68 research outputs found

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Model driven validation approach for enterprise architecture and motivation extensions

    Get PDF
    As the endorsement of Enterprise Architecture (EA) modelling continues to grow in diversity and complexity, management of its schema, artefacts, semantics and relationships has become an important business concern. To maintain agility and flexibility within competitive markets, organizations have also been compelled to explore ways of adjusting proactively to innovations, changes and complex events also by use of EA concepts to model business processes and strategies. Thus the need to ensure appropriate validation of EA taxonomies has been considered severally as an essential requirement for these processes in order to exert business motivation; relate information systems to technological infrastructure. However, since many taxonomies deployed today use widespread and disparate modelling methodologies, the possibility to adopt a generic validation approach remains a challenge. The proliferation of EA methodologies and perspectives has also led to intricacies in the formalization and validation of EA constructs as models often times have variant schematic interpretations. Thus, disparate implementations and inconsistent simulation of alignment between business architectures and heterogeneous application systems is common within the EA domain (Jonkers et al., 2003). In this research, the Model Driven Validation Approach (MDVA) is introduced. MDVA allows modelling of EA with validation attributes, formalization of the validation concepts and transformation of model artefacts to ontologies. The transformation simplifies querying based on motivation and constraints. As the extended methodology is grounded on the semiotics of existing tools, validation is executed using ubiquitous query language. The major contributions of this work are the extension of a metamodel of Business Layer of an EAF with Validation Element and the development of EAF model to ontology transformation Approach. With this innovation, domain-driven design and object-oriented analysis concepts are applied to achieve EAF model’s validation using ontology querying methodology. Additionally, the MDVA facilitates the traceability of EA artefacts using ontology graph patterns

    Formal verification of automotive embedded UML designs

    Get PDF
    Software applications are increasingly dominating safety critical domains. Safety critical domains are domains where the failure of any application could impact human lives. Software application safety has been overlooked for quite some time but more focus and attention is currently directed to this area due to the exponential growth of software embedded applications. Software systems have continuously faced challenges in managing complexity associated with functional growth, flexibility of systems so that they can be easily modified, scalability of solutions across several product lines, quality and reliability of systems, and finally the ability to detect defects early in design phases. AUTOSAR was established to develop open standards to address these challenges. ISO-26262, automotive functional safety standard, aims to ensure functional safety of automotive systems by providing requirements and processes to govern software lifecycle to ensure safety. Each functional system needs to be classified in terms of safety goals, risks and Automotive Safety Integrity Level (ASIL: A, B, C and D) with ASIL D denoting the most stringent safety level. As risk of the system increases, ASIL level increases and the standard mandates more stringent methods to ensure safety. ISO-26262 mandates that ASILs C and D classified systems utilize walkthrough, semi-formal verification, inspection, control flow analysis, data flow analysis, static code analysis and semantic code analysis techniques to verify software unit design and implementation. Ensuring software specification compliance via formal methods has remained an academic endeavor for quite some time. Several factors discourage formal methods adoption in the industry. One major factor is the complexity of using formal methods. Software specification compliance in automotive remains in the bulk heavily dependent on traceability matrix, human based reviews, and testing activities conducted on either actual production software level or simulation level. ISO26262 automotive safety standard recommends, although not strongly, using formal notations in automotive systems that exhibit high risk in case of failure yet the industry still heavily relies on semi-formal notations such as UML. The use of semi-formal notations makes specification compliance still heavily dependent on manual processes and testing efforts. In this research, we propose a framework where UML finite state machines are compiled into formal notations, specification requirements are mapped into formal model theorems and SAT/SMT solvers are utilized to validate implementation compliance to specification. The framework will allow semi-formal verification of AUTOSAR UML designs via an automated formal framework backbone. This semi-formal verification framework will allow automotive software to comply with ISO-26262 ASIL C and D unit design and implementation formal verification guideline. Semi-formal UML finite state machines are automatically compiled into formal notations based on Symbolic Analysis Laboratory formal notation. Requirements are captured in the UML design and compiled automatically into theorems. Model Checkers are run against the compiled formal model and theorems to detect counterexamples that violate the requirements in the UML model. Semi-formal verification of the design allows us to uncover issues that were previously detected in testing and production stages. The methodology is applied on several automotive systems to show how the framework automates the verification of UML based designs, the de-facto standard for automotive systems design, based on an implicit formal methodology while hiding the cons that discouraged the industry from using it. Additionally, the framework automates ISO-26262 system design verification guideline which would otherwise be verified via human error prone approaches

    TTSS'11 - 5th International Workshop on Harnessing Theories for Tool Support in Software

    Get PDF
    The aim of the workshop is to bring together practitioners and researchers from academia, industry and government to present and discuss ideas about: ‱ How to deal with the complexity of software projects by multi-view modeling and separation of concerns about the design of functionality, interaction, concurrency, scheduling, and nonfunctional requirements, and ‱ How to ensure correctness and dependability of software by integrating formal methods and tools for modeling, design, verification and validation into design and development processes and environments. ‱ Case studies and experience reports about harnessing static analysis tools such as model checking, theorem proving, testing, as well as runtime monitoring

    Verification and validation of UML and SysML based systems engineering design models

    Get PDF
    In this thesis, we address the issue of model-based verification and validation of systems engineering design models expressed using UML/SysML. The main objectives are to assess the design from its structural and behavioral perspectives and to enable a qualitative as well as a quantitative appraisal of its conformance with respect to its requirements and a set of desired properties. To this end, we elaborate a heretofore unattempted unified approach composed of three well-established techniques that are model-checking, static analysis, and software engineering metrics. These techniques are synergistically combined so that they yield a comprehensive and enhanced assessment. Furthermore, we propose to extend this approach with performance analysis and probabilistic assessment of SysML activity diagrams. Thus, we devise an algorithm that systematically maps these diagrams into their corresponding probabilistic models encoded using the specification language of the probabilistic symbolic model-checker PRISM. Moreover, we define a first of its kind probabilistic calculus, namely activity calculus, dedicated to capture the essence of SysML activity diagrams and its underlying operational semantics in terms of Markov decision processes. Furthermore, we propose a formal syntax and operational semantics for the input language of PRISM. Finally, we mathematically prove the soundness of our translation algorithm with respect to the devised operational semantics using a simulation preorder defined upon Markov decision processes

    Methodology for automated Petri Net model generation to support Reliability Modelling

    Get PDF
    As the complexity of engineering systems and processes increases, determining their optimal performance also becomes increasingly complex. There are various reliability methods available to model performance but generating the models can become a significant task that is cumbersome, error-prone and tedious. Hence, over the years, work has been undertaken into automatically generating reliability models in order to detect the most critical components and design errors at an early stage, supporting alternative designs. Earlier work lacks full automation resulting in semi-automated methods since they require user intervention to import system information to the algorithm, focus on specific domains and cannot accurately model systems or processes with control loops and dynamic features. This thesis develops a novel method that can generate reliability models for complex systems and processes, based on Petri Net models. The process has been fully automated with software developed that extracts the information required for the model from a topology diagram that describes the system or process considered and generates the corresponding mathematical and graphical representations of the Petri Net model. Such topology diagrams are used in industrial sectors, ranging from aerospace and automotive engineering to finance, defence, government, entertainment and telecommunications. Complex real-life scenarios are studied to demonstrate the application of the proposed method, followed by the verification, validation and simulation of the developed Petri Net models. Thus, the proposed method is seen to be a powerful tool to automatically obtain the PN modelling formalism from a topology diagram, commonly used in industry, by: - Handling and efficiently modelling systems and processes with a large number of components and activities respectively, dependent events and control loops. - Providing generic domain applicability. - Providing software independence by generating models readily understandable by the user without requiring further manipulation by any industrial software. Finally, the method documented in this thesis enables engineers to conduct reliability and performance analysis in a timely manner that ensures the results feed into the design process

    Cyber-Physical Systems of Systems: Foundations – A Conceptual Model and Some Derivations: The AMADEOS Legacy

    Get PDF
    Computer Systems Organization and Communication Networks; Software Engineering; Complex Systems; Information Systems Applications (incl. Internet); Computer Application
    • 

    corecore