coordination of the eNB.

Sidelink relies on single carrier frequency division multiple access (SC-FDMA), the
same scheme used in the LTE uplink, and supports 10 and 20 MHz-wide channels. Sub-
carrier spacing is 15 kHz, and grouped into 180 kHz-wide blocks (12 subcarriers each
block). In time domain, there is a division into subframe of 1 ms (called transmission
time intervals TTIs). Each TTIis composed by 14 symbols: 9 data symbols, 4 demodula-
tion reference signals (DMRS) symbols and one empty symbol for transmission/recep-
tion switching. This configuration allows LTE-V2X to tackle the Doppler effect and to
cope with the problems carried by working in the 5.9 GHz spectrum. LTE-V2X supports

40

2.3 — Cellular-based protocols

Subframe Pool

)

1 Resource Pool

1
=SCl
=TB
14 symbols

Resource Block Pool
T e o o o o o o e e

HJJSd

180 kHz

Frequency
HOSSd

——

’—]—‘]

Subcarrier

o
Symbol

Subchannel
,_A_‘

'/
Subframe

Time T (tms)

Figure 2.12: Time and frequency division in C-V2X sidelink.

several combinations of MCSs, based on QPSK and 16-QAM.

The minimum resource allocation slot, in sidelink, corresponds to a subchannel in
the frequency domain, and to the TTI in the time domain. A normal packet may occupy
one or more subchannels in a single TTL For the sidelink communications 3GPP intro-
duces the concept of Resource Pools (RPs), determining the resources dedicated to each
specific UE-to-UE channel. In the frequency domain, the RP is divided into resource
block pools, while in time it is divided into subframe pools. Depending on the type of
data carried, it is possible to further divide the frequency domain into Physical Sidelink
Shared Channel (PSSCH) and Physical Sidelink Control Channel (PSCCH). PSSCH car-
ries data information inside Transport Blocks (TBs) with a TB containing the full packet
to be transmitted; the control operations are instead performed by Sidelink Control In-
formation (SCI) messages, describing the transmission property of the next PSSCH, and
carried inside the PSCCH. Depending on the suchannelization scheme, it is possible to
have adjacent or non-adjacent PSSCH and PSCCH. In Figure 2.12, the adjacent scheme
is shown, with all the different time and frequency resources clearly identified.

Due to the time-frequency structure of the physical medium, where resources are or-
thogonally allocated, the allocation scheme plays a crucial role in providing an efficient
service. Depending on the transmission mode, 3GPP envisioned different scheduling
algorithms. In mode 3, the computational effort is outsourced to network controllers;
in mode 4, it is possible instead to take advantage of the predictability of V2X messages

41

Communication protocols for connected cars

(especially of those associated with cooperative awareness services), and make use of
Semi-Persistent Scheduling (SPS) mechanisms.

Transmission mode 3

In transmission mode 3, where the UEs are under network coverage, the scheduling is
performed directly from the network by V2X control functions. This transmission mode
requires the vehicles to establish a communication with a central controller, reachable
through the Uu interface communicating with the eNB. A big advantage of transmission
mode 3 is that having a controller with a wide view of the network status may lead to
extremely efficient resources usage. Due to the variety of network configuration and
proprietary solutions existing, 3GPP decided to leave transmission mode 3 algorithm
specifications to Mobile Network Operators (MNOs). In particular, it is possible for each
MNO to choose whether to adopt a dynamic strategy, in which the vehicles request the
resources to the eNB, or a static strategy, in which the eNB fixes the resources to be
assigned to V2X communications.

Transmission mode 4

In transmission mode 4, where the UEs are outside of the network coverage, each node
should autonomously select the resource to use and the scheduling algorithm should
be deployed in a distributed environment. 3GPP provided full specification of the SPS
algorithm in charge of resource allocation, that can be summarized as follows.

A node that wants to transmit data, randomly selects a resource by choosing among
those resources that were free in previous observations (decision that is taken also based
on the information present in SCIs). The resource is then kept for a period within
5 and 15 times the packet generation interval. This means that if the UE transmits
a CAMs every 100ms, for 5 to 15 times it will use the same subchannels (every 100
TTIs) to transmit its packets. At the end of that time, the same resource is kept for an
additional time interval with probability within 0 and 0.8 (decided by the operator). The
channel is monitored within 1 second-long windows, and the available resources are
determined by comparing the received signal power with specific sensitivity thresholds
and by reading at SCI information (advertising future reservations). Among the selected
free resources, the 20% less interfered are tagged as available. If the resources selected
are not enough, the sensitivity thresholds are re-configured and the process repeated
again.

Mode 4 also supports congestion control through algorithms that, however, are not
in the scope of 3GPP standards. 3GPP only defines the metrics and the possible mech-
anisms to be adopted to reduce the channel congestion: as in DCC the reference value
is CBR, defined in this case as the amount of subchannels that experienced an average
RSSI (Received Signal Strength Indicator) higher than a certain threshold, during the
last 100 subframes [70].

42

2.4 — Interoperability study

2.3.2 5G-V2X

The natural network evolution toward the 5th generation involves also the vehicular
world, and 3GPP is currently working to properly define which are the new features
that C-V2X should have to be transparently and efficiently integrated into 5G. The first
step toward this integration was made in Release 15; after several discussions regarding
the role of 5G in V2X services, it has been decided that while the integration with
5G New Radio (NR) will enable a whole new set of advanced applications, the basic
safety services (comprising the cooperative awareness) will remain based on Release
14 standard (i.e., on LTE-V2X). The idea is not to provide backward compatibility, but
rather to add an optional interface toward NR connecting the UE to Next Generation
NodeB (gNB), enabling a link with improved performances.

5G-V2X also introduces some modifications to enhance the PC5 interface (commu-
nicating through sidelink), listed below:

» Carrier aggregation techniques for both transmission mode 3 and mode 4, sup-
porting up to eight bands.

« Wider set of numerology combinations, and increased subcarrier spacing (from 15
kHz to 30 or 60 kHz).

« MCS extended to 64-QAM.
« Possibility to use frequencies above 6 GHz.

« Establishment of a sidelink feedback channel to improve reliability and decrease
latency:.

« Use of MIMO antennas, to enable spatial diversity and contrast multipath fading.

« Reduction of the TTI to 0.5 ms.

2.4 Interoperability study

The issue of channel co-existence between Wi-Fi and cellular-based V2X technologies
is of critical importance for the whole ITS industry. To this aim, an interesting study
carried on by 5GAA [5] proposed some spectrum sharing frameworks, reported below.
The first solution foresees an a-priori agreement among all the involved stakeholders, to
define preferred channel to be used for each technology (called, in this case, Technology
A and Technology B). This solution is naturally in line with the 10 MHz subchanneliza-
tion of the ITS spectrum, and avoids any co-channel interference between the two V2X
technologies as shown in Figure 2.13a.

The second solution is instead based on a detect-and-vacate procedure: in this case,
the two technologies may operate in their reserved spectrum and, in case they need to
transmit in the middle band, they need to monitor the activity in the relevant channel

43

Communication protocols for connected cars

Technology A Technology B

CH 178

(a) Sharing of 5.9 GHz via preferred channels.

Technology A may
operate here

Technology A r N\ Technology B

CH 178

%(_J

Technology B may
operate here

5.855 GHz
5.925 GHz

5.855 GHz
5.925 GHz

(b) Sharing of 5.9 GHz, via preferred channels complemented by mutual detect-and vacate in
the middle 10 MHz channel.

Technology A may
operate here

A

~

P
Technology A Technology B

CH 178

“ J
v

Technology B may
operate here

5.855 GHz
5.925 GHz

(c) Sharing of 5.9 GHz, via preferred channels complemented by mutual detect-and vacate ex-
tended to the lower and upper 10 MHz channels.

Figure 2.13: Possible solutions for technologies coexistence in the 5.9 GHz band, from

(5]

and proceed with the transmission only if the channel is sensed as idle, as shown in
Figure 2.13b.

The third option is the natural evolution of the detect-and-vacate solution: the two
technologies may normally operate in their reserved spectrum, and in case they need
more bandwidth, they can additionally use the middle band, by prior sensing the chan-
nel as idle, as shown in Figure 2.13c.

Those strategies, if properly adopted and tuned, lead to a full sharing of the 5.9 GHz
spectrum and represents a great benefit for the ITS players willing to converge on an
implementable solution for the co-channel interference.

2.5 — Related work and comparison studies

2.5 Related work and comparison studies

The two access technologies presented in this chapter, namely IEEE 802.11p and 3GPP
C-V2X, are currently at the center of the discussion in the VANETs world. There have
been a number of studies which have discussed the two technologies from various per-
spectives, by performing performance comparisons in both peer reviewed and white
papers.

The vast majority of the works tend to agree on the higher potentiality of the phys-
ical layer of C-V2X, which thanks to its channel access scheme can accommodate a
higher number of nodes and reach longer distances. There are, however, several sce-
narios suggesting that 802.11p provides similar, or even better results. Moreover, the
large majority of the papers do not take into account all the possible technologies and
mechanisms (such as channel switching, dynamic MCS etc.) that a 802.11p device may
implement, nor the possible advantages that the QoS introduced in EDCA may play
when it comes to service provisioning.

Starting from the moment at which 3GPP defined Release 14, all the subsequent
works can be subdivided into those having a direct interest in promoting one or the
other technology, and those that do not have any interest in doing so; most of the
times, stakeholders’ white papers belong to the first group, while peer reviewed papers
belongs to the second group.

Within white papers, some of the publications claim that 802.11p is a highly mature
technology which has been thoroughly validated with thousands of field tests. Filippi
et al. in [40] (a white paper from NXP Semiconductors), assert that 802.11p is the only
technology that underwent a remarkably high number of trials, and whose scalabil-
ity has been extensively tested. Other works, mainly carried on by telecommunica-
tion companies or by consortium with strong interests in cellular-based technologies,
such as [95, 12, 94], push C-V2X as a more efficient technology, supported by a solid
ecosystem and which naturally integrates with 5G. Some of these works carry on direct
comparisons among the two technologies, by reporting real measurements showing the
advantages that the C-V2X technology brings. Those studies triggered an immediate
response from the counterparts, and in [69] the aforementioned results demonstrating
the superiority of C-V2X are contested and accused of being biased by several method-
ological errors.

Fortunately, most of the peer reviewed papers respect the neutrality that is required
for a scientific approach to the issue. In general, these kind of analysis are carried on
in simulation environment, which has the advantage of drastically reduce the costs of
development and testing. The simulation approach is also at the base of some of the
works presented in this thesis, such as the MS-VAN3T simulation framework, used to
develop and validate the proposed collision avoidance system.

Some of the works present in literature, like [74, 100, 70, 15], highlight the advan-
tages of the cellular based solution in terms of radio range and in connection stability.

However, the study on the performance of the various modulation and coding schemes

45

Communication protocols for connected cars

(MCS) performed in [15] and [70], pointed out the strong correlation between commu-
nication distance and MCS adopted in 802.11p. Some of the results presented in [70]
suggest also that the scheme 16QAM-3/4, in 802.11p, provides better results in con-
gested scenarios if compared to C-V2X in transmission mode 4.

The authors of [100] study and compare the performances of C-V2X in transmission
mode 3 and transmission mode 4; their results highlight the advantages of the central-
ized solution from the point of view of the resource allocation efficiency and reliability.
Furthermore, the benefits of adopting transmission mode 3 are confirmed in the results
presented by Vukadinovic et al. in [99].

One of the parameters that is less recurrently studied in literature is the latency
experienced when using one of the two access technologies. Mannoni et al., propose in
[67] one of the few works performing such analysis. Their results, which are coherent
to those presented in Chapter 2 and 5, point out that the channel access scheme adopted
in 802.11p (CSMA/CA) is able to reach a latency that is one order of magnitude lower
with respect to the resource allocation scheme of C-V2X (SPS). Indeed, with 802.11p
it is possible to communicate with latency below the millisecond, while in C-V2X the
minimum latency is never lower than 15 ms.

These results are verified for low densities and at reasonable distances (in [67], less
than 350 m). As the density and the distance increase, instead, C-V2X is able to keep
stable results, while the latency in 802.11p tend to explode, reaching very high values.

46

Chapter 3

MS-VAN3T: a multi-stack
simulation framework for

VANET applications testing in
ns-3

3.1 Introduction

In the process of developing and testing a V2X application, a crucial role is played by
network and mobility simulators: due to the intrinsic limitations arising from working
with real vehicles (both from the economic, logistic, and security point of view), the
scientific community developed a multitude of solutions enabling vehicular communi-
cations in simulation environment.

Among the V2X-dedicated network simulators implementing VANET solutions, the
Veins framework [90] is surely one of the most established. It features the bidirectional
coupling between the urban mobility simulator SUMO [61] and the network simulator
OMNeEeT++ [76], via the so-called TraClI (Traffic Control Interface) interface. Beside its
native WAVE/802.11p implementation, other projects, such as SimuLTE [96], have been
merged with Veins to extend its capabilities. SimuLTE enhances Veins by adding in
the simulation loop an accurate model of LTE. Veins was also extended by the Artery
and Vanetza projects [85, 10], introducing a fully functional ETSI ITS-G5 model and a
flexible platform for VANET applications prototyping.

Another simulation engine enabling the creation of complex network scenarios, and
which leverages on a wide community of developers and tens of different frameworks,
is ns-3 (network-simulator 3) [75]. With ns-3 it is possible to leverage on the following
models to simulate VANETS scenarios:

« A model for 802.11p, including an accurate implementation of MAC and Physical
47

MS-VANS3T: a multi-stack simulation framework for VANET applications testing in ns-3

layers;

« A model for LTE communications (called LENA, [14]), comprehending the radio
access part (both for UEs and eNBs), as well as an implementation of the control
and data plane of the EPC (Evolved Packet Core), including the Mobility Manage-
ment Entity (MME), the Serving Gateway (SGW) and the Packet Data Network
Gateway (PGW);

« A model for C-V2X in transmission mode 4, using the framework proposed by
Eckerman et al. [19], in which a C-V2X network unassisted communication is
modeled.

We used the aforementioned models, along with an implementation of the TraCI
interface (inspired by the project in [7]) for the coupling of SUMO and ns-3, to develop
the first solution for vehicular application testing based on the ITS-G5 stack for ns-3.
The name of the framework, that is presented and discussed in this thesis, is MS-VAN3T
i.e., Multi-Stack Framework for VANET applications testing in ns-3.

Unlike the other simulation frameworks for vehicular networks, where the users are
mostly limited to the usage of a single predefined communication stack as access tech-
nology, MS-VANS3T gathers under a single open source repository all the state-of-the-art
VANET: access layer frameworks available in ns-3, and allows any kind of application
to be developed by easily and transparently switching the underlying channel access
technology.

Therefore, in line with the relaxed approach undertaken by ETSI in ITS-GS5 for the
choice of the protocol to be used at the access layers, MS-VAN3T enables the devel-
opment of V2X applications with the possibility of deploying them over LTE, C-V2X
or 802.11p (thus, enabling V2V, V2I and V2N scenarios). MS-VAN3T comes with a full
implementation of the ETSI ITS-G5 stack, comprising the model for Applications, Fa-
cilities, BTP and GeoNetworking. This thesis focuses on the higher layer of ITS-G5
implemented in MS-VAN3T, namely Applications and Facilities.

Beside the testing of applications using a multitude of different access technologies
models, MS-VAN3T comes with the possibility of being easily turned into a V2X mes-
sage emulator. Thanks to particular objects present in ns-3 (named fd-net-devices),
it is possible to redirect all the messages generated in simulation to a specific interface
of the host PC. The emulated V2X messages are encapsulated inside BTP and GeoNet-
working headers and can be used to feed any kind of external applications.

The BTP and GeoNetworking PDUs generated in emulation mode, can be further
encapsulated inside UPD and IPv4 so that the V2X messages generated by MS-VAN3T
can be sent to any host of the network.

These kind of emulation functionalities, which to the best of the author’s knowledge
are not yet present in any of the existing open source VANET solutions, simplify the
integration with hardware-in-the-loop scenarios, and enable the users to generate real
V2X messages starting from the simple definition of SUMO simulations. Virtually, all

48

3.2 — MS-VANST framework architecture

mMs-vanst

7 ETSI ITS-G5
/> > o
Tracl AP Applications
SUMO ot | |

uuuuuuuuuuuuuuuuuuuuuuu

Facilities

Networking and

Transport
! T | ___ | cAw/DENM+BTP+
GeoNet
1)
ACCGSS L _fd__nft;dfvlci _ _ | CAW/DENM+BTP+
GeoNet + UDP + IPv4
—
C-V2X
802.11p LTE
- .M. 4
\NETWOgsﬁLATosﬂ L L J

Figure 3.1: Main components of MS-VAN3T: on the left SUMO, allowing the simula-
tion of complex mobility scenarios (including vehicles, pedestrian and other entities).
On the right MS-VAN3T implemented in ns-3, communicating with SUMO through the
TraCl interface, and implementing the ITS-G5 stack over 802.11p, C-V2X in transmis-
sion mode 4 or LTE, as well as an emulation mode, to redirect V2X messages outside
the simulation environment.

the vehicular applications developers may leverage this kind of tool in the testing phase;
this will tackle all the security, logistic and economic limitations imposed by working
in the automotive context.

Therefore, the aim of this project is to support fellow researchers by providing them
with an open source framework [71] that contains the tools needed to recreate central-
ized V2I/V2N and distributed V2V solutions, and that speeds up the development and
testing phase, also thanks to a couple of applications included in the repository that can
be used as a development baseline. Additionally, the presence of multiple access tech-
nologies under the same repository, may foster the investigation of technology coexis-
tence issues, that nowadays are being faced by all the VANETSs industrial and academic
players.

3.2 MS-VANS3T framework architecture

MS-VANS3T is composed by two different pieces of software, interacting among each
other through the TraCl interface, and that provide together a flexible platform for

49

MS-VANS3T: a multi-stack simulation framework for VANET applications testing in ns-3

application testing:

« SUMO (v1.8.0, at the time of writing), which allows users to dynamically model the
physical positions of the nodes in the network (i.e., in our case, any road player)
following realistic mobility patterns and dynamics. It enables the creation of ar-
bitrarily complex scenarios involving vehicles, pedestrians, bicycles etc., and the
interaction with the simulation elements using the TraCI API [101]. SUMO also
provides the user with a GUI (Graphical User Interface), making it possible to vi-
sualize and interact with the simulated entities in a much easier way than just
launching them and retrieving the final results.

« ns-3 [75] (v3.33 at the time of writing), an open source discrete-event simulator,
which allows users to model all the aspects of the communication among the var-
ious entities, including the involved network stacks.

The elements of the simulation framework are schematized in Figure 3.1, in which
the SUMO GUI is shown during the execution of a simulation, as well as the different
ns-3 modules which can be selected for the V2X application testing and evaluation.

MS-VANS3T generates standardized V2X messages following the ETSI specifications,
already introduced in Section 2.2.2. A model for the Facilities layers CA and DEN basic
service is provided: it is possible, using MS-VAN3T, to generate, encode and decode
standard compliant CAMs and DENMs messages. The CAMs generation follows the
specification of EN 302 637-2 [26], where the transmission periodicity is dynamically
set based on the generating entity’s kinetics properties. The information about position,
speed, heading, acceleration and exterior lights status, needed to populate the CAMs,
are retrieved thanks to the integration with TraCl.

In a nutshell, TraClI establishes a TCP connection between SUMO and ns-3, which
can be used to perform on-demand queries about each simulated entity. From the point
of view of the vehicles, the TraCl interface acts as Vehicle Data Provider (VDP), and
provides the Facilities layers with all the information required for messages creation.
The TCP connection established by TraClI can be used also in the opposite direction to
control the entities dynamics from ns-3; this can be useful, for example, if it is needed to
simulate the case in which the driver takes some action after the reception of a particular
V2X message.

The DENM:s generation follows instead the specification of EN 302 637-3 [27]: DENMs
are event-based messages, generated on-demand by the applications which use them
to disseminate the information related to road hazards, collision risks and of generic
events which are of potential interest for the receivers.

3.2.1 Facilities layers model

In its ITS architecture, ETSI defines the Facilities layers to support the distribution and
processing of V2X messages, needed from the overlying applications to run their logic.

50

3.2 — MS-VANST framework architecture

The implementation of ETSI-compliant features of the Facilities layers in ns-3 adds an
important aspect to MS-VAN3T, namely the possibility to generate CAMs and DENMs
messages that can be decoded also outside the simulation context: the messages gener-
ated can be received and processed by real V2X devices, which in turn can interact with
the simulated entities, turning ns-3 into an emulator of CAM and DENM messages.

The model proposed in MS-VAN3T comprises both CA and DEN basic service, needed
to manage the transmission and reception of CAMs and DENMs. All the messages are
encoded using ASN.1, a syntax notation standard which allows the representation of
complex data structures that can be read by any platform. This notation is completely
programming language-agnostic, and allows different platforms, with different archi-
tectures, to transparently exchange information.

Within the CA and DEN basic services, two modules for ASN.1 CAMs and DENMs
encoding and decoding were created. These modules are in charge of receiving ASN.1-
encoded messages, extracting the relevant information, and providing the ITS-S ap-
plications with the requested data. Moreover, they should also provide the overlying
applications with functions to encode and send ASN.1 messages to the network inter-
face used for communication. The open source tool asnic [91] is used to generate the
encoding and decoding functions of the ASN.1 messages.

In Figure 3.2, the logic implemented by the CA and DEN basic service is depicted.
The CA basic service encodes CAM messages independently from the overlying ap-
plications, that have no control over the CAM dissemination logic. This logic, that is
non-trivial and that depends on the vehicle’s dynamics, is internally managed by the
CAM Transmission Management. The information needed to populate CAMs comes
from a generic Vehicle Data Provider (VDP); in a real situation, this VDP will collect
the information coming from the multitude of sensor on-board of the vehicle and will
use the in-vehicle network (e.g., the CAN bus) to deliver the information to the CA ba-
sic service. In MS-VAN3T the VDP is linked with TraCl, from which the information
on vehicle’s dynamic is parsed and returned to the CA basic service. The modularity
of MS-VAN3T enables any kind of VDP to be plugged to the CA basic service, with low
effort.

Once a CAM is ready to be sent, the CA basic service delivers it to the lower layers
of the communication stack. At reception side, the CA basic service should manage the
CAMs received from the underlying layers, and decode the ASN.1-encoded messages.
Finally, the information included in the CAM should be delivered to the requesting
ITS-S applications, through an appropriate interface. The DEN basic service provides
similar features to the overlying applications, with the difference that, being the DENMs
event-based messages, they are triggered directly by the ITS-S applications.

The complete list of features included in the two models of CA and DEN basic service
in MS-VAN3T can be found in Appendix A.

51

MS-VAN3T: a multi-stack simulation framework for VANET applications testing in ns-3

[ITS-S Applications }47

4[ITS-S Applications]4—

' N\ 4 N
CA Basic Service DEN Basic Service
ngit(:e Encode ‘ ‘ Decode ‘ J Encode ‘ ‘ Decode ‘
o CAM CAM | | DENM DENM |
CAM CAM DENM DENM
Transmission Reception Transmission Reception
Management Management Management Management
& | A) (& | A J
v | v I

[Networking and Transport }

[

Access

J

[Networking and Transport }

[Access

J

Figure 3.2: CA and DEN basic services implemented in MS-VAN3T.

3.2.2 V2I/V2N scenarios

MS-VANS3T enables the possibility of modeling V2I and V2N scenarios, where the road
players send their CAMs toward a centralized entity (e.g. a server), which collects them,
runs the application logic, and replies back with DENMs when needed. Depending on
the communication technology chosen at access layer, a V2I or a V2N-like scenario is

simulated.

Two communication models can be used to enable the connectivity of the vehicles
towards the centralized service. Depending on which one is selected, the resulting

scenario can be seen as V2I or V2N. The two models are:

1. 802.11p, using the model available in ns-3. In this case, vehicles are equipped with
802.11p-compliant OBUs (On Board Units), and broadcast their CAM messages,
which are received by a remote host that is connected to a RSU (Road Side Unit).
The access layer communication model focuses both on MAC and Physical layers
of 802.11p and does not implement any kind of Congestion Control algorithm.
Due to the proximity between the clients and the server, and due to the fact that
the simulated entities belong to the same subnet, it is possible to tag the resulting

scenario as V2I. The 802.11p-based configuration is depicted in Figure 3.3b.

2. LTE, using LENA as simulation framework, in which a standard LTE network is
established, with the vehicles acting as UEs (User Equipments) connected (through
their Uu interface) to the eNB (eNodeB), that is in turn connected to the EPC
(Evolved Packet Core) through the S1-U interface. The EPC implements the SGW
(Serving Gateway) and PGW (Packet Data Network Gateway) blocks. The PGW
is connected to a remote host that runs the application server logic. This scenario
falls into the case of V2N communication, since the UE is connected to a service

52

3.2 — MS-VANST framework architecture

,~ =~ Footprint of wireless
) :
-~ access infrastructure

B cam

(77
mmnumﬂll.-» 7

W
- I.T /‘{"m

Server

Application

(a) Centralized scenario with LTE as communication technology. The sim-
ulated entities send CAMs through their Uu interfaces toward the server,

,~ =~ Footprint of wireless
) :
=~ access infrastructure

wCAM

~

~
ﬂ

(b) Centralized scenario with 802.11p as communication technology. The
simulated entities send CAMs through their 802.11p OBU interfaces toward
the server, which is directly connected to the 802.11p RSU.

Figure 3.3: Centralized scenarios based on LTE and 802.11p.

provider that can be ideally anywhere in the Internet. As far as the control-plane
is concerned, LENA implements a model for the MME (Mobility Management En-
tity) node, that is connected to the eNB via S1-AP interface, and to the SGW-PGW
block through the S11 interface. The main functions of the MME include the ses-
sion initialization and bearer management. Differently from the 802.11p scenario,
in which the messages are broadcasted directly using GeoNetworking, in this case

53

MS-VANS3T: a multi-stack simulation framework for VANET applications testing in ns-3

the messages should traverse the IP-based network generated by the LTE frame-
work, therefore should be encapsulated into UDP and IPv4. Due to the absence of a
MBMS (Multimedia Broadcast Multicast Service) functionality in the LTE model,
all the messages are sent as unicast. The resulting configuration can be seen in
Figure 3.3a.

3.2.3 V2V scenarios

With MS-VANST it is also possible to model distributed scenarios, where vehicles are
configured to broadcast CAMs and DENMs directly among themselves, using V2V-
based protocols. In this case, the application logic can be deployed directly inside the
vehicles, in a purely distributed fashion.

The aforementioned configuration is enabled by the integration of two communica-
tion models, one of which has already been introduced in the previous section:

1. 802.11p, using the 802.11p model available in ns-3. As in the V2I scenario, vehicles
are equipped with OBUs, but in this case they broadcast CAMs and DENMs among
themselves.

2. C-V2X, using the access layer model proposed by Eckerman et al. [19], in which
a C-V2X network, with PC-5 interfaces configured in transmission mode 4, is
established among the road players. In this model, the vehicles communicate
through the direct communication interfaces and exchange messages with their
peers through the sidelink, without relying on the eNB. The resulting model rep-
resents an out-of-coverage communication scenario.

The V2V scenario, using either C-V2X transmission mode 4 or 802.11p, is depicted
in Figure 3.4. In this case, each entity transmits and receives packets within its radio-
range, represented by the green circle around the vehicles.

3.3 Building applications on top of MS-VAN3T

The simulation framework presented in this thesis comes with two sample applications,
one for the V2I/V2N case, developed with a centralized client/server architecture, and
one for the V2V case, developed in a distributed fashion. Each of them has been de-
veloped with the aim of showcasing the potential of the framework, and to provide
significant example of the featured ETSI-compliant message encoding and decoding.

3.3.1 V2I/V2N application: Area Speed Advisory

The application proposed for the centralized V2I/V2N communication models is based
on a client/server architecture. As far as the LTE communication is concerned, the

54

3.3 — Building applications on top of MS-VAN3T

Footprint of wireless

radio range u \
B cam //f . \
A DENM o

802.11p OBU
/ %ﬂ or
PC5 iface
< N
802.11p OBU / w

or

PC5 iface 802.11p OBU

N or
PC5 iface
802.11p OBU
or
PC5 iface

Figure 3.4: Distributed scenario with 802.11p or C-V2X as communication technology.
The simulated entities send V2X messages through their direct communication inter-
faces. Messages are received and processed by the other vehicles.

server is placed in a remote host connected to the EPC through the PGW, while it is
located in a host directly connected to the RSU when 802.11p is deployed.

The main difference between the two communication models, from the application
point of view, resides in the higher end-to-end latency experienced when using LTE: in
this case, indeed, both CAMs and DENMs need to pass through the EPC before they are
delivered, while the usage of 802.11p allows the server to be deployed directly behind
the RSU, just one hop away from the clients.

The map used in this context includes two road crossings connected through a cen-
tral two-way street, and is depicted in Figure 3.5a. The network access point (eNB for
LTE and RSU for 802.11p) is placed at the center of the map, with sufficient coverage to
ensure connectivity to all the vehicles traveling in the simulated area.

The core logic of the application is to divide the map in two different zones: the first
zone is the central one, comprising the two crossings, in which the maximum allowed
speed is 25 km/h. The second zone is instead the outer one, where the vehicles are
allowed to reach a speed up to 100 km/h.

Due to the absence of MBMS functionalities in the LTE model (that makes it un-
suitable to generate and manage broadcast packets), the application follows a different
logic, depending if it is deployed in the LTE or in the 802.11p scenario.

For what concerns the LTE scenario, the server monitors the position of the vehi-
cles, by reading the CAMs, and warns them if they enter an area with different speed
restrictions. The vehicles are configured to periodically send their CAM messages in

35

MS-VANS3T: a multi-stack simulation framework for VANET applications testing in ns-3

(&) Vehicle in the high speed area
(@R Vehicle in the low speed area

B cav
A penv

l Low speed
area

Server
Area Speed
Advisory

(a) Two screenshots from SUMO-GUI, showing the map and the sample ap-
plication in action for the V2I/V2N communication models. The middle zone,
comprehending the two crossings, has speed restrictions. The image also
shows the network access point, where the server is connected. CAMs are
transmitted from the vehicles to the server, and DENMs are transmitted from
the server to the vehicles.

(b) An example of a real implementation of the Area Speed Advisory applica-
tion, with the server taking care of slowing down the vehicles approaching
a school.

Figure 3.5: The Area Speed Advisory application.

unicast to the server. The server, aware of the boundaries of the two areas, analyzes
the position of the vehicles and when it realizes that a vehicle is moving from a zone to
another, it generates and sends a unicast DENM message, warning the driver about the

56

3.3 — Building applications on top of MS-VAN3T

necessity of reducing his/her speed or about possibility to increase it.

The 802.11p scenario instead can completely benefit of the GeoNetworking capa-
bilities: the server generates and broadcasts DENMs using GeoBroadcast (see Section
2.2.2). The destination area set in GeoBroadcast is the central zone, so that each vehicle
entering it will receive the DENM informing about the different speed limitations. In
this case, the server will not monitor the position of each vehicle, but will simply gen-
erate DENMs with fixed frequency that, thanks to GeoNetworking, will be correctly
disseminated in the relevant zone.

This kind of application can be used to signal the presence of a road hazard (e.g., ice
on road), or to delimit certain sensitive zones (e.g., school areas, dangerous crossings,
etc.), as shown in Figure 3.5b.

Figure 3.5a shows the V2I/V2N sample application running in SUMO, with ns-3 man-
aging the communication and application logic. Four vehicles are depicted, two in the
high-speed area (veh1, veh2) and other two in the low-speed area (veh3 and veh4). In
this case, once a vehicle receives a DENM informing the driver to increase the speed,
ns-3 tells SUMO (through TraClI) to change the vehicle color to green (just for visualiza-
tion and debugging purposes) and increase its speed. Conversely, whenever a vehicle
moves from the high-speed to the low-speed area, its color is changed to red and its
speed is reduced.

When using LTE, CAMs are sent as unicast messages from the vehicles to the server
running the application logic. At the same time, the server generates and sends uni-
cast DENMs to notify the vehicles changing speed area. Al the messages are encap-
sulated into BTP, GeoNetworking, UDP and IPv4. Conversely, when using 802.11p, all
the messages (both CAMs and DENMs) are broadcasted among the entities, and are
encapsulated into BTP and GeoNetworking headers.

3.3.2 V2V application: Emergency Vehicle Alert

The application proposed to showcase the potentiality of the MS-VAN3T’s V2V models
is called Emergency Vehicle Alert (EVA). In this case, the supported access technologies
are 802.11p and C-V2X in transmission mode 4. Similarly to the V2I/V2N scenario, the
application relies on ETSI-compliant CAM and DENM messages (in this case, directly
exchanged between road players) to actuate its logic. As per-standard, all vehicles ex-
change CAM messages to inform nearby nodes about their current status. The scenario
also includes, however, the presence of Emergency Vehicles (EVs), which should be able
to travel without being slowed down by the other vehicles.

An EV could be an ambulance, a police motorcycle, or a firefighter vehicle, as shown
in Figure 3.6b. In particular, we modeled a scenario in which two EVs periodically send
DENM messages to all nearby vehicles. Upon reception of a relevant message (i.e., a
DENM message from an approaching EV), a normal vehicle will try to limit its hindrance
to the EV. If it is traveling on the same lane as the EV, it will try to change lane. If this is
not possible (for instance due to the other lane being occupied), the vehicle will speed

57

MS-VANS3T: a multi-stack simulation framework for VANET applications testing in ns-3

Vehicles not in the EV’s relevance area

@& Vehicles in the EV’s relevance area (same lane)

(&) Vehicles in the EV's relevance area (other lane)
@& Emergency Vehicle

B cam
A Dpenv

(a) Two screenshots from SUMO-GUI, showing the map and the sample ap-
plication in action for the V2V communication model. All the vehicles ex-
change CAMs through direct communication. In addition, the EV (in red)
broadcast DENMs, which ar in turn received by the surrounding vehicles,
processed and used to take evasive action.

A

(b) An example of a real implementation of the Emergency Vehicle Alert ap-
plication, with an ambulance transmitting DENMs to inform vehicles about
its presence.

Figure 3.6: The Emergency Vehicle Alert application.

up and try to perform a lane merge maneuver as soon as possible. If on a different lane,
it will slow down. In this way, the EV will be able to overtake a normal vehicle without
being forced to reduce its speed.

The map used in this case represents a urban scenario, where normal vehicles have

58

3.4 — Simulating with MS-VAN3T

a maximum speed varying between 30 km/h and 60 km/h and EVs can, instead, travel
up to 75 km/h; a circular road segment is involved, with two lanes for each direction of
travel. The configuration chosen (two lanes roads and vehicles’ maximum speed) seem
to be fairly realistic, as this is a common case which is often encountered in large cities
all over the world.

A screenshot of SUMO GUI while running the application is shown in Figure 3.6a.
The red vehicle is the EV broadcasting DENMs, while the orange vehicles (like veh2)
are nodes that have correctly received and parsed a DENM from the EV and are slowing
down to be safely overtaken. The green vehicle (veh5) is instead a car traveling on the
same lane as the EV. It is thus trying to accelerate to change lane as soon as possible
and let the EV go by. Finally, the yellow vehicles (such as veh1 and veh6) are cars which
received the DENMs sent by the EV, but do not need to react, as they may be traveling
in the opposite direction, they might not be directly interested by the EV trajectory or
they may be still too far away.

3.4 Simulating with MS-VAN3T

The main objective of the MS-VAN3T project is to provide fellow researchers with a
tool that can be used to easily develop any kind of vehicular application, and to deploy
it over any access technology. MS-VAN3T can be used to measure application-related
KPIs, to test the V2X application features, but also to evaluate the performances of the
underlying access technology. In this section, the main simulation results both related
to the applications metrics and to the access technology performances are presented.

3.4.1 V2I/V2N application performances

As previously mentioned, the main target of the proposed V2I/V2N applications is road
safety. A couple of traffic lights are deployed to manage the two intersections at the
center of the map; the two traffic lights, however, were modified to show always green
to all incoming vehicles. In this way the Area Speed Advisory application can be eval-
uated in the worst case scenario: the vehicles approach the intersections at maximum
speed, and realize about the other vehicles’ presence when they already entered the
intersections area. In some cases, they will be unable to stop and avoid a collision. This
configuration mimics the case of a distracted driver, of a blind unregulated intersection
or of a traffic lights system failure.

The simulations are then evaluated by observing the average number of collisions
with and without the Area Speed Advisory application. The tests involved an increasing
number of vehicles, starting from 10, to 40 vehicles in total. The results plotted show
the total number of collision occurred at the two road crossings as a function of the
total number of vehicles present in the scenario. The vehicles could reach a maximum
speed of 100 km/h, and for each density we ran 100 simulations, each lasting 200 s, by
changing the mobility trace.

59

MS-VANS3T: a multi-stack simulation framework for VANET applications testing in ns-3

——802.11p
LTE
7 Algorithm disabled

at crossings

0

10 15 20 25 30 35 40

Total number of vehicles

Average # of collisions occurred

Figure 3.7: Results of the V2I/V2N simulations. The average number of collisions at
road crossings as a function of the total number of vehicles present in the scenario is
reported.

The results are plotted in Figure 3.7, where the increasing number of vehicles are
reported on the x axis and the average number of collisions at road crossings on the y
axis. For each value, the 95% confidence interval on all the simulations is plotted. The
results show the benefits of the Area Speed Advisory application on the total number
of road crossing collisions. The sample application developed on top of MS-VAN3T,
which basically slows down the vehicles approaching the intersections, was able to
avoid a large number of collisions. The average number of collisions reported, when
the algorithm is disabled, increases up to 8 collisions per simulation, when the total
number of vehicle is between 30 and 35. Then, due to the increased traffic, and to the
consequent drop in the average vehicles speed, the total number of collisions starts to
decrease. When the algorithm is instead enabled, the number of collisions is always
low, with an average of less than 1 per simulation, even when the density is very high.

3.4.2 V2V application performances

As the main metric for the assessment of the V2V-based application, the focus is on the
average speed of the EV, under different traffic conditions, comparing the case in which
the alerting system is enabled (i.e., DENMs are sent by the EVs), either through 802.11p
or C-V2X, to the case in which it is disabled.

The application is evaluated by increasing the total number of vehicles, ranging from
10 to 40. The map used is the one described in Section 3.3.2. For each case 100 simu-
lations are run, each lasting 200 seconds. The mobility traces are different at every
run and include two EVs, one per travel direction. The speed of the two EVs has been
averaged over all the simulations.

60

3.4 — Simulating with MS-VAN3T

75

70

65

60

——802.11p
55 C-V2X

Algorithm disabled

Avg speed of the EVs [Km/h]

10 15 20 25 30 35 40

Total number of vehicles

Figure 3.8: Results of the V2V simulations. The average speed kept by EVs as a function
of the total number of vehicles present in the scenario is reported.

The results are depicted in Figure 3.8, in which the increasing number of vehicles is
reported on the x axis and the measured average speed of EVs on the y axis. For each
value, 95% confidence intervals over the 100 simulations are reported.

The results show how the proposed solution can be an effective, yet simple, algo-
rithm for an EV use case, and how MS-VAN3T can be effectively used to assess safety
applications performances even in V2V scenarios. Indeed, the EVs are almost always
able to keep their maximum speed when they are sending DENMs to nearby vehicles,
no matter the traffic density or pattern. Instead, when no DENMs are sent and the
vehicle density starts increasing, a quite consistent speed drop (sometimes more than
10 km/h) can be observed. Importantly, the selected V2V technology does not make a
significant difference when it comes to the algorithm effectiveness, at least as long as
all the needed DENMs are correctly received by the involved vehicles.

All the analyzed data, depicted in Figures 3.7 and 3.8, has been obtained either
through SUMO output files or by coding a CSV logging mechanism into ns-3 (avail-
able in the source code of our sample applications).

3.4.3 Access technologies performances

Being the various access layers models developed by different persons/teams, it is im-
portant to stress that the results here presented are strictly dependent on the specific
implementation of the communication technology. Therefore, the same tests performed
on a different models of the same technology may lead to slightly different results.

To analyze the access protocols performances, a tool named Flow Monitor was used
when possible [17]. With Flow Monitor it is possible to track each IP flow in the ns-
3 simulation, thanks to probes that are installed at IP layer. Flow Monitor was used

61

MS-VAN3T: a multi-stack simulation framework for VANET applications testing in ns-3

25

——3 Mb/s ——4.5 Mb/s 6 Mb/s 9 Mb/s
——12 Mb/s -#-18 Mb/s ——24Mb/s —27 Mb/s

20

]

—
. ‘
10 20 30 40 50 60 70 80

Total number of vehicles

920 0

(a) Delay computed with Flow Monitor when communicating through 802.11p. Each line corre-

sponds to a different datarate, with the plot reported as function of the total number of vehicles
present in the scenario.

—-3Mb/s ——4.5Mb/s 6 Mb/s 9 Mb/s
——12 Mb/s —=-18 Mb/s —+—24 Mb/s

Delay [ms]

10 20 30 40 50 60 70 80 90
Total number of vehicles

100

(b) Zoom of the plot in the region between 0.2 and 1.6 ms.

Figure 3.9: 802.11p delay (one-way).

to compute the end-to-end delay, the delay jitter and the Packet Drop Ratio (PDR) in
802.11p and LTE. Unfortunately, due to the specific network implementation, it is not
possible to attach the Flow Monitor probes in C-V2X-based nodes; therefore in C-V2X
the protocol performances are inferred using information available at application layer.

All the values reported have been obtained by running 10 simulations, each 1000

62

3.4 — Simulating with MS-VAN3T

seconds long. The map is the same used for the V2I/V2N application, with a central-
ized entity (either connected through 802.11p, LTE or C-V2X) which gathers the CAMs
messages and sends DENM messages. The results are focused on delay, on delay jitter
and on Packet Drop Ratio (PDR).

802.11p

When using 802.11p as communication protocol, in MS-VAN3T vehicles normally trans-
mit CAMs in broadcast using BTP and GeoNetworking. Since Flow Monitor install
probes at the IP layer of the transmitting/receiving entities, in this case the model has
been slightly modified and added with UDP/IPv4 capabilities. Therefore, CAMs are
sent in unicast to the central server which is, in turn, connected to the RSU. The server
replies back with DENMs, according to the logic implemented in the V2I/V2N applica-
tion mentioned earlier.

Therefore, each vehicle’s OBU (and the RSU connected to the server) contends for
the shared channel and packet collisions are likely to happen. The simulations, in this
case, have been carried on by configuring the OBUs to transmit using one of the possible
datarate of 802.11p. The plots, shown in Figure 3.9, 3.10, and 3.11 are all reported as a
function of the number of vehicles present in the scenario (from 10 to 100).

Figure 3.9 shows the one-way delay, i.e., the delay experienced when transmitting
a packet from one node to another, and the corresponding 95% confidence interval.
The results suggest that 802.11p is able to keep a very low delay when transmitting
at datarates up to 24 Mb/s. When transmitting at 27 Mb/s instead, due to the MCS
parameters adopted, the connection becomes highly unstable: the increased number of
retransmissions cause the nodes to perform multiple backoffs for every transmission.
For this reasons, the delay experienced is higher with respect to the case in which lower
datarates are adopted.

In Figure 3.9b, a zoom on the region between 0.2 and 1.6 ms is depicted. Here, all
the different datarates are clearly visible, and some considerations can be made: from
3 Mb/s up to 12 Mb/s the delay decreases, and this phenomenon is mostly due to the
reduction in transmission time. Then, starting from 18 Mb/s, due to the aforementioned
reasons linked to the MCS parameters, the delay starts to increase and the communica-
tion becomes unstable.

All the previous deductions are supported by what is shown in Figure 3.10. The
delay jitter (computed as the standard deviation in the measured delay) is very low for
the lower datarates, while is remarkably high when transmitting at 27 MB/s, denoting
a highly unstable and unpredictable communication.

The plots related to the PDR are shown in Figure 3.11. At high datarates, also in
this case, the protocol performances seem to suffer the coding scheme settings: when
transmitting at 27 Mb/s, a very high number of packets are lost (up to 50%); at 24 Mb/s
the situation is improved, but still around 30% of packets are lost. The value decreases
only when adopting a transmission rate equal or below 18 Mb/s, as shown in the zoomed

63

MS-VAN3T: a multi-stack simulation framework for VANET applications testing in ns-3

Delay jitter [ms]

——3 Mb/s —+—4.5Mb/s ——6 Mb/s 9 Mb/s
—*—12 Mb/s -#-18 Mb/s ——24 Mb/s ——27 Mb/s

20

15

. | ~_

10 20 30 40 50 60 70 80 90 100
Total number of vehicles

(a) Delay jitter computed with Flow Monitor when communicating through 802.11p. Each line
corresponds to a different datarate, with the plot reported as function of the total number of
vehicles present in the scenario.

Delay jitter [ms]

18

——-3Mb/s —+—4.5Mb/s 6 Mb/s 9 Mb/s

=
=)

——12 Mb/s —=-18 Mb/s ——24 Mb/s

=
IS

I
[N}

-

10 20 30 40 50 60 70 80 90 100
Total number of vehicles

(b) Zoom of the plot in the region between 0 and 1.8 ms.

Figure 3.10: 802.11p delay jitter.

plot in Figure 3.11b.

It is worth to mention that the PDR values here reported are computed at IP layer:
802.11p does not implement any kind of low level retransmission technique, therefore
when two or more stations access the channel at the same time, the corresponding

packets are

lost.

64

3.4 — Simulating with MS-VAN3T

70

60 |

50

20

10

——3 Mb/s ——4.5 Mb/s 6 Mb/s 9 Mb/s
——12 Mb/s %18 Mb/s —+24Mb/s —27 Mb/s

E 3 3 3 : 3 : 3 3 —

10 20 30 40 50 60 70 80 90 100

Total number of vehicles

(a) PDR computed with Flow Monitor when communicating through 802.11p. Each line corre-
sponds to a different datarate, with the plot reported as function of the total number of vehicles
present in the scenario.

PDR [%]

LTE

2.2

0.8

| 3 Mb/s ——4.5 Mb/s 6 Mb/s
9 Mb/s ——12 Mb/s -—=-18 Mb/s

06 |

0.4

0.2

-0.2

10 20 30 40 50 60 70 80 920 100

Total number of vehicles

(b) Zoom of the plot in the region between 0 and 2.2 ms.

Figure 3.11: 802.11p delay (one way).

The scenario is configured to characterize the LTE performances is similar to the previ-
ous one: the vehicles are equipped with UEs that are used to transmit unicast CAMs to
the central server using the Uu interface. The central server is connected, thanks to the
PGW, to the EPC. The point-to-point link used to connect PGW and server introduces a
fixed delay of 5 ms. The LTE parameters chosen are the default set in LENA: 25 RBs for

65

MS-VAN3T: a multi-stack simulation framework for VANET applications testing in ns-3

30
—e—Uplink ——Downlink RTT

25

20

15

Delay [ms]

10

40 50 60 70 80 920 100

Total number of vehicles

Figure 3.12: Delay computed with Flow Monitor when communicating through LTE.
Values corresponding to Downlink, Uplink and RTT measurements are reported.

0.020
I —e—Uplink ——Downlink RTT

0.015

0.010

Delay jitter [ms]

0.005

10 20 30 40 50 60 70 80 90 100
Total number of vehicles

0.000

Figure 3.13: Delay jitter computed with Flow Monitor when communicating through
LTE. Values corresponding to Downlink, Uplink and RTT measurements are reported.

the Uplink and Downlink channel, with EARFCN (E-UTRA Absolute Radio Frequency
Channel Number) set to 100 for Downlink channel and to 18100 for the Uplink channel.
Due to the presence of the HARQ retransmission system, the results are expected to
show an improved PDR, and a communication with higher (but more stable) delays.
Also in this case, the results are plotted as a function of the number of vehicles present

in the scenario.

66

3.4 — Simulating with MS-VAN3T

17

——Pr=0.0
Pr=0.5
16.5
Pr=0.8
16
@
E
> 15.5
o
)
o
15
T

14.5

14
10 20 30 40 50 60 70 80 920 100

Total number of vehicles

Figure 3.14: Delay computed at application layer when communicating through C-V2X.
Plots corresponding to 3 different values of the resource reselection probability are re-
ported.

The plot in Figure 3.12 confirms the behavior expected: the delay is 17 ms in uplink
(where the CAMs are transmitted), 8 ms in Downlink (where the DENMs are transmit-
ted), totaling a RTT of around 25 ms. The LTE network established can serve, without
any problem, 100 UEs. Differently with respect to 802.11p, the results are stable, with
variance close to 0, as depicted in Figure 3.13.

The PDR is not reported because its values is constantly 0: the presence of low-layer
retransmission mechanisms (such as HARQ, in the case of LTE), makes the communi-
cation very reliable, with packet loss equal to 0 even when the number of transmitting

nodes is high.

C-v2X

To analyze the C-V2X performances, the delay, delay jitter and PDR of the model is
studied by varying the resource reselection probability P,. In transmission mode 4,
a vehicle reserves the selected subchannel for a number of consecutive transmissions
randomly extracted between 5 and 15. This value is included in the SCI information and,
as soon as all the retransmissions are done, a new resource is reserved with probability
(1 - P,), with P, between 0 and 0.8. In the set of simulation here analyzed, the MCS 20
is used, the resource pool are composed by 3 subchannels (each formed by 10 RBs) and
the resource reservation interval is set to 20 ms. All these parameters are tunable in the
MS-VANST framework.

This scenario foresees vehicles broadcasting CAMs through the dedicated PC5 in-
terface. As previously stated, in this case it is not possible to attach IP probes since

67

MS-VAN3T: a multi-stack simulation framework for VANET applications testing in ns-3

11

——Pr=0.0
10 —Pr=0.5
Pr=0.8

Jitter [ms]

Total number of vehicles

Figure 3.15: Delay jitter computed at application layer when communicating through
C-V2X. Plots corresponding to 3 different values of the resource reselection probability
are reported

25

——Pr=0.0

PDR [%]

10 20 30 40 50 60 70 80 90 100
Total number of vehicles

Figure 3.16: PDR computed at application layer when communicating through C-V2X.
Plots corresponding to 3 different values of the resource reselection probability are re-
ported

the C-V2X model included in MS-VAN3T makes use of raw sockets to implement the
direct communication. For this reason, all the results here reported are collected at ap-
plication layer: as soon as the CA basic service receives the message, it forwards it to
the upper layer, where the application collects and log the received information. The
performances of the system were studied by selecting 3 values for P,, namely 0, 0.5 and
0.8.

The delay computed in this case shows a direct correlation with the number of ve-
hicles present in the scenario. Moreover, it is clear that by increasing the probability

68

3.5 — Emulating with MS-VAN3T

of reselecting a resource, the final delay decreases (around 0.5 ms each step). The re-
sults also suggest that, in general, C-V2X offers higher delays with respect to 802.11p.
However, the communication seems to be way more stable: either by looking a the very
small confidence intervals in Figure 3.14, or by looking at the small jitter (on average,
around 5 ms), the cellular-based solution offers a reliable technology that can be used
to enable performances demanding applications.

For what concerns the Packet Drop Ratio, plotted in Figure 3.16, a direct relation
with the total number of vehicles present in the scenario is still highlighted. However,
the model implemented in MS-VANS3T, at the time of writing, still does not implement
any HARQ system. Therefore, in a real scenario, or in a situation in which HARQ is
implemented to mitigate the packet loss, the results are expected to improve.

3.5 Emulating with MS-VAN3T

One of the core functionalities of MS-VANS3T is represented by the possibility of redi-
recting all the V2X messages created in simulations toward any of the physical or vir-
tual network interface of the host PC. This important feature, implemented using the
so-called fd-net-devices can be very useful in the testing of vehicular applications
based on V2X messages: the CAMs and DENMs messages generated in simulation by
MS-VANST can easily be relayed by the host PC to, for example, a 802.11p radio. There-
fore, those messages can be received by real vehicles equipped with 802.11p sensors,
that will decode the information as if the messages were created by other real vehicles
in the surroundings. This artificial communication can be used to test V2X-based safety
applications, without having to equip an entire fleet with V2X sensors.

To help the user in the implementation of such configuration, MS-VAN3T comes with
an example showing how to redirect all the V2X messages to a specific interface in the
host PC. When using the emulation capabilities of MS-VAN3T, each vehicle transmitting
CAMs and DENMs will have to spoof a MAC address, which will then be assigned to
the dedicated fd-net-device. Therefore, the user will be required to set the target
interface of the host PC in promiscuous mode. Each vehicle is configured to generate
CAMs according to the CAMs dissemination rules standardized by ETSI, while DENMs
are generated with frequency 1 Hz.

Additionally, the aforementioned example comes with the possibility of redirecting
the messages using UDP toward a specific IP address, by simply specifying the address
and the port to be used in transmission.

Figure 3.17 shows the dissection of the V2X packets generated by MS-VAN3T on
the host PC, sniffed with Wireshark on the target interface (wlp63s0). The fact that
the packet dissection is successful validates the entire MS-VAN3T stack, since those
messages, if received by an external entity implementing a standard compliant I'TS-G5
stack, can be correctly received and decoded.

69

MS-VAN3T: a multi-stack simulation framework for VANET applications testing in ns-3

*wlp63s0
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
AmOomRARE AesEgsEaaafF
(W Tits
No. Time ¥ |Source Destination Protocol Lengtt Info
2.32.3538.. 0.5.0.00:00:00:00:00:01 Broadcast CAMV1 101 CAMv1

2..32.5546.. 0.5.0.00:00:00:00:00:01 Broadcast CAMv1 101 CAMv1

4

» Frame 227: 101 bytes on wire (808 bits), 101 bytes captured (808 bits) on interface wlp63s0, id @

» Ethernet II, Src: 00:00:00_00:00:01 (0P:00:00:00:00:01), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
» GeoNetworking

» BTP-B

» Intelligent Transport Systems

oo ff ff £ff ff ff ff 00 00 00 00 00 01 89 47 11 00 G
0010 50 01 20 Ff 62 80 00 2f 01 00 14 00 00 60 00 @0 P- [-/

020 00 01 f1 2c b8 b7 1a da 91 b6 04 90 80 5b 00 @O ’

)30 01 Ge Q0 0O 0O 0O 07 d1 0O 0O 01 02 00 00 0O 01

0 bc 4e 00 5a of ef 56 6d fb 4a 30 7f ff ff fc 23 N-Z:--vm -JO #
950 b7 74 3e 20 a8 cf co aa 7e 83 18 8a df 37 53 of t> ~ 7S
) 5T ff bo 40 00

© 7 wireshark_wlIp63s0_20210220154518_LnURBi.pcapng Packets: 371 * Displayed: 34 (9.2%) - Dropped: 0 (0.0%)

*wlp63s0

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AN @mRRE Ae=E7 s JEaaQr

(W Tits
No. Time ~ Source Destination Protocol Lengtt Info
2..31.6378.. 0.5.0.00:00:00:00:00:01 Broadcast DENMvV1 115 DENMV1

2.32.3538.. 0.5.0.00:00:00:00:00:01 Broadcast CAMV1 161 CAMv1

4

» Frame 217: 115 bytes on wire (920 bits), 115 bytes captured (920 bits) on interface wlp63s0, id ©

» Ethernet II, Src: 00:00:00_00:00:01 (00:00:00:00:00:01), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
» GeoNetworking

+ BTP-B

» Intelligent Transport Systems

ff ff ff ff ff fTf 00 G0 00 00 00 01 89 47 11 QO G
f1 01 20 40 01 80 00 2d 01 00 00 0@ 00 00 14 00 @ -

00 00 00 00 00 01 f1 2c b8 b7 la da 91 b6 04 90 '

80 5b 00 00 01 Oe la da 91 b6 04 90 80 5h 00 32 [[-2
00 00 00 60 00 00 07 d2 00 00 01 01 00 60 00 01

00 00 OO0 00 00 80 00 Of be 25 97 16 e3 ef 89 65 % e
c5 c6 b4 9d 20 1d 69 3a 40 10 00 00 00 00 db ba ir @

1f 05 ee

@ 7 wireshark_wlIp63s0_20210220154518_LnURBi.pcapng Packets: 371 * Displayed: 34 (9.2%) - Dropped: 0 (0.0%)

Profile: Default

Profile: Default

Figure 3.17: CAMs and DENMs generated by MS-VAN3T and transmitted to the physi-
cal interface wlp63s0 of the host PC. The messages are sniffed using Wireshark, which

is able to correctly dissect them, as it they were generated by real V2X entities.

3.6 Future work

MS-VAN3T is actively improved and new features are tested and implemented on a daily
basis. At the time of writing, the core functionalities of Facilities, BTP, and GeoNet-

working are being improved.

As a future step, an important feature that will be added is the possibility of using
alternative mobility trace generators with respect to SUMO. In particular, an idea could

70

3.6 — Future work

be of adding the possibility of injecting real GPS traces. In that case, each simulated
node inside ns-3 will link its Vehicle Data Provider to the dedicated GPS trace, so that the
generated CAMs will be filled with positioning information coming from real devices.

Another important feature that will be developed in the future, is the integration
with other access technologies: the first 5G model for ns-3 is currently in development
phase [4], and it will be integrated in MS-VAN3T to give the possibility of developing
applications relying on the 5G technology. As soon as other models of potential interest
for the vehicular world will be available in ns-3, like 802.11bd (the evolution of 802.11p)
or 5G-V2X, they will be included in MS-VAN3T.

71

72

Chapter 4

V2X-supported collision
avoidance systems

The number of fatalities on roads remains unacceptably high. With a peak of 1.35 mil-
lion, as reported in the “Global Status Report on Road Safety 2018, traffic accidents
represent the gth leading cause of death for people of all ages and the 1% for children
and young adults from 5 to 29 years of age [42]. The severity of this problem, in terms
of deaths and injuries, is often under-estimated by governments and local authorities.
The under-reporting of traffic accidents fatalities is still common in many regions of the
world, and this often results in a low priority being given to road safety with respect
to other public health concerns that are less deadly, but have higher media coverage.
Motivated by these ghastly figures, safety has emerged as a prominent application of
vehicular networks.

As mentioned in Section 2.2.2, ETSI dedicated an entire set of Technical Specifica-
tions to road safety applications [36, 33, 34, 35], and included Road Hazard Signaling
(RHS), Intersection and Longitudinal Collision Risk Warning (ICRW and LCRW) among
the prominent use cases of Basic Set of Application (BSA) for ITSs. Those applications
are considered as primary road safety applications: as introduced in Clause 4 of [35],
primary road safety applications are those ITS applications whose aim is to reduce the
risk of collision and improve road safety.

In this thesis, a novel application for detecting potential collisions at the intersections
(thus, a ICRW application) is presented, and adapted to a number of different scenarios.
The study focuses on the possible network architectures where the ICRW application
may be deployed, as well as on the number of technical challenges imposed by this kind
of application. The proposed solutions are then implemented and validated through
simulations in MS-VAN3T, the vehicular network framework presented in Chapter 3.

73

V2X-supported collision avoidance systems

4.1 ICRW according to ETSI: an overview

ETSI defines ICRW as an application in charge of providing collision risk warning to
drivers, by delivering punctual information in case of risk detected. ICRW is based
on the processing of basic V2X messages, CAMs and DENMs for ITS-G5-based com-
munications, and BSMs and ICAs for WAVE-based applications. Since ICRW has been
specified by ETSI, from now on the services is considered as deployed in an I'TS-G5 sce-
nario, with vehicles and vulnerable users broadcasting CAMs, and with collision alerts
coded into DENM messages. Additional messages that can be used to assess the colli-
sion risk can be generated by other services such as Traffic Light Maneuver (TLM), Road
and Lane Topology (RLT) and Infrastructure to Vehicle Information (IVI). In addition to
the potential collision detection functionality, the integration with TLM, RLT and IVI
enables the possibility of detecting traffic sign violations at intersections (functionality
that, however, is not implemented or discussed in this work).

An ICRW compliant entity should be able to generate, receive and process V2X mes-
sages. In particular, two functional modes are specified: ICRW originating mode and
ICRW receiving mode. The former requires the compliant ITS-S to be able to generate
CAMs, with the additional capability of tweaking the transmission rate when approach-
ing sensitive locations. Furthermore, it requires the possibility of triggering DENMs to
inform other entities of the detected risk. The latter requires instead the ability of re-
ceiving V2X messages, process them and take appropriate actions. As an example, in
case of a vehicle ITS-S receiving a DENM related to a collision risk detected, ICRW
should issue a warning to the driver, and eventually it should trigger a DENM trans-
mission to inform the other entities of the potential threat.

ETSI defines tight requirements in terms of end-to-end latency: the standard spec-
ifies that from the moment at which the relevant information is available at source,
to the moment at which the warning is presented to the driver, the measured latency
cannot exceed 300 ms.

4.1.1 Functional requirements

The ICRW application relies on the performances of both originating and receiving
stations, and the basic functional requirements are provided in Clause 6 of [34]. To
summarize, an ICRW-compliant application is required to specify the conditions under
which a possible collision is detected. Such an estimation is performed by looking at the
position and movement information coming from the surrounding entities. The risk of
collision can be inferred by computing the Time-to-Collision (T2C) i.e., the estimated
time at which the actual collision will occur.

By monitoring the dynamics of involved entities, the ICRW application may stop
issuing the collision alert: this usually happens when the ICRW user (either it can be the
driver, the automatic driving assistance systems implemented in the vehicle, a cyclist or
a pedestrian) takes actions to avert the collision. When the ICRW application detects a

74

4.2 — ICRW application: the Collision Avoidance Service

potential collision, either inferred from received CAMs or notified through DENMs, it is
required to trigger a proper warning to the user, or to activate dedicated vehicle-based
collision avoidance systems.

4.1.2 Operational requirements

The operational requirements specified by ETSI for ICRW are related to security and
performance aspects. In a nutshell, when designing ICRW some considerations on the
possible failures should be made, so to develop an application that is completely fault
tolerant. Among the possible disruptive events, there is the silent interruption of the
system (caused either in transmission, in reception or in the data processing phase),
the generation of DENMs not corresponding to actual collisions, or other system-level
failures. In case one or more faulty behaviors are identified, the ICRW application
should immediately stop its normal routines and notify the driver about the abnormal
behavior.

From the performances point of view, the standard sets some minimum requirements
both in position accuracy, in transmission range and in end-to-end latency. The confi-
dence level for the position estimation should never be less than 95%, with a minimum
accuracy equal or better than 2 meter. The ITS-S entities are required to implement
transmission systems with a radio range, in line of sight scenarios, of at least 300 m.
The standard also sets some constraints in terms of latency, by specifying the maxi-
mum processing time (i.e., the time that it takes from the moment at which a packet
is received to when the alert or the automatic action are issued) to 80 ms. Moreover,
whenever ICRW triggers a DENM, the DENM shall be updated with frequency 10 Hz,
as long as the collision risk persists.

Finally, an ITS-S can be considered standard-compliant only if it can process at least
1000 CAMs and DENMs per second, value that corresponds to the realistic maximum
amount of messages that can be transmitted in the CCH of ITS-G5 every second.

4.2 ICRW application: the Collision Avoidance Ser-
vice

Assessed the importance of developing new and innovative solutions targeting the high
demand for safer mobility systems, in this thesis a novel application to avoid collisions
at intersections is proposed. The solution provided draws on the ETSI’s ICRW specifi-
cation, is called Collision Avoidance Service (CAS) and can be deployed under multiple
scenarios, as well as using a number of different wireless access technologies. In par-
ticular, a couple of architectures has been designed and developed, each one possibly
enabled by different communication technologies.

The reference architecture of CAS is depicted in Figure 4.1. The idea behind the sys-
tem is straightforward: the road entities (vehicles, cyclists, pedestrians, etc.) broadcast

75

V2X-supported collision avoidance systems

Collision Avoidance Service
p

Generate
DENMs

,_____,
~S——————

Figure 4.1: Reference architecture of the Collision Avoidance Service.

their information through Cooperative Awareness-based systems. The messages are
received and processed by the entity running CAS; depending on the case, it can be a
dedicated server placed behind the RSU, in a MEC server or in the cloud. Furthermore,
as better explained in the next sections, the receiving entity may be directly one of the
road players running an instance of the distributed version of CAS.

As soon as a CAM is received, it is processed by the lower layer of the stack, and it is
finally delivered to CAS: as a first step, the system extracts the meaningful information
from the message (position, speed, acceleration, heading) and updates the internal data
structures holding the status of all the entities subscribed to the service. Then, the
Collision Avoidance Algorithm (CAA) is run: the algorithm checks if the triggering
entity is set on a collision course with any of the entities stored in the internal data
structures. At the end, CAA returns the list of colliding pairs, and generates the DENMs
accordingly.

76

4.2 — ICRW application: the Collision Avoidance Service

B cam

A Collision
Avoidance
System

A S s\ VYO

Figure 4.2: Centralized version of CAS. Vehicles and vulnerable users are connected to
the network infrastructure through their devices, and the service runs in a central unit
placed either in the proximity of the base station (e.g., in a MEC server) or in a cloud
node.

4.2.1 Centralized solution

The first architecture proposed, depicted in Figure 4.2, is centralized; the communica-
tion is based on a client-server paradigm and requires the users (either vehicular and
non-vehicular) to be connected to a central unit which runs CAS. The ITS-S collects the
CAMs from the surrounding entities and pass them to the application layer, where CAS
processes it and runs its internal logic.

As soon as a possible collision is evinced, the involved entities are notified through
DENMs, and the receiving system is then in charge of implementing one of the follow-
ing actions: (i) to notify the driver (or the pedestrian, the cyclist etc.) of the upcoming
threat by implementing a warning system (visual, acoustic, haptic, or a combination of
the three); (ii) implement an automatic evasive action (when possible).

The centralized solution falls into the category of V2I, V2N and V2P applications
(depending on where CAS is deployed and on the type of road players involved), and
enables the protection against vehicle-to-vehicle and vehicle-to-vulnerable-user colli-
sions, with the vulnerable users that can be connected to the network infrastructure
either through normal smartphones or through dedicated devices (e.g., wearable, smart
bands, smart watches etc.).

The access technologies enabling this solution are both wireless-LAN-based and
cellular-based: the central unit running CAS can be either deployed in a RSU station,

77

V2X-supported collision avoidance systems

Figure 4.3: Distributed version of CAS. Vehicles and vulnerable users exchange CAM
messages among themselves using a direct communication protocol. Each entity runs
its own CAS service and, based on the configuration adopted, DENMs are generated
and eventually transmitted to the involved entities.

thus communicating with the users through IEEE 802.11p, as well as in the cellular net-
work (i.e., reachable using LTE or 5G devices), by adopting edge-based solutions (using
Multi-access Edge Computing - MEC - systems) or cloud-based solutions, with the latter
disadvantaged for end-to-end delay issues.

4.2.2 Distributed solution

The second architecture proposed, depicted in Figure 4.3, is distributed; the CAS system,
in this case, is spread among the users (either vehicular and non-vehicular). The users
is not connected to a central unit: each entity is in charge of receiving and processing
CAMs, of running the CAA logic, and of independently assessing the collision risk.

As soon as a possible collision is found, the strategy can be either to notify the in-
volved user through appropriate DENMs, or (assuming that all the players in the sce-
nario are running an instance of the CAS system) to only notify the current user of the
possible threat (thus, by adopting a so-called silent strategy).

The distributed architecture comes with its pros and cons: as an advantage, being the
system directly developed at the user side, it can rely on a general reduced end-to-end
delay, with the system that can therefore gain something in terms of responsiveness.
On the other hand, it requires non-trivial communication, computational and power
capabilities to be implemented directly into the end-user devices. This problem can

78

4.2 — ICRW application: the Collision Avoidance Service

be negligible in a fully-vehicular environment, where the aforementioned capabilities
can be easily integrated into the vehicles’ control unit. Problems may arise when the
system is instead developed into smartphones, or dedicated devices, that may lack in
computational capabilities or may suffer of battery drains, due to the resource demand-
ing operation of both communication and computational requests of CAS.

The distributed solution falls into the category of V2V and V2P applications, enables
the protection against vehicle-to-vehicle and vehicle-to-vulnerable-user collisions, with
the vulnerable users that can be connected to the distributed network through dedicated
devices. Even in this case, the enabling access technology can either be wireless-LAN-
based or cellular-based: the users can exchange V2X messages using C-V2X sidelink
channel (both in transmission mode 3 or mode 4) or using 802.11p OBUs.

4.2.3 The Collision Avoidance Algorithm

The core of CAS is the Collision Avoidance Algorithm (CAA), which aim is to deter-
mine whether two entities are set on a collision course or not. Each time the service
receives a CAM from a user (being it a vehicle, or a vulnerable user), it generates the fu-
ture trajectory by relying on the position, heading, speed and acceleration information
included in the current CAM. Each generated trajectory is then analyzed and compared
with the others (based on the previously received CAMs), in order to determine if any
pair of vehicles or vehicle-vulnerable user is likely collide in the future. To this end,
two main parameters are computed:

1. Space-to-collision (52C), i.e., the minimum distance that will be reached between
the entities under test, assuming that they will follow the projected trajectory.

2. Time-to-Collision (T2C), i.e., the time that it takes to reach the above S2C between
the entities under test.

The system detects a possible collision between two vehicles when both S2C and T2C
parameters are below some thresholds. The value of such thresholds can be dynamically
calculated: the S2C threshold depends on the size of the involved entities, while the T2C
threshold depends on their speed, deceleration capabilities, mass and also on external
factors such as the road surface status. Once all pairs of entities have been analyzed,
the algorithm returns the list of pairs identified to be on a collision course.

If one or more of such pairs are identified, the underlying system generates the
needed DENMs, each including the type of hazard, the detection time, and the point
of collision. DENMs are then forwarded to the vehicles involved in the detected col-
lision or, in case of the aforementioned V2V silent strategy, directly forwarded to the
upper layers where the HMI will show the corresponding alert. The CAA algorithm
and the selection of T2C and S2C thresholds are detailed in Appendix B.

The structure of a DENM generated by CAS is reported in Table 4.1. Beside the basic
ITS PDU header, present in every V2X message standardized by ETSI, a DENM gener-
ated by CAS contains a Management and a Situation Container. The first is used by CAS

79

V2X-supported collision avoidance systems

Section Field Value - Info
Protocol version 0x01 - Version of the protocol
Message ID 0x01 - Message ID for DENM
ITS PDU header variable - ID of the server (in centralized
Station ID scenarios) or ID of the generating entity
(in distributed scenarios)
Action ID variable - ID of the collision event
Detection ti variable - Time at which the collision was
etection time first identified
. variable - Time at which the DENM
Reference time
Management was generated
. . variable - Position where the collision will
Container Event position
take place
Station type variable - Type of the generating entity
Situation . : informationQualityHighest - Accuracy of the
. Information quality . e
Container prediction (based on positioning errors)

collisionRisk or collisionWithCyclist
or CollisionWithPedestrian - Type of collision
variable - ID of the other entity (with respect
to the message’s recipient)

Cause Code Type

Sub Cause Code Type

Table 4.1: Structure of a DENM generated by CAS

to include the general information regarding the collision event: detection time, event
position, and type of the generating entity. The latter is used to specify that the DENM
corresponds to an event of type collision, and to specify which is the other entity in-
volved (with respect to the message’s recipient). In case the message is broadcasted, this
field contains the ID of the recipient, while an additional field (namely, the linkedCause
field) contains the ID of the other entity involved.

4.3 System validation through simulations

CAS has been developed on top of MS-VAN3T, the vehicular network simulation frame-
work based on ns-3 and SUMO introduced in Chapter 3. Therefore, the system was
tested and validated in a scenario where the information needed to run the algorithm is
delivered through standard-compliant V2X messages. Depending on the communica-
tion technology established, CAMs and DENMs are either forwarded to a central server,
or directly distributed among the road players. In the next sections, the CAS system is
evaluated by extracting some KPIs from the simulations campaigns. In particular, the
analysis focuses on:

1. The percentage of collision detected by the system.

80

4.3 — System validation through simulations

2. The T2C at the first DENM, namely the time that separates the first DENM recep-
tion and the actual collision.

3. The distance between the vehicle and the collision event when the first DENM is
received.

4. The delay from the moment at which a DENM is created to the moment at which
it is received.

As previously mentioned, CAS was originally designed to support purely vehicular
scenarios; with little changes, however, it is possible to extend its coverage to support
also vulnerable users such as pedestrian and cyclist. Therefore, the validation of CAS
has been made by first evaluating a scenario where only vehicles are present, then by
including vulnerable users in the loop.

All the simulation are performed by trying to stress the CAS system as much as
possible, and by trying to put it in the worst possible scenario. The speed of the vehicles
approaching the intersection is voluntarily kept very high (up to 130 km/h): although
this kind of behavior is unrealistic, especially in unregulated urban intersections, it
must be considered that if the CAS system is able to identify and prevent collisions in
such extreme conditions, even more so it will be able to protect the road users in normal
situations, where the speeds are lower.

4.3.1 Purely vehicular scenario

The map used to test the system represents a common urban scenario, with a central
road crossed by two secondary roads; Figure 4.4 shows the layout of the scenario, taken

Figure 4.4: Map used to test and validate CAS: an horizontal segment crossed by two
vertical roads. Externally, each dead end is connected through a ring, so that the vehi-
cles can drive endlessly.

81

V2X-supported collision avoidance systems

from the SUMO GUL. In total, the horizontal axis is 300 m long, while the vertical is 200
m long. Each vehicle is generated randomly in one of the segments, and is configured
to drive endlessly in the map. Whenever it reaches one of the external intersections,
each vehicle is configured to randomly pick one of the possible directions. Whenever
it reaches one of the internal intersections, instead, each vehicle is configured to go
straight.

In principle, SUMO is built to avoid collisions: this means that in a normal config-
uration the vehicles approaching at the central intersections will avoid each other, by
implementing the basic precedence rules. Thus, without any further modification it is
be impossible to validate CAS, since no actual collision ever occurs. For this reason, the
two central intersection are regulated by a modified traffic light system, configured to
show at the same time the green light to all incoming directions. With this simple, yet
effective trick, SUMO lets the vehicles approach the crossings at the maximum speed,
so that they will not have the time to avoid each other once inside the intersection.

Simulation results - centralized solution

The simulations analyzed in this section show the performance of the centralized ver-
sion of CAS. The system is evaluated by increasing the total number of vehicles present
in the scenario, from 10 to 30; additionally, the maximum speed of the vehicles is grad-
ually increased, from 25 km/h to 130 km/h. All the aforementioned configurations are
tested by changing the underlying access technology: in one case, a 802.11p-like com-
munication is established among the vehicles, thus all the vehicles are equipped with
802.11p OBUs and the CAS system runs in a server connected to the RSU. In the other
case a LTE network is established, where the vehicles are equipped with UEs and CAS
runs in a server connected to the EPC. In this case, the server hosting the centralized
CAS logic will be connected to the PGW and SGW block, which is in turn connected
to the eNB through the S1-U interface. Although the implementation does not exactly
match that of a Multi-Access Edge Computing (MEC) node placed at the edge of the
network, in this case the low traffic in the EPC, added with the low latency artificially
configured in the point-to-point interface between the server and the EPC, creates an
environment that closely mimics a network with a MEC node running the CAS system.

Each simulation lasts 3600 seconds of simulated time.

For all the results presented in this part, the system was configured to deliver DENMs
for collisions happening no more than 10 seconds in the future; therefore, the T2C
threshold is fixed to 10 seconds. By using this large gap it is possible, at reception
side, to filter out all the messages received for low collision risks. Moreover, since each
DENM contains the position of the collision event (that is computed by CAA), a vehicle
receiving a DENM may internally implement its own evasive strategy, that can be based
on its specific measurements (about speed, vehicle’s mass, road surface conditions, etc.)
and on the perceived neighbors status. For what concerns the S2C threshold (i.e., the
distance limit that two entities should reach under which a DENM is triggered), the

82

4.3 — System validation through simulations

calculation is dynamic with a direct dependence on the entities’ size (as detailed in
Appendix B). The value of y (the safety margin added to the S2C threshold to tackle
eventual positioning errors) is set to 1 meter.

Technology Parameter Value
Total number of collisions 6971
802.11p Collision detected 6971 (100%)
LTE Collision detected 6971 (100%)

Table 4.2: Collision detected by the system in the centralized solution

The first glimpse on the system effectiveness can be seen in Table 4.2, which shows
the total number of collisions happened during all the simulations: CAS was able to
detect in advance 100% of the dangerous situations, no matter the total number of ve-
hicles or their maximum speed. As a matter of fact, after the analysis on the system
performances, it was possible to notice that the increase of vehicles has no effect on
any of the studied parameters. For this reason, the results shown in the next plots are
all shown as a function of the maximum speed reachable by the vehicles.

The plot in Figure 4.5 shows the time gap between the reception of the first DENM
and the corresponding collision, as a function of the maximum speed set on the vehi-
cles. The access technologies tested (802.11p and LTE) seem to perform similarly, with
no significant differences in the measured values; these results suggest that both the

10

— —802.11p

\ LTE
9 \

T2C at reception of first DENM [s]

25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100 105 110 115 120 125
Max speed of vehicles [km/h]

Figure 4.5: Time that separates the first DENM reception and the corresponding col-
lision, as a function of the max speed of the vehicles. The results when deploying a
802-11p-like communication are in blue, while in orange the results with a LTE net-
work in place.

33

V2X-supported collision avoidance systems

technologies are able to guarantee the basic delay requirements to enable this kind of
service.

At the same time, it is possible to notice that with the increase of the vehicles” maxi-
mum speed, the measured T2C tends to decrease rapidly, until 50 km/h; then, the value
seems to stabilize around 6 seconds. The reason for that behavior are multiple: first
of all, by increasing the speed, the distance traveled between two CAMs increases ac-
cordingly. This phenomenon is actually mitigated by the dynamic CAM generation
implemented in the CA basic service but, however, at low speed still produces visible
effects. At higher speeds, instead, the road topology plays an important role: since the
vehicles are configured to drive following realistic behaviors and patterns, it is very
unlikely that they reach their maximum speed, especially considering that the longest
straight road in the urban scenario proposed is 300 meters. For this reason, the aver-
age speed kept by the vehicles stabilizes around a certain limit and, consequently, the
time that separates the first DENM reception and the corresponding collision stabilizes
accordingly.

Figure 4.6 shows the distance between the vehicles and the collision event at the
reception of the first DENM, as a function of the maximum reachable speed; also in this
case the results comprehend the case in which a 802.11p and LTE communication are
deployed. In the same plot, the red dashed line (referring to the red vertical axis on
the right) shows the speed of the vehicles at first DENM reception. As in the previous
case, the plot suggests no relevant difference when adopting one or the other access

140

—802.11p

~—_
120 LTE / ————

100 o~ /

80

60

40

20

Distance from collision at first DENM [m]

0
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130

Max speed of vehicles [km/h]

Figure 4.6: Distance that separates the vehicle and the collision position identified by
CAS at the reception of the first DENM, as a function of the max speed of the vehicles.
In the same plot, referred to the vertical axis on the right, the speed of the vehicles at
reception of the first DENM is plotted using the red dashed line.

84

4.3 — System validation through simulations

m802.11p MWLTE

0 1 2 3 4 5 6 7 8 9 10

DENM delivery latency [ms]

Figure 4.7: Delay computed from when a DENM is generated, to when it is received.

technology. The distance between the vehicle and the collision event is computed using
the Haversine formula [44]: one point is the vehicle latitude and longitude (generally
returned by the Vehicle Data Provider, which in this case is the TraCI interface), while
the other point is the Event Position field in the Management Container of the received
DENM. The studied parameter increases coherently with the speed measured at first
DENM reception; the increase is constant for low speed, and is flattened as the speed
of the vehicles reaches the limit imposed by the road topology.

The last results for this set of simulations are shown in Figure 4.7 and give some
additional indications on the access technology performances from the point of view of
the delay. The two bars represent the time gap between the moment in which a DENM
is generated to when it is received at the recipient’s application layer. As predictable,
given the results shown in Chapter 3, 802.11p outperforms LTE in terms of delivery
delay: it reaches an average delay below 1 ms, while with LTE (considering the 5 ms
of fixed delay between PGW and the server running CAS) the delay is around 9 ms.
Interestingly, this result does not seem to be reflected in any of the application-related
performances, with the CAS system that works properly even when a slower access
technology, such as LTE, is used to communicate.

Simulation results - distributed solution

The simulations analyzed in this section show the performances of the distributed ver-
sion of CAS. Also in this case, the system is evaluated by increasing the maximum
speed reachable by the vehicles, by increasing the total number of vehicles in the sce-
nario, and by changing the underlying access technology. The two options tested are:
(i) 802.11p in V2V configuration (therefore, the vehicles directly exchange CAMs and
leverage on the enclosed information to run the CAS logic) and (ii) C-V2X, with all
vehicles equipped with PC5-enabled devices, using transmission mode 4 to broadcast
CAMs and internally run the CAS logic.

When using 802.11p, the OBUs are configured to transmit at 6 Mb/s; in C-V2X the
devices are configured to reselect the resource with probability P, = 0.8 (to minimize
the delay, as shown in Section 3.4.3), with the resource reservation interval fixed to 20
ms.

85

V2X-supported collision avoidance systems

Tecnology Version Parameter Value
Total number of collisions 6971

Collision detected 6971 (100%)

Normal First DENM type [internal / external] 35% / 65%

802.11p

Silent Collision detected 6971 (100%)
Normal Collision detected 6971 (100%)

C-va2X First DENM type [internal / external] 39% / 61%
Silent Collision detected 6971 (100%)

Table 4.3: Collision detected by the system in the distributed solution. Additionally,
the table reports an analysis on the type of the first DENM received for each collision
adopting the normal strategy, showing the percentage of internal and external DENMs.

Additionally, the distributed version of CAS was tested in two different configura-
tions: the normal configuration, where as soon as a possible collision event is identi-
fied, a DENM is created and transmitted to the involved entities, and the so called silent
configuration, where every vehicle is in charge of identifying only the collision events
involving itself. In the second version, as soon as a collision is identified, the entity does
not generate a DENM to be transmitted in the channel, but it only issues an internal
alert. This information can be used by the vehicle to simply show a warning in the
in-vehicle HMI, or to possibly trigger some automatic collision avoidance system.

The internal CAS parameters are set as in the centralized version: T2C threshold
fixed to 10 seconds and the S2C dynamically calculated using the dimensions of the
vehicles included in each CAM.

Table 4.3 shows that also in the distributed version CAS has a 100% of precision in
detecting future collisions, no matter the underlying communication technology. The
mobility traces used are the same as in the centralized version, therefore the final num-
ber of collisions are exactly the same. The Table reports the percentage of collision
detected for 802.11p and C-V2X simulations, as well as an analysis on the first DENM
received for each collision event when adopting the normal version of the system (i.e.,
the one in which the vehicles generate and send DENMs when an external collision is
identified). The same value is not reported for the silent version, since in that case all
the collisions trigger only internal DENMs.

Interestingly, the results suggest that by adopting a strategy where every entity
checks for itself and for the others, it is possible to increase the system’s responsiveness.
Indeed, by adopting the normal strategy it has been computed that most of the times
the first DENM referring to a collision is not internal, but is generated by some external
entity which, based on the received information, identifies the dangerous situation and
triggers a DENM. This phenomenon is more evident with access technologies guaran-
teeing a low delivery delay (such as 802.11p), because a lower delay is always translated
in a fresher information, and in a more accurate trajectory predictions. Therefore, the
first conclusion is that by adopting the silent version, the system performances degrade
and this degradation is correlated to the delivery delay of the adopted access technology.

86

4.3 — System validation through simulations

10

——Normal - 802.11p
Silent - 802.11p

JCOR

S ———Normal - C-V2X
=

w Silent - C-V2X
0o g

-

2

&=

e

© 5

c

o

2

Q

) \7-<
O 6

O

—

-

©

O

~N 5

'_

25 30 35 40 45 50 55 60 65 70 75 8 8 90 95 100 105 110 115 120 125 130
Max speed of vehicles [km/h]

Figure 4.8: Time that separates the first DENM reception and the corresponding col-
lision, as a function of the max speed of the vehicles. The results when deploying a
802-11p-like communication are in blue, while in orange are the results with a C-V2X
communication in place. The dashed lines refer to the corresponding results with CAS
in silent mode.

160

——Normal - 802.11p

140 Silent - 802.11p
—— Normal - C-V2X
120 Silent - C-V2X <
»d
100 - Z

80

60

40

20

Distance from collision at first DENM [m]

25 30 35 40 45 50 55 60 65 70 75 8 8 90 95 100 105 110 115 120 125 130
Max speed of vehicles [km/h]

Figure 4.9: Distance that separates the vehicle and the collision position identified by
CAS at the reception of the first DENM, as a function of the max speed of the vehicles.
The dashed lines refer to the corresponding results with CAS in silent mode.

87

V2X-supported collision avoidance systems

[ms80211p mcvax |

——

0 2 4 6 8 10 12 14 16
DENM delivery delay [ms]

a) Delay computed from when a DENM is generated, to when it is received.
1 | ——802.11p —==C-V2X |

—~

0 14
Ex

DENM delivery
y

dela
N B OV 0

15 20 25 30
Number of vehicles

=
o

(b) DENM delivery delay when increasing the number of vehicles.

Figure 4.10: DENM deliver delay analysis for distributed version of CAS.

The above considerations are confirmed by looking at Figure 4.8. The plot, referred
to the time gap between the reception of the first DENM and the corresponding colli-
sion, shows that in general the normal strategy guarantees a T2C higher with respect
to the silent strategy. Also in this case it is possible to confirm that having an external
entity monitoring the vehicles’ status makes the system faster in reacting to dangerous
situation; having a higher T2C, indeed, allows the driver (or the autonomous system)
to increase the time available to implement an eventual evasive maneuver.

In Figure 4.9, the distance between the vehicles receiving a DENM and the corre-
sponding collision event is plotted. As in the centralized solution, these results suggest
that the studied distance increases with the maximum speed, following a trend that
seems to stabilize for speeds greater than 90 km/h. Also in this case the silent version is
less performative, and in general it provides a system that informs the involved entities
when they are closer to the collision, with respect to the normal version.

Finally, Figure 4.10a depicts the delivery delay when using 802.11p and when us-
ing C-V2X (only in normal mode, since in silent mode no DENM are generated and
transmitted). It is interesting to notice that, using the same setting as the centralized
simulations, now 802.11p experiences a greater delay (more than 5x): this is because
the traffic in the channel, especially at the moment in which DENMs are generated,
is increased massively when adopting the distributed version of CAS. In the central-
ized version, DENMs are generated only by one entity, namely the server running CAS.
In the distributed service, as soon as two vehicles are set on a collision course, every
surrounding entity running an instance of CAS generate and send the corresponding

38

4.3 — System validation through simulations

Figure 4.11: Typical situation in which the silent version of CAS does not identify a
collision: vehicles A and B are going to collide, but the building in the middle atten-

uate their radio connection. Vehicle C does not help, because DENM transmission is
disabled.

DENM. This phenomenon is less visible in C-V2X, due to the fact that the SPS mech-
anism can manage a high number of contending nodes and to keep a stable delay. It
is instead more visible with 802.11p, which adopts CSMA-CA as distributed channel
access scheme. In particular, Figure 4.10b shows this effect, as a function of the to-
tal number of vehicles present in the scenario. In 802.11p, the DENM delivery delay
is around 3 ms with 10 vehicles in the scenario, and increases up to 8.5 ms when 30
vehicles are present. In C-V2X instead, the increase in the number of vehicles is only
translated in an increase of 2 ms in the experienced delay (from 14 to 16 ms).

To conclude, even though the results presented in this section suggest that the nor-
mal version of CAS is preferable to its silent version, it is worth mentioning that the
latter brings several advantages from the point of view of the load in the channel, since
no DENM is actually transmitted.

At the same time, however, there still remain some scenarios in which the normal
version may have fundamental advantages. An example is shown in Figure 4.11, where
two vehicles (A and B) are approaching an intersection. A and B are in a non-line-of-
sight situation and the buildings in the middle attenuate their communication so that
the cannot “hear” each other. Additionally, there is a third vehicle (C), which is in line-
of-sight with both of them: this vehicle can receive CAMs from both A and B, and can

89

V2X-supported collision avoidance systems

Figure 4.12: Map used to test and validate CAS with vulnerable users: the two vertical
roads are crossed by a pedestrian and a bike lane, represented respectively in grey and
in orange.

warn them in case of collision. If the silent version of CAS is deployed, C does not send
them a DENM to signal the collision, with the result that the two vehicles will crash at
the intersection.

Other considerations can be made by comparing the system performances when
deploying the centralized or the distributed solution. From the point of view of the
time that separates the first DENM and the actual collision, it can be seen that the
distributed solution (due to the lower delay introduced by the direct communication
among the vehicles) increases the system performances when deployed in the normal
version; also the distance from the collision at the reception of the first DENM is slightly
higher when using the distributed solution. From a practical point of view, instead, the
centralized solution comes with several advantages. First of all, it is much easier to be
implemented since it requires only to instantiate a single central service that collects
all the CAMs coming from certain area (for example from a crossing); at the same time,
the distributed version requires all vehicles to embed an instance of CAS, which, due to
the heterogeneity of brands and types of vehicles, is not something easy to be achieved.
Moreover, the distributed solution, when DENM broadcasting is enabled, introduces a
significant overhead in the channel load, due to the flood of messages that follows every
possible collision detected.

4.3.2 Vehicles and vulnerable users

The map used to test and validate CAS in case of vulnerable users is shown in Figure
4.12. The road topology is the same as in the purely vehicular case, but in this extended

90

4.3 — System validation through simulations

configuration the two vertical roads are crossed by a pedestrian and a bike lane, repre-
sented in SUMO respectively with grey and orange lanes. Bikes and pedestrians follow
the same rules of vehicles, with the exception that they can only go back and forth in
their respective lanes; as the vehicles, they are randomly generated in one of the dedi-
cated segments and configured to endlessly traverse the map. In this way, the system
is stressed every time a vehicle and a vulnerable user cross their paths.

The two additional crossings are configured to force collisions as previously ex-
plained: also in this case, the traffic lights are configured to show green to all incoming
directions, so that the entities involved do not have the time to avoid the collision once
entered the crossing.

Simulation results

In this case, the system is analyzed by increasing the total number of vehicles and their
maximum speed (as in the purely vehicular scenario), and by deploying it in the cen-
tralized and distributed configuration, respectively using LTE and 802.11p as commu-
nication technologies. Note that, although the integration of 802.11p-based radios on
wearables or smartphones seems a bit unrealistic, for the sake of completeness this work
will compare all the technologies available for V2X communication, including 802.11p
for pedestrians and/or cyclists.

The total number of vulnerable user is fixed to 10 pedestrians and 10 cyclists. When
the distributed version is in place, the entities are configured to broadcast DENMs as
soon as they identify possible collisions (i.e., the silent version is disabled). The analysis
focuses only on the DENMs exchanged for collisions between vehicles and vulnerable
users (i.e., the analysis on the collisions between vehicles is not reported).

For all the results presented in this part, the system was configured to deliver DENMs
for collisions happening no more than 10 seconds in the future. Also in this case, having
alarge gap (in terms both of time and space) from the first DENM to the actual collision,
allows the receiving system to filter out all those DENMs received for low risk, and to
eventually perform an evasive maneuver. The S2C threshold is instead dynamic and
computed as detailed in Appendix B, with the safety margin y set to 1 m.

By looking at the results in Table 4.4, it is possible to evince that the number of
collisions involving bicycles is 10 times higher with respect to the number of collisions
involving pedestrians. This is mainly due to the different speed at which pedestrians

Version Technology Parameter Value
Total number of collisions (Pedestrians) 561
Total number of collisions (Bicycles) 5398
. Collision detected (Pedestrians) 561 (100%)
Centralized LTE Collision detected (Bicycles) 5398 (100%)
- Collision detected (Pedestrians) 561 (100%)
Distributed 802.11p Collision detected (Bicycles) 5398 (100%)

Table 4.4: Collision detected by the system with vulnerable users in the loop.

91

V2X-supported collision avoidance systems

and bicycles move around the map: the firsts are configured to reach a maximum speed
of 2 m/s, the latter of 7 m/s (corresponding to ~25 km/h). Therefore, also due to how the
crossings are configured, it will be easier for a pedestrian to stop and avoid a collision
with a vehicle. At the same time, the results in Table 4.4 confirm the effectiveness of
CAS: in both configurations (centralized and distributed), the system was able to detect
all the collision events.

In Figure 4.13, the results for the T2C at first DENM reception are shown. It is
evident that the lower the speed at which the entity is moving, the higher will be the
time that separates the first DENM and the actual collision. It is also possible to notice
that the lower number of samples collected for vehicle-to-pedestrian collisions makes
the results way less smooth with respect to the vehicle-to-bicycles or vehicle-to-vehicle
case, in which thousands of situations are analyzed.

By looking at the DENMs received by bicycles (the orange and red lines in Figure
4.13), the increase of the vehicles’ speed is translated to a decrease in the measured
T2C at first DENM. This is verified for speeds up to 70 km/h, then the value stabilizes
around 5 seconds. The plot confirms also that, on average, the distributed version of
the algorithm brings advantages in term of T2C at first DENM, as already analyzed in
previous simulations.

For what concerns the distance between the entities and the actual collision at the

10

—— Pedestrians (Centralized)
Pedestrians (Distributed)

Bicycles (Centralized)

Bicycles (Distributed)

7 //\ \/\/ NN~

T2C at reception of first DENM [s]

25 30 35 40 45 50 55 60 65 70 75 8 8 90 95 100 105 110 115 120 125 130

Max speed of vehicles [km/h]

Figure 4.13: Time that separates the first DENM reception and the corresponding colli-
sion, as a function of the max speed of the vehicles. The red and orange lines show the
analysis of the DENMs received by pedestrians, in blue the analysis of DENMs received
by pedestrians. The solid lines correspond to the cases in which the centralized version
of CAS is deployed, the dashed to the cases in which the distributed version of CAS is
deployed.

92

4.3 — System validation through simulations

ol
o

——Pedestrians (Centralized)
Pedestrians (Distributed)

—— Bicycles (Centralized)
Bicycles (Distributed)

~
o

D
o

[
o

w
o

N
o

\//‘“_‘__\‘/"_—‘/\/;.-_

Distance from collision at first DENM [m]

25 30 35 40 45 50 55 60 65 70 75 8 8 90 95 100 105 110 115 120 125 130

Max speed of vehicles [km/h]

Figure 4.14: Distance that separates the entity and the collision position identified by
CAS at the reception of the first DENM, as a function of the max speed of the vehicles.
The dashed lines refer to the corresponding results with CAS deployed in the distributed
version.

w
~

—e—Centralized (LTE)
@ 57 Distributed (802.11p)

w
N

[

del

DENM delivery
ay

N}

30 35 40 45 50

Number of entities

Figure 4.15: Delay computed from when a DENM is generated, to when it is received.

reception of the first DENM, shown in Figure 4.14, also in this case the different dynam-
ics of pedestrians and bicycles produce different results. The pedestrians, which move
slower with respect to bicycles, are warned on average 18 meters before the actual col-
lisions, no matter the maximum speed held by vehicles. The results involving bicycles,
instead, exhibit a certain correlation with the vehicles’ maximum speed: the distance,
initially around 70 meters, decreases and stabilizes around 45 meters.

Although it seems useless to warn a pedestrian with such a big advance, the appli-
cation that receives the DENM can be safely configured to trigger an alarm only when
the measured distance is below a certain threshold (and this is valid for all the users
subscribed to CAS).

The last analysis for CAS including vulnerable users, reported in Figure 4.15, shows
the delay experienced when transmitting/receiving DENMs. The results are grouped

93

V2X-supported collision avoidance systems

by CAS version: the blue line corresponds to the centralized version, where LTE is
the reference access technology; the orange line is instead referred to the distributed
version using 802.11p. The results are plotted as a function of the number of entities
running CAS: the vehicles increase from 10 to 30 while there are always 10 pedestrians
and 10 bicycles.

This plot highlights the advantages of the centralized solutions in terms of delay;
the high number of simultaneous transmission of DENMs when a collision is identified
creates effects on the experienced delay (in the distributed version of CAS) starting
from 40 entities. Then the delay increases almost linearly with the number of entities
up to 32 ms, value that is measured with 50 entities (30 vehicles, 10 pedestrians and 10
bicycles). The same effect does not hold in the centralized version of CAS: in this case,
indeed, the DENMs are only generated and sent by the server, thus the overhead of the
system, in terms of traffic offered on the channel, is extremely reduced.

The version of CAS presented in this thesis is thought to only leverage on the infor-
mation exchanged among the road players through V2X sensors. In a real-world sce-
nario, it is likely that any user subscribed to a system like CAS, will also have other ac-
tive safety services, based on other sensors such as cameras, radars, or LIDARs. There-
fore, the information generated with CAS will just represent a small contribution to the
bigger decision-making system of an hypothetical future autonomous vehicle.

4.4 CAS as an enabler for autonomous driving sys-
tems

In the previous sections it has been demonstrated how it is possible to use CAS to offer
protection to vehicles and to vulnerable users, such as pedestrians and cyclists. As it is
presented, the implementation of CAS builds a passive safety layer that, leveraging the
exchange of DENMs, is used to signal the collision risk at intersections. It is, however,
hard to figure out how this information can be actively used by all the road players
involved, to effectively avoid collisions. For example, a pedestrian receiving a DENM
may have an alert issued in its smartphone, or in its wearable device (e.g. a smart
watch), and may take a closer look to the road before crossing. The same consideration
holds for cyclists and scooter drivers, which may react by promptly braking to avoid
the collision. For vehicles, instead, an additional degree of protection (rather than the
human-based reaction to an alert issued in the HMI), can be played by autonomous
driving system. Those systems, categorized by SAE in 5 increasing levels of automation
[88], may directly take the full control of the vehicle in its acceleration, braking and
steering maneuvers.

Therefore, the next sections are devoted to the presentation of a system that lever-
ages the CAS information to actively avoid the collisions. The system rationale drafts
on the idea of the virtual safety-shield built around each vehicle, introduced by ETSI in
[34]. With this safety shield, whose size varies according to the kinetic properties of the

94

4.4 — CAS as an enabler for autonomous driving systems

vehicle around which it is built, it is possible to determine the gravity of the collision
event included in the DENM, and to take actions accordingly.

4.4.1 Virtual safety shield

The virtual safety shield is a circular area that each vehicle builds around itself. It helps
assessing the gravity of the events carried by DENMs, and eventually contributes to the
decision making process that the vehicle’s control unit undergoes to avert the collision.
The size of the virtual safety shield is a direct function of the instantaneous speed and
acceleration of the vehicle, and in real scenarios may also include information about
the vehicle’s mass, deceleration capabilities, road surface conditions etc.

Figure 4.16 depicts the virtual safety shield that the vehicle A creates around itself. In
that particular situation, A and B are supported by a centralized CAS, which detects the
dangerous situation and broadcasts a DENM containing the coordinates of the collision
event. At this point, the receiving entities are in charge of assessing the position of

adl £ | Collision

] event

,‘: identified by
/1 CAS

O

Figure 4.16: The circular area represents the virtual safety shield built by vehicle A; its
size depends on the vehicle A’s internal dynamics, but also on external factors. In this
particular case, A is in collision course with B, and the server running CAS generated
a DENM reporting the exact position of the future collision.

95

V2X-supported collision avoidance systems

the collision event: if inside the virtual safety shield, then the evasive maneuver takes
place.
The radius of the virtual safety shield is computed as follows:

1
p=Vor + anrz (4.1)

Where V|, and a,, are respectively the speed and the acceleration at the moment in
which the safety shield is generated, while 7is a value that determines the size in time of
the shield; the higher the value of 7, the bigger the size of the virtual safety shield radius
(and vice-versa). Selecting a small value for rtranslates into a system that reacts too late
to dangerous situations, making it impossible for the vehicle to implement any evasive
strategy. On the contrary, selecting a big value for 7 may end up in a system which
overreacts and that extremely reduces the average speed of the vehicles supported by
CAS, mining the satisfaction of the end user.

4.4.2 Reaction to DENMs generated by CAS

The implementation of this system starts from a simple concept: two vehicles that are
set on a collision course do not have necessarily to completely stop to avert the collision.
In principle, it is not even necessary that both of them take action, since by simply
changing the trajectory of one of the two, the collision is avoided equally (and in a
more efficient way). So, starting from this assumption, the vehicle’s system builds the
aforementioned virtual safety shield of radius p. As soon as a DENM corresponding to
a collision event is received, the “Event Position” field is extracted; this field contains
the position (in longitude and latitude) of the collision event, as computed by CAS. The
receiving entity then computes the distance § separating it from the actual collision,
using the Haversine formula. Then, it uses p and § to compute a coefficient A, that is
used to eventually scale down its speed. The calculation of A is reported in Equation
4.2.

§/p &
qo)8/p d<p

4.2
1 6d=2p 42

Basically, if the collision event is inside the safety shield, the value of A represents
(using a value between 0 and 1) the position of the collision event inside the safety
shield. The further it gets from the center of the safety shield, the more A becomes 1.
The closer it gets to the center, the closer the A value gets to zero. If instead the collision
event is outside the safety shield (i.e., when § > p), A assumes the value 1.

At this point, the receiving vehicle adjusts its own speed by multiplying it to the
coefficient A:

Vi =AxV, (4.3)

96

4.4 — CAS as an enabler for autonomous driving systems

Where V] is the new speed, while Vj, is the speed that the vehicle had when it received
the triggering DENM.

Additionally, to avoid any possible traffic congestion generated by values of A tend-
ing to 0, the minimum speed set by this last equation is capped to 10 km/h. This is
something that should also be considered in realistic scenarios: when the entities speed
is very low, it is more efficient to let the driver override any autonomous driving sys-
tems, or to delegate the decision process to different sensors like cameras, radars or
lidars, which have the advantage of having a clearer perception of the surrounding en-
vironment. Moreover, to avoid that two vehicles on a collision course follow the same
deceleration profile (situation that inevitably ends in a collision), each time A is added
of a random uniform variable extracted from —10% and +10% of its value.

4.4.3 Evasive maneuver pseudocode

The entire evasive maneuver is coded in Algorithm 1. The algorithm is divided in two
distinct procedures: the first, called “Speed Override”, is in charge of computing the
values of p, § and A and to adjust the speed of the vehicle accordingly. The latter, called
“Distance Check”, monitors the position of the vehicle with respect to the collision
event: as soon as it starts to move away, the speed is restored to its initial value.

The first procedure requires as input the position of the collision event P,jjson, the
current position, speed and acceleration of the vehicle (P, V;, ay) and the value of 7. In
Line 2, the algorithm computes the radius of the safety shield, as explained in Section
4.4.1. Then, the distance § between the vehicle and the collision event is extracted using
the Haversine formula; now p and § are used to derive the value of the coefficient A (Line
4).

A random salt is added to A to avoid that the involved vehicles follows exactly the
same deceleration profile; from Line 10 the new speed is computed, it is capped to 10
km/h and finally, in Line 14, the vehicle’s speed is adjusted accordingly. The last two
lines of this procedure are used to trigger the next routine, that is in charge of restoring
the vehicle’s speed to its original value, as soon as it exits from the dangerous area.

This procedure requires as input the position of the collision event P, ;o the cur-
rent position P, and the §,;; computed in the previous iteration. In Line 19, the new
value of § is computed: if it is observed to be greater than §,;;, then it means that the
vehicle is moving away from the collision event, therefore the algorithm restore its ini-
tial speed (Line 21). On the contrary, if § is lower than §,; it means that the vehicle is
approaching the collision event location, therefore a new iteration of the procedure is
rescheduled after 1 second.

The whole algorithm is computationally inexpensive and can be deployed even in
devices with very low performances, since no recursive structures nor particular mem-
ory requirements are needed. Some of the parameters, such as the value of 7, determine
the effectiveness of the system; other parameters, such as the frequency at which the
“Distance Check” is called, determine instead the rapidity of the system in recovering

97

V2X-supported collision avoidance systems

Algorithm 1 Evasive maneuver pseudocode

1: procedure SPEED OVERRIDE
Require: Pyjgion; Po, Vo, a9, T

2. p=Vyo+ %aorz
3: 6 = computeHaversine(P,,jsion» Po)
4 A=6/p
5: rand = uniform(—0.11,0.14)
6: A= A+rand
7: if 1 > 1 then
8: A=1
9: end if
10: View = VoA
11: if V,,,, < 10km/h then
12: Vyew = 10km/h
13: end if
14: setSpeed(V,,.,)
15: wait(1)

16: checkDistance(d,P,,jision)
17: end procedure

18: procedure DiSTANCE CHECK
Require: Peysion; Fo, Gt

19: 6 = computeHaversine(P,,jion» Po)
20: if 6 > 6, then

21: restorelnitialSpeed()

22: else

23: wait(1)

24: checkDistance(,P,jision)

25: end if

26: end procedure

the original speed after a collision event is reported by CAS.

When deployed, this system makes the vehicles automatically slow down, enabling
a safer approach to dangerous intersections; each time a collision is reported by CAS,
the speed of the involved vehicles is reduced. If multiple collision events are reported,
the vehicles involved slow down up to 10 km/h, so that they can safely cross the inter-
section.

In the next section, the proposed system is evaluated using MS-VAN3T. The evasive
strategy is implemented directly in the vehicles and supported by the centralized ver-
sion of CAS (with LTE as access technology). Nevertheless, the system can be deployed
in the distributed version, using any of the available access technologies, as long as
CAMs and DENMs are correctly delivered. The analysis will focus on the algorithm
effectiveness by measuring, for each simulation, the number of collisions happening

98

4.4 — CAS as an enabler for autonomous driving systems

with or without the proposed strategy in place.

4.4.4 Simulation results

The scenario where the proposed strategy is deployed and validated is the same used
in Section 4.3.1 to test the centralized version of CAS. The simulation involves 10 ve-
hicles randomly driving around the map, a low number that avoids traffic congestion
problems and keeps the average speed of vehicles the highest possible; each vehicle is
connected to the LTE core network, where a server runs all the CAS logic and transmit
DENMs when needed. CAS is configured, in this case, to generate DENMs for collision
happening no more than 15 seconds in the future. Each simulation lasts 3600 seconds
of simulated time, and the number of collisions happening in each simulation is stud-
ied by increasing the maximum speed of vehicles, and by increasing the value of 7, the
parameter determining the size of the virtual safety shield.

The speed of vehicles is tested from 40 to 130 km/h while the value of 7 from 3 to
15 seconds. The histograms shown in Figure 4.17, report the total number of collisions
registered as a function of the maximum speed of vehicles. Each bar corresponds to a
different value of 7, with the first one (the light blue striped bar) corresponding to the
case in which the system is disabled. Note that the Figure includes only the values of 7
for which at least a collision has occurred. Therefore, the first important result derived
from Figure 4.17 is the total absence of collisions for value of 7 higher than 8 seconds.

By analyzing the lower values of 7, instead, it can be noted that there are certain
combinations of maximum speed and 7 that make the system even worse than if no
action is taken at all. For example, the simulation with vehicles running at 120 km/h
reported 19 collisions with the algorithm disabled, and 22 when 7 is set to 3 seconds.
This strange behavior happens because the system overrides the vehicles’ speed control
too late, causing them to just slow down a little bit and to occupy the intersection region
more than the case in which the algorithm is disabled.

Beside this single case, in which the system introduces a worsening of the studied
KPL it can be noted that even for small value of 7, the evasive strategy causes, on average,
the number of collision to be lower. Moreover, it is worth mentioning that the speed
at which the collision happens is reduced, since in some measure the algorithm takes
the control of vehicles, and reduces the speed at which they approach the intersection
(even if too late).

The full analysis on collisions is shown in Figure 4.18. The Figure depicts a heat-
map where each point corresponds to the number of collisions as a function of the
maximum speed set on vehicles and of the value of 7. Of course, the lower the value of
7, the higher the possibility that the vehicles do not have the time to avert the collision.
At the same time, the higher the maximum speed of vehicles, the higher the possibility
that the evasive maneuver is unsuccessful (especially for low values of 7). The heat-map
highlights that the minimum value of 7 ensuring the full protection for the scenario
studied is between 8 and 9 seconds. As a matter of facts, every simulation that has been

99

V2X-supported collision avoidance systems

run with 7 greater than 8 seconds experienced 0 collisions, even at high speeds.

To conclude, in this last section it has been shown how the information generated
by CAS can be used to effectively actuate collision avoidance strategies directly on the
vehicles’ control unit. The solution here developed uses the information on speed and
acceleration to build the virtual safety shield around the vehicle: the reason for lever-
aging only on those parameters is driven by the fact that speed and acceleration are the
only useful values that SUMO returns. In a real scenario, the size of the virtual safety
shield may take into account the information coming from other sensors present on
board (e.g., those indicating the presence of ice on the road surface), as well as other in-
formation like the driver psycho-physical status, the current mass of the vehicle or other
information coming from the road side infrastructure. Nevertheless, the proposed sys-
tem (if correctly configured) is able to tackle all the collisions at the intersections and to
build a safer environment by only using the information contained in CAM and DENM
messages generated by the vehicles and the road side units.

25 B Algorithm disabled @t1=3 Ot1=4 Ot=5 Ot=6 MWt=7 WT1=8

20

15

10

Total number of collisions

|, il il i

40 50 60 70 80 90 100 110 120 130

Max speed of vehicles [km/h]

Figure 4.17: Number of collisions happening as a function of the maximum speed of
vehicles. Each bar corresponds to a different value of 7. The striped light blue bar
corresponds to the case in which no action is taken by vehicles to avert the collisions.
The plot reports only values of 7 for which at least a collision has occurred.

100

4.4 — CAS as an enabler for autonomous driving systems

130

120

110

100

90

80

70

60

SUOISI||02 4O Jaqinu |e10 |

50

Max speed of vehicles [km/h]

Value of T [s]

Figure 4.18: Heat-map representing the total number of collisions as a function of the
maximum speed of vehicles and of the selected value of 7. The vertical dashed line
represents the minimum value of 7 guaranteeing 0 collisions.

101

102

Chapter 5

Open source solutions for
V2X-enabled embedded devices

Beside the implementation of MS-VAN3T and of the safety application for intersection
collision avoidance, this thesis presents the efforts that have been made to realize open
source tools for the development and the performance assessment of fully working V2X
devices.

This chapter presents the implementation of an open source testing platform for
802.11p wireless cards; the platform is used to assess the performance of Unex DHXA-
222, a model of wireless network interface controller (WNIC) enabling 802.11p-like
connection. Nevertheless, the proposed solution (which is based on the open source
distribution OpenWrt [78]) can be used to test any card supporting the ath9k Linux
driver. The choice of releasing the platform as open source allows other researchers
to validate this work, possibly on different hardware, making it easier to pinpoint any
discrepancies between expected and actual results. For this purpose, the source code of
every element developed in this work is available through GitHub [77, 84, 58].

The proposed system is initially tested using common tools, like iPerf; succes-
sively, the need for precise measurements of the end-to-end latency experienced by
V2X applications running on top of the platform, drives the design of a novel proto-
col, named LaMP (Latency Measurement Protocol). The LaMP protocol is then used as
a baseline for the development of an open source application, LaTe (Latency Tester),
that can perform micro-seconds precise application layer latency measurements using
LaMP.

103

Open source solutions for V2X-enabled embedded devices

5.1 Embedded devices for IEEE 802.11p communica-
tion: state of the art

As already introduced and discussed in Chapter 2, the current 802.11p wireless access
technology for V2X communication is based on IEEE 802.11-2016 [51] and it is designed
to operate in the 5.9 GHz band. IEEE is currently working on the introduction of a
new amendment, termed IEEE 802.11bd [45], to cater for emerging use cases for V2X
communication technology and strengthen its foothold on 802.11-based technology for
V2X applications.

However, before any 802.11bd card hits the market, legacy 802.11p is likely to be
the hardware of choice for car manufacturers seeking to equip their latest models with
wireless-LAN communication capabilities.

This explains the need for a clear characterization of IEEE 802.11p cards, starting
from a controlled lab environment. The challenge of equipping vehicles with standard-
compliant OBUs, able to communicate in the 5.8-5.9 GHz frequency band, was un-
dertaken by major car manufacturers all over the world. The Volkswagen Group an-
nounced the adoption, from 2019 onward, of 802.11p-compliant equipment in their ve-
hicles with the aim of reducing road accidents and enable services such as platooning,
that helps also in the reduction of fuel consumption and carbon dioxide emissions [98].
Toyota- and Lexus-branded vehicles in the USA will see the introduction of DSRC sys-
tems in 2021 [92]. It is likely that the majority of car manufacturers will start adopting
these solutions in the next few years.

During the last years, some commercial ready-to-use solutions have been made
available on the market; those systems can support the 802.11p-based vehicular com-
munication. In the awareness of not providing a complete and exhaustive list, some
available solutions are enumerated here, updating the list in [11].

« The LocoMate series, produced by ARADA Systems, which provides hardware
solutions for both RSUs and OBUs. Every board is integrated with Bluetooth, GPS
with one-meter accuracy, high-power radios, and a full WAVE stack.

« MKS5, developed by Cohda Wireless, implementing both the WAVE and ITS-G5
stack. According to Cohda their hardware is rugged, small and relatively low cost,
with dual 802.11p radio [68]. These systems are based on the automotive-based
chip RoadLINK produced by NXP and on a firmware written by Cohda.

« KVE-3320 V2X ECU, produced by Kapsch TrafficCom, a DSRC 5.9 GHz device sup-
porting all the V2X standards. This product is advertised as “a rapid development
framework for V2X applications with a small footprint and high reliability” [55].
A variety of V2X applications are, at the time of writing, being developed by Kap-
sch and an SDK is part of the software suite, for developers willing to build V2X
applications on top of KVE.

104

5.1 — Embedded devices for IEEE 802.11p communication: state of the art

The cost of the listed devices is usually high and the customization possibility is, con-
versely, often null. For these reasons, open solutions are often preferred in the academic
world since they have the advantage of being more accessible and customizable for re-
search and testing purposes. Two of the main companies developing hardware that can
be used to build custom V2X embedded solutions are:

« Unex [93], producing some of the wireless cards most commonly found in the ve-
hicular communications field, including the DHXA-222 MIMO 2x2. Those cards
can be used to transmit over the 5.8/5.9 GHz frequency band and fully support the
ath9 Linux driver. Other solutions proposed by Unex are the brand-new OBU-
301E/U and OBU-351x, enabling respectively wireless or cellular-based V2X com-
munications on top of ITS-G5 or WAVE stack.

« PC Engines, producing embedded boards targeted at networking applications and
supporting any compatible WNIC; PC Engines devices provide a quite customiz-
able architecture: they always include at least one miniPCI slot to accommodate a
proper WNIC, such as the aforementioned Unex cards.

There is a large number of published studies proposing combinations of off-the-shelf
hardware and open-source software to build working 802.11p solutions. Qin et al. [80],
developed a testbed using PC Engines’ ALIX3D3 system boards together with Unex’s
DCMA-86P2 and a Voyage Linux distribution. Their work focuses on the measurement
of packet loss rate and latency under different speed and distances; their work highlights
that, using standard-compliant systems, the devices can communicate within a distance
of 300 m and at a speed of 18km/h.

Kamal et al. [54] designed and validated, through a DSRC spectrum analysis, a
testbed using PC Engine’s ALIX1D and Unex’s DCMA-86P2. The same configuration,
using PC Engines and Unex hardware combined with OpenWrt, was used by Agafonovs
et al. [11] to investigate achievable bandwidth and RSSI (Received Signal Strength In-
dicator). Their results differ from those of [80], and claim that the proposed solution
provides reliable data transmission (more than -85dBm) up to 1.2km and partial com-
munication up to 2.4km.

Another important portion of the literature proposes and evaluates V2X-dedicated
software frameworks, such as the OpenWrt 10.03 Backfire modified in the GCDC chal-
lenge, the CVIS OS, the C2X platform, and other several patches enabling services in
the automotive domain [59, 43, 41, 16, 97].

The platform proposed in this thesis implements a fully-working 802.11p solution
using PC Engines APU1D and Unex DHXA-222 with patched ath% drivers and the
Linux kernel 4.14.63. The system is analyzed by firstly measuring the packet loss and
the reachable throughput under different conditions, as well as by assessing the func-
tionalities of the 4 MAC layer traffic classes introduced with EDCA. Then, thanks to
the design of the custom protocol LaMP and to the implementation of the measure-
ment software LaTe, the end-to-end latency experienced by the platform is analyzed.

105

Open source solutions for V2X-enabled embedded devices

Figure 5.1: PC Engines’ APU1D boards without enclosure; the picture highlights: (1)
the Transcend 16 GB SSD, mounted on the mSATA slot, and (2) the Unex DHXA-222
WNIC, mounted on one of the two mini PCle slots, with two U.FL to RP-SMA pigtail
connectors.

5.2 Testbed description

The implementation and integration work was performed on PC Engines APU1D boards,
aflexible, customizable Linux-based platform for networking systems. These boards are
still in production (at the time of writing) and provide an up-to-date solution matching
all the requirements to support complex VANETs applications.

The processor is a dual-core AMD G-Series T40E x86, while the memory installed is
a 2 GB DDR3-1066 DRAM,; the system additionally allows the installation of a mSATA
SSD as secondary storage. As SSD device, a 16 GB SATA III Transcend MSA370 is
mounted.

The wireless card installed is a Unex DHXA-222, whose main characteristics are
summarized below:

« Half-size mini PCI express chips

+ Dual band

« MIMO 2x2 operations

« Support for ITS frequencies

« Support for Bluetooth 4.0

« Declared maximum output power: 17 dBm

DHXA-222 is based on the Atheros AR9462 chipset, and fully supports the ath9k Linux
driver. This chipset represents one of the main characteristics that drives the selection

106

5.2 — Testbed description

of this kind of cards, since other chipsets supported by ath9k have been successfully
tested and used in many research works, including the development of the OpenC2X
embedded platform [59].

The operating system on top of which the platform is built is the OpenWrt release
18.06.1, with Linux kernel 4.14.63. Both Linux kernel and OpenWrt are being constantly
updated with bug fixes and new features; as a matter of fact, working with recent soft-
ware can be quite important when testing and deploying vehicular network applica-
tions, as newer software can include and improve some of the features which already
made their way inside the kernel (e.g., the OCB mode, which is included in the kernel
bundled with OpenWrt 18.06.1). Indeed, the capability of updating the various firmware
can play a relevant role in future VANETS, since the system deployed inside the vehicles
will likely receive constant updates to fix inefficiencies and bugs.

The choice of OpenWrt was also driven by a slew of benefits it can provide to a
vehicular networking system like the one under study:

« It is well suited to networking in embedded devices; it is used massively, for in-
stance, as a replacement firmware for routers.

« It supports several devices, not only the ones based on x86 as the PC Engines
boards.

« It is highly customizable, allowing the user to choose all the needed packages and
configurations for the specific application it is meant to, instead of providing just
a static firmware.

« It is well supported by a strong community, including an official forum and a quite
complete online documentation.

« Last but not least, several other research works, such as [9], select OpenWrt as
preferred choice among embedded Linux distributions.

The next sections describe the platform setup more in details, introducing MAC and
physical layers.

5.2.1 MAC layer

For what concerns the MAC layer, the work focuses on the EDCA functionality and
its performance assessment, since it is one of the main features supported by 802.11p
[51]. The proposed platform includes a patch of the mac80211 Linux wireless subsys-
tem; the patch allows the development of soft-MAC driver, allowing the MLME to be
implemented in software. The patch was again provided by the OpenC2X project and
ported to OpenWrt 18.06.1: using this solution it is possible to directly select the EDCA
traffic class by calling the function setsockopt () with particular flags.

A tool for measuring the traffic transmitted over different Access Categories (ACs)
was however missing: for this reason, it was required to slightly modify iPerf 2.0.12

107

Open source solutions for V2X-enabled embedded devices

(which, in general, is the tool of choice as far as throughput measurements are con-
cerned). With this patch, iPerf is added of an additional command-line option to
generate traffic in any of the 4 traffic classes (BK, BE, VI or VO).

5.2.2 Physical layer

The physical layer is managed in hardware by the Unex WNICs, as opposed to SDR
solutions in which physical layer algorithms are directly implemented in software.

To enable the usage of the DSRC channels in the 5.9 GHz frequency band, the ath9%
driver requires a patch for the support of both OCB operational mode and the selection
of 10 MHz-wide channels. For this purpose, the platform includes the kernel patches
provided with the OpenC2X platform, developed by the CCS Labs group at the Univer-
sity of Paderborn [59].

These patches were developed for the Linux kernel version 3.18, in devices running
LEDE 17.01 (an older branch of OpenWrt). With very few modifications, they were
ported to OpenWrt 18.06.1, effectively enabling the use of ITS channels (from 172 to
184), together with an an-hoc patch for the Italian (IT) and German (DE) regulatory
database flags. With the built-in capability of the iw Linux wireless configuration tool
to select OCB mode and 10 MHz-wide channels, it was possible to use any of the 802.11p
channels as required by the standard. Through the usage of configuration scripts it was
eventually possible to transmit on 802.11p channels, and to tweak both the transmission
power and the physical bit rate. Unfortunately, among the bit rate foreseen by the
802.11p standard, the Unex DHXA cards (when configured with 10 MHz-wide channels)
are enabled to only transmit at 3, 6 and 12 Mbit/s.

Figure 5.2: Planar view of Kismet Spectrum-Tools showing the captured spectrum dur-
ing a measurement session with the iPerf tool, with a board transmitting in channel
178.

108

5.3 — Performance evaluation

5.3 Performance evaluation

Before starting the tests, the system was validated by analyzing the frequency spectrum
used by the boards running the proposed platform. The analysis was made using an
external spectrum analyzers (MetaGeek Wi-Spy analyzer), coupled with the open source
software Kismet Spectrum-Tools.

As Figure 5.2 depicts, it was possible to verify the correct 10 MHz-wide channel
usage, together with the absence of interference in the lab where the tests took place;
the maximum collected signal level outside the band of interest is of -92 dBm, a value
that can be interpreted as pure noise.

The tests presented in the next sections are collected using two APU1D boards, each
one equipped with a DHXA-222 WNIC and configured as previously detailed.

5.3.1 Throughput and packet loss measurements

As a first step in the performance assessment, the platform underwent a series of mea-
surements involving the iPerf network measurement tool. The usage of a widely
known tool like iPerf, makes the collected results easier to be compared with others,
since iPerf is available in (almost) all Linux and non-Linux distributions and operating
systems. All the tests are performed using UDP as transport protocol.

The analysis focuses on throughput and packet loss when selecting different physical
data rates (among 3, 6 or 12 Mbit/s) and by varying the payload size of the offered traffic
from 16 B to 1470 B. The goal is to measure the KPIs under almost “ideal” conditions,
with the two boards placed next to each other. Each test, yielding a single data point,
lasted for 60 seconds.

©o

©

z --16B 46 B = - 9

=8 104 B 208 B = =
—e e Q2 o

S 500 B 700 B = 2,
= —1000B —1200B = =
> 6 b =1 +—

2° |—14708 36 56
< ¢ < g-

& S P S

Q4 04 4 34
fusl [o
f < <

- 3 3 w3
1) r 2 o

52 # = 2
%) > =]
© ‘ “ 0

o1 / 8 1 © 1
E ()

0 2 0 E 0

0 2 4 6 8 10 12 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 22
iPerf bandwidth (-b) [Mbit/s] iPerf bandwidth (-b) [Mbit/s] iPerf bandwidth (-b) [Mbit/s]
(a) Bit rate = 3 Mbit/s. (b) Bit rate = 6 Mbit/s. (c) Bit rate = 12 Mbit/s.

Figure 5.3: Throughput measurements with different payload size as a function of the
traffic offered by iPerf. Each plot is referred to a different 802.11p bit rate; txpower =
3 dBm, antennas gain = 5 dBi, and distance of ~16 cm between the enclosures.

109

Open source solutions for V2X-enabled embedded devices

—3 Mbit/s
45 6 Mbit/s
12 Mbit/s

Measured throughput [Mbit/s]

0 5 10 15 20

iPerf bandwidth (-b) [Mbit/s]

Figure 5.4: Throughput measurements with different 802.11p bit rate as a function of
the traffic offered by iPerf; txpower = 3 dBm, antennas gain = 5 dBi, and distance of
~16 cm between the enclosures.

The plots obtained by testing the boards at 3, 6 and 12 Mbit/s are depicted in Figure
5.3 and Figure 5.4, where the measured throughput is reported as a function of the traffic
offered by iPerf. As expected, the reachable throughput depends on the payload size:
the higher the payload, the higher the measured throughput; therefore, the maximum
efficiency is reached with packets of size 1470 B. The maximum observed throughput,
with a bit rate of 3 Mbit/s, is 2.63 Mbit/s (Figure 5.3a); a bit rate of 6 Mbit/s ensures a
maximum throughput of 4.86 Mbit/s (Figure 5.3b); 8.42 Mbit/s is instead the maximum
throughput when the bit rate is 12 Mbit/s (Figure 5.3c).

Therefore, the plot in Figure 5.4 averages the measured throughput over all payload
sizes. The result highlights that by selecting a bit rate of 3 Mbit/s, and by sending
packets of various size, the average throughput will not exceed 1.7 Mbit/s; for a bit rate
of 6 Mbit/s the average is 2.9 Mbit/s, and finally for 12 Mbit/s the average throughput
is 4.6 Mbit/s.

Figure 5.5 suggests that, as we offer too much traffic with respect to what the network
can deliver (for instance when trying to offer 10 Mbit/s with a physical data rate of 3
Mbit/s, generating a congested situation), the packet loss tends to increase, up to a
certain point, where the value stabilizes. The reasons for such a packet loss are to be
sought in the interaction between the iPerf application and the lower layers, mediated
by buffers at the socket level. The buffers, as the offered amount of traffic increases, get
full and start to drop packets. The same type of behavior occurs with any application
that writes on UDP socket buffer.

Another important hint on the system performances when transmitting at different
data rate, is that from the point of view of the packet loss, the transmission at 6 Mbit/s

110

5.3 — Performance evaluation

N
o

—3 Mbit/s
6 Mbit/s
12 Mbit/s

w
[l

w
o

N
«

Packet loss [%]

=
o

w

0 5 10 15 20 25

iPerf bandwidth (-b) [Mbit/s]

Figure 5.5: Packet loss measurements with different 802.11p bit rate as a function of the
traffic offered by iPerf; txpower = 3 dBm, antennas gain = 5 dBi, and distance of ~16
cm between the enclosures.

seems to perform better than the one at 3 Mbit/s.

The packet loss trend is less linear than the throughput one, due to the combined
effect of the UDP buffers and due to the WNIC transmitting packets over the wireless
medium. In any case, as expected, the increase in the amount of offered traffic always
corresponds to an increase in packet loss values.

5.3.2 Traffic classes and access categories

An important part of the platform validation and evaluation phase is related to mea-
surements of the transmissions at different EDCA Access Categories (ACs), obtained by
using the patched version of iPerf introduced in Section 5.2.

The tests are performed by launching an iPerf client and an iPerf server on each
of the two boards, with the client instance on one board transmitting to the server in-
stance on the other board, and vice versa. The clients are configured to transmit over
different ACs, with one of the two boards transmitting all the “useful” data, while the
other only generating interfering traffic on different ACs. The focus, in this case, is on
the reachable throughput measured by iPerf, and on the estimated connection stabil-
ity, computed as the maximum percentage variation in the throughput values reported
by iPerf every 2 seconds. Each test, representing a single data point, is set to last 60
seconds.

The plots showing the results with the boards transmitting at 3, 6 and 12 Mbit/s
are reported in Figures 5.6 and 5.7. Figure 5.6 reports the reachable throughput as a
function of the interfering traffic AC. Every line corresponds to a flow with different

111

Open source solutions for V2X-enabled embedded devices

12 12 12
—--AC_BK

10 AC_BE
AC_VI
AC_VO
Fair usage

10 10

Measured throughput [Mbit/s]

Measured throughput [Mbit/s]
Measured throughput [Mbit/s]

2 \.
0 0

AC_BK AC_BE ACVI AC_VO AC_BK AC_BE AC_VI AC_VO AC_BK AC_BE AC_VI AC_VO

Other traffic AC Other traffic AC Other traffic AC
(a) Bit rate = 3 Mbit/s. (b) Bit rate = 6 Mbit/s. (c) Bit rate = 12 Mbit/s.

Figure 5.6: Throughput measurements when using different ACs, with background in-
terfering traffic transmitting on different ACs (horizontal axis).

priority, and the value in the horizontal axis are sorted by increasing priority.

Figure 5.7 shows instead the maximum percentage throughput variation as a func-
tion of the interfering traffic AC. A low percentage value means that the connection is
quite stable, while a high value indicates some instability. The value of this variation is
computed as:

throughput,,,, — throughput,,;,

throughput,, * 100 G-
Where throughput,,,, and throughput,,, are respectively the maximum and min-
imum values of throughput reported by iPerf in each measurement session. By ob-
serving the plots, it seems that everything works as expected: the system exhibits a
behavior which is coherent with theory, with better results when transmitting packets
over a higher priority queue. When a board transmits using a high priority AC, such
as AC_VI or AC_VQ, it can always reach a higher throughput value even in presence of
another traffic stream at a lower priority AC, such as AC_BK or AC_BE, as expected.
The connection stability is also improved when transmitting higher priority traffic, no
matter the traffic class used by the other board, generating the interfering traffic.

It is worth observing that, when two contending flows use the same traffic class,
the channel usage is fair. This can be seen in Figure 5.6a depicted as the grey dashed
horizontal line (“fair usage”, in the plot) around 1.2 Mbit/s. The same consideration
holds for the other physical data rates: a similar “fair channel line” is drawn at 2.3
Mbit/s for the bit rate equal to 6 Mbit/s and at 4.1 Mbit/s for the bit rate equal to 12
Mbit/s.

In Figure 5.8, the throughput when testing a single flow is plotted as a function of
the selected AC. Each line corresponds to a different data rate, ranging again from 3
to 12 Mbit/s. The throughput measurements were performed trying to offer a higher

112

5.3 — Performance evaluation

100 100 100
90 90
80 80

70 70

60 60

50 50
40 40
30 30

20 20

Max variation in throughput [%]
Max variation in throughput [%]
Max variation in throughput [%]

10 = 10 10 =
0 0 0
AC_BK AC_BE AC_VI AC_VO AC_BK AC_BE AC_VI AC_VO AC_BK AC_BE AC_VI AC_VO
Other traffic AC Other traffic AC Other traffic AC
(a) Bit rate = 3 Mbit/s. (b) Bit rate = 6 Mbit/s. (c) Bit rate = 12 Mbit/s.

Figure 5.7: Maximum % variation in the throughput, with background interfering traffic
transmitting on different ACs (horizontal axis).

amount of traffic with respect to the available physical data rates, to test the maximum
reachable throughput. The measured values increase as the priority is increased, thanks
to shorter AIFS (which are all different when working in OCB mode, as shown in Section
2.2.3) and smaller contention window sizes.

The presented results suggest that the WNICs used in the platform can maintain a
stable connection; moreover the coherence of the results validated the proposed open
source platform and the patched iPerf version as far as EDCA traffic classes are con-
cerned.

5.3.3 Received power and connectivity measurements

Part of the performance evaluation work is related to indoor throughput, packet loss and
connection stability measurements, with a single data stream over a chosen AC (AC_BE,
in this case). The results are obtained by deploying a couple of iPerf client/server
instances on the boards, putting them at increasing distances and finally correlating
the achievable throughput with the average received signal level.

Since the measurements were performed indoors with the boards not transmitting
at the maximum power, instead of plotting the results as a function of the distance,
they are plotted as a function of the measured received power. In this case, in fact,
the measured received power represents a more meaningful quantity: the communica-
tion, when performed indoors, is affected by the various obstacles standing in the way:.
Different values of received power are thus likely to be observed at the same distance,
when the boards are moved to different places.

The results are shown in Figure 5.9, which shows the throughput as a function of
the received power values. Each line corresponds to a different packet size.

Taking into account that these tests are all static, it is possible to show that the

113

Open source solutions for V2X-enabled embedded devices

10

i
) 9
o] g —o-3 Mbit/s
E. —8-6 Mbit/s
= 7 12 Mbi
=5 bit/s
o
- 6
[eT0]
> 5 ._/I/.—/'
(@]
P .
< 4
)
©
(O] 3 ° ° L 2 4
L .
S5 2
%)
©
Q 1

0

AC_BK AC_BE AC_VI AC_VO

Access Category

Figure 5.8: Throughput of a single stream (i.e., no interfering traffic is present) as a
function of the selected access category. Each line corresponds to a different data rate;
payload length: 1470 B, offered traffic: 10 Mbit/s

5

4.5

3.5

Measured throughput [Mbit/s]

o

-83 -835 -84 -845 -8 -855 -8 -86.5 -87 -875 -88 -885 -89 -89.5 -90 -90.5 -91

Received power [dBm)]

Figure 5.9: Throughput measurements for different values of received power; physical
data rate: 6 Mbit/s, payload length: 1470 B, txpower: 10 dBm, antennas gain = 5 dBi,
offered traffic: 10 Mbit/s

connection stability and the reachable throughput remain quite high until the received
power is above -87 dBm; below this value, an abrupt drop of the throughput is observed
until the connection can no longer be established. When the signal is weaker, small
distance variations were sufficient to cause instabilities in the throughput and in the

114

5.4 — LaMP: a novel protocol for precise latency measurements

received power.

5.4 LaMP: a novel protocol for precise latency mea-
surements

Another analysis required to complete the performance assessment of the aforemen-
tioned WNICs is the one on end-to-end latency. Many of the day-1 applications enabled
by VANETs are going to heavily increase the demand for ultra-Reliable Low-Latency
Communication (uURLLC), one of the tenets of 5G networks. For this reason, network
latency measurements tools will play a crucial role in the provisioning of reliable and
efficient networked services.

The target of the work presented in the next sections is to provide a tool that helps to
precisely characterize the latency experienced by applications deployed on top of V2X
platforms. More in general, the proposed solution can be used to assess the latency
performance on any networked system.

An important concept, which will be recurrent all over the next sections, is that
of application-layer latency: the term refers to the real latency that applications experi-
ence when sending data to and receiving data from a communication system. The main
contributions on this KPI are introduced by the channel access scheme of the adopted
technology: as shown in Chapter 3, the various access technologies adopt different
strategies, offering different performance to the overlying application. However, there
are also other layers of the communication stack introducing non-negligible contribu-
tions.

A latency measurement must take into account three components: processing, trans-
mission, and propagation delay. The first value depends on the computing capability
of the devices under test (DUTs), the second on the physical media and on the network
capabilities, while the third on the distance between the involved DUTs. High latency
in a network generates bottlenecks that prevent the data from fully exploiting the net-
work pipe and, in certain cases (such as in TCP-based connections), it decreases the
communication bandwidth.

5.4.1 Existing solutions for precise latency measurement

In the literature, it is possible to find several examples of tools and protocols that have
been designed to measure the latency between endpoints; the most notable one is the
ICMP protocol, in particular for what the “Echo Reply” and “Echo Request” packets are
concerned. Every IP compliant system should be able to reply to ICMP requests coming
from another node in the network. This mechanism is exploited by tools like ping and,
using timestamps which are embedded in the packets or stored inside the application,
latency measurements are made possible.

115

Open source solutions for V2X-enabled embedded devices

Another example is Metherxis [62], a system leveraging Virtualized Network Mea-
surements Functions (VNMFs) to measure network device latency with micro-second
grade accuracy. The idea at the base is to use Linux Containers to create a range of VN-
MFs under a single Linux host; some of them are used to instantiate packet generators,
others packet analyzers.

Other specifically targeted protocols, such as the recently proposed Two-Way Active
Measurement Protocol (TWAMP) [8], works over a client/server architecture allowing
one or two way delay measurements. Finally, a dedicated IP Timestamp Option, that can
be used to determine the latency between single links is also available, as highlighted
by Sherry in [89]. After identifying the above solutions as the most common for this
kind of measurements, it is important to remark that they have two main drawbacks.

First of all, ping relies on ICMP. Even though it can be very practical to leverage
something that is implemented inside almost every networking system (i.e., the ICMP
echo reply mechanism), only ICMP can actually be used to transport the timestamp
data needed to compute the latency between nodes. Moreover, by using ICMP, it is
possible to compute the network latency, but tools like ping do not provide the user
with a clear estimate on the latency experienced at the application layer. Indeed, the
echo reply mechanism is implemented, at least as far as Linux is concerned, as part of
the kernel, without any server-side transition to the user space.

Then, Metherxis, TWAMP, and other specific protocols, even though very precise
in giving the desired measurement values, require the tested device to be compliant to
specific standards (or to specific options, such as in the IP case) and possibly need some
additional capabilities to be implemented, which may not be the case for all the network
nodes.

For these reasons, this thesis introduces the Latency Measurement Protocol (LaMP),
an application-layer protocol which can be encapsulated inside any lower-layer pro-
tocol. LaMP addresses the need for a lightweight framework encapsulating the basic
information needed to perform accurate latency measurements. In addition, this work
introduces the first open-source tool leveraging LaMP, i.e., LaTe (Latency Tester), a
flexible client-server application that currently supports LaMP over UDP/IP to perform
latency measurements under different conditions.

5.4.2 LaMP protocol description

LaMP has been developed as a flexible application layer protocol which can be encap-
sulated inside any lower layer protocol, and is designed to be as much self-contained as
possible. For instance, it can be encapsulated without requiring any modification to its
rules and packet format, inside UDP over IPv4, or directly inside a local network raw
Ethernet packet, or inside WSMP packets and transmitted over 802.11p.

In a nutshell, the protocol follows a client-server paradigm: LaMP requests are sent
by a client and received by a server, which replies back to the client. In a typical sce-
nario, the application implementing LaMP computes the latency as the time difference

116

5.4 — LaMP: a novel protocol for precise latency measurements

0[1|2(3|4|5|6|7|8|9(10(11(12(13(14(15/16(17(18|19|20|21|22|23|24|25|26|27|28|29|30|31|32|33|34(35(36|37|38(39|40|41|42|43|44|45|46|47|48|49|50(51|52|53|54(55|56|57|58(59|60|6162 (63

Control

E 0 0 Reserved OxXA i Pkt LaMP ID Sequence No. Length or packet type
[XA |
o i Type

8 | 64 Sec Timestamp

16 | 128 uSec Timestamp

24 | 172

Payload (optional) — up to 65535B

Payload
(optional)

65552 |524416|

Figure 5.10: Structure of the LaMP PDU with a description of all the fields, from [58].

between a “send timestamp” and a “receive timestamp”, which are managed by the ap-
plications participating in the measurement session.

Typically, the “send timestamp” is inserted inside the LaMP packet by the entity
sending a request and the “receive timestamp” is instead gathered by the entity when
a reply is correctly parsed. Before any session is started, a connection initialization
packet is sent by the client and properly acknowledged by the server, in order to ensure
that measurements can start and the connection is correctly established.

Additional modes are also defined, including the unidirectional mode, in which the
client only sends requests to the server, which is responsible for computing the latency
and returning it to the client at the end of the test. This mode enables the computation
of the one-way latency, but, as of now, it requires the clocks of the different devices to
be precisely synchronized through the Precision Time Protocol (PTP) [46] or through
the Network Time Protocol (NTP) [73].

The LaMP packet is composed by a header and by an optional payload. The header
size is equal to 24B, accounting for the need of a lightweight protocol but including all
the necessary data, as shown in Figure 5.10. Every LaMP packet starts with a reserved
header field, which is used by the nodes to identify whether the received data really
belongs to a LaMP SDU, and with a control field, which is further divided into a reserved
sub-field (4 B, used to lengthen the reserved field and make the protocol more robust)
and in a field indicating the packet type (4 B).

Therefore, LaMP can account for a total of 16 different packet types. Then a 16-
bit long field, the LaMP ID, contains a number which is used to identify each LaMP
client-server measurement session, and which allows the server to correctly associate
each client with the corresponding session. This mechanism can be used as a basic
system to identify each LaMP session and can be integrated, if necessary, with other
protocol-specific session identification mechanisms, such as ports when UDP is used,
or the Provider Service ID when WSMP is used.

A 16-bit sequence number is then included, enabling the association between each

117

Open source solutions for V2X-enabled embedded devices

request and reply. The following 16 bit-long field, named length or packet type is instead
used to store the payload size or, if the packet is of type connection initialization, the
type of connection which should be established (unidirectional or bidirectional).

Finally, LaMP is designed to embed, together with two 64-bit precise second and
microsecond timestamps, any additional payload (up to 65535 bytes) in which other data
and possibly other user-defined protocols can be encapsulated.

As each bidirectional measurement session is completed, the client should gather
some statistics and report them to the user. In the one-way mode instead, the server is
responsible for the latency computation and for returning a final report to the client.

The full protocol specifications are open and published on the project website, hosted
on GitHub [58].

Type of packets defined in LaMP

The control field in a LaMP-compliant header is composed by 4 reserved bits (always
set to 0xA) and by 4 bits that determine the type of packet. In total, LaMP defines 15
different packets, that are shortly described in this section.

1. Ping-like bidirectional request (0xA0), representing a typical ping-like request. When
a client sends this kind of packet, the server shall reply with the corresponding
ping-like reply; this ping pong mechanism is similar to that of ICMP Echo Re-
quest/Reply. The client is responsible for the insertion of the timestamp, and for
its accurateness. At each transmission, the corresponding sequence number shall
increase.

2. Ping-like bidirectional reply (0xA1), used to implement the reply to the aforemen-
tioned ping-like bidirectional request. The content of the header shall match the
one of the corresponding request (with the exception of the control field). The
payload can be the same, but it can also be used to transmit other user-defined
data, or to perform asymmetric measurements with respect to the payload size.

3. Ping-like bidirectional end-request (0xA2), which is used to signal the server about
the transmission of the last packet for the specific session. As the normal ping-like
request, it shall include the timestamp. This packet allows the server to perform
the final memory cleanup and to gracefully terminate the measurement session.

4. Ping-like bidirectional end-reply (0xA3), which implements the natural reply to a
Ping-like bidirectional end-request, and that signal to the client that the server
received the instruction to end the measurement session.

5. Unidirectional-continue (0xA4), is the equivalent of a ping-like request in unidirec-
tional mode. As usual, it shall include the timestamp and it tells the server that the
client will continue to generate and send packets in the future. In this case, since
the measurement session is unidirectional, there is no reply from the server.

118

5.4 — LaMP: a novel protocol for precise latency measurements

10.

11.

12.

13.

Unidirectional-stop (0xA5), used to gracefully terminate the unidirectional mea-
surement sessions. It tells the server that no other unidirectional packets will be
sent in the future.

. Report data (0xA6), this packet contains, in its payload, a user-formatted report

data. The report contains statistics on the current measurement session and is
typically used in unidirectional mode, to transmit to the client the values measured
by the server (since, in that case, all the calculation is performed at server side).
This is the only packet in LaMP which compulsorily requires the payload to be
filled with data.

Acknowledgment (0xA7), used as a general acknowledgment for connection ini-
tialization and report.

. Connection initialization (0xA8), a packet that is used by every LaMP client to per-

form the initial handshake with the server. A server receiving this kind of packet
is in charge of setting other session-related parameters (such as the LaMP ID), and
uses the corresponding acknowledgment to communicate it to the client. Connec-
tion initialization packets have no payload, and the “length or packet type” is set to
0x0001 to initiate a bidirectional session and to 0x0002 to initiate a unidirectional
session.

Ping-like timestamp-less bidirectional request, reply, end-request, and end-reply (0xA9,
0xAA, 0xAB, 0xAC), working exactly as the first four packets, but which do not
include any timestamp. In this case the client is responsible for keeping the send
timestamp into a proper internal data structure. The data structure can be succes-
sively used to compare the timestamp at which the corresponding reply is received
and correctly compute the timestamp.

Follow-up control (0xAD), which is used to implement the LaMP follow-up mech-
anism. This mechanism allows the client to start a session where additional pack-
ets are exchanged. Beside normal requests/replies, the client and the server send
follow-up packets including different type of timestamp and, possibly, additional
information. A follow-up control shall include in the “length or packet type”, the
type of information to be included in the follow-up packets. The server shall ac-
cept or deny the request, by sending a follow-up control packet with “length or
packet type” set to 0x0001 (deny), 0x0002 (accept) or OxFFFF (badly formatted or
unknown request).

Follow-up data (0xAE), which is the follow-up packet enabled by the follow-up
control. It is formatted as a normal request or reply packet, but its timestamp
may be generated by an alternative source (hardware timestamps, kernel-level
timestamps etc.).

Reserved (0xAF), reserved to future use.

119

Open source solutions for V2X-enabled embedded devices

5.5 LaTe: the first LaMP-compliant application

LaMP has been used as a base to develop a client-server command line tool to measure
the latency between different devices running Linux, connected by means of wireless
and/or wired physical media. This tool is written in C and released as open source
software under the GPLv2 license [58].

LaTe (Latency Tester) follows all the aforementioned LaMP specifications and cur-
rently supports tests over a LaMP/UDP/IPv4 protocol stack. Nevertheless, additional
protocols are going to be supported as well as new features, such as the latency measure
in broadcast flooding situations, which can be of interest in the vehicular networking
context.

LaTe can measure different kinds of latency: in the current version two types of
measurements are supported. The first one (User-to-user) collects the receive timestamp
as soon as the receiving entity (typically, a client receiving a reply) has completely
processed the LaMP packet. The second one (which is called KRT, i.e., Kernel Reception
Timestamp) obtains the reception timestamp as the time when the LaMP packet is being
passed from the hardware to the kernel stack, thanks to the Linux kernel capability of
generating packet timestamps. Latency measurement in LaTe may be bidirectional or
unidirectional.

LaTe tries to exploit the philosophy at the base of LaMP, offering a flexible Linux
tool in which various options can be specified by the user, such as the possibility to:

« Choose a transport protocol (although, as already mentioned, only UDP is sup-
ported at the time of writing).

« Choose and compare raw sockets and non-raw sockets for supported transport
protocols, such as UDP.

» Test over a specific interface (wired or wireless, including loopback).

« Select an Enhanced Distributed Channel Access (EDCA) traffic class to be used in
both the client and the server. This choice can be of relevance in the vehicular
use case, which uses EDCA in combination with the OCB mode and some specific
EDCA parameters. The option is currently supported only when a patched kernel
is available (such as the one included in the OpenC2X-Embedded platform [59] or
the one proposed in Section 5.2).

+ Choose the frequency and amount of request packets down to a periodicity of 1
ms (between each packet).

« Specify custom LaMP payload sizes.

« Perform bidirectional and unidirectional measurements.

120

5.5 — LaTe: the first LaMP-compliant application

-e-Direct link
10BASE-2/T hub

8 100 Mbit switch
80211a AP rate adapt. on

-m-80211a AP @ 6 Mbit/s

LaTe RTT [ms]

0 200 400 600 800 1000 1200 1400 1600

Payload length [B]

Figure 5.11: Average user-to-user latency (RTT), using normal UDP sockets, over direct
Ethernet link, 10BASE-2/T hub, 100 Mbit switch and 802.11a.

All the useful data can be logged onto a separate .csv file for further manipulation.
Furthermore, LaTe can automatically compute the 90%, 95% and 99% confidence in-
tervals, according to the Student’s t-distribution, around the average value; this statistic
is reported over the packets that are sent and received in a single test session.
In the next sections, LaMP and LaTe are validated and used to assess the latency
performances of the proposed V2X platform.

5.5.1 Protocol and tool validation

The tests performed to validate LaMP and LaTe involves two laptops, one mounting
an Intel Dual Band Wireless-AC NIC and the other one a Qualcomm Atheros AR9460
NIC. The connectivity between the laptops is realized with the following options: (i)
directly connected through an Ethernet crossover cable; (ii) connected through a 8-port
10BASE-2/T hub; (iii) connected through a 100 Mbit/s switch; (iv) communicating over
Wi-Fi with a 5 GHz 802.11a access point in between. The test were configured in the
bidirectional mode, thus the measured latency can be interpreted as a Round Trip Time
(RTT).

Every test lasts 60 seconds, over which the average values reported by LaTe are
collected. The values are plotted as a function of the LaMP payload sizes, ranging it
from 0 to 1448 B (which is the maximum supported by LaTe in order to never exceed
the Ethernet MTU). The request packets are sent every 100 ms; therefore, a total of 600
packets for each test are sent. Note that, in order to obtain the full size of the transmitted
packet, 24 B of the LaMP header should be added to each point.

121

Open source solutions for V2X-enabled embedded devices

The results, reported in Figure 5.11, fully validate the solution proposed: as ex-
pected, the higher the transmitted payload, the higher the observed RTT, because of
the increase in transmission time. The measured increase is quite low when using a
fast channel, i.e., a direct Ethernet connection or a 100 Mbit/s switch. Conversely, it is
more evident when using a 10BASE-2/T hub, which limits the maximum transmission
speed over the shared medium. The results show how communicating over a wireless,
contention-based, medium causes the latency to be higher (likely due to retransmis-
sion): the slower access scheme is 802.11a @ 6 Mbit/s whereas the rate adaptation al-
gorithm makes the system faster (note that the tests are performed in a controlled area,
without interference on the selected channels).

5.6 Latency measurement in V2X-enabled embedded
devices using LaTe

In the following tests LaTe is used to assess the latency performances of the proposed
V2X platform, which was already evaluated (for what concerns throughput and packet
loss) in Section 5.3. As in the previous analysis, the two APU1D boards are put in direct
communication in the 802.11p OCB mode. Tests are performed both at a fixed distance
inside the laboratory, and outdoors (both in line of sight, and in non-line of sight), by
increasing the distance up to ~720 m, with a transmission power of 18 dBm. More-
over, the Access Categories tests are repeated by measuring, this time, the experienced
latency when some iPerf interfering traffic is present; this is possible thanks to the
LaTe feature enabling the selection of the AC to be used for LaMP packet transmission.

12

——802.11p @ 3 Mbit/s

10 802.11p @ 6 Mbit/s
802.11p @ 12 Mbit/s
802.11a @ 6 Mbit/s

—8-802.11a rate adapt. on

©

LaTe RTT [ms]

0 200 400 600 800 1000 1200 1400 1600

Payload length [B]

Figure 5.12: Average user-to-user latency (RTT) measured on the APU1D boards, using
normal UDP sockets, over 802.11p and 802.11a.

122

5.6 — Latency measurement in V2X-enabled embedded devices using LaTe

Figure 5.12 compares the average user-to-user latency (RTT) measured with the
boards in different configurations. Two scenarios are considered: (i) infrastructured
802.11a, with the boards acting as clients stations connected to an Access Point, and (ii)
802.11p, with the boards communicating in OCB mode. The measured latency values,
in milliseconds, is plotted as a function of the LaMP payload length.

The results exactly match the expectations: starting from similar latency values for
low payload sizes, the latency increases linearly with the payload length, and propor-
tionally with the data rate associated with each modulation. Therefore, the higher the
difference in data rate, the faster the corresponding lines tend to diverge.

The collected data show the greater performance, in terms of latency, of 802.11p with
respect to 802.11a, when similar data rates are used: this is evident when comparing
the 802.11p curve at 6 Mbit/s with the 802.11a one at the same data rate; having a
direct communication reduces the measured latency, due to the fact that each packet
can directly reach its destination, without the need of an additional hop through the AP.
Interestingly, the 6 Mbit/s 802.11a curve proved to be very similar to the one related
to 802.11p at 3 Mbit/s, i.e., half of the data rate. This result represents an additional
validation of the platform, since each request and reply, when using 802.11a, has to pass
through the Access Point, doubling the number of device-to-device transmissions. The
difference between the two can be interpreted as the Access Point computation time,
and shows how latency measurements can also be used to estimate internal delays.

Figure 5.13 depicts the latency measures obtained by selecting different EDCA ACs,
using 802.11p at 12 Mbit/s. LaTe is set to generate and send LaMP packets with a payload
of 1448 B, while the interfering iPerf sends 1470 B-long UDP datagrams. This plot

12
@ AC_BK (interfering)

O AC_BE (interfering)
OAC_VI (interfering)
O AC_VO (interfering)

10 R—

LaTe RTT [ms]
|
|

AC_BK AC_BE AC_VI AC_VO

Traffic AC selected by LaTE

Figure 5.13: Average user-to-user latency (RTT), using normal UDP sockets, over
802.11p as a function of the AC used by LaTe. Each bar corresponds to a different
Access Category in the interfering traffic generated by iPerf.

123

Open source solutions for V2X-enabled embedded devices

shows the average user-to-user latency (RTT) as a function of the Access Category
used by LaTe. Every section of the histogram plot is then divided into four distinct
bars, each showing the traffic class used by iPerf to generate the parallel interfering
traffic. Each single test, providing the average latency over 600 packets, is performed
15 times. The average value among these attempts is then considered as reference. The
95% confidence intervals around the average value are highlighted in red, even though
they are quite small, as all the tests provided similar results.

Also in this case the measured values are coherent with the theory, and show how
increasing the AC of the interfering traffic causes the measured latency to increase as
well. Additionally, it is possible to highlight how using a high-priority AC, such as
AC_VO or AC_VI, allows the sending device to experience a lower latency as opposed
to when AC_BK or AC_BE are selected. When testing the latency of AC_BK it was
possible, however, to highlight a marginal decreasing trend, in the moment in which
iPerf transmits an interfering traffic over the Video and Voice traffic classes. This can
be explained by observing that the channel usage is quite unbalanced towards iPerf,
which generates a higher amount of prioritized traffic than LaTe.

The next set of results have been obtained by performing outdoor tests in LOS and
in NLOS. Two vehicles are equipped with the APU boards transmitting at 6 Mbit/s:
one vehicle is stationary while the other is moving away to ~720 m away, with a speed
between 10 and 15 km/h. The test is performed in LOS, without any kind of obstacle
between the two vehicles, and in NLOS, with the stationary vehicle behind a reinforced
concrete wall. The boards are equipped with two antennas with 6 dBi gain, and transmit
with a power of 18 dBm. The metrics collected are: RTT using LaTe, throughput using
iPerf and RSSI (Received Signal Strength Indicator), obtained through the information
reported by the operating system of the two boards.

Figure 5.14 shows the results measured with LaTe: the plot suggests that, for the
LOS situation, the two boards maintain a stable RTT up to 500 m. Then, due to the

N
o

[—LOs NLOS |

NoWw W
un o «

-
%

LaTe RTT [ms]

ol

0 100 200 300 400 500 600 700

Distance [m]

(€]

o

Figure 5.14: User-to-user latency (RTT) measured in LOS and in NLOS, using normal
UDP sockets, over 802.11p as a function of the distance between the two vehicles mount-
ing the 802.11p boards.

124

5.6 — Latency measurement in V2X-enabled embedded devices using LaTe

5

T
& 45 LOS NLOS
o
o 3.5
2 s

4 2.5

= 2

Q.
- 15

00 1

>

O 05

o
c 0 I e e
- 0 600 700

Distance [m]

Figure 5.15: Throughput measured in LOS and in NLOS using iPerf, offering 100
Mbit/s with a payload of 1470 B over 802.11p as a function of the distance between
the two vehicles mounting the 802.11p boards.

" Distance [m]

-85
-80
-75
-70
-65

-60

RSSI [dBm]

-55

[—Los ----- NLOS |

-50
J

45 9 100 200 300 400 500 600 700

Figure 5.16: RSSI measured in LOS and in NLOS as a function of the distance between
the two vehicles mounting the 802.11p boards.

high number of lost packets and to the overall degradation of the connection, the RTT
increases (reaching peaks of 35 ms). In the LOS case, the LaTe communication is lost
around 680 m. The NLOS results instead show that the two boards are able to keep the
connection up to ~150 m. Then, at higher distances the LaTe client and server are not
able to communicate anymore, due to the high number of packets lost.

The results of the throughput computed using iPerf are shown in Figure 5.15. In
this case, iPerf is set to push 100 Mbit/s of UDP traffic with payload of 1470 B. As in the
previous case, in NLOS the maximum distance reached by two APU boards before the
iPerf connection is lost is less than 200 m. In LOS, instead, the throughput oscillates
between the maximum value (i.e., 4.86 Mbit/s, as measured in Figure 5.3b with UDP
payload of 1470 B) and values that are constantly lower as the distance increases. Then,
at around 520 m, iPerf loses the connection and consequently the throughput drops
to 0 Mbit/s.

Another experiment that analyzes the quality of the signal between the two boards

125

Open source solutions for V2X-enabled embedded devices

34 -e—Late (user-to-user)
LaTe (KRT)

ping
TWAMP

w
)

Measured RTT [ms]

Ing
kS

2.2
50 80 110 140

Payload length [B]

Figure 5.17: Average user-to-user latency (RTT), measured on the boards, averaged over
20 tests, using normal UDP sockets, over 802.11p at 3 Mbit/s. 95% confidence intervals
are represented too.

is shown in Figure 5.16. In this case, instead of relying on the metrics returned by a
particular application, the results are obtained by extracting the information available
from the WNICs driver, using the command iw dev <interface_name> station
dump. Indeed, during the first two experiments, even if the applications measuring RTT
and throughput (i.e., LaTe and iPerf) lost their connection, in fact the two boards were
able to communicate, albeit weakly. The results show that, in LOS, the two boards are
still connected also at 720 m of distance, but unfortunately the RSSI is too low (less than
-85 dBm) to allow any kind of application to exchange information. In NLOS, instead,
the connection is completely lost at 180 m, where the signal drops to -90 dBm, meaning
that the received signal is null.

The final test is performed to compare the results obtained by means of ping with
the ones gathered through LaTe and by a cross-compiled version of twping, an open
source implementation of TWAMP included in the perfSONAR project [79]. The results
are shown in Figure 5.17; the two boards communicate over 802.11p at a physical rate
of 3 Mbit/s. Interestingly, the results confirm the previous assumption on ping: being
it a protocol operating at the lower layer of the communication stack, the measured
latency will not include a part of the computational time required by the entity to pass
the information to upper layers; therefore, the measured latency will be lower. The
values reported by ping give a more precise estimate of the network latency, but not
of the application layer one, which is the latency a user would really experience when
using UDP to communicate with a given application.

126

5.6 — Latency measurement in V2X-enabled embedded devices using LaTe

Furthermore, this plot also compares the two latency types provided by LaTe, show-
ing how using a KRT latency normally results in lower measured values, as the client-
side time needed by the kernel (and then by LaTe itself) to handle each reply is not
considered.

TWAMP instead provides comparable results with respect to the ones yielded by
LaTe in KRT mode. This comparison can actually be performed as TWAMP test packets
are encapsulated inside UDP, which is also the case of the LaMP packets managed by
LaTe.

127

128

Chapter 6

Conclusions

The myriad of applications enabled by VANETs will completely change the way in
which mobility is currently intended. All the safety mechanisms already present will
leverage the information coming from the radio interfaces, and at the same time new,
innovative services will be launched thanks to the introduction of these technologies.

The first part of this thesis gives an overview of the standardization efforts that have
been made by the VANET community during the last decade, by showing the high-level
structure of the two main communication stacks: ITS-G5 and WAVE; the two access
technologies (IEEE 802.11p and 3GPP C-V2X) are introduced and discussed as well.

The importance of simulation tools for the testing of applications leveraging vehicu-
lar communications, is what has driven the development of the ns-3 framework named
MS-VAN3T, introduced and discussed in Chapter 3. The proposed model, which at the
time of writing is still being actively developed, provides the scientific community with
the first implementation of ETSI ITS-G5 in the ns-3 simulator. The peculiarity of MS-
VANST resides also in the number of access technologies that can be used to enable
the overlying applications, since it comes with the possibility of transparently switch
between 802.11p, C-V2X in transmission mode 4 and LTE. MS-VAN3T is provided with
a couple of applications, namely the area speed advisor and the emergency vehicle alert,
which can be used as development baseline. Additionally, MS-VAN3T can be used as a
V2X message emulator, thanks to the integration with fd-net-devices. In this the-
sis, the framework is also used to test the network performances of the available access
technologies; the tests highlighted the advantages, in terms of delay, of 802.11p with
respect to C-V2X or LTE. The results, however, show that 802.11p is less stable as the
bit rate increases (due to the MCS adopted), with very high jitter and non-negligible
amount of packets lost. The solutions coming from the cellular world, namely LTE and
C-V2X, exhibit instead a stabler behavior.

MS-VANST is also the simulation framework used to develop the Collision Avoid-
ance Service (CAS), a system that, based on the Intersection Collision Risk Warning ap-
plications defined by ETSI, provides a way to warn the drivers or the vulnerable users
about possible future collisions. CAS leverages the exchange of Cooperative Awareness

129

Conclusions

Messages (CAMs), that are periodically broadcasted by road entities and that include
information about speed, position, heading and acceleration. The core of CAS is the so
called Collision Avoidance Algorithm (CAA), which gathers all the information coming
from CAMs and which builds future trajectories. The trajectories are then analyzed
and, in case a collision is detected, CAA instructs the CAS to generate a Decentralized
Environmental Notification Message (DENM) to be sent to the involved entities.

In this thesis, CAS is presented in a centralized and in a distributed architecture, and
is tested through several simulation campaigns, which pointed out the effectiveness of
the system in promptly warn the drivers about future collisions.

The CAS system, in its initial definition, builds a passive safety layer in which the
information about collisions are encoded and sent through DENMs. How this infor-
mation is used at the receivers depends on several factors, including the type of entity,
the severity of the situation, the current speed and so on. This thesis proposes a novel
system that can be used to automatically modify the vehicles’ trajectory to avert the
collisions. This system leverages the information generated by CAS, and overrides the
vehicles’ control by reducing the speed by a factor that is proportional to the gravity
of the situation advertised by the corresponding DENM. Simulation results helped to
correctly tune the proposed solution, and demonstrated that such systems can prevent
the totality of collisions in the tested scenario.

Beside the work on MS-VAN3T and CAS, this thesis presents the efforts that have
been made for the realization of an open source platform to enable V2X communications
in commercial embedded devices. The resulting solution is used to assess the perfor-
mance of a couple of 802.11p WNICs. The need for precise measurements of the latency
that an application running on top of the V2X platform would experience, driven the
definition of a novel protocol for micro-second precise latency measurement. The pro-
tocol, named LaMP (Latency Measurement Protocol), defines a LaMP PDU (Protocol
Data Unit) and the general guidelines that LaMP-compliant applications should follow
to generate timestamps, to compute latency and so on. Therefore, the first application
entirely based on LaMP, named LaTe (Latency Tester), is used to test the V2X platform
and to validate the proposed solution from the point of view of the latency experience
at application layer.

All the applications and solutions proposed in this thesis highlighted the importance
that VANETs will have in the future of mobility. The next generation of vehicles will see
the number of services enabled by V2X communication to grow rapidly. For this rea-
sons, it is important to provide the scientific community with tools like MS-VAN3T and
LaTe, which can be used to prototype and test the applications in a safe environment,
with detailed models that closely mimic the real behaviors of road players.

130

Appendix A

CA and DEN basic service
models in MS-VAN3T

MS-VAN3T implements a model of the Facilities layers as defined in EN 302 637-2 and
EN 302 637-3 [26, 27]. The two entities standardized by ETSI, namely CA (Cooperative
Awareness) and DEN (Decentralized Environmental Notification) basic services, are in
charge of managing V2X messages, from the creation to the final delivery at Applica-
tions layer. The CA basic service is in charge of managing the Cooperative Awareness
Messages (CAMs), which are periodically exchanged between ITS-S (ITS-Stations) to
create and maintain a distributed awareness of the surrounding area. The content of
CAMs depends on the originating ITS-S type: in case of a vehicle the information in-
cludes time, position, motion state, etc. The DEN basic service is instead in charge
of managing Decentralized Environmental Messages (DENMs), that are asynchronous
messages used to signal and describe a variety of situations and events that may have
an impact on the receivers’ experience.

The next sections will be devoted to the description of CA and DEN basic services
features included in MS-VAN3T.

A.1 CA basic service implementation

The CA basic service is the Facilities layers entity operating the CAM protocol. The
two main services it provides are sending and receiving of CAMs. The following sub-
functions have been developed in MS-VAN3T to support the required protocol opera-
tions:

« CAM encoding, using the primitives created through the integration with asnic
[91], and including the most updated information coming from the Vehicle Data
Provider (VDP);

« CAM decoding, using the primitives created through the integration with asnic;
131

1

2

3

20

21

22

23

24

CA and DEN basic service models in MS-VAN3T

« CAM Transmission Management, implementing the protocol operation of the orig-
inating ITS-S. In particular, this sub-function includes the tools to activate and ter-
minate the CAM transmission, to determinate the CAM generation frequency and
to trigger the generation of a CAM.

« CAM Reception Management, implementing the protocol operation for receiving
ITS-S. This sub-function triggers the decoding of CAMs, and provides the received
CAM data to the overlying ITS applications.

A.1.1 CAM encoding

As introduced in Section 2.2.2 and depicted in Figure 2.7, a CAM is composed of a com-
mon ITS PDU header and multiple containers. For a vehicular originating I'TS-S,a CAM
is compulsorily composed by at least one basic container, including basic information
related to the originating station, and one high frequency container, containing highly
dynamic information of the originating station (position, speed, acceleration, heading,
etc.). Optionally, a CAM may include one low frequency container, containing static
and not highly dynamic information, and one or more special containers, containing
information for non-ordinary vehicles.

The C++ code developed to model the CAMs encoding and transmission is reported
below.

CABasicService error_t
CABasicService :: generateAndEncodeCam()
{
CAM_t =+cam;
CURRENT_VDP_TYPE :: CAM_mandatory_data_t cam_mandatory_data;
CABasicService _error_t errval=CAM_NO_ERROR;

// Optional CAM data pointers
AccelerationControl_t =+accelerationcontrol=NULL;
LanePosition_t »laneposition=NULL;
SteeringWheelAngle_t =xsteeringwheelangle=NULL;
LateralAcceleration_t *lateralacceleration=NULL;
VerticalAcceleration t =*verticalacceleration=NULL;
PerformanceClass_t sperformanceclass=NULL;
CenDsrcTollingZone_t =»tollingzone=NULL;

RSUContainerHighFrequency_t* rsu_container=NULL;
Ptr<Packet> packet;
asn_encode_to _new _buffer result t encode result;

int64 t now;

if (m_vehicle==false)

{

132

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

A.1— CA basic service implementation

rsu_container=m_vdp.getRsuContainerHighFrequency () ;

if (rsu_container==NULL)

{

LOG_ERROR (”Cannot send RSU CAM:
provide any RSU High Frequency Container.”);

return CAM_NO_RSU_CONTAINER;

the current VDP does not <«

/+ Collect data for mandatory containers =/
cam=(CAM_t+) calloc(1l, sizeof(CAM_t));

if (cam==NULL)

{

return CAM_ALLOC_ERROR;

cam_mandatory_data=m_vdp.getCAMMandatoryData() ;

/«+ Fill the header =/

cam—>header .messageID = FIX_CAMID;

cam—>header.protocolVersion =

/*

+ Compute the generationDeltaTime ,

corresponding to the

FIX_PROT_VERS;
cam—>header.stationID = m_station_id;

“computed as the time <«

+ time of the reference position in the CAM, considered as time <«

of the CAM generation.

+ The value of the generationDeltaTime

536. This value shall be set as

the

shall be wrapped to 65 <«

+ remainder of the corresponding value of Timestamplts divided by«

65 536 as below:

x+ generationDeltaTime = Timestamplts mod 65 5367
* /
cam—>cam. generationDeltaTime = compute_timestampIts (m_real_time)<«

% 65536;

/+ Fill the basicContainer's station type =/
cam—>cam.camParameters.basicContainer.stationType = m_stationtype<«

3

if (m_vehicle==true)

{

/«+ Fill the basicContainer

*/

cam—>cam.camParameters .basicContainer.referencePosition. <«

altitude = cam_mandatory_data.altitude;
cam—>cam.camParameters.basicContainer.referencePosition. <«
latitude = cam_mandatory_data.latitude;

133

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

CA and DEN basic service models in MS-VAN3T

cam—>cam.camParameters.basicContainer.referencePosition.<«
longitude = cam_mandatory_data.longitude;

cam—>cam.camParameters.basicContainer.referencePosition. <«
positionConfidenceEllipse = cam_mandatory_data.<«
posConfidenceEllipse;

/= Fill the highFrequencyContainer =«/
cam—>cam.camParameters.highFrequencyContainer.present = <
HighFrequencyContainer_ PR_basicVehicleContainerHighFrequency<«
cam—>cam.camParameters.highFrequencyContainer.choice.«
basicVehicleContainerHighFrequency.heading = <
cam_mandatory_data.heading;
cam—>cam.camParameters.highFrequencyContainer.choice.<«
basicVehicleContainerHighFrequency.speed = <«
cam_mandatory_data.speed;
cam—>cam.camParameters.highFrequencyContainer.choice .«
basicVehicleContainerHighFrequency.driveDirection = <«
cam_mandatory_data.driveDirection;
cam—>cam.camParameters.highFrequencyContainer.choice.<«
basicVehicleContainerHighFrequency.vehicleLength = <«
cam_mandatory_data.VehicleLength;
cam—>cam.camParameters.highFrequencyContainer.choice .«
basicvVehicleContainerHighFrequency.vehiclewidth = <«
cam_mandatory_data.VehicleWidth;
cam—>cam.camParameters.highFrequencyContainer.choice.«
basicvVehicleContainerHighFrequency.longitudinalAcceleration<
= cam_mandatory_data.longAcceleration;
cam—>cam.camParameters.highFrequencyContainer.choice.<«
basicVehicleContainerHighFrequency.curvature = <
cam_mandatory_data.curvature;
cam—>cam.camParameters.highFrequencyContainer.choice.«
basicVehicleContainerHighFrequency.curvatureCalculationMode<«
= cam_mandatory_data.curvature_calculation_mode;
cam—>cam.camParameters.highFrequencyContainer.choice.<«
basicVehicleContainerHighFrequency.yawRate = <«
cam_mandatory_data.yawRate;

// Manage optional data

accelerationcontrol = m_vdp.getAccelerationControl () ;

cam—>cam.camParameters.highFrequencyContainer.choice.<«
basicVehicleContainerHighFrequency.accelerationControl = <«
accelerationcontrol;

laneposition = m_vdp.getLanePosition() ;

cam—>cam.camParameters.highFrequencyContainer.choice.<«
basicVehicleContainerHighFrequency.lanePosition = <«
laneposition;

steeringwheelangle = m_vdp.getSteeringWheelAngle () ;

134

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

A.1— CA basic service implementation

cam—>cam.camParameters.highFrequencyContainer.choice .«
basicVehicleContainerHighFrequency.steeringWheelAngle
steeringwheelangle;

lateralacceleration=m_vdp.getLateralAcceleration() ;

cam—>cam.camParameters.highFrequencyContainer.choice.«
basicVehicleContainerHighFrequency.lateralAcceleration
lateralacceleration;

verticalacceleration=m_vdp.getVerticalAcceleration() ;
cam—>cam.camParameters.highFrequencyContainer.choice.«

basicvVehicleContainerHighFrequency.verticalAcceleration

verticalacceleration;

performanceclass=m_vdp.getPerformanceClass () ;

cam—>cam.camParameters.highFrequencyContainer.choice.«
basicVehicleContainerHighFrequency.performanceClass =
performanceclass;

tollingzone=m_vdp.getCenDsrcTollingZone () ;

cam—>cam.camParameters.highFrequencyContainer.choice.«
basicvVehicleContainerHighFrequency.cenDsrcTollingZone
tollingzone;

else

{

/« Fill the basicContainer =/
/+ There is still no full RSU support in this release =/

cam—>cam.camParameters.basicContainer.referencePosition. <«
altitude.altitudeConfidence = AltitudevValue unavailable;
cam—>cam.camParameters.basicContainer.referencePosition. <«

altitude.altitudeValue = AltitudeValue_unavailable;

cam—>cam.camParameters.basicContainer.referencePosition. <«

latitude = Latitude_unavailable;

cam—>cam.camParameters .basicContainer.referencePosition. <«

longitude = Longitude_unavailable;

cam—>cam.camParameters.basicContainer.referencePosition. <«

positionConfidenceEllipse.semiMajorConfidence = <«
SemiAxisLength unavailable;

cam—>cam.camParameters.basicContainer.referencePosition. <«

positionConfidenceEllipse.semiMinorConfidence = <«
SemiAxisLength_unavailable;

cam—>cam.camParameters.basicContainer.referencePosition. <«

positionConfidenceEllipse.semiMajorOrientation = <«
Headingvalue_unavailable;
/+ Fill the highFrequencyContainer =/
cam—>cam.camParameters.highFrequencyContainer.present = <
HighFrequencyContainer PR_rsuContainerHighFrequency;
cam—>cam.camParameters.highFrequencyContainer.choice.«
rsuContainerHighFrequency = =*rsu_container;

135

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

CA and DEN basic service models in MS-VAN3T

// Store all the ”previous” values used in checkCamConditions ()
m_prev_distance=m_vdp.getTravelledDistance () ;
m_prev_speed=m_vdp.getSpeedvalue () ;
m_prev_heading=m_vdp.getHeadingvalue () ;

LowFrequencyContainer_t =lowfrequencycontainer=m_vdp.<
getLowFrequencyContainer () ;

if (lowfrequencycontainer!=NULL)
{
// Send a low frequency container only if at least 500 ms have<
passed since the last CAM with a low frequency container
if (lastCamGenLowFrequency==—1 ||(computeTimestampUInt64 ()—«
lastCamGenLowFrequency) >=500)

cam—>cam.camParameters. lowFrequencyContainer = <«
lowfrequencycontainer;
lastCamGenLowFrequency=computeTimestampUInt64 () ;

SpecialVehicleContainer_t =xspecialvehiclecontainer=m_vdp.<«
getSpecialvVehicleContainer () ;

if (specialvehiclecontainer!=NULL)
{
// Send a low frequency container only if at least 500 ms have<
passed since the last CAM with a low frequency container
if (lastCamGenSpecialVehicle==—1 ||(computeTimestampUInt64 ()—«
lastCamGenSpecialVehicle) >=500)

cam—>cam.camParameters.specialVehicleContainer = <«
specialvehiclecontainer;
lastCamGenSpecialVehicle=computeTimestampUInt64 () ;

/+ Construct CAM and pass it to the lower layers (now UDP, in the<«
future BTP and GeoNetworking, then UDP) «/

/++ Encoding ««/

char errbuff[ERRORBUFF_LEN |;

size_t errlen=sizeof (errbuff);

if (asn_check_constraints(&asn_DEF_CAM,(CAM_t «)cam,errbuff, &<«
errlen) == —1) {
LOG_ERROR (”Unable to validate the ASN.1 contraints for the <«
current CAM. <<std::endl);
LOG_ERROR(”Details: ” << errbuff << std::endl);

136

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

179

180

181

182

184

185

186

188

189

190

191

192

193

194

195

196

197

198

199

A.1— CA basic service implementation

errval=CAM_ASN1_UPER_ENC_ERROR;
goto error;

encode_result = asn_encode_to_new_buffer (NULL, <
ATS UNALIGNED BASIC PER,&asn DEF CAM, cam);
if (encode_result.result.encoded==-1)

{

errval=CAM_ASN1 UPER_ENC_ERROR;
goto error;

packet

{

= Create<Packet>

((uint8_t) encode_result.buffer, <«
encodeiresult.result.encoded+1);
if (m_socket_tx—>Send (packet)==-1)

errval=CAM_CANNOT_SEND ;
goto error;

m_cam_sent ++;

// Store the time

in which the last CAM (i.e.

generated and successfully sent
now=computeTimestampUInt64 ()/NANO_TO_MILLI ;
m_T GenCam_ms=now—lastCamGen;

lastCamGen = now;

error:

// Free

if (m_vehicle==true)

{

all the previously allocated memory

this

one)

has

// After encoding, we can free the previosly allocated «

optional data

been <«

if (accelerationcontrol) m_vdp.vdpFree(accelerationcontrol) ;
if (laneposition) m_vdp.vdpFree(laneposition);

if (steeringwheelangle) m_vdp.vdpFree(steeringwheelangle) ;

if (lateralacceleration) m_vdp.vdpFree(lateralacceleration);
if (verticalacceleration) m_vdp.vdpFree(verticalacceleration);

if (performanceclass) m_vdp.vdpFree(performanceclass) ;

if (tollingzone) m_vdp.vdpFree(tollingzone) ;

}

else

{

if (rsu_container) m_vdp.vdpFree(rsu_container);

if (lowfrequencycontainer) m_vdp.vdpFree(lowfrequencycontainer) ;
if (specialvehiclecontainer) m_vdp.vdpFree(specialvehiclecontainer<

) s

137

200

201

202

203

204

CA and DEN basic service models in MS-VAN3T

if (cam) free(cam);

return errval;

}

The CAM information is included in the CAM_t object, a type that is generated au-
tomatically by feeding asnic with the ASN.1 definition of CAM (taken, for example,
by the ASN.1 definition present in [26]). From Line 23 to Line 145, the mandatory and
optional containers are filled. Once the CAM_t is ready, in Line 159 the asnic function
asn_encode_to_new_buffer() is used to encode the CAM inside a buffer. The
same buffer is finally used to create the packet (Line 166) to be sent to the UDP socket
(Line 167). As soon as the BTP and GeoNetworking modules will be available, this part
will be changed, and the object of type CAM_t will be delivered to the Networking and
Transport layer.

A.1.2 CAM Transmission Management

The CAM Transmission Management is in charge of managing everything related to
the CAM generation. The CAM generation frequency in not fixed and is thought to
reflect the kinetics properties of the originating entity: the faster the entity changes its
state, the higher the generation frequency will be. In this way, a slow or still originating
entity will not occupy radio resources to broadcast information about its state.

The algorithm developed in ns-3 for MS-VANS3T is described and reported below,
with part of the description taken from [26].

The standard sets the maximum frequency to 10 Hz (i.e., one CAM each 100 ms,
defined in the algorithm as T_GenCamMin), and the minimum to 1 Hz (i.e., one CAM
every second, defined in the algorithm as T_GenCamMax). Within these limits, the
CAM generation is triggered depending on the originating ITS-S dynamics and on the
channel congestion (at the time of writing, however, MS-VAN3T accounts only for the
dynamics of the originating entity to determine the CAM frequency).

The condition triggering the CAM are checked every T_CheckCamGen, a value that
should be always less than or equal to T_GenCamMin.

The current upper limit for the CAM generation interval is defined as T_GenCam, that
defaults its value to T_GenCamMax. The conditions that may trigger the generation of
a CAM are two:

1. One of the following dynamics conditions are verified in the originating ITS-S:

« the absolute difference between the current heading and the heading included
in the CAM previously transmitted exceeds 4°;

« the distance between the current position and the position included in the
CAM previously transmitted exceeds 4 m;

138

1

2

3

21

22

23

24

25

26

27

28

29

30

31

32

A.1— CA basic service implementation

« the absolute difference between the current speed and the speed included in
the CAM previously transmitted exceeds 0,5 m/s.

2. The time elapsed since the last CAM generation is equal or greater than T_GenCam.

Whenever a CAM is triggered due to condition 1), T_GenCam s set to the time elapsed
since the last CAM generation. After triggering a number equal to N_GenCam CAMs
due to condition 2), T_GenCam is set to T_GenCamMax. The value of N_GenCam defaults
to 3.

The C++ code developed to model the CAMs dynamic generation is reported below.

void
CABasicService :: checkCamConditions ()
{
int64_t now=computeTimestampUInt64 ()/NANO_TO_MILLI;
CABasicService _error_t cam_error;
bool condition verified=false ;
static bool dyn_cond_verified=false;

// If no initial CAM has been triggered before checkCamConditions<«
() has been called , throw an error

if (m_prev_heading==—1 || m_prev_speed==—1 || m_prev_distance==-1)

{
FATAL_ERROR(”Error. checkCamConditions() was called before «

sending any CAM and this is not allowed.”);

}

/*

+ ETSI EN 302 637—2 V1.3.1 chap. 6.1.3 condition 1) (no DCC)

+ One of the following ITS—-S dynamics related conditions is given<

*/

[+ la)
x+ The absolute difference between the current heading of the <
originating
» ITS—S and the heading included in the CAM previously <
transmitted by the
+ originating ITS—S exceeds °4;
*/
double head_diff = m_vdp.getHeadingValue () — m_prev_heading;
head_diff += (head_diff=>180.0) ? —360.0 : (head_diff<-—180.0) ? <
360.0 : 0.0;
if (head_diff > 4.0 || head_diff < —4.0)
{
cam_error=generateAndEncodeCam () ;
if (cam_error==CAM_NO_ERROR)
{
m_N_GenCam=0;
condition verified=true ;

139

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

68

69

70

71

73

74

75

76

CA and DEN basic service models in MS-VAN3T

dyn_cond_verified=true;
} else {
LOG_ERROR (”Cannot generate CAM. Error code: “<<cam_error);
}
!

/= 1b)

» the distance between the current position of the originating <«
ITS-S and

+ the position included in the CAM previously transmitted by the <«
originating

» ITS—S exceeds 4 m;

x/
double pos_diff = m_vdp.getTravelledDistance () — m_prev_distance<«
if (!condition_verified && (pos_diff > 4.0 || pos_diff < —4.0))

{

cam_error=generateAndEncodeCam () ;
if (cam_error==CAM_NO_ERROR)
{
m_N _GenCam=0;
condition_verified=true;
dyn_cond_verified=true;
} else {
LOG_ERROR (”Cannot generate CAM. Error code: “<<cam_error);

}
}

[+ 1c)

+ the absolute difference between the current speed of the «
originating ITS-S

+ and the speed included in the CAM previously transmitted by the«
originating

» ITS—S exceeds 0,5 m/s.

«/
double speed_diff = m_vdp.getSpeedvalue () — m_prev_speed;
if (!condition_verified && (speed_diff > 0.5 || speed_diff < «

-0.5))
{
cam_error=generateAndEncodeCam () ;
if (cam_error==CAM_NO_ERROR)
{
m_N_GenCam=0;
condition_verified=true;
dyn_cond_verified=true;
} else {
LOG_ERROR (”Cannot generate CAM. Error code: “<<cam_error);

}

140

77

78

79

80

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

A.1— CA basic service implementation

[« 2)
+ The time elapsed since the last CAM generation is equal to or <«
greater than T_GenCam

*/
if (!condition_verified && (now—lastCamGen>=m_T_GenCam_ms))
{
cam_error=generateAndEncodeCam () ;
if (cam_error==CAM_NO_ERROR)
{
if (dyn_cond_verified==true)
{
m_N GenCam++;
if (m_N_GenCam>=m_N_GenCamMax)
{
m_N_GenCam=0;
m_T_GenCam_ms=T_GenCamMax_ms ;
dyn_cond_verified=false ;
}
}
} else {
LOG_ERROR (”Cannot generate CAM. Error code: “<<cam_error);
\ }
m_event_camCheckConditions = Simulator::Schedule (MilliSeconds (<«

m_T_CheckCamGen_ms) , &CABasicService:: checkCamConditions, this<«
)5
}

From Line 24 to Line 75 the code checks the dynamics of the vehicle and verifies
the constraints specified in condition 1). The vehicle’s status information are col-
lected through the VDP, which in our case is configured to be connected to TraCI
(thus, to SUMO). From Line 80 to Line 99, instead, the code checks the time at which
the last CAM was generated, and if greater than T_GenCamMax it generates a new
CAM, as specified in condition 2). The last line schedules the next iteration of the
checkCamConditions () routine after T CheckCamGen.

A.1.3 CAM decoding and Reception Management

Upon the reception of a CAM, the CA basic service is required to decode the information
and to make the content of the CAM available to the requesting ITS applications. The
standard does not specify the interface over which the information is transmitted from
the CA basic service to the ITS applications. For this reason, MS-VAN3T implements a
callback mechanism, that allows the CAM data to be efficiently delivered to the upper
layers.

The C++ code developed to model the CAMs decoding and transmission to the ITS

141

CA and DEN basic service models in MS-VAN3T

application is reported below.

1 void

2 CABasicService::receiveCam (Ptr<Socket> socket)

s {

4 Ptr<Packet> packet;

5 CAM_t x»decoded _cam;

6 Address from;

7

8 packet = socket—>RecvFrom (from);

9

10 uint8_t sbuffer = new uint8_t[packet—>GetSize () |;

11 packet—>CopyData (buffer, packet—>GetSize () —1);

14 /+ Try to check if the received packet is really a DENM «/
15 if (buffer[1]!=FIX_CAMID)

16
{
17 LOG_ERROR (”Warning: received a message which has messagelD '’<
<<buffer[l]<<”' but '2' was expected.”);
18 return ;
19 }
20
21 /++ Decoding =/
22 void +decoded =NULL;
23 asn_dec _rval t decode_ result;
24
25 do {
26 decode_result = asn_decode(0, ATS_UNALIGNED_BASIC_PER, &<
asn_DEF_CAM, &decoded_, buffer, packet—>GetSize () —1);
27 } while (decode_result.code==RC_WMORE) ;
28
29 if (decode_result.code!=RC_OK || decoded_==NULL) {
30 LOG_ERROR (”Warning: unable to decode a received CAM.”);
31 return ;
32 }
33
34 decoded_cam = (CAM_t =) decoded_;
35
36 m_CAReceiveCallback(decoded_cam, from) ;

37}

In this version, the packet is directly received with a UDP socket at the Facilities
layer (Line 8). In future versions, when BTP and GeoNetworking will be available, the
packet will be received by the lower layers and forwarded to the CA basic service. From
Line 15 the packet is checked and decoded using the asnic function asn_decode().
The decoded CAM is then forwarded to the ITS application using a dedicated callback,
as shown in Line 36.

142

1

A.2 — DEN basic service implementation

The callback is defined inside the CA basic service as:

std:: function<void (CAM_t =, Address)> m_CAReceiveCallback;

And configured thanks to the public method addCARxCallback():

void addCARxCallback(std:: function<void(CAM_t +, Address)> «
rx_callback) {m_CAReceiveCallback=rx_callback;}

At this point, the overlying application which is interested in receiving the CAM in-
formation, can simply enroll one of its function (in this example, AppServer enrolls the
function receiveCAM) to the aforementioned callback:

m_caService.addCARxCallback (std::bind(&appServer ::receiveCAM, <
this ,std::placeholders::_1,std::placeholders::_2));

A.2 DEN basic service implementation

The DEN basic service is the Facilities layer entity operating the DEN protocol. It is
designed to give the possibility to originating ITS applications to trigger, update and
terminate the transmission of DENMs. At DENM reception, it provides the overlying
applications with the requested data. Due to the complexity and variety of different
events that must be characterized, the standard defines 4 types of DENM messages:

« New DENM, a DENM that is generated when the overlying ITS application de-
tects a triggering event for the first time. Each new DENM is associated with an
identifier, called actionlID.

« Update DENM, a DENM that updates the information contained in a previous
DENM. The updated information are transmitted by the same originating ITS ap-
plication that generated the first DENM.

« Cancellation DENM, a DENM informing about the termination of an event. This
type of DENM is generated by the originating ITS applications that triggered the
first DENM.

+ Negation DENM, a DENM that has the same functionalities of the Cancellation
DENM, but that can be generated by a third ITS application, which may have no-
ticed that the event present in the original DENM is not valid anymore.

As in the CA basic service case, MS-VAN3T implements the following sub-functions
to support the required protocol operations:

143

CA and DEN basic service models in MS-VAN3T

« DENM encoding, using the primitives created through the integration with asnIc,
and by relying on the information coming from the upper layers;

« DENM decoding, using the primitives created through the integration with asnic;

« DENM Transmission Management, implementing the DENM generation proto-
col. It provides functions to generate New DENMs, Update DENMs and Cancel-
lation/Negation DENMs, as well as the possibility to send DENMs with fixed fre-
quency for a certain amount of time.

« DENM Reception Management, implementing the protocol for DENMs reception.
It provides functions to check the DENMs validity, to update specific message ta-
bles, and to transmit the required information to the overlying ITS applications.

A.2.1 DENM encoding and Transmission Management

Differently from the CA basic service, which autonomously generates, encode and
transmit CAMs, in DEN basic service DENMs are triggered by the overlying ITS ap-
plications. For this reason, in [27] ETSI defines the interface over which the infor-
mation should be exchanged between applications and Facilities layers. The interface
and the function vary depending on the type of DENM to be transmitted: to generate
a New DENM the AppDENM_trigger () function is called, for an Update DENM the

Category Data Definition
Position of the originating
ITS-S when the triggering event is first detected

Event detection time

Event position Position of the event
Event validity duration Validity duration of the event (optional)
Repetition duration DENM repetition duration (optional)
Transmission interval Interval for the DENM transmission (optional)
Repetition interval Interval of DENM repetition (optional)
Situation container Information to be encoded in the
information Situation container (optional)
Location container Information to be encoded in the
Data from application information Location container (optional)
to DEN basic service A la carte container Information to be encoded in the
information A la carte container (optional)

Relevance area of the event Area around which the event is relevant (optional)
Destination area (to be passed to BTP
and Geonetworking)
Traffic class Geonetworking traffic class
actionID ID identifying the DENM
Failure notification (in case of errors in
the DENM creation)

Destination area

Data returned from DEN
basic service to application Failure notification

Table A.1: Data passed from the applications to AppDENM_trigger () for the genera-
tion of New DENM

144

1

2

3

A.2 — DEN basic service implementation

Category Data Definition
actionID actionID of the DENM to be terminated
Event termination Time at which the event is detected
detection time to be terminated
Event position Original position of the event
Event validity duration Validity of the termination information
Repetition duration DENM repetition duration (optional)
Data from application Transmission interval Interval for the DENM transmission (optional)
to DEN basic service Repetition interval Interval of DENM repetition (optional)

Relevance area of the event Area around which the event is relevant (optional)
Destination area (to be passed to BTP
and Geonetworking)

Destination area

Traffic class Geonetworking traffic class
Data returned from DEN actionID . D 1(.ient1fy1ng. the DENM .
basic service to application Failure notification Failure notification (in case of errors in
v PP ure the DENM creation)

Table A.2: Data passed from the applications to the Facilities layers for the generation
of a Cancellation/Termination DENM

AppDENM_update () function is called, and finally Cancellation/Negation DENM are
generated by the AppDENM_terminate () function.

In Table A.1 and A.2, the interfaces used for the interaction between applications
and DEN basic service to trigger and terminate DENMs are reported. In case an Update
DENM is generated, the interface used is the same as in Table A.1 but containing the
updated information.

The overlying applications are required to fill the event information in the DENM,
as well to instruct the Networking and Transport layer about the destination area that
should be covered by the message. In our case, since for the first implementation of
MS-VANST there is no model for BTP and Geonetworking, the information about des-
tination area and traffic class are not transmitted.

The class of DEN basic service proposed in MS-VAN3T exposes 3 public meth-
ods that are used by the applications to trigger the generation of DENMs. The C++
code developed to model the three methods is reported below, starting from the
appDENM_trigger () function.

DENBasicService_error_t
DENBasicService :: appDENM_trigger (denData data, ActionID_t &actionid)

{
DENBasicService error_t fillDENM_ rval=DENM_NO_ ERROR;
DENM_t xdenm;

if (! CheckMainAttributes ())

{
}

return DENM_ATTRIBUTES_UNSET;

145

20

21

22

23

24

25

26

27

CA and DEN basic service models in MS-VAN3T

if (m_socket_tx==NULL)

return DENM_TX_SOCKET_NOT_SET;
if (! data.isDenDataRight ())
return DENM_WRONG_DE _DATA ;

denm=(DENM_t +) calloc(1,
if (denm==NULL)

sizeof (DENM_t))

return DENM_ALLOC_ERROR;

If validity expired return DENM_T_O_VALIDITY_EXPIRED =/

if (compute_timestampIts (m_real_time) > data.<
getDenmMgmtDetectionTime () + (data.<
getDenmMgmtvValidityDuration ()*MILLI))
return DENM_T_O_VALIDITY_ EXPIRED;

/+ 2. Assign unused actionID value =/
actionid.originatingStationID = m_station_id;
actionid.sequenceNumber = m_seq_number;

std::pair <unsigned long, long> map_index = std::make_pair ((<«
unsigned long)m_station_id,(long)m_seq_number);

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

52

m_seq_number ++;

interval and fill DENM
fillDENM_rval=fillDENM(denm,data,actionid, compute_timestampIts (<«
m_real_time));

Manage Transmission

if (fi11DENM_rval!=DENM_NO_ERROR)

freeDENM (denm) ;
return fillDENM rval;

. Construct DENM and pass
in the future BTP and GeoNetworking,

/++ Encoding ««/

char errbuff[ERRORBUFF_LEN |;

size_t errlen=sizeof (errbuff);

to the lower layers (now UDP,«

then UDP)

if (asn_check_constraints(&asn_DEF_DENM,(DENM_t «)denm,errbuff,&<«

errlen) == —1) {

LOG_ERROR (”Unable to validate the ASN.1 contraints for the <«
current DENM. ”<<std::endl) ;

LOG_ERROR(”Details: ” << errbuff << std::endl);

146

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

A.2 — DEN basic service implementation

return DENM_ASN1_UPER_ENC_ERROR;

}

asn_encode_to_new_buffer result_t encode result = <«
asn_encode_to_new_buffer (NULL,ATS_UNALIGNED_BASIC_PER,& <«
asn_DEF_DENM, denm);

if (encode_result.result.encoded==-1)
return DENM_ASN1_UPER_ENC_ERROR;

}

Ptr<Packet> packet = Create<Packet> ((uint8_t=x) encode_result.<«

buffer, encode_result.result.encoded+1);
free(encode_result.buffer);

m_socket_tx—>Send (packet);

/= 8. 9. Create an entry in the originating ITS—-S message table <«
and set the state to ACTIVE and start the T_O_Validity timer. <«
*/

/+ As all the timers are stored, in this case, for each entry in <
the table, we have to set them before saving the new entry to <«
a map, which is done as last operation. =/

/= We are basically adding the current entry, containing the <«
already UPER encoded DENM packet, to a map of <ActionID , <«
ITSSOriginatingTableEntry > «/

ITSSOriginatingTableEntry entry(=packet, <«
ITSSOriginatingTableEntry :: STATE_ACTIVE,actionid);

m_originatingTimerTable.emplace(map_index,std::tuple<Timer, Timer, <«
Timer >());

DENBasicService :: setDENTimer(std:: get<V_O_VALIDITY_INDEX >(«
m_originatingTimerTable[map_index]) ,Seconds(data.<«
getDenmMgmtValidityDuration ()),&DENBasicService::<
T_O_ValidityStop,actionid);

/+ 10. Calculate and start timers T_RepetitionDuration and <«
T_Repetition when both parameters in denData are > 0 «/

if (data.getDenmRepetitionDuration ()>0 && data.<
getDenmRepetitionInterval () >0)

DENBasicService :: setDENTimer(std:: get<T_REPETITION_INDEX >(<«
m_originatingTimerTable[map_index]) ,MilliSeconds(data.<
getDenmRepetitionInterval ()),&DENBasicService:: <
T_RepetitionStop,actionid);

DENBasicService :: setDENTimer (std:: get<<«
T_REPETITION_DURATION_INDEX >(m_originatingTimerTable[<«
map_index]) ,MilliSeconds(data.getDenmRepetitionDuration ())<«
,&DENBasicService::T_RepetitionDurationStop,actionid);

147

CA and DEN basic service models in MS-VAN3T

83
84

85

86
87
88

89

90
91
92
93

o)

}

/+ 11. Finally create the entry after starting all the timers (it<«
refers to the step '8' of appDENM_trigger in ETSI EN302 637-3«
V1.3.1 «/

m_originatingITSSTable[map_index]=entry;

/+ 12. Send actionID to the requesting ITS—S application. This is<«
requested by the standard, but we are already reporting the <«

actionID using &actionID «/

freeDENM (denm) ;

return DENM_NO_ERROR;

The appDENM_trigger () function is called by the applications with the data spec-

ified in Table A.1 and with a reference to the actionID. As soon as the packet is built
and transmitted (Line 67), an entry in the OriginatingITSSTable is created. This
table, as defined in the standard, contains the information of all the active DENMs that
have been transmitted by the entity. To manage the DENMs wvalidity duration, in Line
76 a timer is set. As soon as the validity expires, the timer will trigger a callback that
removes the entry in the OriginatingITSSTable. From Line 79 to Line 83, some
timers are also set to manage the DENM repetition. When the timer associated with
the repetition time expires, a new DENM is triggered; when the timer associated with
the repetition duration expires, the DENM retransmission is stopped.

1 DENBasicService error_t
> DENBasicService :: appDENM_update(denData data, const ActionID_t <«

s 4

actionid)

DENBasicService_error_t fillDENM_rval=DENM_NO_ERROR;

std::pair <unsigned long, long> map_index = std::make_pair ((<«
unsigned long)actionid.originatingStationID,(long)actionid.<«
sequenceNumber) ;

DENM_t +denm;

if (! CheckMainAttributes ())

{
}

return DENM_ATTRIBUTES_UNSET;

if (m_socket_tx==NULL)

return DENM_TX_SOCKET_NOT_SET;

148

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

A.2 — DEN basic service implementation

denm=(DENM_t) calloc(1l, sizeof (DENM_t));
if (denm==NULL)

{
}

[+ 1. If wvalidity is expired return DENM_T_O_VALIDITY EXPIRED «/

if (compute_timestampIts (m_real_time) > data.<
getDenmMgmtDetectionTime () + (data.<
getDenmMgmtvValidityDuration ()*MILLI))

return DENM T O VALIDITY EXPIRED;

return DENM_ALLOC_ERROR;

/+ 2. Compare actionID in the application request with entries in<
the originating ITS—S message table (i.e. «
m_originatingITSSTable , implemented as a map) =/

/+ Gather also the proper entry in the table, if available. «/

T_Repetition_Mutex.lock() ;
std:: map<std::pair<unsigned long,long >, ITSSOriginatingTableEntry<

>::iterator entry _map_it = m_originatingITSSTable.find(«
map_index) ;
if (entry_map_it == m_originatingITSSTable.end())
{
T_Repetition_Mutex.unlock() ;
return DENM_UNKNOWN_ACTIONID;
}

/+ 3. Stop T_O_Validity, T_RepetitionDuration and T_Repetition (<«
if they were started — this check is already performed by the «
setTimer+ methods) =/

std::get<V_O_VALIDITY_INDEX>(m_originatingTimerTable[map_index]) .«
Cancel () ;

std::get<T_REPETITION_INDEX>(m_originatingTimerTable[map_index]) .«
Cancel () ;

std:: get<T_REPETITION_DURATION_INDEX>(m_originatingTimerTable[<«

map_index]) .Cancel () ;

/+ 4. 5. 6. Manage transmission interval , reference time and fill«
DENM «/

fillDENM_rval=fillDENM(denm,data,actionid, compute_timestampIts (<«
m_real_time));

if (fil11DENM_rval!=DENM_NO_ERROR)
T_Repetition_Mutex.unlock() ;

freeDENM (denm) ;
return fillDENM_rval;

149

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

CA and DEN basic service models in MS-VAN3T

/= 7. 8. Construct DENM and pass it to the lower layers (now UDP, <«

in the future BTP and GeoNetworking, then UDP) =/
/++ Encoding ==/
char errbuff [ERRORBUFF_LEN];
size_t errlen=sizeof (errbuff);

if (asn_check_constraints(&asn_DEF_DENM, denm, errbuff,&errlen) == <«

-1) {

LOG_ERROR(”Unable to validate the ASN.1 contraints for the <«

received DENM. "<<std::endl);
LOG_ERROR(”Details: ” << errbuff << std::endl);
return DENM_ASN1_UPER_ENC_ERROR;

asn_encode_to _new_buffer result_ t encode result = <«
asn_encode_to_new_buffer (NULL,ATS_UNALIGNED_BASIC_PER,& <«
asn_DEF_DENM, denm) ;

if (encode_result.result.encoded==-1)
T_Repetition_Mutex.unlock () ;
return DENM_ASN1_UPER_ENC_ERROR;

}

Ptr<Packet> packet = Create<Packet> ((uint8_t+) encode_result.<«

buffer, encode_result.result.encoded+1);
free(encode_result.buffer);

m_socket_tx—>Send (packet);

/+ 9. Update the entry in the originating ITS—S message table.
entry_map_it—>second.setDENMPacket (* packet) ;

/+ 10. Start timer T_O_Validity. =/

DENBasicService :: setDENTimer(std:: get<V_O_VALIDITY_INDEX>(«
m_originatingTimerTable[map_index]) ,Seconds(data.<
getDenmMgmtValidityDuration ()),&DENBasicService:: <
T_O_ValidityStop,actionid);

/= 11. Calculate and start timers T_RepetitionDuration and <«
T_Repetition when both parameters in denData are > 0 «/

if (data.getDenmRepetitionDuration ()>0 && data.<
getDenmRepetitionInterval () >0)

DENBasicService :: setDENTimer(std:: get<T_REPETITION_INDEX >(«
m_originatingTimerTable[map_index]) ,MilliSeconds(data.<«
getDenmRepetitionInterval ()),&DENBasicService:: <
T_RepetitionStop,actionid);

150

*/

88

89

90

91

92

93

94

95

96

A.2 — DEN basic service implementation

DENBasicService :: setDENTimer(std:: get<«
T_REPETITION_DURATION_INDEX >(m_originatingTimerTable[<«
map_index]) ,MilliSeconds(data.getDenmRepetitionDuration ())<«
,&DENBasicService :: T_RepetitionDurationStop,actionid);

T_Repetition_Mutex.unlock () ;
freeDENM (denm) ;

return DENM_NO_ERROR;

The code developed in MS-VANST for the appDENM_update () function is similar
to the one developed to create a new DENM. The main difference is that the application
should pass to the function, as a parameter, the actionID of the DENM that should be
updated. Also in this case, timers are used to manage the validity duration, repetition
interval and repetition duration.

DENBasicService_ error_t
DENBasicService :: appDENM_termination(denData data, const ActionID_t <«

20

21

22

23

24

25

26

27

actionid)

DENM_t xdenm;

uint8 t termination=0;
Termination t asn_termination;
long referenceTime;

DENBasicService_error_t fillDENM_rval=DENM_NO_ERROR;

if (! CheckMainAttributes ())

{

return DENM_ATTRIBUTES_UNSET;

if (m_socket_tx==NULL)
return DENM_TX_SOCKET_NOT_SET;
denm=(DENM_t+) calloc(l, sizeof (DENM_t));

if (denm==NULL)

{

return DENM_ALLOC_ERROR;

std::pair <unsigned long, long> map_index

= std::make_pair ((«

unsigned long)actionid.originatingStationID,(long)actionid.«

sequenceNumber) ;

151

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

51

52

53

54

56

57

58

59

60

61

62

CA and DEN basic service models in MS-VAN3T

/+ 1. If wvalidity is expired return DENM_T_O_VALIDITY_EXPIRED =/

if (compute_timestampIts (m_real_time) > data.<
getDenmMgmtDetectionTime () + (data.<
getDenmMgmtValidityDuration ()*MILLI))

return DENM_T_O_VALIDITY_EXPIRED;

/+ 2. Compare actionID in the application request with entries in<
the originating ITS—S message table and the receiving ITS-S «
message table «/

T_Repetition_Mutex.lock () ;

std::map<std::pair<unsigned long,long>, ITSSOriginatingTableEntry<«
>::iterator entry_originating_ table = m_originatingITSSTable.<«
find (map_index) ;

/+ 2a. If actionID exists in the originating ITS—S message table <«
and the entry state is ACTIVE, then set termination to <«
isCancellation . «/

if (entry_originating_table != m_originatingITSSTable.end())

T_Repetition_Mutex.unlock() ;
return DENM_UNKNOWN_ ACTIONID_ ORIGINATING;

}

else if (entry_originating_ table—>second.getStatus()==«
ITSSOriginatingTableEntry :: STATE_ACTIVE)

{
asn_termination=Termination_isCancellation;
if (asn_maybe_assign_optional_data<Termination_t>(&<«
asn_termination,&denm—>denm.management.termination, «
m_ptr_queue)==-—1)
{
T_Repetition_Mutex.unlock () ;
return DENM_ALLOC_ERROR;
}
else
{
termination=0;
}
}
else
{
T_Repetition_Mutex.unlock () ;
return DENM_NON_ACTIVE_ACTIONID_ORIGINATING;
}

/= 2b. If actionID exists in the receiving ITS—S message table «
and the entry state is ACTIVE, then set termination to <«
isNegation . «/

152

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

A.2 — DEN basic service implementation

std::map<std::pair<unsigned long,blong>, ITSSReceivingTableEntry<«

>::iterator entry_receiving_table = m_receivingITSSTable.find (<«
map_index) ;
if (entry_receiving_table != m_receivingITSSTable.end())

{

T_Repetition_Mutex.unlock () ;
return DENM_UNKNOWN_ACTIONID_RECEIVING;

else if (entry_receiving_table—>second.getStatus()==«
ITSSReceivingTableEntry :: STATE_ACTIVE)

asn_termination=Termination_isNegation;

if (asn_maybe_assign_optional_data<Termination_t>(&<
asn_termination,&denm—>denm.management.termination, <
m_ptr_queue)==—1)

T_Repetition_Mutex.unlock () ;
return DENM_ALLOC_ERROR;

}

else

{

termination=1;

}

else

{

T_Repetition_Mutex.unlock () ;
return DENM_NON_ACTIVE ACTIONID RECEIVING:;

if (termination==1)

{

referenceTime=entry_receiving_table—>second.getReferenceTime ()<«

5

if (referenceTime==—1)

{

T_Repetition_Mutex.unlock () ;
return DENM_WRONG TABLE DATA ;

}

else

{

referenceTime=compute_timestampIts (m_real_time);

/+ 3. Set referenceTime to current time (for termination = 0) or <«
to the receiving table entry's reference time (for termination<
= 1) and fill DENM =«/

fillDENM_rval=fillDENM(denm,data,actionid, referenceTime) ;

153

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

CA and DEN basic service models in MS-VAN3T

if (fil11DENM_rval!=DENM_NO_ERROR)

T_Repetition_Mutex.unlock() ;
freeDENM (denm) ;
return fillDENM_rval;

/+ 4a. Gather the proper timers from the timers table «/

std::map<std::pair<unsigned long,6long >, std::tuple<Timer, Timer, <
Timer > >::iterator entry_timers_table = m_originatingTimerTable<
.find (map_index) ;

/+ 4b. Stop T_O_Validity , T_RepetitionDuration and T_Repetition (<
if they were started — this check is already performed by the «
setTimer+ methods) =/

std::get<V_O_VALIDITY_INDEX>(entry_timers_table—>second).Cancel ()<«

std::get<T_REPETITION_INDEX>(entry_timers_table—>second).Cancel ()<«
std:: get<T_REPETITION_DURATION_INDEX >(entry_timers_table—>second)<«
.Cancel () ;

/= 5. Construct DENM and pass it to the lower layers (now UDP, in<
the future BTP and GeoNetworking, then UDP) «/

/++ Encoding ««/

char errbuff[ERRORBUFF_LEN];

size_t errlen=sizeof (errbuff);

if (asn_check_constraints(&asn_DEF_DENM, denm, errbuff,&errlen) == <«
-1) {
NS_LOG_ERROR(”Unable to validate the ASN.1 contraints for the <«
received DENM. ”<<std::endl);
NS_LOG_ERROR(”Details: ” << errbuff << std::endl);
return DENM_ASN1_UPER_ENC_ERROR;

asn_encode_to_new_buffer result_t encode _result = <«
asn_encode_to_new_buffer (NULL,ATS_UNALIGNED_BASIC_PER,& <«
asn_DEF_DENM, &denm) ;

if (encode_result.result.encoded==-1)
T_Repetition_Mutex.unlock () ;
return DENM_ASN1_UPER_ENC_ERROR;

}

Ptr<Packet> packet = Create<Packet> ((uint8_t+) encode_result.<

buffer, encode_result.result.encoded+1);
free(encode_result.buffer);

m_socket_tx—>Send (packet);

154

A.2 — DEN basic service implementation

142

143

144
145

146

147
148

149

150
151
152

153

154
155
156

157

158

159
160

161

162

163

164
165
166
167
168
169

170

1}

/+ 6a. If termination is set to 1, create an entry in the <«
originating ITS—S message table and set the state to NEGATED. <

* /
if (termination==1)
{
ITSSOriginatingTableEntry entry(xpacket, <«
ITSSOriginatingTableEntry :: STATE_NEGATED, actionid) ;
m_originatingITSSTable[map_index]=entry;
}

/+ 6b. If termination is set to 0, update the entry in the «
originating ITS—S message table and set the state to CANCELLED<«
*/
else
{
entry_originating_ table—>second.setDENMPacket (* packet) ;
entry_originating_ table—>second.setStatus (<«
ITSSOriginatingTableEntry :: STATE_CANCELLED) ;

/+ 7. Start timer T_O_Validity. =/

DENBasicService :: setDENTimer(std:: get<V_O_VALIDITY_INDEX >(«
entry_timers_table—>second) ,Seconds(data.<«
getDenmMgmtValidityDuration ()),&DENBasicService::<
T_O_ValidityStop,actionid);

/+ 8. Calculate and start timers T_RepetitionDuration and <«
T_Repetition when both parameters in denData are > 0 «/

if (data.getDenmRepetitionDuration ()>0 && data.<
getDenmRepetitionInterval () >0)

DENBasicService :: setDENTimer (std:: get<T_REPETITION_INDEX>(«
entry_timers_table—>second) ,MilliSeconds(data.<«
getDenmRepetitionInterval ()),&DENBasicService:: <
T_RepetitionStop,actionid);

DENBasicService :: setDENTimer (std:: get<<«
T_REPETITION_DURATION_INDEX >(entry_timers_table—>second) ,«
MilliSeconds(data.getDenmRepetitionDuration ()),&<«
DENBasicService :: T_RepetitionDurationStop,actionid);

T_Repetition_Mutex.unlock() ;
freeDENM (denm) ;

return DENM_NO_ ERROR;

The function appDENM_termination() is called whenever an application requires

the DEN basic service to stop the generation of DENMs for a specific event. It can also be

155

1
2
3
4
5
6
7
8
9

22
23

24

CA and DEN basic service models in MS-VAN3T

used to generate Negation DENM: in Line 63, the ReceivingITSSTable (containing
the DENM received from other entities) is checked, and in case the DENM is found to be
present in the table, the generated DENM is tagged as Negation DENM (Line 71). Finally,
from Line 116 to Line 118 all the timers previously associated to the DENM are stopped,
the packet is created and sent through the UDP socket. Also the Negation/Cancellation
DENM is associated with a validity duration and can be sent with a frequency set by
the application, as implemented from Line 156 to Line 164.

A.2.2 DENM decoding and Reception Management

Upon the reception of a DENM, the DEN basic service is required to decode the informa-
tion and to make the content of the DENM available to the requesting ITS applications.
In this case, the standard specifies that the DENM information should entirely be trans-
mitted at application layer. In MS-VANS3T, a callback mechanism is used to pass the
information to the upper layers. Differently from the CA basic service, here a table
containing the information about the each received DENM is created and maintained.
The table, named ReceivingITSSTable, stores each DENM and its state, and is used
to perform some of the operation of the DENM protocol.

The Cc++ code developed to model the DENM reception and subsequent operations
is reported below.

void
DENBasicService :: receiveDENM(Ptr<Socket> socket)
{
Ptr<Packet> packet;
DENM_t x*decoded denm;
denData den_ data;
Address from;
ValidityDuration_t validityDuration;
ActionID_t actionID;
long detectionTime_long;
long referenceTime_long;
std::pair <unsigned long, long> map_index;

packet = socket—>RecvFrom (from);

uint8_t sbuffer = new uint8_t[packet—>GetSize () |;
packet—>CopyData (buffer, packet—>GetSize () —1);

if (! CheckMainAttributes ())

{

LOG_ERROR (”DENBasicService has unset parameters. Cannot <«
receive any data.”);
return ;

156

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

53

54

55

57

58

59

60

61

62

A.2 — DEN basic service implementation

/= Try to check if the received packet is really a DENM «/
if (buffer[1]!=FIX_DENMID)

{
LOG_ERROR ("Warning: received a message which has messagelD '’«
<<buffer[l]<<”' but '1' was expected.”);
return ;
}
/++ Decoding ««/
void xdecoded_ =NULL;
asn_dec_rval t decode_result;
do {
decode result = asn_decode(O, ATS UNALIGNED BASIC_PER, &<«
asn_DEF_DENM, &decoded_, buffer, packet—>GetSize () —1);
} while (decode_result.code==RC_WMORE) ;
if (decode_result.code!=RC_OK || decoded_==NULL) {
LOG_ERROR (”Warning: unable to decode a received DENM.”);
return ;
!
decoded_denm = (DENM_t) decoded_;
/+ Compute T_R_Validity expiration time =/
validityDuration = decoded_denm—>denm.management.validityDuration<«

!= NULL ? +(decoded_denm—>denm.management.validityDuration) :¢
DEN DEFAULT VALIDITY S;
asn_INTEGER2long (&decoded_denm—>denm.management.detectionTime,&eJ
detectionTime_long) ;
asn_INTEGER2long (&decoded_denm—>denm.management .referenceTime,&<«
referenceTime_long) ;

long now = compute_timestampIts (m_real time);
/+ 1. If wvalidity is expired return without performing further «
steps «/

if (now > detectionTime_long + ((long)validityDuration=MILLI))

LOG_ERROR ("Warning: received a DENM with an expired validity. <«

Detection time (ms): “<<detectionTime_long<<”; validity <«
duration (s): ”“<<(long)validityDuration);
LOG_ERROR(” Condition: '’“<<now<<” > << detectionTime_long + ((<«

I

long)validityDuration*MILLI)<<’
operations.”);
return ;

is true. Omitting further <«

157

63

64

65

66

67

68

69

70

71

72

76

77

78

84

91

92

93

CA and DEN basic service models in MS-VAN3T

/= Lookup entries

received actionID =/

in the receiving ITS—-S message table with the <«

actionID=decoded_denm—>denm.management.actionID;
map_index = std::make_pair((unsigned long)actionID.<«
originatingStationID,(long)actionID.sequenceNumber) ;

std::map<std::pair<unsigned long,long >, ITSSReceivingTableEntry<«
>::iterator entry_rx_map_it = m_receivingITSSTable.find (<«

map_index) ;

if (entry_rx_map_it == m_receivingITSSTable.end ())

{

}

/[« a. If entry does not exist in the receiving ITS—S message <«
table , check if termination data exists in the

received DENM. =/

if (decoded_denm—>denm.management .termination!=NULL &&

(»(decoded_denm—>denm.management . termination) ==«
Termination_isCancellation ||

»(decoded_denm—>denm.management . termination)==«
Termination_isNegation))

/+ if yes, discard the
further steps. =/

received DENM and omit execution of <«

LOG_ERROR (”Warning: received a new DENM with termination <«

data (either cancell
reception steps.”);
return ;

}

else

{

ed or negated). Omitting further <«

/+ 1if not, create an entry in the receiving ITS-S message <

table with the received DENM and set the state to ACTIVE«
(SSP is not yet implemented) =/

ITSSReceivingTableEntry entry (+packet, <«
ITSSReceivingTableEntry :: STATE _ACTIVE,actionID, <
referenceTime_long,detectionTime_long) ;

m_receivingITSSTable[map_index]=entry;

else

{

/+ b. If entry does exist

in the receiving ITS—S message table «

, check if the received referenceTime is less than the <«

entry referenceTime ,

+ or the received detectionTime is less than the entry <«

detectionTime =/
long stored_reference_time
getReferenceTime () ;
long stored_detection_time
getDetectionTime () ;

= entry_rx_map_it—>second.<«

entry_rx _map_it—>second. <«

158

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

A.2 — DEN basic service implementation

if (referenceTime_long < stored_reference_time || <«
detectionTime_long < stored_detection_time)

/+ 1. if yes, discard received DENM and omit execution of <«
further steps. «/

LOG_ERROR ("Warning: received a new DENM with reference time<«
< entry reference time or detection time < stored «
detection time.”);

LOG_ERROR(“reference time (ms): “<<referenceTime_long<<"; <«
stored value: “<<stored reference_ time

<<”; detection time (ms): “<<detectionTime_long<<”; store <«
value: “<<stored_detection_time);

return ;

}

else
{

/+ 1ii. Otherwise, check if the received DENM is a repeated <
DENM of the entry, i.e. the received referenceTime <«
equals to the entry

x» referenceTime , the received detectionTime equals to the «
entry

+ detectionTime , and the received termination value equals <«
to the entry state «/

if (referenceTime_long == stored_reference_time &&

detectionTime_long == stored_detection_time &&

(

(decoded_denm—>denm.management .termination==NULL && !«
entry rx_map_it—>second.isTerminationSet()) ||

(decoded_denm—>denm.management .termination!=NULL && (<
decoded_denm—>denm.management .termination)==«
entry_rx_map_it—>second.getTermination ())

))

{

/+ 1. If yes, discard received DENM and omit execution <
of further steps. =/

LOG_ERROR (”Warning: received a repeated DENM. It won't <«
produce any new effect on the involved vehicle.”);

return ;

}

else
{

/+ 2. Otherwise, update the entry in receiving ITS-S <«
message table, set entry state according

+ to the termination value of the received DENM. (SSP is<«

not yet implemented) =/

ITSSReceivingTableEntry entry (*packet,<«
ITSSReceivingTableEntry :: STATE_ACTIVE,actionID, <«
referenceTime_long,detectionTime_long,decoded_denm—><«
denm.management.termination);

159

CA and DEN basic service models in MS-VAN3T

124 entry_rx_map_it—>second=entry;

125 }

126 }

127

128 }

129

130 /+ Start/restart T_R_Validity timer. =«/

131 if (m_T_R_Validity_Table.find(map_index) == m_T_R_Validity_Table.<«
end()) {

132 m_T_R_Validity_Table[map_index] = Timer () ;

133 }

134

135 DENBasicService :: setDENTimer (m_T_R_Validity_Table[map_index],<

Seconds ((long)validityDuration) ,&DENBasicService :: <
T_R_ValidityStop,actionID);

136

137 /«+ Fill den data with the received information =«/

138 DENBasicService:: fillDenDataHeader (decoded_denm—>header, <
den_data) ;

139 DENBasicService:: fillDenDataManagement (decoded_denm—>denm.<

management , den_data);

140

141 if (decoded_denm—>denm.location!=NULL)

142 DENBasicService:: fillDenDataLocation (+*decoded_denm—>denm.<
location, den_data);

143

144 if (decoded_denm—>denm.situation!=NULL)

145 DENBasicService:: fillDenDataSituation (+decoded_denm—>denm.<«
situation, den_data);

146

147 if (decoded_denm—>denm.alacarte!=NULL)

148 DENBasicService:: fillDenDataAlacarte (*decoded_denm—>denm.<
alacarte, den_data);

149

150 miDENReceiveCallback(denfdata,from);

151}

As soon as the packet is received and the DENM is decoded, its validity is checked
and the operations to populate and maintain the ReceivingITSSTable start. In case
of a Negation/Cancellation DENM the corresponding entry is deleted from the table,
while in the other cases it is created or updated. From Line 130 to Line 135, a timer as-
sociated to the validity of received DENM is set: as soon as it expires, the corresponding
DENM will be erased from the ReceivingITSSTable. Finally, from Line 137 to Line
150, the data to be send to the applications is parsed and transmitted using a callback
(similarly to the CA basic service).

160

Appendix B

The Collision Avoidance
Algorithm

B.1 Introduction

The core of the Collision Avoidance Service (CAS) presented in Chapter 4 is the Col-
lision Avoidance Algorithm (CAA). The main target of CAA is to determine whether
the entities that send CAMs to the system are set on a collision course. The calculation
takes into account the position, heading, speed, acceleration and dimension extracted
from the CAMs, and the two parameters inferred are the Time-to-Collision (T2C) and
the Space-to-Collision (52C).

In a nutshell, the algorithm projects the position of the entities under test in the
future, based on the current status and dynamics. Then, it computes the mutual distance
and, through derivatives, it infers the time at which the aforementioned distance will
be at its minimum. At this point, using the derived time, it is possible to understand
what will be the minimum distance between the two entities under test.

Note that, although the algorithm has been originally thought to facilitate the ve-
hicles to avert potential collisions, being it based on trajectory computation, it can be
used to support any kind of road player, including vulnerable users such as cyclists,
scooter drivers and even pedestrians.

B.2 Collision Avoidance Algorithm pseudocode

The pseudocode of CAA is shown in Algorithm 2. It is run each time a new CAM
message is received; for simplicity, the entity that generated the CAM will be referred
to as ey. CAA requires as input: (i) the position p, speed v, acceleration d and size s
of ey; (ii) the set B containing the latest information of the other entities connected to
the system. In Line 1 the set C (that at the end will contain the list of entities which

161

The Collision Avoidance Algorithm

Algorithm 2 Collision Avoidance Algorithm pseudocode

Require: p,v,d,s, B
1:. C«9Q
2: pt) « pet v+ %axtz
3: p(t) <« py+ vt + %ayt2
4: for allb € Bdo
5: read p,v,a,s from b
6 Pt « pet it + 2ol
. A S LY
7: p,(t) < p, + vyt +oayt)
3 D(t) «~ (px - px)2 + (py - py)z =
. . 1 N 2 . R 1 R 2
=[P B =0t S (@e—a)]+ [P B+ (v =)t + 3 (g, —)]
9: T« t: d%D(t):o
10: for allt* € Tdo

11: if t* < 0 or t* > t2¢, then
12: continue

13: end if

14: d* «— \D(t")

15: s2¢, = computeS2CThreshold(s, §)
16: if d* < s2¢, then

17: C«Cuib}

18: break

19: end if

20: end for

21: end for

22: return C

may potentially collide with e)) is initialized, and in Line 2 and 3 the position of ¢ is
projected in the future using the uniformly accelerated motion formula.

At this point, the algorithm iterates over all the entities b present in B (Line 4), and,
similarly to the previous step, projects their position according to the information stored
in B (Line 6 and 7). Then, in Line 8, the squared Euclidean distance between ¢, and b is
computed.

Therefore, D(¢) represents the squared distance between ¢, and b as a function of
time. Since the system is interested in knowing what will be the minimum of such
a distance, in Line 9 the derivative of D(¢) in the time domain is computed and all the
possible solutions are stored in 7. Among the computed solutions t*, CAA discards
those which correspond to negative times and to times that will be too far in the future
(Line 11). Finally, CAA computes the minimum distance (S2C) in Line 14, and adds to
C only those entities which will have a minimum mutual distance with e; lower than a
certain distance threshold. The computation of this distance threshold depends on the
size of the involved entities and will be explained in the next sections.

162

B.3 — T2C threshold

After processing all the entities present in B, the algorithm returns the set C con-
taining the entities that will likely collide with ej, together with the computed T2C and
S2C values.

B.3 T2C threshold

The value of the T2C threshold determines the time at which the first DENM message
related to a certain collision is sent to the involved entities. This value should be nor
too big, to avoid receiving DENM related to dangerous situation that will happen too
far in the future, nor too small, to avoid that the involved entities do not have time to
properly react to the warning.

(a) The green region represents the virtual safety shield around the yellow
vehicle, according to ETSI [34].

At Ap Ar Aa
— | r) \ ‘ r . | | | time
A &, X ® =
Collision detected DENM received DENM processed Start evasive maneuver Collision

and DENM sent

(b) Timeline comprising each phase between the DENM generation and the actual collision.

Figure B.1: The selection of the T2C threshold should take into account several factors,
from the involved entities dynamics to the road surface conditions.

163

The Collision Avoidance Algorithm

The ETSI standard in [34] provides some general guidelines on how to set this value.
Each vehicle is in charge of defining a self virtual safety shield, as represented in Figure
B.1a, and as detailed in Section 4.4.1. The dimension of this shield is dynamic and de-
pends on a number of factors: the speed, the braking properties, the vehicle’s mass, the
tire status and the road surface conditions are among the most important. Whenever
a vehicle receives a DENM, if it detects that it may be related to a dangerous situa-
tion within its safety shield, then the in-vehicle collision avoidance mechanisms (either
HMI-based or autonomous evasive maneuver) should be triggered. Since CAS is not
aware of the size of such a shield, it will be necessary to select a T2C that generates
DENMs for events happening close to the outside border of the shield, so that the ve-
hicles receiving it have the time to implement an appropriate reaction.

To better characterize the various phases involved in the setting of the T2C thresh-
old, in Figure B.1b, the main events happening between the DENM generation and the
actual collision are reported. At represents the time gap from when a DENM is sent, to
when it is received at the radio interface of the involved entity. Therefore, At compre-
hends the communication delays (time to access the channel, transmission, propagation
and reception delays), and it is strictly dependent on the access technology adopted. Af-
ter the DENM is received, it takes Ap for the receiver to process the information. This
value mostly depends on the receiving system performances, and comprises the time to
decode the information, to present it at application layer (where the decision is taken),
and to show the warning on the HMI system (or, in case of advanced autonomous driv-
ing system, to trigger the in-vehicle actuators). In case the HMI warning is triggered,
another important contribution is played by the time Ar, denoting the time required
for human driver to be aware of, to interpret the HMI information and to act on the
vehicle system [34]. Finally, the last contribution is given by Aa, representing the time
required for the entity to take actions to avoid the collision. Aa depends on the decel-
eration capabilities, on the mass of the entity, on its current speed and on other factors
(also external, like the road surface conditions).

Therefore, the CAA should set the T2C threshold to be higher enough to compre-
hend all the aforementioned time contributions, plus an additional safety margin (e,
in Equation B.1) taking into account additional delays and possible positioning system
eITors.

T2Cihreshold > At + Ap + Ar + Aa+ € (B.1)

B.4 S2C threshold

The value of the S2C threshold determines the minimum mutual distance that two pro-
jected trajectories should reach before a collision risk is reported by CAA. Differently
from the T2C threshold, whose computation involves a number of external factors (also
independent on the involved entities), in this case the CAA has all the information

164

B.4 — S2C threshold

L1
w1

Figure B.2: Worst case, in terms of mutual distance (d), in which two entities collide at
an intersection.

needed to compute such a minimum distance. In fact, each CAM contains the corre-
sponding entity’s length and width, that can be used to asses the worst case, in terms
of mutual distance, in which two entities will collide. In Figure B.2, such a distance is
represented by the red line, and referred to as d.

In this case, the distance between the entities is measured from the center of the
front side. In case of vehicles, it will be the center of the front bumper; this choice was
taken to reflect the way in which SUMO (the mobility simulator on top of which CAS
was first built) reports the simulated entities positions. In a real scenario this parameter
will be different: the GPS antenna is normally placed at the top of the vehicle center, or
in the pocket of the vulnerable user (in case they use a smarphone), so that the distance
calculation will be slightly different.

Therefore, the value of d is computed by applying the Pythagorean theorem on c1
and c2. The Equation B.2 shows how c1 and c2 are computed; otherWidth(max(L1,L2))
is a simple function that returns W2 if the maximum between L1 and L2 is L1, and that
returns W1 vice-versa. At the same time, thisWidth(max(L1,L2)) returns W1 in case
that the maximum between L1 and L2 is L1, and it returns W2 vice-versa.

c1 = max(L1, L2) + otherWidth(max(L1, L2))/2

B.2
c2 = thisWidth(max(L1,L2))/2 (B.2)

Equation B.3 shows the computation of d, to which a safety margin y is added, to

165

The Collision Avoidance Algorithm

take into account possible positioning errors and to avoid that two entities do not pass
very close to each other without the system detecting the actual danger.

d = S2Cpreshold = Nc1? +¢22 +y (B.3)

The value of dis the value that CAA associates to the S2C threshold, and the routines
described in this section are those corresponding to the function computeS2CThreshold
in Line 15 of Algorithm 2.

166

List of acronyms

3GPP
AC
AIFS
ASN.1
BSM
BSS
BTP
CA
CAA
CA-BS
CAM
CAS
CBR
CCH
C-ITS
CRLVE
CSMA-CA
D2D
DCC
DE-BS
DENM
DMRS
DSRC
EARFCN
EDCA

Third Generation Partnership Project

Access Category

Arbitration Inter-Frame Spacing

Abstract Syntaxt Notation revision One

Basic Safety Message

Basic Service Set

Basic Transport Protocol

Certificate Authority

Collision Avoidance Algorithm

Cooperative Awareness Basic Service

Cooperative Awareness Message

Collision Avoidance System

Channel Busy Ratio

Control Channel

Cooperative Intelligent Transportation System
Certificate Revocation List Verification Entity
Carrier Sensing Multiple Access - Collision Avoidance
Device-to-Device

Decentralized Congestion Control

Decentralize Environmental Basic Service
Decentralized Environmental Notification Message
Demodulation Reference Signal

Dedicated Short-Range Communication

E-UTRA Absolute Radio Frequency Channel Number
Enhanced Distributed Channel Access

167

List of acronyms

EN European Norm

eNB E-UTRAN NodeB

EPC Evolved Packet Core

ETSI European Telecommunication Standards Institute
EV Emergency Vehicle

EVA Emergency Vehicle Alert

FCC Federal Communications Commission
GN GeoNetworking

gNB Next Generation NodeB

gNB Graphical User Interface

GPS Global Positioning System

ICA Intersection Collision Avoidance
ICRW Intersection Collision Risk Warning
IEEE Institute of Electrical and Electronics Engineers
ITS Intelligent Transportation System
ITS-S Intelligent Transportation System Station
IVI Infrastructure to Vehicle Information
LaMP Latency Measurement Protocol

LaTe Latency Tester

LDM Local Dynamic Map

LCRW Longitudinal Collision Risk Warning
LTE Long Term Evolution

MAC Medium Access Control

MANETs Mobile Ad-Hoc Networks

MBMS Multimedia Broadcast Multicast Service
MCS Modulation and Coding Scheme

MEC Multi-Access Edge Computing

MLME MAC Layer Management Entity

MME Mobility Management Entity

MNO Mobile Network Operator

NR New Radio

ns-3 network simulator 3

168

List of acronyms

NTP Network Time Protocol

OCB Outside the Context of an 802.11 BSS
OBU On-board Units

OFDM Orthogonal Frequency-Division Multiplexing
P2PCD Peer-to-peer Certificate Distribution
PDR Packet Delivery Ratio or Packet Drop Ratio (depends on the context)
PDU Protocol Data Unit

PGW Packet Data Network Gateway

PSID Provider Service Identifier

PSSCH Physical Sidelink Control Channel
PTP Precion Time Protocol

QoS Quality of Service

RHS Road Hazard Signaling

RLT Road and Lane Topology

RP Resource Pool

RSSI Received Signal Strength Indicator
RSU Road Side Unit

RTT Round Trip Time

S2C Space-to-collision

SAE Society of Automotive Engineers
SAM Service Announcement Message
SC-FDMA Single carrier frequency division multiple access
SCH Service Channel

SCI Sidelink Control Information

SDS Secure Data Service

SGW Serving Gateway

SPDU Secured Protocol Data Unit

SSME Station Security Management Entity
STA 802.11 Stations

T2C Time-to-collision

TB Transport Block

TLM Traffic Light Maneuver

169

List of acronyms

TS Technical Specification

TDC Transmission Datarate Control

TPC Transmission Power Control

TRC Transmission Rate Control

TTI Transmission Time Interval

UE User Equipment

URLLC Ultra Reliable Low Latency Communication
V2I Vehicle-to-Infrastructure

V2N Vehicle-to-Network

vap Vehicle-to-Pedestrian

v2v Vehicle-to-Vehicle

Va2X Vehicle-to-Everything

VANETs Vehicular Ad-Hoc Networks

vDP Vehicle Data Provider

VNMF Virtualized Network Measurements Function
WAVE Wireless Access for Vehicular Environment
WLAN Wireless Local Area Network

WME WAVE Management Entity

WNIC Wireless Network Interface Controller
WSA WAVE Service Advertisement

WSM WAVE Short Message

WSMP WAVE Short Message Protocol

170

Bibliography

[1]

3GPP TR 21.914 V14.0.0 - 3rd Generation Partnership Project; Technical Specifica-
tion Group Services and System Aspects; Release 14 Description; Summary of Rel-
14 Work Items (Release 14). Technical Requirement. 3rd Generation Partnership
Project, 2018.

3GPP TR 21.915 V15.0.0 - 3rd Generation Partnership Project; Technical Specifica-
tion Group Services and System Aspects; Release 15 Description; Summary of Rel-
15 Work Items (Release 15). Technical Requirement. 3rd Generation Partnership
Project, 2019.

3GPP TR 21.916 V0.6.0 - 3rd Generation Partnership Project; Technical Specifica-
tion Group Services and System Aspects; Release 16 Description; Summary of Rel-
16 Work Items (Release 16). Technical Requirement. 3rd Generation Partnership
Project, 2020.

5G-LENA simulator. URL: https://5g-lena.cttc.es/.

5GAA - Coexistence of C-V2X and ITS-G5 at 5.9GHz. White Paper. 5G Automotive
Association, 2018.

8/671/EC- Commission Decision of 5 August 2008 on the Harmonised use of Radio

Spectrum in the 5875-5905 MHz Frequency Band for Safety-Related Applications of
Intelligent Transport Systems (ITS). Standard. European Commission, 2008.

A ns3 module for bidirectional coupling with SUMO. URL: https: //github.
com/vodafone-chair/ns3-sumo-coupling.

A Two-Way Active Measurement Protocol (TWAMP). Tech. rep. RFC, 2008. por:
10.17487/RFC5357.

A. Abunei, C. Comsa, and I. Bogdan. “Implementation of a Cost-effective V2X
hardware and software platform.” In: 2016 International Conference on Commu-
nications (COMM). June 2016, pp. 367-370. por: 10 . 1109 / ICComm . 2016 .
7528312.

A. Abunei, C. Comsa, and 1. Bogdan. “Implementation of ETSI ITS-G5 based
inter-vehicle communication embedded system.” In: 2017 International Sympo-
sium on Signals, Circuits and Systems (ISSCS). 2017, pp. 1-4. por: 10 . 1109/
ISSCS.2017.8034921.

171

https://5g-lena.cttc.es/
https://github.com/vodafone-chair/ns3-sumo-coupling
https://github.com/vodafone-chair/ns3-sumo-coupling
https://doi.org/10.17487/RFC5357
https://doi.org/10.1109/ICComm.2016.7528312
https://doi.org/10.1109/ICComm.2016.7528312
https://doi.org/10.1109/ISSCS.2017.8034921
https://doi.org/10.1109/ISSCS.2017.8034921

Bibliography

[14]

N. Agafonovs, G. Strazdins, and M. Greitans. “Accessible, customizable, high-
performance IEEE 802.11p vehicular communication solution.” In: 2012 The 11th
Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net). June 2012,
pp. 127-132. DOI: 10.1109/MedHocNet . 2012.6257112.

An assessment of LTE-V2X (PC5) and 802.11p direct communications technologies
for improved road safety in the EU. White paper. 5GAA, 2017.

G. Avino, M. Malinverno, C. Casetti, C. F. Chiasserini, F. Malandrino, M. Rapelli,
and G. Zennaro. “Support of Safety Services through Vehicular Communica-
tions: The Intersection Collision Avoidance Use Case.” In: 2018 International Con-
ference of Electrical and Electronic Technologies for Automotive. 2018, pp. 1-6.

N. Baldo, M. Miozzo, M. Requena-Esteso, and J. Nin-Guerrero. “An Open Source
Product-oriented LTE Network Simulator Based on ns-3.” In: Proceedings of the
14th ACM International Conference on Modeling, Analysis and Simulation of Wire-
less and Mobile Systems. 2011, pp. 293-298. URL: http://doi.acm.org/10.
1145/2068897.2068948.

A. Bazzi, G. Cecchini, M. Menarini, B. Masini, and A. Zanella. “Survey and per-
spectives of vehicular Wi-Fi versus sidelink cellular-V2X in the 5G era.” In: Future
Internet 11.6 (2019), p. 122.

A.Bohm, M. Jonsson, and E. Uhlemann. “Performance comparison of a platoon-
ing application using the IEEE 802.11p MAC on the control channel and a cen-
tralized MAC on a service channel” In: 2013 IEEE 9th International Conference on
Wireless and Mobile Computing, Networking and Communications (WiMob). Oct.
2013, pp. 545-552. pO1: 10.1109/WiMOB.2013.6673411.

G. Carneiro, P. Fortuna, and M. Ricardo. “FlowMonitor - a network monitoring
framework for the Network Simulator 3 (NS-3).” In: (Jan. 2009). por: 10.4108/
ICST.VALUETOOLS2009.7493.

J. Choi, V. Marojevic, C. B. Dietrich, J. H. Reed, and S. Ahn. “Survey of Spec-
trum Regulation for Intelligent Transportation Systems.” In: IEEE Access 8 (2020),
pp- 140145-140160. po1: 10.1109/ACCESS.2020.3012788.

F. Eckermann, M. Kahlert, and C. Wietfeld. “Performance Analysis of C-V2X
Mode 4 Communication Introducing an Open-Source C-V2X Simulator.” In: 2019
IEEE 90th Vehicular Technology Conference (VTC2019-Fall). 2019, pp. 1-5. por:
10.1109/VICFall.2019.8891534

ETSI. ETSI Standard. Oct. 2020. URL: https://www.etsi.org/standards#
Transportation.

ETSIEN 302 636-1 V1.2.1 - Intelligent Transport Systems (ITS); Vehicular Commu-
nications; GeoNetworking; Part 1: Requirements. Standard. European Telecommu-
nication Standard Institute, 2014.

172

https://doi.org/10.1109/MedHocNet.2012.6257112
http://doi.acm.org/10.1145/2068897.2068948
http://doi.acm.org/10.1145/2068897.2068948
https://doi.org/10.1109/WiMOB.2013.6673411
https://doi.org/10.4108/ICST.VALUETOOLS2009.7493
https://doi.org/10.4108/ICST.VALUETOOLS2009.7493
https://doi.org/10.1109/ACCESS.2020.3012788
https://doi.org/10.1109/VTCFall.2019.8891534
https://www.etsi.org/standards#Transportation
https://www.etsi.org/standards#Transportation

Bibliography

[22] ETSIEN 302 636-2 V1.2.1 - Intelligent Transport Systems (ITS); Vehicular Commu-
nications; GeoNetworking; Part 2: Scenarios. Standard. European Telecommuni-
cation Standard Institute, 2013.

[23] ETSI EN 302 636-3 V1.1.2 - Intelligent Transport Systems (ITS); Vehicular Com-
munications; GeoNetworking; Part 3: Network Architecture. Standard. European
Telecommunication Standard Institute, 2014.

[24] ETSI EN 302 636-4-1 V1.4.1 - Intelligent Transport Systems (ITS); Vehicular Com-
munications; GeoNetworking; Part 4: Geographical addressing and forwarding for
point-to-point and point-to-multipoint communications; Sub-part 1: Media-Independent
Functionality. Standard. European Telecommunication Standard Institute, 2019.

[25] ETSI EN 302 636-5-1 - Intelligent Transport Systems (ITS); Vehicular Communi-
cations; GeoNetworking; Part 5: Transport Protocols; Sub-part 1: Basic Transport
Protocol. Standard. European Telecommunication Standard Institute, 2017.

[26] ETSIEN 302 637-2 V1.4.1 - Intelligent Transport Systems (ITS); Vehicular Commu-
nications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness
Basic Service. Standard. European Telecommunication Standard Institute, 2019.

[27] ETSI EN 302 637-3 V1.3.1 - Intelligent Transport Systems (ITS); Vehicular Com-
munications; Basic Set of Applications; Part 3: Specifications of Decentralized En-
vironmental Notification Basic Service. Standard. European Telecommunication
Standard Institute, 2019.

[28] ETSI EN 302 663 V1.2.0 - Intelligent Transport Systems (ITS); Access layer speci-
fication for Intelligent Transport Systems operating in the 5 GHz frequency band.
Standard. European Telecommunication Standard Institute, 2012.

[29] ETSIEN 302 665 V1.1.1 - Intelligent Transport Systems (ITS); Communications Ar-
chitecture. Standard. European Telecommunication Standard Institute, 2010.

[30] ETSIEN 303 613 V1.1.1 - Intelligent Transport Systems (ITS); LTE-V2X Access layer
specification for Intelligent Transport Systems operating in the 5 GHz frequency
band. Standard. European Telecommunication Standard Institute, 2020.

[31] ETSITR 102 492-1 V1.1.1 - Electromagnetic compatibility and Radio spectrum Mat-
ters (ERM); Intelligent Transport Systems (ITS); Part 1: Technical characteristics
for pan-European harmonized communications equipment operating in the 5 GHz
frequency range and intended for critical road-safety applications; System Refer-
ence Document. Technical Requirement. European Telecommunication Standard
Institute, 2006.

173

Bibliography

[32] ETSITR 102 492-2 V1.1.1 - Electromagnetic compatibility and Radio spectrum Mat-
ters (ERM); Intelligent Transport Systems (ITS); Part 2: Technical characteristics for
pan European harmonized communications equipment operating in the 5 GHz fre-
quency range intended for road safety and traffic management, and for non-safety
related ITS applications; System Reference Document. Technical Requirement. Eu-
ropean Telecommunication Standard Institute, 2006.

[33] ETSI TS 101 539-1 V1.1.1 - Intelligent Transport Systems (ITS); V2X Applications;
Part 1: Road Hazard Signalling (RHS) application requirements specification. Tech-
nical Specification. European Telecommunication Standard Institute, 2013.

[34] ETSI TS 101 539-2 V1.1.1 - Intelligent Transport Systems (ITS); V2X Applications;
Part 2: Intersection Collision Risk Warning (ICRW) application requirements spec-
ification. Technical Specification. European Telecommunication Standard Insti-
tute, 2018.

[35] ETSI TS 101 539-3 V1.1.1 - Intelligent Transport Systems (ITS); V2X Applications;
Part 3: Longitudinal Collision Risk Warning (LCRW) application requirements spec-
ification. Technical Specification. European Telecommunication Standard Insti-
tute, 2013.

[36] ETSITS 102 637-1 V1.1.1 - Intelligent Transport Systems (ITS); Vehicular Commu-
nications; Basic Set of Applications; Part 1: Functional Requirements. Technical
Specification. European Telecommunication Standard Institute, 2010.

[37] ETSITS 102 687 V1.2.1 - Intelligent Transport Systems (ITS); Decentralized Conges-
tion Control Mechanisms for Intelligent Transport Systems operating in the 5 GHz
range; Access layer part. Technical Specification. European Telecommunication
Standard Institute, 2018.

[38] ETSI TS 102 894-2 V1.2.1 - Intelligent Transport Systems (ITS); Users and applica-
tions requirements; Part 2: Applications and facilities layer common data dictio-
nary. Technical Specification. European Telecommunication Standard Institute,
2014.

[39] FCC 03-324 - Amendment of the Commission’s Rules Regarding Dedicated Short-
Range Communication Services in the 5.850-5.925 GHz Band. Standard. Washing-
ton, D.C: Federal Communications Commission, 2004.

[40] A. Filippi, K. Moerman, V. Martinez, A. Turley, O. Haran, and R. Toledano. “IEEE
802.11p ahead of LTE-V2V for safety applications.” In: Autotalks NXP (2017).

[41] G. Pastor Grau, D. Pusceddu, S. Rea, O. Brickley, M. Koubek, and D. Pesch.
“Vehicle-2-vehicle communication channel evaluation using the CVIS platform.
In: 2010 7th International Symposium on Communication Systems, Networks Digi-
tal Signal Processing (CSNDSP 2010). 2010, pp. 449-453.D01: 10.1109/CSNDSP16145.
2010.5580394.

174

https://doi.org/10.1109/CSNDSP16145.2010.5580394
https://doi.org/10.1109/CSNDSP16145.2010.5580394

Bibliography

Global status report on road safety 2018. Technical Report. World Health Organi-
zation, 2018. URL: https://www.who.int/violence_injury_prevention/
road_safety_status/report/.

L. Giuveng, I. M. C. Uygan, K. Kahraman, R. Karaahmetoglu, I. Altay, M. Sen-
tirk, M. T. Emirler, A. E. Hartavi Karci, B. Aksun Guvenc, E. Altug, M. C. Turan,
O. S. Tas, E. Bozkurt, U. Ozguner, K. Redmill, A. Kurt, and B. Efendioglu. “Co-
operative Adaptive Cruise Control Implementation of Team Mekar at the Grand
Cooperative Driving Challenge” In: IEEE Transactions on Intelligent Transporta-
tion Systems 13.3 (2012), pp. 1062—-1074. por: 10.1109/TITS.2012.2204053.

Haversine Formula. URL: https://en.wikipedia.org/wiki/Haversine_
formula.

IEEE. IEEE 802.11bd Working Group. URL: https://www. ieee802.o0rg/11/
Reports/tgbd_update.htm.

IEEE. IEEE Std 1588-2019 (Revision of IEEE Std 1588-2008) - IEEE Standard for a
Precision Clock Synchronization Protocol for Networked Measurement and Control
Systems. Tech. rep. 2020, pp. 1-499. por: 10.1109/IEEESTD.2020.9120376.

IEEE 1609.0-2013 - IEEE Guide for Wireless Access in Vehicular Environments (WAVE)
- Architecture. Standard. Institute of Electrical and Electronics Engineers, 2014.

IEEE 1609.2-2016 (Revision of IEEE Std 1609.2-2013) - IEEE Standard for Wireless
Access in Vehicular Environments—Security Services for Applications and Manage-
ment Messages. Standard. Institute of Electrical and Electronics Engineers, 2016.

IEEE 1609.3-2016 (Revision of IEEE Std 1609.3-2010) - IEEE Standard for Wireless
Access in Vehicular Environments (WAVE) — Networking Services. Standard. Insti-
tute of Electrical and Electronics Engineers, 2016.

IEEE 1609.4-2016 (Revision of IEEE Std 1609.4-2010) - IEEE Standard for Wireless
Access in Vehicular Environments (WAVE) — Multi-Channel Operation. Standard.
Institute of Electrical and Electronics Engineers, 2016.

IEEE 802.11-2016 - IEEE Standard for Information technology—Telecommunica-
tions and information exchange between systems Local and metropolitan area net-
works—Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications. Standard. Institute of Electrical and Elec-
tronics Engineers, 2016.

Intelligent Transport Systems (ITS); Cross Layer DCC Management Entity for op-
eration in the ITS G5A and ITS G5B medium. Technical Specification. 2015.

Intelligent Transport Systems (ITS); Security; Security Services and Architecture.
Technical Specification. European Telecommunication Standard Institute, 2015.

175

https://www.who.int/violence_injury_prevention/road_safety_status/report/
https://www.who.int/violence_injury_prevention/road_safety_status/report/
https://doi.org/10.1109/TITS.2012.2204053
https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/Haversine_formula
https://www.ieee802.org/11/Reports/tgbd_update.htm
https://www.ieee802.org/11/Reports/tgbd_update.htm
https://doi.org/10.1109/IEEESTD.2020.9120376

Bibliography

[54]

[63]

F. Kamal, E. Lou, and V. Zhao. “Design and validation of a small-scale 5.9 GHz
DSRC system for vehicular communication.” In: 2012 25th IEEE Canadian Con-
ference on Electrical and Computer Engineering (CCECE). 2012, pp. 1-4. por: 10.
1109/CCECE.2012.6334893.

Kapsch Connected Vehicle Software Suite. URL: https : //www . kapsch.net/
ktc/downloads/datasheets/software/KITC%5C_ DB-V2X-Software%
5C_web.pdf.

G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and T. Weil.
“Vehicular Networking: A Survey and Tutorial on Requirements, Architectures,
Challenges, Standards and Solutions.” In: IEEE Communications Surveys Tutorials
13.4 (2011), pp. 584-616.

J. B. Kenney. “Dedicated Short-Range Communications (DSRC) Standards in the
United States.” In: Proceedings of the IEEE 99.7 (2011), pp. 1162-1182.

LaTe + LaMP home page. URL: https://francescoraves483.github.io/
LaMP_LaTe/.

S. Laux, G. S. Pannu, S. Schneider, J. Tiemann, F. Klingler, C. Sommer, and F.
Dressler. “Demo: OpenC2X — An open source experimental and prototyping
platform supporting ETSIITS-G5.” In: 2016 IEEE Vehicular Networking Conference
(VNC). 2016, pp. 1-2. DOI: 10.1109/VNC.2016.7835955.

Yunxin (Jeff) Li. “An Overview of the DSRC/WAVE Technology.” In: Quality,
Reliability, Security and Robustness in Heterogeneous Networks. Ed. by X. Zhang
and D. Qiao. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 544-558.
ISBN: 978-3-642-29222-4.

P. A. Lopez, M. Behrisch, L. Bieker-Walz,]J. Erdmann, Y. Flotterdd, R. Hilbrich, L.
Liicken, J. Rummel, P. Wagner, and E. Wiessner. “Microscopic Traffic Simulation
using SUMO?” In: 2018 21st International Conference on Intelligent Transportation
Systems (ITSC). 2018, pp. 2575-2582. po1: 10.1109/ITSC.2018.8569938.

D. R. Mafioletti, A. B. Liberato, C. K. Dominicini, R. Villaca, M. Martinello, and
M. Ribeiro. “Metherxis: Virtualized Network Functions for Micro-Second Grade
Latency Measurements.” In: Proceedings of the 2016 Workshop on Fostering Latin-
American Research in Data Communication Networks. LANCOMM ’16. Floria-
nopolis, Brazil: Association for Computing Machinery, 2016, pp. 22—-24. 1SBN:
9781450344265. po1: 10 . 1145/2940116 . 2940131. URL: https: //doi.
0org/10.1145/2940116.2940131.

M. Malinverno, G. Avino, C. Casetti, C. F. Chiasserini, F. Malandrino, and S.
Scarpina. “Edge-Based Collision Avoidance for Vehicles and Vulnerable Users:
An Architecture Based on MEC.” In: IEEE Vehicular Technology Magazine 15.1
(2020), pp. 27-35.

176

https://doi.org/10.1109/CCECE.2012.6334893
https://doi.org/10.1109/CCECE.2012.6334893
https://www.kapsch.net/ktc/downloads/datasheets/software/KTC%5C_DB-V2X-Software%5C_web.pdf
https://www.kapsch.net/ktc/downloads/datasheets/software/KTC%5C_DB-V2X-Software%5C_web.pdf
https://www.kapsch.net/ktc/downloads/datasheets/software/KTC%5C_DB-V2X-Software%5C_web.pdf
https://francescoraves483.github.io/LaMP_LaTe/
https://francescoraves483.github.io/LaMP_LaTe/
https://doi.org/10.1109/VNC.2016.7835955
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1145/2940116.2940131
https://doi.org/10.1145/2940116.2940131
https://doi.org/10.1145/2940116.2940131

Bibliography

[75]
[76]

M. Malinverno, G. Avino, C. Casetti, C. F. Chiasserini, F. Malandrino, and S.
Scarpina. “Performance Analysis of C-V2I-Based Automotive Collision Avoid-
ance.” In: 2018 IEEE 19th International Symposium on A World of Wireless, Mobile
and Multimedia Networks” (WoWMoM). 2018, pp. 1-9.

M. Malinverno, J. Mangues-Bafalluy, C. Casetti, C. F. Chiasserini, M. Requena-
Esteso, and J. Baranda. “An Edge-Based Framework for Enhanced Road Safety
of Connected Cars.” In: IEEE Access 8 (2020), pp. 58018-58031.

M. Malinverno, F. Raviglione, C. Casetti, C. F. Chiasserini, J. Mangues-Bafalluy,
and M. Requena-Esteso. “A Multi-Stack Simulation Framework for Vehicular
Applications Testing” In: Proceedings of the 10th ACM Symposium on Design
and Analysis of Intelligent Vehicular Networks and Applications. DIVANet ’20.
Alicante, Spain: Association for Computing Machinery, 2020, pp. 17-24. 1SBN:
9781450381215. po1: 10 . 1145/3416014 . 3424603. URL: https : / /doi.
0org/10.1145/3416014.3424603.

V. Mannoni, V. Berg, S. Sesia, and E. Perraud. “A comparison of the V2X com-
munication systems: ITS-G5 and C-V2X.” In: 2019 IEEE 89th Vehicular Technology
Conference (VIC2019-Spring). IEEE. 2019, pp. 1-5.

MK5 OBU, Cohda Wreless. URL: https://cohdawireless.com/solutions/
hardware/mk5-obu/.

K. Moerman, A. Filippi, and V. Marnix. “On the 5GAA comparison between LTE-
V2X and DSRC/IEEE 802.11p.” In: Proceedings of the IEEE 99.7 (2019).

R. Molina-Masegosa and J. Gozalvez. “LTE-V for Sidelink 5G V2X Vehicular
Communications: A New 5G Technology for Short-Range Vehicle-to-Everything
Communications.” In: IEEE Vehicular Technology Magazine 12.4 (2017), pp. 30—
39.p01: 10.1109/MVT.2017.2752798.

ms-van3t. URL: https://github.com/marcomali/ms-van3t.

G. Naik, B. Choudhury, and J. Park. “IEEE 802.11bd 5G NR V2X: Evolution of
Radio Access Technologies for V2X Communications.” In: IEEE Access 7 (2019),
pp- 70169-70184. po1: 10.1109/ACCESS.2019.2919489.

Network Time Protocol Version 4: Protocol and Algorithms Specification. Tech. rep.
RFC, 2010. por: 10.17487 /RFC5905.

T. V. Nguyen, P. Shailesh, B. Sudhir, G. Kapil, L. Jiang, Z. Wu, D. Malladi, and J. Li.
“A comparison of cellular vehicle-to-everything and dedicated short range com-
munication.” In: 2017 IEEE Vehicular Networking Conference (VNC). 2017, pp. 101~
108. po1: 10.1109/VNC.2017.8275618.

ns-3 Network Simulator. URL: https://www.nsnam.org/.

OMNeT++ - Discrete Event Simulator. URL: https://omnetpp.org/.

177

https://doi.org/10.1145/3416014.3424603
https://doi.org/10.1145/3416014.3424603
https://doi.org/10.1145/3416014.3424603
https://cohdawireless.com/solutions/hardware/mk5-obu/
https://cohdawireless.com/solutions/hardware/mk5-obu/
https://doi.org/10.1109/MVT.2017.2752798
https://github.com/marcomali/ms-van3t
https://doi.org/10.1109/ACCESS.2019.2919489
https://doi.org/10.17487/RFC5905
https://doi.org/10.1109/VNC.2017.8275618
https://www.nsnam.org/
https://omnetpp.org/

Bibliography

OpenWrt - V2X patch. URL: https://github.com/francescoraves483/
Openwrt-vzX.

OpenWRT - Wireless freedom. URL: https://openwrt.org/.
perfSONAR Project. URL: https://www.perfsonar.net/.

Q. Zhen, M. Zhen, Z. Xiaoyi, X. Bin, and Z. Lin. “Performance evaluation of
802.11p WAVE system on embedded board” In: The International Conference on
Information Networking 2014 (ICOIN2014). 2014, pp. 356-360. po1: 10 . 1109/
ICOIN.2014.6799704

F. Raviglione, M. Malinverno, and C. Casetti. “A Flexible, Protocol-Agnostic La-
tency Measurement Platform” In: 2019 IEEE 90th Vehicular Technology Confer-
ence (VIC2019-Fall). 2019, pp. 1-5.

F. Raviglione, M. Malinverno, and C. Casetti. “Characterization and Performance
Evaluation of IEEE 802.11p NICs.” In: Proceedings of the 1st ACM MobiHoc Work-
shop on Technologies, MOdels, and Protocols for Cooperative Connected Cars. TOP-
Cars ’19. Association for Computing Machinery, 2019, pp. 13-18.

F. Raviglione, M. Malinverno, and C. Casetti. “Demo: Open Source Platform for
IEEE 802.11p NICs Evaluation.” In: 2019 IEEE 20th International Symposium on "A
World of Wireless, Mobile and Multimedia Networks” (WoWMoM). 2019, pp. 1-3.

Rawsock library. UrL: https://github.com/francescoraves483/rawsock_

1ib.

R. Riebl, H. Gunther, C. Facchi, and L. Wolf. “Artery: Extending Veins for VANET
applications.” In: 2015 International Conference on Models and Technologies for
Intelligent Transportation Systems (MT-ITS). 2015, pp. 450-456. por: 10.1109/
MTITS.2015.7223293.

SAE 32735 - Dedicated Short Range Communications (DSRC) Message Set Dictio-
nary. Standard. Society of Automotive Engineers, 2016.

SAE 72945 - On-Board System Requirements for V2V Safety Communications. Stan-
dard. Society of Automotive Engineers, 2016.

SAE 73016 - Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle
Automated Driving Systems. Standard. Society of Automotive Engineers, 2014.

J. Sherry. “Applications of the IP timestamp option to Internet measurement.” In:
(2010).

C. Sommer, R. German, and F. Dressler. “Bidirectionally Coupled Network and
Road Traffic Simulation for Improved IVC Analysis.” In: IEEE Transactions on
Mobile Computing 10.1 (2011), pp. 3-15. por: 10.1109/TMC.2010. 133.

The ASN.1 to C compiler. URL: http://lionet.info/asnlc/.

178

https://github.com/francescoraves483/OpenWrt-V2X
https://github.com/francescoraves483/OpenWrt-V2X
https://openwrt.org/
https://www.perfsonar.net/
https://doi.org/10.1109/ICOIN.2014.6799704
https://doi.org/10.1109/ICOIN.2014.6799704
https://github.com/francescoraves483/rawsock_lib
https://github.com/francescoraves483/rawsock_lib
https://doi.org/10.1109/MTITS.2015.7223293
https://doi.org/10.1109/MTITS.2015.7223293
https://doi.org/10.1109/TMC.2010.133
http://lionet.info/asn1c/

Bibliography

[100]

[101]

[102]

Toyota and Lexus to Launch Technology to Connect Vehicles and Infrastructure

in the U.S. in 2021. URL: https://pressroom. toyota.com/toyota-and-

lexus-to-launch-technology-connect-vehicles-infrastructure-
in-u-s-2021/.

Unex V2X solutions. URL: https://unex.com. tw/.

V2X Functional and Performance Test Report; Test Procedures and Results. White
paper. 5GAA, 2019.

V2X White Paper. White paper. NGMN V2X Task Force, 2018.

A. Virdis, G. Stea, and G. Nardini. “SimuLTE - A modular system-level simulator
for LTE/LTE-A networks based on OMNeT++. In: 2014 4th International Confer-
ence On Simulation And Modeling Methodologies, Technologies And Applications
(SIMULTECH). 2014, pp. 59-70. por: 10.5220/0005040000590070.

N. Vivek, P. Sowjanya, B. Sunny, and S. V. Srikanth. “Implementation of IEEE
1609 WAVE/DSRC stack in Linux.” In: 2017 IEEE Region 10 Symposium (TEN-
SYMP). July 2017, pp. 1-5. po1: 10.1109/TENCONSpring.2017.8070033.

Volkswagen Group assumes pioneering role in rapid road safety improvement. URL:
https://www.volkswagenag.com/en/news/2018/02/volkswagen_
group_rapid_road_safety.html.

V. Vukadinovic, K. Bakowski, P. Marsch, I. Garcia, H. Xu, M. Sybis, P. Sroka,
K. Wesolowski, L. David, and 1. Thibault. “3GPP C-V2X and IEEE 802.11p for
Vehicle-to-Vehicle communications in highway platooning scenarios” In: Ad
Hoc Networks 74 (Mar. 2018). po1: 10.1016/j .adhoc.2018.03.004.

M. Wang, M. Winbjork, Z. Zhang, R. Blasco, H. Do, S. Sorrentino, M. Belleschi,
and Y. Zang. “Comparison of LTE and DSRC-Based Connectivity for Intelli-
gent Transportation Systems.” In: 2017 IEEE 85th Vehicular Technology Confer-
ence (VIC Spring). 2017, pp. 1-5. DOI: 10.1109/VICSpring.2017.8108284.

A. Wegener, M. Piorkowski, M. Raya, H. Hellbriick, S. Fischer, and J. Hubaux.
“TraCI: An Interface for Coupling Road Traffic and Network Simulators.” In:
Proceedings of the 11th Communications and Networking Simulation Symposium,
CNS’08 (2008). DOT: 10.1145/1400713.1400740.

White Paper on ITS spectrum utilization in the Asia Pacific Region. White Paper.
5GAA, 2018.

179

https://pressroom.toyota.com/toyota-and-lexus-to-launch-technology-connect-vehicles-infrastructure-in-u-s-2021/
https://pressroom.toyota.com/toyota-and-lexus-to-launch-technology-connect-vehicles-infrastructure-in-u-s-2021/
https://pressroom.toyota.com/toyota-and-lexus-to-launch-technology-connect-vehicles-infrastructure-in-u-s-2021/
https://unex.com.tw/
https://doi.org/10.5220/0005040000590070
https://doi.org/10.1109/TENCONSpring.2017.8070033
https://www.volkswagenag.com/en/news/2018/02/volkswagen_group_rapid_road_safety.html
https://www.volkswagenag.com/en/news/2018/02/volkswagen_group_rapid_road_safety.html
https://doi.org/10.1016/j.adhoc.2018.03.004
https://doi.org/10.1109/VTCSpring.2017.8108284
https://doi.org/10.1145/1400713.1400740

Bibliography

This Ph.D. thesis has been typeset by
means of the TgX-system facilities. The
typesetting engine was LualkTEX. The
document class was toptesi, by Clau-
dio Beccari, with option tipotesi
=scudo. This class is available in every
up-to-date and complete TgX-system
installation.

180

