3,149 research outputs found

    Cognitive-radio systems for spectrum, location, and environmental awareness

    Get PDF
    In order to perform reliable communications, a system needs to have sufficient information about its operational environment, such as spectral resources and propagation characteristics. Cognitive-radio technology has capabilities for acquiring accurate spectrum, location, and environmental information, due to its unique features such as spectrum, location, and environmental awareness. The goal of this paper is to give a comprehensive review of the implementation of these concepts. In addition, the dynamic nature of cognitive-radio systems - including dynamic spectrum utilization, transmission, the propagation channel, and reception - is discussed, along with performance limits, challenges, mitigation techniques, and open issues. The capabilities of cognitive-radio systems for accurate characterization of operational environments are emphasized. These are crucial for efficient communications, localization, and radar systems. © 2010 IEEE

    Range estimation in multicarrier systems in the presence of interference: Performance limits and optimal signal design

    Get PDF
    Cataloged from PDF version of article.Theoretical limits on time-of-arrival (equivalently, range) estimation are derived for multicarrier systems in the presence of interference. Specifically, closed-form expressions are obtained for Cramer-Rao bounds (CRBs) in various scenarios. In addition, based on CRB expressions, an optimal power allocation (or, spectrum shaping) strategy is proposed. This strategy considers the constraints not only from the sensed interference level but also from the regulatory emission mask. Numerical results are presented to illustrate the improvements achievable with the optimal power allocation scheme, and a maximum likelihood time-of-arrival estimation algorithm is studied to assess the effects of the proposed approach in practical estimators. © 2011 IEEE

    Economic Galileo E5 Receiver

    Get PDF
    The Galileo system introduces an extremely wideband civil E5 signal for high precision navigation. The structure of the receiver for the E5 signal is complicated due to the signal complexity and the large bandwidth. It is possible to process the whole E5 signal or process separately E5a and E5b parts combining obtained results afterwards (we call here such method as piece-wise processing). The second procedure has three times worse standard deviation of the pseudorange then first one. The main goal of the paper is to present a design of an E5 receiver which we will call the economic E5 receiver (ecoE5). It is built from jointly controlled correlators for the processing of the E5a and E5b signals which are parts of the E5 signal. Control of these partial E5a and E5b correlators is realized by only one delay and one phase lock loops. The performance, i.e. the pseudorange noise and multipath errors, of the receiver equipped with the ecoE5, is only slightly worse (the standard deviation of the pseudorange noise is 10 - 20% larger) than the performance of the optimal E5 receiver and it is much better than the performance of the receiver combining the piecewise (E5a and E5b) measurements. The ecoE5 receiver hardware demands are about one quarter of the hardware demands of the classical E5 receiver

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Performance Analysis of Dispersed Spectrum Cognitive Radio Systems

    Get PDF
    Dispersed spectrum cognitive radio systems represent a promising approach to exploit the utilization of spectral resources to full extent. Therefore, the performance analysis of such systems is conducted in this research. The Average symbol error probability of dispersed spectrum cognitive radio systems is derived for two cases: where each channel realization experiences independent and dependent Nakagami-m fading, respectively. In addition, the derivation is extended to include the effects of modulation type and order by considering M-PSK and M-QAM modulation schemes. We then study the impacts of topology on the effective transport capacity performance of ad hoc dispersed spectrum cognitive radio systems where the nodes assume 3- dimensional (3D) configurations. We derive the effective transport capacity considering a cubic grid distribution. In addition, numerical results are presented to demonstrate the effects of topology on the effective transport capacity of ad hoc dispersed cognitive radio systems

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Performance Analysis of Secondary Users in Heterogeneous Cognitive Radio Network

    Get PDF
    Continuous increase in wireless subscriptions and static allocation of wireless frequency bands to the primary users (PUs) are fueling the radio frequency (RF) shortage problem. Cognitive radio network (CRN) is regarded as a solution to this problem as it utilizes the scarce RF in an opportunisticmanner to increase the spectrumefficiency. InCRN, secondary users (SUs) are allowed to access idle frequency bands opportunistically without causing harmful interference to the PUs. In CRN, the SUs determine the presence of PUs through spectrum sensing and access idle bands by means of dynamic spectrum access. Spectrum sensing techniques available in the literature do not consider mobility. One of the main objectives of this thesis is to include mobility of SUs in spectrum sensing. Furthermore, due to the physical characteristics of CRN where licensed RF bands can be dynamically accessed by various unknown wireless devices, security is a growing concern. This thesis also addresses the physical layer security issues in CRN. Performance of spectrum sensing is evaluated based on probability of misdetection and false alarm, and expected overlapping time, and performance of SUs in the presence of attackers is evaluated based on secrecy rates

    Research on Cognitive Radio within the Freeband-AAF project

    Get PDF

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems
    corecore