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ABSTRACT 

 

Performance Analysis of Dispersed Spectrum Cognitive Radio Systems. 

 (December 2009) 

Muneer Mohammad, B.S., Jordan University of Science and Technology 

Chair of Advisory Committee: Dr. Erchin Serpedin  
                                       

 

    Dispersed spectrum cognitive radio systems represent a promising approach to 

exploit the utilization of spectral resources to full extent. Therefore, the performance 

analysis of such systems is conducted in this research. The average symbol error 

probability of dispersed spectrum cognitive radio systems is derived for two cases: where 

each channel realization experiences independent and dependent Nakagami-m fading, 

respectively. In addition, the derivation is extended to include the effects of modulation 

type and order by considering M-PSK and M-QAM modulation schemes. We then study 

the impacts of topology on the effective transport capacity performance of ad hoc 

dispersed spectrum cognitive radio systems where the nodes assume 3- dimensional (3D) 

configurations. We derive the effective transport capacity considering a cubic grid 

distribution. In addition, numerical results are presented to demonstrate the effects of 

topology on the effective transport capacity of ad hoc dispersed cognitive radio systems. 

.    
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1. INTRODUCTION 

1.1 Motivations 

    Cognitive radio is a new approach to develop intelligent and sophisticated wireless 

systems [1], which can require utilization of spectral resources dynamically. Cognitive 

radio systems that employ the dispersed spectrum utilizations as spectrum access method 

is called dispersed spectrum cognitive radio systems [2]. In dispersed spectrum cognitive 

radio systems, information can be transmitted mainly using two approaches. In the first 

approach, information (or signal) is splitted into k data streams and these data streams are 

transmitted over k available frequency bands as shown in Fig.1. In the second approach, 

information (or signal) is replicated k times and each copy is transmitted over one of the 

available k bands. The second approach is illustrated in Fig. 2. Note that the second 

approach is considered in this study.  

 

 
    Fig. 1  Illustration of dispersed spectrum utilization of the first approach. 
 
 
____________ 
This thesis follows the style of IEEE Transactions on Wireless Communications. 
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     Fig. 2 Illustration of dispersed spectrum utilization of the second approach.  
 
 
       Theoretical limits for the time delay estimation problem in dispersed spectrum 

cognitive radio systems are investigated in [2]. In this study, Cramer-Rao Lower Bounds 

(CRLBs) for known and unknown carrier frequency offset (CFO) are derived and the 

effects of the number of available dispersed bands and modulation schemes on the 

CRLBs are investigated. In addition, the idea of dispersed spectrum cognitive radio is 

applied to UWB communications systems in [3]. Moreover, the performance comparison 

of whole and dispersed spectrum utilization methods for cognitive radio systems is 

studied in the context of time delay estimation in [4]. In these prior works, dispersed 

spectrum cognitive radio systems are investigated for localization and positioning 

applications. More importantly, it is assumed that all channels in such systems are 

assumed to be independent from each other. In addition, single- path flat fading channels 
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are assumed in the prior works. However, in realistic scenarios, the channels are not 

single-path flat fading channels and they may not be independent from each other. 

       In this research, the performance analysis of dispersed spectrum cognitive radio 

systems is conducted in the context of communications applications and symbol error 

probability is used as the performance metric. Average symbol error probability is 

derived under two conditions, i.e., the scenarios when each channel experiences 

independent and dependent Nakagami-m fading.  The derivation for both cases is 

extended to include the effects of modulation type and order, namely M-QAM, M-PSK 

for M=4 and 16. The effect of convolutional coding on the symbol error probability is 

also investigated through computer simulations.  Finally, numerical results are provided 

to study the performance of dispersed spectrum cognitive radio systems for different 

fading conditions, modulation, and coding schemes. 

         In [5,6], the authors represent a new communication model, namely the square 

configuration (2D), to reduce the inter-node interference and study the impact of different 

types of modulations over AWGN and Rayleigh fading channels on the effective 

transport capacity. Moreover in [5, 6, 7, 8], it is assumed that the nodes assume a square 

distribution 2- dimensional configuration. This study also assumes that each node is 

centered inside of a cube located at the vertices of cubic grid in a spherical volume V 

which represents a 3- dimensional configuration (3D). When the nodes are distributed in 

three dimensions, it will decrease the effects of the inter node interference, thus 

increasing the effective transport capacity. In fact, the 3D-configuration is more practical 

than the previous one. One of the most useful applications for this configuration is in 

network sensors [9]. 
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       In this study, the performance analysis of ad hoc dispersed spectrum cognitive radio 

systems is conducted. The effects of node distribution on the effective transport capacity 

of ad hoc dispersed spectrum cognitive radio systems are investigated. The effective 

transport capacity is derived considering a 3-D node distribution. Finally, numerical 

results are provided to verify the theoretical analysis.  

       This study deals with dispersed spectrum cognitive radio systems [7] when M-QAM 

and M-PSK are in use over the Nakagami-m fading channel. This study includes two 

cases: Independent and dependent channel realizations, where each channel realization is 

independent or dependent from each other. The channel diversity is due to the fact that 

each node sends a replicate data over multiple carrier frequencies to the next node. In this 

case the performance will be improved in terms of error probability, which leads to 

enhanced effective transport capacity. 

 1.2 System Model 

            In wireless communication systems, the modulated signal is transmitted through 

the fading channels. Each channel realization exhibits a specific time varying gain and 

propagation delay as well, and is characterized by the impulse response 

 
( ) ( ) ( )( ) ( )∑

=

−−=
1

,
i

tj
ii

iettth ϕττδατ ,                                                                                 (1.1) 

                                                                                
where ( ){ } ( ){ }tt ii τα , and ( ){ }tiϕ are the random time varying path gain, propagation delay 

and phase sequences, respectively, and ( )⋅δ  is the delta function. The time invariant 

version of this model is suggested by [4] to describe multi-path stationary fading 

channels and is defined as       

( ) ( )∑ −−=
i

j
ii

ieh ϕττδατ .                                                                                       (1.2) 



 5 

 

       A modulated signal waveform with carrier frequency cf can be expressed as 

( ){ }tfj cetsts π2~)( ℜ=
 ,                                                                                            (1.3) 

where  
cf  is the carrier frequency, and ( )ts~  represents the equivalent low-pass waveform 

of the transmitted signal. 

      For the k  dispersed bands in Fig.2, the modulated signal waveform of the thi  band 

can be expressed as 

( ){ }tfj
i

cietsts π2~)( ℜ=    .                                                                                            (1.4) 

      Assuming that the modulated signal is transmitted over a mobile radio fading channel 

with K diversity bands and assuming that the channel at the thi  band is characterized by 

an equivalent low-pass impulse as  

( ) ( ) lij
lili

L

l
i eh ,

,,
1

ϕττδατ −

=

−= ∑ ,                                                                              (1.5) 

where li ,α , li ,τ  and li ,ϕ , are the parameters showing the path gain, propagation delay, 

and phase of the  thl path at thi  band, respectively. Slow and non-selective fading on each 

diversity channel and the K diversity over Nakagami-m distribution envelope statistics 

with different values of m and different transmitted power and noise are also assumed.  

The transmitted signal carried over each band is independently corrupted by an additive 

white Gaussian noise process, then all received signals passed through Maximum Ratio 

Combing (MRC) as shown in Fig. 3. 
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Fig. 3 System model for dispersed spectrum cognitive radio systems. 

 
      In the receiver, the signal passed through to bandpass filter (BPF) and downconverted 

to a baseband signal at each band.  

In the baseband model, the received signal for thethi band can be expressed as 

( ) )()( ,
,,

1

tnetstr i
lij

liili

L

l
i +−= −

=
∑ ϕτα   ,                                                                   (1.6) 

where )(tni is a zero mean complex-valued white Gaussian noise process with power 

spectral density ON .  

We define the total signal to noise ratio (Totγ ) as  

∑
=

=
K

i
iTot

1

γγ    ,                                                                                                 (1.7) 
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where iγ is the SNR at the thi  branch.  Assuming that the received power from the thi  

band is equal to ( piα ) and the AWGN experienced in this band has a power spectral 

density of ( 0Niβ ). The total SNR can be expressed as 

 

∑∑
==

+=+=
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i i
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2
11 γγγ

β
αγγ ,                                                                              (1.8) 

where 
No

P=1γ and 
i

i
ik

β
α

=   

The Probability Density Function (PDF) of Gaussian is given by  
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By taking the logarithm, we will get. 

( )( ) ( ) ( )( )
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From (1.12), assuming that the value between is y, it follows that: 

( ) ( ) ( ) ( ) ( ) ( ) 222222 τατατα ππ −−−+−+−=−=− −∗ tstsetrtsetrtryyy iii
tfj

iii
tfj

iii
icc         (1.13) 

           ( ) ( ) ( ) ( ) ( ) ( ) 22222 τατατα ππ −−−+−+−= − tstsetrtsetrtr iii
tfj

iii
tfj

iii
icc   ,        (1.14) 

   .                                                                                                            
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Thus, 

( ) ( ){ } ( ) 2222
2 τατα π −−−ℜ=− ∗ tstsetry iii

tfj
ii

ic          .                                            (1.15) 

 

1.3 Derivation of the Probability of Error for M-QAM 

   By looking at the signal constellation in Fig. 3, it can be easily seen that there are three 

types of decision regions: 

• The decision regions of the red points. The number of these regions is equal to 4. 

• The decision regions of the green points. The number of these regions is equal to

( )2.4 −M . 

• The decision regions of the black points. The number of these regions is equal to 

( )22−M . 

The noise presents the horizontal-inphase (n1) and vertical-quadrature (n2) components.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 4 Signal constellation for M-QAM. 
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We will find the probability of correct decision, and then find the probability of error. 

1. The first region 
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2. The second region 

( )

( )( )ppdy
N

y
dx

N

x

N

d
npr

d
n

d
pr

d
n

d
n

d
prregioncp

dd

d

−−=






−







−=







 <







 <<−=







 <<<−=−

∫∫
∞−−

121expexp
1

2222
&

22
2

2

0

22

2 0

2

0

2121

π

,               (1.17) 

3. The third region 
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For ( ) Mi
M

sp i ,,2,1,
1

K== , the probability of correct decision can be expressed as: 
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And after some manipulation, the probability of correct decision can be expressed as: 
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Knowing from [10] that













=

02N

d
Qp , and 02 Ed = , and substituting d into the 

equation of the probability of correct decision (), we obtain the following expression: 
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Note that, the probability of error is defined as 

( )cpPe −=1   .                                                                                                              (1.22)    

The bit error probability is obtained as defined as in [11]  

2

0

2

1

log31
1211











































−







 −−−=
N

E

M

M
Q

M
Pe av   .                                                        (1.23) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 11 

2. AVERAGE SYMBOL ERROR PROBABILITY FOR INDEPENDENT 

CHANNELS 

       In this section, we study the performance of digital modulation techniques: M-QAM 

and M-PSK over AWGN channels and flat fading channels. In this study, we focus on a 

Nakagami-m fading channel to study the performance of the dispersed spectrum 

cognitive radio system for M-QAM and M-PSK under different severity parameters m 

and different conditions of the fading channel.  

2.1   Additive White Gaussian Noise (AWGN) Channel 

       The additive white Gaussian noise is present in all channels. We study the 

performance of a dispersed cognitive radio system in the ideal case where the channels 

are experiencing different AWGNs for two types of modulations namely, M-QAM and 

M-PSK 

        A. M-QAM 

        The probability of error for a rectangular M-QAM is given in [11] as: 

2

01

31
1211
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M
Q

M
Ps av      ,                                                        (2.1) 

Where Eav/N0 is the average SNR per symbol and is equal to (LogM)Eb/N0, where Eb/N0 

is the average SNR per bit. 

From the definition of SNR as stated in (1.15), we can rewrite (2.1) as  
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.31
1211
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Ps equγ
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         The idea of using k-bands is that each band has different carrier frequency, power, 

and noise. These parameters have effect on the performance in terms of error probability 

as shown in Figs. 4 and 5.  
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16-QAM

4-QAM

 

Fig. 5  Average symbol error probability versus average SNR per bit per first 
branch for (16 and 4) QAM signals for three diversity branches with 
RP= [1 2 0.5]. 
 

        In Fig. 5, each curve represents the symbol error probability versus SNR when using 

three bands where each band experiences different power and noise. Relative noise 

Relative Noise (RNo) and Relative Power (RP) represent the relative noise and relative 

power, respectively, with respect to the first branch. For example, when saying RP= 1 2 

0.5 , it means that the second band has power equal twice the first band, and the power 

transmitted in the second band is 0.5 of the power transmitted in the first band. Such a 
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relationship among the power levels of different branches is referred to as unbalanced 

branches. The scope of this figure is to show the importance of the power and noise in 

each band. The blue and red curves experience the same noise but as seen in Fig. 4 the 

performance of the red curve is much better than the blue one, since the power in the red 

curve is distributed in the sense that the larger power on the band presents the noise with 

lower power, and the SNR for the 3-bands is calculated based on combining the SNR on 

each band. In conclusion, we can note that the system performs better when the branches 

present the highest received power. 
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Fig. 6  Average symbol error probability versus average SNR per bit per first branch for 
(16- and 4-) QAM signals with k=1,2,3. 
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      Fig. 6 illustrates the effect of diversity order on the symbol error probability 

performance of the system and we can see that as the diversity order increases, the 

performance is improved. 

        B. M-PSK 

         In this study, we are going to focus on 16-PSK. The exact symbol average error 

probability is given in [12] as 
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g
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1 ,                                                                               (2.6) 
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1. Unbalanced branches 

When all bands have the different power and spectral noise, SNR is defined as 
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2. Balanced branches 

       When all bands have the same power and spectral noise we can re-write (1.8)  

as  γγ KTot =  ,                                                                                                                (2.9)  

So, (2.8) is going to be  
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2.2 Fading Channels 

       In fading channels, the transmitted signal varies with distance and is subject to the 

time delay due to existence of the multipath fading channel. We consider two types of 

fading channels, namely Nakagami-m fading channels and Rayleigh fading channels.   

2.2.1 Rayleigh Fading Channels 

         A. M-QAM 

         Assume that the signals are transmitted over i.i.d Rayleigh fading channels.                    

The next equation is derived in [5].  

γγγ γ dPPP sSS )()(
0
∫
∞

= ,                                                                                              (2.11) 
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γ φ
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π

φ
φ
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π

d
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M
d

g

M
ss

,    (2.12) 

where the MGF (Moment generating Function) is defined as follows 

K

equs s
Tot

−−








 += γµ γ 1 ,                                                                                           (2.13) 

and g is a function of the size of M-QAM constellation, and is defined as  

1

5.1

−
=

M
g  .                                                                                                              (2.14) 
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Fig.7   Average symbol error probability versus average SNR per bit per first branch for 
(16- and 4-) QAM signals with k=1,2,3 ( Rayleigh channels). 

 
 
          Fig. 7 illustrates the effect of diversity levels on the probability performance for 

coherent detection of (4- and16-) QAM signals under Rayleigh fading channels. It can be 

shown that increasing the diversity order improves the performance of the system and it 

becomes closer to the performance achieved in an AWGN.  

       B. M-PSK 

       The Moment Generator Function is defined in (2.13) as  

( ) 11 −+=
− Tots s

tot
γµ γ        .                                                                                       (2.15) 

The MGF for K-bands is defined as  
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1. Unbalanced Branches 

As in (1.8), SNR is defined as ∑∑
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2. Balanced Branches  

     Gamma’s in all bands are equal, implying that γγ kTot =  

So, we can rewrite (2.7) as  
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2.2.2 Nakagami-m Fading Channel 

         This type of fading channel is a general case for Rayleigh fading channels, since the 

severity fading channel parameter (m) can take values from 0.5 to∞ . The case when m=1 

reduces to the Rayleigh fading channel, and when m=∞ , it simplifies to an AWGN 

channel.  

         We utilize the Moment Generator Function (MGF) technique to find an expression 

for the average probability of error for M-QAM, and M-PSK modulations in Nakagami-

m fading.  
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          A. M-QAM 

          The average symbol error probability is obtained by averaging the error 

probability for AWGN over a Nakagamai-m fading distribution channel which is 

defined in (2.11) as 
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where 
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s
s mk

gg
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µ γ 22 sin

1
sin

,                                                 (2.20) 

where g is a function of the size of M-QAM, being defined as 
1

5.1

−
=

M
g .  

• Case 1: Pot of the average symbol error probability versus average SNR per 

bit for (4- and 16- ) QAM signals with k=1, Nakagami-m fading channel for 

different values of m. 
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Fig. 8    Average symbol error probability versus average SNR per bit per first branch for 
(16- and 4-) QAM signals with k=1, Nakagami-m channel. 

  
  
Fig. 8 illustrates the effect of the fading severity parameter on error probability 

performance and it can be seen that the system performs better under less severity (m 

increased). 

• Case 2: Study the influence of the fading severity parameters where three 

branches with different severity parameters are used.  
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Fig. 9   Average symbol error probability versus average SNR per bit per firstbranch for 
4-QAM signals with  k=3, Nakagami-m fading channels with different fading-severity 
parameters. 

 



 21 

0 5 10 15 20 25 30
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR(dB)

P
s

m=[1 1 1]

m=[3 3 3]

m=[0.5 1 0.5]

m=[0.5 0.5 0.5]

 

Fig. 10 Average symbol error probability versus average SNR per bit per first branch for 
16-QAM signals with  k=3, Nakagami-m fading channels with  different fading- 
severity parameters. 

 

The influence of the fading severity parameters is also studied in the Figs. 9 and 10 where 

three branches with different severity parameters are used. The system performs better 

when the branches have lowest severity parameters m.  

• Case 3: The effect of unbalanced diversity branches on the error probability 

performance.  
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Fig. 11   Average symbol error probability versus average SNR per bit for (16- and 4- ) 
QAM signals with 3 unbalanced diversity branches with m=1, 0.5,3 for k=1, 2, 3, 
respectively. 
 
 
Fig.11 studies the effect of unbalanced diversity branches on the error probability 

performance. It can be noted that the system performs better if the branches with lowest 

severity parameters present the highest power.   

         B. M-PSK 

          We utilize the Moment Generator Function (MGF) technique to find an expression 

for the average probability of error for the M-PSK modulation in Nakagami-m fading. 

From (2.10),  
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Following the same procedure mentioned above by taking m into consideration: 
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Fig. 12    Average symbol error probability versus average SNR per bit for 16-PSK 
signals with K=1, 2, 3, 5. (Rayleigh fading channels and AWGN). 
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Fig. 13   Average symbol error probability versus average SNR per bit for (16- and 4- ) 
PSK signals with k=1, Nakagami-m fading channel, and AWGN. 
 
       
        Fig. 13 illustrates the effect of the fading severity parameter on error probability             

 performance and it can be seen that the system performs better under less severity           

(m increased). 
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Fig. 14  Average symbol error probability versus average SNR per bit for 16-PSK signals 
with k=3, Nakagami-m fading channel with different fading-severity parameters. 
 
 
        The influence of the fading severity parameters is also studied in the Fig. 14 where 

three branches with different severity parameters are used. The branches with lowest 

severity parameters present the better performance. 
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Fig. 15  Average symbol error probability versus average SNR per bit for (16- and 4- ) 
PSK signals with 3 unbalanced diversity branches with m=1, 0.5,3 for k=1, 2, 3, 
respectively. 
 
 
         The effect of unbalanced diversity branches on the error probability performance is 

studied in Fig. 15. It can be noted that the system performs better if the branches with 

lowest severity parameters and the highest power. 
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2.3 K-M Parameter in Nakagami-m Fading Channel 

          The general expression for  SP  of coherent modulation as defined in (2.11) 

SP = ( ) ( )∫
∞

0

. γγγ γ dpp ss   .                               

By using the alternative Q-function [12], the equation (2.11) can be written as 

( ) ( ) )exp(..
0

γγγγ γ sdpPP ssS −= ∫
∞

 ,                                                                             (2.23) 

where g,α depend on the modulation, and s is a function of φ  

Note that ( ) )exp(.
0

γγγγ sdp −∫
∞

is the Laplace transform of the pdf of γ  

 and is defined as ( )ssµ  . 

             The MGF of Nakagami-m is given by [13]: 
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For m=∞ , we obtain the form of type∞1 . The solution is given by introducing a 

dependant variable:  
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and taking the natural logarithm of both sides: 
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is an indeterminate form of type 0/0, so by L'Hopital's rule, 
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Since γsy →ln  as ∞→m , it follows from the continuity of the natural exponential 

function that γsy ee →ln or equivalently, γsey → as ∞→m . Therefore, 
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which can be solved by following the same procedure as mentioned 

above. 

In conclusion, when K=∞ , the channel converges to an AWGN channel.  
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3. AVERAGE SYMBOL ERROR PROBABILITY FOR DEPENDENT 

CHANNELS 

 

3.1. Moment Generator Function (MGF) of Nakagami-m 

      To show the effects of the dependent case in our system, we just need to use the 

covariance matrix that shows how the K bands are dependent. Determining such a 

covariance matrix for dispersed spectrum cognitive radio systems require an extensive 

measurement campaign. In addition, since there is not such study in the literature, we use 

two correlation matrices in [14] for the sake of analysis, which are for linear and 

triangular arrays in space diversity. These two matrices are referred to as A and B 

configurations in this study  
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The MGF of dependent case is defined  in [15]  as  
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2 . where nλ  stand for  eigenvalues of covariance matrix 

Σ. 
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The covariance matrix ∑ of X is ( )( ) ( )( )( )( )TxExExExE −−−   and is of dimensions 
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The dimension of covariance matrix depends on N which means that there are always 

KN −  repeated eigenvalues with 12 −im  repeated eigenvalues per band. This is 

expected since the derivation depends on the facts that all the bands depend on each 

other. Thus (3.3) can be rewritten as 
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3.2. Average Symbol Error Probability 

         The average symbol error probability for M-QAM is defined in (2.12) as: 
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where g is a function of the size of M-QAM, being defined as
1

5.1

−
=

M
g . 

The average symbol error probability for M-PSK modulation can be obtained, and the 

resultant expression is  
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3.3. Numerical Example   

          The covariance matrix of configuration A for three bands (k=3, m=1 Rayleigh) is 

given by (3.1): 

 

                    
















=
1795.0605.0

795.01795.0

605.0795.01

A    

Step One: Find the dimension of matrix Σ. We use 3-bands and assume all of them are 

dependent, so the first step is to calculate the dimension of the covariance Σ that shows 

how the three bands depend on each other N=6, this represents the number of eigenvalues 

of matrix Σ, and its dimension. 

Step Two: Finding the matrix Σ by taking the first element in (3.1) and substitute into 

(3.4). We obtain 










5.0

05.0

o
 

Then the covariance matrix Σ, for m=1, Rayleigh will be: 

                         



























=Σ

5.00446.00389.00

05.00446.00389.0

446.005.00446.00

0446.005.00446.0

389.00446.005.00

0389.00446.005.0
                                                           (3.9) 

 

Step Three: Find the eigenvalues of matrix Σ. 

  [ ]3542.13542.11111.01111.00347.00347.0=e                                                                  

In the same way, the eigenvalues of configuration B is 



 33 

[ ]4216.14216.10737.00737.00047.00047.0=e  

For m=0.5 (A) e= 0.049 0.1571 1.9152 and (B) e= 0.0066 0.1041 2.0106 

For m=2.0 (A) e= 0.0245 0.0785 0.9576 and (B) e= 0.0033 0.0521 1.0052 

Step Four: Find the equivalent SNR 

The equivalent SNR can be expressed as: ∑∑
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i
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i
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same for all branches, which means the γγ 3=Tot , and thus 
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 Step Five: Find MGF 

Since we have 3 repeated eigenvalues, the MGF is going to be 
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, then substitute into (3.6) and (3.7). 

Note 321 ,, eee are 0.037,   0.1111, 1.3542, respectively. 

Special Case: 

If we have unbalance, RG= {1, 2, 0.5}.                                                                      (3.11) 

γγγγ 5.02 ++=equ = γ5.3 . In this case 
7

,
5.3

2
,

5.3 321
equequequ γ

γ
γ

γ
γ

γ ===                     (3.12) 

3.4 Numerical Results  

             Figures 16, 17 and 18 present the effect of fading correlation on the error 

probability performance of (4- and 16-) QAM signals, and 16-PSK  for different values 

of m. The performances of the two covariance matrices A and B are studied. It can be 

seen that the correlation degrades the performance of the system and it can also be noted 

that A performs better than B and this is expected because it presents a lower correlation 

coefficients. Fig. 19 presents the performance comparison for the case of 16-QAM and 
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16-PSK modulation schemes. It is observed that the performance of 16-QAM is better 

than that of 16-PSK and this result can be justified since the distance between any points 

in the signal constellation of M-PSK is less than that in M-QAM. 
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Fig. 16  Average symbol error probability versus average SNR per bit for 4-QAM signals 
with three correlated Nakagami fading channels for A and B configurations. 
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Fig. 17  Average symbol error probability versus average SNR per bit for 16-QAM 
signals with three dependent Nakagami fading channels for A and B 
configurations. 
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Fig. 18   Average symbol error probability versus average SNR per bit for 16-PSK 
signals with three dependent Nakagami fading channels for A and  B 
configurations. 
 



 37 

0 5 10 15 20 25 30
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR(dB)

P
s

 

 

A

B

16-QAM

16-PSK

 

Fig. 19 Average symbol error probability versus average SNR per bit for 16-PSK, 
16=QAM signals with three dependent Rayleigh fading channels for  dependent 
and independent. 
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4. THE EFFECTS OF CODING ON DISPERSED SPECTRUM COGNITIVE 

RADIO SYSTEMS 

 
4.1 Overview 
 
       In this section, the effect of coding on the performance of dispersed spectrum 

cognitive radio systems is investigated. Convolutional coding is different from block 

coding. The difference is that the convolutional coding consists of an encoder containing 

a memory which depends on the current input, and some previous inputs. The first idea of 

convolutional coding was introduced by Elias [16] as an alternative for block coding. The 

rate 
n

k
R =  of convolutional encoder with memory m. Parameters k and n represent the 

input and the output, respectively. In [17], it was proposed an efficient decoding method 

for convolutional coding. However, the implementation is hard. In [18], it was proposed 

another method which is easy to implement with less efficient.  Convolutional Coding 

has been presented in many books [19, 20, and 21]. In this section we will explain how 

convolutional encoder can be represented by using a state diagram and how the weight-

enumerator function can be derived. The encoder in the convolutional coding can be 

classified into two categories: systematic and non-systematic, and it can be written as an 

(n,k,v)  code, where v is the codeword [22].  

      If vi is the length of the thi  shift register and input sequence k in a convolutional 

encoder,  the encoder memory order can be defined as m=max[vi] for 1≤i≤k, In our work, 

we used i=1. 
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4.2  Structural Properties of Convolutional Codes 

      There are some structural probabilities of convolutional codes that need to be 

considered [22]: 

• The states are labeled as v-tuple: (s0, s1, …, s(2v-1)). The number of states is 2v 

states. 

• The state diagram can be presented in a way to provide a complete description of 

the Hamming weights for all the nonzero code words. 

• Weight numerating function (WEF) is obtained based on deleting self loop around 

s0, and Split s0 into initial and final. 

• Label branches with branch gain Xi, where i is the weight of encoded bits on that 

branch. 

• The WEF of a code can be determined by modifying state diagram to a signal 

flow graph for control theory.   

• Applying Mason's gain formula [23] 

            A(x)=sum (Ai X
i),                                                                                              (4.1)  

            where  Ai is the number of code words of weight i. 

• Loop with gain Ci is defined as a path starting at any state (except S0) and 

returning to that state through any other state twice. 

• Forward path, Fi, is defined as a path starting at S0 initial and ending at S0 final. 

• Non touching loops are defined as a set of loops called non touching loops 

meaning that no state can share more than one loop in the set.  

(i) Set of all loops 
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(ii)  (i', j')  set of all pairs of non-touching loops. 

(iii)  (i'', j'', l'') set of all triple non touching loops. 

      The codeword WEF of a code can be obtained by creating a modified state diagram 

of encoder as a signal flow graph and applying the Mason’s gain formula[23]. 

∆=1-∑Ci + ∑Ci'Cj' - ∑Ci''Cj''Cl'' + …      ,                                                                    (4.2) 

let ∆i=∆ when states along ith forward path are removed 

WEF=∑Fi∆i/∆ = A(X).                                                                                                  (4.3) 

       Additional information about the structure of the code can be obtained by using the 

code word IOWEF (input/output WEF) 

A(W,X,L)=∑A j,i,l W
jX iLl      ,                                                                                                                                       (4.4) 

where Aj,i,l stands for the number of code words of weight i with  information weight  j 

and length of the code  l. 

4.3 Encoding of Convolutional Coding  

      For a (2, 1, 3) code the generator matrices are: g(0)=(1 1 0 1),         g(1)=(1 1 1 1) 
 
The number of states is  823 =  

 

 
 
Fig.  20   A (2,1,3) systematic feedforword encoder. 
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From Fig, 20, we can write all possible states for this type of encoder. Table 1 shows all  

possible states for each new input. 

Table.1 Shows the new states of encoder specified in the figure 20.  

 

  State Input Output New State 

0S   0 0 0 

0S   0 0 0 

0 

1 

0 0 

1 1 

0 0 0   0S  

1 0 0   4S  

1S    0 0 1 

1S    0 0 1 

0 

1 

1 1 

0 0 

0 0 0     0S  

1 0 0     4S  

2S   0 1 0 

2S   0 1 0 

0 

1 

0 1 

1 0 

0 0 1     1S  

1 0 1      5S  

3S   0 1 1 

3S   0 1 1 

0 

1 

1 0 

0 1 

0 0 1      1S  

1 0 1      5S  

4S   1 0 0 

4S   1 0 0 

0 

1 

1 1 

0 0 

0 1 0      2S  

1 1 0      6S  

6S    1 01  

6S    1 1 0  

0 

1 

1 0 

0 1 

0 1 1       3S  

1 1 1       7S  

7S    1 1 1 

7S    1 1 1 

0 

1 

0 1 

1 0 

0 1 1       3S  

1 1 1       7S  
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We can rewritten the states above as diagram as shown in Fig 21  

 

 
 Fig 21  Encoder state diagrams for (2, 1, 1) encoder of figure 20. 
 
 
According to the state diagram we can find the loops. 

 Table 3 Loops generated by figure 21. 

 
 

1S 7S  4S 6S 3S 5S 2S 1S 4S  

3S 5S 6S 3S  4S 6S 7S 3S 1S 4S  

4S 1S 2S 4S  4S 6S 7S 3S 1S 4S  

2S 5S 2S  4S 2S 5S 6S 3S 4S  

4S 6S 3S
1S 4S  4S 6S 7S 3S 5S 2S 1S 4S  
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Fig.  22 Modified encoder state diagrams for (2,1,3) of encoder of figure 21. 
 
 

1C =XWL                                             422
5 LXWC =  

342
2 LXWC =                                       633

6 LXWC =  

33
3 LWXC =                                          533

7 LXWC =  

2
4 XLWC =                                          673

8 LXWC =  

744
9 LXWC =                                        784

10 LXWC =  

                                453
11 LXWC =  

Triple non-touching Loops: 

744
5411 LXWCCCT ==  

784
3212 LXWCCCT ==  

Pairs of non-touching loops 

453
211 LXWCCP ==                                                744

615 LXWCCP ==  

442
312 LXWCCP ==                                               784

816 LXWCCP ==  
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322
413 LXWCCP ==                                                633

547 LXWCCP ==  

533
514 LXWCCP ==                                                 744

748 LXWCCP ==  

////////1 ljijii CCCCCC ∑∑ −+−=∆ ,                                                                            (4.5) 

    = [ ] [ ] [ ] 334342342221 LWXLLXWLLWXLLXW −−−−−+− .                                (4.6) 

 

Forward Paths 

472
1 LXWF =                                                       884

5 LXWF =  

562
2 LXWF =                                                       7113

6 LXWF =  

677
3 LXWF =                                                       8124

7 LXWF =  

773
4 LXWF =  

342
1 1 LXWXWL−−=∆                                    2

3 1 XWL−=∆  

[ ] 322
2 11 LXWLXWL −+−=∆                          XWL−=∆ 14  

15 =∆                                                                 XWL−=∆ 16  

56258247 LXWLXWLWXF ii +−=∆∑                                                                       (4.7) 

( ) [ ] [ ] [ ]43243334222

58256247

1
,,

LLXXWLXLLWXLLXW

LXWLXWLWX
lwxA

−−−−+−
−+=                          (4.8) 

 

4.4 Average Symbol Error Probability Bound 

       We use the numerical results we obtained in previous work to apply the concept of 

convolutional coding in dispersed spectrum cognitive radio systems. The error 

probability is defined in [22] and bounded by  
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where dB is the  number of non-zero information bits on all weight d-Paths.  

Pd; and 
( )

( )23

8627
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xwA
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4.5 Numerical Results 

       The effect of coding on the performance of the system is investigated. The 

convolutional coding with the (2,1,3) code and g(0)=(1 1 0 1),    g(1)=(1 1 1 1) generator 

matrices are considered.  The bound for error probability in (4.9) is extended for our 

system and it is used as performance metric during the simulations.  Finally, Nakagami-m 

fading channel along with M-PSK and M-QAM modulations are assumed. The results are 

plotted in Figs. 23 and 24, which show the effects of coding on the performance and it 

can be clearly seen that the performance is improved due to the coding gain. 



 46 

 

0 5 10 15 20 25 30
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR(dB)

P
s

 

 

Uncoded

Coded

m=0.5

m=1

m=3

 

Fig. 23 Average bit error probability versus average SNR per bit for 16-PSK 
signals  with k=1, Nakagami-m fading channel compared with the 
performance bound for convolutional codes. 
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Fig. 24 Average bit error probability versus average SNR per bit for 16-QAM 
signals with k=1, Nakagami-m fading channel compared with the performance 
bound for convolutional codes. 
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5. PERFORMANCE ANALYSIS OFAD HOC DISPERSED SPECTRUM 

COGNITIVE RADIO SYSTEMS 

 
  5.1 Overview 
 
       Wireless ad hoc networks have become an important area of research in wireless 

communications systems due to their advantage that they can be deployed without 

requiring any preexisting infrastructure. Ad hoc networks neither have fixed topology nor 

centralized servers; once an ad hoc network is deployed, the network nodes would be 

self-controlled to form a communication network and provide connectivity to the 

destination to deliver the data throughout hops with an acceptable bit error rate [4, 5].  

        In [24], 2-D and 3-D structures for underwater sensor networks are proposed where 

the main objective was to determine the minimum numbers of sensors and redundant 

sensor nodes for achieving communication coverage.  In [25], the effect of non-uniform 

random node distributions on the throughput of MAC protocol is investigated through 

simulation without providing theoretical analysis.  In [26], 3-D configuration based 

method that provides smaller number of path and better energy efficiency is proposed.  

Furthermore, several studies in the literature have studied the use of location information 

in order to enhance the performance of cognitive radio networks [27, 28]. It is concluded 

that use of network topology information could bring significant benefits to cognitive 

radios and networks to minimize the maximum transmission power and reduce the 

spectral impact of the topology [29]. 

        The previous works motivate us to investigate the effects of 3-D node distribution 

on the effective transport capacity of ad hoc dispersed spectrum cognitive radio systems. 

Note that the effective transport capacity concept has been introduced in [6], which 
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quantifies the maximum bandwidth-distance product that can be supported by the 

network. In this section, the evaluation of the effective transport capacity of ad hoc 

dispersed spectrum cognitive radio systems considering 3-D configuration is carried out 

realistic cases. We considered the following two MAC protocols for the INI case: 

• Reserve-and-go (RESGO): A node reserves a route to destination and 

transmits the information without looking at the status of the channel.  

• Reserve-listen and- go (RESLIGO): A node reserves a route to a destination 

and looks at the status of channel before sending the information over the route. 

         The most important parameter in wireless communications is the bit error rate 

(BER). The derivation of BER for dispersed spectrum cognitive radio systems is based on 

the fact that the summation of error probability and probability that there is no error is 

one and since all hops are independent, the average BER of dispersed spectrum cognitive 

radio systems for  a given source destination path can be expressed as  

BER(n) ≈1 − (1 – BERL)
n                                                                                                                                       (5.1)           

where BERL is BER at the end of a single link, and n stands for the number of hops.                                                           

            To find out an average network performance of ad hoc dispersed spectrum 

cognitive radio systems, it is considered a route with an average number of hopshn . To 

do so, it is required to identify the maximum number of hops max
hn and a probability 

distribution for the number of hops
hn , which is an integer between 1 andmax

hn . We could 

find a route having a minimum of nodes which represents a straight line by assuming that 

the source and destination nodes lie at the opposite ends of a diameter over a spherical 

surface and a large number of nodes in the network are simulated. The maximum number 

of hops max
hn  can be expressed as [7]: 
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h d
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nmax    ,                                                                                                     (5.2)                             

where    indicates the integer value closest to the argument.  

         The number of hops is considered to be any symmetric probability distribution 

which means that the average number of hops 2max
hh nn = . This is the case, for example, 

of a PDF for 
hn given by considering a uniform distribution as follows 
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                  The network communication system model can be summarized by the 

following points [6-8]:  

• Each node transmits a fixed power and the multi-hop routes between a source and 

destination is established by a sequence of minimum length links.  

• If a node needs to communicate with another node, a multi hop route is first 

reserved and only then can the packets be transmitted without looking at the status 

of the channel which is based on MAC protocol for INI: Reserve and Go 

(RESGO).  Packet generation at each node is given by a Poisson process with 

parameter bl R≤λ  (packets/second). Each packet has a fixed length of L bits. 

• A necessary condition that needs to be satisfied for network communications 

is bRL ≤λ , where BR the transmission data rate of the nodes is. 

The effective transport capacity is defined in [7] as 
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arlsheT NdnLC λ=,  ,                                                                                                        (5.5) 

where arN is the number of disjoint routs and   shn  is the average number of sustainable 

hops [5-8] which is defined as 

{ } ( )
( ) 

















−
−== h

L

hshsh n
BER

BER
nnn ,

1ln

1ln
min,min

max
max  ,                                                           (5.6) 

where Lr is the distance that the data across the route with acceptable bit error rate. 

         It is known that the BER depends on the SNR. Donating the SNR at the end of a 

single link by 
LSNR  and assuming that the nodes interfere with each other, the 

LSNR  can be 

expressed as [7] 

η
µα

INTb

lt
L PRFKT

dP
SNR

+
=

0

2
2   ,                                                                                     (5.7) 

where 
tP , KJK 231038.1 −×= , F , α,  KT 300=  ,  η  , and 

INTP , are the transmitted power from 

each node, the Boltzmann’s constant, the noise figure, , the fading envelope, the room 

temperature,  the spectral efficiency,  the inter-node interference power which is defined 

as 

( ) 22

2

4 cl

rt

ff

cGG

π
µ =   ,                                                                                                     (5.8) 

where  
tG ,

rG ,c ,
cf , and 1≤lf  are the transmitter gain, receiver gain, the speed of light, the 

carrier frequency, a loss factor, respectively. 
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5.2. Two Dimensional Configuration 

 

 

Fig. 25  Structure for 2-D distribution of an ad hoc wireless network [7]. 

 

In the thi  order tier of the 2-D distribution there are [7]: 

• Four nodes at distance i dl. The interference power at the destination node  from 

any of these nodes is ( )2idP ltµ . 

• Eight nodes at distance ldji 22 + , j=1,…,i-1, 2≥i (i.e. a total of 8(i-1) nodes). 

The interference power at the destination node from any of these nodes 

is ( )222 jidP lt +µ .  
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• Four nodes at distance ldi 2 . The interference power at the destination node from 

any of these nodes is ( )22 idP ltµ . 

Since the number of nodes in the network is finite, the maximum tier order maxi  depends 

on the number of nodes N in the network which can be expressed for 2-D distribution as   

( )148 maxmax
1

max

+=≈∑
=

iiiN
i

i

  .                                                                                         (5.9) 
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5.3   Three Dimensional Configuration 
 
        The node distribution, defined as 3D distribution, is that N nodes  each are placed 

uniformly, at the centers of a cubic grid, in a Spherical volume V as in Fig. 26. 

Since 3
lNdV ≈ , it can be easily shown that two neighboring nodes are at distance 

( )3

1

1 sld ρ≈   ,                                                                                                               (5.12) 

where VNs =ρ  (unit 3−m ) is the node volume density. 
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Fig. 26   Structure for 3-D distribution of an ad hoc wireless network. 

 

1. Average Number of Hops 

            The first step is to calculate the average number of hops in the Ad hoc network. 

To do so, we will need to find the maximum number of hops and then find the average 

number of hops  

hn  since the node distribution is uniform. By Assuming that the source and destination 

nodes lie at opposite ends of a diameter over a spherical surface, and a large number of 

nodes in the network are simulated which max
hn for 3D distribution can be expressed as in 

(5.3) 
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It can be immediately concluded from (5.5) that 

 2max
hh nn = ,                                                                                                                (5.14) 



















=
31

4

3

π
N

nh ,                                                                                                           (5.15) 

2. Inter-node Interference (INI) 

                 In the thi order tier of the 3D distribution there are: 

• 6 nodes at distance
ldi. , which represents the order of the tier, and 

ld  is the 

length of the edge of a cube. The interference power at the destination node   

from any of these nodes is   ( )2idP ltµ              

• 8 nodes at distance ldi 3 . The interference power at the destination node  

from any of these nodes is ( )23 idP ltµ . 

• 12 nodes at distance ldi 2 . The interference power at the destination node  

from any of these nodes is ( )22 idP ltµ . 

• 24 nodes at distance Ldji 22 + , j=1,…,i-1, 2≥i ,. The interference power at 

the destination node from any of these nodes is ( )222 jidP lt +µ .  

• 24 nodes at distance Ldji 222 + , j=1,…,i-1, 2≥i . The interference power at 

the destination node  from any of these nodes is ( )222 2 jidP lt +µ .  

• 24 nodes at distance Ldzji 322 ++ , j=1,…,i-1, z=1,…,i-1, 2≥i . The 

interference power at the destination node from any of these nodes 

is ( )3222 zjidP lt ++µ . 



 56 

 Since the number of nodes in the network is finite, there exists a maximum N.  
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Form (5.17), it leads to ( ) 231
max Ni ≈ . 

In [7], the probability of a single bit in the packet interfered by any node in the network is 

defined as (1-exp (-λL/Rb)) which means that the overall interference power for 3-D 

configuration can be expressed as: 
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5.4 Summary 

        Finally, we summarize all parameters of the network for both node distributions in 

Table 3. 

 
Table 3: Comparison for all network parameters between two and three dimensional 
distribution. 
 
 

Node Distribution Preliminaries 
 Two dimensional Three dimensional 
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5.5 Numerical Results 

       We studied just one type of channel, 3-Rayleigh channels (Nakagami-m, m=1) for 

QAM, and M-PSK in both cases, independent, and dependent case. They are two types of 

correlations, namely linear and triangular defined in [14]. The triangular configuration 

has a large covariance coefficient larger than that in linear configuration.  

       Figs.  25 and 26 representing the new distribution system (3D), clearly show that the 

effective transport capacity (CT) is improved when using the 3D configuration. In Figs, 

27, 28, 29, and 30 show 2D configuration. We also note that the independent case is the 

best one in all figures which is an expected result.  

      We have assumed that the gain of the transmitter and receiver is 1, loss factor is 

1.56dB, noise figure is 6 dB, the carrier frequency is 2.4 GHz, and the network volume is 

.101 36 mV ×=   
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Fig. 27 3-D Effective Transport Capacity versus Rb for 4-QAM modulation 
with 3 Rayleigh fading channels. 
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Fig. 28   3-D Effective Transport Capacity versus Rb for 16-QAM modulation 
with 3 Rayleigh fading channels. 
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Fig. 29  2-D Effective Transport Capacity versus Rb for 16-PSK modulation 
with 3 Rayleigh fading channels. 
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Fig. 30   2-D Effective Transport Capacity versus Rb for 4-QAM modulation 
with 3 Rayleigh fading channels. 
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Fig.31  2-D Effective Transport Capacity versus Rb for 16-QAM modulation with 3 
Rayleigh fading channels. 
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6. CONCLUSIONS AND FUTURE WORKS 

 
 
6.1 Conclusions  
 

       In the first part of the thesis, the performance analysis of dispersed spectrum 

cognitive radio systems is conducted considering the effects of fading, number of 

dispersed bands, modulation, and coding.  The symbol error probability is derived when 

each band undergoes independent and dependent Nakagami-m fading. Furthermore, the 

symbol error probability for both cases is extended to take the modulation effects into 

account. In addition, the effects of coding on symbol error probability performance are 

studied through computer simulations. Numerical results are presented to study the 

effects of fading, number of dispersed bands, modulation, and coding on the performance 

of dispersed spectrum cognitive radio systems. The results show that the effects of effects 

of fading, number of dispersed bands, modulation, and coding on the symbol error 

probability of dispersed spectrum cognitive radio systems is significant.    

       In the second part of this thesis, we have studied the relationship between the data 

rate and the effective transport capacity using specific modulation techniques, namely M-

QAM, and M-PSK for ad hoc wireless networks based on MAC protocols. We have used 

the dispersed spectrum CR system with two different scenarios independent and 

dependent cases running over Nakagami-m fading channel for 3D configuration to 

enhance the performance in terms of effective transport capacity, which represents a 

realistic scenario of wireless sensor network.  
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6.2 Future Works 

• This work can easily be extended to include variable transmit powers; each node 

transmits a different power, and then finding out the average power. 

• Studying the performance of dispersed spectrum cognitive radio system from a 

different perspective, splitting the data into k segments, each one being carried 

over one band.  

• The capacity of the ad hoc network was evaluated for the RESGO MAC protocol. 

It  can be evaluated for other MAC protocols such as reserve-listen- and go 

          (RESLGO) MAC protocol or reserve-choose-and-go (RESCHOGO) MAC 

          protocol. 

• Finding the effective transport capacity in the same scenario specified in this 

research but for with different types of node distributions. 
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