Methodology for automated Petri Net
model generation to support Reliability

Modelling

by

Christina Latsou

Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the award of
Doctor of Philosophy

of Loughborough University

December 2018

© by Christina Latsou 2018

Dedicated to my parents, Theodora and Christos,

and to Dimitris

Acknowledgments

I would like to thank my supervisors, Sarah Dunnett and Lisa Jackson, for their
support, guidance and their confidence in me throughout my Ph.D. I am lucky to have
had two committed supervisors, who in their different, yet complementary ways have
guided and shaped this research. I would like to express my sincerest thanks to Sarah
and Lisa for their contributions, and for their continued help and encouragement over

the years. I learned from their insights a lot.

Special thanks to all my friends and fellow researchers in the office, with whom I
have shared the good and bad times and all of those at Loughborough University who
have directly or indirectly offered help, suggestions in bringing towards the

completion of this research.

My sincerest thanks go to my family, particularly to my parents for their love, support
and for believing in me. Finally, my deepest gratitude goes to my partner, Dimitris,

for his understanding and unending encouragement throughout the last 3 years.

Abstract

As the complexity of engineering systems and processes increases, determining their
optimal performance also becomes increasingly complex. There are various reliability
methods available to model performance but generating the models can become a
significant task that is cumbersome, error-prone and tedious. Hence, over the years,
work has been undertaken into automatically generating reliability models in order to
detect the most critical components and design errors at an early stage, supporting
alternative designs. Earlier work lacks full automation resulting in semi-automated
methods since they require user intervention to import system information to the
algorithm, focus on specific domains and cannot accurately model systems or

processes with control loops and dynamic features.

This thesis develops a novel method that can generate reliability models for complex
systems and processes, based on Petri Net models. The process has been fully
automated with software developed that extracts the information required for the
model from a topology diagram that describes the system or process considered and
generates the corresponding mathematical and graphical representations of the Petri
Net model. Such topology diagrams are used in industrial sectors, ranging from
aerospace and automotive engineering to finance, defence, government, entertainment
and telecommunications. Complex real-life scenarios are studied to demonstrate the
application of the proposed method, followed by the verification, validation and
simulation of the developed Petri Net models. Thus, the proposed method is seen to
be a powerful tool to automatically obtain the PN modelling formalism from a
topology diagram, commonly used in industry, by:
— Handling and efficiently modelling systems and processes with a large number
of components and activities respectively, dependent events and control loops.
— Providing generic domain applicability.
— Providing software independence by generating models readily understandable

by the user without requiring further manipulation by any industrial software.

Finally, the method documented in this thesis enables engineers to conduct reliability
and performance analysis in a timely manner that ensures the results feed into the

design process.

Contents

| A G S e U1 RS Xvii
LSt OF TADIES ...ttt sttt e XX
CHAPTER 1 - INtroduction...........ccocuviiiiiiiiniieeniie ettt ettt et ebeeesaree e 1
1.1 Introduction to Reliability Modellingccccuveeiiieeiiieeiiecieceeeecee e, 1
1.1.1 Analytical Reliability Modelling Methods.................cc.o.oee. . 2

1.1.1.1 Fault TTee .cevvniin i 2

1.1.1.2 Cause-Consequence Diagramcceeviviiiininn.. 3

1.1.1.3 Reliability Block Diagramcoooiiiiiiiiiiinnn, 3

1.1.1.4 Markov Methodo 4

1.1.1.5 Petri Net .o, 5

1.1.2 Simulation Modelling Methodsccceeviieniiiniiiinieiiieiecieee 5

1.1.3 Reliability Modelling, Implementation and Deficiencies................ 6

1.2 Introduction to Automated Reliability Model Generation............c.cccccvveennennee. 7
1.3 Industrial Representation of SYStEMS.......cccueeeviiieeiieeriiieeiieeeee e 9
1.3.1 Introduction to System Modelling Tools..........ccceceeriiierienciieieenne. 9

1.3.2 Summary of System Modelling ToolS..........cccceevieriiienieniiieieeee. 13

1.4 Research Scope and Delimitations...........ccceeecvveerveeeriieeiieeeiieeeree e 14
1.5 ATM ANA ODJECHIVES. ..cccuviieiiiieeeiieeeiee et e et e et eeeeeeeareesreeesaeeesseeessseeensseeens 14
1.6 ThesiS LayOUL.....ccceeiiiiiiieiiecie ettt ettt 16
CHAPTER 2 - Modelling Tools and Methods — Automated Reliability Modelling 19
2.1 INEEOAUCTION ... e e 19
2.2 Industrial System Representationccceeeeveeeiieeeiieeeiieeciie e eevee e 20
2.2.1 Systems Modelling Languages Review: UML and SysML 20
2.2.1.1 UML/SysML Activity Diagramcccceceeevveeieenieenrennnens 25

2.3 Petri Net Modelling REVIEWccviieiiiiiiieciieceeee e 28
2.4 Methods for Automation of Reliability Models..........cccccocvievciiiniiiiiiieeiee 33

2.4.1 T OAUCTION. ¢ e 33

2.4.2 Overview of Methods for Automated Reliability Modelling

(Not Including PN)cuviiiieeeee e 34
24.2.1 Automated Generation of the Fault Tree Model 34
2422 Automated Generation of Other Reliability Models 38
2423 Summary of Methods ..o 39
2.5 Automated Generation of the Petri Net Model ..., 41
2.5.1 Review of Methods for Automated Petri Net Modelling 41
2.5.2 Summary of Methods for Automated Petri Net
MOAEIING. ..vveiiiiieiee e 55
2.6 Review and Research Motivationsccoceerieiiiienieniiienieeeesie e 56
CHAPTER 3 — Methodology for the Automated Generation of a Petri Net Model58
3.1 INtrOAUCLION ...ttt 58
3.2 Overview of Developed Methodology.........cccveeeiiieiiiieciieeieeee e, 59
33 Input — System Modelling........c.oeevuiieeiieeiiieeiie e e 60
3.4 Algorithm — Java Database Programmingcccccceevevienieniienieenieenieeeienn 63
3.4.1 Transformation Rulesc..cocevvieiiiiiiiiniinieeeceeee 63
342 Database Introduction..........cocceeeueeriiiiieniieiieieeeee e 64
34.2.1 Relational Database Management Systems Products
REVIEW ..ttt 64
343 Algorithm — Java Database Programming — Transpose of the
Petri Net Incidence MatriX.......coceeiueeiieiieinieniieieeeeeeeee e 66
344 Algorithm — Java Database Programming — Petri Net Initial
Marking MatriX.......ooooiiiiiiiiiiiiiieee e eiee e 10
3.5 Automated Graphical Representation of a Petri Net Model............c.cce........ 78
3.6 SUIMIMATY ...ttt e e e e e e e taeeeesabeeeeesanaaeesensneaeanns 81

CHAPTER 4 — Application of the Automated Petri Net Model Generation

Methodology to a Recycling IT Asset Processccccceeeeeviiieeiiiieeeeiiiee e e e 82
4.1 INEOAUCTION ...ttt et e 82
4.2 Process DeSCIIPHION.eiiiiiieeiieeeiie ettt ree e e e evee e sveeeeaaeeens 82

Xii

4.3 Manual Development of the Petri Net Model for the Recycling IT Asset
PIOCESS ..ttt 84
44 Automated Mathematical Representation of the Petri Net Model for the
Recycling IT ASSEt PrOCESS.....ccuviiuiieiierieeieeeie ettt 86
44.1 Input — System Modellingccceeevieeiiieeiieeeieeee e, 86
442 Algorithm — Java Database Programming — Transpose of the
Petri Net Incidence MatriX.........cecueveerierienienenienierceieseeieee 87
443 Algorithm — Java Database Programming — Petri Net Initial
Marking MatliX......cccveeeiieeiiie et e e ee e e seree e 92
4.5 Automated Graphical Representation of the Petri Net Model for the
Recycling IT ASSEt PrOCESS.....ccuvevuiieiieiieeiieeie ettt 93
4.6 SUMMATY <.ttt ettt e e st e e st e e st e e sabeeenseeenaee 94
CHAPTER 5 — Verification & Validation of Petri Net Model................cccceeevrvnnennnn. 95
5.1 INtEOAUCTION ... e 95
5.2 Petri Net Model Verification Methodsccceoeviiiiniiniiiiniinieicienceee 96
521 Static Verification Methods..........ccceevuevienieiinienininieecieee, 96
52.2 Dynamic Verification Method............cccovevveiiiiiiiiniieeie e, 99
523 Comparison of PN Models (Bi-Simulation) for Verification...... 100
5.3 Verification of Automated Petri Net Developmentc.ccccevevierieniennnnen. 100
5.4 Petri Net Model Validation Methods...........ccoceeverieniininieniiienienccceee, 105
54.1 Expert Intuition Validation Method............cccceeevvieeiiiiiciieiienee, 105
542 Real System Measurements Validation Method.......................... 105
543 Theoretical Results/Analysis Method............ccccoevieeiiienieniienen. 106
5.5 Validation of Automated Petri Net Development.............cccoeveevciieniienieennens 106
5.5.1 Petri Net Model Simulation Algorithmccccoevevveriieinnennnne. 107
5.5.2 Process Input Datacccveeeeiiiiiiiiniiieeeeeeee e 109
553 Petri Net Model Visual Check.......c..cooceeviriiniininiiiiiicice, 111
554 Petri Net Model Numerical Simulation and Performance
ANALYSIS .ovvieeiiiieeiieeciie ettt e e e e e 114
5.5.5 Performance Analysis Results and Discussion.............c.ccuee..... 116
5.6 SUMMATY ...ttt ettt e st e e eabee st eeenabeeens 118

CHAPTER 6 — Advanced Generic Methodology for the Automated Generation of a

Petri Net MOdelooooiiiiiiiiiiie ettt e e e et e e e e e e e sneaeeeesanaeeas 121
6.1 INtrOAUCLIONeiiiiieieeeee ettt 121
6.2 Introduction of UML/SysML AD Additional Elements Notation................. 122
6.3 Input — System Modelling........c.coeoviieeiieeiiieeiieeeeee e 125
6.3.1 INtrOdUCTION. ... 125
6.3.2 Uml/Sysml AD: Review of XMI Nested Elements..................... 126
6.3.3 The Need of XMI Model Transformation using XSLT............... 133
6.3.3.1 First XMI Model Transformation using XSLT 134
6.3.3.2 Second XMI Model Transformation using XSLT 136

6.3.4 Application of the XMI Model Transformations to a Simple
AD EXaMPIE ..o 137
6.4 Generic Algorithm — Java Database Programmingc.ccceeeveeviiieennnennns 139
6.4.1 Transformation Rules ... 139

6.4.2 Algorithm — Java Database Programming — Transpose of the
Petri Net Incidence MatriX.........cocerveveenieniieneenenieneenieeieeeee 143

6.4.3 Algorithm — Java Database Programming — Petri Net Initial

Marking MatliX.......ccoveeeiieeiiie e saee e e 146
6.5 SUMMATY <.ttt et e s e et essabeeenseeens 147

CHAPTER 7 — Application of the Generic Automated Petri Net Model Generation

Methodology to Real Life Scenarios................ccooeeciiiiiiiiiiiieiiiiiieeee e 149
7.1 INtrOAUCTION ...t e 149
7.2 Production SYSTEMc.ccvoiieiiiiiieeiieiie ettt ettt ettt et 149
7.2.1 Process DeSCIIPtionccccuieriieriieriieiieeieeie et 149

7.2.2 Automated Mathematical Representation of the Petri Net
Model for the Production System..........cccceccvveviiiencieeniieeieenee, 152
7.2.2.1 Input — System Modellingcceeeeriiinieniiienienieeiens 152

7.2.2.2 Algorithm — Java Database Programming — Transpose

of the Petri Net Incidence MatriX......c.ccccceevveveeneenicnnenne. 153
7.2.2.3 Algorithm — Java Database Programming — Petri Net

Initial Marking MatriX........cccceeeevveeiienienenieneeeeeeeee 156

Xiv

7.2.3 Automated Graphical Representation of the Petri Net Model

for the Production SysStemccccveeviieeiiieeiieecieceee e
7.3 Online ShoppPing PrOCESSccveeiieriieiieiieeiieeie ettt
7.3.1 Process DesCIIPtioncccveecuienieeiiieniieeieeee e

7.3.2 Automated Mathematical Representation of the Petri Net
Model for the Online Shopping Process.........c.ccceevevveercvieennenns
7.3.2.1 Input— System Modellingc.ccecuverierviienieniieieeen.

7.3.2.2 Algorithm — Java Database Programming — Transpose

of the Petri Net Incidence MatriXcoovevummeeeeeeeeeeeeennnnnn.

7.3.2.3 Algorithm — Java Database Programming — Petri Net

Initial Marking MatriX........cccceeerieneenenieneeenienieene

7.3.3 Automated Graphical Representation of the Petri Net Model
for the Online Shopping Processccceevvveecieeeciieencieeeeieeenne,
7.4 Verification and Validation of Real-Life Scenariosccccccceveniiennnne
7.5 SUMMATY ...ttt ettt et e e sabeeerabeeeaaeas
CHAPTER 8 — Conclusions and Future Workccccccoevvieniiiiniieinieenieeeen,
8.1 INtrOAUCTION ...t e
8.2 CONCIUSIONS ...ttt ettt ettt s
8.3 Contributions to Knowledgecoooueeiiiiiiiiiiiiiieiieieciece e
8.4 Recommendations for Future Work..........c.ccoceviiiiniininiiniiniiicneeee

8.4.1 Automated Sub-PNs Construction followed by Simulation

ANALYSIS ..vvieiiiieeiii ettt et e e e ere e e beeesnneeen
8.4.2 Automated Reliability Analysis........cccccceevieriiienieniiieieeieeiens
8.4.3 Additional PN Model Featuresccccovvuerievenieneenenieneeens
8.4.4 Investigation of INPULScceeeeiiieiiieeiieeeeeee e
8.4.5 Representation of PN Results into the UML/SysML AD
BibLIOGrapRhycccoooiiiiii e e e
Appendix A - Simple Process Example (XMI File)cccoeviiiviiiiniiienieeieee
Appendix B — SQL CODE [AT] ..o
Appendix C — SQL CODE [M0] vttt

XV

Appendix D — Graphical Representation of PN Modelcccccovevviiiiniiiiniieeneen. 202

Part A — SQL Code for the Automated PN Generation...............cccceuvveeenene. 202
Part B — DOT File for the PN Model Generation (GraphViz Input).............. 204
Appendix E — Recycling IT Asset Process Example (XMI File)ccceveriinennen. 205
APPENAIX F ..o e e e as 207
Part A — Validation — PN Visual Check (Token Game)..........cccccveerveeennnenne 207
Part B — Validation — PN Model Numerical Simulationccccccceeveenenn. 211
Part C — Validation — PN Model Performance Analysisccccceevuverveennenn. 214
APPENAIX G e e e et e e et e e e et b e e e e enneeeas 215
Part A — AD Examples in Chapter 6 (XMI Files)cccceovvveveiienciieniieeies 215
Part B —XSLT FIlESeeiiiiiiiiiiiiieieeeseeeeetese ettt 220
Part C — Java Code for the XMI Transformations............cceeevvevvenieruenennns 222
Part D — Outputs from XMI Model Tranformation of AD in Figure 6.4 224
Appendix H — Advanced Generic SQL Code [AT]...c.covovivoeeeeeeeeeeeeeeee, 228
Appendix I — Advanced Generic SQL Code [Mo]...cccveriieriieniieniienieeiieeieeiee e 249
APPEIAIX J ..o e ettt e e 252
Part A- Production System Example (XMI File)cccceeeviveveiiiiciiiniieeee 252
Part B — Online Shopping Process (XMI File).......cccccvvevviiivciieiiieeiieeiee 255
Appendix K — PN Mathematical Forms of the Production System and Online
SHOPPING PrOCESSeevviiiieeiiieiie ettt ettt ettt et ae e e ssaeenseas 263
BTt A e 263
Part B o 264
Part € oo 265
Part Do 267

Appendix L — Verification of the Production System and Online Shopping
PIOCESS ..ttt 268

XVi

List of Figures

Figure 2.1 Illustration of the Structure of Chapter 2.........ccccoevveviriinieneiienienenene 19
Figure 2.2 UML 2 Diagrams Taxonomy (OMG Unified Modelling Language
(UML), Version 2.5, 2015) ..ecouiiieiieeeieeeeiee ettt eite et e e aee e vee s saveeesesaeens 21
Figure 2.3 SysML Diagrams Taxonomy (Object Management Group, 2000).......... 23
Figure 2.4 UML Activity Diagram Example (OMG Unified Modelling Language
(UML), Version 2.5, 2015) ..oouiieeiie ettt evee e en 28
Figure 2.5 INhiDItOr ATC ...ccuviiiiiieeeiie ettt e e e e e 30
Figure 2.6 PN Firing Process with Inhibitor ATC........ccccceevieeeiiincieeeieeeiee e, 30
Figure 2.7 PN Firing PrOCESSccccuiiiiiiiiieiiecieeiie ettt 31
Figure 2.8 Reachability MatriXccccueeciieriieiiieiiieeie et 38
Figure 2. 9 Simple Component Conversion into a Simple-Component CPN
(Robidoux et al., 2010)...cc.ueieeiiieeiieeeiee et e e ens 48
Figure 3.1 Illustration of the Structure of Chapter 3.........ccccooveviriiniineiiinieenne 58
Figure 3.2 Methodology Steps for Automated PN Generation...........ccccceceeveenuennene. 59
Figure 3.3 AD for a SImple Processcocvueeeiiiiiiiieeiieeeeeee e 61
Figure 3.4 Part of XMI File retrieved from the AD for the Simple Scenario............ 61
Figure 3.5 Model developed for the AD for the Simple Process.........c..ccceveenuennnee. 63
Figure 3.6 Flowchart for the steps followed for the Automated Generation of the
Mathematical Representation of a PN Modelcocovveviiinciiiniiiiecee e, 68
Figure 3.7 Part of XMI File retrieved from the AD.........ccceeveiiiniiiiciieeeeeee e, 70
Figure 3.8 Part of XMI File retrieved from the AD.......ccccocevieniniiniiniiiiniecee 70
Figure 3.9 Flowchart for Step 2 for the Automated Graphical Representation of a
PN MOEL ...ttt et s 79
Figure 3.10 Automated Layout of the Petri Net Model for the Simple Example......80
Figure 4.1 UML AD of the Recycling IT Asset Processccocceeevverciieniienieenneennen. 84
Figure 4.2 PN Model developed for the UML AD for the Recycling IT Asset
PrOCESS .. 85
Figure 4.3 Part of XMI File retrieved from the AD for Table 4.2 Generation.......... 87

XVii

Figure 4.4 Part of XMI File retrieved from the AD for Table 4.3 Generation.......... 88

Figure 4.5 PN Model for the Recycling IT Asset Process........ccceevveeecveeencieeenveeennen. 93
Figure 5.1 Illustration of the Structure of Chapter S.........ccccoevveviriiniienieiiiinienenne. 95
Figure 5.2 Reachability Graph Example (Aalst, 2011).....ccccoovieviniinieneiiinienenene 98
Figure 5.3 Petri Net developed in HiPS for the Recycling IT Asset Process............ 102
Figure 5.4 Structurally and Behaviourally Bounded Check in HiPS for the

Recycling IT asset PrOCESS......cccvieriieiiieiieciieeieeee et 104
Figure 5.5 Behavioural Liveness and Safeness Properties Check in HiPS for the

Recycling IT asset PTOCESScccuviieuiieeiiieciieeee et e 104
Figure 5.6 Flowchart for the Simulation Steps followed for the Recycling IT

ASSEE PTOCESS ...ttt ettt e 108
Figure 5.7 PN Model Extract from the Recycling IT Asset Processccccuue.... 111
Figure 5.8 PN Model Extract from the Recycling IT Asset Processc.ccccveeeneee.. 112
Figure 5.9 Simulation Results for the 1% Path of the Recycling IT Asset Process

£Or 2500 STMUIALIONS ..ottt 115
Figure 6.1 Illustration of the Structure of Chapter 6..........c.cccveveiieiieniiiiiieeieeeeee, 122
Figure 6.2 AD Example (Fowler, 2004)ccccviiiiieeiieeeeeeeeeee et 127
Figure 6.3 XMI Extract for the AD in Figure 6.2........ccccocovveeeiiiniiieeieeeee e, 128
Figure 6.4 AD Example (MSDN Microsoft, 2017)ccceeeuierieniienieniieiieeieeeeee 130
Figure 6.5 XMI Extract for the AD in Figure 6.4ccoceeiiiriininiiniinccicneeeee 130
Figure 6.6 AD Example (Sparx Systems, 2018).......ccccveveiiieiiiinieeeieeeee e 131
Figure 6.7 XMI Extract for the AD in Figure 6.6..........cccovveveiiencieeeieeeiee e, 132

Figure 6.8 Part of the XMI File developed form the 1°* XMI Model
Transformationc..cccoiiiiiiiiiiiieecee e 138

Figure 6.9 Part of the XML File developed form the 2" XMI Model

TranSTOrMATION ...coouviiiiiiii ettt 139
Figure 6.10 PN Model developed for the AD in Figure 6.2cccoevvveiienieeneenen. 139
Figure 6.11 PN Model developed for the AD in Figure 6.4cccoceeveiiiniincnnene. 139
Figure 6.12 PN Model developed for the AD in Figure 6.6cccccccvvveeiieenveennnenn. 140
Figure 6.13 AD (Central Buffer Node) and Corresponding PN Model (Pilone &

Pitman, 2005)oioiiiieiee et e e e eaaeeeareas 140

XViii

Figure 6.14 AD (Data Store Node) and Corresponding PN Model (Pilone &

Pitman, 2005) ..c..eeiiiieiee ettt et neas 140
Figure 6.15 AD (Call Behaviour Action) and Corresponding PN Model (S6ding,

2009). ettt b et h bttt sttt eh ettt et eae s 141
Figure 6.16 AD (Activity Parameter Node) and Corresponding PN Model (Pilone

& Pitman, 2005)eeuiiiiiieieeieeeee ettt sttt ae e 141
Figure 6.17 AD (Structured Activity Node) and Corresponding PN Model (Bock,

2005). ettt b et h ettt sttt ettt nae et 142
Figure 6.18 Flowchart for the steps followed for the Generic Automated

Generation of the Mathematical Representation of a PN Model 145
Figure 7.1 Production System (Villani et al., 2007)ccceevuerienirienienieienieneeene 150
Figure 7.2 UML AD for the Production System (Villani et al., 2007)...................... 151
Figure 7.3 PN Model Automatically developed for the Production System 158
Figure 7.4 UML AD for the Online Shopping Process (Banas, 2012)..................... 159

Figure 7.5 PN Model Automatically developed for the Online Shopping Process ... 168
Figure L.1 Structurally and Behaviourally Bounded Check in HiPS for the
Production SYSteIM.........eeeiiiiiiiieeiieeiee et e e 268
Figure L.2 Behavioural Liveness and Safeness Properties Check in HiPS for the
Production SYSTEML.........cccciiiiiiiiiieiie ettt ettt s 268
Figure L.3 Structurally and Behaviourally Bounded Check in HiPS for the
Online ShOPPING PrOCESScccviiiiiieeeiieeciee ettt e e ens 268
Figure L.4 Behavioural Liveness and Safeness Properties Check in HiPS for the
Online ShopPIing PIOCESScccuieriiiriieiieiieeiee ettt ettt 268

XixX

List of Tables

Table 2.1 Notation and Description of Activity Diagram Control Nodes.................. 26
Table 2.2 Notation and Description of Activity Diagram Nodescccccceeeveennenne 27
Table 2.3 Notation and Description of Activity Diagram Edgeccccceeevveennen.n. 27
Table 2.4 Table of Methods for Automated Reliability Modelling (not including

PN) ettt sttt st ettt 40
Table 3.1 Relationships between the AD and PN Notation and Symbols................. 63
Table 3.2 MySQL ‘node xmi’ Table EXtract.........ccccceeviieeiiieniiiieie e 70
Table 3.3 MySQL ‘edge place xmi’ Table EXtract..........cccccceevvvieicieencieeeieeeiens 70
Table 3.4 MySQL ‘union 1’ Table EXtract........cccccceeeiienieeiiienieiiieieeieeiie e 71
Table 3.5 MySQL ‘unique_activities” Tableccccoeeeeriieiiieniiiiieieciceeeeeee 72
Table 3.6 MySQL “union node’ Table.........ccceevuiieiiiieiiieeieeee e 72
Table 3.7 MySQL ‘union_node tablel’ Table Extractc.ccccovvvveiieercieeiciieeies 73
Table 3.8 MySQL ‘union_node table2’ Table..........cccceeriieiieiiiiiiieieeiieieeieeee 73
Table 3.9 MySQL ‘union_node_table2’ Table EXtractcccccecevveverieneeuennenne. 74
Table 3.10 MySQL “final_table’ Tablecccceevuieeeiiieiieeieeeeeee e 74
Table 3.11 MySQL ‘negative’ Tableccccccouieeriieeiiieecieeeeeeeeeee e 75
Table 3.12 MySQL “positive” Table........cccceeriieiiiiiiieiieie et 75
Table 3.13 MySQL ‘transpose of the incidence matrix’ Tablec.cccoceeuennnenee. 76
Table 3.14 MySQL Database ‘initial marking Table...........cc.ccecovviviiiiniiiiiiieeies 77
Table 4.1 Abbreviations and Full Names of Nodes and Edges from UML AD......... 84
Table 4.2 MySQL ‘node xmi’ Table EXtract........cccoeeeeriieiiienieniienieciieieeeieeens 87
Table 4.3 MySQL ‘edge place xmi’ Table EXtract..........ccccceeeeieiiienieniiienieeieeens 88
Table 4.4 MySQL “union 1’ Table EXtract.........cccccecvveeviieniiiieieecieecee e 88
Table 4.5 MySQL “union_node’ Table EXtract.........c.cccccvvevviieeciieiieecie e 89
Table 4.6 MySQL ‘union_node_tablel” Table EXtractccccceceeveevenienenniennenne. 89
Table 4.7 MySQL ‘union_node table2’ Table..........cccceevireiiieniiniiieieeiieieeieeee 90
Table 4.8 MySQL “final_table’ Tablecccoveeviiieiiieeiieeeeee e 90
Table 4.9 MySQL ‘Negative’ Table EXtract........ccccccceeeviieriiieeiiecie e 91

XX

Table 4.10 Transpose of the PN Incidence MatriXcccceeeveeeeveercieenciieeniie e 91
Table 4.11 MySQL ‘“initial maeking’ Tableccccceeeviiiriiiiniiiieieecee e 92
Table 5.1 Abbreviations and Full Names of Places and Transitions incluced in

the PN in FIGUIE 5.3 .oooiiiiieeeee et e 102
Table 5.2 Probabilities for the PN developed for the Recycling IT Asset Process ... 109
Table 5.3 Activity Times for the PN developed for the Recycling IT Asset

Process PN ...t 110
Table 5.4 Interval Times for PN developed for the Recycling IT Asset Process...... 110
Table 5.5 Average Completion Time for Each Path of the Recycling IT Asset

PrOCESS ..ttt 116
Table 5.6 Average Time for each Activity Timed Transition of the Recycling IT

ASSEt Process PN ..o 117

Table 5.7 Average Time for each the Interval Timed Transition of the Recycling

IT ASSEt Process PNoooiiiiiiieee et 117
Table 5.8 Number of Visits to Places of the Recycling IT asset Process PN............ 118
Table 6.1 Notation and Description of Activity Diagram Object Nodes................... 123
Table 6.2 Notation and Description of Activity Diagram Actions (Nodes) 123
Table 6.3 Notation and Description of Activity Diagram Structured Activity

Elements (NOAES)ccoouviiiiiieciiieeiee ettt e s 124
Table 6.4 Notation and Description of Activity Diagram Notes (Nodes) 124
Table 6.5 Notation and Description of Activity Diagram Edges..........c.cccceevvveennennn. 125
Table 6.6 MySQL ‘node xmi’ Table for XMI in Figure 6.3..........ccceeveiviniiennnenns 129
Table 6.7 MySQL ‘node xmi’ Table for the XMI in Figure 6.4........ccccoceevverennnnne. 131
Table 6.8 MySQL ‘node xmi’ Table for XMI in Figure 6.7.........cccceverieneenennenne. 133
Table 6.9 Relationships between the AD and PN Notation and Symbols................. 143
Table 7.1 MySQL ‘union _node’ Table EXtractcccccceevviienciiiniieeeieeeiee e 154
Table 7.2 MySQL ‘initial node table’...........ccoeoiiiiiiiiieiieiiieecieeee e 154
Table 7.3 MySQL ‘final node table’........c.ccccoeeiiiiiiiiiiieieceeeeeee e 155
Table 7.4 MySQL ‘final table’ EXtract.........ccceevuieeiiieeiiieeieeeieceee e 155
Table 7.5 MySQL ‘Transpose of the PN Incidence Matrix’ Extract..................... 156
Table 7.6 MySQL ‘initial marking’ EXtractcccccoceverieniininiieniinenieneeeeeee 157

XXi

Table 7.7 MySQL ‘union_node’ Table EXtractccccceevviiiriiiinciiecie e 162

Table 7.8 MySQL ‘initial node table’..........ccceeiieeiiiieiiiieieeee e 163
Table 7.9 MySQL ‘final node table’..........ccccoieiiiiiiiiieiecieeccee e 164
Table 7.10 MySQL ‘exception_handler’ Table...........cccccueveiieriiiiiienieiiieieeieeee 164
Table 7.11 MySQL ‘datastore table a b’ Table.......c.cccccvvevviiiriiiiiiiecieeeee e, 164
Table 7.12 MySQL ‘central buffer table-a b’ Table..........cccceevvivciienciieiiieeies 164
Table 7.13 MySQL ‘in_outputValue final’ Tablecccecveviiiiiiiiiiiiieieeieees 165
Table 7.14 MySQL ‘expansionNode final” Extract Table.........c.ccccceverienienennenne. 165
Table 7.15 MySQL “final_table” EXtract.........ccccccveeriieeiiieeieeeieecie e eeee e 165
Table 7.16 MySQL ‘Transpose of the PN Incidence Matrix’ Extract................... 166
Table 7.17 MySQL ‘initial marking’ EXtractcccccevevvieniineniieniinenieneeceeene 167
Table K.1 MySQL ‘intial marking’ Table for the Production System...................... 264
Table K.2 MySQL ‘intial marking’ Table for the Online Shopping Process........... 267

XXii

CHAPTER 1

1 Introduction

1.1 Introduction to Reliability Modelling

The reliability of a system at time t, denoted by R(t), is the probability that the system
can perform a required function in time interval [0, t] without a system failure
occurring. In the context of process modelling, reliability, denoted by R(A), is defined
as the probability that the activities operate on users demand, following a discrete-
time model (Cardoso, 2002). In this context, the reliability of an activity is given as
the ratio of successful executions over scheduled executions. Reliability modelling,
i.e. the prediction of the reliability of a component/activity or system/process prior to
its implementation (Richardeau & Pham, 2013), has become one of the most
important design considerations in industry. Reliability modelling should be applied at
the earliest stages of the design effort in order to be effective given that failures can be
avoided and mitigations put in place before they create greater financial and logistical

problems later in the lifecycle.

The methods available to perform a reliability assessment of a system can be divided
into two main categories, analytical and simulation methods. The analytical
reliability modelling methods include various approaches from which an analyst
should select the most suitable method for their given problem. The methods for
failure analysis consist of combinatorial models, including Fault Trees (FTs), Cause-
Consequence Diagrams (CCDs), Reliability Block Diagrams (RBDs), state-space
models, including the subcategory of Markov approaches or alternative approaches
such as the encoding of the state-space model in a Petri Net (PN) (Zille et al., 2010)
and hierarchical models generated by the composition of combinatorial and state-
space models, which are able to simplify the model and ease further analysis (Lanus et
al., 2003). The simulation reliability modelling methods, such as the Monte Carlo
method, simulate a modelled system via computer algorithms that rely on repeated

random sampling to obtain numerical results.

1.1.1 Analytical Reliability Modelling Methods

In this section, analytical modelling methods are examined introducing the basics of

combinatorial, state-space and hierarchical models.

1.1.1.1 Fault Tree

Fault Trees (FTs), a concept first introduced by H.A. Watson in the early 1960s, are
the most widely used tool in assessing system reliability (Chew, 2010). These models,
commonly used in the aeronautical and automotive industries, show a clear
representation of the logic of a given system failure mode via the interconnections
between the components failures. The construction of FTs typically follows a top-
down approach, meaning that the model begins with the identification of the system
failure mode, which becomes the fop event of the tree, to be further analysed to
component failures, represented by basic events. Intermediate events are also used to
show events between the system failure and component failures. Gates link events
logically. Therefore, Boolean logic gates such as AND, OR, PAND (priority AND)
and NOT are used in the tree to decompose the top failure event into the component
events that cause it. Multiple FTs should be created if a system has more than one

failure mode.

Fault Tree models support both quantitative and qualitative evaluations. FT qualitative
assessment can be characterised by the logical expression of the top event in terms of
the basic events, using Boolean algebra rules to derive minimal cut sets. FT
quantitative analysis is performed to evaluate the performance of a system, i.e. to
determine the probability of occurrence of the top event of the FT in terms of the
probabilities of the basic events. The system evaluation can be conducted using
Boolean algebra techniques and probability rules, or computer software is available to

perform the calculations.

The assumption of the modelling is that all the basic events are independent therefore,
it is unable to capture the dynamic behaviour of real world applications including
modelling of: sequence-dependent events, spare/repair/redundant components and
priority of failure events. The Dynamic Fault Tree (DFT), introduced by Gulati
(1996), is an enhancement of traditional FT including additional dynamic gates in
order to enable the modelling of complex systems with dynamic characteristics.

However, this formalism cannot cover all industrial cases, since it includes only a few

specific kinds of dependencies (Bouissou, 2006), and hence cannot provide a generic

applicability.

1.1.1.2 Cause-Consequence Diagram

Cause-Consequence Diagrams (CCDs) combine two conventional reliability methods,
the FTA (Fault Tree Analysis) method and the Event Tree Analysis (ETA) method.
This method allows the modelling of sequential and dependent systems. The
qualitative analysis of the CCD model is based on a list that includes the causes for
each outcome condition (Vyzaite et al., 2005). The lists of component conditions can
then be quantified using the probabilities of each event. Boolean algebra techniques
and probability rules are used to perform the calculations. Despite the method
addressing the dependency issue, generally, software packages for the analysis of
CCDs cannot handle these dynamic characteristics, including loops and repair actions,
and dependencies between systems components. Therefore, this method has very
limited application to current systems in industry since it cannot provide advanced

modelling capabilities.

1.1.1.3 Reliability Block Diagram

Reliability Block Diagrams (RBDs) are directed graphs enabling analysts to represent
how components of a system are connected in a logical way. Contrary to FTA, RBDs
are success-oriented illustrating how the component reliability contributes to the
system success (Andrews & Moss, 2002). They are composed of a start and an end
node on the left and on the right side, respectively. Between these models are all the
remaining system components denoted by blocks. The blocks are connected in series,
parallel or k-out-of-n depending on the logic of the system. Both a qualitative
(yielding combinations of working components that contribute to the system working)
and quantitative (yielding numerical performance measures) analysis can be carried
out. RBDs do have some limitations rendering it not applicable to some cases,
especially when the system includes complex structures, such as dependencies,

standby redundancy or load sharing, which cannot be represented in a clear way.

The Dynamic Reliability Block Diagram (DRBD) was introduced by Distefano and
Xing in 2006 as an extension of the traditional RBD, enhancing the model capabilities

considering dependencies and system dynamics. Although the DRBD formalism

enhances the ability of the static RBD, it is rarely used in industry due to its high

modelling complexity.

1.1.1.4 Markov Method

The assumption of statistical independent components in complex systems, made in
combinatorial modelling methods, may ease the reliability analysis but it can be an
incorrect assumption leading to an underestimation of system unavailability.
Therefore, the dependency between components is a major factor in modern systems.
Failure dependencies have been studied from the late 1980°s mostly on behalf of the
nuclear power industry (Fleming & Kalinowski, 1983; Mosleh et al., 1988). During
that period, mathematical modelling techniques such as Markov methods have been
developed that enable time dependency to be considered facilitating the reliability

analysis of complex systems.

Markov methods including Discrete Markov chains and Continuous Markov
processes,are used to model stochastic processes. These methods can describe a
system in time and space using probability laws. Discrete systems move from one
state to another at set points in time, whereas continuous systems move from one state
to another at any point in time. Discrete systems have a set of non-overlapping
exhaustive states identified, where the systems must be in one of those at any given
time, Continuous system states can degrade continuously between working and failed.
These methods are applicable in modelling complex systems with dynamic properties
such as dependent events (e.g. common-causes, standby redundant events and
secondary failures) and repairs given the repairs rates are known (Villemeur, 1992).
The basic assumption of Markov approaches is that the system behaviour in each state
is memoryless/random. A lack of memory is defined by two characteristics: the future
state is only dependent on the immediately preceding state and not on the full history;
and the system should be stationary (Andrews & Moss, 2002). In Markov processes
each component of the system is represented by a state and all the states are connected
together by transitions. State transition diagrams are used to represent the structure of

the system.

Although Markov methods are capable of handling systems with dependencies, they
suffer the state-space explosion as the number of components increases. Hence, large

systems are difficult to be modelled using Markov methods, as the final diagram can

be very large, difficult to build due to its complexity and computationally costly.
However, many papers (for example Gulati & Dugan, 1997; Andrews & Ridley,
2001) have mentioned the application of Markov methods in combination with
traditional approaches, such as Fault Trees. Small sections of the FT are analysed
using Markov methods and the results from these Markov model sections can be fed
into the combinatorial models (FTs) for a quantitative evaluation. However, the
combination of these two methods cannot provide a generic applicability, since it
presupposes that the dependencies can be isolated in a small enough section of a FT

for a Markov model to be applied.

1.1.1.5 Petri Net

According to the Markov methods review, large complex systems are difficult to be
modelled using Markov approaches, hence, alternative approaches have been
developed such as the encoding of the state-space model in a Petri Net (Zille et al.,

2010), that can handle all the aforementioned limitations.

The Petri Net (PN) model, introduced in the thesis of C.A. Petri in 1962, is a bipartite
directed graph, including two types of nodes, places and transitions. The nodes are

connected together with directed arcs.

In the area of applied mathematics, Petri Nets are of special interest since once the
bipartite graph (PN structure) and the marking (PN behaviour) are defined the user
can analyse, simulate and model numerically and graphically the PN, obtaining
information about the behaviour of the system. This model has been applied to
complex systems, workflows, networks and other cases handling efficiently complex
structures such as loops, dynamic characteristics, dependent failures (Volovoi, 2004),
phased missions (Mura & Bondavalli, 2001; Chew et al., 2008). Over the years, the
standard PN has been extended and hence, several models with advanced capabilities
such as Coloured Petri Nets (CPNs) (Jensen, 1990) have been developed enabling the

modelling of real systems used in industry.

1.1.2 Simulation Modelling Methods
Complex industrial systems often introduce many dependencies or/and inconstant
failure and repair rates, and hence, the application of analytical methods with the view

to obtain performance measures such as system reliability, availability and

maintainability, becomes inaccurate. In such cases, the Monte Carlo method, a
ubiquitous and flexible modelling method widely used for the behavioural analysis of
industrial systems, is commonly used to computationally simulate complex models,
using repeated random sampling and statistical analysis to obtain the required
performance (Raychaudhuri, 2008). The construction of a computer model for
performing a Monte Carlo simulation is based on the logic representation of the
system’s operation, with the view to identify all events that may occur, all activities
that can be conducted and the correspondence relationship between these events and
activities. If a graphical model, which can be represented with the help of analytical
methods such as PNs, is available, it can provide useful information for the system
operational flow that can then be used to develop the corresponding computer model,

using computer languages such as MATLAB, Java, C++ and C#.

Monte Carlo simulation is carried out to conduct system performance analysis, by
simulating the occurring system events and the performing system activities for a
predefined period of time with the help of the computer model. The times related to
model’s events and activities can be generated by randomly sampling the
corresponding probability distribution, such as exponential, Weibull or normal
distributions, for the real system. Computer models are repeatedly simulated for a

number of replications so system’s performance can be obtained.

1.1.3 Reliability Modelling, Implementation and Deficiencies

The analysis of reliability models once constructed has been the main focus of
analysts over the years and this can now be conducted systematically, using bespoke
computer software, providing advanced qualitative and quantitative analysis results
for a given system (Dugan et al., 2000). However, the model generation is still a
manual process and requires considerable time and effort with the user needing to
have experience and understanding of the method. The requirement to detect the most
critical components and design errors at an early stage of design becomes more
challenging due to the increase in complexity of today’s systems. Hence, the need for
a full automated reliability analysis including model construction, with the aim to save
time, money and effort increases. Hence, to overcome the limitations of existing
reliability model analysis requiring human-aided model construction, the automated

generation of reliability modelling methods for complex systems is investigated.

1.2 Introduction to Automated Reliability Model Generation

Automating the generation of reliability models reduces the model construction time
and cost, and minimises human error; therefore, over the last 40 years there have been
several attempts to automate the construction of reliability models. In the case of Fault
Trees two main techniques have been introduced in the 1970’s that were considered as
pioneering concepts, namely, the decision table method (Salem et al., 1977) and the
digraph method (Lapp & Powers, 1977). Some of these techniques, such as the
modified decision tables proposed by Henry and Andrews (1997) and the component-

model based methods, are alternatives of the decision table and digraph methods.

As systems complexity increased due to complex structures such as loops and electric
circuits, higher level automated methods such as Expert system methods (Xie et al.,
1993) and others such as HiP-HOPS (Papadopoulos et al., 2001) and AltaRica (Point
& Rauzy, 1999) were developed. More recent approaches have been proposed for the
automated construction of other reliability models such as FMEA (Papadopoulos &
Grante, 2005), Hazard and Operability (Zhao et al., 2005) and Petri Nets. In the case
of Petri Nets, several semi-automated methods were introduced (Alhroob et al., 2010;

Stockwell & Dunnett, 2013; Taibi et al., 2013).

Some of the methods reviewed for the automated reliability model generation present
difficulties in handling complex systems such as the decision table methods that do
not provide any facilities for the detection and classification of control loops and
circuits. In many cases such as in the decision table methods, digraph methods and the
modified decision table method, there is not a software package available but an
algorithm which is applied manually. Additionally, some of the reviewed approaches
enable the automated generation of reliability models for systems with certain types of
characteristics, such as the modified decision table methods that focus on circuit
systems, without providing a generic applicability. The most frequent shortcoming,
found in the literature of the current methods for automated reliability modelling, is
that the system representation used for input into the automation process is conducted

manually by the user.

Therefore, the main deficiencies for the automated generation of reliability models

identified in the literature are as follows:

— The range and domain that the approach targets: There are approaches that
focus on specific domains such as mechatronics (Mhenni et al., 2014), without
providing a general methodology applicable to any system.

— The degree of automation: Some efforts result in semi-automated reliability
model generation, since the algorithm execution needs the intervention of
analysts, carrying out one or more steps manually or the data is not derived
automatically from the description diagram, but the user imports it manually.

— The level of the system’s complexity: Although most approaches argue that
they are applicable in complex cases, only a limited number of methods prove
their semi-automated model generation of complex systems, including

dynamic characteristics.

According to the deficiencies discussed in this section for the reviewed methods for
automated reliability modelling, this research study can contribute to the literature,
targeting the enhancement of the generation of reliability models from semi-
automated to fully automated methods, using directly an industrial system

representation.

Additionally, according to the review conducted for reliability models, Fault Trees
and Petri Nets are singled out due to the common applicability of the former in
industry for reliability modelling, and the dynamic capabilities of the latter for future
implementation. Therefore, although FT is a widely applied reliability method in the
industrial sector, Petri Net has been selected to be automatically generated due to the
flexibility of this model to handle complex systems with loops and dynamic
characteristics such as dependent and repair components. In addition to the automated
generation of a PN, the model can also be simulated, enabling the detection of the
most critical components and design errors existing in a system at an early design
stage, contributing to the literature by improving decision-making and enabling

different designs to be investigated in a short-time.

Therefore, the purpose of this research is the development of an algorithm that can
accept as an input an industrial description diagram of a given system and

automatically generate the corresponding Petri Net model.

1.3 Industrial Representation of Systems

Main key challenge in the automated construction of reliability models is the starting
point of the automation process, which is the system representation as used in
industry. This step corresponds to how systems should be modelled in order to
develop comprehensive models that include high level of detail. Additional challenge
in the automation process is that the selected modelling technique should provide a
wide applicability covering various domains. Hence, in this section, various system
modelling tools, used to represent systems, are discussed in order to identify the

strengths and weakness of each method.

1.3.1 Introduction to System Modelling Tools

System modelling is the use of tools and techniques to conceptualise and construct
systems in business and IT development. The modelling of a given system refers to
the analytical description of its visual representation that depicts the flow of
information/data from one component to another. Hence, generally, the system models

from a reliability perspective can include the following:

— System topology, including the component interconnectivity.

— Multiplicity and failure modes of each component.

The first requirement in the list is extracted from the description diagram of the
system given by industry, whereas the multiplicity and failure modes of the
components are provided either by the industry that is responsible for the system

design or the component manufacturers.

The modelling tool employed to generate a system description (topology), used as
input into the automation process, should ideally satisfy some criteria which have
been identified during the literature review of this research study and selected with the

view to enable the modelling of complex systems. These criteria are as follows:

1. Enable the accurate and realistic modelling of a given system, providing a high
level of expressiveness of the model towards timing concepts for reliability.

2. Provide a language with a rich variety of notations so as to enable modelling
of various industrial systems and processes and, hence, offer a broad-spectrum

applicability.

3. Store model information in a markup-language-based format, i.e. a computer
language that uses tags to define elements within a document, such as XML.
This markup-language-based format is required to define a set of rules for
encoding topology information into a format for data interchange between
modelling tools. This format should be simple, generic and usable to be easily
manipulated for further analysis.

4. Be commonly applicable in industry.

There are several graphical tools used for system modelling to capture in a realistic
way the representation of any scenario. They provide simplicity, usefulness and
flexibility to the user, aiming to increase the modelling accuracy and contribute in
decision-making. The system modelling tools can be categorised in terms of their

current domains of use, as follows:

— Software design modelling tools, mostly applicable in embedded and real-
time software systems to design, implement and test software components
such as network and internet services, graphics engine, computer hardware,
processors, buses, memory, user interface, system utilities, services and others.

— Business Process Modelling (BPM) tools, mostly applicable in enterprise and
business processes to design, implement and test business aspect of processes
and activities.

— Mechanical modelling tools, mostly applicable to design, implementation and

testing of the engineering aspects of systems and components.

The software modelling tools, used to design, implement, and test software
components, enabling the software representation and analysis of components of real-
time embedded systems, are the following: Architecture Analysis and Design
Language (AADL); Unified Modelling Language (UML), and System Modelling
Language (SysML).

Architecture Analysis and Design Language (AADL) was released in 2004 by the
Society of Automotive Engineers (SAE) as an aerospace standard AS5506 and finds
common applicability in industry in a wide spectrum of disciplines such as in
avionics, automotive, aerospace and autonomous systems (Feiler & Lewis, 2004).

AADL, a textual and graphical modelling language, employs formal and high-level

10

concepts enabling precise description and architectural analysis of the structural and
behavioural aspects of highly complex systems, conducting performance,
schedulability and reliability (Feiler et al., 2006). This language provides a well-
defined syntax, and hence the user can describe complex scenarios including data
inputs and outputs, interactions between the systems components and timing

requirement properties of components, if available (Feiler et al., 2004).

AADL consists of software, hardware and system component abstractions enabling
the specification and performance analysis of complex real-time embedded systems,
complex systems of systems and specialised performance capability systems (SAE
ASD AS-2C Subcommittee, 2004). The structure of systems is described as an
assembly of software elements, such as data, threads, processes, etc., that are mapped
onto computational hardware components, such as processors, memory, bus and
devices (Feiler et al., 2006). Additionally, the AADL core has been enhanced with the
AADL Error Model Annex, a textual model which was standardised in 2006 and is
defined manually by the user complementing the description capabilities of AADL.
The AADL Error Model Annex provides features able to describe dependability-
related characteristics of AADL models such as faults, failure modes, repair policies

and error propagations (Wang, 2017).

Unified Modelling Language (UML) language was developed by Brooch, Jacobson
and Rumbaugh at Rational Software in 1994-1996, but since 1997 it has been adopted
as a standard by the Object Management Group (OMG), an international, open

membership, not-for-profit technology standards consortium.

UML is a general-purpose modelling language that provides a standard way to
represent the design of a given system. In 2005, UML version 2.0 advances the
successful UML version 1.5 by adding more precise definitions of its abstract syntax
rules and semantics, a more modular structure of the language and an enhanced
capability for modelling large-scale systems (OMG UML 2: Infrastructure, 2005).
Following this update, System Modelling Language (SysML) was introduced and
defined as a subnet of UML 2 with some dialectical extensions. SysML, developed by
the Object Management Group (OMG), International Council on Systems Engineering
(INCOSE), a systems engineering professional society, and Application Protocol 233
(AP233 consortium), is a STEP-based data exchange standard that supports the needs

11

of the systems engineering community. This language is used for the specification,

analysis, design, verification and validation of systems and systems of systems.

These two industry standard modelling languages, UML and SysML, are
characterised as critical enablers for Model Driven Systems Engineering that allow the
user to model the structure, behaviour and architecture of complex systems and
business processes, providing a wide variety of notations (representation of meaning)
enhancing the effective expressiveness of systems (Hause, 2006; Kapos et al., 2014).
UML and SysML also support model and data interchange via XML Metadata
Interchange (XMI) and the evolving AP233. However, the wide variety of the

diagrams and profiles application can cause a large learning curve for the users.

The main Business Process Modelling (BPM) tools, identified for defining and
outlining business processes, information flows, data stores and systems (SPARX
Systems, 2018), are the following: flowcharts, Event-driven Process Chain (EPC)
flowchart, Business Process Model and Notation (BPMN), Unified Modelling
Language (UML) Activity Diagram (AD) and Integrated DEfinition for Function
modelling (IDEF).

According to a review conducted for these tools, the flowchart provides limited
modelling capabilities (Heller, 1997) as well as informal and ambiguous syntax; the
EPC flowchart lacks a formal syntax, restricting its applicability spectrum (Aalst,
1999), and the graphical representation of the /DEF tool is not as user-friendly as the
representation of other BPM tools, such as BPMN and UML 2 AD (Tangkawarow &
Waworuntu, 2016). Therefore, the three first BPM tools introduced above have
initially been rejected, since they do not meet the criteria, identified in section 1.3.1

for the representation of a system topology.

The BPMN diagram and the UML AD are the most commonly applied BPM
techniques, sharing many characteristics and elements that have the same semantic
meaning. Johansson et al. (2007) performed a literature review regarding BPM tools
used in industry mentioning that these two tools concentrate the most benefits such as
high expressiveness, simplicity and directness. However, the BPMN application
entails the danger of missing information regarding the flow of physical objects,

processes and data since it lacks the accurate modelling of business processes (Bao,

12

2010; Khabbazi et al., 2013) compared to the UML AD notation that provides a wide
variety of elements such as receiving and sending signal, central buffer and data store
elements that enable the modelling of any business process. Additionally, the BPMN
is mainly used for the modelling of business processes, whereas the AD brings the
benefits of UML enabling the modelling of both business processes and engineering
systems, which cover the focus of this research study. Hence, it was concluded that

the UML AD is more suitable than the BPMN for this research study.

The main mechanical modelling tools identified for the development of a system
topology, are the following: Computer Aided Design (CAD), Piping and
Instrumentation Diagrams (P&IDs), used to provide a detailed graphic description
regarding the industrial process equipment interconnections of pipeline systems
(Walker, 2009), and Simulink (MATLAB). However, the primary purpose of CAD
and P&IDs is simulation and analysis of mechanical aspects of a design, using
physical quantities i.e. mass, stress, strain, etc., dynamic characteristics and others
(Friedenthal et al., 2011). Similarly, the primary purpose of Simulink is simulation,
automated code generation and continuous test and verification (MathWorks, 2017).
Hence, for these reasons the mechanical modelling tools were found unsuitable and
have not been taken forward as a starting representation for further automated

reliability modelling.

1.3.2 Summary of System Modelling Tools

From the review conducted for the software design modelling tools, it is concluded
that AADL, UML and SysML meet the criteria defined in section 1.3.1 for the
industrial representation of system topology, which would be used as a starting point
in the methodology for the automated generation of PN models. Following the review
for these powerful software design-modelling languages, it is identified that they
provide two different views of the same system. AADL is usually used for the design
and analysis of embedded systems, allowing the development of the low-level view
for the software engineer (De Saqui-Sannes & Hugues, 2012), where in contrast,
UML and SysML are mostly used at the early stages of system engineering, allowing
the high level view for the system engineers. Regarding the fields of their
applications, AADL is mostly used in computer science, whereas UML and SysML in

business processes and engineering systems (de Niz, 2007; Evensen & Weiss, 2010).

13

Therefore, referring to the software design modelling tools, UML and SysML were
concluded to be more suitable for this study, since AADL restricts the spectrum of
applications focusing mainly on computer systems modelling. On the contrary, the
UML and SysML diagrams, commonly used in industry at the early modelling stages,
support modelling of general-purpose systems engineering applications, including
systems and processes, which is also the focus of this research study. Thus, if the
Model-based Systems Engineering (MBSE) approach, which allows for the reuse of
system specifications, enhances quality of specification and design and improves
communications between members of the development team, is used in system design,
then it can be expected that behavioural models (in the form of UML/SysML
diagrams) are a priori available. So, an automation to PN model could then save time

if PNs are the basis of reliability analysis for the system.

To conclude, UML and SysML, which are attracting growing interest as system level
visual languages, are increasingly applied for modelling and analysis of complex
systems from a reliability and safety perspective. The development of a UML/SysML
diagram from which the PN can be automatically constructed is a more efficient
approach than constructing the PN directly, as these languages increase model
availability, facilitating the modelling of systems across various domains and
developing comprehensive models while maintaining sufficient level of detail.
Therefore, the UML (including UML 2 AD) and SysML diagrams, which satisfy all
the criteria defined in section 1.1.3, are the most suitable modelling tools to represent
efficiently the topology of industrial systems, which can be used as a starting point for

the automated generation of PN models and, hence, they are taken forward.

1.4 Research Scope and Delimitations

The scope of this research is the development of a methodology, implemented in
computer software, which takes as an input the descriptions of real-life industrial
scenarios and automatically generates the corresponding PN models. The input
information is to be provided by a modelling tool, commonly applied in industry,
which can be used to extract topological information from the real-life industrial

scenarios and source it to the algorithm.

The delimitations of this research are identified as follows:

14

The PN model, generated following the automation procedure, will enable via
the simulation the prediction (estimation) of the: (i) average time each path of
which the model consists requires to be completed; (ii) average time for each
transition; (iii) most common visited places in each path; and (iv) the paths
resulted most in failure and the nodes most involved with route to failure.

The proposed methodology is predominantly aimed to be applied to industrial
business processes rather than engineering systems. However, a limited
number of systems is to be considered.

The systems and processes considered in this research provide the topology
information, by describing how the components and activities of which they
consist connect together. The examined systems may include a large number
of comonents/activities, dependent evenets and loops.

The components/activities, of which the examined systems/processes consist,
are described in terms of timed and probabilistic data. The timed data
represents the time a component/activity requires to either complete an action
or move from one component/activity to the following. The probabilistic data
shows the pass and fail probabilities of components/activities through the
various flow paths included in a system/process.

The PN model automatically generated, by applying the proposed
methodology, can be: (i) verified, showing that the initial UML/SysML
diagram, which depicts the system/process representation and lacks formal
sysntax and semantics, is correct; and (ii) simulated. According to the results
obtained from the PN simulation, predictions can be made about the PN model
behaviour and, by extension, of the initial system or process. These perdictions
may consider the performance assessment and the detection of any limiting
factors/deficiencies of the examined system/process. Then, these predictions
can be used to suggest modifications to be made in the developed PN,
supporting the quality of the decision-making process and, hence, enhancing
the system’s/process’ performance. Thus, modellers can help decision-makers
to make more credible decisions according to company’s requirements,
maximise the profit, reputation and lifetime of businesses, by considering
minimum execution time and cost of systems/processes, efficient usage of staff

resources and equipment, and others.

15

1.5

Aim and Objectives

The aim of this research study is to automatically generate Petri Net models by

applying an algorithm that accepts as an input the industrial description diagram of a

system/process and generates the corresponding Petri Net model. The developed

algorithm, will be able to handle complex systems/processes including a large number

of components/activities and characteristics such as dependencies and control loops.

The potential to apply the proposed methodology more broadly to processes will be

explored. To achieve this aim, the following objectives will be accomplished:

1.

Identify the most suitable UML or SysML diagram: to be used as a starting
point for the automated PN model generation. The selected system/process
description diagram, used to extract from it the behavioural aspects of system
components/process activities and import this information into an algorithm,
needs to be applicable in complex systems/processes.

Perform a detailed literature review of Petri Net model: identifying model’s
characteristics, strengths and weaknesses, other PN formalisms and types of
model analysis.

Review the automated model generation methods: that exist in literature,
highlighting their benefits and limitations so that the most feasible method for
the automated Petri Net model generation can be developed.

Develop a methodology for the automated Petri Net model generation: using
as a starting point the most suitable UML or SysML diagram according to the
findings identified in objective 1, and dealing with the limitations identified in
the current automated reliability model generation methods according to the
findings identified in objective 3.

Validate and verify the Petri Net model: developed in objective 4, to prove the
correctness, completeness and consistency of the PN model and, by extension,
of the automation procedure.

Extend the proposed methodology providing advanced applicability and
scalability: developing an algorithm that enables the automated generation of
PNs for systems/processes represented by the chosen UML or SysML
diagram. The proposed methodology should be applied both to industrial
complex systems and processes including loops and dependencies, in order to

prove its advanced applicability and scalability.

16

1.6 Thesis Layout

The thesis is structured as follows:

Chapter 2 gives a detailed review of UML and SysML software design modelling
tools, since one or more diagrams from these tools will be used as a starting point for
industrial system representation; an evaluation of the diagrams is carried out and the
most suitable to model complex industrial systems/processes is selected. The Petri Net
model is also reviewed, identifying its strengths and capabilities. Additionally, in this
chapter, a review of past work focused on the automated generation of reliability
models using FTs, CCDs, RBDs and Markov chains, is conducted. A recent literature
review for the various approaches developed for the automated Petri Net generation is
also performed and a summary of the methods is conducted, where research

motivations of this research are identified.

Chapter 3 gives a detailed overview of the methodology proposed for the automated
generation of PN models. The database concept is introduced and a review of the
database tools is undertaken to identify the suitable tool for this research study. The
steps followed for the methodology development, which uses as a starting point an
industrial system representation and generates the mathematical and graphical

representations of PN models, are thoroughly discussed.

Chapter 4 presents a case study in which the proposed methodology from Chapter 3
is demonstrated by its application to an end of life manufacturing process, including a

discussion about the resulting model and its limitations.

Chapter 5 provides an overview of the methods used for the verification and
validation of Petri Net models. The PN automation procedure is verified and validated
via evaluation of the PN model obtained from the case study in Chapter 4. This is
achieved, by checking: (i) the model’s structural and behavioural properties; (i1) the
system’s behaviour playing the token game; (ii1) the PN model’s quality performing
numerical simulation; and (iv) if there exist any limitations or incorrect/omitted logic

by conducting performance analysis.

Chapter 6 extends the automated PN model generation discussed in Chapter 3 by
considering the transformation of any element included in the UML/SysML diagram,

selected in Chapter 2, to the corresponding Petri Net element. Hence, in this chapter,

17

new transformation rules are introduced. The structure of XMI files obtained from the
selected UML/SysML diagram is also examined focusing on the structure of nested
elements included in these documents and how they are loaded into the database. The
need to transform the structure of XMI documents arises so that the information
included in them can be properly loaded into the database to be further analysed.
XML-related terms and definitions are also introduced. The steps followed for this
advanced generic methodology development as well as the newly introduced

transformations rules are discussed in detail.

Chapter 7 applies the proposed methodology outlined in Chapter 6 to two complex
real-life scenarios. The complexity includes: (i) using all the elements available in the
selected modelling diagram; (ii) a large number of components/activities; (ii1)
dependent events; and (iv) control loops to demonstrate the capability of this
advanced methodology for the automated mathematical and graphical representation
of PNs. Thus, in this chapter, the methodology’s efficiency is enhanced by proving its

applicability in both complex systems and processes.

Chapter 8 drawn some conclusions from the methodology proposed in the thesis;
presents the contributions to knowledge; and provides recommendations for future

work.

18

CHAPTER 2

2 Modelling Tools and Methods — Automated
Reliability Modelling

2.1 Introduction

In this chapter, a review of UML and SysML modelling languages is conducted and
the most suitable diagram(s) to be used as a starting point for automated PN model
generation is/are selected. The Petri Net model is also reviewed; identifying its
characteristics, strengths, applicability as well as the model’s extended formalisms.
Additionally, literature reviews are conducted on automated reliability model
generation methods. More explicitly, a review of the attempts at automating the
process initially focusing on the automation of reliability models such as Fault Trees,
Cause-Consequence Diagrams, Reliability Block Diagrams and Markov Chains; and
additionally investigating attempts that target the automated generation of PN
models., The current PN model deficiencies in automation are also identified and the
research motivations of this thesis are highlighted. The layout of this chapter is

illustrated in Figure 2.1.

L Chapter 2 Layout — Modelling Tools and Methods — Automated Reliability Modelling W

Industrial System Reliability Modelling Methods for
Representation Methods Automation of

Reliability Models

L

Identification of Basic Elements for
Automated Rehability Model
Generation

UML/SysML Petri Net

Modelling Tools
Review

Model Review

Literature Review

of Automation of Literature

Reliability Models Review of
in FTs, CCDs, Automation of
RBDs, Markov PNs.

Chains.
Automated PN Deficiencies
&
Research Motivations

Figure 2.1 Illustration of the Structure of Chapter 2

19

2.2 Industrial System Representation

The system topology, derived from the initial representation of a system, constitutes
the basic input for the automated generation of reliability models. Hence, the detailed
topological representation of an industrial system is considered as a vital tool for the
automated generation of a reusable and versatile reliability model. The system
topology focuses on the structural and behavioural description of the system being
modelled. The structural description includes information about the inputs and outputs
to and from each component and the way in which the components are connected with
each other, whereas the behavioural information corresponds to the role and behaviour

that each component plays in the entire system.

According to the findings in Chapter 1, section 1.3, regarding the industrial
representation of systems, UML and SysML diagrams have been concluded to be the
most suitable to model an industrial system. These languages have been selected due
to: (i) their modelling capabilities that allow the accurate representation of a given
system/process; (ii) the wide variety of notations they provide to describe a broad-
spectrum of industrial systems and processes; (iii) the data interchange via XMI
format; and (iv) their wide industrial applicability to model systems and processes. In
this section, the UML 2 and SysML are reviewed in order to identify the most suitable
diagram(s) to be used as a starting point for the automated construction of a Petri Net

model.

It is stated in this section that once we talk about systems it covers processes as well

and the systems consists of components, whereas the processes of activities.

2.2.1 Systems Modelling Languages Review: UML and SysML

UML version 2 (OMG UML 2: Infrastructure, 2005) is the latest version of UML and
it consists of 14 diagrams. Figure 2.2 shows the taxonomy of these 14 diagrams.
According to this taxonomy, two diagram groups can be identified: the structural
consisting of seven sub-diagrams and the behavioural also consisting of seven sub-
diagrams. The terms “structural” and “behavioural” refer to the static and dynamic
aspects of systems. The UML 2 behavioural diagrams describe how a system works,
showing the dynamic behaviour of components included in a system. The dynamic

behaviour is described as a series of changes (operations) of the system over time,

20

tracking how this system will act in a real-world environment and observing the

effects of an operation/event, including its results.

UML 2 Diagram
Structure Behaviour
Diagram Diagram
| ll\ | | | I L -
Component Object Activity [];S,e Case Sta]t)e' Machine
Class Diagram Diagram Diagram Diagram iagram iagram
Composite .
Deployment Package Interaction
Structure Diagram Diagram Diagram
Diagram g gr g1
r T
Sequence Interaction
Profile Diagram d Overview
Diagram .
Diagram
Communication Timing
Diagram Diagram

Figure 2.2 UML 2 Diagrams Taxonomy (OMG Unified Modelling Language (UML), Version 2.5, 2(

A brief description of the diagrams is as follows:

Class Diagram: It describes the structure in a system, showing the
system’s classes, their attributes, operations and the relationships
between classes. A class, the building block of this diagram, is
represented as a rectangle divided into three parts: the name of the
class is placed in the first part; the attributes of the class (values
attached to instances of the class) in the second; and the operations of
the class (method/function that can be executed by an instance of a
class) are listed in the third partition.

Component Diagram: It shows how the system is split up into
components and describes the dependencies among these components.
The term “component” refers to a set of classes that can represent
independent systems/subsystems that interfere with the rest of the
system.

Object Diagram: It shows a complete/partial view of the model’s
structure at a specific time.

Composite Structure Diagram: It presents the internal structure of a

class.

21

)

15)

— Deployment Diagram: It models the allocation of modes that can be
either hardware or software and shows how software elements and
artifacts, i.e. products of the software development process, such as
design models, source files, design documents, etc. are mapped to
those nodes.

— Package Diagram: It shows the arrangement and organisation of model
elements, representing both the structure and dependencies between the
packages that made up a model. This diagram is used to make the UML 2
diagrams simpler and easier to understand.

— Profile Diagram: It is used to add new building blocks with properties, which
can be used to user’s specific domain. This diagram provides three types of
mechanisms: stereotypes, which are used to introduce new building blocks,
which are created for a specific domain, tagged values used to specify any
desired attribute values and constraints, which are used to specify conditions
that should be satisfied all the time.

— Activity Diagram: It graphically shows the flow of activities and actions that
show a step within an activity.

— Use Case Diagram: It describes the system functionality, representing
interactions between the actor and the system. An actor can be either a human
user of the modelled system such as a customer, supplier, passenger, etc., or
other systems/hardware using services of the system such as authority, bank
and others.

— State Machine Diagram: It is used to describe the state transitions and actions
of the system/components.

— Sequence Diagram: It graphically represents how and in what order the
collaborating parts are interconnected in the system.

— Interaction Overview Diagram: It is used in a similar way as the Activity
Diagrams showing an overview of the control flow of nodes presented as
interaction diagrams. Interaction diagrams can include sequence,
communication and timing diagrams.

— Communication Diagram: It shows the message flow between objects and

the interactions between classes.

22

— Timing Diagram: It shows how the state/value of objects changes throughout

a given period of time.

SysML, officially issued by the OMG in 2007, was defined as a subnet of UML 2
with some extensions compared to UML. The SysML diagrams, which can be
grouped into three types: diagrams borrowed from UML 2 reused without
modification; modified constructs from UML 2; or new modelling constructs defined
for SysML, as shown in Figure 2.3. The first group includes four diagrams that focus
on the behavioural aspects of the system. The second group includes the requirement
diagram in which the system requirements are described based on the needs of the
customer. Finally, the third group consists of four diagrams that focus on the structural

aspects of the system.

SysML Diagram
el
Behaviour : Requirement Structure
Diagram] Diagram Diagram
AT
Sequence State Machine Use Case E k Definition rna k Pockacs Dincrarn
Diagram Diagram Diagram SN0 RN
- . . ye=esdeasa=
Same as UML 2 _
>ame as UML 2 : Parametric
] Diagram
1 wodified from UML 2 Raanaanacis }
semma
:___] New diagram type

Figure 2.3 SysML Diagrams Taxonomy (Object Management Group, 2006)

A brief description of the diagrams modified or new to SysML is given below:

— Requirement Diagram: It captures system requirements and their
relationships with other elements.

— Activity Diagram: has been slightly modified in SysML by adding some
extensions such as definition of the rate and probability of the control/object
flows, definition of the flow rate (discrete or continuous) and also control to
support disabling of already executed actions.

— Block Definition Diagram: It describes the hierarchy and classifications of
system and components. In this diagram the classes used in UML 2 Class

Diagram are replaced with blocks and additional ports for physical flows are

23

introduced showing the flow of data or energy that can go through a block
(input/output).

— Internal Block Diagram: It is used to describe the internal structure of the
system. This diagram replaces UML 2 Composite Structure Diagram by
replacing classes with blocks and introducing flow ports.

— Parametric Diagram: It represents constraints such as performance,

reliability and mass properties by using mathematical relations.

Regarding the development of the SysML diagrams, the SysML specification does not
define at which point of a system’s life cycle they have to be created or the order
which these diagrams are constructed. Additionally, the types of diagrams, which are
required to be developed for the complete system representation, are not dictated. This
implies that methodological decisions need to be taken by the corresponding project

team in order to achieve the project’s objectives (Delligatti, 2013).

To capture the full integrated system model must address multiple aspects of a system
(Friedenthal et al., 2011), and hence for the complete representation of industrial
systems, modelled using SysML, both structural diagrams such as Block Definition
Diagram (BDD) and Internal Block Diagram (IBD) and behavioural diagrams such as
Activity Diagram (AD) and State Machine (STM) Diagram, need to be developed to
statically and dynamically represent a system. The order which these diagrams are

constructed is not formally defined.

Regarding the structural diagrams, the BDD and the IBD which provide
complementary views of a block, are two of the most commonly used in industry. A
BDD that defines a block, i.e. a system component, and its properties and an IBD
specifies the internal structure of a block, making clear all the relations between the
SysML blocks. However, behavioural diagrams need to be constructed, since a
complex system is not only the collection of its components and their structural
architecture, but also its behaviour, which is derived from the collaboration of its
components (Karban et al., 2011). The behavioural aspect of systems helps the user to
understand how systems act in a real-world environment, observing the effects of
operations/events, including their results. One of the most widely used in industry
behavioural diagrams is the AD, which dynamically shows the actions undertaken by

the system as well as system/components data, control flows and physical effects.

24

This diagram can express control logic of complex systems better than other
behavioural diagrams such as Sequence and State Machine diagrams (Delligatti,
2013), providing readability, and hence is usually used to communicate with
stakeholders and other team members. ADs can be created at any point in the system

life cycle, since they are not tied to any particular stage (Delligatti, 2013).

Ultimately, following this SysML review, the BDD in conjunction with the IBD and
the AD are concluded to be the most suitable diagrams to be used as a starting point
for the automated PN model generation. These two potential diagrammatical options
provide adequate information for the topology, i.e. components and interconnections,
of a system that is the requirement input for PN model generation. Comparing these
diagrams, the AD has been selected to be the initial point of the automation procedure
of PN models because it can model both industrial systems and processes, whereas the
BDD and IBD are mostly used for systems representation. Additionally, the
applicability of the AD to current industrial system representation is widened since all
the definitions of ADs used in UML can also be applied to SysML. Finally, ADs are
readily understandable by all business stakeholders, providing an implicit and flexible
graphical system representation, whereas the representation of IBDs once used to
model complex systems can become complex. Hence, for these reasons the AD has

been taken forward.

2.2.1.1 UML/SysML Activity Diagram
In this section, basic elements used in UML/SysML ADs are initially reviewed and
then a simple AD example is introduced to show the applicability of this diagram.

Definitions and terminologies adopted in this work used in UML Specification 2.5

Standard.

An AD is used to describe industrial systems and processes flow, expressing how
actions are taken, what they do, when they take place, where they take place and how
they affect other actions around them, i.e. their effects. An AD consists of nodes such
as the initial, activity final, opaque action, decision, etc. and edges such as the control
flow edges, used to link nodes together. The concept of this diagram is based upon the
flow of tokens. These tokens can represent data, information, items, energy, etc.

Tables 2.1 and 2.2 review the basic AD node notations, whereas the most commonly

used AD edge is described in Table 2.3.

25

Table 2.1 includes the control flow nodes used in Activity Diagrams to coordinate the
flows between other nodes. In an AD, the token flow starts using an activity initial
node and is terminated by an activity final or a flow final node. The difference
between these two terminal nodes is that the former represents the completion of all
flows existing in a process, whereas the latter the completion of a flow, destroying all
tokens arriving at it without affecting any other flow existing in the activity.
Additionally, as seen in Table 2.1, decision and merge nodes share the same notation:
a diamond shape, whereas similarly fork and join nodes use the same notation: a bar
(vertical/horizontal). Fork nodes that synchronise outgoing concurrent flows and join
nodes that synchronise incoming concurrent flows, have been introduced in the AD to

enable modelling of parallel activities.

Table 2.1 Notation and Description of Activity Diagram Control Nodes

Nodes
Notation D inti
escription
Name Symbol P
Activity Initial
Represents the beginning of a process/workflow.
Node o p ginning of a p
Activity Final)
Y Represents the completion of a process/workflow.
Node
Flow Final @ Represents the completion of one flow exists in a
Node process.
- Represents the branching of two or more activit
Decision Node %<> | P & y
— | flows.
— Represents the merging of two or more activit
Merge Node ; =ar P ging Y
LN OWS.
) — Represents the combination of two concurrent
Join Node : N p
'S activities, reintroducing them into the flow as one.
— > | Represents the separation of one activity flow into
Fork Node —> : P p. .. Y
'; two concurrent activities.

Apart from the control nodes, additional fundamental AD nodes such as action and
activities are reviewed in Table 2.2. The execution of an action node shows the

execution of a part of a process in the modelled system, i.e. action nodes are contained

26

in an AD. There are various kinds of actions in UML2/SysML. Among them, the
opaque action node, which is considered as one of the most commonly deployed in
ADs, is a type of action that can be used to represent implementation of information
or a temporary placeholder before other actions are chosen. The execution of an
activity node shows the executions of actions included within it, i.e. an activity node

contains an AD.

Table 2.2 Notation and Description of Activity Diagram Nodes

Nodes

Notation
Name Symbol

Description

Action :] This node cannot be further decomposed within the activity.
An action node that represents a single step within an activity
can have input and output control flow edges.

. |[Activity1 . :
Activity Represents a behaviour composed of actions.

Table 2.3 shows the most commonly used AD edge, the control flow edge, which

connects the nodes together and enables the flow of tokens.

Table 2.3 Notation and Description of Activity Diagram Edge

Edges

Notation

Descripti
Name Symbol eseription

This edge illustrates the control flow within an activity.
Control Within the control flow, an incoming arrow starts a single
Flow step of an activity; after the step is completed, the flow
continues along the outgoing arrow.

Figure 2.4 illustrates a simple Activity Diagram (OMG Unified Modelling Language
(UML), Version 2.5, 2015) including one initial node, two activity final nodes, 5
opaque action nodes, one merge node, one decision node and one fork node.
Interconnections between the nodes are represented by the control flow edges (arcs).
The diagram in Figure 2.4 shows a process in which a proposal can have two

outcomes, either to be published or rejected. It is seen from the AD that once a

27

proposal is modified (‘Modify Proposal’) and reviewed (‘Review Proposal’) then a
decision is made, using the decision node. There are three outgoing edges from the
decision node dictating the three following paths for the proposal to: (i) be accepted
and published (‘Publish Proposal’); (ii) be rejected without considering publication
(‘Notify of Rejection’); and (iii) require further modification and hence a notification
for this modification is identified using the ‘Notify of Modification’ opaque action
node and concurrently the proposal returns though the merge node to the first opaque

action node (‘Modify Proposal’) as seen in the AD for modification.

Connol FlOV\ Edge

[Notify of
Mod:ﬁcauou
[decision = modify]

Initial Fork -

\

Re\'le\\ Publ.lsh

\ Proposal | PWPOS‘-'I
[decision = accept]
Ar Acn\ ity
Merge W Demsmn Final
Opaque Acnon Nonf, of
checnon O

[decision = reject]

Figure 2.4 UML Activity Diagram Example (OMG Unified Modelling Language (UML), Version 2.5, 2015)

The diagram in Figure 2.4 shows a process in which a proposal can have two
outcomes, either to be published or rejected. It is seen from the AD that once a
proposal is modified (‘Modify Proposal’) and reviewed (‘Review Proposal’) then a
decision is made, using the decision node. There are three outgoing edges from the
decision node dictating the three following paths for the proposal to: (i) be accepted
and published (‘Publish Proposal’); (ii) be rejected without considering publication
(‘Notify of Rejection’); and (iii) require further modification and hence a notification
for this modification is identified using the ‘Notify of Modification’ opaque action
node and concurrently the proposal returns though the merge node to the first opaque
action node (‘Modify Proposal’) as seen in the AD for modification. The first two
paths can terminate the process illustrated in Figure 2.4. In this diagram a loop is
identified, once the proposal token returns to the merge and ‘Modify Proposal’ nodes

after it has passed from the decision and fork nodes, as seen in Figure 2.4.

2.3 Petri Net Modelling Review

According to the findings regarding reliability modelling in Chapter 1, section 1.2, the

Petri Net model has been selected to be automatically generated due to: (i) its ability

28

to efficiently handle complex structures such as loops and dynamic characteristics,
existing in complex industrial systems; and (ii) its mathematical and graphical

perspectives. An overview of Petri Net model is carried out in this section.

Petri Nets (PNs), which have their origins in the thesis of C.A Petri in 1962 (Petri,
1962) and for which an international standard IEC 62551 has been published
(Analysis techniques for dependability — Petri net techniques), are a visual tool that
provide a rigorous and precise model analysis (Wang, 2006). PNs have been applied
to a wide spectrum of cases in different sectors, such as computer networks (Marsan,
1986), communication systems (Wang, 2006), manufacturing plants (Venkatesh et al.
1994; Zhou & DiCesare, 1989), command and control systems (Andreadakis & Levis,
1988), real-time computing systems (Tsai et al. 1995; Mandrioli et al. 1996), logistic
networks (Landeghem & Bobeanu, 2002) and workflows, for reliability, visualisation
and verification reasons. This model can capture and describe different component
combinations such as connected in series or parallel, repairable systems with warm
spares, load sharing, multiphase missions, pooled repair, system on demand and
damage tolerance (Volovoi, 2004). PNs are based on strong mathematical foundations
and used as a visual communication aid to model the system/process behaviour

(Girault & Valk, 2003).

The formal definition of a PN is taken from Schneeweiss (1999) and given in equation
2.1:
Gpy = (Vp, VL. E; M(0),D, W) (2.1)

Where: Gpn is the Petri Net graph; V), is the set of places; Vi is the set of transitions; E
is the set of edges (ordered pairs of nodes), where E © (l/;) X Vt) x (Ve X V,); M(0) is
the initial marking vector of the set V,, of places; D is the vector of switching delays

(transition times); W is the vector of weights of edges.

For applications a Petri Net is a bipartite directed graph that includes two types of
nodes: places, drawn as circles, and transitions, drawn as bars. There are two types of
transitions, the immediate (drawn as solid rectangles), and timed (drawn as hollow
rectangles). Directed edges (arcs) connect places to transitions and vice versa.
Inhibitor arcs, an element that was added in order to increase the decision power of

the Petri Nets, prevents the firing of a transition when the place it comes from is

29

marked. Inhibitor arcs are denoted as arcs terminated with a hollow circle. In Figure
2.5, t1 is enabled if p1 contains a token and will fire immediately removing the token
from p1l and placing a token in p1°. The transition t2 is enabled if p2 contains a token
and p1 has no token.

pl pl’

p2 p2’
Figure 2.5 Inhibitor Arc

Figure 2.6 presents a timed Petri Net consisting of three transitions (T1, T2 and T3)
and five places (pl, p2, p3, p4 and p5). Places pl and p2 are marked, containing one
token each. The firing delays are tl, t2 (t1<t2) and t3. Transitions T1 and T2 are

initially enabled and after time t1 one token is moved from p1 and adds it to p3.

T3

0 T3 p5 i T3 p5 L= 3
pl L pl T b3 p1 o b3 Pl Mo e
time t1 later .
time t3 later t'\met27t1\fter
p2 T pa p2 T2 p4 p2 T2 p4 p2 T2 p4
° : —> 4 ®

Figure 2.6 PN Firing Process with Inhibitor Arc

After time T3, the token from p3 is moved to p5. The firing of transition T2 is
interrupted due to the inhibitor arc from p3 to T2, so the remaining life of the token in
p2 has deceased to t2-t1 and will stop dropping P3 is marked. Once p3 is unmarked,
T2 is enabled again and the previous firing process is resumed. Hence, T2 fires after

t2-t1, removing the token from p2 to p4.

The movement of tokens through a Petri Net can be transformed into matrix form.

Then the marking of the PN after the 7" transition, M,, can be found by equation 2.2.
M,=Mo+A". T, (2.2)

Where: My is a column matrix (n, 1), where n is the number of places, showing the
initial marking of the net. 77 is a column matrix (m, 1) where m is the number of
transitions, showing the number of times each transition has fired in the r transitions,

A is the incidence matrix (m, n) where each element aj; corresponds to the effect that

30

transition 1 has on place j. Using equation 2.2 the marking of a net, the distribution of

tokens within it, can be determined at any time.

Figure 2.7 shows a PN with three transitions (Ti, T> and T3) and five places (pl, p2,
p3, p4 and p5). Places pl, p2 and p4 are marked, including one token each. It is also
known that Ti<T><T3, The initial marking, My, seen in equation 2.3 represents the
marking of the PN places in Figure 2.7, and shows that places p1, p2 and p4 hold one
token each, whereas all the other places are empty. Similarly, the transpose of the
incidence matrix, AT, in equation 2.4, corresponds to the underlying transitions and
places (the places and transitions are presented on the left and above the matrix,
correspondingly), showing how a token moves from one place to another, once a
transition fires. For instance, once transition T; fires, a token is removed from places

pl and p2 and reproduced to place p3.

Figure 2.7 PN Firing Process

Hence, in the first column of equation 2.4, the value ‘-1’ is placed in the first and
second rows that correspond to places pl and p2 from which the tokens are removed,
whereas the value ‘1’ is placed in the third row of the matrix that corresponds to place

p3 to which the token is added.

T1 T2 T3
1
B POt 0 0
|1] P2 1-1 0 1|
Mo= 0| (2.3) AT=p3 11 -1 -1 (24
H pd [0 -1 oJ
0 psLo 1 0

Additionally, the matrices in equations 2.5 and 2.6 are created for each PN transition.
For instance, equation 2.5, the transition matrix for Ti, when it is applied in equation
2.2 M is developed, showing that a token should be moved from p1 and p2 and added
to place p3. Hence, places p3 and p4 are marked with one token each. Similarly, once
equation 2.6, the transition matrix for Tz, is applied in equation 2.2 matrix M is used

instead of M.

31

0
[01

o

T, = (1)] (25) T,= 2] 26) M =|1l@7n M= |o| (2.8)
: ; i b
0 1

In this case, T2 fires and the tokens from p3 and p4 are added to place p5 as seen from

matrix M in equation 2.8.

Petri Net models can be analysed statically and dynamically. The static analysis can
be performed by either developing the reachability graph or applying the invariants
method (place/transition invariants). They can be analysed, simulated and modelled
numerically and graphically, using various software tools, such as C++,
MATLAB/Simulink, CPN toolset, PN Toolbox, SImHPN (GISED). The dynamic
analysis of the PN is conducted performing model simulation in order to ensure that
all the paths of the model have been executed properly and to detect any possible
undesirable behaviour and incorrect or omitted logic. The static and dynamic analysis
can also be used to validate the model, i.e. check its correctness and completeness,
either in terms of syntax, semantics and structure through the structural and
behavioural PN properties or in terms of logic though the simulation analysis

detecting undesirable PN behaviour.

Over the years, the standard PN has been extended and hence, several models with
advanced capabilities have been developed enabling the modelling of real systems

used in industry.

Coloured Petri Nets (CPNs), an extension of PNs, introduced by K. Jensen 1990, is a
high level PN form that uses tokens with colours, holding complex information. The
tokens of this model can carry data values, i.e. system information, around the net and
can hence be distinguished from each other. Each token can affect the firing of a
particular transition in a different way, depending on its colour. The colour is a
graphical way of distinguishing between different tokens, by giving them a label. The

label/colour of the token can change once it has passed through a transition.

Stochastic Petri Nets with Aging Tokens (Volovoi, 2004) can be considered as an
extension of CPNs providing more flexibility and agility to system modelling. The
main idea of Stochastic Petri Nets (SPNs) with aging tokens is the introduction of

tokens with memory. This extension is useful for modelling applications such as load

32

sharing, multiphase missions, repairable systems with spares, systems on demand and

shared pools of identical imperfectly repaired components.

Another variation of traditional PNs is the Abridged Petri Net (APN), introduced by
Volovoi (2013), ensuring flexibility of token tracking through the transitions, which
are depicted as directed arcs. The change of state in a system is modelled by moving a
token from an input place to an output through the transition, i.e. the arc that connects
the input and output places. Additionally, each transition can have at most one input
and output place. This model includes two types of tokens, discrete (‘colours’) and
continuous (‘ages’). Discrete event and Monte-Carlo simulations can be used for the
analysis and evaluation of system performance. The tokens are able to change during
the simulation (be stationary or move during time) and either inhibitors or enablers are
used for the modelling of component interactions. The basic characteristic of this
model is its ability to link place nodes directly by arcs, similar to Markov models.
APNs can be applied to large models taking advantage of the hierarchical model

representation and also to complex systems with dynamic features.

24 Methods for Automation of Reliability Models

2.4.1 Introduction

The idea of automated reliability model generation is an important area of reliability
engineering, which has been under development since the 1970s with the introduction
of two major methods for the automatic construction of FTs namely, the decision table
method (Salem et al., 1977) and the digraph method (Lapp & Powers, 1977). In the
following years, several other methods have been developed considering commonly
found structural complexities in engineering systems such as loops and electric
circuits. Approaches have been presented for the automated construction of other
reliability models such as Cause-Consequence Diagrams (Valaityte et al., 2010)
Reliability Block Diagrams (Liu et al., 2013), Markov Chain Models (Katayama et al.,
2014; Brameret et al., 2015) and Petri Nets (Aalst et al., 2004; Robidoux et al., 2009;
Agarwal, 2013; Stockwell & Dunnett, 2013; André et al., 2014).

A review of various automated reliability methods has been undertaken in this section

in order to identify advantageous properties for automation and to identify potential

33

gaps within the literature that this PN research study will attempt to address to support

automation of this reliability modelling method.

2.4.2 Overview of Methods for Automated Reliability Modelling (not
including PN)

2.4.2.1 Automated generation of the Fault Tree Model
The automated generation of Fault Trees has received the most attention, based on
literature findings. Several methods have been proposed for the automated

construction of this reliability model, as reviewed in this section.

Decision table method, introduced by Salem et al. (1977), models the system
behaviour describing the relation between the inputs, outputs and the states of
components. This method acts as a matrix in which the columns of decision tables
correspond to the inputs, outputs and states of the components and the rows present all
the possible combinations between the inputs and component states along with their
respective outputs. Therefore, the tables can present different states of the component
such as working or failed and how the component behaves as a result of different

inputs from other components within the system.

Salem et al. introduced the decision table method by developing in 1979 a computer
package, the Computer Automated Tree (CAT). The CAT code takes as an input the
decision tables, created by the user, and the TOP event specification to generate the
fault trees. The software has been designed to cater for multiple FTs simultaneously.
The CAT code has been successfully applied in a Residual Heat Removal (RHR)
system, generating the required FT in a short time. The main limitations of this
methodology are the effort the user should make to recognise and define the TOP
event and create the components decision tables. Also, this method does not provide

any facilities for the detection and classification of control loops or circuits.

A relatively new method based on decision tables is that introduced by Majdara and
Wakabayashi (2010). This method introduces the concept of two types of tables to
model system components. The first table is the function table, which is the same of
the decision table introduced by Salem et al. 1977 and the second type is the novel
state-transition table that describes the operational states of a component. The state

transition table is created for components with different states and shows the state

34

changes from initial state to final state. For example, the operational states of a switch
are the open and close states. Both function and transition state tables are manually
created by the user. Majdara and Wakabayashi also developed an algorithm to
generate a FT based on an occurrence of an undesired event being defined. The code
uses the input-output connections of components to trace the cause of the undesired
event. The algorithm traces back from the occurrence and identifies the component
states or outputs caused the event. Then the FT is generated based on the outputs. The
FT is generated using the new tables following the same approach employed by Salem

et al.

The digraph method is based on the construction of a directed graph, which consists
of nodes that represent process variables. The process variables indicate properties of
the flow such as mass flow rate, pressure, temperature and others. Any system or
process can be described in terms of a flow such as flow of fluid, charge, data,
information and signal. The nodes are connected by directed edges, where the
direction is determined according to the relationship between the variables it joins. If a
deviation in a variable A produces a deviation in variable B then the direction of the
edge is from variable A to variable B. A directed edge can be characterised as: normal
when the relationship is normally true; conditional when the relationship occurs only
when a certain condition is satisfied; and mutually exclusive when several edges

connect the same pair of nodes. Only one relationship is in operation at any one time.

A number is assigned to the edge depending on the rate of change of the second
deviation relative to the first. The values that can be used are: ‘-10°, -1°, ‘0°, ‘+1” and
‘+10°. The magnitude of deviation is indicated by none (0), moderate (1) or very large

(10), by implying the following:

— None (0): if a moderate deviation in one process variable causes
none/negligible deviation in another; there is no edge drawn between the two
nodes.

— Moderate (1): if a moderate deviation in one causes a moderate deviation in
another, the directed edge between the two nodes is denoted by 1 preceded by

a sign.

35

— Very large (10): if a moderate deviation in one causes a very large deviation in

another, their relationship is denoted by 10 preceded by a sign.

The signs ‘+’ and ‘-’ depend on whether the deviations in the dependent variable
increase, or decrease, when the independent variable increases. The number associated
with directed edges is called gain and be considered as the partial derivative of the

first variable with respect to the second variable.

Lapp and Powers 1977 were the first to integrate the digraph (directed graph) method
into automated FT construction. This method starts with the development of the
digraph by the user for a given system and then uses a programmed algorithm in order
to transform the digraph into a fault tree. The digraph method constituted a
remarkable achievement in the evolution of the automated generation of reliability
models since it targeted modelling of complex systems including the identification
and classification of control loops. In this approach, operators have been introduced
which logically traverse fault propagation through Negative Feed-Back Loops
(NFBL) and Negative Feed-Forward Loops (NFFL).

Andrews and Henry 1997 introduced the modified decision table method combining
the decision table method due to its ability to identify the normal state of systems and
the digraph method due to its ability to detect, classify and analyse control loops. The
classification and analysis of control loops is accomplished by using two new circuit
operators, one for tracing current and the other for tracing no current in circuits. These
operators provide a more efficient FT development in terms of its logical consistency
since the operators can significantly reduce the size of trees by eliminating repeated
events. The modified decision tables include the inputs, outputs and states of the

components as traditional decision tables.

AltaRica, a high-level formal description modelling language, first created at the
Computer Science Laboratory of Bordeaux (LaBRI) by Point and Rauzy in 1999, is
dedicated to safety analysis. A second version of this language, AltaRica Data-flow
(ADF) (Rauzy, 2002; Boiteau et al., 2006), was developed to handle industrial scale
models. This second version was improved in 2013 and AltaRica 3.0 was developed.
In 2013, Prosvirnova and Rauzy proposed a method that compiles a mathematical

model, the Guarded Transition System (GTS), which supports the representation of

36

components with bidirectional flows, into the description of a system model using the
AltaRica syntax in order to automatically generate FTs for systems containing control
loops. GTS is a state/transition formalism that uses concepts from various reliability
modes such as Reliability Block Diagrams, Markov chains and PNs. This formalism
provides higher efficiency to the system making it possible to design acausal
components, i.e. components for which the input and output flows are decided at run
time, and to handle control loops in the system. The GTS formalism enables the
generation of FTs by transforming the states/transitions of the behavioural model into
a set of Boolean formulae and also enhances the reusability of FTs and facilitates their

maintenance since it is considered a high level structure.

Papadopoulos et al. (2001) developed the Hierarchical Performed Hazard Origin
and Propagation Studies (HiP-HOPS) tool that performs an automated reliability
analysis. The main idea of the HiP-HOPS is the automatic synthesis of FTs and
Failure Modes and Effects Analyses (FMEAs) using fast linear-time algorithms.
Adachi et al. (2011) integrated system modelling, automated dependability (reliability,
availability, safety maintainability and security) and optimization techniques using
HiP-HOPS, rendering this tool applicable to highly interactive and dynamic systems.
This work overcomes limitations such as difficulties in conducting automatic analysis
of complex systems with multiple failure modes, dealing with the assumption of the
previous work that the system behaviour remains stable over time. HiP-HOPS,
commercialised in 2012 by University of Hull, has been used in several automotive
and engineering industrial cases. This tool is compatible with a range of modelling
notations and offers scalability of the analysis and unique capabilities for fault

modelling.

Joshi et al. (2007) proposed a method in which Static Fault Tree (SFT) models are
developed, taking as input AADL models. In this work, an AADL model that captures
the architectural aspects of a system such as the properties of the components, features
of the interactions between components, internal structure of components such as
subcomponents’ connections and properties, is used as an input and an Error Model
Annex that captures the component faults and failure modes is manually developed by
the analyst. Using these two models, a Directed Graph (DG), including topology

system information faults and failure modes, is created that is then used to generate an

37

intermediate FT, by applying a recursive algorithm. Finally, Computer Aided Fault
Tree Analysis (CAFTA), a commercial FTA tool, is applied to the intermediate FT
and CAFTA FT is generated using software capabilities.

2.4.2.2 Automated generation of other Reliability Models

Valaityte et al. 2010 developed an algorithm for the automatic generation of the
Cause Consequence Diagram method. The system information provided as inputs to
this algorithm are: a topology diagram for a given system; failure modes and rates of
system components; decision tables for each component; the initiating
event/component and its function; and the stopping criteria, i.e. consequences from
which the diagram path can be terminated. The proposed algorithm starts from the
initiating component and then by determining the potential outputs of the component,
creates a decision box with ‘YES’/’NO’ branches, according to the output. If the
stopping criteria are satisfied, then a consequence box related to the output is added
and the number of decision boxes is checked. Once all the boxes have been developed

the CCD has been constructed.

Liu et al., 2013 proposed the automated generation of Reliability Block Diagrams
(RBDs) from a SysML Internal Block Diagram (IBD) to describe the internal
structure of the system. Once the IBD model is created, and expressed in XMI format,
then the reachability matrix is generated. This matrix, A, that shows the physical
relations between the system’s blocks, is based on graph theory and presented in the

matrix in Figure 2.8 (a).

pl El“ al! aln a b c
p,| a,, afo o0 1 L a |
A= A=bo 0 1f o T
clo 0o o | b |
pn a:.ul anm

(a) (b) (c)
Figure 2.8 Reachability Matrix
The reachability matrix is translated into a RBD and each row of the reachability
matrix is examined identifying the inputs to each block and the connectivity between

blocks. The transformation rule is better explained with the help of a simple example.

Hence, according to the transformation rule for matrix A in Figure 2.8 (b), block c has

38

two input blocks, a and b, denoted with value 1 in the first and second rows of the
third column respectively. Additionally, the input blocks to block c, i.e. blocks a and
b, constitute a parallel model since these blocks do not have any other inputs/outputs.

The corresponding RBD for the matrix in Figure 2.8 (b) is illustrated in Figure 2.8 (c).

Katayama et al. (2014) proposed a methodology for the generation of Markov chain
usage models from De-sequence diagram. This diagram is generated from the
combination of UML Sequence diagram and UML Deployment diagram. Therefore,
once the De-sequence diagram is developed, the system is decomposed into cases to
establish the time points based on the instances of the messages. For each case
identified, initial and final states, pre-condition, post-condition and state name, and
time violation and probability of time violation are defined. The pre-conditions that
refer to the system or objects before execution of the operation and post-conditions
that refer to the state of objects after completion of the operation, are examined to
describe how the cases connect together, i.e. sequence of relationships of cases. Once
individual Markov chain usage models have been developed for each case identified
in system, the pre and post-conditions are examined for all the cases and are finally

combined to generate the final Markov chain usage model of the system.

Brameret et al. (2015) proposed a heuristic algorithm for the automated generation of
partial Markov chains from AltaRica. This method generates a partial reachability
graph for a given system avoiding the state-space explosion problem, keeping only the
‘best’ states, i.e. trying to keep states visited only once. Therefore, once the system is
defined using the AltaRica syntax, applying the Guarded Transition System (GTS)
variables, a partial reachability graph is automatically generated by discarding
revisited states safely, keeping only the shortest paths from the source to the selected
candidate, avoiding the state-explosion limitation from which the conventional

Markov chains suffer.

2.4.2.3 Summary of Methods

The goal of the literature review conducted for the automated generation of the FT,
CCD, RBD and Markov chain models is to identify merits, limitations and challenges
regarding the automation procedure. The methods reviewed in this section for the
automated reliability modelling have been summarised in Table 2.4, and advantages,

disadvantages and automation challenges, describing the level of automation of each

39

Table 2.4 Table of Methods for Automated Reliability Modelling (not including PN)

Methods Advantages Disadvantages Challenges
Requires the user’s intervention to manually develop
N Bu%lt 1pto a computer package,. the CAT, |decision tables of system components. Lacks full
Decision Table which is able to cater for multiple FTs .
) - .. automation.
simultaneously. Only limited system characteristics are catered for
(no loops/circuits).
Requires the user’s intervention to construct the
initial digraph structure from the system
Able to handle some complex system diagram/knowledge
Dieranh characteristics such as detection and Lacks full
grap classification of control loops and The algorithm is not rigorous to be integrated into a | automation.
circuits. computer package since it cannot be always known
with certainty if FTs produce the correct minimal cut
sets.
. Able to handl trol 1 d enabl . . .
Modified ¢ fo nandie contro’ loops and enavies Requires the user’s intervention to manually develop |Lacks full
.. the identification of any circuits within .. .
Decision Table decision tables of system components. automation.
systems.
Requires the user to input the system’s requirements
= Able to handle control loops and enables (state, transitions, initial conditions, etc.) to describe
. . e R i i Lacks full
AltaRica the identification of any circuits within th? model b}' developing the corresponding code ajt(i)mazon
systems. using AltaRica syntax. .
AltaRica syntax can be complicated.
Unable to handle control loops.
) Applicable to highly interactive and Requires the user's intervention to define the failure [y ;oks full
HiP-HOPS dynamic systems. modes of components and failure expressions that automation.
link these modes and inputs to the output of each
component.
An AADL Error Model Annex is developed by the
user who requires advanced knowledge of the AADL
DL models to . modelling language.
SFTs (Joshi et al Built into a computer package named Lacks full
2007) " |CAFTA. Focus only on SFTs. automation.
CAFTA used for model’s construction is not able to
handle large trees, since it cannot find all the minimal
cut sets.
.. Able to handle some complex system Requires the user’s intervention to manually develop
A |Decision Tables to ;
O |ceD (Valaityte et characteristics such as detection and decision tables of system components and input Lacks full
&) al., 2007) classification of control loops and system requirements such as failure modes and rates, |automation.
N circuits. stopping criteria and others to the algorithm.
Focus only on static RBDs. Does not provide a
& |SysMLIBD to Able to generate static RBD from SysML | yniversal algorithm to support dynamic RBD Full
A2 [RBD (Liuetal., |IBD that belongs to standard SysML modelling. automated
- 2013) diagrams. method.
Unable to handle control loops.
The algorithm input, De-sequence diagram,
development requires manual effort and knowledge by
the user to generate it, since this diagram does not
De-sequence belong to the standard UML/SysML diagrams.
.£ |Diagram to The concepts of standard UML diagrams Lacks full
_g Markov Chain P et - - .
O |(Katayama et al (Sequence and Deployment) have used. | Lacks evidence about the automation part of the automation.
> [2014) ’ reliability model generation since the technical
§ information about the code development and software
; package is inadequate.
E Applied only to simple systems.
AltaRica to
arkov Chain ¢ to avoid the state-space explosion equires the user's intervention to manually define acks tul
Markov Chai Abl id thy losi Requi he 's i i Ily defi Lacks full
(Brameret et al., |problem. the AltaRica GTS variables for a given system. automation.

2015)

40

method, have been identified. Therefore, as can be seen from Table 2.4, the automated
generation of the FT model has received considerable attention compared to the
others, due to the extensive application of this model in industry. Additionally,
following Table 2.4, the most common limitations and challenges met during the
review of the methods proposed for the automated generation of these reliability
models are that: (i) only some of the methods can model control loops; and (ii) the
majority of the methods result in the semi-automated generation of reliability models,
since only a limited number of them can automatically retrieve a given industrial
system representation. Hence, during the automated construction of PN models,
considerable attention should be given to these commonly met challenges, by

developing a methodology that overcomes these limitations.

2.5 Automated Generation of the Petri Net Model

Given the Petri Net model has been selected in section 1.2 to be automatically
generated, it is required to establish the current state of art regarding the automation
procedure. Therefore, the methods identified for the PN automated generation and

applied to industrial processes and systems are reviewed in the following sub-sections.

2.5.1 Review of Methods for Automated Petri Net Modelling (Process-
based Approaches)

The Alpha algorithm put forward by van der Aalst, Weijters and Maruster in 2004
with the aim to reconstruct causality from event logs was first used in process mining.
An event log consists of a multiset of traces, whereas a trace describes the order of
activities following a particular path within the process. This algorithm is able to
create automatically a Petri Net process model, taking as input an event log that
contains all the possible traces of a model describing the control flow of different
paths that exist in the model. The event logs are stored either in flat files, files without
internal hierarchy, or database tables. This algorithm is also able to discover and

handle concurrency, loops and choices if they exist in the models.
The following steps are pre-steps for application of the Alpha algorithm:

1. Obtain or create an Excel/ XML file with the process traces (process data).

41

2. Convert the file from step 1 into eXtensible Event Stream (XES)/(Mining
eXtensible Markup Language) MXML format using a tool such as Nitro or
XESame.

3. Import the file created in step 2 into Process Mining (ProM) framework, an
open source tool, developed at Eindhoven University of Technology, with

more than 300 plug-ins that allow process mining algorithms.
Then, the Alpha algorithm is applied.

A simple example in terms of the Alpha Algorithm is discussed. The event log is

assumed to be L1 which is presented in equation 2.9.
L1=[<a,b,cd><a,cbd><aed>] (2.9)
Where: a, b, ¢, d, ¢ are different activities.

There are three traces (paths) in the event log as can be seen from equation 2.9. The
first is ‘abcd’, the second ‘acbd’ and the third ‘aed’. Once L1 event log is fed into
ProM tool, the Alpha algorithm is applied and the corresponding PN is generated. The
generated PN model has an initial place and a final place and all the activities included
in L1 such a, b, ¢ and d are transformed into PN transitions and between these
transitions, places denoted as pl, p2, etc. are added. Arcs connect the places to
transitions following the sequences of activities in the paths. The Alpha algorithm is
used with the objective of automatically visualising business processes in terms of PN
models and animated simulations. Additionally, this algorithm can be used to predict
the completion time of a model or specific traces of a model, using data such as times
and frequencies for the PN transitions provided by the user. According to the
visualisation and animation of PN’s behaviour and simulation results obtained from
the PN model analysis, limiting factors such as unintended behaviour regarding the
flow of information in the process or bottlenecks can be detected and, hence,

recommendations can be made to enhance process’ performance.

To conclude, this algorithm requires the order that the activities happen during the
process and hence, the user needs to obtain or create the input file identifying the
event logs, i.e. the sequence of activities, path id, i.e. a unique identification number,

and pass and fail probability of each path. The main limitation is its weakness to

42

handle specific complex cases such as complex nested loops or multiple activities
logged with the same footprint (does not allow duplicates). In such cases, the
algorithm generates inaccurate PN models since it cannot graphically represent these
features (Aalst, 2011). The Alpha algorithm cannot be taken forward due to the
weakness to automatically retrieve the system description and to model the
aforementioned advanced structural characteristics which are within the scope of this

study.

Alhroob et al. 2010 presented a new methodology that transforms the UML Sequence
Diagram (SD) and Class Diagram into High Level Petri Net (HLPN) models, known
as Coloured Petri Nets. HLPN models use algebraic terms to explain PN elements and
the places in these models are marked by tokens that hold complex structured data.
The UML SD and Class diagram are used as the source of system behavioural
specifications. The Object Constraint Language (OCL) is also used to provide
structural specifications such as preconditions (must be true at the moment the
operation is executed), postconditions (evaluated to true at the moment the operation
ends) and guards (must be true before state transition can occur). The requirement of
this methodology is the topology (events in the system and their ordering) of a given

system. The steps of the methodology are described as follows:

1. A SD and a Class diagram are created or provided by industry.

2. Decomposition of the SD into fragments such as sequence (for events executed
in series), parallel (for parallel processes that contain two or more sets of
events executed concurrently), loop (for series of repeated events), alternative
(divides fragment into two groups and defines conditions for each one) and
option (for events executed only if a condition is true).

e The SD of a system is manually decomposed into fragments by the
user. If the system is complex, this step can entail much effort. Once
the system is complex, this step can entail much effort. The fragments
are used to provide flexibility in the next steps since the XML exported
differentiates the fragments based on the labels mentioned earlier, i.e.
sequence, loop, parallel etc. Once the fragment decomposition is
completed, then, the software used divides each fragment into its

events.

43

3. Transformation of the SD fragments edges to HLPN nodes.

For each SD edge, a HLPN node is created. A HLPN node consists of
two classes (an input and an output) which are connected by an event
as described in step 2. In a node, the event is represented by a
rectangle, whereas the input and output with ovals. An algorithm is
developed as follows:

a) Enumerate all the events.

b) The algorithm traces around the diagram and it detects the first
event and checks if it was visited before. If it was not visited
before, check if it has input and output arguments.

c) Determine the input and output arguments.

d) Once an event has input and output class, it becomes node.

e) Represent the event in rectangle shape, input and output with
oval.

f) Connect the nodes with output arrow from input class to the

event and second arrow from the event to the output class.

4. Join each node with its input derived from the class diagram and OCL.

HLPN models require more information and specifications and thus
this additional information is derived from the class diagram (XML
format) and OCL. The required information is stored in a table, named
Information Table (InfT). The algorithm selects methods of Class
diagram that are used in SD and stores its input and output to a table,
the Information Table (InfT). Additionally, the event attributes from the
Class diagram and the remaining information (preconditions, guards,

etc.) are transferred from the OCL to InfT.

5. Identification of relationships between the HLPN nodes.

A Nodes Relationship Table (NRT) is proposed to set the relationships
between the HLPN nodes, as developed in step 3, using the InfT. An
algorithm has been developed to capture the relationship for every pair
of nodes. The algorithm consists of various conditions that define the
relationships between the nodes. This algorithm can identify if node X
is ancestor/ parent of node Y. It can also identify if two nodes are

connected in parallel or if two nodes are connected under a loop or if a

44

node is the last one before the final node. Each relationship is denoted
by a different symbol in the NRT. A Node Relationships Table (NRT)
is used to store all the possible conditions for the nodes.
6. Combination of the HLPN blocks developing a Combined Fragment Net
(CFEN).

e According to the information stored in the NRT, a CFN is developed
by connecting all nodes according to SD fragment ordering logic. This
step is done manually.

7. The final step is the development of the PN model based on the NRT
information and the CFN.

The proposed methodology, which is developed to formally verify the informal syntax
and semantics of the UML diagrams, is demonstrated by its applicability to a process

describing the operation of a car parking ticket machine.

To conclude, this approach focuses on the HLPN (CPN) generation using UML Class
and Sequence diagrams to represent the behavioural and structural aspects of a given
system respectively. A HLPN model is generated by the user based on the topology
information stored in the NRT that is obtained from the UML SD. The proposed
methodology, which is not fully automated, requires model pre-processing, since the
system information cannot be obtained automatically from the UML diagrams. This
technique indicates the semi-automated level of the method and hence, it has not been

taken forward.

Agarwal (2013) proposes the UML 2 Activity Diagram (AD) transformation into PN
models for verification purposes. This approach covers the transformation of
fundamental elements of UML 2 AD, such as control edges (arcs in AD), opaque
action nodes, fork and join nodes, decision and merge nodes, as well as initial and
final activity nodes, into PNs. The mapping rules for the AD translation into a PN are
explained in detail. Thus, the control edges, initial nodes, final activity nodes, decision
and merge nodes of the UML 2 AD are mapped into the PN places, whereas the
opaque action, fork and join nodes are mapped into the PN transitions. The tool
developed is based on the Eclipse Java Platform and named AD2petri. AD2petri has
as input the UML 2 AD in the form of an XML file and outputs PN files written in the
Petri Net Markup Language (PNML).

45

The PNML is a standard defined by ISO/IEC 15909-2 that provides an intermediate
representation, which enables the automated generation of various types of PNs such
as Coloured PNs, Timed PNs and Stochastic PNs. The PNML interface is Extensible
Markup Language-based meta-language, which supports the interoperability and
exchangeability between various tools that used for PN models, such as Ina,
CPN/Tools, PEP, TimeNet, etc. PNML can take as input XML files with specific

structure that should comply with predefined rules.

Although some of the proposed transformation rules are validated by their application
into a simple example for a management process, the documentation in this work
regarding the information about the code development is inadequate, since the code
proposed for the model transformation is not explained thoroughly. Additionally, two
of the transformation rules, for the control loops and preceding transitions (where
action x should precede action y), are not validated since these characteristics are not
included in the UML 2 AD used for the proposed example. Finally, this approach does
not provide a generic applicability, because firstly, it is only applied to a simple
process without considering complex processes and secondly, the code does not cover
the transformation of all the elements included in a UML 2 AD. For all the

aforementioned limitations, this method has not been taken forward.

2.5.2 Review of Methods for Automated Petri Net Modelling (System-based
Approaches)
Robidoux et al. (2009) presented an approach for formal modelling and verifying an
extension to State-based RBD (SRBD), named Dynamic Reliability Block Diagram
(DRBD), for computer-based systems. In this work, an algorithm that generates
Coloured Petri Nets (CPNs) using as a starting point DRBD models is introduced. In
order to identify design flaws and faulty states, the behavioural properties of the
DRBD model are also verified, using existing CPN Tools. The novelty of DRBD is
the ability to model the dynamic behaviour of systems, i.e. to model dependencies
among components or subsystems. The capabilities of this model have been enhanced
by introducing two new controller blocks, called State-based Dependency controller
(SDEP) and Spare part controller (SPARE), that allow the modelling of dependency

and redundancy relationships between components in a system, respectively.

46

In this work, a formal Reliability Markup Language (RML), an XML-based language,
is introduced to formally describe the components, structure and dynamic behaviour
of DRBD models. RML is based on the Backus-Naur Form (BNF) which is a formal
notation used to describe the syntax of a given language. Therefore, DRBD is defined
in RML including all the components and controllers that exist in the model. The
properties of these components and controllers, such as the connection of components
in series or parallel, the initial state of components (active/standby/failed), the trigger
and target events as well as the state-based dependency between the components
(activation/deactivation/failure), are presented as nested RML elements. This RML
file, which is manually developed, is the input to the algorithm for the CPN

generation.

Once the DRBD model has been manually defined according to RML, an algorithm is
applied to the model transforming it into a CPN. The model transformation is
conducted into two steps: in the first step the SRBD is converted into a CPN; in the
second step the controller blocks of the model, such as SPARE and SDEP, are
converted into controllers CPNs and then added into the CPN developed in the first
step. A controller CPN has transitions and arcs that connect to the start places of the

simple CPN components created in the first step.

Before presenting the algorithm steps for the SRBD conversion into a CPN model, the
steps followed for a simple component conversion into a simple-component CPN are

described as follows:

1. A simple-component CPN consists of two places, Ci start and C; yp and three
transitions, in_Ci, Ci fait and C1_destruct, as seen in Figure 2.9. Cy st contains an
active token, since the initial state of component is active, whereas the token
state can have one of the following values: Active, Standby or Failed.

2. Once C; remains active and another input connection to the component has an
‘active’ token, then in_Cj may fire.

3. This firing moves an ‘active’ token into place C; up, showing that component
is active, as seen in Figure 2.9. This ‘active’ token can be moved into other
nodes through the output connection (active) shown in Figure 2.9.

4. While C; is active and transition Ci destruct fires, then the active token in place

Ci _start 1s replaced by a failed one.

47

Transition C;_ril is enabled and a ‘true’ token is generated showing that C; has
failed. This ‘true’ token can be moved into other nodes through the output

connections (failed) as illustrated in Figure 2.9.

— Cl |—e %

Input Connection

[x=Active] 1° Active

x 1
C1_destruct

output(y) action(Failed)

[x=Active]

[x=Failed] C1_fail

output(b)|action(true) STATE

v t
Output Connection Qutput Connection
(Failed) (Active)

Figure 2. 9 Simple Component Conversion into a Simple-Component CPN (Robidoux et al., 2010)

The algorithm for the SRBD transformation into CPN performs the following steps:

1.

2.

SRBD model is considered as a serial component and input and output
connections are created. A serial component may contain one or more
simple/parallel components.

A for-loop is applied in order to convert each of the structural components into
a CPN. If a contained compoennet is a:

a. simple (connected in series) or spare component, thenit is directly
converted into a CPN model.

b. parallel component, then input and output connections are created and
then a for-loop is applied again to transform each of the contained
components into a CPN. Step 2 is repeated for each contained
structural component in the parallel component.

A parallel CPN component is generated by the connection of all simple and
series CPN components only when all contained components in a parallel
component have been transformed into CPNs.

A serial CPN component is generated by the connection of all simple and
parallel CPN components only when all contained components in a serial

component have been transformed into CPNs.

Similarly, the algorithms for the transformation of SPARE and SDEP controllers into

controllers CPN is described as follows:

48

— Spare controller conversion into spare-controller DRBD is explained as

follows:

1. A place Pi s and a transition P; i are created for the primary
component.

2. For each spare component a place Si sware and a transition S; fail.

3. SPC P transition is introduced connecting place Pi s with place
S1 start such that when Py fails and S; is standby, S; to be activated.

4. For each spare component S; (i=1 o i=n-1) @ transition SPC_S; is created
and connecting S swart and S¢i+1) start SUch that when S; fails and S¢+1) is
standby, S¢+1) to be activated.

5. Place SPC sync is created connecting transitions SPC_P; and Py fair.

6. For each spare component S; (i=1 1 i=n-1) @ place SPC_sync+1) is created

connecting transitions SPC_S;and S; fail.

— State controller conversion into state-controller DRBD is explained as follows:

1.

A place Ci stan 1s created for the trigger component.

2. For each target component a place T start is created, for i>=.

3.

Transition SDEP is introduced connecting all places T; start according
to the trigger and target events defined in step 2.

If trigger event is activated create a transition in C; for trigger
component and a place SDEP_sync that connects SDEP and in_C;.

If trigger event failed create a transition C; fi for trigger component

and a place SDEP_sync that connects SDEP and C; i,

Finally, the controller CPNs are added into the CPN developed from the SRBD
model. This is accomplished by merging the starting places such as P1 s and status
transitions such as Si s from the controller CPN to the corresponding places and

transitions presented in the CPN for the SRBD.

The proposed methodology is demonstrated by its applicability to a redundant
generator system. Thus, the algorithm creates a CPN model for the redundant
generator system, taking as input static and dymamic RBDs with the system
description in RML format. The output CPN model is successfully verified using CPN
Tools in order to guarantee the correctness of the DRBD model, by checking the

absence of deadlocks. Although this approach enables the automated CPN model

49

generation, the main limitation of this work is the development of the system
representation i.e. development of SRBDs and DRBDs using RML, since it requires

manual effort as well as programming language knowledge by the user.

Stockwell and Dunnett (2013) presented a novel approach for the automated
generation of reliability models for phased-mission systems, based on Petri Nets. The
system modelling consists of the: (i) component, system and mission descriptions; (i1)
system failure conditions; and (iii) failure and repair data. For the component
modelling two tables, the decision and operational mode tables, are manually
developed for each component and added to the component library of the system. This
library allows the reuse of components. Operational tables are only created for
components that have more than one mode of operation. The system description
corresponds to a topology diagram that shows how the components link together. The
mission description corresponds to the development of phase models that describes
the different phases the mission can enter with the conditions of the system needed to
transition from one phase to another. The initial and starting conditions are also
identified. Additional input information is the failure conditions and the system failure
modes. Finally, the failure and repair (if available) data for each component is
provided to determine a reliability estimate. It is noted that decision tables are
required to include time dependencies in order to describe components’ behaviour

when the system undertakes different phases of the mission.

The main steps of the algorithm are reviewed as follows:

1. The circuit lists, only required when the system contains -electrical
components, are automatically generated by the code, written in C++, using
the information stored in the component tables within the library and the
system topology. These lists contain the unique identities of components, i.e.
whether or not current flows, in an electrical system. Each of the circuit list is
used to create a circuit PN (CiPN).

2. Each action of each component is presented using Petri Net models, and hence
Component Petri Net (CPN), System Petri Net (SPN), Circuit Petri Net (CiPN)
and Phase Petri Net (PPN) models are automatically generated.

3. The reliability model is the SPN, which is created from the combination of the
CiPNs and CPNs, and the PPN connected together.

50

A simulator implemented to the proposed algorithm can perform a number of
simulations to calculate the unreliability of the system for both a single mission and
multiple successive missions. The shortcoming is that the user is required to generate
as input to the software a system structure file including topology information,
number of phases the system can reside in, failure modes and the repair data, etc.,
which is an error-prone and time-consuming process, particularly for larger systems,

as the authors state.

Taibi et al. (2013) proposed an automatic transformation to model multi-agent
systems (MAS.) The proposed automation procedure follows two steps: (i) the system
is described using a language named Multi-Agent System Description Language
(MASDL); and (i1) transformation rules are applied to the file obtained from the first
step to generate formal Coloured Petri Net (CPN) models from the system
specification with the view to analyse and verify multi-agent system. A Multi-Agent
System is a computerised system or program that presents several complex
characteristics interacting to achieve a common goal. A MAS consists of a set of
agents, i.e. any entity that senses its environment and acts over it (Glavic, 2006),
interacting to achieve a common goal. MAS are usually met in a dynamic large-scale
environment providing properties such as autonomy, robustness, and flexibility. The

steps followed for the CPN generation are:

1. An XML file, using Multi-Agent System Description Language (MASDL), is
manually developed in order to describe the computer system. The information
comes from the system topology, the state of the system, its initial conditions
and failure modes. The Multi-Agent System specification contains a list of
agents consisting of the agent name, a list of its attributes, the current state and
a list of (entry) actions, a list of resources that specifies objects except for
agents existing in the system, a set of objects including information about the
system environment, a list of states that describes the agents’ states and objects
states and a list of actions that can be undertaken by agents.

2. Once the XML MASDL file is created, it is transformed into the
corresponding CPN models, using an XML-based language with a specific
syntax, the Petri Net Description Language (PNDL). The main rules of the

transformation algorithm are outlined as follows:

51

e The agents and resources obtained from the first step can be
transformed to the PN colours.
e The states and actions obtained from the first step correspond to the
CPN places and transitions respectively.
e The entry states in combination with the transitions create the arcs.
The output of this second step is an XML file that includes all the necessary

information for the generation of CPN models.

Both MASDL and PNDL are XML-based languages, providing many advantages such
as interoperability due to its universal syntax since XML can be easily readable
between systems and universality due to its ability to represent most of the models

with its simple and powerful syntax.

To conclude, in this work, MASD language is introduced for the specification of the
agents and their environment and transformation rules are proposed for the
formalisation, i.e. verification, of multi-agent systems. The main drawbacks of this
method are that: the user needs to write the MASDL code in order to import the
system information into the algorithm; and the method cannot provide generic

applicability since it targets computer systems.

André et al. (2014) proposed a method in which UML State Machine Diagrams
(SMDs) are transformed automatically into Coloured Petri Net (CPN) models to
formally guarantee the system safety by verifying it against properties. Although
UML is widely used in industry its semantics are not formally expressed, preventing
the application of model checking techniques that can guarantee the system safety.
The objective of this approach, which is mainly applied to systems with different
states, is to provide formal semantics for the UML SMD by translation to the CPN
formalism. The automatically generated CPNs are used to test and check the model
using powerful tools such as CPN Tools, which can formally prove/disprove the initial

system safety.

This approach is based on the model-to-text (M2T) transformation technique and is
carried out using the Acceleo, a user-friendly tool, which is integrated into the Eclipse
environment and facilitates the CPN generation by generating templates. These

templates are used to define the transformation rules between the SMD metamodel,

52

the SMD model and the final CPN that should be developed, as explained in the

following methodology steps. Therefore, the methodology steps are as follows:

1.

3.

OMG SMD metamodel development. Metamodel is the abstract syntax of
models in which the general modelling frame, rules and constraints can be
defined (OMG Unified Modelling Language (UML), Version 2.5, 2015). The
OMG provides a predefined metamodel for the SMD that has been used in this
work conducting a few minor simplifications. The SMD metamodel consists of
a global state machine (class StateMachine) and each state machine includes
states (class State and FinalState), transitions (class Transition), behaviours
(class Behaviour), pseudostates (class HistoryState) and arcs between the
states and transitions (class InputArc and OutputArc). Each class is
represented by a block and in each block there are several properties such as
id, name, state, action etc. that provide information for each class.

SMD development (input model). Based on the SMD metamodel structure, the
SMD for a given system is developed, using the classes referred to in step 1.
Acceleo template generation. Each rule developed in the template will map an
element from the metamodel and model to the text that is generated and
corresponds to the desired CPN model. In this method, three algorithms
(templates) are developed, one for the SMD states, one for the transitions and
one for the history pseudostates respectively.

CPN model generation. The templates in step 3 are applied to the models
developed in steps 1 and 2 and the CPN model is automatically generated,
using Acceleo. The CPN generated is presented in an XML format. The SMD
states are transformed into CPN places, the SMD transitions into CPN

transitions, whereas the history pseudostates are mapped into the CPN arcs.

Once the CPN model has been created in XML format, then the user can import the

XML file into CPN Tools, a free software used for modelling and verifying CPN

models.

A main advantage of this method is that the starting point is a well-structured OMG

UML diagram, the SMD, which eases the user to import automatically the system

data/information. Nevertheless, limitations of this work are the inefficiency of this

method to deal with complex and large SMD models and model systems including

53

loops. Additional shortcomings are the weakness of the Acceleo tool to provide
advanced features such as functions, global variables and data structures leading to the
development of complicated codes that require additional time to be analysed. Finally,
this method is highly dependable on the CPN Tools syntax, since the rules defined in
the Acceleo templates for the model transformation have been defined according to
the CPN Tool syntax. Therefore, if this syntax changes, the Acceleo templates will be
incompatible with the CPN Tool, and hence the output CPN model either will be

incomplete/faulty/missing.

Reza and Chatterjee (2014) developed a method in which an AADL model is
transformed into a PN model for verification purposes, using a set of mappings and
mapping rules between AADL and Petri Net Markup Language (PNML). In this
approach, PN models are developed to specify and verify the logical behaviours of
real time-embedded systems used in critical application systems such as nuclear and

power plants, medical devices, etc.

The steps followed for the translation of a given system modelled in AADL into a PN

are reviewed as follows:

1. First transformation: transformation of AADL text model (input model) to
XML format using mapping rules.

2. Second transformation: mapping of XML model to PNML using XSLT
templates. The first action of this step is the development of an XSLT
template. The XSLT template acts as a path that defines how the AADL model
is translated into a PNML model. The output of this mapping is an XML file.
Some of the mapping rules between the AADL and PNML components as
used in this work are presented as follows:

e AADL in/out data port, event port, port group and data access are
transformed into PNML Places.

e AADL system, process, thread and memory are transformed into
PNML transitions.

e AADL connection and bus are transformed into PNML arcs.

Despite the PN model generation, this method is not fully automated since the user’s

intervention is still required to import the AADL-XML model, obtained from the 1%

54

transformation, into the PNML framework. Additional shortcomings of this approach
are the weakness of this method to handle complex systems and the software

dependency.

2.5.3 Summary of Methods for Automated Petri Net Modelling

Following the literature review conducted to identify the attempts targeting the PN
model generation, it was found that in most cases, the industrial system
representations have been manually developed. All these methods that require the user
intervention to import system information to the algorithm result in the semi-
automated generation of PN models. Some of the inputs used to describe system
topology are: Excel/ XML files; decision and operational mode tables; AADL models;
and newly introduced diagrams such as the Class Diagram. However, two of the
reviewed methods support the full automation PN model generation. These are the
methods proposed by Agarwal (2013) and Andr¢ et al. (2014), in which the algorithm
can automatically retrieve the system topology from a UML 2 AD and a UML SMD,
respectively. However, a shortcoming of André’s methodology is its weakness to

model large systems or control loops.

According to the review for the PN model generation, only a limited number of
methods, such as the methods proposed by Robidoux et al. (2009) and Alhroob et al.
(2010), can handle and efficiently model systems with many components or complex
characteristics such as control loops. Unfortunately, these two methods (Robidoux et
al. 2009; Alhroob et al., 2010) require the user’s intervention to input to the algorithm
the industrial system representation, lacking full automation. Additionally, some of
the reviewed methods can only be applied to specific domains, such as the work
proposed by Taibi et al. (2013) that focuses only on computer systems, or can only be
applied to specific cases, such as the Agarwal’s methodology which firstly does not
provide transformation rules for all the elements included in a UML 2 AD and
secondly has only been applied to a simple process. Hence, these methods cannot

provide a generic applicability.

Finally, the majority of the reviewed methods has used XML-based languages, such
as the RML (Robidoux et al., 2009), PNML (Agarwal, 2013; Reza & Chatterjee,
2014), PNDL (Taibi et al., 2013) or tools such as the Acceleo tool (André et al.,

2014), to generate an XML file, with the view to import it in an industrial tool, such as

55

the CPN Tools, to enable the automated PN generation. Although these methods can
automatically generate PN models, they lack efficiency and cannot provide a robust
and rigorous methodology. This is explained with the help of an example. Therefore,
taking as a starting point a UML/SysML diagram, an XMI file can be obtained and
then following these methods the syntax of the XMI file should be transformed into a
format that can be used as input to the selected industrial PN tool. This input is a well-
formed XML file that conforms to a set of very strict rules defined for the
corresponding PN tool. However, if the version of the selected PN tool is updated
(versions of these tools are updated at least once every year), and hence its syntax
changes, these methods cannot guarantee accurate PN model generation, since the
XML file developed from the methodology may not comply with the syntax of the
XML file used as input to the tool.

2.6 Review and Research Motivations

A common characteristic of all the reviewed methods identified was the requirement
of a realistic representation/description of the system topology, which is performed

using tables/graphs/high-level modelling languages/markup languages.

Additionally, it was concluded that there is a lot of room for improvement and
development in the automated generation of PN model since the current attempts

target the generation of this model, are limited regarding the:

— Level of automation, requiring the user intervention as described in the
aforementioned models.

— Systems/Processes structural characteristics, as described 1in the
aforementioned models.

— Spectrum of their applicability, targeting to specific domains without
providing a generic applicability.

— Software dependency, developing an XML file, used as input to a PN tool,
with tailored syntax that only complies with a specific version of the selected
tool. This syntax may be incomplete/wrong after a version update and hence

the PN model is considered inaccurate.

56

Therefore, the research meotivations, drawn from the literature review for the
automated generation of a Petri Net model, should cover existing literature gaps and

extend current techniques that automatically generate reliability models by:

— Retrieving fully automatically without the user intervention the topology
information from the graphical diagram, i.e. the UML/SysML AD, of the
system description.

— The automated PN model generation methodology should be able to handle
large systems/processes with control loops.

— The proposed method requires to provide a generic applicability, enabling the
generation of PN models from any system/process being modelled using an
AD. This means that all the elements included in an AD should be considered.

— The proposed methodology for the PN model generation should be software
independent, by introducing a novel code without being based upon the syntax
of any industrial software which can be easily modified after a version update,

and hence to fail the desired model generation.

57

CHAPTER 3

3 Methodology for the Automated Generation of
a Petri Net Model

3.1 Introduction

This chapter describes the methodology followed for automated Petri Net model
generation. The steps required to automate a PN model are identified at first and then
the methodology to undertake these steps, input-system modelling; and algorithm-
Java database programming using Structured Query Language (SQL), is explained
in detail. Following the algorithm developed, the mathematical representation of a
PN model, i.e. the transpose of the incidence matrix and initial marking, is
automatically generated. Additionally, the graphical representation of a PN model
is automatically generated, using data obtained during the Java database programming
step. The proposed methodology is explained with the help of a generic example that
applies both to systems and processes, but for simplification purposes, the term
systems is used to cover processes as well. It is also noted that systems consist of
components, whereas processes of activities. The layout of this chapter is illustrated in

Figure 3.1.

Net Model
\

[Chapter 3 Layout — Methodology for the Automated Generation of a Petri]

/Methodology Steps Review for the Petri Net Model Automation x
Input: System Modelling using as mput a UML/SysML Activity

Methodol@

Diagram
\)\v Algorithm: Java Database Programming (Data Manipulation) Y,
e N

Mathematical Representation of Petri Net Model

*E » Automated Generation of the Transpose of the Incidence Matrix
& > Automated Generation of the Initial Marking Matrix)
= v
& .
Graphical Representation of Petri Net Model
\ _# Automated Graphical Representation /

Figure 3.1 Illustration of the Structure of Chapter 3

58

3.2 Overview of Developed Methodology
This section describes the procedure followed for the automated PN model generation
using as an input a commonly used description diagram of industrial systems, the

UML/SysML Activity Diagram. Figure 3.2 illustrates a diagram outlining the

methodology.
4 N / Algorithm \ / Output \
Input
Java Database Programming Automated Generation of:
System - a) Mathematical
Modelling Manipulation of Input Information Representation of PN
_ N » Access a database from Java, establishing a N (Transpose of the
connection between these two. Incidence Matrix &
UML/ .SY.SML > Load the UML/SysML AD (input) file to the Initial Marking)
A.th“y selected database using SQL statements.
Diagram % Generate a PN model, manipulating the data of b) Graphical
the input file, which is in a XMI format, using Representation of the
K J \ SQL code. / \ Overall PN /

Figure 3.2 Methodology Steps for Automated PN Generation

Thus, the automation procedure takes as a starting point (input) a UML/SysML
Activity Diagram and applying the algorithm developed for the manipulation of this
input information, the mathematical and graphical representations of a PN model are

generated (outputs). Each of these methodology steps is briefly explained:

— Input (System Modelling): The input to the proposed algorithm is the
UML/SysML AD file created for a given system.

— Algorithm (Java Database Programming): The developed algorithm
initially establishes a connection to an SQL-based database with Java, using
Java Database Connectivity (JDBC). The SQL-based databases are able to
capture and analyse data by organising it in an easy way to be accessed,
managed and updated. Thus, once JDBC establishes connectivity, the
UML/SysML AD (input file) is loaded into the database by executing SQL
statements. This loaded file is in an XML Metadata Interchange (XMI) format.
XML, a specific application of XML, is an Object Management Group (OMG)
standard for exchanging metadata information via Extensible Markup
Language (XML). The data within this XMI file, obtained from the input AD,
is stored in tables in the selected database and an SQL code is developed to
manipulate and organise this data into a matrix form, similar to that used to

describe the mathematical representation of PN models.

59

— Output (PN model generation): The output of the developed algorithm is the
transpose of the incidence matrix and the initial marking matrix, described in
equation 2.2. Additionally, the PN graphical representation is developed. The
output PN model can be used for: (i) verification purposes, as it can prove the
correctness of UML/SysML ADs, which have an informal syntax and
semantics; and (i1) simulation purposes, as it can assess the performance of the
initial system/process by predicting the average execution time of the various
paths of which the system/process consists, the most common visited places in
each path, as well as the paths resulting in the most failures and the nodes most
involved in the route to failure; and make recommendations in order to
enhance its efficiency. In addition to the PN mathematical form, the data
required for the PN simulation is timed and probabilistic data, which
correspond to the PN transitions. This data, provided by industry in an Excel
file, is automatically retrieved in MATLAB where the simulation is carried

out.

The methodology is explained in detail in the following sections.

3.3 Input - System Modelling

The system modelling tools focus on the graphical representation of a system and the
retrieval of information for further analysis. This is the starting point of the
automation process and it is assumed that this model is available, either created by
software engineers or provided by industry. According to the modelling tools
reviewed in section 2.2, it was concluded that the UML/SysML AD satisfies all the

criteria, and hence is selected for this study.

The input used for the automated PN generation is described here using the Activity
Diagram for a simple scenario, illustrated in Figure 3.3. This diagram consists of the
most commonly used elements in system modelling, including an initial node, an
activity final node, shown as ‘pin’ and ‘pout’ respectively, 4 opaque action nodes
‘Action 1°, ‘Action 2°, ‘Action 3’ and ‘Action 4’, a decision node named

‘Decision_1’°, and a merge node, named ‘Merge 1°.

60

Decision_1

action_1_pass action_1_fail

Figure 3.3 AD for a Simple Process

Once the validation of the diagram is successful, using the ‘Validate model’ option
available in the Eclipse software, then its XMI format can be automatically loaded
into a database system for further manipulation. The model validation considers
possible errors found in an AD due to disconnected objects or errors regarding the
connection between nodes and edges, for instance Input Pin nodes should be followed
by object flow edges. The XMI file includes two necessary elements for the
automated generation of a PN model, the nodes (<node .../>) and edges (<edge .../>).
The XMI nodes are derived from the initial and activity final nodes, the opaque action
nodes and the control nodes such as merge or decision nodes. Similarly, the XMI

edges are derived from the control flow edges (shown as arcs in ADs).

The XMI file for the AD in Figure 3.3 can be found in Appendix A. This file consists
of XMI nodes such as the ‘pin’, ‘Action_1°, ‘Decision_1°, ‘pout’, etc. and XMI edges
such as the ‘action 1 pass’, ‘action 1 fail’, etc. A part of this XMI file, presented in
Figure 3.4, has been used to describe the syntax of XMI nodes and edges.

<edge xmi:type="uml:ControlFlow" xmi:id="_hjulINaQEee330p781iFb5A"
name="action_1_pass” target="_2ctboNaPEeeXUKMyPHN3Zw"
source="_b330gNaQEee330p70i1Fb5A"/> — edges

<edge xmi:type="uml:ControlFlow" xmi:id="_1iV_IgNaQEee330p78iFb5A"
name="action_1 fail"” target="_XoMwINaQEee330p7@i1Fb5A"
source="_b330gNaQEee330p70iFb5A"/>

<node xmi:type="uml :0OpaqueAction™ xmi:id="_2ctboNaPEeeXUKMyPHN3Zw"
name="Action 2" incoming=""_hjulINaQEee330p70iFb5A"
outgoing="_jNf UNaQEee330p7OiFb5A"/>

<node xmi:type="uml:DecisionNode"” xmi:id="_b330gNaQFee330p70i1Fb5A"
name="Decision 1" incoming=" gyJXMNaQEee330p7@iFb5A"
outgoing="_hjulINaQFee330p781Fb5A _iV_TgNaQFee330p7@iFb5A"/>

— nodes

Figure 3.4 Part of XMI File retrieved from the AD for the Simple Scenario
Each XMI edge element consists of the following attributes:

— A “xmi:type” that corresponds to the edge used in the AD.

— A “xmi:id” that acts as a unique identifier for each element.

61

— A “name” as presented in the AD. If the edge does not have a name, then the

“name” attribute is omitted.
— A “target” that corresponds to the node id attribute in which the edge ends up.

— A “source” that corresponds to the node id attribute from which the edge

starts.
For example, the edge ‘action_1 pass’ in Figure 33 has:
xmi:type="uml:ControlFlow", xmi:id="_hjulINaQEee330p70iFb5A",

name="action 1 pass", target="_ 2ctboNaPEee XUKMyPHN3Zw" that corresponds
to the xmiiid of ‘Action 2’ and source=" b330gNaQEee330p70iFb5A" that

corresponds to the xmi:id of ‘Decision_1°.

Similarly, each XMI node element consists of the following attributes:

— A “xmi:type” that corresponds to the node used in the diagram.

— A “xmi:id” that acts as a unique identifier for each element.

— A “name” as presented in the AD.

— An “incoming” that corresponds to the edge id attribute that enters the node.

— An “outgoing” that corresponds to the edge id attribute that leaves the node.

For example, the node ‘Decision 1’ in Figure 3.4 has: xmi:type="uml:DecisionNode",
xmi:id="_b330gNaQEee330p70iFb5SA", name="Decision_1",
incoming="_gyJXMNa QEee330p70iFb5A" which corresponds to the xmi:id of the
edge that enters the node and outgoing=" hjullNaQEee330p70iFb5A
_1V_IgNaQEee330p70iFb5A" which corresponds to the xmi:id of ‘action 1 pass’

and ‘action_1_fail’.

The XMI file obtained from the AD for the simple process in Figure 3.3 consists of 16
elements, 8 edges and 8 nodes. The 8 nodes found in the XMI document include, 1
initial node, 1 activity final node, 4 opaque action nodes, 1 decision node, and 1 merge

node.

62

3.4 Algorithm - Java Database Programming

3.4.1 Transformation Rules

It is important to define the transformation rules used for the translation of elements
used in UML/SysML Activity Diagrams to Petri Net models. Therefore, before
explaining the algorithm (database modelling) followed for the automated PN model
generation these rules are introduced. This section, defines the mapping rules for the
most commonly used Activity Diagram elements such as opaque action, decision,
merge, initial and activity final nodes and control flow edges. Therefore, for the AD,
shown in Figure 3.3, a PN has been manually developed and presented in Figure 3.5,

in order to help with the identification of these transformation rules.

Decision_fail action_1_fail Action_3
1 1

1 place_5 Merge_1 place_6 Action_4 pout
1 1 1 1

pin Action_1 place_2 1
1 1

1 Decision_pass action_1_pass Action_2 4
1

Figure 3.5 Model developed for the AD for the Simple Process

The PN model in Figure 3.5 consists of 7 transitions and 7 places. From the
comparison of the manually developed PN and the given AD for the simple process,
the relationships between the AD and PN notation and symbols are shown in Table

3.1.

Table 3.1 Relationships between the AD and PN Notation and Symbols

UML 2.0 Activity Diagram Petri Net
Name Symbol Name Symbol
Control Flow Edge > Place O

Opaque Action Node : Transition |:|

Decision Node PN
<>: Structure

Merge Node 4<> Place & m
— Transition

Initial Node o Place O

Activity Final Node —@ Place O

Final Flow Node % Place O

As can be seen, the edges of the AD are transformed into PN places, whereas the
opaque action nodes are mapped into PN transitions. The decision and merge nodes

have a certain sequence of PN places and transitions, as seen from Table 3.1. In the

63

PN structure, which is created by an AD decision node, the two transitions used
correspond to the two outgoing edges from the AD decision node. Thus, in this
transformation, the number of PN transitions should equal the number of the outgoing
edges from the AD decision node. Hence, a PN structure developed by an AD
decision node represents the branching of two or more PN edges, represented by two
or more transitions, each followed by a PN place, as seen in Table 3.1. In the Place &
Transition, which is created by an AD merge node, the PN developed represents the
merging of two or more PN edges to a place which is followed by a transition. The
initial node followed by an outgoing edge and the activity final/final flow node
accepting an incoming edge are both transformed into PN places. Therefore, these are
the mapping rules that were followed in the database modelling step of the

methodology.

3.4.2 Database Introduction

A versatile development in the field of software engineering is the database concept
that over the last 30 years has been used widely in industry (Connolly & Begg, 2005).
The main idea of the database is to capture and analyse a collection of data by
organising it in an easy way to be accessed, managed and updated. Databases can be
categorised into relational and non-relational. The main difference between relational
and non-relational databases is that the former stores the data in a tabular form,

whereas the latter stores it as files.

A Database Management System (DBMS) is a software package that captures and
analyses data, interacting with end-users and other applications, and the database
itself. An extension of DBMS is the Relational Database Management System
(RDBMS) that uses the relational model and hence allows the row-based table
structure that connects related data elements to one another. Hence, the RDBMS
supports a tabular structure for the data with enforced relations between the tables
(Codd, 1970). Moreover, each row in a RDBMS table contains a unique value and
each column lists values from the same domain, for instance, a column named address

includes only addresses.

3.4.2.1 Relational Database Management Systems Products Review
Most Relational Database Management Systems (RDBMS) use the Structured Query

Language (SQL), which is a computer language for storing, manipulating and

64

retrieving data stored in a RDBMS. SQL allows the user to link information from
different tables using foreign keys/indexes, in order to identify uniquely stored data
within the table. Other tables may refer to that foreign key/index, creating a link
between the data. Hence, relational databases using SQL are good for applications
involving connections between data in different tables. The research described in this
work requires various transactions and hence, relational databases tools will be

applied.

The most popular Relational Database Management Systems (RDBMS) products
according to DB-Engines (2018) are:

— IBM DB2 was released in 1983 by IBM.

— Oracle was introduced by Relational Software in 1977 was the first
commercially available SQL-based RDBMS.

— Microsoft SQL Server is first released in 1998.

— MySQL (Michael Widenius Structured Query Language), owned by Oracle
Corporation in 2009, was first released in 1996 by Ulf Michael Widenius and
David Axmark.

— PostgreSQL was officially released in 1996 by PostgreSQL Global

Development Group.

According to a review conducted for RDBMS, IBM DB2 and Oracle are not open-
source products, restricting their usage. Additionally, Microsoft SQL Server,
although providing high flexibility, has a huge licensing cost and limited compatibility
to run on non-Windows platforms (Microsoft, 2015). Hence, these three RDBMS
have been singled out and are deemed not appropriate due to their aforementioned

limitations.

MySQL and PostgreSQL are both open source relational systems. They are both
row-oriented, general-purpose relational databases with many common characteristics.
More specifically, MySQL is a powerful RDBMS with high-performance and
scalability that uses the SQL data language and can work very efficiently with large
data sets and with many languages, including C, C++, JAVA, PHP, etc. Its popularity
has increased over the last few years and more specifically since 2010 when several

Windows specific features and improvements were added enhancing its performance

65

and scalability (DB-Engines, 2018). Regarding PostgreSQL, this database offers
various dynamic characteristics and functionalities (PostgreSQL, 2018), providing
robustness, security and advanced features such as high reliability, data integrity, data
analysis of complex systems, high speed and simple set ups (Riggs & Krosing, 2010).
However, according to the RDBMS review, MySQL has been found to be more
powerful than PostgreSQL, providing higher speed, dynamic characteristics and
ability to create new projects quickly, and hence it has been selected for this work.
The software that is used for the database development is MySQL Workbench, a
visual database design tool suitable for SQL development, data modelling, server

administration and data migration.

3.4.3 Algorithm - Java Database Programming - Transpose of the
Petri Net Incidence Matrix

The data manipulation (representative of the AD) and organisation for the PN
construction is carried out by generating an SQL code using the MySQL database. In
order to achieve faster execution of complex SQL querying logic, i.e. SQL statements
that return data, and avoid the user’s intervention once SQL stored procedures are
executed, the MySQL database has been accessed from Java via JDBC Application
Programming Interface (API), used for database independent connectivity between
Java programming language and databases. Using JDBC, SQL statements can be sent
to any relational database. A stored procedure, mentioned earlier, is a set of SQL
statements that has been created and stored in the dataset to perform a task. Although
SQL stored procedures can be executed in MySQL, it is possible they require user
intervention in order to input manually the output of a stored procedure to the SQL
code. Therefore, for an SQL stored procedure in a Java application, a string is created
outside the stored procedure and then this string is passed as one variable containing

the complete SQL statement, without user’s intervention.

The steps followed to connect the Java Programming language with the MySQL

database in Java using JDBC and execute the SQL statements are:

1. Register the MySQL JDBC driver. This driver is a component that enables a
Java application such as JDBC API to communicate with the MySQL

database.

66

2. Open a new connection. In this step a new connection with the MySQL
database is established, using the getConnection() method.

3. Execute SQL queries. In this step, SQL statements are created to build and
submit SQL queries to the database in order to generate the mathematical
representation of a PN model.

4. Extract data from result-sets. Having executed the SQL queries in step 3, the
result-set objects are used in this step to return/present the results of these SQL
queries in Java. This step is executed using the ResultSet.get() method.

5. Close the connection. In this final step, the connection with the MySQL
database (set up in step 2), the statements (from step 3) and result-sets (from

step 4) are terminated, using the corresponding .close() methods.

The SQL code developed in step 3 of the aforementioned list, has been used in this
work to retrieve, manipulate and store the data included in the input UML/SysML AD
file for the automated generation of the mathematical form of a PN model. The input
AD file is loaded to the MySQL database using SQL statements. This file has an XMI
format, and hence its data can be manipulated and appropriately stored in tables and,
by extension, to generate the desired mathematical form of PNs. The purpose of each

step followed in this SQL code is introduced in the flowchart illustrated in Figure 3.6.
In this flowchart, these 12 steps can be categorised as follows:

— Retrieve data (steps 1.a and 1.b): In this first step, the XMI attributes, such
as “xmi:type”, “xmi:id”, “incoming”. “outgoing”, etc. of the AD nodes and
edges are stored in two tables respectively.

— Separate multiple edges (steps 2 - 5): The values stored in the “incoming”
and “outgoing” columns of the table created in the first step (step 1.a) for the
AD nodes, named ‘node xmi’, are scanned. If an AD node has multiple
incoming/outgoing edges then multiple values are correspondingly stored in
the “incoming”/“outgoing” columns of the ‘node xmi’. Hence, the multiple
values in these columns are separated to enable their further analysis and two
tables are created: (i) the table in step 2 if multiple “outgoing” values exist;
and (ii) the table in step 3 if multiple “incoming” values exist. Additionally,

for the AD nodes that have only one incoming and one outgoing edge a third

table in step 4 is created. Hence, the table (in step 4) is created for the nodes

67

that have both single “incoming” and “outgoing” records in the corresponding
columns of the ‘node xmi’. Finally, these three tables are unified, creating a
new table in step 5, the ‘union node’, in which each cell contains a unique
value for any “incoming” and “outgoing” record. This last step creates a
fundamental table from which the sequence of AD elements can be found in

the following four steps.

‘ XMI file transformation to enable the construction of the mathematical form of a PN model. |

:l{::;leve 1. The attributes of the XMI file obtained from AD are stored in two tables to enable data manipulation:
a. XM attributes for the AD nodes are stored in a table, called ‘node_xmi’.
b. XMI attributes for the AD edges are stored in a table, called ‘edge place xmi’.
If multiple values exist in Sheck _-‘ah:es of the If single values exist in the “outgoing”
the “outgoing” column mncomimng and and “incoming” columns
— “outgoing” columns of =
the ‘node xmi’ table
(step 1.a).
2. Retrieve these rows, separate 4. Retrieve these rows and store
multiple outgoing values and them in ‘unique_activities®
Separate store them in ‘union_1” table. table. -
multiple —_ N Lo
edges If multiple values exist in

the “incoming™ column

3. Retrieve these rows, separate
multiple incoming values and
store them in ‘union 2’ table.

v

5. Create the “union_node’
table, combining the tables
created in steps 2, 3 and 4.

_ y

Check the records

If “xmi:type” is opaque . If “xmi:type” is activi
Find the actiou/dgsioufmzrge node Ls(tor;d mn ti.\e fmanmzpﬂow v
sequence xmi:type” column
of AD of the “union_node’
edges table (step 5).
and 6. Find the hame of.the 8. Find the name of the
nodes — edges being before IF “xmitype” is node being after this
and after of these L L
initial node node and store it in
nodes and store them - - the
in the 7. Find the name of the node being .
‘union node tablel’. after this node and store it in the ‘union_node_table2’.
- - ‘union_node_table2’.
N2
9. Create the ‘final_table’ combining
L the tables created in steps 6, 7 and 8.
Matrix 10. Create the ‘negative’ matrix that shows how 11. Create the ‘positive’ matrix that shows how
generation a token is moved from a PN place (AD a token is moved from a PN transition (AD
edge) to a PN transition (AD node). Data is node) toa PN place (AD edge). Data is
retrieved from table in step 9. retrieved from table in step 9.
Mathematical L 12. Create ‘transpose of the incidence matrix’ J
representation of a combining the matrices created in steps 10
PN model and 11.

Figure 3.6 Flowchart for the steps followed for the Automated Generation of the Mathematical Representation of a

PN Model

68

— Find the sequence of AD edges and AD nodes (steps 6 - 9): The values
stored in the “xmi:type” column of the table created in the step 5 are scanned.
The code identifies the type of each node and stores them in two tables: (i) one
for the opaque action, decision and merge nodes (step 6); and (ii) one for the
initial node (step 7), activity final and final flow nodes (step 8). The names of
the incoming and outgoing edges to and from the nodes stored in these three
tables are identified with the help of the table created in step 1.b and stored in
these tables. Hence, each row of the tables created in steps 6, 7 and 8 includes
the name of a node, the name of the edge exists before this node (if available)
and the name of the edge exists after this node (if available). Finally, the tables
obtained from these three steps are unified, creating a new table in step 9.

— Matrix generation (steps 10 - 11): Two tables in the form of matrices are
created, retrieving the connectivity information from table developed in step 9.
Therefore, the matrix in step 10 shows connections of AD edges/initial
node/activity final nodes/final flow nodes (PN places) to AD opaque
action/decision/merge nodes (PN transitions). Similarly, the matrix generated
in step 11 shows connections of AD opaque action/decision/merge nodes (PN
transition) to AD edges/initial nodes/activity final nodes/final flow nodes (PN
places).

— Mathematical representation of a PN model (step 12): In this final step, the
PN is generated by combining the two matrices developed in steps 11 and 12

respectively.

The SQL code followed for the automated PN generation, presented in Figure 3.6, can
be better explained with the help of the SysML /UML AD, presented in Figure 3.3 for
a simple scenario. The mathematical representation of a PN model is generated by

applying the following steps:

1. The XMI file obtained from the AD, provided as input of the methodology, is
loaded into the MySQL database. Two tables, named ‘node xmi’ and

‘edge place xmi’, are created as follows:

Retrieve data for AD nodes. The ‘node xmi’ table, part of which is
shown in Table 3.2 for three elements from Figure 3.3, is created from

the XMI file. The corresponding part of the XMI file used for the

69

development of Table 3.2 is illustrated in Figure 3.7. It can be seen
from Table 3.2 that a column is initially created for each XMI attribute,

such as “xmi:type”, “xmi:id”, “name”, etc. and then the values of these

attributes are stored in the corresponding columns.

Figure 3.7 Part of XMI File retrieved from the AD

name="Action_4" incoming="_kLTfWNaQEee330p701Fb5A"
outgoing="_LRWGYNaQEee330p701Fb5A"/>

<node xmi:type="uml :MergeNode" xmi:id="_aBN18NaQEee330p78iFb5A"
name="Merge_1" incoming="_jNf_UNaQFee330p78iFb5A _j433kNaQFee330p78iFb5A"
outgoing="_RLTfwNaQEee330p701Fb5A"/>

<node xmi:type="uml :DecisionNode"” xmi:id="_b330gNaQFee330p7E8iFb5A" }

<node xmi:type="uml:OpaqueAction” xmi:id="_YsEn8NaQEee330p7@1Fb5A" .
Action_4

Merge_1

name="Decision_1" incoming="_gyJXMNaQEee330p701Fb5A"

Decision_1
outgoing="_hjulINaQEee330p70iFb5A _1iV_IgNaQFEee330p70iFb5A"/>

Table 3.2 MySQL ‘node xmi’ Table Extract

id xmi:type xamizid name incoming outgoing
6 umh:OpaqueAction _YsEnSNaQEee330p70FbSA Action_4 _KTfwNaQEee330p70FbSA _RWGYNaQEee330p70FbSA
7 umkMergeNode _aBN1SNaQEee330p70FbSA Merge_1 _jNf_UNaQEee330p70iFbSA j433kNaQEee330p70FbSA KTFwNaQEee330p70FbSA
8 um:DedsionNode _b330gNaQEee330p70iFbSA Dedision_1 _gyJXMNaQEee330p70FbSA _hjullNaQEee330p70FbSA _iV_IgNaQEee330p70FbSA

Retrieve data for AD edges. As for the ‘node xmi’ table, the
‘edge place xmi’ table, part of which is presented in Table 3.3 for two
elements from Figure 3.3, is created from the XMI file. The
corresponding part of the XMI file used for the development of Table
3.3 is illustrated in Figure 3.8. It can be seen from Table 3.3 that a
column is initially created for each XMI attribute, such as “xmi:type”,
“target”, etc. and then the values of these attributes are stored in the

corresponding columns.

Figure 3.8 Part of XMI File retrieved from the AD

<edge xmi:type="uml:ControlFlow" xmi:id="_hjulINaQEee330p78iFb5A" .
name="action 1_pass" target="_2ctboNaPEeeXUKMyPHN3Zw" action 1 _pass
source="_h330gNaQEee330p78iFb5A"/ >

<edge xmi:type="uml:ControlFlow" xmi:id="_iV_IgNaQFee330p7@iFb5A"
name="action_1_fail" target="_XoMwINaQEee330p7/8iFb5A" } action 1 fail
source="_b330gNaQEee330p78iFb5A"/ > -

Table 3.3 MySQL ‘edge place xmi’ Table Extract

d xmitype omizid name source target
3 umi:ControlFlow hjullNaQEee330p70FbSA action_1 pass _b330gNaQEee330p70FbSA _2ctboNaPEeeXUKMyPHNIZw
4 umi:ControlFiow IV_IghaQEee330p70FbSA action_1 fal _b330gNaQEee330p70Fb5A _XoMwINaQEee330p70Fb5A

The “incoming” and “outgoing” columns of ‘node xmi’ table created in step 1.a, may

contain multiple text values, separated by a space if a node has more than one

incoming/outgoing edge. For instance, this is observed in the 2" and 3™ rows of Table

3.2 in the “incoming” and “outgoing” columns respectively. These multiple text data

should be separated, since all the cells of tables have to store single text values in

70

order to allow the identification of these values in other tables and, by extension, the
accurate generation of the mathematical representation of PN. It can be seen from
Table 3.2 in the “outgoing” column in the 3™ row that the 1 part of the value,
“ hjullNaQEee330p70iFb5A”, also exists in Table 3.3 in the “xmi:id” column in the
2™ row. If double value, placed in Table 3.2, is not separated, then SQL code is not
able to identify that these two cells refer to the same edge. Therefore, outgoing and
incoming values are separated and steps 2 and 3 are carried out to achieve this. Step 4
creates a table for the nodes that have single incoming and outgoing edges and then
step 5 combines the tables created in steps 2, 3 and 4. Hence, the table created in step
5 stores information about all the nodes included in AD, holding single values in each

cell.
Steps 2, 3, 4 and 5 are explained in detail, as follows:

2. Separate multiple “outgoing” values. In this step, the values stored in the
‘node_xmi’ table are scanned to determine if there are any multiple values in
the “outgoing” column. If so, these are separated so there is one row for each
value and these are stored in a table called ‘union_1°. Therefore, for the simple
example illustrated in Figure 3.3, Table 3.4 is created, for the decision node,
“Decision_17, whose outgoing value is more than one, as can be seen from the
“outgoing” column of Table 3.2 (3 row). Two rows are created for the

decision node in Table 3.4, showing that this node has two outgoing arcs.

Table 3.4 MySQL ‘union_1’ Table Extract

id outgoing xmi: type xmizid name incoming
1 _iV_IgNaQEee330p70iFbSA uml:DedsionNode _b330gNaQEee330p70iFb5A Dedsion_pass _gyJXMNaQEee330p70iFb5A
8 _hjullNaQEee330p70iFb5A uml:DecisionNode _b330gNaQEee330p70iFbSA Dedsion_fal _gyIXMNaQEee330p70iFb5A

3. Separate multiple “incoming” values. In this step, similar code to step 2 was
developed for the values in the “incoming” column of ‘node xmi’ table.
Therefore, if there are multiple values in this column, they are separated and
stored in different rows in a table called ‘union_2’.

4. Store single “incoming” and “outgoing” values. This step creates a ‘unique-
activities’ table retrieving the rows from the ‘node xmi’ table from step l.a
that only have one incoming and one outgoing record in the corresponding
columns. For the AD presented in Figure 3.3, the ‘unique activities’ table is

presented in Table 3.5.

71

id outgoing
_f-30INaQEee330p70iFb5A
_gyI¥MNaQEee330p70iFb5A
_jNf_UNaQEee330pT0iFb5A
_j433kNaQEee330p70iFb5A
_RWGYNaQEee330p70iFb5A

LT Y B R

Table 3.5 MySQL ‘unique_activities’ Table

xmi: type
uml:InitiaiNode

uml: ActivityFinalNode

uml:OpagueAction
uml:OpagueAction
uml:OpagueAction

uml:OpaqueAction

xmizid name
_XBDrQNaPEeeXUKMyPHNIZw pin
_yMFT8MNaPEeeXUKMyPHN3Zw pout
_DKiksMaPEeeXUKMyPHN3Zw Action_1
_2rtholNaPEeeXUKMyPHMN3Zw Action_2
_XoMwINaQEee330p70iFb5A Action_3
_Y¥sEnBMNaQEee330p70iFb5A Action_4

incoming
_IRWGYNaQEee330p70iFb5A
_f-3gINaEee330p70iFb5A
_hjullNaQEee330p70iFb5A
_iV_IgNaQEee330p70iFb5A
_kTfwNaQEee330p70iFb5A

5. Create a table in which single values are stored in each cell. This step

creates a ‘union_node’ table, unifying the tables created in steps 3, 4 and 5, i.e.

the ‘union_1’°, ‘union2’ and ‘unique-activities’ tables. For the AD presented in

Figure 3.3, the ‘union_node’ table, presented in Table 3.6, is created unifying

tables created in steps 2,3 and 4. At this point Table 3.6 includes all the

information of nodes, included in the AD, and additionally each node has

unique incoming and outgoing arcs.

id outgoing

1 _iV_IgNaQEee330p70iFb5A
2 _hjullNaQEee 330p70iFb5A
3 _KTfwhNaQEee330p70FbSA
4 _KTfwhNaQEee 330p70iFb5A
5 _f-3gINaQEee330pT0FbSA
6

7 _gyJXMNaQEee330p70iFbSA
8 _jNf_UNaQEee330p 70iFb5A
9 _j433kNaQEee 330p70iFb5A
10 _RWGYNaQEee330p70iFbSA

Table 3.6 MySQL ‘union_node’ Table

xmi:type
uml:DedisionNode
umil:DecisionNode
uml:MergeMode
uml:MergeNode
uml:InitialNode
uml: ActivityFinalNode
uml:OpaqueAction
uml:OpaqueAction
uml:OpaqueAction
uml:OpaqueAction

xmizid
_b330gNaQEee330p70iFb5A
_b330gNaQEee330p70iFb5A
_aBN18NaQEee330p70iFh5A
_aBN 18NaQEee330p70iFb5A
_xBOrQNaPEeeXLKMyPHN3Zw
_yMFTBNaPEeeXUKMyPHN3Zw
_OKiksNaPEeeXUKMyPHN3Zw
_2cthoNaPEeeXUKMyPHN3IZw
_XoMwINaQEee330p70iFb5A
_YsEnBNaQEee330p70iFb5A

name
Decision_pass
Decision_fail
Merge_1
Merge_1

pin

pout
Action_1
Action_2
Action_3
Action_4

incoming
_gyJXMNaQEee 330p 70iFb5A
_gyJXMNaQEee 330p70iFb5A
_jNf_UNaQEee330p70iFbSA
_j433kNaQEee330p70iFb5A
HuLL |
_RWGYNaQEee 330p70iFbSA
_f-3gINaQEee330p70iFb5A
_hjullNaQEee330p70FbS5A
_iV_IgNaQEee330pT70iFb5A
_dTfwNaQEee330p70iFbSA

The next four steps generate a table that shows the sequence of AD edges and AD

nodes. Thus, step 6 creates a table storing all the opaque action, decision and merge

nodes that exist in the AD, including their pre-edges, i.e. incoming edge(s), and post-

edges, i.e. outgoing edge(s). Steps 7 and 8 generate similar tables for the initial and

final nodes of the AD, respectively. Finally, the tables created in steps 6, 7 and 8 are

unified in step 9. Steps 6 - 9 are explained in detail, as follows:

6. Identify the sequence between the AD opaque/decision/merge nodes and

their preceding and following edges. This step initially creates a table,

named ‘union node tablel’, retrieving the rows from the ‘union node’ table

(from step 5) where their “xmi:type” is equal to ‘uml:OpaqueAction’ or

‘uml:DecisionNode" or ‘'uml:MergeNode’. Two null (empty) new columns are

added in this table, called “place before node” and “place after node”. The

‘union_node tablel’ is then updated inserting to the “place after node”

72

column the records from the “name” column of the ‘edge place xmi’ table
where the “outgoing” values (from the ‘union node tablel’) are equal to the
“xmi:id” values from the ‘edge place xmi’ table. The ‘union node tablel’ is
updated again inserting in the “place before node” column the records from
the “name” column of the ‘edge place xmi’ table where the “incoming”
values (from the ‘union node tablel’) are equal to the “xmi:id” values from
the ‘edge place xmi’ table. Therefore, for the AD presented in Figure 3.3, the
‘union-node_tablel’ is created retrieving the data from Table 3.6 and part of it

for the decision node is illustrated in Table 3.7.

Table 3.7 MySQL ‘union_node_tablel’ Table Extract

place_before_node place_after_node id Xmiztype xmizid_primary RAME_Primary imcoming outgoing
place_2 action_1_fal 1 umi:Decsondode _h330gNaQEee330p70Fbsa Dedision_pass _OyDMNAQEee3I0PTOFESA _iV_IgNaQEee330p70FbSA
place_2 action_1_pass 2 uml:DecisicnNode _b330gNaQEee330p70FbSA Decision_fail _OyDMNaQEeeTI0p70FbSA _hjullNaQEee330pTOFbSA

Identify the sequence between the AD initial nodes and their following
nodes. This step creates a table called ‘union_node table2’, consisting of three
columns, the “place before node”, “name primary” and “place after node”.
This table initially stores to the “place before node” column the records from
the “name” column of the ‘union node’ table (from step 5) where their
“xmi:type” is equal to ‘uml:InitialNode’. The table is then updated storing to
the “name primary” column the record from the “name” column of the
‘union_node’ table where the “outgoing” value of the examined initial node is
equal to the value stored in the “incoming” column of the same table (step 5).
For the initial node of the example in Figure 3.3, the ‘union node table2’,

shown in Table 3.8, is created retrieving the “name primary” and

“place after node” values, which will be used in the next steps, from Table

3.6.
Table 3.8 MySQL ‘union_node_table2’ Table

place_before_node name_primary place_after_node
pin Action_1

Identify the sequence between the AD final nodes and their preceding
nodes. This step initially stores to the “place after node” column of the
‘union_node table2’, created in step 7, the records from the “name” column of
the ‘union node’ table (from step 5) where their “xmi:type” is equal to
‘uml:ActivityFinalNode’ or ‘uml:FlowFinalNode’. The table is then updated

storing to the “name primary” column the record from the “name” column of

73

the ‘union_node’ table where the “incoming” value of the examined final node
is equal to the value stored in the “outgoing” column of the same table (step
5). For the final node of the example in Figure 3.3, the ‘union_node table2’
shown in Table 3.9, is created retrieving the “name primary” and
“place after node” values, which will be used in the next steps, from Table

3.6.

Table 3.9 MySQL ‘union node table2’ Table Extract

place_before_node name_primary place_after_node
Action_4 pout

9. Identify the sequence of nodes and edges in an AD. This step creates a table
named ‘final table’ selecting the “place before node”, “name primary” and
“place after node” columns from the table developed in steps 6, 7 and 8. For
the simple example in Figure 3.3, examined in this section, Table 3.10 is

created, retrieving data from Tables 3.7 and 3.8 and 3.9.

Table 3.10 MySQL “final table’ Table

place_before_node name_primary place_after_node
pin Action_1 place_2

place_2 Dedsion_pass action_1_pass
place_2 Dedsion_fail action_1_fail
action_1_pass Action_2 palce_5
action_1_fail Action_3 place_5

place_5 Merge_1 place_&

place_& Action_4 pout

The ‘final table’ shows the sequence of nodes and edges. The
“name_primary” column includes the values for the opaque action, decision
and merge nodes of the AD in Figure 3.3, whereas the “place before node”
and “place after node” columns include all the edges placed before and after
each node. The 1% and 3™ columns of the table created in step 9 correspond to

PN places, whereas the 2™ column contains all the PN transitions.

The following three steps, 10, 11 and 12, describe the generation of the mathematical
representation of PN model, retrieving the information from the table created in step
9.

10. Create a matrix that shows how a token is removed from each of its pre-
places, when an enabled transition fires (shows the connection from PN
places to PN transitions). This step creates a matrix, named ‘negative’, with
the columns defined by the records retrieved from the “name primary”

column of the ‘final table’ table and the rows defined by the records retrieved

74

11.

from the “place before node” column of the same table. If a “name primary”
record and a “place before node” record are in the same row in the
‘final table’ table, then the value ‘-1’ should be put in the corresponding
matrix cell otherwise a ‘0’ is inserted. Table 3.11 shows the ‘negative’ matrix

created for the AD in Figure 3.3, using Table 3.10.

Table 3.11 MySQL ‘negative’ Table

place_before_node Dedsion_fal Dedsion_pass Action_2 Action_1 Acton_3 Merge_1 Action_4

action_1_fail 0 0 0 0 -1 0 0
action_1_pass 0 0 -1 0 0 0 0
pin 0 0 0 -1 0 0 0
place_2 -1 -1 0 0 0 0 0
place_5 0 0 0 -1 0
place_6 0 0 0 0 1

Create a matrix that shows how a token is inserted to each of its PN post-
places, when an enabled transition fires (shows the connection from PN
transitions to PN places). This step creates a second matrix, named ‘positive’,
with the columns defined by the records stored in the “name primary” column
of the ‘final table’ table and the rows defined by the entries in the
“place after node” column of the same table. If a “name primary” record and

a “place after node” record are in the same row in the ‘final table’ table, then

b 2

the value ‘1’ should be put in the corresponding matrix cell otherwise ‘0’ is

inserted. Table 3.12 shows the ‘positive’ matrix created for the AD in Figure

3.3, using Table 3.10.

Table 3.12 MySQL ‘positive’ Table

place_after_node Dedsion_fail Dedsion_pass Action_2 Action_1 Action_3 Merge_1 Action_4

action_1_fail 1 0 0 0 0 0 0
action_1_pass 0 1 0 0 0 0 0
palce_5 0 0 i 0 1 0 0
place_2 0 0 0 1 0 0 0
pout 0 0 0 0 0 0 1
place_6 0 0 0 0 0 1 0

Generate the mathematical form of PN model. This step creates the
transpose of the incidence matrix of the PN model by adding the ‘negative’
and ‘positive’ matrices created in steps 10 and 11. This matrix expresses the
connectivity between the places and the transitions of PN models defining the
movement of tokens through the net. Table 3.13 shows the combination of the

matrices shown in Tables 3.11 and 3.12. This is the mathematical

75

representation of the Petri net for the AD in Figure 3.3 in the form of the

transpose of the incidence matrix

Table 3.13 MySQL ‘transpose_of the incidence matrix’ Table
place_before_node Dedsion_fal Dedsion_pass Action_2 Action_1 Acton_3 Merge_1 Action_4

action_1_fail 1 0 0 0 -1 0 0
action_1_pass 0 it -1 0 0 0 0
pin 0 0 0 -1 0 0 0
place_2 -1 -1 0 1 0 0 0
place_5 0 0 1 0 1 -1 0
place_6 0 0 0 0 0 1 1
pout 0 0 0 0 0 0 1

The code, developed for the automated generation of the transpose of the incidence

matrix of a PN model is found in Appendix B.

In order to check the correctness of the matrix in Table 3.13, the transpose of the
incidence matrix for the PN model illustrated in Figure 3.5 has been manually

constructed in equation 3.1, showing the sequence of PN places and transitions in

Figure 3.5.
Dec..._pass Dec ..._fail Merge_1 Action_1 Action_2 Action_3 Action_4
place 2 r —1 -1 0 1 0 0 0
place_5 | 0 0 -1 0 1 1 0 |
place 6 | 0 0 1 0 0 0 -1 |
AT = pout | 0 0 0 0 0 0 1 | G
pin | 0 0 0 -1 0 0 o |
action_1_fail 0 1 0 0 0 -1 0 J
action_1_pass 1 0 0 0 -1 0 0

The transpose of the incidence matrix consists of 7 columns (PN transitions) and 7
rows (PN places). The transpose of the PN incidence matrix in Table 3.13 is identical
with the matrix developed manually for the simple process, shown in equation 3.1,

showing the models correlation.

Therefore, since this representation is created from the system information, the
automated generation of the PN has been successful. Using this matrix, a graphical PN

representation developed and also the system can be simulated if desired.

3.4.4 Algorithm - Java Database Programming - Petri Net Initial
Marking Matrix

The mathematical form of a PN model is considered to be completed with the

generation of its initial marking matrix, after obtaining the transpose of the incidence

76

matrix of this model. Therefore, as for the transpose of the incidence matrix in section
3.4.3, a code is also developed to execute SQL queries for the generation of the PN
initial marking. The initial marking matrix shows the number of token(s) included in

each PN place before any transition is enabled.

The procedure followed for the PN initial marking has been applied to the simple
process shown in Figure 3.3 and the following step, for which an SQL code has been
developed in step 3 of the algorithm introduced in section 3.4.3 to execute SQL

queries, is completed:

1. Generate the initial marking of a PN model. In this step a table named
‘initial_marking’ is created consisting of three columns, the “primary id”
column, the “activity” column in which the places of PN models are listed and
the “process number of devices” column, in which the number of tokens, i.e.
marking, is placed. Once the table is created, the ‘pin’ value is found in the
“activity” column and the corresponding value of the
“process_number of devices” column replaced by ‘1°, whereas in all the other
rows of this column value ‘0’ is inserted. For the AD in Figure 3.3, the
‘initial_marking’ table is obtained and presented in Table 3.14. The records in
the “activity” column correspond to the PN places, whereas the records in the
“process number of devices” column show that the ‘pin’ place holds one

token, i.e. one device, and all the other places hold zero tokens.

Table 3.14 MySQL Database ‘initial marking Table

primary_id activity process_number_of_devices
1 action_1_fail 0
2z action_1 pass 0O
3 pin 1
4 place_2 0
5 place_5 0
[place_& 0
7 pout 0

The initial marking for the PN model shown in Figure 3.5 has been manually
developed and illustrated in equation 3.2, showing that place ‘pin’ contains one token,
i.e. one device. The matrix of the initial marking in Table 3.14 is identical with the
manually developed matrix in equation 3.2 for the simple process, showing the
models correlation. At this stage, the ‘pin’ value is always considered as the first place

of the PN, which always includes 1 token.

77

action_1_fail
action_1_fail
pin
M, = place_2
place_5
place_6
pout

(3.2)

S OO0 O Ooo

Later in this thesis, cases that are more complicated have been investigated for the
initial marking generation. The code developed for the automated generation of the

PN initial marking matrix can be found in Appendix C.

3.5 Automated Graphical Representation of a Petri Net Model

In this section, the graphical representation of the PN model is generated
automatically. Since the PN mathematical representation has been automatically
generated, the graphical representation of the model is not necessary for its definition.
However, the PN graphical representation can be used for the verification of PN
model and help users easier understand the underlying model. The PN is automatically
generated from the table created in step 9 in section 3.3.3.4 which consists of three
columns, the “place before node”, “name primary” and “place after node”. The 1%
and 3™ columns correspond to the PN places, whereas the 2" column holds data for
the transitions of a PN model. Each row of this table shows the sequence of two places
and the transition that is found in-between them. Hence, the data stored in the

“primary name” column follows the data stored in the “place before node” column

and is followed by the data stored in the “place after node” column.

The graphical tool selected to represent the structural information of PN models is the
Graph Visualisation (Graphviz), which is an open source graph drawing package
developed at American Telephone & Telegraph (AT&T) Labs and firstly released
under a Massachusetts Institute of Technology (MIT) license in 1991. This software
can take descriptions of graphs in a simple text language, named DOT, and generate
undirected or directed graphs. DOT, a description language used for graphs
construction, is composed of nodes and edges and allows the hierarchical
representation of complex networks and systems. DOT language provides a wide
variety of attributes for the nodes such as node shape, colour, size, etc., the edges such
as several styles of the arrowheads at the head/tail of an edge, edge stroke colour and

others, and the graphs such as graph font family, font size, etc. It also provides

78

various node shapes including boxes, circles, points, diamonds, etc. and arrowhead
types such as normal (an edge with an arc at the end), dot (an edge with a solid circle
at the end), odot (an edge with a hollow circle at the end) and others. Therefore, all
these features provided by the DOT are able to graphically represent the PN elements
including places, transitions, arcs (normal and inhibitors) and tokens. For this reason,
the Graphviz software using the DOT language was found suitable for the PN model

graphical representation, and hence it has been taken forward.

For the automated graphical representation of the PN model, the following steps have

been applied:

1. The MySQL database has been accessed in Java using SQL statements and all
the data stored in the ‘final table’, created in step 9 in section 3.4.3, is selected
using the corresponding SQL query.

2. The System.out.println() Java statement is used to display messages to the
console window in Eclipse software. The steps taken for this part of the code
are shown in the flowchart in Figure 3.9. Following the code introduced in
step 2.i, the word ‘strict’ is used before the word ‘digraph’ to avoid the

construction of multiple edges between the same pairs of elements.

i. Define the PN graph attributes using the syntax:
System.out.println("strict digraph ~ OverallPetriNet ~ {size=\"40\";
node [margin=0 fontcolor=black fontsize=17 width=0.6 height=1.2
shape=box color=blue];");

ii. Retrieve the transitions. The data stored in the “name primary”
column of the ‘final table’ (step 1) is selected and presented as
"transition"; .

ill. Define the PN place attributes including margin around the graph,
font colour, font size of the labels, etc.

v

iv. Retrieve all the places. The data stored in the “place before node”
and “‘place_after node” columns of the ‘final table’ (step 1), is
selected and presented as "place"; .

v

v. Define the PN arc attributes including colour and style.

v

vi. Retrieve the sequence of places and transitions. The data stored in
the “place before node” and “name primary” columns of the
‘final table” is selected and presented as "place” = "transition"; .

vii. Retrieve the sequence of transitions and places. The data stored in
the “name primary” and the place after node” columns of the
‘final table’ is selected and presented as "transition" = "place®; .

!

viil. The curly bracket, opened in step 2.1., is closed by printing a closing
curly bracket.

Figure 3.9 Flowchart for Step 2 for the Automated Graphical Representation of a PN Model

79

Similarly, the size of the drawing is defined at 40 mm. Additionally, in this
step, the PN transitions attributes such as the font colour and font size of the
labels used for the transitions, as well as the size (width and height), shape and
colour of the transitions are introduced. The ‘margin=0’ used in this statement
shows that no space left around the graph.

3. Once the code, found in Appendix D, part A, runs in Eclipse, an output is
obtained in the Console window in Eclipse. This output has the form of a DOT
file, which can then be imported in the Graphviz software and the

corresponding PN model visualised.

The methodology steps explained in this section for the automated graphical
representation of a PN model have been applied to the simple example introduced in
this chapter. The output file, written in DOT, which has been obtained in the Console
window in Eclipse after running the code explained above, is imported in the
Graphviz software and the PN model in Figure 3.10 is generated. This PN is identical

with the PN model created manually in Figure 3.5, demonstrating the models

correlation.
’/_,-7-\\‘
| pin |
N J
S
Action |
TN
[place 2)
N
/ — \\
¥
’Uccmiun fail ’T)ccmmn pass
[

. ,-""L"'\.
- N/ ~
\'a\:licn 1 fai]'\ |:acti0n | pass]
"\\ ’f‘ I‘\\ /
S~ . .

T —~——
L] 12
Action 3 }/\ctmn 2
kY 7

/
/\"__"'\
{ 2\
[place 5|
S

Elcrgc |

.
- ~,

! |
Iplace 6]
. . _7_/"

Action 4

.
N
/ \
| pout |
\ /

R

Figure 3.10 Automated Layout of the Petri Net Model for the Simple Example

80

3.6 Summary

The novel methodology, proposed in this chapter for the automated PN model
generation, applying a Java database (MySQL) algorithm, contributes to knowledge

through the combination of the following:

— Java database algorithm: the method applied integrates the UML/SysML
AD (used as input) from system modeling tools and Java database
programming where an algorithm is generated for the PN model automation.

— Fully automated PN model generation capability: the proposed algorithm
retrieves without user intervention the topology information from the
graphical diagram, i.e. the UML/SysML AD, of the system description and
generates the mathematical and graphical representations of the corresponding
PN model.

— Generic domain applicability: the proposed methodology does not target
specific domains; hence it provides a wide applicability spectrum. This will be
further demonstrated in subsequent chapters.

— Software independence: The outputs of the proposed methodology, i.e.
matrices and PN model, are readily understandable by the user without being
based upon the syntax of any industrial software. (Software dependent
applications are considered these that generate outputs in XML format that
have to be imported to tools to produce either a matrix or a net, which can be

meaningful to users.)

In the following chapter, the proposed methodology discussed in this chapter is

demonstrated by its applicability to an end of life manufacturing process.

81

CHAPTER 4

4 Application of the Automated Petri Net Model
Generation Methodology to a Recycling IT

Asset Process

4.1 Introduction

In this chapter, the methodology introduced in Chapter 3 for the automated generation
of a PN model is applied to a recycling IT asset process to demonstrate its
applicability and functionality. A description of the process, with the help of the AD
developed for the recycling IT asset process, is initially introduced. The AD provided
for this process includes all the basic AD elements, and hence it can be used to check
the correctness of the developed algorithm introduced in Chapter 3. The mathematical
and graphical representations of the PN model for the IT asset recycling process have
been manually developed in order to be later compared with those generated

automatically to demonstrate their correlation.

4.2 Process Description

An end of life manufacturing process (EOL) is used as an example to illustrate the
study. The EOL manufacturing process considered is a recycling IT asset process that
focuses on the repair of electronic devices, primarily mobiles phones. Once a mobile
device enters the process line, it can end up in one of two states, either refurbished or
scrapped. Decisions and actions along the potential paths in the process include seven

different possible activities as described below:

— Asset Track (AT): Asset information is introduced into the traceability system.
The characteristics of each product such as model device, battery and memory
capacity, screen size, etc., are recorded.

— Visual Inspection (VI): The physical condition of each asset is assessed. If the

repair or refurbishment of the device is economically viable, it is forwarded to

82

the Functional Test activity. Otherwise, the device is forwarded to Strip and
Scrap.

— Functional Test (FT): The functionality of each product is investigated by
conducting the following tests/activities: charger check, battery test, LCD
screen check, and ringing test, vibration, microphone and speaker test.

— Data Erasure (DE): Data is erased securely by using specific licensed software.

— Cleaning and De-Labelling (CD): Refurbished products are cleaned properly.
Labels are removed and replaced only if considered necessary.

— Repair (R): A product is repaired if its repair is economically viable.

— Strip and Scrap (SS): Failed assets are checked for any useful parts that can be
salvaged and recycled to be used in other devices and are then sent for secure

destruction.

In the case of a scrapped device, there are two options for it. It can be used either at a
unit level, meaning price sought per tonne for scrap, or at a component level, meaning
components are extracted from the device and used within this process for future
repairs or sold for spares. All activities listed can handle only one device at a time
except for Data Erasure that can accept 100 devices simultaneously. Each activity has
a time to completion associated with it, which can vary for different devices and

product types.

Additionally, activities can have pass and fail probabilities. In practise, most of the
activities are carried out at the same physical location, i.e. on the computer. The repair
activity (R) however, takes place away from the main refurbishment process but in the
same factory, and is not performed until there is a batch, requiring repair. For that

reason, there is a delay between preceding activity ending and Repair (R) starting.

An AD of the process that includes all the possible paths of the recycling IT process is
illustrated in Figure 4.1. This diagram, that includes all the AD basic elements, has
been developed using an open source and most used Java Integrated Development
Environment (IDE), Eclipse software, version 4.5 Mars. Eclipse also provides syntax
checking, helping users out with writing correct code as well as several extensions,
plugins and tools, and hence it has been considered appropriate. The AD in Figure 4.1
consists of nodes and control flow edges. There is an initial node (‘pin’) which

corresponds to the start of the process i.e. where a mobile device enters the system and

83

an activity final node (‘pout’) when the process is completed for a device. There are
seven opaque action nodes (‘Asset Track’, ‘Visual Inspection’, etc.), that correspond
to the activities carried out through the process, a merge node (‘M’) used when the
output of two activities have a common source node and four decision nodes (‘D_VT’,

‘D _FT’, etc.), used when one activity has two target nodes.

D_FT D_DE

Visual_Inspection Data-Erasure

Functional_Test Cleaning_De_Labelling

Vif

=

Strip_Scrap

Figure 4.1 UML AD of'the Recycling IT Asset Process

It can be seen from the diagram that the control flow edges, which have unique names
(i.e. ‘ATp’, ‘VIp’, “VIf, etc.), are used to create links between the nodes showing the

main routes through the AD. Table 4.1 explains the abbreviations used in Figure 4.1.

Table 4.1 Abbreviations and Full Names of Nodes and Edges from UML AD

Abbreviation | Full Name

pin place_in

ATp Asset_Track_pass

VIp Visual_Inspection_pass
VIf Visual_Inspection_fail
FTp Functional Test_pass

FTf Functional Test fail

DEp Data_Erasure_pass

DEf Data_Erasure_fail

Rp Repair_pass

Rf Repair_fail

CDp Cleaning De_Labelling_pass
SSp Strip_Scrap_pass

pout place_out

D VI Decision_Visual Inspection
D_FT Decision_Functional_Test
D DE Decision_Data_Erasure
DR Decision_Repair

M Merge

4.3 Manual Development of the Petri Net Model for the
Recycling IT Asset Process

From the diagram, shown in Figure 4.1 a PN has been developed manually in order to

provide information on what the desired outcome of the automation process will be.

84

Using the transformation rules defined in Chapter 3, in Table 3.1, the PN model is
presented in Figure 4.2. The PN model consists of 12 transitions and 17 places. The
edges that appear without a name in the AD in Figure 4.1 as for the edge that connects
‘Visual Inspection’ to ‘D_VI’, they have been transformed into PN places, named
place 1 — place 4, as seen in the PN model in Figure 4.2. The transformation rules
used for the PN development in Figure 4.2, from the AD in Figure 4.1 are: (i) the AD
edges, initial nodes with the outgoing edges and final activity nodes with the incoming
edges are transformed into PN places; and (ii) the AD opaque action nodes, decision

nodes and merge nodes are transformed into PN transitions.

it

ATp vVisual_lnpection place_1 pD_wvi

pin Asset Track
place 2 D_FT Data_Erasure 130 3 D_DE

Cleaning_De_Labellin

Functional_Test

Sstrip_Scrap

Figure 4.2 PN Model developed for the UML AD for the Recycling IT Asset Process

Additionally, the mathematical representation (transpose of the incidence matrix and
initial marking matrix) of the PN in Figure 4.2 is manually developed in order to be
compared to the outputs of the algorithm, which is later applied for the automated PN
model generation taking as input the AD shown in Figure 4.1. Therefore, the
transpose of the incidence matrix of the PN in Figure 4.2 is developed as shown in
matrix 4.1.

vl D_VI

)
.
3
]
=]
=
<
192}
9%
=
=
~
3
=]
(=}
=)
]

ATp
CDp
DEf
DEp
FTf
FTp
pin
place_1
AT = place_2
place_3
place_4
pout
Rf
Rp
SSp
vif
Vip

|
-
cococococ
cCCc oo oOR
|

Locoocoo
loocoe

-

[=

corrOoOOCOC
|
—-

|
-
cCoooCKk R OO

|
-
ccocoococoocoC
|
-

(41

coococrRrOoOOOCOOO
|
-
|
-

|
=
cooocCcococorooocoCocoooC

OOOOOOOOOOOOO' (= =]

coo
rrocococooco
coocococooo
coococoo
coor kPO

=

|

-
coococooooO
|
-
coocococoorocCOO
coococorocoCcOoOOO

85

This matrix defines the movement of tokens through the net, showing the connectivity
between the places and the transitions of the PN in Figure 4.2 and hence the sequence
of edges and nodes in Figure 4.1. For example, the first row of the matrix describes
the movement of one token from place ‘pin’ to place ‘ATp’ through transition
‘Asset Track’. The transpose of the incidence matrix consists of 12 columns (PN
transitions) and 17 rows (PN places). Finally, the matrix representing the initial
marking of the net shown in Figure 4.2 is developed, as illustrated in matrix 4.2. The
number of tokens has been assumed to be one, which means one phone in process at
one time, and hence matrix 4.2 shows that place ‘pin’ contains one token, i.e. one
device. Later in this thesis, the existence of multiple tokens/products in the net has

been discussed for the initial marking generation.

ATp _
CDp
DEf
DEp
FTf
FTp
pin
place_1
My = place_2
place_3
place_4
pout
Rf
Rp
SSp
VIif
Vip

(4.2)

SO0 O0O0O0O0O0O0COR OO0 00o0o

4.4 Automated Mathematical Representation of the Petri Net
Model for the Recycling IT Asset Process

4.4.1 Input- System Modelling

The AD in Figure 4.1 is validated, using the ‘Validate model’ option available in the
Eclipse software and then the XMI format of the diagram can be automatically loaded
into the MySQL database for further manipulation. The XMI file for the AD in Figure
4.1 can be found in Appendix E. This file consists of XMI nodes such as the “pin’,
‘Asset Track’, ‘D_VI’, “Visual Inspection’, etc. and XMI edges such as the ‘ATp’,
‘Vip’, ‘VIf’, etc. The XMI file obtained from the AD for the recycling IT asset

process in Figure 4.1 consists of 16 elements, 17 are edges, and 14 are nodes. The 14

86

nodes found in the XMI document include, an initial node, an activity final node,

seven opaque action nodes, four decision nodes, and a merge node.

4.4.2 Algorithm - Java Database Programming - Transpose of the

Petri Net Incidence Matrix
The code, introduced in Chapter 3, section 3.4.3 (found in Appendix B) for the
automated generation of the mathematical representation of a PN model, has been
applied to generate the transpose of the PN incidence matrix for the recycling IT asset
process. This code initially creates a connection between Java programming language
and MySQL database via JDBC API and SQL statements are created to build and
submit SQL queries. After executing these SQL queries, the mathematical PN model
representation of the recycling IT asset process is retrieved from the MySQL database
and presented in Java. The steps that the SQL code applies for the automated PN

model generation of the recycling IT asset process are as follows:

1. The XMI file, named Activity Diagram_ S2S.uml, provided as input from the
first step of the methodology (system modelling), is loaded into the MySQL
database. Two tables, named ‘node xmi’ and ‘edge place xmi’, are created as
follows:

a. Retrieve data for AD nodes: A part of the ‘node xmi’ table for three
elements from the AD shown in Figure 4.1 is presented in Table 4.2.
The corresponding part of the XMI file from which the values, stored

in this table, are retrieved, is illustrated in Figure 4.3.

Figure 4.3 Part of XMI File retrieved from the AD for Table 4.2 Generation

<node xmi:type="uml:InitialNode" xmi:id="_FtmhOLITEeaTirlhAX5dxQ" } pin
name="pin" outgoing="_pWiwMLITEeaTirlhAX5dxQ"/>

<node xmi:type="uml:OpaqueAction” xmi:id="_InKv8LITEeaTirlhAX5dxQ"
name="Asset_Track" incoming="_pWiwMLITEeaTirlhAX5dxQ" } Asset_Track
outgoing="_0ZeSILITEeaTirlhAX5dxQ"/>

<node xmi:type="uml:OpaqueAction” xmi:id="_MAZVkLITEeaTirlhAX5dxQ"
name="Visual_Inspection" incoming="_@ZeSILJITEeaTirlhAX5dxQ - .
_LLpAkLIUEeaTirlhAX5dxQ" outgoing="_Ao6DcLIUEeaTirl hAX5dxQ } Visual_Inspection
_XOBgQLJtEeevDgMum9V7CA" />

Table 4.2 MySQL ‘node_xmi’ Table Extract

d o type womizid name noomng Loy

1 wemitabide FnhOLTEeaTrbiXSde] pin B P TTEsTrhAN S

2 uml:OpoaqueAction _InkvB MEeaTirhakSde} Asset_Tradc _PitivedeL TTEeaTirkA Sch)) _7e58 TEeaTirhdx Sdwl}

3 s OpadueAcnn _HATL MEeaTeAX Sl Vinual_lnapection _CQeSlLTTEraTran S Loddd BEeaTraxfcht) _AcSDa LEraTriak S _x0BaQ) MEee Do 7CA

b. Retrieve data for AD edges: A part of the ‘edge place xmi’ table for

three elements from the AD shown in Figure 4.1 is presented in Table

87

4.3. The corresponding part of the XMI file from which the values,

stored in this table, are retrieved, is illustrated in Figure 4.4.

Figure 4.4 Part of XMI File retrieved from the AD for Table 4.3 Generation

<edge xmi:type="uml:ControlFlow" xmi:id="_jOjo@LIUEeaTir hAX5dxQ" |_ Rf
name="Rf" target="_0IQZ8LITEeaTirlhAX5dxQ"
source="_LtzH4LITEeaTirLhAX5dxQ"/> -

<edge xmi:type="uml:ControlFlow"” xmi:id="_LLpARLIUEeaTirlhAX5dxQ" LR
name="Rp" target="_MAZVRLITEeaTir hAX5dxQ" p
source="_LtzH4LITEeaTirlthAX5dxQ"/> -

<edge xmi:type="uml:ControlFlow" xmi:id="_pJgkULJUEeaTirlhAX5dxQ"
name="5S5p" target="_9vls8LITEeaTirlhAX5dxQ" rSSp
source="_0IQZ8LITEeaTirlhAX5dxQ"/>

Table 4.3 MySQL ‘edge place xmi’ Table Extract

id xmi:type xmizid name source target

13 umk:ControfFlow _jOjo0LIUEeaTrhAX5dxQ Rf _IzH4LITEeaTrhAXSdxQ _OIQZBLITEeaTirhAXSdxQ
14 umi:ControlFlow _LpAkL JUEeaTirhAXSdxQ Rp _ItzH4LJTEeaTirhAX5dxQ _MAZVKLITEeaTirhAX5dxQ
15 umi:ControlFlow _pIgkULIUEeaTirlhAX5dxQ SSp _OIQZ8LITEeaTirhAXSdxQ _9visSLITEeaTirhAXSdxQ

Steps 2 — 5 target the separation of multiple values that exist in the “incoming” and
“outgoing” columns of the ‘node xmi’ table (created in step 1.a) in order to enable
data manipulation for the automated generation of the mathematical representation of

PN model. Steps 2 — 5 are applied as follows:

2. Separate multiple “outgoing” values: The SQL code retrieves and separates
the outgoing values from “outgoing” column found in the ‘node xmi’ table.
This new data obtained after the outgoing values separation is stored in a new
table, named ‘union 1°, part of which is presented in Table 4.4 for two
elements from the AD in Figure 4.1. Therefore, for instance the first two rows
of Table 4.4 correspond to the third row of the ‘node xmi’ table, shown in
Table 4.2, which has two outgoing values, i.e. 0ZeSILJTEeaTirlhAX5dxQ
_1LpAkLJUEeaTirlhAX5dxQ.

Table 4.4 MySQL ‘union_1’ Table Extract

] outgaing i bype: xmizid name inComing

3 _A08Dc JUEeaTirlhAXScde@ uml:OpaqueAction _MAZVM TTEeaTrhAX5dx@) Visual_Inspection _0ZeSILNTEeaTirhAXSdx) _LpAkl MEeaTirhAX5dxQ

3 _XOBqQLItEesvDqMUmMSVICA uml:OpaqueAction _MATVIL TTEeaTrhAXSdxQ Visual_Inspection _0ZeSILITEeaTirhAXS5deQ _ILpAk JUEeaTrhAXSdQ

0 _FrR¥ELAEeaTrhAXSd0 uml:DedsionMode _iwxWELTTEeaTrihAXSdxQ D_VI _AoSDdLIUEeaTilhAXSdxQ _XOBqQLItEeevDaMumaV7CA
10 _THpBQLIUEaTirnhAX Sche)) uml:Dedsiontode _iwxWELITEeaTrlhAXSdxQ D_VI _AosDdL JUEeaTirhAXSdxQ _XO0BqQLItEeevDgMumSVCA

3. Separate multiple “incoming” values: Similarly, the code retrieves from the
“incoming” column of the ‘node xmi’ table (step 1.a) the rows that contain
multiple values, such as the merge node, named ‘M’ that has two incoming
edges, the ‘CDp’ and ‘SSp’, as seen from the AD in Figure 4.1. These values
are then separated and stored in different rows in a new table, named

‘union_2’.

88

4. Store single “incoming” and “outgoing” values: The ‘unique-activities’
table is generated storing the records from the ‘node xmi’ table from step 1.a
that have only one incoming and one outgoing record in their corresponding
columns. According to the AD in Figure 4.1, the values of the ‘Asset Track’,
‘Data_Erasure’, ‘Functional Test’, ‘Repair’ and ‘Cleaning De Labelling’
nodes are stored in this table.

5. Create a table in which single values are stored in each cell: The tables
created in steps 2, 3 and 4 are unified in a new table, named ‘union node’, part
of which for the ‘D_FT’ (Decision Functional Test) node of the AD (Figure
4.1) is presented in Table 4.5

Table 4.5 MySQL ‘union_node’ Table Extract

id xmi:type xmizid_primary name_primary incoming outgoing
5 uml:DedsionNode _jxsAgLJTEeaTirhAXSdxQ D_FT _NbtAglL JUEeaTirhAX5dxQ _NSkXd JUEeaTirhAX5dxQ
6 uml:DecisionNode _jxsAgLITEeaTirhAXSdxQ D_FT _NbtAgLJUEeaTirhAX 5dxQ _QEscALJUEeaTirhAX SdxQ

Steps 6 — 9 result in the development of a table that shows the sequence of the nodes
and edges contained in the AD shown in Figure 4.1 for the recycling IT asset process.
The sequence of these AD elements can then be used to identify the sequence of PN
places and transitions, i.e. the connectivity between PN elements, which is the
mathematical representation of the PN for the IT process. Steps 6 — 9 are applied as

follows:

6. Identify the sequence between the AD opaque/decision/merge nodes and
their preceding and following edges: The ‘union node tablel’, part of which
is presented in Table 4.6 for the ‘D FT’ of the AD in Figure 4.1, is created
retrieving the opaque action/decision/merge nodes from the ‘union_node’ table
created in step 5. The names of the AD edges placed before and after of the
‘D FT’ node are correspondingly stored in the “place before node” and
“place after node” columns. As can be seen from Table 4.6, the ‘D _FT’ node
follows edge ‘place 2’ (“place before node” column) whereas it is followed

by edges ‘FTp’ and ‘FTf (“place after node” column).

Table 4.6 MySQL ‘union_node_tablel’ Table Extract

place_before_node place_after nade id i type vzl _prienary NAME_PIMmary incoming SUtoNg
place_2 FTp 5 um:Decisionbiode _psAgLITEeaTrhAXSdxQ D_FT _NbtAgLIEeaTrhaXSdxg Mokt MEeaTirhAX S
place_2 FTf] umi:DecsionNode _jpeAgLITEeaTrhANSAxQ D_FT _NbtAGLIUEEaTrhAXS5dxQ _QEscALUEsaTrAX SO0

&9

7. Identify the sequence between the AD initial nodes and their following
edges: A table named ‘union node table2’ is created retrieving the initial
node named ‘pin’ from the ‘union_node’ table created in step 5 for the AD in
Figure 4.1. The name of the node placed after the initial node ‘pin’ in the AD
is then retrieved and stored in the “name primary” column of
‘union_node table2’ as presented in the 1% row of Table 4.7.

8. Identify the sequence between the AD final nodes and their preceding
edges: Similarly, as for the initial node, the final node of the AD in Figure 4.2,
named ‘pout’, is stored in the ‘union node table2’ (created in step 7). The
name of the node placed before the final node ‘pout’ is then retrieved and

stored in the “name_primary” column of ‘union_node table2’ as presented in

the 2" row of Table 4.7.

Table 4.7 MySQL ‘union_node_table2’ Table

place_before_node name_primary place_after_node
pin Asset_Track [
oL | M pout

9. Identify the sequence of nodes and edges in an AD: The ‘final table’,
shown in Table 4.8, is created unifying the data from the “place before node”,
“name_primary” and “place after node” columns from the tables created in

steps 6, 7 and 8.

Table 4.8 MySQL ‘final table’ Table

place_before_node name_primary place_after_node
ATp Visual_Inspection place_1
Rp Visual_Inspection place_1
place_1 oI Vip
place_1 D_vI IF
place_2 D_FT FTp
place_2 D_FT FTf
place_3 D_DE DEp
place_3 D_DE DEf
place_4 DR Rf
place_4 DR Rp
vIf Strip_Serap 550
DEF Strip_Scrap Ssp
Rf Strip_Scrap S5p
S5p M pout
CDp M pout
pin Asset_Track ATp
VIp Functional_Test place_2
Fip Data_Frasure place_3
FTf Repair place_4
DEp Cleaning_De_Labelling CDp

Steps 10 — 12 result in the development of the mathematical representation of PN the
model of the recycling IT asset process, retrieving the information from the table

created in step 9.

10. Create a matrix that shows how a token is removed from each of its pre-

places, when an enabled transition fires (shows the connection from PN

90

1.

12.

places to PN transitions): A ‘negative’ matrix with the ‘-1’ and ‘0’ values is
created, using the 1 and 2" columns from Table 4.8. Part of this matrix is
presented in Table 4.9 for some of the elements included in the AD in Figure
4.1. For example, if the ‘Asset Track’ is in the same row as the ‘pin’ in the
‘final’ table (Table 4.8), then the SQL code adds in the corresponding cell of
the matrix (Table 4.9) the value ‘-1°, otherwise ‘0’ is inserted, as seen in the 1

row of Table 4.9.

Table 4.9 MySQL ‘Negative’ Table Extract

place_before_node Visual_Inspecton DVl D_FT DODE DR Strip Scap M Asset_Track Functional_Test Data_Frasure Repair Cleaning_De_Labellng
ATp -1 o o o o o] o 0 o 0]
Rp -1 o o o o o o o 0 o 0 o
place_1 0 -1 a a a a a a 0 a 0 a
place_2 0 a -1 a a a a a 0 a 0 a
place_3 0 o 1] -1 o 1] o o 0 1] 0 o
place_4 0 o o o il o o o 0 o 0 o
vIf 0 o o o o -1] o 0 o 0]
DEf 0 o o o o 1 o o 0 o 0 o

Create a matrix that shows how a token is inserted to each of its PN post-
places, when an enabled transition fires (shows the connection from PN
transitions to PN places): Similar to step 10, a second matrix with the ‘1’ and
‘0’ values is generated using the 2™ and 3™ columns from the ‘final table’
created in step 9. For example, if the ‘Visual Inspection’ is in the same row
with the ‘“VIp’/ ‘VIf* in the ‘final’ table (Table 4.8), then the SQL code adds in
the corresponding cell of the matrix the value ‘1°, otherwise ‘0’ is inserted.

Mathematical form of PN model: In this final step, the transpose of the
incidence matrix of the PN model developed for the recycling IT asset process

is created as shown in Figure 4.10.

Table 4.10 Transpose of the PN Incidence Matrix

place_after_node Visual_Inspecton D_VI D_FT DDE D_R Strip Scrap M Asset_Track Functional Test Data_Frasure Repair Cleaning_De_Labeling
ATp -1 o o o o 0 1] 1 1] 0 o 0
CDp 0 o o o o 0 -1 o 0 0 o 1
DEf 0 o o 1] -1 0 o 0 0] 0
DEp 0 o o 1 o 0 1] o 1] 0 o =il
FTf 0 1] 1 1] o 0 0 1] 0 0 -1 0
FTp 0 o 1 o o 0 0 o 0 -1 o 0
pin 0 o o o o 0 1] -1 1] 0 o 0
place_1 1 -1 o o o 0 0 o 0 0 o 0
place_2 0 o -1 o 1] 0 0 o 1 0 1] 0
place_3 0 a a -1 a 0 0 a 0 1 a 0
place_4 0 1] o 1] -1 0 0 1] 0 0 1 0
pout 0 o "] o o 0 1 o 0 0 o 0
Rf 0 a a a 1 -1 0 a 0 0 a 0
Rp -1 o o o 1 0 0 o 0 0] 0
S5p 0 o o o] 1 -1 o 0 0] 0
VIf 0 i a a a il 0 a 0 0 a 0
Vip 0 1]]] 0 0] -1 0] 0

This matrix is obtained by combining the matrices developed in steps 11 and

12. Thus, the negative and positive matrices are unified and the sum of each

91

row is found. The first row of Table 4.10, presents the transitions of the matrix,
whereas the first column consists of the places. The transpose of the incidence
matrix in Table 4.10 consists of 17 rows (PN places) and 12 columns (PN

transitions).

The two matrices, the one developed manually in equation 4.1 and the other generated
automatically in Table 4.10 for the recycling IT asset process, are examined. The
number and contents of the 1% column and the 1*' row between these two matrices are
the same, whereas the values (‘-1°, ‘0°, ‘1”) placed in these two matrices are found in
the same cells. Thus, the two matrices are found identical, proving the PN model
validation. Therefore, since this representation is created from the system information,
the automated generation of the PN for the recycling IT asset process has been

successful.

4.4.3 Algorithm - Java Database Programming - Petri Net Initial
Marking Matrix

After obtaining the transpose of the incidence matrix of the PN model for the

recycling IT asset process, in section 4.4.2, the initial marking matrix of this net is

developed, using the SQL code introduced in Chapter 3, section 3.4.4, completing the

mathematical form of the PN for this process. Thus, the step undertaken for the

generation of the initial marking matrix for the recycling IT asset process is:

Initial marking of a PN model: The ‘initial marking’ table, presented in
Table 4.11, 1s created. The records in the “activity” column retrieved from the
first column of the matrix in Table 4.10 corresponding to the PN places,
whereas the value ‘1’ in the “process number of devices” column it is shown
that the ‘pin’ place holds one token, i.e. one device.

Table 4.11 MySQL ‘“initial maeking’ Table

primary_id actvity process_number_of dewvices

1 ATo 0
2 CDo 0
3 DEF o]
4 DED 0
] FTf Q
6 FTo o]
7 Din 1
8 place 1 0
9 place 2 0
10 place 3 0
11 place 4 0
12 oout 0
13 Rf a
14 Ro 0
15 SSo a
16 VIf o
17 Vio 0

92

The matrix of the initial marking in Table 4.11 1is identical with the matrix of the
initial marking in matrix 4.2 developed manually for the recycling IT asset process,

proving the model validation.

4.5 Automated Graphical Representation of the Petri Net
Model for the Recycling IT Asset Process

For the graphical representation of the PN model for the recycling IT asset process,
the steps introduced in Chapter 3, section 3.4.1 have been followed. The ‘final table’
created in step 9 (Table 4.8) during the automated generation of the mathematical
representation of the PN for the IT process is used as input for this graphical
representation. Hence, all the data from the ‘final table’, illustrated in Table 4.8, is
selected and the code introduced in section 3.4.1 (Appendix D, part A) is executed.
The output obtained in the Console window in Eclipse is a DOT file found in
Appendix D, Part B. This output DOT file is imported into the Graphviz software and
the PN model for the recycling IT asset process is obtained as presented in Figure 4.5.
pin
Asset Track

ATp

Vlsunl_lﬁspcclmll
place_1

D VI

Vip

VIf Functional_Test

place 2
D FT
FTp, (FTf

I)ntal_El‘astll‘e Répau‘
place 3 | place 4
DDE DR
DEp DEf Rf Rp
Cleelnmg_I)e;Labelling‘Slrip‘_écmp
CDp SSp
W

pout

Figure 4.5 PN Model for the Recycling IT Asset Process

93

This PN model consists of 12 transitions and 17 places. The 12 transitions exist in the
PN are equal to the sum of the seven opaque action nodes, the four decision node and
the one merge node that was presented in the AD in Figure 4.1. The PN model in
Figure 4.5, generated automatically for the IT asset process, is identical with the PN

model created manually in Figure 4.2, proving the model validation.

4.6 Summary

This chapter has demonstrated the automated PN model capability to a real-life
industrial process. The examined process is an extension in complexity of the simple
process examined in Chapter 3, which now includes a greater number of activities
and, by extension, more paths and all the fundamental elements of the AD. The
mathematical and graphical representations of the PN model for the recycling IT asset
process have been obtained both manually and automatically and it has been shown
after comparison that they correlate. The correctness of the automation end model is
further explored by a formal verification and validation of the method, viewed in the

next chapter.

Additionally, the PN for the recycling process discussed in this chapter will be
simulated in Chapter 5 to: (i) assess the process’ performance by predicting the
average execution time of the various paths of which the recycling process consists;
and (ii) identify possible deficiencies that exist in the process by predicting the
average time for each PN transition, the most common visited places in each path and
the paths resulted most in failure. The timed and probabilistic data, needed for the
simulation and correspond to the timed and probabilistic PN transitions, will be
retrieved from an Excel file where the information is stored, whereas the transpose of
the incidence matrix and the initial marking developed for the recycling IT asset

process will be retrieved from the MySQL Workbench.

94

CHAPTER 5

5 Verification & Validation of Petri Net Model

5.1 Introduction

In this chapter, the verification and validation of the Petri Net model are examined.
Verification, related to building the model correctly, confirms that a model works
properly, whereas validation, related to building the correct model, confirms that a
model is the accurate representation of the real system (Banks et al., 1987; Balci,
1998; Balci 2004; Law, 2005). Therefore, the correctness of the algorithm developed
for the PN automation procedure is checked by: (i) verifying that the PN model
obtained performs the correct function; and (ii) validating the PN model obtained
accurately represents the system architecture. If these two requirements are satisfied,
the developed algorithm for the PN automation procedure is verified and validated. A
review and evaluation of the most commonly used PN verification and validation
methods is conducted in order to select the most appropriate methods. This is then
demonstrated via evaluation of the recycling IT asset process considered in Chapter 4.
Three main verification methods, i.e. methods related to PN behavioural and structural
properties (static verification), methods related to PN dynamic behaviour (dynamic
verification) and those in which two or more PN models are compared together and
equivalent relations are identified between them (bi-simulation), have been identified.
Similarly, for model validation, three main methods, i.e. expert intuition, real system
measurements and theoretical analysis, have been identified. The layout of this

chapter is illustrated in Figure 5.1.

[Chapter 5 Layout — Petri Net Model Verification & Validation]
Verification of PN model Validation of PN model
» Statically (check behavioural & structural > Expert intuition
properti.es) o) » Real system measurements
Dynamically (via simulation) » Theoretical analysis/results

» Comparison of PN models (via bi-simulation) |

Check the PN automation procedure via Verification and Validation
of the PN model developed for the recycling IT asset process

Figure 5.1 Illustration of the Structure of Chapter 5

95

5.2 Petri Net Model Verification Methods

The objectives of model verification are to check correctness, completeness and
consistency of the developed model ensuring that the physical system, i.e. PN model,
works properly, performing the required functions as specified. These characteristics

can be checked through:

— Static verification which checks behavioural and structural properties of PNs
via:
o Reachability graph analysis that relies on the initial state of PN
models, examining their behavioural properties; and
o Place/Transition invariants method that relies on the topology of PN
models, examining their structural properties.
For a complete static verification, both behavioural and structural properties
should be checked.
— Dynamic verification which checks the correct execution of model paths via
simulation analysis examining the PN model logic.

— Comparing PN models via bi-simulation methods.

In this section, an overview of static, dynamic and bi-simulation PN model

verification methods is carried out.

5.2.1 Static Verification Methods
Petri Net models can be analysed statically checking their behavioural and structural
properties by either applying the reachability graph and the place/transition

invariants method respectively.

The behavioural properties of PNs are dependent on the initial marking My (Li &
Zhou, 2009) and listed below:

— Reachability or deadlock-free indicates that each reachable marking enables a
transition. A marking M" is reachable from a marking M in a Petri Net N, if
there is a firing sequence ¢ from M" to M.

— Behavioural liveness defines that each transition is enabled by at least one

reachable marking and the transition can fire at least once.

96

— Behavioural boundedness shows that the number of tokens in each place does
not exceed a finite number n from any marking reachable from the initial
marking (Mo).

— Safeness is related to the bounded memory capacity. A PN is safe if it is 1-
bounded, i.e. if the places always contain at most one token.

— Reversibility (home marking) shows that the initial marking is reachable from
all possible reachable markings.

— Persistence defines that for any two enabled transitions, the firing of one

transition will not disable the other.

The types of behavioural properties, which should be checked for the verification of a
PN model, are defined according to the sub-class to which the examined PN belongs
(Murata, 1989) hence not all properties need to be satisfied to be behaviourally

verified.

The reachability graph is used to check the PN behavioural properties that serve as
measures of effectiveness of the PN (Aalst, 1998). A reachability graph, an acyclic
graph, indicates all possible future markings at some point in a PN model. It consists
of nodes, which represent the possible system states, and arcs, which represent the
possible state change. The graph starts from the initial marking and each possible
reachable marking is listed and then connected with directed arcs, which are labelled

with the corresponding transition needed to reach the marking.

A simple example of a reachability graph and its behavioural properties is presented in
Figure 5.2 (Aalst, 2011). The PN, presented on the left side of the figure, consists of
seven places (pl — p7) and 6 transitions (t1 — t6). Places pl, p4 and p7 are marked
with one token each. The corresponding reachability graph has been created and
presented on the right side of Figure 5.2. The graph has five reachable states, defined
in the bracketed terms in Figure 5.2. It starts with the initial marking of the PN, placed
in the centre of the graph, and then according to the enabled transition the marking
changes respectively. For instance, the initial marking (1, 0, 0, 1, 0, 0, 1) shows that
places pl, p4 and p7 have one token each, whereas places p3, p4 and p5 are empty.
Once tl1 fires, the marking changes from (1, 0, 0, 1, 0, 0, 1) to (0, 1, 0, 1, 0, 0, 0), as
can be seen in Figure 5.2, indicating that places pl and p7 move one token each to

place p2, whereas no further token movement is observed through the places.

97

Petri Net Model Reachability Graph

(0,0,1,1,0,0,0) (1,0,0,0,0,1,0)
2 R % t5
(1,0,0,1,0,0,1)
‘rl/ &,
(0,1,0,1,0,0,0) (1,0,0,0,1,0,0)

Figure 5.2 Reachability Graph Example (Aalst, 2011)

The remaining markings have been created following the same concept. Once the
reachability graph has been developed, the behavioural PN properties are checked for
model verification. Hence, according to Figure 5.2, the reachability graph is deadlock-
free, and, by extension, reachable, because each reachable marking enables at least
one transition to fire. For instance, the initial marking, presented as (1, 0, 0, 1, 0, 0, 1)
in Figure 5.2, enables the transitions tl and t4. The graph is also /ive since it is
possible to fire any transition, by progressing through a firing sequence. For instance,
the initial marking (1, 0, 0, 1, 0, 0, 1) enables a firing sequence containing all the
transitions. Additionally, the PN is /-bounded, because the number of tokens included
in each place does not exceed the finite number one for any marking reachable from
the initial marking. Since the PN is 1-bounded, it is also safe. Finally, the graph is
reversible since the initial’/home marking can be reached from any reachable marking

following the arcs presented in the reachability graph.

Although the reachability graph is the most common used method for the verification
of PN behavioural properties, it lacks applicability due to its state-space explosion

problem once applied to large and complex PN systems.

The structural PN model properties that depend on the incidence matrix (Proth & Xie.,
1996; Cassandras & Lafortune, 2008) are listed below:

— A PN is characterised structurally bounded if it is (behaviourally) bounded for
any initial marking My. A PN, which is structurally bounded, is also

behaviourally bounded, but the reciprocal is not true.

98

— A PN N is structurally live if there exists an initial marking M, such that the
net is live. A PN, which is behaviourally live, is also structurally live, but the
reciprocal is not true.

— A PN is conservative if there is at least one set of places with all the places
equal to zero.

— A PN is repetitive if there exists an initial marking My and a firing sequence ¢ from
M back to My such that every transition fires infinitely often in o.

— A PN is consistent if there exists an initial marking Mo and a firing sequence ¢

from My back to My such that every transition fires at least once in c.

The place/transition invariants method can be used to check the PN structural
properties, which depend on the topological structure of PN models, applying linear
algebraic techniques (Colom & Silva, 1991; Desel & Reisig, 1998; Recalde et al.,
1998). There are two kinds of invariants: the P-invariants, related to places, which are
the sets of places for which the sum of tokens remains unchanged for every marking;
and the T-invariants, related to transitions, which are the sets of transitions for which
the PN marking remains unchanged after firing each transition. Similar to the
behavioural properties, the types of structural properties that should be verified each
time are selected according to the sub-class to which the corresponding PN belongs.
Large PNs can lead to infinite invariants, rendering it impossible to solve the
equations by hand. Therefore, software that applies linear algebraic techniques can be
used to obtain all the possible solutions of the equations (Colom & Silva, 1991; Desel

& Reisig, 1998; Recalde et al., 1998).

5.2.2 Dynamic Verification Method

Petri Net models can also be verified dynamically, analysing the logic and behaviour
of systems. Dynamic verification is performed via model simulation in order to check
that system paths have been executed properly, detecting any possible undesirable
behaviour and incorrect or omitted logic. However, this method lacks the ability to
check if PNs satisfy a desired set of properties, as static verification does, and cannot
guarantee that all possible simulation paths of the system have been covered (Mhairi,
2009). Therefore, although model simulation can verify the logic of Petri Net
elements, it is not an exhaustive means of proving model correctness (Obaidat &

Boudriga, 2010).

99

5.2.3 Comparison of PN Models (Bi-simulation) for Verification

Another method, identified for PN model verification, is PN model comparison via bi-
simulation equivalence, which can be used to verify whether two models have
equivalent behaviours. Hence, two PNs are characterised bi-similar if one can
simulate the other and vice-versa (Jancar et al., 1999). According to Girault and Valk
(2003), two nets are considered bi-similar if and only if a correspondence between
their markings can be identified such that in corresponding markings every firing
transition in one net can be matched by a similar firing transition in the other net,

leading to corresponding markings.

5.3 Verification of Automated Petri Net Development

The PN automation procedure introduced in Chapter 3 is verified via evaluation of the
PN model generated for the recycling IT asset process introduced in Chapter 4.
According to the review conducted in this chapter for the verification methods of a PN
model, static analysis has been found to be the most suitable method, with the others
having deficiencies. The dynamic verification via simulation was determined to be
unsuitable, since it cannot ensure the execution of all paths of the model. Although the
bisimulation method can be used for verifying the PN automation procedure,
comparing the two PN models developed in Chapter 4, i.e. the one developed
manually for the process in section 4.3 and the other generated automatically in
section 4.5, it is not applied in this work, since it can be an error-prone and time
consuming method, especially when it is applied to complex and large PNs, since it is

manually conducted.

The PN model, developed for the recycling IT asset process, belongs to a special class
of PNs, workflow-nets. A PN is called a workflow-net (WF-net) if and only if it
satisfies the criteria defined by Aalst (1998):

1. The PN model has two places, a source place, denoted as ‘i’, and a sink place,
denoted as ‘o’, that correspond to the beginning and the termination of the net
respectively.

2. The PN is strongly connected, this means that if a transition ‘t*’ is added to the

PN, then this transition connects the source place ‘i’ with the sink ‘o’.

100

If a third criterion is met, in additional to the two aforementioned requirements, then
the WF-net can be structurally verified, i.e. based on the nets structure (Aalst, 1998).

The third criterion is:

3. Once WF-net execution is terminated, there is at least one token in place ‘o’

(sink place) and all the other places are empty.

According to Aalst (1998), besides structural analysis, WF-nets can be verified based
on their behavioural properties, if they satisfy the soundness property for which three

requirements are identified as follows:

— For every state ‘M’ (marking) reachable from place ‘i’ (initial marking, Mo),
there exists a firing sequence leading from state ‘M’ to place ‘o’ (final
marking).

— Place ‘0’ is the only state reachable from place ‘i* with at least one token in sink place

[}

o .
— Absence of dead transitions, i.e. transitions that can never become enabled,
from the initial state ‘i’. Therefore, it should be possible to execute an arbitrary

transition by following the appropriate path through the net.

Aalst has proven that a WF-net PN = (P, T, F) is sound if and only if the model is
behaviourally live and bounded. Where: P is a set of places; T is a set of transition (P

N T =0Q); Fis aset of arcs (F S (P x T) U (T x P)).

Therefore in this work, Hierarchical Petri net Simulator (HiPS), a tool able to design
and analyse hierarchical and timed PN models, has been used for checking the
correctness of the PN automation procedure by statically verifying the PN developed
for the WF-net developed for the recycling IT asset process. This verification is
carried out by checking its structural and behavioural properties, using HiPS. This
open source tool has been selected because it provides a simple user-interface, an
interactive and user-friendly environment and a clear function of each icon including
those used both for PN model construction (places, transitions, arcs and token) and for
the analysis of the developed PN (structural and behavioural properties and

simulation).

101

The PN model for the recycling IT asset process, generated automatically in Chapter
4, has initially been transformed to a HiPS representation, as illustrated in Figure 5.3.
The places of this net are numbered in red, whereas the transitions are labelled in
green, as seen in Figure 5.3. Table 5.1 explains the abbreviations of places and
transitions included in the PN model illustrated in Figure 5.3. The structural and

behavioural properties of this WF-net are then verified.

Table 5.1 Abbreviations and Full Names of Places and Transitions incluced in the PN in Figure 5.3

Abbreviation | Full Name
pin place_in
ATp Asset_Track pass
Vip Visual_Inspection pass
VIf Visual_Inspection_fail
FTp Functional Test_pass
FTf Functional Test fail
DEp Data_Erasure_pass
DEf Data_Erasure_fail
Rp Repair_pass
Rf Repair_fail
CDp Cleaning De_Labelling_pass
Ssp Strip_Scrap_pass
pout place_out
D VI Decision_Visual Inspection
D_FT Decision_Functional_Test
D DE Decision_Data_Erasure
DR Decision_Repair
M Merge
1 A 2 B 3
1 . 5
‘ D
v
4
T 6
| Functional_Te >
v 7 12 G 14
g ¥
G, 12
ol
J H |Clesring.De.ts
¥
’ :
K_¥ 15
10 <

16
1 e

17 G I

Figure 5.3 Petri Net developed in HiPS for the Recycling IT Asset Process

The user visually verifies the structural properties of the WF-net, illustrated in

Figure 5.3, as follows:

102

1. The net has an initial source place, named ‘pirn’, and a final sink place, named
‘pout’.

3

2. Each transition has a unique name and all places are on a path from ‘pin’

(source) place to ‘pout’ (sink) place.

[3

3. The process execution initiates with the ‘pin’ (source) place, being marked
with at least one token and no other place are marked, whereas the process
terminates with the ‘pout’ (sink) place, being marked with at least one token,

while all the other places are empty.

Hence, regarding the structural properties of the WF-net developed for the recycling
IT asset process, the net is successfully verified since it has been demonstrated that it

satisfies all three of the criteria defined from Aalst (1998).

In addition to the aforementioned verification of the structural properties, the WF-net
developed for the recycling IT asset process is also checked for its structural
boundedness. Therefore, using the ‘Reachability/Coverability Analyze (Auto)’ HiPS
option, the WF-net is verified as structurally bounded, as seen on the left side in
Figure 5.4. This property is satisfied since for every initial marking, Mo, there exists a
finite number, n, such that all markings have at most this n number of tokens in all

places.

The behavioural properties of the WF-net created for the recycling IT asset process
are checked by the HiPS tool using the software options: 1) ‘Bounded’, which checks
if the PN is behaviourally bounded; and 2) ‘FC/AC Liveness/Safeness Checker’,
which checks if the PN is live, safe and marked. The behavioural properties of the

WF-net, illustrated in Figure 5.3, are verified as follows:

1. HiPS, as seen on the right side in Figure 5.4, which shows that the model is 1-
bounded, i.e. the number of tokens in each place does not exceed the one in
number for any marking reachable from the initial marking, Mo, check the
model’s boundedness property.

2. The model’s liveness and safeness properties are checked in HiPS, as seen in
Figure 5.5, which shows that the net satisfies both behavioural properties. The
WF-net in Figure 5.3 is live since it is possible to fire any transition by

progressing through some further firing sequence. Additionally, the PN is safe,

103

because all its places are 1-bounded, as shown on the right side of Figure 5.4.
Two additional characteristics are seen in Figure 5.5, the net is characterised as
a free-choice net because it keeps places that have more than one output
transition apart from transitions with more than one input place and it is a
marked graph since there exists at least one token. The final characteristic
identified is that since the liveness property is satisfied, the WF-net can also

guarantee deadlock-free operation.

Hence, regarding the behavioural properties of the WF-net developed for the
recycling IT asset process, the net is successfully verified since it has been
demonstrated to be behaviourally live and bounded, and hence sound, which

guarantees the net’s verification according to Aalst (1998).

Therefore, according to the analysis, conducted in HiPS, the correctness,
completeness and consistency of the WF-net constructed for the recycling IT asset
process and, by extension, of the automation PN procedure, have been proven, by

successfully verifying the structural and behavioural properties of the model.

il

55 Bounded - o

Depth 99 Start . .
@ Bl Acoet Track Visual_Inspect Marking of the net, once a token is placed
. b b . e in the 1 and 2°¢ places of the PN

5 50,0,0,0000000000 < | respectively.
i Reachability/Coverability Analyze (Auto)- ALDEBARAN graph format (01.0.0000000000000 0 .

placelD: (id0,id1 ,id2,id3 idd id1 0,id1 1,id1 2,id1 3,id1 4,id1 5,id20,id21,id22,id25,id26,id27)
oIy, %‘;::‘:‘ﬁmty . ‘ ,ce NAME: {pin AT pplace 1 MIf VIppiace_2 FTpFTF, place_4,RF,Rpplace 3,0ERDEFCORSSprout)

‘ Names of the PN places as appeared in HiPS. ‘

‘ IDs given to PN places from HiPS.

Figure 5.4 Structurally and Behaviourally Bounded Check in HiPS for the Recycling IT asset Process

&3 FC/AC Liveness/Safeness Checker _ o X

Log Result Resut Table Detected Siphons State Machines

lgnored Places./Transitions] FCIAC Check Only
id0fpin) id27(pout) id 1(ATp).id25(CDp)id26(S Sp).id 3(Vi).id 14(Rf) id21(DEp) id22(DE)id20fplace_3)id11(FTp)id5
(Asset_Track).id24(M) d23(Cleaning_De_Labeling).id28(Strip_Scrap),id 19(D_DE),id 18(Data_Erasure),

Marked Graph N -

This Net is Free-Choice Net (O FC Liveness Check

This net is Liveness Live because the transition of the net is enabled by at least @ FC Liveness & Safeness Check
This net is Safeness one reachable marking and each transition can fire once. o

‘ Safe because it is 1-bounded. |

Free-choicenet: the result of the choice between two transitions can never be influenced by the rest of the system. ‘

‘ There exists at least one token. |

Figure 5.5 Behavioural Liveness and Safeness Properties Check in HiPS for the Recycling IT asset Process

104

5.4 Petri Net Model Validation Methods

The objective of validation is twofold: (i) to check the system’s behaviour, using a
realistic representation of the actual system, which would be able to reproduce the
system’s behaviour and satisfy the analysis objectives; and (ii) to analyse the system’s
performance, detect the system’s limitations and draw conclusions that enable
decision-making and potentially system optimisation. In this section, an overview of
model validation methods is carried out. The following model validation methods can

be applied either individually or in combinations.

5.4.1 ExpertIntuition Validation Method

People, such as system designers or service engineers, who have a detailed knowledge
of the real system for which the PN is created, rather than knowledge of PN
modelling, apply this method (Al-Aomar et al., 2015). The expert intuition method
lacks formal methods for model validation (Robinson, 1997). Experts carefully check
the graphical representation and behaviour of the PN to extract system information,
ensuring that the PN model represents accurately the underlying real-world system.
The method is mainly applied to simple models since there is high risk of model
misinterpretation and it can also become time consuming when applied to complex

systems (Hillston, 2017).

5.4.2 Real System Measurements Validation Method

This method, applied in cases when the internal structure of the system including data
and behaviour of elements and paths is known, is used to ensure that the parts of the
computer model, which simulate the behaviour of conceptual models, correspond
accurately to the elements and logic of the underlying real-world system (Sargent,
1992). In this method, the conceptual model is the Petri Net model. Real system
measurements, also named white-box validation, can check a wide spectrum of model
aspects such as timings (activity or repair times), control logic or control of flows
(routing), distributions, etc. (Robinson, 1997). In this method, the PNs correctness can
be proved by conducting visual checks and inspections of the output results. For the
visual checks, the graphical representation of the PN model as well as its behaviour
can be traced and animated, playing the ‘token game’ in which the user can observe
the marking changes once transitions fire and corresponding tokens move through the

net. In addition, for the inspection of the output results, computer code, developed

105

following the paths of the PN model, can simulate the various scenarios of the model,
extracting output results for these paths. Therefore, these output values can be
compared to the corresponding values of the real system and the percentage error
between these values can be found. Although the real system measurements method is
the most reliable model validation approach since it checks the model correctness
using a high level of detail comparing it to real data, it is not always applicable, either
due to the lack of output data for the real system or due to high costs of measurements

(Hillston, 2017).

5.4.3 Theoretical Results/Analysis Method

Theoretical results/analysis or black box methods are mainly applied in cases when
the internal structure of the system is unknown. This method examines a more abstract
representation of the system reproducing the systems behaviour with a low level of
detail and via simulation analysis can check the correctness of model output results
compared either to historical/expected values of the system or to other models
(Robinson, 1997; Hillston, 2017). Comparing outputs from simulation models with
those historical/expected values from the real system, the consistency between the PN
model simulation and the theoretical (historical/expected) data is checked. The
confidence in the results can be improved once multiple model replications, i.e.
simulation runs, are executed (Robinson, 1994). Additionally, comparison of the real-
world system with other models can be carried out using mathematical models, such
as spreadsheet analysis and queuing networks, providing an approximation of output
results of the real system that can be compared with the results gained from the PN
model simulation. This method is fraught with considerable risk, since both the
mathematical models and PN model may be invalid, leading to inaccurate results

(Hillston, 2017).

5.5 Validation of Automated Petri Net Development

Following the review, conducted for the PN validation methods, the real system

measurements approach has been selected due to its ability to:

1. Check visually the system’s behaviour playing the token game.

106

2. Check the PN model’s quality by obtaining numerical results and comparing
these numerical results with those observed in the real world process
(numerical simulation).

3. Conduct system performance analysis to detect limitations or

incorrect/omitted logic existing in the model.

The last two points require the introduction of data to the timed and probabilistic
transitions included in the PN model, in order for numerical results to be obtained.

The data used is explained in detail in section 5.5.2.

The expert intuition and theoretical analysis validation methods have been considered
inappropriate for this study due to the absence of system design experts and due to the
possession of adequate data and information on the internal structure of the recycling

IT asset process, enabling a more thorough investigation.
5.5.1 Petri Net Model Simulation Algorithm

In this section, a summary of the algorithmic steps followed for the simulation of the
PN model generated for the recycling IT asset process, is described. The simulation

algorithmic steps are presented in Figure 5.6.

The inputs required for the PN model simulation are: (i) the mathematical
representation of the PN model obtained from the automated generation of PN model
in Chapter 4; and (i1) data for the timed and pass/fail probabilistic transitions including
in the PN. Thus, the algorithm developed in MATLAB, initially retrieves the
transpose of the incidence matrix and the initial marking developed for the recycling
IT asset process from the MySQL Workbench and secondly reads the timed and

probabilistic data stored in Excel.

For the visual check of the system behaviour, both the PN mathematical
representation and the pass/fail probabilistic data are required. The PN mathematical
representation is necessary to show the movement of tokens/devices in the net using
equation 2.2, which indicates the sequence of places and transitions, whereas the
pass/fail probabilistic data is required to show the probability of completing an
activity. An algorithm is developed which: (i) traces the movement of the token

through the net, applying the token game, and (ii) validates the PN behaviour with the

107

expected movement of the device through the process. The algorithm developed,

found in Appendix F, is discussed in detail in section 5.5.3.

Generate n random
~» numbers for the timed
transitions.

v
Create a connection Estimate the process times
befween MySQL for each timed transition
daabase and MATLAB (activity time and interval
ffr;lfﬁzgdﬂ;?’:ﬁ;ﬁ pass/ fail activity time)
and initial marking. following a uniform
1 distribution.
- . Import in MATAB timed
Visual Checking and probabilistic data stored
¢ in Excel, for all the
transitions presented in the Mobile device
Generate n random overall PN for the IT asset failed.
numbers for the process.
probabilistic transitions. v
i I ISIM=0 | - Y ~
(" Compare random | Numerical Simulation] fﬁiﬁ;ﬁi&;iﬁfﬁﬂﬁiﬁ 7
Ef;bfiﬁ srg:}:ﬂzzjﬁei Set simulation time, movement of tokensinto the netusing the g
following the PN pat-hs. ISIM=0 Petri I‘_\'.ct equation (2.2) and Lhc_ probabilistic E
\ Set total numbers for transitions. Find the average time of each g
simulations for path presentedin the IT asset process, the 2
— . ~ probabilistic transition activity needs more time to be completed, é’
U sei‘iquauonT k=1000 most visited activity in each path. path B
Mlzli_ M, + Athr Tn . and timed transitions which resulted most in faflure, nodes most z.
;'?m_er;r;: ﬂn’o?lgktlotsg =1000 _ mvolved with route to faflure, etc. J -
| net once tokens fire.)
| ISIM=ISIM+1 l
Check all possible L
transitions, exist Generate k random
in the net. numbers for the L/
probabilistic transitions.

Compare simulation
results with analytical
Numerical Simulation results, i.e. exact values
estimated from data, for
the IT process.
Find percentage error.

Figure 5.6 Flowchart for the Simulation Steps followed for the Recycling IT Asset Process

A second algorithm is developed to obtain numerical results in order to conduct: (i)
numerical simulation (compare the obtained results with values provided by
industry); and (ii) analysis of the system’s performance. For the simulation, the
timed transitions are divided into two categories, the activity and interval transitions,
for which data is provided by industry. The activity transitions correspond to the
actual time needed for an activity, such as Asset Track or Visual Inspection, to be
completed and the interval transitions correspond to delays between activities. For the
probabilistic transitions, random numbers are generated and compared with the given
pass/fail probabilities. If the random number is lower than or equal to the pass

probability of an activity then the device is assumed to pass, otherwise the device

108

fails. Activity and interval times, following a continuous uniform distribution, are then
estimated. The algorithm developed for the numerical simulation of the PN model is
found in Appendix F, part B. The PN model evaluation is completed by comparing
calculated results obtained using the input data, such as average time of each path,

with the corresponding simulation results.

Finally, for system’s performance analysis, the second algorithm has been used to
obtain more results regarding system’s performance, such as the average time each
path requires to be completed, the most common visited places in each path, as well as
the paths resulting in the most failures and the nodes most involved in the route to
failure. The additional part of the second algorithm developed for the performance
analysis of the PN model, is found in Appendix F, part C. The simulation results can
also enable the identification of possible limitations and the provision of

recommendations to improve system’s performance.

The application of the simulation algorithmic steps described in this section to the

recycling IT asset process is described in detail in sections 5.5.3 and 5.5.4.

5.5.2 Process Input Data

The data used for the simulation comes from 2113 mobile phones processed over 323
hours. The timed and probabilistic data is shown in Tables 5.2, 5.3 and 5.4. Table 5.2
shows the pass (second column) and fail (third column) probabilities for each PN
probabilistic transition included in the PN. The probabilistic transitions correspond to
the PN transitions labelled as ‘D _x’, such as ‘D VI’ (Decision_Visual Inspection),

‘D R’ (Decision_Repair), etc., as seen in Table 5.2.

Table 5.2 Probabilities for the PN developed for the Recycling IT Asset Process

Tables 5.3 and 5.4 show the timed data for activity and interval times respectively.

Table 5.3 presents the minimum and maximum times needed to complete each

activity.

Transition Name | Pass Probability | Fail Probability
D VI 0.688 0.312
D FT 0.733 0.267
D DE 0.88 0.12
D R 0.294 0.706

109

Table 5.3 Activity Times for the PN developed for the Recycling IT Asset Process PN

Transition Name .Act.ivity Time (sg conds)
min time | max time
Asset Track 107 148
Visual Inspection 5 10
Functional Test 60 180
Data_Erasure 30 40
Repair 240 900
Strip Scrap/Cleaning_De Labelling 30 60

Table 5.4 shows the minimum and maximum interval times required for a device to
move from one activity to another. The interval pass and fail times shown Table 5.4
are used according to pass and fail paths that a device can take following the

probabilistic transitions explained in Table 5.2.

Table 5.4 Interval Times for PN developed for the Recycling IT Asset Process

Interval Time (seconds)
Transition Name Pass Time Fail Time

min time | max time | min time | max time
Asset Track 30 120 0 0
Visual Inspection 300 1800 300 3600
Functional Test 1800 7200 7200 8640
Data Erasure 1800 10800 1800 10800
Repair 1800 28800 1800 28800

The data in these tables is explained with the help of an example for the Visual
Inspection activity. The part of the PN, which corresponds to this activity including
the ‘D VI’ (Decision Visual Inspection) and ‘Visual Inspection’ transitions, is
presented in Figure 5.7. According to Figure 5.7, the first transition of this net,
presented as ‘Visual Inspection’, is found in the second row of Table 5.3 and shows
the time needed for the Visual Inspection to be completed. The same transition is also
appeared in the second row of Table 5.4 showing the time required for a device to be
transferred to the next activity, once the Visual Inspection has been completed. The
‘pass’ and ‘fail’ terms found in this table correspond to the successful and
unsuccessful completion of the Visual Inspection respectively. Hence, the minimum
and maximum pass times (second and third columns of Table 5.4) are used if the
Visual Inspection is successfully completed, whereas once the Visual Inspection fails,

the minimum and maximum fail times (fourth and fifth columns) are considered.

110

[Visual_Inspection

|
Ve i z N)
[place_1

\, /'

T

m.{

// A
N Vip .!
___/

L]

o
[vIf Functional_Test

Figure 5.7 PN Model Extract from the Recycling IT Asset Process

Therefore, the ‘Visual Inspection’ transition contains two times, one for the activity
to be completed and one for the device to pass to the next activity. Finally, the
probabilistic transition of the PN in Figure 5.7, presented as ‘D_VI’ can be found in

the first row of Table 5.2 for the pass and fail probabilities respectively.

5.5.3 Petri Net Model Visual Check
The algorithm, developed for the PN visual check is based on equation 5.1:

M,=Mo+A". T; (5.1)
The algorithm uses the following matrices:

— Mo: the initial marking for the IT asset process, which is retrieved from the
MySQL database.

— AT the transpose of the incidence matrix for the IT asset process, which is also
retrieved from the MySQL database.

— T,: transition matrices are created in Excel for each transition included in the

net and then retrieved from the algorithm.
The algorithm, found in Appendix F, part A, applies the following steps:

1. Generate random numbers from zero to one.

2. Load into Matlab the Excel tables with the probabilistic data shown in Table
5.2.

3. Load into Matlab the initial marking (Mo) and the transpose of the incidence
matrix (AT) developed in the MySQL database.

4. Develop the necessary transition matrices (T: in equation 5.1) for each PN

transition.

111

5. Follow the PN paths and compare the random numbers, developed in step 1,
against the pass/fail probabilities given data in Table 5.2, using ‘if” conditions.

6. Apply equation 5.1 and examine the marking generated.

The methodology followed for visually checking the PN model developed for the
recycling IT asset process is explained for the first three transitions presented in
Figure 5.8, i.e. for the ‘Asset Track’, ‘Visual Inspection’ and ‘D VI’. The path used
for this example corresponds to the route where the device passes successfully the

visual inspection, functional test and data erasure activities.

pin

ATp

Visual_Inspection

Figure 5.8 PN Model Extract from the Recycling IT Asset Process

Therefore, the initial marking, M, in equation 5.2 represents the marking of the first
five places i.e. ‘pin’, ‘ATp’, ‘place 1°, ‘VIp’ and ‘VIf’, of the PN created for the
recycling IT asset process, as illustrated in Figure 5.8. This matrix shows that only the

‘pin’ place holds one token, whereas all the other places are empty.

Similarly, the transpose of the incidence matrix, AT, in equation 5.3 corresponds to the
underlying transitions and places (the places and transitions are presented on the left
and above the matrix, correspondingly), showing how a token moves from one place

to another, once a transition fires.

112

Asset_Track Visual_Inspection D_VI

pin -1 0 0
ATp [1 -1 0]
r _ place_1 | 0 1 -1 |
A Vip 0 0 1 | :3)
vif |0 0 0 J

Additionally, for each transition the matrices in equations 5.4, 5.5 and 5.6 are created.
For instance, Tp v in equation 5.6 is the transition matrix for transition ‘D VI’

(Decision Visual Inspection).

1 0 0

0 1 0
Tpsset_track = 0 (5.4) TVisual,Inspection= 0 (5.5) Tpy = 1 (5.6)

When it is applied in equation 5.1, the transition named ‘D VI’ fires and a token
should be moved from ‘place 1’ and added to place ‘VIp’ (Visual Inspection pass),

indicating that the device has passed the visual inspection.

Besides the initial marking, the transpose of the incidence matrix and the transition
matrices, the data in Table 5.2 for the probabilistic transitions, i.e. ‘D _VI’, ‘D _FT’,
‘D DE’, ‘D_R’, has been used as inputs for the execution of the algorithm. Hence, for
the probabilistic transitions, random probabilities uniformly distributed in the interval
(0, 1), are generated. In the next stage, the algorithm runs for the six paths identified
in the recycling IT asset process applying steps 5 and 6 in the algorithm. The marking
matrices, generated after the firing of transitions ‘Asset Track’, ‘Visual Inspection’

and ‘D_VUI’, are shown in equations 5.7, 5.8 and 5.9, respectively.

0 0 0

[1] [0] [0]

0 1 0
MAsset_Track = 0 (5.7) MVisual_Inspection = 0 (5-8) MD_VI = 1 (5.9

o

y ° °

Therefore, for instance, the ‘Visual Inspection’ marking, in equation 5.8, shows that a
token is held in ‘place 1°, shown in Figure 5.8, which agrees with the expected
matrix, since once ‘Visual Inspection’ fires, it moves one token from place ‘ATp’ to
‘place 1°. Subsequently, in the ‘D VI’ marking, in equation 5.9, the token is moved

to the ‘VIp’ place, since the device passes. The flow traced in the PN model also

113

agreed with the UML/SysML Activity Diagram for the IT asset process when the

device successfully completes the Asset Track activity.

Executing the algorithm, developed for the visual check of all the paths of the PN
model, and using the necessary matrices in conjunction with the probability paths, it
has been found that the net follows the expected behaviour, according to the flow of
the Activity Diagram for the recycling IT asset process. Hence, this method has
validated the algorithm developed for the PN model generation by visually checking
the graphical representation of PN model in Figure 5.8, referring to the Activity
Diagram from which the model has been developed. The correctness of the algorithm
through the token game, which enables the graphical visualisation of the behaviour of
the PN, has been proven since no errors such as unintended behaviour regarding the

flow of items/information in the system have been identified.

5.5.4 Petri Net Model Numerical Simulation and Performance
Analysis

In this section, the validation of the algorithm developed for the automated PN model
generation is carried out via simulation of the sub-PNs developed for the recycling IT
asset process, described in Chapter 4. For the model’s execution, timing and
probabilities have been introduced in the timed and probabilistic transitions of the
models respectively and the six paths, identified in the recycling IT asset process
using the transpose of the incidence matrix, obtained automatically, and the PN,
generated automatically, have been simulated in order to obtain numerical results.
These simulation results can be compared with the analytical results, obtained from
the given data. This comparison of the results can judge the quality of the PN model,
leading to a better understanding of the recycling IT asset process and additionally

providing deeper insights into the behaviour of the real system.

Therefore, as it can be seen from the flowchart in Figure 5.6, the algorithm for the
numerical simulation generates random probabilities, for the probabilistic transitions.
Similarly, random numbers for activity transitions, shown in Table 5.3, using equation
5.10 and for interval activity transitions, listed in Table 5.4, using equation 5.11, are
estimated. The times obtained from equations 5.10 and 5.11 are the times in the
current activity and interval activity respectively, whereas the time obtained from

equation 5.12 is the sum of activity (service) time and interval (waiting) time.

114

t_activity = min_time + (max _time — min _time).x (5.10)
t_interval_activity =

min_time + (max _time_pass/fail — min _time_pass/fail).x (5.11)

t_sojourn = t_activity + t_interval_activity (5.12)

Where: min_time and max_time are obtained from Table 5.3 for each activity,
min_time pass/fail and max_time pass/fail are obtained from Table 5.4 for each
interval time for pass and fail respectively; and x returns a uniformly distributed

random number in the interval (0, 1).

The PN model is transformed into a Stochastic PN (SPN) since time t obtained
applying equations 5.10 and 5.11 is a random variable. The sojourn time in the current
state, found by applying equation 5.12 can be computationally modelled using any
cumulated distribution function, such as exponential, related to the time of occurrence
of the corresponding event. This indicates that the developed model follows the SPN
concept where the delays are randomly chosen by sampling distributions associated
with transitions. Hence, the SPN that adds flexibility and a wider range of

applicability is considered.

The algorithm for the numerical simulation was run for random numbers of
simulations, between 0 and 2500, in order to find the optimum simulation number.
The results obtained for these simulations during the calculation of the average time
needed for path 1 (see Table 5.5) of the recycling IT asset process to be completed,
have been plotted in Figure 5.9.

Average Time of Path 1 (seconds)

11 1 1 1 L 1
0 500 1000 1500 2000 2500

Number of Simulations

Figure 5.9 Simulation Results for the 1% Path of the Recycling IT Asset Process for 2500 Simulations

115

According to this figure, very small variations were observed in the simulation results
after 1000 runs and hence, in order to save time, the number of simulations has been
defined at 1000. Additionally, the simulation results obtained during the calculation of
the completion times of the other five paths of the recycling IT asset process are in a
good agreement with the results obtained for the first path. Therefore, the algorithm

runs 1000 simulations for the six paths identified in the recycling IT asset process.

Following the paths of the PN model and using the pass/fail probabilities and the
random (activity and interval) times, the average time for each path has been
estimated and the simulation results are presented in Table 5.5. The analytical results
for the average time of each path, identified in the model, have also been manually
calculated, using the given timed data from Tables 5.3 and 5.4, and presented in Table

5.5.

Table 5.5 Average Completion Time for Each Path of the Recycling IT Asset Process

Analytical Simulation
Results Results
Path Average Path Average Path | %
ID Path Activity Time (secs) Time(secs) error
1 | A-B-C-D-E-F-G-H-I 12260 12239 | 0.17129
2 | A-B-C-D-E-F-G-L-I 12260 12234 | 0.21207
A-B-C-D-E-J-K-B-C-D-
3 | E-F-G-H-1 37167.5 36589 | 1.55647
A-B-C-D-E-J-K-B-C-D-
4 | E-F-G-L-1 37167.5 36590 | 1.55378
5 | A-B-C-D-E-J-K-L-I 25208.25 25447 | 0.94711
6 | A-B-C-L-I 2205 2239.1 | 1.54649

The letters in the path activity column are retrieved from Figure 5.3. Subsequently, the
simulation and analytical results are compared and the error is estimated, as shown in
Table 5.5 The error in all the paths is found to be low, i.e. less than 1.6%, confirming
that the simulation results agree with these obtained from the analytical results that
correspond to the real recycling IT asset process. According to the low error found,
the validity of the PN model as being a realistic graphical representation of the IT

asset process can be confirmed

116

5.5.5 Performance Analysis Results and Discussion
Some additional results in order to examine the IT process’s performance have been
obtained. The algorithm, found in Appendix F, part C, uses the data given for the

recycling IT asset process in section 5.5.2.

As well as the estimation of average time needed for each path to be executed, the
average activity and pass/fail interval times have been simulated and the results are
presented in Table 5.6 and 5.7 respectively. From the results in Tables 5.6 and 5.7, it
can be seen that, in general, the activity times are a lot less than the pass/fail interval
times between activities, and hence these times between activities cause long delays in
the recycling IT asset process. From these two tables, it is seen that the transitions
related to the Repair, i.e. ‘Repair’ in Table 5.6 and ‘Repair’ in Table 5.8, take the
longest time to be completed. The average interval time has been calculated to be 4
hours and 15 minutes (15310.043 seconds), as seen from Table 5.7. This happens
because the repair activity takes place in a different location from the rest of the

activities and extra time is required for the transportation of the devices.

Table 5.6 Average Time for each Activity Timed Transition of the Recycling IT Asset Process PN

Transition Name Activity Time (seconds)
Average Time

Asset Track 127.381
Visual Inspection 7.485

Functional Test 119.682
Data FErasure 35.037
Repair 568.589
Strip_Scrap 44.842
Cleaning_De Labelling 44.908

Table 5.7 Average Time for each the Interval Timed Transition of the Recycling IT Asset Process PN

Interval Time (seconds)
[ransition Name Averqge Pass Average Fail Time
Time

Asset Track 75.335 0

Visual Inspection 1050.836 1952.051
Functional Test 4504.242 7927.789
Data Erasure 6229.501 6229.501
Repair 15310.043 15310.043

117

The numbers of visits to the places of the PN for each path have been found and are
presented in Table 5.8. Numbers, retrieved from Figure 5.3, presents the places
involved in each path in the second column of Table 5.8 and in the third column each
number corresponds to the number of visits to the places as they were described in the
second column. It can be seen that some of the most common visited places apart
from the ‘pin’, ‘ATp’, ‘place 1’ and ‘pout’ which are always visited, are the ‘VIp’,
‘place 2’, ‘FTp’ and ‘FTf and ‘place 4’. The number of times each path is taken can
also be found in the fourth column of Table 5.8. Therefore, the most visited path is the
first, whereas the least visited path is the fourth that was visited only three times in a
1000 simulation. From the table it can be seen that the sixth path where the Visual
Inspection fails, results most often in failure, i.e. Strip and Scrap. The second path
fails because the Data Erasure activity fails, whereas the fifth path fails due to the
Repair activity failure. According to Table 5.5, it can be seen that the fifth path is less
efficient than the second, since it takes a lot longer to be completed. However,
according to Table 5.8, the fifth path has been taken 129 times during the simulation,

whereas the second path only 60.

Table 5.8 Number of Visits to Places of the Recycling IT asset Process PN

Path No. of path
ID Path Places Number of Visits to Path Places | executions
1-2-3-4-6-7-12-13-15- | 1000 - 1000 - 1000 - 688 - 688 - 504 -
11|17 504 - 443 - 443 — 443 443
1-2-3-4-6-7-12-14-16- | 1000 - 1000 - 1000 - 688 - 688 - 504 -
2117 504 - 60 - 60 — 60 60

1000 - 1000 - 1000 - 688 - 688 - 183 -
1-2-3-4-6-8-9-10-3-4- | 183-54-54-37-37-27-27-23 -

3| 6-7-12-13-15-17 23-23 23
1000 - 1000 - 1000 - 688 - 688 - 183 -
1-2-3-4-6-8-9-10-3-4- | 183-54-54-37-37-27-27-3-3

4| 6-7-12-14-16-17 -3 3
1-2-3-4-6-8-9-11-16- 1000 - 1000 - 1000 - 688 - 688 - 183 -

5117 183 -129-129-129 129

6 | 1-2-3-5-16-17 1000 - 1000 - 1000 - 312 - 312 - 312 312

To conclude the simulation findings, the results have shown that:

— The third and fourth paths are the longest due to the Repair stage, which is the
most time consuming stage in both paths. According to this finding, a limiting

factor of the process is the long time that the Repair action needs to be

118

completed due to the device transportation to a different location. The
recycling IT asset process performance could be improved if all the activities
are located at the same place in order to decrease: (i) the interval time between
the ‘Functional Test” and ‘Repair’ activities; and (ii) the manpower required.

— The pass/fail average interval times, shown in Table 5.7, last longer than the
average activity times illustrated in Table 5.6, causing long delays in the
process paths. The process performance could be improved by: (i) increasing
the ability of the activities to accept multiple devices simultaneously as the
Data Erasure does; and (ii) locating the activities at the same place.

— According to Table 5.8, the most commonly resulting action is the Strip and
Scrap, since the sum of the executed paths that result in Strip and Scrap, i.e.
paths with ID 2, 4, 5 and 6, is larger than the sum of the executed paths that
result in Cleaning and De Labelling, i.e. paths with ID 1 and 3. Hence, it is
most possible for a device to end up in the Strip and Scrap stage due to the
product’s parts failure, than to be refurbished in Cleaning and De Labelling

action.

5.6 Summary

The verification and validation of the PN automation procedure via evaluation of the
recycling IT asset process, reviewed in Chapter 4, has been discussed in this chapter.
The PN obtained by the procedure for the recycling IT asset process has been
successfully verified, by checking its structural and behavioural properties such as
boundedness, liveness. Additionally, once timing and probabilistic data was
introduced into the corresponding PN transitions, the automated PN generation
procedure was validated via the PN’s simulation. Initially, the simulation algorithm
visually checked the movement of tokens through the PN paths, validating that the
paths followed the same route as the paths existing in the UML/SysML Activity
Diagram provided for the recycling IT asset process. The algorithm has also been
validated by comparing data from the IT process, with simulation results, which were
estimated by following the various PN paths, proving that the PN is a realistic
representation of the recycling IT asset process. Finally, an algorithm executed to
investigate the process performance identified possible deficiencies that exist in the IT

process. Therefore, the algorithm used for the automated PN model generation is

119

correct, complete and develops PN models with accuracy satisfying its intended

purpose.

At present, the applicability to one process has been shown, however further generic
capability of the method is to be explored. The developed methodology cannot
provide valid matrices for any UML/SysML Activity Diagram, since only certain AD
attributes such as opaque action, decision, merge, initial, final activity, etc., have been
considered. Thus, in the next chapters, this algorithm is extended to a generic
methodology that provides transformation rules for mapping all the AD elements into

PNs, for any potential AD provided by industry.

120

CHAPTER 6

6 Advanced Generic Methodology for the
Automated Generation of a Petri Net Model

6.1 Introduction

In this chapter, the methodology steps undertaken for the automation of a PN model in
Chapter 3 are extended to cover the transformation of any possible AD element into
the corresponding PN structure. The non-reviewed AD elements in Chapter 2 are
initially introduced and then the methodology steps, i.e. input-system modelling and
algorithm-Java database programming, are investigated. During this investigation,
it was observed from the XMI files obtained from ADs containing the newly
introduced elements that some of these elements are presented as nested within other
elements. It was also observed that once XMI files with nested elements are loaded to
the MySQL database, they result in the creation of tables with inadequate data, which,
consequently, leads to the generation of inaccurate PNs. Therefore, to overcome this
shortcoming and enable the complete data retrieval, some straightforward
transformation of XMI files, using Extensible Stylesheet Language Transformation

(XSLT) documents, is considered.

Thus, the automated modelling is extended with the system modelling step taking as
input the outputs of the XMI model transformation and the algorithm-Java database
programming step is modified, providing transformations rules for any AD element.
Following this advanced generic methodology, the mathematical representation of a
PN model is automatically generated and demonstrated with the help of a simple

example. The layout of this chapter is illustrated in Figure 6.1.

121

[Chapter 6 Layout — Advanced Generic Methodology for the Automated Generation of a PN Model]

N
[Introduction of the UML/SysML AD Additional Elements Notation }
N
/ Advanced Generic Methodology Steps Review for the Petri Net Model x
;| Automation
< | »Input: System Modelling
= { UML/SysML AD:)i/MI Nested Elements J
<
ﬁ i The Need of XM Model Transformation using XSLT
2
o -
E | System Modelling step uses as input the outputs of XMI model transformation
5]
O | » Algorithm: Java Database Programming (SQL transformations for any AD
K element) /
a v
2 Mathematical Representation of Petri Net Model
8 » Automated Generation of the Transpose of the Incidence Matrix
» Automated Generation of the Initial Marking Matrix

Figure 6.1 Illustration of the Structure of Chapter 6

6.2 Introduction of UML/SysML AD Additional Elements

Notation

The purpose of this section is to present the UML/SysML AD elements that have not
been examined in Chapter 2 in order to ensure that the methodology developed here
works for all AD’s developed. The less commonly used AD elements are investigated,

explaining their notations with the help of tables, (Tables 6.1 — 6.5).

Table 6.1 includes the object nodes used in Activity Diagrams to describe the
information flowing between activities, i.e. object flows. An object node represents

something that stores one or more values that pass from one action to another.

An expansion region node represents a nested area that includes actions. This object
node has an input expansion node that holds the input values received from other
actions and an output expansion node that holds the output values, which an action
produces, shown in the second and third rows of Table 6.1 correspondingly. The
activity parameter node is used to accept input to/provide output from an activity
respectively. The central buffer node combines data received from various sources,
whereas the data store node is used to update existing data by permanently storing the
information tokens that enter this node. The last three object nodes in Table 6.1, input
pin, output pin and value pin, are used to define input and output parameters that are

introduced and produced to and from an activity.

122

Table 6.1 Notation and Description of Activity Diagram Object Nodes

Nodes
Notation .
- Description
Name Symbol
There are three modes, i.e. parallel (independent
Expansion Region | | <<parallel>> interactions), iterative (interactions occur in ordér of'the
elements) and stream (a stream of values flows into a
single execution) in which this node can be executed.
Input Expansion . .
P P 11 Represents a collection of input values.
Node
Output Expansion :
Nog)e P (111 Represents a collection of output values.
. Accepts inputs to an activity or provides outputs from an
Activity Parameter . 'p pu . .ty . P vipu
Node activity. This object node is displayed on the border of
an activity node.
Accepts tokens from upstream object nodes and passes
Central Buffer <<centralBuffer>> | |them along to downstream object nodes. This object
Node node is not connected directly to actions (pin nodes are
needed).
Represents a central buffer node that includes non-
<<datastore>> L
Data Store Node transient information. This node is notated as object node
using the keyword <<datastore>>.
. Receives values from other actions through object flo
Input Pin - |:| v ugh obj W
edges.
. Delivers values to other actions through object flows
Output Pin
|:| - edges.
) An input pin node that provides a value to the action to
Value Pin |:| S
which it is attached.

Table 6.2 lists the actions used in Activity Diagrams to describe a single step in an

activity.
Table 6.2 Notation and Description of Activity Diagram Actions (Nodes)
Nodes
Notation Description
Name Symbol
. Represents a behaviour directly, rather than an operation
Call Behaviour Pr . Y . P
. I+I that invokes the behaviour. This can avoid redundant
Action .. .
definitions of activities.
Send Signal Action D Represents that a signal is sent to a receiving activity.
Accept Event))
Action g Represents that an event is received and hence accepted.

123

The call behaviour action node helps to define behaviour from different ADs,
referencing (calling) an activity. Once a send signal action node is executed, a signal
is created and sent to the target node, whereas an accept event action node is executed

when a specified condition, defined by the user, is met and hence an event occurs.

Table 6.3 lists another type of AD elements, named structured activity node, used to
create logical groups of activity nodes and edges. These nodes and edges belong only
to the structured activity node, meaning they are not shared with other structured
activities. This node may contain a group of subordinate nodes, i.e. a set of nodes that
create an independent Activity Group. Four structured activity node types, including
simple, conditional, loop and sequence, have been identified in ADs. The description

of each of these four structured activity nodes is included in Table 6.3.

Table 6.3 Notation and Description of Activity Diagram Structured Activity Elements (Nodes)

Nodes
Notation .
Description
Name Symbol
o
Simple Structured <<structured>> =
1m.p' Represents an ordered arrangement of the activity nodes.
Activity Node
.
.. <<conditional>> Represents an arrangement of actions and activities
Conditional Node P . g. . s
where choice determines which activities are performed.
<<loop node>> Represents a repetitive sequence of actions and activities
Loop Node P P . p- q
that are included in the object.
| S —
Sequence Node <<sequence>> Represents a sequential arrangement of the activity
nodes.
| S —

Table 6.4 describes the nodes presented as notes in an AD.

Table 6.4 Notation and Description of Activity Diagram Notes (Nodes)

Nodes

Notation

Description
Name Symbol

Is a condition/restriction in natural language text/machine
readable language that declares some of the semantics ofa
node. Precondition constraints specify what must be fulfilled
Constraint ?;m“s“ai”t» when the behaviour is invoked. Postcondition constraints
specify what is fulfilled after the execution of the behaviour is
complete, once its precondition was fulfilled before its
invocation. Constraints are attached to action nodes.

Comment Enables the attachment of remarks to nodes.

124

These nodes, including constraints and comments, do not carry any semantic force,
i.e. do not contain information relevant to PN model transformation, but may contain
information that is useful to a modeller. More details about these nodes can be found

in the description column of Table 6.4.

Finally, Table 6.5 shows some of the AD edges, including exception handlers, object
flows and links. An exception handler edge is used to show the exception node, i.e.
the node in which the edge ends up, may occur during the execution of a process,
interrupting its normal execution. Another edge used in ADs is the object flow that
represents the flow of objects/data from one node to another. Finally, a /ink edge can
be used in ADs to make a comment. However, links do not carry any semantic force,

but may contain information useful to a modeller.

Table 6.5 Notation and Description of Activity Diagram Edges

Edges

Notation

Description
Name Symbol

Connects either two nodes or an Interruptible Activity Region
and an activity. Ifthe outgoing edge ofa node is an exception
. handler, then this node is executed only if the handler satisfies an
Exception Handl ’ . - L
xeeption Handiet %D uncaught exception. An Interruptible Activity Region is an
activity group of nodes in which once a token leaves this region,
all tokens and behaviours in this region are terminated.

Object Flow H Connects two elements, with object/data passing through it.

Lnkk | —e——— Connects action nodes with comment nodes/constraint nodes.

Therefore, the elements available to be used in an AD have been reviewed and their
XMI structure is examined in the following sections, in order to be appropriately

transformed into corresponding PN elements.

6.3 Input - System Modelling

6.3.1 Introduction
In this section, for the input-system modelling step, the format of XMI files obtained

from ADs that include the newly introduced additional AD elements reviewed in

125

section 6.2, as well as their behaviour once they are loaded to the MySQL database,
are extensively investigated. Thus, it is noticed that some of these AD additional
elements, once they are expressed in XMI format, are expressed as nested within other
elements and also when these XMI files are loaded to the MySQL database for further
data manipulation, they result in creating tables with missing data, inhibiting the
complete PN model generation. Therefore, in the following subsections, it is shown,
with the help of simple examples, that XMI files with nested elements cannot directly
be loaded to the database, as followed in the methodology in Chapter 3.

To overcome this limitation and generate complete PNs, the XMI model
transformation concept using XSLT documents is introduced in the following
sections. For this model transformation, two XSLT documents are developed and
applied to the XMI file (source), obtained from a given AD, transforming this file into
two target files, an XMI and an XML. These two target files are then ready to be
loaded to the MySQL database for further data manipulation. The target XMI file is
used to retrieve nested AD elements such as input/output value nodes, expansion
regions, exception handlers, etc. The root AD elements such as the opaque
action/decision/accept event action nodes and the control/object flow edges are
retrieved from the target XML file. The XMI model transformation, carried out using
XSLT documents, is computationally performed in Java and demonstrated with the

help of an example.

6.3.2 UML/SysML AD: Review of XMI Nested Elements

In this section, the AD elements identified presenting as nested within others in XMI
format are initially discussed and then the structures of these XMI nested elements are
investigated using simple examples. During the investigation of these nested
structures, the source XMI files are loaded to the MySQL database, checking if the
tables created contain all the necessary data from which the PN model is to be
generated. An element is called nested if another element exists within this element
and each element’s start tag (<) has a corresponding end tag (/>) before another

element’s start tag begins.
The AD elements found presented as nested in XMI format, are listed as follows:

— Nodes:

126

o Expansion region; input expansion; output expansion; and input/output
(value) pin, as shown in Table 6.1.
o Send signal action; and accept event action, as shown in Table 6.2.
— Edge:

o Exception handler, as shown in Table 6.5.
Three simple examples from previous work of ADs using nested elements, presented
in Figures 6.2, 6.4 and 6.6, are introduced in this section. Each example uses different
elements of the above list. Hence, in the first example the expansion region, input and
output expansion nodes and input and output pin nodes are investigated. In the second
example the behaviour of the send signal and accept event action nodes are studied,
whereas in the third example, the exception handler edge is considered. The names of
the AD symbols, used in these examples, are written in red. Additionally, the elements
of each example are numbered in black. The structure of each XMI document,
obtained from these examples, is initially examined and then loaded into the MySQL
database. The data stored in the MySQL database is reviewed and compared to that
should have been stored in the database according to the information included in the

initial XMI.

The first example of an AD considered, taken from Fowler, 2004, is illustrated in

Figure 6.2 and models the different stages taken for publishing a newsletter.

o5t 1st_sample

1

3

Expansion
Output Pin InputPin Region

Publish_Newslette

Figure 6.2 AD Example (Fowler, 2004)

Output Expansion Node
9

The diagram in Figure 6.2 consists of four opaque action nodes (‘Choose Topics’ (1),
‘Write Article’ (4), ‘Review_Article’ (7) and ‘Publish Newsletter’ (9)), an expansion
region (3) with an input expansion node (2) and an output expansion node (8), as well
as two pin nodes: an input (6) and an output (5). The expansion region (3) is used to

show that actions included in this area occur once for each item in a collection, i.e.

127

input expansion node (2). All the connectors used in this diagram are control flow

edges.

In this first example, a list of topics, presented by the input expansion node (2) in the
AD, is created by the ‘Choose Topics’ node. Each topic of this list corresponds to an
input token to the ‘Write Article’ node. Once each article is written and reviewed, it
is added to the output list, presented by the output expansion node (8) in the AD.
When the number of output tokens equals the number of input tokens, then the
expansion region creates a single token, which is sent to the ‘Publish Newsletter’
node (9). In this example, the articles are written and reviewed simultaneously, since

the keyword used in the expansion region is <<paralle|>>, as shown in Figure 6.2.

The XMI document corresponding to the diagram in Figure 6.2 is found in Appendix
G, part A. A part of this XMI file for the elements contained in the expansion region
(3) is shown in Figure 6.3. From this figure, it can be seen that the two opaque action
nodes (4 and 7) related to the expansion region structured node are presented as XMI
nested elements, shown by the <structuredNode.../> element, starting in line 1.
Additionally, the input pin node (6) which is attached to the ‘Review Article’ node
and the output pin node (5) attached to the ‘Write Article’ node are also shown as

XMI nested elements in their corresponding opaque action nodes.

<structuredNode xmi:type="uml. ExpansionRegion"

xmi:id="_jMOMsF2YEeeC05B8erQjow" name="ExpansionRegion2" mode="parallel"
outputElement="_gNgoQF 2YEeeC05B8erljow"
inputElement="_pH KoF2YEeeC05B8erljow">

<node xmi:type="uml:Opagued ction” xmi:id="_gbxocF2YEeeC05B8erljow"
name="Write_Article" incoming="__ VeMF 2gFeeC05B8erljow">

<outputValue xmi:type="uml:OutputPin" xmi:id="_HWo2YF2gEeeC05B8erQjow”
omgm(ug:”7;.111—:Sl.fZ'OE_l?eYCOi?S?r'Qj@ri’ 15C011!1L11'T'yp_el_:”jzl‘fl?” g i | output — “Write_Article’ (4)
upperBound xmi:type="umi:LiteralInteger” xmi:id="_HWpdcF 2gEeeC05B8er jow .
value="1"/> Pin (5)
</outputValue>

</node> =
13 <node xmi:type="uml:Opagqued ction” xmi:id="_oW66EF2YEeeC0O5BSerOjow”
14 name="Review Article" outgoing="_fU6K4OBZEeelaM4coD475g">
15 <inputValue xmi:type="uml: InputPin" xmi:id="_KB7XSF 2gEeeC05BS8erljow"
16 name=""incoming="_M]I-z8F 2gEeeC05B8erQjow" isControl Type="true"> Input —Review Atticle’ (7)
17 <upperBound xmi:type="wuml:LiteralInteger” xmi:id="_KB7 AF2gFeeC05BS8er(jow"~ Pin
18 value="1"/> (6)
19 </inputValue>
20 </node>
21 </structuredNode>

R=REFCREN e R I S

—
o - o

Figure 6.3 XMI Extract for the AD in Figure 6.2

The AD example in Figure 6.2, is loaded into the MySQL database and following step
1.a from the methodology, proposed in Chapter 3, section 3.4.3, the ‘node xmi’ table

is created retrieving values from the XMI file. The part of the ‘node xmi’ table

128

corresponding to the section of XMI file shown in Figure 6.3, is presented in Table
6.6. According to the data stored in Table 6.6, the “xmi:type” value shown as
"uml:Literallnteger” in the first row of the table is retrieved from the upperBound
element (line 9 in Figure 6.3) which is nested in the ‘Write Article’ node (4).
Similarly, the “xmi:id” value in the first row of Table 6.6 is retrieved, i.e.
xmi:id=" HWpdcF2gEeeC05B8er(Ojow", from the upperBound element. As is the
“outgoing” value, i.e. " M[-z8F2gEeeC05B8er(jow" in the first row of Table 6.6.

Table 6.6 MySQL ‘node_xmi’ Table for XMI in Figure 6.3

id wmi:type mizid name incoming outgoing
1 uml:Literallnteger _HWpdcF2gEeeC05B8erDjow Write_Article __ VeMF2gEeeCO5B8erljow _M1-z8F 2gEeeCO5B3erOjow
2 uml:Literallnteger ~ _KB7_AF2gEeeCO5BSerljow Review_Artide _M1-z8F 2gEeeCO5ESerOjow _fUBK40BEZEeelaM4coD475g

Hence, the values of the “xmi:type” and “xmi:id” attributes of the ‘Write Article’ (4)
node, i.e. xmi:type="uml:OpaqueAction" and xmi:id="_gbxocF2YEeeC05B8erQjow",
given in line 5 in Figure 6.3 are missing. These two values should be in line 2 in Table
6.6. This is also true for the values of the “xmi:type” and “xmi:id” attributes of the
outputValue (5) nested element, ie. xmiitype="uml:OutputPin" and
xmi:id=" HWo2YF2gEeeC05B8erOjow", given in line 7 in Figure 6.3. This missing
data results in the algorithm not identifying the sequence of nodes and edges that exist

in the AD, leading to the generation of inaccurate PN models.

The second example of an AD, taken from the literature (MSDN Microsoft, 2017)
and presented in Figure 6.4, describes the steps required to complete an order. This
diagram consists of two opaque action nodes (‘Create Order’ (1) and ‘Close Order’
(11)) and one send signal action (‘Send Invoice’ (5)) followed by an accept event
signal (‘Receive_Payment’ (7)). Additionally, two input pin nodes (4 and 10) and two
output pin nodes (2 and 8) are used in this AD, as shown in Figure 6.4. One control
flow edge, numbered by 6, connects the send and event signal action nodes, whereas
the other two connectors, i.e. (3) and (9), used in the diagram are object flow edges.
Guard and weight conditions have been defined for the object flow edges (3 and 9) as
illustrated in Figure 6.4. A guard condition, shown in square brackets, evaluates to
true for every token that is offered to pass along the edge. A weight condition, shown
in curly brackets, defines the number of tokens that can flow along that connector. In
this example, the number of tokens has been defined to be one. In the AD in Figure

6.4, once the order is ready a signal/message is sent to the send signal action node and

129

then the invoice for the order is sent to the accept event action that waits for the
signal/message in order to receive the payment. Once the process of the payment is

complete, the order closes.

f &5! 2nd_example . _
Object Flow edge Send Signal Action Accept Event Action
5 / 7 \
1 2 4
3 . Receive_Payment
Create_Order | |] Send_Invoice
[true;
{weight=1} OutputPin —[| 8
[true] 0
{weight=1}
[»[]10

11

Output Pin Ovague
Input Pin Ap ' —_— Close_Order
ction

Figure 6.4 AD Example (MSDN Microsoft, 2017)

The XMI document corresponds to the diagram in Figure 6.4 is found in Appendix G,
part A. A part of this XMI document for the ‘Create_Order’ (1) opaque action node
and the ‘Send Invoice’ (5) send signal action node and their nested elements is shown
in Figure 6.5. From the XMI in Figure 6.5, it is seen that the element created for the
‘Create_Order’ (1) node, given in the first line in Figure 6.5, has a nested output value

element for the ‘OutputPin’ (2) node, presented in the third line in Figure 6.5.

1 <node xmi:type="uml:OpaqueAction” xmi:id=" NBPVOF2tEeeC05B8erQjow"”

2 name="Create Order"> . i

3 <outputValue xmi:type="uml: QueputPin" xmi:id="_r6HugF 2tEeeC05BSerQjow" Output —*Create_Order’ (1)
4 name="" outgoing="_4BTiwF 2tEeeC05B8erQjow"/> Pin (2)
5 </node> =

<node xmi:type="uml:SendSignalAction” xmi:id=" _XXc7sF 2tEeeC05B8erJjow"
name="Send hwoice" outgoing="_mSSjUF2tEeeC05B8erljow"
signal="_auo38F2tEeeCO5BSerQjow">

<target xmi:type="uml: InpurPin" xmi:id="_c2xrIF 2tEeeC05B 8erljow"

10 ncoming="_4BTiwF 2tEeeC05BSerQjow" type="_auo58F 2tEeeCO5SB8erQjow">
1 <lowerValue xmi:type="uml:Literal Integer" xmi:id="_c2xrIV2tFEeeCO5BSerQjow"
12 value="1"/>
13 <upper Value xmi:type="uml:Literal UnlimitedNatural”
14 Xmiid="_c2xrli2tEeeC05BSer(jow" value="1"/>
15 </target>
16 </mode>

— Send Invoice’ (5)

Input
Pin (4)

Figure 6.5 XMI Extract for the AD in Figure 6.4

Additionally, the XMI element created for the ‘Send Invoice’ (5) node, given in line 6
in Figure 6.5, has a nested target element, in line 9, which corresponds to the input pin
node, numbered by 4, in the AD. This input pin node appears as being attached to the
‘Send Invoice’ (5) node in Figure 6.4. It is also seen that the input pin node (4) has

two nested lower and upper value XMI elements in lines 11 and 13 respectively.

130

Using the methodology developed in Chapter 3, the XMI file for the second AD
example in Figure 6.4 is loaded into the MySQL database. For the part of the XMI file
presented in Figure 6.5, the ‘node_xmi’ table is created and shown in Table 6.7. From
this table, it is seen that in the case of nested XMI elements in the example
considered, the SQL code retrieves and stores in the ‘node xmi’ table the values of
the attributes that belong to the nested XMI elements, instead of retrieving the values

of the attributes belonging to the node XMI elements.

Table 6.7 MySQL ‘node_xmi’ Table for the XMI in Figure 6.4

id wmistype xmizid name iNComing outgoing
1 uml:OutputPin _F6HUQF2tFeeCO5ERerDjow Create_Order ML _4BTimF 2tEeeC05Baer Ojow
4 uml:LiteralUnlimitedNatural _c2rll2tEeeC05B8er0jow Send_Invoice _4BTiwF 2tEeeC05BBerljow _mSSjUF 2tEeeC0568erjow

This is the same as was seen in the first example presented in this section. For
example, in the first row of Table 6.7, it is seen the value stored in the “xmi:id”
column, i.e. r6HugF2tEeeC05BS8er(jow, corresponds to the “xmi:id value of the
nested outputValue element (2), found in line 3 in Figure 6.5, instead of the “xmi:id”
value of the node element (1), i.e. NBPVOF2tEeeC05B8erOjow, found in line 1 in
Figure 6.5. Therefore, the “xmi:id” value of the node element is missing and the
identification of the sequence of nodes and edges for an accurate PN model to be

generated is not possible.

The third example of an AD (Sparx Systems, 2018) in Figure 6.6 models the
procedure once a user cancels their account. This diagram consists of two opaque
action nodes (‘User Cancels’ (1) and ‘Account Cancelled’ (4)) and one input (value)
pin node (‘InputPinl’ node (3)). An exception handler edge (2) is used to connect the
‘User_Cancels’ node (1) with the ‘InputPinl’ node (3) which is attached to the
‘Account_Cancelled’ node (4), as shown in Figure 6.6. In Figure 6.6, a part of a
process is presented, showing that if the user cancels the process the account will be

cancelled and potentially the process could terminate.

&5 3rd_example
Opaque Action
1 ¢ InputPini
y=> 3 4
= Account_Cancelled
TSrd_example T
Exception Input Pin
Handler

Figure 6.6 AD Example (Sparx Systems, 2018)

131

The XMI file corresponds to the diagram presented in Figure 6.6 is found in Appendix
G, part A. A part of this XMI file for the two opaque action nodes (1 and 4) is shown
in Figure 6.7. From the XMI document in Figure 6.7, it can be seen that the XMI
element created for the ‘User Cancels’ (1) node illustrated in line 1, has a nested
handler element, shown in line 3 that corresponds to the exception handler edge (2) in
Figure 6.6. Although the exception handler symbol belongs to the edges of ADs, it is
shown as a nested element to the node from which it starts, i.e. ‘User Cancels’ (1)

node in Figure 6.6.

1 <node xmi:type="uml:OpaqueAction” xmi:id="_p4tRYF 2iFeeC05B8erQjow"

2 name="User Cancels"> .

3 <handler xmi:type="uml: ExceptionHandler" xmi:id="_weswkF 2nEeeC05BSerOjow "

4 exceptionlnput="_uQxEgF 2nEeeC05B8erQjow" | Exception (— ‘Users_Cancels’ (1)
5 exceptionType="_MWBPKF 2iEeeC05BSerQjow” Handler

6 handlerBody="_sw3xUF2iEeeC05B8erQjow"/> 2

7 </node> B _

8 <node xmi:type="uml:Opaquedction” xmi:id="_sw3xUF 2iEeeC05BSerQjow” N

9 name="Account Cancelled"> -

10 <inputValue xmi:type="uml: InputPin" xmi:id="_uQOxEgF 2nEeeC05B8erGjow”

11 name="InpurPinl"> Input L_‘Account_Cancelled
12 <upperBound xmi:type="uml:Literallnteger" xmi:id="_uQxrkF 2nEeeC05BSerQjow"[" pin] 3) @

13 value="1"/>

14 </inputValue> |

15 </node> -

Figure 6.7 XMI Extract for the AD in Figure 6.6

Besides the “xmi:type” and “xmi:id”, the exception handler edge introduces the

following attributes:

“exceptionInput” The value of this attribute is the “xmi:id” value of the node
in which the exception handler edge ends up. For the example in Figure 6.6,
the “exceptionlnput” value is taken from the “xmi:id” attribute of the
‘InputPinl’ (3) element.

— “exceptionType” The value of this attribute is a unique value given from the
software package.

— “handlerBody” The value of this attribute is the “xmi:id” value of the node in
which the inputValue element, mentioned in the “exceptionlnput” attribute is
nested to. For the example in Figure 6.6, the “handlerBody” value is taken

from the “xmi:id” attribute of the ‘Account Cancelled’ (4) node.

Additionally, according to Figure 6.7, the second XMI node in line 8 created for the
‘Account_Cancelled’ (8) node, as shown in Figure 6.6, has a nested inputValue
element given in line 10 in Figure 6.7. This element corresponds to the ‘InputPinl’ (3)

node, shown attached to the ‘Account Cancelled’ (4) node in Figure 6.6.

132

The XMI file, obtained for the AD in Figure 6.6, is loaded into the MySQL database
and for the part of the XMI file presented in Figure 6.7 the ‘node xmi’ table is created

as shown in Table 6.8.

Table 6.8 MySQL ‘node _xmi’ Table for XMI in Figure 6.7

id xmi:type smizid name incoming outgoing
1 uml:ExceptionHandler _weswkF2nEeeC05B8erljow User_Cancels
2 uml:Literallnteger _uQxrkF2nEeeC05B8ertjow InputRinl

From this table, it is seen that, as for the previous two examples, in case of nested
XMI elements the SQL code retrieves and stores in the ‘node xmi’ table the values of
the attributes that belong to the nested elements, instead of retrieving the values of the
attributes belong to the node elements. Hence, the “xmi:id” values of the nodes are not

retrieved, preventing the accurate PN model generation.

According to the XMI documents review, it can be concluded that the XMI root and
nested elements include necessary information for the sequence of elements included
in ADs and, by extension, for the generation of PN models. From the examples
reviewed, it is also concluded that XMI node elements cannot be properly loaded into
MySQL once nested elements also exist in the XMI documents. Consequently, the
algorithm developed earlier creates tables with missing information and generates
incomplete models since vital information for the sequence of elements is missing.
Therefore, the manipulation of the structure of XMI documents is necessary in order
to allow the retrieval of the XMI attributes values for each AD element. This
manipulation is performed by transforming the XMI document obtained from an AD
into two documents, an XMI with different structure from the initial and an XML.
These two files enable the complete retrieval of all the values of the AD elements,

once loaded into the MySQL database

In the following two sections, the XMI model transformation using XSLT documents

is explained in detail using examples to illustrate the concept.

6.3.3 The Need of XMI Model Transformation using XSLT

The XMI model transformation that follows specific rules defined in XSLT files is
necessary for the complete retrieval of data included in ADs (input-system modelling
step). For the proposed methodology, the XMI model transformation concept, carried
out in Java, refers to the process where an XMI file (source model), obtained from the

Activity Diagram, is transformed into two XMI/XML files (target models). Two

133

XSLT files have been developed in order to obtain one XMI with the elements that are
nested to the nodes of the initial XMI file and one XML with the nodes and edges
included in the initial XMI file. The two XSLT documents provide the rules so that all
the necessary information that exists in the initial XMI file is properly structured into
two output files (XMI and XML). The structure of these two output files is formed so
that all the necessary information for the sequence of AD elements is properly loaded
into the MySQL database enabling the automated generation of PN models, without

missing any data.

It is noted that XMI is a specific application of XML, meaning that XMI documents
can only be used for XMI purposes, whereas XML documents can be used for all
XML applications, including XMI. In other words, all XMI files are XML, but not all
XML files are XMI. Additionally, the XSLT that belongs to the XML family is used
to perform XML transformations allowing the user to specify the desired structure and
content of the output file. XSLT documents can reorder XML elements, add new
elements and decide which elements should be displayed or omitted. The XSL

transformation process is based on specific template rules defined by the user.

In the two following subsections, the model transformation of the XMI file obtained
form an AD to two models, in XMI and XML format respectively, using XSLT files,

1s described.

6.3.3.1 First XMI Model Transformation using XSLT

For the first XMI model transformation, the rules of the developed XSLT file are
applied to the XMI root nodes and edges and the elements presented as nested within
the XMI nodes (XMI file obtained from the input AD). The structure of the XSLT
document used for the first XMI model transformation starts with a template that
contains processing instructions and commands for the XMI nodes and edges that
match the specified XPath, a query language for selecting nodes from an XMI/XML
document, expression. In this model transformation, the template defined in the XSLT
file matches any child element of the XMI root packaged Element and then selects all
the attributes of these elements as well as any existing immediate children of these
elements. The packaged Element is used in XMI to group all the elements included in

the AD, providing a hierarchical organisation of elements such as nodes, edges, etc.

134

The first XSLT document including explanatory comment is found in Appendix G,

part B.

The XSLT, discussed in this section, generates an XMI file (with different structure
from the initial XMI file) from which the elements found as nested within XMI nodes
can be properly loaded to the MySQL database. This new developed XMI file consists
of the root edges (<edge.../>) and nodes (<node.../>) from the initial XMI file, as
well as the elements appeared as nested within XMI nodes (in the initial XMI file)
such as <inputValue.../>, omitting any further nested elements, such as
<upperBound.../>. Although the developed XMI file contains the data for edges and
nodes, these elements cannot always ensure their proper loading to the MySQL
database since in the case of a node holds a nested element, only the values of the
nested element are loaded to database tables, omitting the values of the root element

(node).

2 13

The attributes of the XMI elements, such as “xmi:type”, “xmi:id”, etc., and their
corresponding values which are required to be retrieved, during the first XMI model
transformation, to enable the automated PN model generation, are identified. For each
element presented as nested within an XMI node, the attributes that need to be loaded

to the MySQL database from the developed XMI file, are:

— For the inputValue nested elements in the XMI file created from an input pin
node in an AD and for the target nested elements, attached to accept event
action nodes, the retrieved attributes required are: “xmi:type”; “xmi:id”;
“name” (if available); and “incoming”.

— For the outputValue nested elements created from an output pin node in an AD
and for the result nested elements, attached to send signal action nodes, the
retrieved attributes required are as above including the “outgoing”.

— For the handler nested elements, created from the handler exception edges in
an AD, the retrieved attributes required are: “xmi:type”; “xmi:id”;
“exceptionlnput”; and “handlerBody”.

The first XMI transformation was carried out in Java using the javax.xml.transform
package. This package defines the generic APIs for processing transformation
instructions and performs a transformation from source to result. For this first XMI

model transformation, the target XML file (new_xmi_file.xml) is generated by taking

135

as source file the XMI file (Activity Diagram.uml), obtained from AD, and applying
the first XSLT file (xmi2xmi.xsl), presented in this section. The Java code, used for
this transformation, including explanatory comments is presented in Appendix G, part

C.

The developed XMI document, generated from the application of the XSLT discussed
in this section, includes all the XMI nodes and edges, except for the upperBound
elements as well as the “name” values from the inputValue and outputValue elements,
as they are presented in an AD. None of the attributes of upperBound element is
necessary for the generation of the mathematical representation of PN and hence, they
are not retrieved to the XMI file generated from the model transformation. Similarly,
the text values of the “name” attributes from the XMI inputValue and outputValue
elements are also omitted to be retrieved into the developed XMI file. This is done so
that later SQL code to be able to load to the MySQL database the “name” values from
the root nodes (rather than the “name” values of the inputValue and outputValue
elements) that are necessary to achieve the sequence of nodes and edges. Therefore,
this transformation generates an XMI file from which the elements presented as
nested within the XMI nodes such as inputValue, outputValue, handler, etc. will be

retrieved in the MySQL database for the automated generation of PN.

6.3.3.2 Second XMI Model Transformation using XSLT

For the second XMI model transformation, the rules of the second XSLT file are only
applied to the XMI root nodes and edges (XMI file obtained from the input AD).
Applying this second XSLT, an XML file is generated that contains the attribute
values of all the XMI root nodes and edges. These attribute values can then be

properly loaded into the MySQL database.

The structure of this second XSLT file starts with a template that matches any child
element of the XMI root element such as packagedElement, nodes, edges, etc. and
then selects all the attributes and the corresponding values of these child elements.
Then two templates are introduced for the edges and nodes respectively. Each
template selects the attributes and the corresponding values of the edge/node element
and transforms the attributes to elements. The attributes for each root element that

need to be loaded to the MySQL database from this developed XML file, are:

136

— For the nodes that exist in an AD, the retrieved attributes required are:
“xmi:type”; “xmi:id”; “name” (if available); “incoming” (if available); and
“outgoing” (if available).

— For the edges that exist in an AD, the retrieved attributes required are:
“xmi:type”; “xmi:id”; “name” (if available); “target” (if available); and
“source” (if available).

The node/edge attributes in the XML file are followed by the corresponding values

according to the initial XMI document. The second XSLT document including

explanatory comment is found in Appendix G, part B

As the first XMI model transformation, the second transformation, discussed in this
section, is performed in Java using again the javax.xml.transform package, takes as
input the XMI file of the AD (Activity Diagram.uml) and applying the XSLT file
discussed in this section (xmi2xml.xsl), it develops the target XML document
(new_xml file.xml). The Java code, used for this transformation found in Appendix
G, part C, applies the same steps as followed by the Java code described in section

6.3.3.1 for the first XML transformation.

The XML file developed from the second XMI model transformation includes all the
data for the nodes and edges as presented in an AD that would be used in the next step

of the methodology for the automated generation of PN.

6.3.4 Application of the XMI Model Transformations to a Simple AD
Example

In this section, the XMI model transformation concept, reviewed in section 6.3.3, is
explained explicitly with the help of the AD presented in Figure 6.4 for a simple
process. In the first XMI model transformation, the first XSLT document discussed in
section 6.3.3.1 is applied to the initial XMI file obtained from the AD in Figure 6.4
and the XMI file found in Appendix G, part D is generated. This new XMI file
includes the root XMI nodes and edges, as well as the elements appeared as nested
within nodes in the initial XMI file. Part of the XMI file, developed for the AD in
Figure 6.4, for the input pin (10) node that is nested to the ‘Close Order’ node is
illustrated in Figure 6.8. The text next to Figure 6.8 shows how the text values of the

attributes of the inputValue node are related to the AD (Figure 6.4). The first XMI file

137

developed in this section for the AD shown in Figure 6.4 consists of four elements
(including outputValue, inputValue, result and target) presented as nested within other

nodes in the initial XMI file.

j—

<inputValue xmitype="uml:InputPin" —> Xmitype” of InputValue symbol (attached
to the ‘Close Order’ node)

xmiid="_xJt_4F2tEeeCO5BSerjow” ———> *“xmiid” of inputValue — Input Value
incoming="_5CXXIF2tEeeCO5BSerQjow™> — “xmiid” of the edge that ends

</inputValue> up to the inputValue node

Figure 6.8 Part of the XMI File developed form the 15 XMI Model Transformation

The number of nested elements of this XMI file is the same with those found in the

XMI document obtained from the AD example in Figure 6.4.

Additionally, in the second XMI model transformation, the second XSLT document
discussed in section 6.3.3.2 is applied to the initial XMI file obtained from the AD in
Figure 6.4 and the XML file found in Appendix G, part D is generated. Applying the
second XSLT document, each child node/edge element from the source XMI file is
transformed into a root node/edge element. The attributes of a node/edge child
element (“incoming”, “name”, etc.) are then transformed into sub-elements (incoming,
name, etc.) of the root node/edge element. Then, the two templates explained in
section 6.3.3.2 are applied to the XMI nodes and edges. The first template is applied
to the XMI nodes asking for the “xmi:type”, “xmi:id”, “incoming”, “name” and
“outgoing” attributes and their corresponding values, whereas the second template is
applied to the XMI edges asking for the “xmi:type”, “xmi:id”, “id”, “name”, “target”
and “source” attributes and their corresponding values. The developed XML file
contains the values of the edges and nodes attributes as presented in the initial XMI
file. These XML values will later be loaded to the MySQL database for the

mathematical PN generation.

Part of the XML file, developed for the AD in Figure 6.4, for the ‘Receive Payment’
node and the first edge, labelled by 3 in the AD, included in the XML file, is
presented Figure 6.9. The text next to Figure 6.9 shows how the XML elements are
related to the AD (Figure 6.4). The XML file developed in this section for the AD in

Figure 6.4 consists of seven elements from which three are edges and four are nodes.

138

The size of this XML file is the same as the initial XMI file obtained from the AD in
Figure 6.4.

<node>
<xmi:type>uml:AcceptEventA ction</xmi:type>
<xmiid>_Si61sF2tEeeC05B8er0jow</xmi:id> —> “xmi:id” of ‘Receive Payment’ node L Receive_Payment’
<name>Receive_Payment</name> —> “name” of ‘Receive_Payment’ node
<incoming>_mSSjUF2tEeeC05B8er0jow</incoming>——>“xmi:id” of the incoming edge

</node>

<edge>
<xmi:type>uml:ControlFlow</xmi:type>
<xmi:id>_mSSjUF2tEeeCO5B8er0jow</xmi:id>——> “xmi:id” of the control flow edge L_ Control Flow
“target> Si61SF2EeeCOSBerljows/tarzet> —> “xmiid” of ‘Receive Payment'node | 8¢

<source>_XXc7sF2tEeeC05B8er0jow</source> —> “xmi:id” of ‘Send_Invoice’ node

</edge> —

Figure 6.9 Part of the XML File developed form the 2 XMI Model Transformation

Having completed the two XMI model transformations, the two output files, in XMI
and XML formats respectively, used as inputs in the system modelling step, are then
ready to be loaded to the MySQL database to be further manipulated and organised in
such a way that the mathematical form of PN models can be generated (algorithm-

Java database programming step).

6.4 Generic Algorithm - Java Database Programming

6.4.1 Transformation Rules

In this section, the transformation rules for the AD additional elements introduced in
section 6.2 are identified. In order to help with the identification of these
transformation rules, the PNs, for the ADs shown in Figures 6.2, 6.4 and 6.6, have
been manually developed and presented in Figures 6.10, 6.11 and 6.12
correspondingly. The PNs in Figures 6.10 and 6.11 consist of four transitions and
three places, whereas the model shown in Figure 6.12 contains two transitions and one

place.

:sD1:1|:|1$||:|¢: D1:

PN Choose Topics place_1 Write_Article Place_2 Review_Article place_3 Publish_Newsletter pout

Figure 6.10 PN Model developed for the AD in Figure 6.2

Pin Create_Order place_1 Send_lnvoice place_2 Receive_Payment place_3 Close_Order pout

Figure 6.11 PN Model developed for the AD in Figure 6.4

139

: 1 D 1 }O 1 }-I:I 1 :

pin User_Cancels exception_handler_place Account Cancelled pout

Figure 6.12 PN Model developed for the AD in Figure 6.6

Five additional AD examples and their corresponding manually developed PNs have
also been studied in this section, as seen in Figures 6.13 — 6.17. The ADs illustrated in
these figures contain elements that have been introduced in section 6.2, but have not
been considered in the three AD examples reviewed in Figures 6.2, 6.4 and 6.6.
Hence, in order to define a complete set of relationships between the AD and PN

elements, the following examples are investigated.

The AD in Figure 6.13 consists of three opaque action nodes, presented as
‘Assemble Car’, ‘Sell Cars’ and ‘Refresh Company Cars’ respectively, and a
central buffer node, shown as ‘Car’ in the diagram. The AD also contains three pin
nodes (two inputs and one output) attached to the opaque action nodes, indicated as
‘Car’. In this AD the central buffer node, ‘Car’, has been placed between the
manufacturing plants (‘Assemble Cars’) and the dealers (‘Sell Cars’ and
‘Refresh Company Cars’) in order to arrange deliveries, or sorting of the
manufactured cars. The new elements in this example are the central buffer node and
the pin nodes. The corresponding PN model developed for this AD, illustrated on the

right side of Figure 6.13, consists of three transitions and a place.

Car

[sen_cars
Car «centralBuffers
Assemble_Caf_| "'"C""'e” Car -
< pin Assemble_Car
[|Refresh_Company._Carg

Refresh_Company_Cars

Figure 6.13 AD (Central Buffer Node) and Corresponding PN Model (Pilone & Pitman, 2005)

The AD in Figure 6.14 contains two opaque action nodes, presented as ‘Make Sale’
and ‘Ship Item’, and a data store node, shown as ‘Customer Database’. In this AD,
once a sale is made, information regarding this sale is stored in the customer database,
before the sold item is shipped. The corresponding PN model developed for this AD,

shown on the right side of Figure 6.14, consists of two transitions and a place.

1 1 1 1
(O > >[F—()
«datastores .

Make_Sall Customer_Database] Ship_te pin Make_Sale Customer_Database Ship_ltem pout

Figure 6.14 AD (Data Store Node) and Corresponding PN Model (Pilone & Pitman, 2005)

140

The AD in Figure 6.15 consists of an initial node, two opaque action nodes
(‘Visit_Page’ and ‘Login’), a decision node (‘Decision’) and a call behaviour action
node (‘Register’). This AD shows that once a customer visits the page, they can login
if they have an account (registered), or they can be registered creating a new account.
The call behaviour action node, which belongs to the additional AD elements, shows
that an external activity that includes a sequence of actions is called. Thus, the
‘Register’ call behaviour action node shown in the AD in Figure 6.15 is externalising
into another AD. The PN model developed for this AD, viewed on the right side of

Figure 6.15, consists of four transitions and four places.

pin

Visit_Page

place_1

not_registered

Decision

not_registered Login . 1 Register

Registe
h ponst

Figure 6.15 AD (Call Behaviour Action) and Corresponding PN Model (S6ding, 2009)

registered ’

The AD example in Figure 6.16 has been considered to show the use of incoming
(‘Wood’) and outgoing (‘Ream’) activity parameter nodes, which belong to the
additional AD elements. Besides the parameter nodes, three opaque action nodes
(‘Create_Pulp’, ‘Press Paper’ and ‘Package Reams’) are contained in this diagram.
The incoming parameter node (‘Wood’) shows that wood is fed into a paper
production procedure, whereas the outgoing parameter (‘Ream’) shows that paper is
finally produced. The corresponding PN model, manually developed for this AD as

shown on the right side of Figure 6.16, consists of three transitions and four places.

| 1 1 1 1 1 1

Wood Create Pulp P Pless_PapelH Patkage_Reams}v Ream
i Wood Create_Pulp place_1 Press_Paper place_2 Package Reams Ream

Figure 6.16 AD (Activity Parameter Node) and Corresponding PN Model (Pilone & Pitman, 2005)

141

Finally, the AD in Figure 6.17 is considered to show the application of a structured
activity node. The structured node, included in the additional AD elements, can be
simple, as in Figure 6.17, or conditional/looped/sequential. According to each case,
the nodes included within the structured activity node express different behaviours.
Considering Figure 6.17, the AD consists of three opaque action nodes
(‘Check Order’, °Fill Order’ and ‘Close Order’) which are contained into the
structured activity node, an exception handler edge (‘NoFillReason’), included in the
additional AD elements, and an input pin followed by an opaque action node
(‘Notify Buyer’). This diagram examines a process order in which, according to the
sequence of the three actions, presented within the structured activity node, the order
closes only if it is checked and filled. If the second action of the structured node, i.e.
‘Fill_Order’, is not performed, then the ‘NoFillReason’ exception is trapped by the
structured node and the buyer is notified that something is wrong with the order. The
manually developed PN model for this AD is illustrated on the right side of Figure

6.17, consisting of four transitions and three places.

< <structured > >

1 ! 1 1 1 1 1 1

PN Cheok Order Place_! Fill Order place2 Close_Order NoFilReason Nofify Buyer pout

Figure 6.17 AD (Structured Activity Node) and Corresponding PN Model (Bock, 2005)

From the comparison of the manually developed PNs and the given ADs for the
examples shown in this section, the relationships between the AD and PN notation
and symbols are shown in Table 6.9. According to the first row of Table 6.9, the input
and output expansion nodes are mapped into PN places, whereas the expansion region
into a PN transition. Once the expansion region contains other nodes, these are
transformed into PN transitions and the PN transformation of the expansion region is
omitted. As can be seen, the activity parameter, central buffer and data store nodes as
well as the AD edges, including exception handlers and object flows, are transformed
into PN places. Additionally, the structure of an opaque action node with two pin
nodes, an input and an output, as well the call behaviour nodes are mapped into PN
transitions. Finally, the send signal action with one input pin node attached, the accept
event action and the structured activity nodes are also transformed into PN transitions.
Therefore, these are the mapping rules followed in the Java database programming

step in the next section.

142

Table 6.9 Relationships between the AD and PN Notation and Symbols

UML 2.0 Activity Diagram Petri Net

Name Symbol Name Symbol

Expansion Region with Input and Two places

Output Expansion Nodes <<paralld>> and one %O
transition

Activity Parameter Node @ Place

Central Buffer Node Place

Data Store Node “datstore> Place

Opaque Action Node with Input Transition

and Output Pin Nodes or Value ~ |° i

Nodes

Call Behaviour Action Transition
>]

Send Signal Action with Input Transition
Pin Node/Value Node

Accept Event Action Transition
Structured Activity Node Transition
(Simple/Conditional/Loop/ =

Sequence)

Exception Handler Edge with - - Place
Input Pin Node/Value Node ”"J?D

Object Flow Edge with Input and Place
Output Pin Nodes/Value Nodes D D

OO0 oEIomE=m o |00

6.4.2 Algorithm - Java Database Programming - Transpose of the
Petri Net Incidence Matrix

The SQL code proposed in Chapter 3 for the automated generation of the
mathematical form of a PN model, needs to be extended to allow the transformation of
the additional AD elements, discussed in section 6.2, and hence to provide a generic
applicability. The extended SQL code, explained in this section, is used to retrieve,
manipulate and store the data of the two input files (XMI and XML), obtained from
the XMI model transformation using as source file the XMI from a UML/SysML AD.
These two input files are loaded to the MySQL database using SQL statements. The
purpose of each step, used in this extended (generic) SQL code, is introduced in the
flowchart illustrated in Figure 6.18. Comparing the flowcharts in Figures 3.6 and 6.18,
it can be seen, this new generic code follows the same concept as the code proposed in
Chapter 3, with some amendments and newly introduced steps for the transformation
of the AD additional elements. The numbering of the steps that have been modified or

these that are newly introduced is presented in the flowchart in red.

143

In this flowchart, these 15 steps can be categorised as follows:

— Retrieve data (steps 1.a and 1.b): In this first step, two tables are created, one
for the XMI attributes of the AD exception handlers, results, targets and the
XML elements of the AD nodes (step 1.a) and one for the XML elements of
the AD (step 1.b). For the first table, the data for the exception handlers,
results and targets is retrieved from the XMI file obtained from the first XMI
model transformation. For the same table, the data for the nodes, including
opaque action, decision, merge, fork, join, initial, final activity, final flow,
central buffer, data store, activity parameter and call behaviour nodes, is
retrieved from the XML file obtained from the second XMI model
transformation. Finally, for the second table, the data for the edges including
control and object flows is also retrieved from the XML file.

— Separate multiple edges (steps 2 — 5): These four steps are identical with the
corresponding steps proposed in the code in Chapter 3.

— Find the sequence between AD elements (steps 6 — 12): The values stored in
the “xmi:type” column of the table created in step 5 are scanned and for each
different type identified a table is created. The code creates seven tables: (i)
one for the opaque action, decision, merge, fork, join, accept event, send signal
and call behaviour action nodes (step 6); (ii) one for the initial nodes (step 7);
(i1i1) one for the activity final and final flow nodes (step 8); and (iv) four
additional for the exception handlers, activity parameters, central buffers and
data stores (step 9). The names of the incoming and outgoing edges to and
from the nodes stored in the table created in step 6 are identified with the help
of the table created in step 1.b and they are stored in this table (created in step
6). Additionally, the names of the nodes placed before and after the AD
elements stored in the tables created in steps 7 — 9 are also identified with the
help of the tables created in steps 1.b and 5 and stored in these tables
(developed in steps 7 — 9). Steps 7 and 8§ are identical to the corresponding
steps proposed in the code in Chapter 3 for the AD initial and final nodes. In
steps 10 and 11, two new tables are created, one for the object nodes such as
input/output/value pin nodes, and one for the expansion elements, including
expansion regions and input/output expansion nodes. These two newly

introduced tables retrieve the value attributes from the XMI file (step 1.a),

144

used as input in this code. The nodes/edges found in the AD before and after
these examined elements are tracked using the data stored in the tables created
in steps 1.b and 5, and replaced in the tables created in steps 10 and 11. Hence,
each row of the tables created in these steps 6 — 11 includes the name of a
node, the name of the element that exists before this node (if available) and the
name of the element that exists after this node (if available). Finally, the tables

obtained from these six steps are unified, creating a new table in step 12.

| XMI and XML files transformation to enable the construction of the mathematical form of a PN model. |

Retrieve 1. The attributes of the XMI file obtained from AD are stored in two tables to enable data manipulation:
data a. XMI and XML attributes for the AD exception handlers, results, targets and nodes are
stored in tables, called ‘final_node_xmi_xml".
b. XML attributes for the AD edges are stored in a table, called ‘edge_place_xmi’.
If multiple values exist in Cli‘?Ck Va%“e,s, ofthe If single values exist in the “outgoing™
« PR incoming” and - o
the “outgoing” column 5 = and “incoming™ columns
— “outgoing” columns of =
the tables created in
step la.
2. Retrieve these rows, separate 4. Retrieve these rows and store
multiple outgoing values and them in ‘unique_activities’
Separate store them in ‘union_1’ table. table. -
multiple | — . e
If multiple values exist in
edges . .
the “incoming” column
3. Retrieve these rows, separate
multiple incoming values and
store them in “union_2’ table.
5. Create the ‘union_node’
table, bining the tables
created in steps 2. 3 and 4.
If “xmi:type™ is opaque action/ - If “xmi:type” is exception
decision/merge/fork/join/accept Check ﬂxe.lecmds handler/activity parameter/ data cgmituma”
) hi L stored in the Ny Ny R If “xmi:type
event/send signal/call behaviour action o . store/ central buffer node is inputPin/
node Xmi:type” column 1s mputk
of the “union_node’ outputPin/
6. Find the name of the " valuePin
edges being before table (step 5). 9. Find the name of the nodes
] and after of these being before/and after of this
nodes and store them edge/node and store them in the i
: i N ‘handler_node_table a b, 10. Find the name of the
in the ‘main_table’. L. :
‘activity_parameter_table_a_b, nodes to which they
- .. ‘datastore_table_a_b’ are attached and the
If “xmi:type” is ‘central_buffer_table_a_b’, incoming/outgoing
initial node \; respectively. edge to/from the
7. Find the name of the node being | input/outputvalue X
- after this node and store it in the node and store them in
Find the “initial node_table’. the . .
sequence If “xmi:type” is expansion region/input/ in_outputValue_final
of AD — If “xmi:type” is activity output ion node
Elements final/final flow v 7

1

. Find the sequence of the nodes and edges placed in the
expansion region and store them in the ‘expansionNode_final®
and:

Replace the input expansion node and outgoing edge with the
name of the incoming edge to the input expansion node;
Replace the output expansion node and incoming edge with the
name of the outgoing edge from the output expansion node.

8. Find the name of the
node being after this
node and store it in the
“final_node_table’.

&

b

12. Create the ‘final_table’ combining the ‘

]

tables created in steps 6 —11. ‘

13. Create the ‘negative’ matrix that shows how
a token is moved from a PN place (AD
edge, data store, etc.) to a PN transition
(AD opaque action node, decision node,
etc.). Data is retrieved from table in step 12.

14. Create the ‘positive’ matrix that shows how
a token is moved from a PN transition (AD
edge, data store, etc.) toa PN place (AD
opaque action node, decision node, etc.).
Data is retrieved from table in step 12.

Mathematical L 15. Create ‘transpose_of the_incidence_matrix” J
representation of a combining the matrices created in steps 13
PN model and 14.

Figure 6.18 Flowchart for the steps followed for the Generic Automated Generation of the Mathematical

Representation of a PN Model

145

— Matrix generation (steps 13 - 14): Two tables in the form of matrices are
created, retrieving the connectivity information from the table developed in
step 12, as proposed for the similar set of steps in Chapter 3. The matrix
created in step 13 shows connections of AD edges/initial/final (activity and
flow)/exception handler/central buffer/data store/activity parameter nodes (PN
places) to AD opaque action/decision/merge/join/fork/send signal/accept
event/call behaviour action nodes (PN transitions). Similarly, the matrix
generated in step 14 shows connections of AD opaque
action/decision/merge/join/fork/send signal/accept event/call behaviour action
nodes (PN transitions) to AD edges/initial /activity final/final flow/exception
handler/central buffer/data store/activity parameter nodes (PN places).

— Mathematical representation of a PN model (step 15): In this final step, the
PN is generated by combining the two matrices developed in steps 13 and 14

respectively, as also proposed in the code in Chapter 3.

The SQL code followed for the automated PN generation, found in Appendix H, is
thoroughly explained and discussed in the next chapter with the help of two real-life

scenarios.

6.4.3 Algorithm - Java Database Programming - Petri Net Initial
Marking Matrix

For the complete generation of the PN’s mathematical form, the initial marking matrix
is also required. The automated generation of the initial marking has already been
discussed in Chapter 3, assuming that only one item exists in a system/process.
However, in this section, the algorithm for the initial marking generation is extended
allowing any number of items to be considered. The extended SQL code for the initial
marking generation takes as input an Excel file with two columns. In the first column,
the names of the AD nodes are stored and in the second column the number of items

each AD node contains before the system/process execution, are stored.

The procedure followed for the PN initial marking generation, which is an extension
of the step outlined in Chapter 3 for the initial marking generation, for generic cases,

1s outlined below:

146

1. Generate the initial marking of a PN model. In this step, a table named
‘initial_marking final’ is created consisting of the places of PN models (stored
in the “activity” column) and the number of tokens (stored in the
“process number of devices” column), as explained in Chapter 3. Once the
structure of the table is created, this extended SQL code identifies in the
“initial marking” column of a given Excel file, the rows that contain numbers
equal to/greater than one. For these rows, the data stored in the “activity”
column of this file is retrieved, and then the AD elements found before this
retrieved data are tracked, using the first column of the matrix, created in step
15. Finally, for these tracked elements, the corresponding values found in the
‘initial marking” column of the Excel table are stored in the
“process_number of devices” in the ‘initial marking’, whereas in all the other

rows of this column value ‘0’ is inserted.

The code developed for the automated generation of the PN initial marking matrix can

be found in Appendix L.

6.5 Summary

The generic novel methodology, proposed in this chapter for the automated PN model
generation, applying a Java database (MySQL) algorithm, extends the methodology
proposed in Chapter 3 and contributes to knowledge through the combination of the

following:

— Java database algorthm, as explained in Chapter 3.

— Fully automated PN model generation capability: as explained in Chapter 3.

— Generic domain applicability: as explained in Chapter 3.

— Software independence: as explained in Chapter 3.

— Generic applicability and scalability: The extended methodology for the
automated PN model generation provides rules for the transformation of any
AD element to the corresponding PN structure, broadening the range of

applications.

In the following chapter, to further explore the automated PN model capability, the

proposed generic methodology is demonstrated by its applicability to two industrial

147

cases, a system and a process. Additionally, according to the methodology followed in
Chapter 5 for the verification and validation of PN models, the correctness of the
generic advanced algorithm for the PN automation procedure discussed in this chapter

1s also checked.

148

CHAPTER 7

7 Application of the Generic Automated Petri
Net Model Generation Methodology to Real-

[Life Scenarios

7.1 Introduction

In this chapter, the generic methodology discussed in Chapter 6 for the automated
generation of a PN model is applied to two real-life scenarios, a production system
and an online shopping process, to demonstrate its applicability and functionality to
both systems and processes. A description of each scenario, with the help of the
corresponding AD, retrieved from the literature, is initially introduced. The AD
provided for the production system includes all the basic AD elements discussed in
Chapter 3, whereas the online shopping process includes, in addition to the basic
elements, the additional AD elements, introduced in Chapters 6. Besides the AD
elements, these two scenarios consider features widely associated with complexity,
such as control loops, a large number of components/activities and dependent
(concurrent/parallel) events, and hence they have been selected to check the
correctness and the functionality of the algorithm introduced in Chapter 6. The
mathematical and graphical representations of the PN models for these two scenarios
are automatically generated and then the correctness of the automation end models is

explored by verifying and validating the method.

7.2 Production System

7.2.1 Process Description

A production system, taken from the literature (Villani et al., 2007), is used as an
example to illustrate the applicability of research to systems. The production system
shown in Figure 7.1 produces two products (P1 and P2). These two products are

created from the mixing of a common base (B) with one of the two colouring

149

additives (C1 and C2). Thus, product P1 is produced by mixing B with C1, whereas,
product P2 is produced by mixing B with C2, as seen in Figure 7.1.

Tank T2 Tank T3
{Additive C1) {Additive €2)

TankT1
{Eaze - B]

Wh1-2

ENI

'
== controller CM1

lase

== controller CM2

Figure 7.1 Production System (Villani et al., 2007)

The production system, examined in this section, consists of the system components
and the controlled objects (controlled by the supervisory team). The system

components are:

— Three tanks, T1 (Base - B), T2 (Additive C1) and T3 (Additive C2), which
provide the ingredients into the mixers.

— Eight valves, VT2-1 and VT2-2 for T2, VT3-1 and VT3-2 for T3, VMI-1 and
VM1-2 for mixer M1 and VM2-1 and VM2-2 for mixer M2, which can open,
close and inform for a flow interruption.

— Two mixers, M1 and M2, in which the ingredients are mixing. M1 and M2 can
start mixing, stop mixing, start emptying, and stop mixing and start emptying.

— Two local controllers, CM1 and CM2, which can be used to begin a batch,
inform the end of batch or inform the end of additive loading, by

opening/closing the system valves.

Controllers and mixers interact during the filling and emptying activities. The valve
that controls the admission of the base from the tank 1 (T1) to a mixer as well as the
output valve that controls the admission of the additive tank (T2 or T3) to a mixer are

open and closed by the supervisory system.

In addition to the system components, the controlled objects in the production system

arc:

150

— Four valve interfaces, VT2-1, VT2-2, VT3-1 and VT3-2, which are controlled
(opened/closed) by the supervisory team.

— Two additional interfaces, CM1 and CM2, which are used to begin a batch,
inform the end of batch or inform the end of additive loading.

— Receipt P1, associated with the production receipt of products, is used to either
begin or inform the end of production P1.

— Production Order 1 asks receipt P1 to make a batch of P1.

The UML AD for the production system that describes how to make a batch of P1 is
taken from Villani et al., 2007 and illustrated in Figure 7.2.

?

ﬁ)mductlon_Order_'l_:!ks_Recelpt_P'I_tn_produce_Pﬂ

o

[Rempr,m;.qmn,w,m,mmfm,crvlﬂ

——

ﬁlempLPW,asks,lntzrfacz,VﬁrrUn,upm,‘m—ﬂ ﬁnnrface,cM‘\Jequzm,MUn,mntml\zchﬂ

interface_VT2-1_opens_VT2-1

Production_of_a_batch_of .

{CMLuprnLVMW'ﬂ [(:MLuprns)fMW-%

Fjlling_with_base Filling_with_additive

CM1_closes_YM1-1 Epr———]

{cw,mfmms,.nd,nf,admm,\nming,m,lmrfa(.,cmﬂ
i }

ﬁnterfaELCM'\Jnform!,end,nfjﬂﬂ\tw:,lnadmg,tu,Re(e\pLPﬂ

Valve_open

CM1_starts_mixing_in_M1

Exempgm,mquuu,lnterfa(e,mw,m,dm)rrzrw}
Mxing_in_M1

{CMUmps,m.xmg,am;taru;mptymg,rulﬂ

Emptying_M1

CM1_detects M1_emp

[CM1_|nfevms_end_of_l:atch_tn_\nterhce_CMﬂ

Terminate_production_P1

ﬁmrfau,cw,mfupms;nd,uf,hmn,m,kmipgpﬂ—

Figure 7.2 UML AD for the Production System (Villani et al., 2007)

151

In order to produce a batch of P1, the mixer, M1 or M2, is filled with base and
additive by opening the corresponding valves. Once the mixer is filled, the base and

additive are mixed for a certain time and then the mixer is emptied.

The UML AD for the production system has been selected due to the large number of
components it is consisted of, including twenty opaque action nodes, one decision,
two merge, three join and four fork nodes, as well as an initial, a final activity and a
final flow node. Additionally, in this diagram, there exist two control loops as well as
dependent events showing either parallel division, indicated by AD fork nodes that
split an incoming flow into multiple concurrent activities, or synchronisation,
indicated by AD join nodes in which the flow can proceed only after all incoming
flows have reached the join point. Finally, the multiple control nodes presented in
series in the AD, such as at the beginning of the diagram where the decision node,
‘D1’, is placed in between two merge nodes, as well as the three outgoing arcs
produced from ‘D1’, can add complexity in the automation PN process, since
structures like these may result in omitting information regarding the sequence of AD

elements.

7.2.2 Automated Mathematical Representation of the Petri Net Model

for the Production System

7.2.2.1 Input - System Modelling

The AD in Figure 7.2 is initially validated, using the ‘Validate model’ option available
in the Eclipse software and then the two model transformations, discussed in Chapter
6, are applied, to the XMI file obtained from the examined AD. Having completed the
two XMI model transformations, two output files, in XMI and XML formats
respectively, are generated. These two files are used as inputs to the next step
(algorithm-Java database programming step) where they are loaded into the MySQL
database to be further manipulated and organised in the mathematical form needed for
the PN models. The XMI file obtained from the AD in Figure 7.2 can be found in
Appendix J, part A. This initial XMI file consists of XMI nodes such as ‘pin’,
‘Termination_production P1’, ‘CM1 opens VMI1-1’, ‘CMI detects M1 empty’, etc.
and XMI edges such as ‘Emptying M1°, ‘Filling with additive’, ‘Filling_ with base’,

etc. The XMI file obtained consists of 70 elements, 37 are edges, and 33 are nodes.

152

7.2.2.2 Algorithm - Java Database Programming - Transpose of the

Petri Net Incidence Matrix

The generic code, introduced in Chapter 6, section 6.4.2 (found in Appendix H) for

the automated generation of the mathematical representation of a PN model, has been

applied to generate the transpose of the PN incidence matrix for the production

system.

The steps that the SQL code applies for the automated PN model generation of the

production system are as follows:

1.

As discussed in section 7.2.2.1, the XMI and XML files generated from the
model transformation of XMI, obtained from the AD in Figure 7.2, are
provided as inputs to the methodology and loaded into the MySQL database.
Two tables, named ‘final node xmi xml’ and ‘edge place xmi’, are created
as follows:

a. Retrieve data for AD exception handlers, results, targets and
nodes: The ‘final node xmi xml’ table is created consisting of 33
rows that correspond to the number of nodes found in the AD.

b. Retrieve data for AD edges: As for the ‘node xmi xml’ table, the
‘edge place xmi’ table is created consisting of 37 rows that

correspond to the number of edges found in the AD.

In order to enable data manipulation, the multiple values that may exist in the

“incoming” and “outgoing” columns of the ‘final node xmi xml’ table (created in

step 1.a) are separated in the following four steps (steps 2 — 5) as follows:

2.

Separate multiple “outgoing” values: A table named ‘union 1’ is created
separating any multiple values stored in the ‘“outgoing” column of
‘final node xmi xml’ table, such as for the decision nodes exist.

Separate multiple “incoming” values: A table named ‘union 2’ is created
separating any multiple values stored in the “incoming” column of
‘final node xmi xml’ table, such as for the merge nodes.

Store single “incoming” and “outgoing” values: A table named

‘unique activities’ is created retrieving from the ‘final node xmi xml’ the

153

rows that store in the “incoming” and “outgoing” columns singe values, such
as for the opaque action nodes.

5. Create a table in which single values are stored in each cell: A table named
‘union-node’ is created by unifying the results obtained from steps 2 — 4 for
the AD shown in Figure 7.2. A part of this table is presented in Table 7.1 for
six elements. Each row of this table includes the “xmi:type” and “name” of
each node as well as the “xmi:id” values of the incoming and outgoing edges

related to the examined node.

Table 7.1 MySQL ‘union node’ Table Extract

id outgoing xmi:type name incoming

1 _uzelJOCH7EeilppsneFPfg uml:InitizalNode place_1
2 _wBAe8CHEeilppsneFPfa uml:OpagueAction Production_Order_1_asks_Receipt_P1_to_produce_P1 _uzelU0CH7EeippsneFPfg
3 _ymKjUCH7EeilppsneFPfg uml:MergeMode M1 _wBAeBCH7EeilppsneFPfg_
4 _ZYyTECH7EeilppsneFPfg uml:DedsionMode D1 _ymKjUCH7EeilppsneFrfg
5 _0gulgCH7EeilppsneFPfg uml:DedisionMode D1 _ymKjUCH7EeilppsneFPfg
[_IfkcCIAEeilppsneFPfg uml:DedisionMode D1 _ymKjUCH7EeilppsneFrfg

The following seven steps (steps 6 — 12) generate a table that shows the sequence of
the AD elements. The sequence of these AD elements can then be used to identify the
sequence of PN places and transitions resulting in mathematical and graphical
representations of the PN for the production system. Steps 6 — 12 are applied as

follows:

6. Identify the sequence between the AD opaque/decision/merge/
fork/join/accept event/send signal/call behaviour action nodes and their
preceding and following edges: In this step, a table, named ‘main_table’, is
created retrieving the rows from the ‘union_node’ table (from step 5) that store
values for the opaque action, decision, merge, fork and join nodes. The names
of the edges found before and after of each node are also identified.

7. ldentify the sequence between the AD initial nodes and their following
nodes: In this step, a table, named ‘initial node table’, is created for the initial
node. The name of the node placed after the initial node is then retrieved and

stored in the “name primary” column of ‘initial node table’ as presented in

Table 7.2.
Table 7.2 MySQL ‘initial node table’
place_before_node name_primary place_after_node
place_1 Production_Order_1_asks_Receipt_P1_to_produce_P1 place_2

154

8. Identify the sequence between the AD final nodes and their preceding
nodes: Similarly, as for the initial node, the final nodes are stored in a new
table name ‘final node table’. The names of the nodes placed before the final
activity/final flow nodes are then retrieved and stored in the “name primary”

column of ‘final node table’ as presented in Table 7.3.

Table 7.3 MySQL ‘final node_table’

place_before_node name_primary place_after_node
place_30 Interface_WT2_doses_\VT2 final_flow
place_& Terminate_production_P1 final_node_x

For the following three steps (steps 9 — 11), no tables are created, since the program
automatically recognises that elements such as data stores, input values, expansion
regions, etc. are not included in the AD. Hence, omitting these three steps, the

program generates a table in step 12.

9. Identify the sequence between the AD exception handler edges/activity
parameters/data stores/central buffers, and their preceding and following
nodes.

10. Identify the sequence between the AD nodes to which input/output/value
pin nodes are attached, and their preceding and following edges.

11. Identify the sequence between the nodes and edges that are included in
expansion regions in the AD.

12. Identify the sequence of AD elements: The ‘final table’, part of which is
viewed in Table 7.4, 1is created unifying the data from the

“place before node”, “name primary” and “place after node” columns from

the tables created in steps 6, 7 and 8.

Table 7.4 MySQL ‘final table’ Extract

place_before_node name_primary place_after_node
place_4 D1 place_5

place_4 D1 place_6

place_4 D1 place_34

place_5 Production_of_a_batch_of_P1_in_M2(similar_to_M1) place_3

place_37 Receipt_P1_requests_M1_to_Interface_CM1 place_7

place_7 fork_8 place_8&

place_7 fork_a& place_9

place_a Receipt_P1_asks_Interface_VT2—1_to_open_VT2-1 place_10

Steps 13 — 15 result in the development of the mathematical representation of the PN
for the model of the production system, retrieving the information from the table

created in step 12.

155

13. Create a matrix that shows how a token is removed from each of its pre-
places, when an enabled transition fires (shows the connection from PN
places to PN transitions): A ‘negative’ matrix with the ‘-1’ and ‘0’ values is
created, using the 1** and 2™ columns from Table 7.4.

14. Create a matrix that shows how a token is inserted to each of its PN post-
places, when an enabled transition fires (shows the connection from PN
transitions to PN places): A ‘positive’ matrix with the ‘1’ and ‘0’ values is
created, using the 2" and 3™ columns from Table 7.4.

15. Generate the mathematical form of the PN model: In this step, the matrix
that shows the mathematical representation of the Petri net for the AD in
Figure 7.2 in the form of the transpose of the incidence matrix is created. A
part of this matrix is shown in Table 7.5. This matrix, found in Appendix K,
part A, is generated by the combination of the matrices obtained in steps 13
and 14. The matrix for the AD in Figure 7.2 for the production system consists
of 37 rows, i.e. places, and 30 columns, i.e. transitions.

Table 7.5 MySQL ‘Transpose_of the PN Incidence Matrix’ Extract

place_after node D1 Production_of a_bz Recept P1req fork 8 Receipt P1ask Interface CM1r Interface_VT2- fork 12 CM1_opens_VM1-1 CM1_opens VM1-2 CM1_closes VM1-1 CM1_closes WM1-2
Emptying_M1 0 0 0 0 0 0
Fillng_with_additive 0 E
Filing_with_bass -1

o ooo o

0

0
Mixing_in_M1 0
0
0

place_t

place_10

oo oo wao

place_11

oo oooon

place_12

place_13

place_16
place_17
place_18
place_13
place_2

place_20
place_21
place_24
place_25
place_25
place_27
place_28
place_29

cococooooocooooocoooooooo0o0o
Lo ocooococoooooocoo0oe e 00000
cocococoococeoeooooocoo0oooo o900
cocooocoocococococoocoocoocooooooooo o
cocoocoocoocococococoocooocoooo~oooo o
ceococococococoooo0o0o0or e 0000
cocococoocoooooo0o0ooo oo

C o ooooo9 9990000 LK,
ceooceoeoeooceo00 0000
cocococoocooo0 0000
cocoooooooonooooo0ooo o
cocoooooooo0o0o00Roo0Goo0o0o0

olace 3

7.2.2.3 Algorithm - Java Database Programming - Petri Net Initial
Marking Matrix

After obtaining the transpose of the incidence matrix of the PN model for the
production system, the initial marking matrix of this net is developed, using the SQL
code introduced in Chapter 6, completing the mathematical form of the PN for this
system. Thus, the step undertaken for the generation of the initial marking matrix for

the production system is:

156

1. Initial marking of a PN model: The ‘initial marking’ table created for the
production system, part of which is shown in Table 7.6, can be found in
Appendix K, part B, Table K.1. The records in the “activity” column retrieved
from the first column of the transpose of the incidence matrix corresponding to
the PN places, whereas the value ‘1’ in the “process number of devices”

column it is shown that ‘place 1’ holds one token, i.e. a batch.

Table 7.6 MySQL ‘initial marking’ Extract

activity process_number_of_devices
place_1
Emptying_M1
Filling_with_additive
Filing_with_base
Mixing_in_M1
place_10

0 0O 0 0 O K

The matrix of the initial marking automatically developed for the production system

examined in this section consists of 37 rows (37 PN places).

7.2.3 Automated Graphical Representation of the Petri Net Model for
the Production System

For the graphical representation of the PN model for the production system, the steps
introduced in Chapter 3 have been applied. The ‘final table’ created in step 12 during
the automated generation of the mathematical representation of the PN for the system
is used as input for this graphical representation. Hence, all the data from the
‘final table’, part of which is illustrated in Table 7.4, is selected and the code
introduced in section 3.4.1 (Appendix D, part A) is executed. The output obtained in
the Console window in Eclipse is a DOT file, which is imported into the Graphviz
software and the PN model for the production system examined in this section is
obtained. The PN model generated for the production system can be viewed in Figure
7.3. The PN model obtained for the production systems consists of 30 transitions and
37 places. The 30 transitions that exist in the PN are equal to the sum of the twenty
opaque action nodes, the one decision, two merge, three join and four fork nodes that

was presented in the production system AD.

The process has successfully yielded a PN from the AD automatically, and hence
shown applicability to systems and also increased scalability with more components
than in previous ADs. Further scalability will be tested with an online shopping

process, viewed in the next section. Formal verification and validation of the method

157

to check the correctness of the automation end model are also investigated in the

following sections.

—

placs_i

>_/

Production_Order_1_askcs Recapt_P1_to_prodsce_P{ ’7u'mmmJ roduction_P1|

Dmthmm_vi_a_hawll_uul_m_minmdaﬁ)ﬂl{ e 33

s

r/—

| place_i | place 33 | {ﬂws_) | pace_s7 |
ll, _ — s AN
— ¥

Feceapt_P1_requests_Mi_to_lnter face_CM |

(pace_2
=

}nwfu_cﬂl_mqums_ldl_w_mwnllﬁ_':M:I

}k:dpt_P |_asks_letecduce_VT2--1_to_apen VT2 |‘

I

place_1t

1%
-
~

/

nberface_VT2-1_epens_VT2-|

Q.

M1 _upene VM-

P

]

\\

lF.u.mg_w.m_Muu)
\

[CMI _apene_VHMI-]

=]

CMI_imfemes_md _of additive_losding_to_lnterface CMI
)

}ll_ﬁmpx_u&u]_md_m_ﬂml_ﬂl\

o

\

@

)umpl_PL_unuu_hm(n::_m-d_m_dnx:_\fﬂ-l‘

g
(=)

B1_desects_BA1_empty

@
'\

/

&‘)‘

Fﬂ 1 infoems_end_of batch_to_lnterface CML

plmz-:s\\.l
_/

(;um_zs }

| ‘j/

\

1\ Fuﬁxm_m informs_rmd_of_basch_tn_Receipt_F1

[place 32

\

/

Figure 7.3 PN Model Automatically developed for the Production System

158

7.3 Online Shopping Process

7.3.1 Process Description

An online shopping process taken from the literature (Banas, 2012) is used as an
example in this section to illustrate the applicability of this developed automated
modelling capability study to complex processes. Advancements with this example
are a larger number of activities and more AD elements. The process investigates
online purchases of monitors and computers and the corresponding UML AD is

illustrated in Figure 7.4.

Assign_User_Data

Authorised Not_Authorived

Verify_User_Data

Send_Ordes_for_Shipment Product

Figure 7.4 UML AD for the Online Shopping Process (Banas, 2012)

In the process, once customers complete product selection, the personal details
checking begins. New customers are asked to create a new account, whereas
registered customers are asked to log in to their existing accounts. The customers then
enter their user name and password and the process can proceed to either the user data
verification for old customers or the assignment of user data for new customers. In the
case of existing customers, the company’s system is looking for the user’s profile in
its database (datastore node) and the customer’s data is verified. In the case of new
customers, the username and password are assigned, and (i) if user’s data is
authorized, the account is created; (i1) if not the account is rejected. In both cases the

system is updated (using the call behaviour node) creating and saving the customer’s

159

profile in the system. If more account information is required and the customer
decides not to provide it, the account is cancelled and the process is terminated as seen
by the final activity node in the AD in Figure 7.4. If the customer is able to provide
further information the account verification is completed over the phone. The
customers verify their email, password, and phone number and three possible

outcomes have been identified for the online shopping process:

1. Customers cannot proceed due to inadequate information and hence the
process is terminated with the flow final node as seen in Figure 7.4. The
execution of this node indicates that a use case is finished but the whole
process might be continued.

2. Customers complain to the corresponding department. The process in this case
is also terminated with the activity final node seen in the AD which indicates
that all flows of the process terminate, once this node is executed.

3. The account information is approved and the order is received. The product
availability is checked and in case: (i) the product is out of stock the company
contacts the suppliers and the process ends; (ii) there is product availability the
customer credit card details are verified and once the verification is received
the quality test of each product is conducted. An AD decision node is used to
direct the products to the right test action since different tests are required for
monitors and computers. Once the quality test is completed, the products are
collected and sent for shipment, terminating the process. The central buffer
node, used at this point in the AD in Figure 7.4, manages object flows of

various incoming and outgoing edges for monitors and computers.

The online shopping process consists of 24 opaque action nodes, a call behaviour
action node, an accept event and a send signal action node, six decision, five merge,
one join and two fork nodes. Additionally, it contains a datastore, a central buffer, an
initial, a final flow and a final activity node. An exception handler edge and an
expansion region with one input and one output expansion node are also used in the
AD. Finally, in this diagram, input and output value/pin nodes can be found. The
reason for the selection of this diagram is the variety of the AD elements that it

includes.

160

7.3.2 Automated Mathematical Representation of the Petri Net Model

for the Online Shopping Process

7.3.2.1 Input - System Modelling

Using the ‘Validate model” option available in the Eclipse software the AD in Figure
7.4 is validated and then by applying the two model transformations, discussed in
Chapter 6, to the XMI file obtained from the examined AD, two output files, in XMI
and XML formats respectively, are generated. These two files are used as inputs to the
algorithm-Java database programming step where they are loaded to the MySQL
database for further manipulation to result in the development of the mathematical
form of PN model. The XMI file obtained can be found in Appendix J, part B. This
initial XMI file consists of XMI nodes such as the ‘Assign User Data’,
‘Create_Account’, ‘Update System’, etc. and XMI edges such as the ‘Authorised’,
‘Not_Authorised’, ‘Order Items’, etc. The XMI file obtained from the AD for the
production process consists of 105 elements, 56 are edges, and 49 are nodes. The 49
nodes found in the XMI document include, 24 opaque action nodes, a call behaviour
action node, an accept event and a send signal action node, six decision, five merge,
one join and two fork nodes. Additionally, it contains a datastore, a central buffer, an
initial, a final flow and a final activity node, as well as an expansion region with two

expansion nodes, an input and an output.

7.3.2.2 Algorithm - Java Database Programming - Transpose of the
Petri Net Incidence Matrix

The extended advanced code, discussed in Chapter 6 (found in Appendix H) for the

automated generation of the mathematical representation of a PN model, has been

followed to generate the transpose of the PN incidence matrix for the online shopping

process. The mathematical representation of a PN model is generated by applying the

following steps:

1. The XMI and XML files acquired from the model transformations of the XMI
file obtained from the AD in Figure 7.4 are provided as inputs to the
methodology. These two files, discussed in section 7.3.2.1, and loaded into the
MySQL database and the ‘final node xmi xml’ and ‘edge place xmi’ tables,

are created as follows:

161

a. Retrieve data for AD exception handlers, results, targets and
nodes: The ‘final node xmi xml’ table is created consisting of 49
rows that correspond to the number of nodes found in the AD.

b. Retrieve data for AD edges: As for the ‘final node xmi xml’ table,
the ‘edge place xmi’ table is also created consisting of 56 rows that

correspond to the number of edges included in the AD.

Steps 2 — 5 target the separation of multiple values that exist in the “incoming” and
“outgoing” columns of the ‘final node xmi_xml’ table (created in step 1.a) in order to
enable data manipulation for the automated generation of the mathematical

representation of PN model as follows:

2. Separate multiple “outgoing” values: Table named ‘union 1’ is created for
the AD separating the multiple values stored in the “outgoing” column of the
‘final node xmi xml’ table.

3. Separate multiple “incoming” values: Table named ‘union_ 2’ is created for
the AD separating the multiple values stored in the “incoming” column of the
‘final node xmi xml’ table.

4. Store single “incoming” and “outgoing” values: A table named
‘unique_activities’ is created from the rows of the ‘final node xmi xml’ table
that present single incoming and outgoing values.

5. Create a table in which single values are stored in each cell: In this step, a
table named ‘union node’ is created for the AD, part of which is viewed in
Table 7.7 for seven elements. This table is created by unifying the tables in
steps 2, 3 and 4. According to the two first rows of this table, it can be seen
that node ‘fork 7’ should be represented in the AD with one incoming and two

outgoing edges, which can be verified by the diagram.

Table 7.7 MySQL ‘union _node’ Table Extract

id outgoing Xmistype name incoming

7 _x0APBIR3EeebXObshyévla uml:ForkMode fork_7 _7aWKAkoEeeOIORO-VyZIA
8 _y2k74IR 3EeebXObshytvlA uml:ForkiMode fork_7 _7aWKAkoEeeOIORO-VyZIA
9 _zrTke IR 3EeebXObshyGvia uml:OpagqueAction Enter_User_ Name _woAP&IR3EeebXObshytvla
10 _OggvsIR.3EeebXObshyévliA uml:OpagueAction Enter_Password _y2k74IR3EeebXObshysvlA
12 _aoYiMI7uEeel-svpsZ91RQ uml:OpagueAction Verify_User_Data _L&shMI7uEeel-svpeZa1R0Q
13 _LId3kJ7uEeel-svpeZ91RQ uml:OpagueAction Find_User_Data _1s9TIIR.3EeebXObshyavia
14 _L85hMJ7uEeel-svpeZ91RQ uml:DataStoreMode User_Profile _LId3kJI7uEeel-svpaZ91RQ

162

The next seven steps (steps 6 — 12) result in the generation of a table that shows the

sequence of AD elements. This set of seven steps enhances the capability of the SQL

code to track the sequence of AD elements, both fundamental as discussed in Chapter

3 and additional as introduced in Chapter 6. The final table obtained in step 12 is used

as the basis for the identification of the sequence of PN places and transitions enabling

the development of the mathematical and graphical representations of the PN for the

online shopping process. Steps 6 - 12 are explained in detail, as follows:

6.

Identify the sequence between the AD opaque/decision/merge/
fork/join/accept event/send signal/call behaviour action nodes and their
preceding and following edges: A table named ‘main table’ is generated
retrieving the rows from the ‘union node’ table (from step 5) where their
“xmi:type” is equal to uml:OpaqueAction” or ‘uml:DecisionNode' or
‘uml:MergeNode’ or ‘uml:ForkNode’ or ‘uml:JoinNode’ or
‘uml: AcceptEventAction’ or’ uml:SendSignalAction’ or
‘uml:CallBehaviorAction’. Therefore, for the online shopping example the
‘main_table’ is created storing data for 24 opaque action nodes, one call
behaviour action node, one accept event and one send signal action node, six
decision, five merge, one join and two fork nodes as viewed in the AD. The
names of the edges found before and after of each of these nodes are also
retrieved from the ‘edge place xmi’ table (step 1.b).

Identify the sequence between the AD initial nodes and their following
nodes: For the initial AD node, a table, named ‘initial node table’, is created.
The name of the node that follows the initial node in the diagram, i.e.
‘Ask to Create for New Users’, is retrieved and stored in the

“name_primary” column of ‘initial node table’ as presented in Table 7.8.

Table 7.8 MySQL ‘initial node table’

place_before_node name_primary place_after_node
pin_5 Ask_to_Create_Account_for_Mew_Users

Identify the sequence between the AD final nodes and their preceding
nodes: For the final activity and the final flow nodes of the AD, a table, named
‘final node table’, is created. The names of the nodes shown before the final
activity and the final flow nodes are retrieved and stored in the

“name_primary” column, as viewed in Table 7.9.

163

Table 7.9 MySQL ‘final node_table’

place_before_node name_primary place_after_node
Account_Cancelled pout_28

L Customer_Complaint_Handled_{complaint_dept.) pout_23
Send_Order_for_Shipment pout_28
dedision_29 flow_pout_30

Identify the sequence between the AD exception handler edges/activity
parameters/data stores/central buffers, and their preceding and following
nodes: In this step, three tables called ‘exception handler’,
‘datastore table a b’ and ‘central buffer table a b’ are created for the AD
exception handler edge, data store node and central buffer node respectively as
seen in Tables 7.10, 7.11 and 7.12. For each case, the table created stores to
the “place before node” and “place after node” columns records from the
“name” column of the ‘union _node’ table (from step 5) where the “xmi:type”
is equal to
‘uml:ExceptionHandler’/‘uml:DataStoreNode’/‘uml: CentralBufferNode’.

Each table is then updated storing to the “name primary” column the records
from the “name” column of the ‘union node’ table where the
“outgoing”/“incoming” value of the examined node is equal to the value stored
in the “incoming”/*“outgoing” column of the same table (step 5).

Table 7.10 MySQL ‘exception_handler’ Table

place_before_node name_primary place_after_node
place_15 User_Cancels User_Cancels_handler

User_Cancels_handler Account_Cancelled

Table 7.11 MySQL ‘datastore table a b’ Table

place_before_node name_primary place_after_node
Find_User_Data User_Profile
User_Profile Verify_User_Data

Table 7.12 MySQL ‘central buffer table-a b’ Table

place_before_node name_primary place_after_node
merge_48 Product
Product Send_Order_for_Shipment

10. Identify the sequence between the AD nodes to which input/output/value

pin nodes are attached, and their preceding and following edges: In this
step, the code initially identifies the rows in the table created in step 1.a where
the “xmi:type nested” is equal to
‘uml:InputPin’/‘uml:OutputPin’/‘uml:ValuePin’ and creating a new table,
namesd ‘in_outputValue final’, stores in the “name primary” column the

name values found in the table created in step l.a which store

164

11.

12.

input/output/value pin nodes. The code then stores in the “place before node”
and “place after node” columns the names of the edges represented as
incoming to the input/value pin nodes and outgoing from the output/value pin
nodes of the examined node. The values for the first and third columns from
the table created in step 1.b. For the online shopping AD, part of the

‘in_outputValue final’ table, shown in Table 7.13, is created.

Table 7.13 MySQL ‘in_outputValue final’ Table

place_before_node name_primary place_after_node
place_43 Receive_Order place_27
Order_Items Get_Products place_33
Computer Test_Computer place_36
Monitor Test_Monitor place_45

Identify the sequence between the nodes and edges that are included in
expansion regions in the AD: In this step, the ‘expansionNode final’ table is
generated tracking the rows in the table created in step 1l.a where the
“xmi:type nested” is equal to ‘uml:ExpansionRegion’. Then the ‘“name”
values of these rows are stored in the “name primary” column of table
‘in_outputValue final’. Finally, the code retrieves from the table created in
step 1.b the names of the edges placed before and after of the examined nodes
and stores these names in the “place before node” and “place after node”
columns respectively. The ‘expansionNode final’ table shown in Table 7.14
for the AD in Figure 7.4 is created. The values found in the first and third
columns of this table correspond to the incoming edge to the input expansion

node and to the outgoing edge from the output expansion node respectively.

Table 7.14 MySQL ‘expansionNode_final’ Extract Table

place_before_node name_primary place_after_node
place_56 Contact_Suppliers place_55

Identify the sequence of AD elements: In this step, the tables obtained from
steps 6 — 11 are unified and the ‘final table’, part of which is presented in
Table 7.15, is created. The ‘pin_ 5’ value found in the “place before node”

column in the second row of this table corresponds to the AD initial node.

Table 7.15 MySQL ‘final table’ Extract

place_before_node name_primary place_after_node
place_46 Account_information_Approved place_43

pin_5 Ask_to_Create_Account_for_MNew_Users place_2

place_49 Assign_User_Data place_&
Authorised Create_Account place_11
place_26 Customer_Complains place_31

place_8 dedsion_15 Authorised

165

The next three steps (steps 13 — 15) describe the generation of the mathematical

representation of the PN for the model of the online shopping process, acquiring the

data from the ‘final table’, created in step 12.

13.

14.

15.

Create a matrix that shows how a token is removed from each of its pre-
places, when an enabled transition fires (shows the connection from PN
places to PN transitions): A matrix with rows the values from the 1% column
of the table developed in step 12 and columns the values from the 2" column
of the same table is created. Once records from the 15" and 2" columns of the
‘final table’ are in the same row, then the value ‘-1’ should be put in the
corresponding matrix cell otherwise a ‘0’ is inserted.

Create a matrix that shows how a token is inserted to each of its PN post-
places, when an enabled transition fires (shows the connection from PN
transitions to PN places): A similar matrix with rows the values from the 3™
column of the table developed in step 12 and columns the values from the 2"
column of the same table is created. Once records from the 2" and 3™ columns
of the ‘final table’ are in the same row, then the value ‘1’ should be put in the
corresponding matrix cell otherwise a ‘0’ is inserted.

Generate the mathematical form of the PN model: The mathematical
representation of the Petri net for the online shopping AD in the form of the
transpose of the incidence matrix is created by unifying the two matrices
generated in steps 13 and 14. This matrix, and part of which is shown in Table
7.16 can be found in Appendix K, part C. The matrix created in this step
consists of 49 rows, i.e. places and 41 columns, i.e. transitions.

Table 7.16 MySQL ‘Transpose of the PN Incidence Matrix’ Extract

place_after_node decision 29 Customer_Complail merge 43 Ask_to_Create A Send_Order_foi Verify_User | fork 7 Enter User_ Enter Password Find_User Data Assign_User_Data dedsion_15
Verify_Account_by_Phone
User_Profile

Product

0 0
0 -1
-1

oo o w o

pout
place 8
place_7

place_6
place_56
place_55

place_53

cococoocoooowmoo oo

place_52
place 5
place_45

place_48

cococoooooooooooe~oo

place_46

place_45

o

0
0

0

0

0

0

0

0

0

place_54 0
0

0

0

0

0

1

0

place_#4 0
0

0

c oo ocococoooo0oo 8009000
co o ocococooo0o0o00o0o9 99000
cooocococoooo0oooo oo e

coeoocococeooro000 800000

cococoocoocooooooo0o0oo0o0o0o0o
cococooocowooo0o0o00o000o00 0
cocococococoocoooooo~ooo0o0o o

cocoococoocoooooooo

oo oo oo

place_43
place_42

166

7.3.2.3 Algorithm - Java Database Programming - Petri Net Initial
Marking Matrix

The initial marking matrix for the online shopping process is obtained applying the

SQL code discussed in Chapter 6 for the automated generation of the initial marking

matrix of the PN as follows:

1. Initial marking of a PN model: The ‘initial marking’ table for the online
shopping process, part of which is viewed in Table 7.17, is created. The value
‘1’ in the “process_number of devices” column it is shown that ‘pin_5’ holds
one token, i.e. a customer. The matrix of the initial marking consisting of 49

rows, 1.e. 49 places, can be found in Appendix K, part D, Table K.2.

Table 7.17 MySQL ‘“initial marking” Extract
activity process_number_of_devices
Acount_Information_(pending) 0
Authorised 0
Computer 0
flow_pout_30 0
Manitar 0
Mot_Authorised 0
Order_Items 0
pin_5 1
place_11 0
place_12 0

7.3.3 Automated Graphical Representation of the Petri Net Model for
the Online Shopping Process

For the graphical representation of the PN model for the online shopping process, the
steps introduced in Chapter 3 for the automated PN graphical representation have
been applied, retrieving the data form the ‘final table’ created in step 12 (Table 7.15)
during the automated generation of the mathematical representation of the PN for the
process. A DOT file is generated executing the code introduced in section 3.4.1
(Appendix D, part A) and then importing this DOT file into the Graphviz software the

PN model for the online shopping process is obtained as presented in Figure 7.5.

The PN model obtained consists of 41 transitions and 49 places. The 41 transitions
exist in the PN are equal to the sum of the 24 opaque action nodes, the one call
behaviour action node, the one accept event action node, the one send signal action
node, and the six decision, five merge, one join and two fork control nodes that was

presented in the AD in Figure 7.4.

167

mn_%

sk to_Creae_sccount for Hew Users Ask to Logn_for_Registered Users

place_2 plac=_41

fork T
= ;
place_3 place 4

Enter_Uzer_Mame Enter_Paswerd

placa 5 place_ 6

i
pon_10

place_5

'
deagon_51
v

3

place 49 place 7

P ' - H A
hsagn User Datn Find_User_Dats

place 1 Lher_Prafile

deanon_15 Wenfy Uper_Crats

a

Aathorigad | | Hol_suthorized

L I
Crege_Accout Reect_Actount

place_IL place_12

ot

mesge 1 [place_%2

place_13

Updste_Systerm

place_53
b

menae 52

Acount_Enfemation_(pedng)

.
deanon 2

'
deagon_i

placs_15 Venly_Account_by_Fhome

=i
User Cieeld bk 22

.
-

place_17| place_IE .ph:u‘_m

] 1 n

User_Cancels handler Venfy Emal Venfr Password Venfr Phons Momber

! . i
plae 20 glace 21 place_i2

S
merge_Id

H
Acoount_Cancelled

place 24
i
decizuon 2R

flow _pout_30 | place 28 place 446

" .
Custoreer Complains Accoust infoemation Approved
. s

place 11 place 43

1
Fecerve_Crder

Customer_Complant_Handbed_{complaiat_dept) | plane_27

'
deczsion 34
!

place 4% plae_IE

i i
Venly O Funds Ot of Swock Dems
I I

place_d4 place_S6

Eﬁ.ucmwd_\"mﬁmur:-

DOder_Jteme Coeitact_Supphers

'
Get_Products

place_313

'
degision_43
.
Mumitar Comrputer
i “

Test_Mozatar Test_Compuber

place 45| | place_34

Figure 7.5 PN Model Automatically developed for the Online Shopping Process

A PN model has been successfully produced from the AD automatically, and thus
increased process scalability has been proven with more AD elements than in the
previous ADs considered, since the transformation of the additional AD elements to
corresponding PN structures has been achieved. The correctness of the PN model is
further explored by a formal verification and validation of the method, seen in the

following section.

7.4 Verification and Validation of Real-Life Scenarios

The correctness of the extended (generic) algorithm proposed in Chapter 6 for the PN
automation procedure is checked, as discussed in Chapter 5, by: (i) verifying that the
PN model obtained performs the correct function; and (ii) validating the PN model
obtained accurately represents the system/process architecture. This is demonstrated
via evaluation of the two PN models automatically generated for the two real-life

scenarios considered in this chapter.

The verification of the two PN models, obtained for the production system and the
online shopping process respectively, is carried out by checking both the structural
and behavioural properties of these models, using HiPS, as demonstrated in Chapter 5.
Both examined models belong to a special class of PNs, workflow-nets, satisfying the
two criteria defined by Aalst (1998), as explained in Chapter 5, section 5.3. Besides
these two criteria, a third criterion, also investigated in the same section regarding the
nets structure is met, and hence the two WF-nets are structurally verified. In addition
to the structural analysis, the two WF-nets are behaviourally verified since they satisty
the soundness property, i.e. the two models are behaviourally live and bounded, as
also discussed in Chapter 5. Figures L.1 — L.4, in Appendix L, show the verification
analysis conducted using HIPS for the two PN models.

The validation of the two PN models, obtained for the production system and the
online shopping process, is carried out by applying the real system measurements
approach, by visually checking the behaviour of the given system and process, playing
the token game, as demonstrated in Chapter 5, section 5.4.2. For each example,
random pass/fail probabilities are considered for each PN transition and random
numbers from zero to one are generated. The PN paths are then followed comparing

the random numbers, against the pass/fail probabilities using ‘if” conditions and

169

equation 5.1 is applied. In this equation, the initial marking and transpose of the
incidence matrix have been automatically generated in the previous sections in this
chapter, whereas the transition matrices required are manually developed. Therefore, a
simulation algorithm was developed that visually checks the removal/addition of
tokens from/to places through the PN paths, validating that the paths followed the
same route as the paths existing in the Activity Diagrams provided for the production

system and online shopping process, respectively.

7.5 Summary

This chapter demonstrated the automated PN model capability to two real-life
scenarios, a production system and an online shopping process. The examined
scenarios are extensions in complexity of the simple process examined in Chapter 6,
and include a greater number of components/activities and, by extension, more paths,
as well as control loops and all the fundamental and additional elements of the AD.
The mathematical and graphical representations of the PN models for both real-life
scenarios were obtained automatically. Finally, a formal verification and validation of
the method was also investigated proving the correctness of the automation end

models.

170

CHAPTER 8

8 Conclusions and Future Work

8.1 Introduction

The research presented in this thesis provides a powerful methodology for the
automated generation of PNs for large systems and processes including those with
control loops and dependent events. The proposed methodology accepts as input a
UML/SysML AD, as wused in industry, with the topology system/process
representation. This chapter outlines the conclusions of this research, proving that all
the research objectives established in Chapter 1 have been addressed. Contributions to
knowledge are then presented. The thesis concludes with recommendations for future

work.

8.2 Conclusions

Following the research conducted in this thesis, the key conclusions drawn related to

the research objectives are:

1. Identify the most suitable UML or SysML diagram: The UML/SysML Activity
Diagram was identified as the most suitable diagram from which the topology
information of a system or process can be retrieved and used as a starting point
for the automated PN model generation. This diagram can (i) capture the
behavioural aspects of system components and process activities which are
required for reliability modelling; (ii) be applicable to a wide spectrum of
disciplines such as aerospace, engineering, telecommunications, etc.; (iii)
model complex industrial systems and processes, maximising future
applicability; and (iv) ease the communication between different business
stakeholders by providing a notation understandable by all business users.

2. Perform a detailed literature review of Petri Net model: Petri Nets are a
versatile tool suitable for complex system and process modelling and analysis.
The graphic perspective of this model can be used both as an aided design tool

and with the help of marking to obtain information for the behaviour of a

171

given system/process. A PN can also be expressed by means of mathematical
equations and used to describe the system/process behaviour.

. Review the automated model generation methods: According to the literature
findings, FTs and PNs have received the most attention in the automated
construction of reliability models. The main limitations identified during the
literature review (literature gaps) carried out for the automated generation of
CCDs, RBDs, Markov Chains, FTs and PNs are the: (i) degree of automation
(limited capability for full automation); (ii) non-generic domain applicability;
(i11) difficulty in handling and efficiently modelling systems with many
components or complex characteristics such as control loops and dependent
events; and (iv) software dependency.

. Develop a methodology for the automated Petri Net model generation: A
novel methodology that automatically generates PN models is introduced. The
proposed methodology can handle most of the limitations identified in the
current methods reviewed for the automated construction of reliability models,
except for the generic domain applicability of the method to systems and
processes (i1 from point 3). The methodology is applicable only to processes
that consist of the most commonly used AD elements and include loops and
dependencies. The developed methodology uses as a starting point the
UML/SysML AD and applying a Java Database (MySQL) algorithm, it
generates the mathematical and graphical representations of a PN model.
Validate and verify the Petri Net model: Verification and validation of the PN
model to check that it performs the correct function and accurate
representation of the system architecture respectively have been conducted,
proving the correctness and completeness of the Java Database algorithm
developed for the PN automation procedure.

. Extend the proposed methodology providing scalability: Additional
transformation rules to cover the full range of UML/SysML AD nodes have
been introduced to the Java Database algorithm. The extended methodology
has proven scalability through its application to real-life industrial systems and
processes with loops and dependencies that consist of any possible AD

element. Hence, all the limitations discussed in point 3 have been addressed.

172

To summarise, according to the conclusions, the research objectives have been

achieved, and hence the aim of this thesis has been successfully accomplished.

8.3 Contributions to Knowledge

This thesis has contributed to knowledge in the area of automated reliability model

generation in the following ways:

— Full automated PN model generation: direct transformation of an industrial
description diagram, i.e. the UML/SysML AD, of a system/process to the
corresponding Petri Net model.

— Generic applicability: the proposed methodology can handle and efficiently
model both systems and processes without targeting specific domains,
providing potential applicability to a wide spectrum of cases.

— Modelling of advanced structural characteristics of systems and processes:
capability of the proposed methodology to model real-life industrial scenarios
with control loops and dependent events, overcoming the weakness of
reviewed methods that cannot.

— Software independence: the proposed methodology is considered as software
independent since the output mathematical and graphical representations of the
PN model, are in a usable format, without further manipulation to different

software being required.

8.4 Recommendations for Future Work

Following the research outcome in this thesis, potential future work (or research

challenges) that can be carried out in various areas is outlined in this section.

8.4.1 Automated sub-PNs Construction followed by Simulation
Analysis

As discussed in Chapter 5 for the recycling IT asset process, the overall PN model,

automatically generated from the application of the Java Database algorithm in

Chapter 4, can be expanded with the help of sub-PNs, by generating one net for each

transition included in the overall PN. These sub-PNs provide a more comprehensive

understanding of the IT asset process by showing how the data provided can be

173

represented using a PN model. This expansion of the model that provides an extra
layer of model granularity can be carried out in various ways according to the data
available. For the recycling IT asset process, for which probabilistic and timed data
was given, the Java Database algorithm has been extended and the corresponding sub-
PNs have been obtained automatically. The code added produces a final PN that
consists of the sub-nets developed for the transitions of the overall PN, considering
both probabilistic and timed data. In order to provide a generic applicability,
additional cases should be investigated. Thus, further work can be carried out to
extend the methodology to automatically identify the type of given data, i.e. (i) only
probabilistic data; (ii) only timed data; or (iii) both probabilistic and timed data, to

produce the corresponding final PN.

Further to this extension, the proposed algorithm can be enhanced to support the
automated simulation analysis of the final PN models by recognising different PN
formats. Three cases need to be considered based on the data available, as discussed
earlier. Hence, the software added for the simulation should be able to recognise the
type of the final PN model automatically generated and conduct the corresponding
simulation each time. The automated simulation will aid the methodology to validate
the PN models without user’s intervention and also to acquire results that can help
decision-making with the view to the increase system’s or process’ reliability and

performance.

8.4.2 Automated Reliability Analysis

The software could be expanded to automatically return the overall system/process
unreliability, which can be useful to identify system limitations and, by extension, to
enhance system’s performance. This could be accomplished by developing an
algorithm that would accept as inputs the failure data of system’s
components/process’ activities as well as the relationships between them in order to
calculate the system/process unreliability. For the identification of system’s
components/process’ activities relationships, the Java Database algorithm, introduced
in this research study, could be enhanced with rules that would allow automatic
identification of the connectivity between components/activities such as connection in

series or parallel. For example, the AD nodes placed after a fork node could be

174

considered as parallel events, whereas two or more AD nodes connected end-to-end,

forming a single path could be considered as serial events.

8.4.3 Additional PN Model Features

The strength of this method could be enhanced by considering additional PN features
such as inhibitor arcs to restrict the process to only one token, i.e. item/device, at the
same time. This addition would increase the applicability range of the proposed
method to real-life industrial queuing systems/processes. This could be accomplished
by extending the algorithm developed for the graphical representation of the PNs to
automatically add inhibitors where needed according to the timed data provided.
Additionally, the code could be extended to automatically generate and simulate PNs
with multiple initial markings, i.e. multiple tokens residing in one/or more places.
Finally, alternative types of PNs such as Coloured PNs could be considered to be
automatically generated, by introducing new construction rules such as allowing
tokens to have a data value attached to them. All these features that add complexity to
the PN model behaviour could increase the flexibility and popularity of the proposed
method.

8.4.4 Investigation of Inputs

Another line of future investigation could include the adjustment of the proposed
methodology and expansion of the software to accept as input multiple
systems/processes that interact with each other. This extension can be beneficial since
these types of multiple interacting systems/processes are commonly met in industry.
This could be accomplished by allowing the user to enter multiple topology diagrams,
i.e. UML/SysML ADs, into the algorithm, and then generate a sub-PN model for each
UML/SysML AD and then link them together by generating an overall PN. Additional
extension of this work could be if the software accepts alternative UML/SysML
diagrams such as the BDD and IBD. This could be accomplished by: (i) examining the
structure of the XMI files obtained from the new diagrams to decide if XMI model
transformations are necessary to be conducted; (ii) introducing new transformation
rules for the elements employed in these new diagrams; and (iii) defining rules to
determine how the data retrieved from each diagram can be used for the PN
construction. This last extension of the software to accept alternative diagrams would

be beneficial in increasing the methodology’s applicability.

175

8.4.5 Representation of PN results into the UML/SysML AD

An animated Graphical User Interface (GUI), readily understandable by users, could
be built to represent the results of calculations made on the low level model (PN) into
the high level model (UML/SysML). This extension would facilitate the users to
understand how the results obtained from the simulation analysis are related to the
UML/SysML AD and, by extension, to identify limitations and make possible
recommendations to enhance the reliability and performance of examined systems and
processes. Additionally, the design and implementation of a GUI to the proposed
methodology for the automated PN model construction could potentially lead to an
increase in popularity of the methodology since it would not require the users to have

knowledge of PN formalisms.

176

177

Bibliography

AADL (2004). Society of Automotive Engineers (SAE) Avionics Systems Division
(ASD) AS-2¢ Subcommittee. (2004). Avionics Architecture Description Language
Standards. Draft v0.99.

Adachi, M., Papadopoulos, Y., Sharvia, S., Parker, D. and Tohdo, T. (2011). An
approach to optimisation of fault tolerant architectures using HIP-HOPS. Software

Practice and Experience, 41(11): 1303-1327.

Agarwal, B. (2013). Transformation of UML Activity Diagrams into Petri Nets for
Verification Purposes. International Journal of Engineering and Computer Science,

2(3): 798-805.

Al-Aomar, R., Ulgen, O.M. and Williams, E.J. (2015). Process simulation using
witness. Wiley, Hoboken.

Alhroob, A., Dahal, K. and Hossain, A. (2010). Transforming UML sequence diagram
to High Level Petri Net. 2/ International Conference on Software Technology and
Engineering (ICSTE), USA, (1): 260-264.

André, E., Benmoussa, M.M., and Choppy, C. (2014). Translating UML state
machines to coloured Petri Nets using Acceleo: A report. ESSS. EPTCS.

Andreadakis, S.K. and Levis, A.H. (1988). Synthesis of distributed command and
control for the outer air battle. Proceedings of the 1988 Symposium on C° Research,

SAIC, McLean, VA.

Andrews, J. D. and Ridley, I. M. (2001). Reliability of Sequential Systems Using the
Cause-Consequence Method. Proceedings of the Institution of Mechanical Engineers,

Part E: Journal of Process Mechanical Engineering, 215(3): 207-220.

Andrews, J.D. and Henry, J.J. (1997). A computerized fault tree construction
methodology. Proceedings of the Institution of Mechanical Engineers, Part E:
Journal of Process Mechanical Engineering, 211(3): 171-183.

178

Andrews, J.D. and Moss, B. (2002). Reliability and Risk Assessment. (2" edition).
Wiley-Blackwell.

Balci, O. (1998). Verification, Validation, and Testing. Banks, J. (ed.) The Handbook
of Simulation, ch. 10, John Wiley & Sons, Chichester.

Balci, O. (2004). Quality Assessment, Verification, and Validation of Modelling and
Simulation Applications. Proceedings of the 2004 Winter Simulation Conference,
122-129.

Banas, D. (2012). UML 2.0 ACTIVITY DIAGRAMS. Available via:

http://www.newthinktank.com

Banks, J., Gerstein, S. and Searles, S.P. (1987). Validation, and Verification of
Complex Simulations: A Survey. Proceedings of the Conference on Methodology and
Validation, 13-18.

Bao, N.Q. (2010). A proposal for a method to translate BPMN model into UML

activity diagram. Vietnamese-German University — BIS.

Bock. C. (2005). UML 2 Activity and Action Models Part 6: Structures Activities.
Journal of Object Technology, 4(4): 43-66.

Boiteau, M., Dutuit, Y., Rauzy, A. and Signoret, J.-P. (2006). The data-flow language
in use: modelling of production availability of a multi-state system. Reliability

Engineering and System Safety, 91(7): 747-755.

Bouissou, M. (2006). A Generalised of Dynamic Fault Trees through Boolean logic
Driven Markov Processes (BDMP). ESREL, IEEE Computer Society, 2(1): 708-717.

Brameret P.-A., Rauzy, A. and Roussel, J.-M. (2015). Automated generation of partial
Markov chain from high level descriptions. Reliability Engineering and System Safety,
139: 179-187.

Cardoso, A.J.S (2002). Quality of Service and Semantic Composition of Workflows.

(Doctoral dissertation, University of Georgia).

Cassandras, C.G. and Lafortune, S. (2008). Introduction to Discrete Event Systems.

(2™ edition). New York: Springer.

179

http://www.newthinktank.com/

Chew, S.P. (2010). Systems Reliability Modelling for Phased Missions with
Maintenance Free Operating Periods. Ph.D. thesis, Loughborough University.

Chew, S.P., Dunnett, S.J. and Andrews, J.D. (2008). Phased mission modelling of
systems with maintenance-free operating periods using simulated petri nets.

Reliability Engineering and System Safety, 91, 980-994.

Codd, E.F. (1970). A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 15(3): 162-166.

Colom, J.M. and Silva, M. (1991). Convex geometry and semiflows in P/T nets. A
comparative study of algorithms for computation of minimal p-semiflows. Lecture
Notes in Computer Science. Advances in Petri Nets 1990, 483: 79-112. Springer-
Verlag, Berlin.

Connolly, T.M. and Begg, C.E. (2005). Database systems: A practical approach to

design, implementation, and management. (4. [rev.] ed.), Harlow: Addison-Wesley.

DB-Engines (2018). https://www.db-engines.com

de Niz, D. (2007). Diagrams and Languages for Model-Based Software Engineering
of Embedded Systems: UML and AADL. Software Engineering Institute, Carnegie
Mellon University.

De Saqui-Sannes, P. and Hugues, P. (2012). Combining SysML and AADL for the
design, validation and implementation of critical systems. ERTSS 2012 (Embedded

Real Time Software and Systems), France.

Delligatti, L. (2013). SysML Distilled: A Brief Guide to the Systems Modelling
Language. Addison-Wesley.

Desel, J. and Reisig, W. (1998). Place/Transition Petri Nets. Reisig, W. and
Rozenberg, G. (eds.) APN 1998. LNCS, 1491: 122-173. Berlin: Springer.

Dugan, J.B., Sullivan, K.J. and Coppit, D. (2000). Developing a Low-Cost, High-
Quality Software for Dynamic Fault-Tree Analysis. [EEE Transactions on Reliability,
49(1):49-59.

Eclipse. (2015). Available via http://www.eclipse.org/

180

https://www.db-engines.com/
http://www.eclipse.org/

Evensen, K.D. and Weiss, K.A. (2010). A comparison and evaluation of real-time

software systems modelling languages. Aerospace Conference, Georgia, Atlanta.

Feiler, P.H, Gluch, D., Hudak, J. and Lewis, B. (2004). Embedded Systems
Architecture Analysis Using SAE AADL. Carnegie Mellon Software Engineering
Institute. Carnegie Mellon Institute CMU/SEI-2004-TN-005.

Feiler, P.H. and Lewis, B. (2004). The SAE AADL Standard: An Architecture
Analysis & Design Language for Embedded Real-Time Systems. IFIP World
Computer Congress 2004 — Proceedings of the Workshop on Architecture Description

Languages, Toulouse, France.

Feiler, P.H., Glunch, D.P. and Hudak, J.J. (2006). The Architecture Analysis of
Design Language (AADL): An Introduction. Carnegie Mellon Software Engineering
Institute. Carnegie Mellon Institute CMU/SEI-2006-TN-011.

Fleming, K.N. and Kalinowski, A.M. (1983). An Extension of the Beta Factor Method
for Systems with High Levels of Redundancy. PLG-0289. Newport Beach, CA: PLG.

Fowler, M. (2004). UML Distilled Third edition: A Brief Guide to the Standard Object
Modelling Language. Addison-Wesley Pearson Education.

Friedenthal, S., Moore, A. and Steiner R. (2011). 4 Practical Guide to SysML: The
Systems Modelling Language. 2" ed. Morgan Kaufmann, Burlington.

Fruchterman, T.M.J. and Reingold, E.M. (1991). Graph Drawing by Force-directed
Placement. Software-Practice and Experience, 21(11):1129-1164.

Girault, C. and Valk, R. (2003). Petri Nets for Systems Engineering: A Guide to
Modelling, Verification, and Applications. Springer-Verlag, Berlin.

Glavic, M. (20006). Agents and Multi-Agent Systems: A Short Introduction for Power
Engineers. Technical report, University of Liege Electrical Engineering and Computer

Science Department.

Gulati, R. (1996). 4 modular approach to static and dynamic fault tree analysis.

Master’s Thesis. University of Virginia, Department of Electrical Engineering.

181

Gulati, R. and Dugan, J. B. (1997). A modular approach for analysing static and
dynamic fault trees. Proceedings of the Annual Reliability and Maintainability
Symposium, USA, (1):57-63.

Hause, M. C. (2006). The Systems Modeling Language — SysML. INCOSE EuSEC
Symposium, Edinburgh.

Heller, S. (1997). Introduction to C++. Academic Press. USA.

Hillston, J. (2017). Performance Modelling — Lecture 16: Model Validation and
Verification. School of Informatics, The University of Scotland. Available via:

https://pdfs.semanticsscholar.org/presentation/5482/912231bff0c2ad6b2c8dbcedbeel 5

1469839.pdf

HiPS — Hierarchical petri net simulator. (2017). Shinshu University. Available via:

http://sourceforge.net/projects/hops-tools/.

Jancar, P., Esparza, J. and Moller, F (1999). Petri Nets and Regular Processes. Journal
of Computer and System Sciences, 59(3): 476-503.

Jensen, K. (1990). A High-level Language for System Design and Analysis. G.
Rozenberg (ed.).

Jensen, K. (1991). Coloured Petri Nets: a High-Level Language for System Design
and Analysis. Advances in Petri Nets 1990, Rozenberg, G. (ed.), Lecture Notes in
Computer Science, (483):342-416. Springer-Verlag, Berlin.

Johansson, L., Cronquist, B. and Kjellin, H. (2007). Visualisation as a tool in action
case research. 6" European Conference on Research Methods in Business and

Management, Lisbon, Portugal.

Joshi, A., Vestal, S. and Binns, P. (2007). Automatic Generation of Static Fault Trees
form AADL Models. Proceedings of the IEEE/IFIP Conference on Dependable
Systems and Networks’ Workshop on Dependable Systems, Edinburgh, UK.

Kapos, G.D., Dalakas, V, Nikolaidou, M. and Anagnostopoulos, D. (2014). An
integrated framework for automated simulation of SysML using DEVS. Transactions

of the Society for Modeling and Simulation International, 90(6): 717-744.

182

https://pdfs.semanticsscholar.org/presentation/5482/9f2231bff0c2ad6b2c8dbce4bee151469839.pdf
https://pdfs.semanticsscholar.org/presentation/5482/9f2231bff0c2ad6b2c8dbce4bee151469839.pdf
http://sourceforge.net/projects/hops-tools/

Karban, R., Weilkiens, T., Hauber, R., Zamparelli, M., Diekmann, R. and Hein, A.,
M. (2011). Cookbook for MBSE with SysML. MBSE initiative — SE2 challenge team.

Katayama, T., Zhao, Z., Kita, Y., Yamaba, H. and Okazaki, N. (2014). Proposal of a
Method to Build Markov Chain Models from UML Diagrams for Communication

Delay Testing in Distributed Systems. Journal of Robotics, Networking and Artificial
Life, 1(2): 120-124.

Khabbazi, M.R., Hasan, M.K., Sulaiman, R. and Shapi’i A. (2013). Business Process
Modelling in Production Logistics: Complementary Use of BPMN and UML. Middle-
East Journal of Scientific Research, 15(4):516-529.

Landeghem R.V. and Bobeanu C.-V. (2002). Formal modelling of supply chain: an
incremental approach using Petri Nets. Proceedings of 14" SCS Europe BVBA.

Dresden, Germany.

Lanus, M., Yin. L. and Trivedi, K.S. (2003). Hierarchical composition and
aggregation of state-based availability and performability models. /[EEE Transactions

on Reliability, 52(1): 44-52.

Lapp, S. A. and Powers, G. J. (1977). Computer-aided Synthesis of Fault Trees. /[EEE
Transactions on Reliability, 26(1):2-13.

Law, A. (2005). How to Build Valid and Credible Simulation Models. Proceeding of
the 2005 Winter Simulation Conference.

Li, Z.W. and Zhou, M.C. (2009). Deadlock resolution in automated manufacturing

systems: A novel Petri net approach. Springer-Verlag, London.

Liu, X., Ren, Y., Wang, Z., and Liu, L. (2013). Modelling method of SysML-based
reliability block diagram. Proceeding 2013 International Conference on Mechatronic

Sciences, Electrical Engineering and Computer (MEC): 206-209.

Majdara, A. and Wakabayashi, T. (2010). Automated fault tree construction for a
sample chemical plant. Journal of Risk and Reliability, 224(3): 207-216.

Mandrioli, D., Morzenti, A., Pezze, M., San Pietro, P. and Silva, S. (1996). A Petri

Net and logic approach to the specification and verification of real time systems.

183

Formal Methods for Real Time Computing (C. Heitmeyer and D. Mandrioli, eds.).
New York: Wiley.

Marsan, M.A. (1990). Stochastic Petri Nets: An Elementary Introduction. Rozenberg,
G. (de.) Advances in Petri Nets 1989, LNCS, 424, 1-29. Springer-Verlag, Berlin.

MathWorks. (2018). Available via http://www.mathworks.com/

Mhairi, S.K. (2009) The Impact of Petri Nets in System-of-Systems Engineering.
Durham theses, Durham University. Available via Durham E-Theses Online

http://etheses.dur.ac.uk/212

Mheni F., Nguyen, N. and Choley, J.Y. (2014). Automatic fault tree generation from
SysML system models. IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM), 715-720.

Microsoft (2015). http://www/microsoft.com

Mosleh, A., Fleming, K.N., Parry, G.W., Paula, H.M., Worledge, D.H. and Rasmuson,
D.M. (1988). Procedures for Treating Common Cause Failures in Safety and
Reliability Studies. NUREG/CR-4780 (EPRI NP-5613), PLG-0547, 1.

MSDN Microsoft. (2017). http://msdn.microsoft.com

Mura, 1. and Bondavalli, A. (2001). Markov Regenerative Stochastic Petri Nets to
Model and Evaluate the Dependability of Phased Missions. /[EEE Transactions on
Computers, 50(1):1337-1351.

Murata, T. (1989). Petri Nets: Properties, Analysis and Applications. Proceedings of
the IEEE, 77(4): 541-580.

MySQL Workbench. (2018). Available via http://www.mysqgl.com

Obaidat, M.S. and Boudriga, N.A. (2010). Fundamentals of performance of computer

and telecommunications systems. John Wiley & Sons, Hoboken, New Jersey.

Object Management Group (OMG). (2005). OMG Unified Modeling Language (OMG
UML): Infrastructure, Version 2.0. Available via www.omg.org

184

http://www.mathworks.com/
http://etheses.dur.ac.uk/212
http://www/microsoft.com
http://msdn.microsoft.com/
http://www.mysql.com/
http://www.omg.org/

Object Management Group (OMG). (2015). OMG Unified Modeling Language (OMG
UML), Version 2.5. https://www.omg.org/spec/UML/2.5/About-UML/

Papadopoulos, Y. and Maruhn, M. (2001). Model-based Synthesis of Fault Trees from
Matlab-Simulink models. International Conference on Dependable Systems and

Networks (DSN 2001), (1): 77-82.

Papadopoulos, Y., McDermid, J.A. and Heiner, G. (2001). Analysis and synthesis of
the behaviour of complex programmable electronic systems in conditions of failure.

Reliability Engineering and System Safety, 71(3): 229-247.

Papadopoulos, Y. and Grante, C. (2005). Evolving car designs using model-based
automated safety analysis and optimisation technique. 7he Journal of Systems and

Software, 76(1): 77-89.

Petri, C.A. (1962). Kommunikation with Automaten. English Translation, 1966:
Communication with Automata, Technical Report RADC-TR-65-377, Rome Air Dev.
Centre, New York.

Pilone, D. and Pitman, N. (2005). UML2.0 in a Nutshell. (In a Nutshell (O’Reilly)).
O’Reilly Media.

Point, G. and Rauzy, A. (1999). AltaRica: Contraint automata as a description
language. Journal Européen des Systemes Automatises, 33(8-9):1033-1052.

PostgreSQL. (2018). http://www.postgresqgl.org

Prosvirnova, T. and Rauzy, A. (2013). AltaRica 3.0 project: compile Guarded
Transition Systems into Fault Trees. European Safety, Reliability and Reliability
Conference, ESREL 2013, 1121- 1128.

Proth, J.-M. and Xie, X. (1996). Petri nets: a tool for design and management of

manufacturing systems. John Wiley & Sons.

Rauzy, A. (2002). Mode automata and their compilation into fault trees. Reliability
Engineering and System Safety, 78: 1-12.

Raychaudhuri, S. (2008). Introduction to Monte Carlo Simulation. Proceedings of the

40™ Conference on Winter Simulation. Miami, New York, 91-100.

185

https://www.omg.org/spec/UML/2.5/About-UML/
http://www.postgresql.org/

Recalde, L., Teruel, E. and Silva, M. (1998). On linear algebraic techniques for
liveness analysis of P/T systems. Journal of Circuits, Systems and Computers, 8(1):

223-265.

Reza, H. and Chatterjee, A. (2014). Mapping AADL to Petri Net Tool-Sets Using
PNML Framework. Journal of Software Engineering and Application, 7: 920-933.

Richardeau, F. and Pham, T.T.L. (2013). ‘Reliability Calculation of Multilevel
Converters: Theory and Applications.” IEEE Transactions on Industrial Electronics,

60(10): 4225-4233.

Riggs, S. and Krosing, H. (2010). PostgreSQL 9 Administration Cookbook: Solve
real-world PostgreSQL problems with over 100 simple, yet incredibly effective
recipes. Birmingham: Packt Publishing Ltd. ISBN 978-1-849510-28-8.

Robidoux, R., Xu, H., Xing, L., & Zhou, M. (2009). Automated Modelling of
Dynamic Reliability Block Diagrams Using Coloured Petri Nets. /EEE Transactions
on Systems, Man, and Cybernetics — Part A: Systems and Humans, 40(2): 337-351.

Robinson, S. (1994). Successful Simulation: A Practical Approach to Simulation
Projects. Maidenhead, UK: McGraw-Hill.

Robinson, S. (1997). Simulation model verification and validation: Increasing the

user’s confidence. Proceeding of the Winter Simulation Conference, 53-59.

Salem, S.L., Apostolakis, G.E. and Okrent, D. (1977). A new methodology for the
computer-aided construction of fault trees. Annals of Nuclear Energy, 4(9-10): 417-
433.

Salem, S.L., Wu, J.S. and Apostolakis, G.E. (1979). Decision Table Development and
Application to the Construction of Fault Trees, Nuclear Technology, 42: 51-64.

Sargent, R.G. (1992). Validation and Verification of Simulation Models. Proceedings
of 1992 Winter Simulation Conference, Arlington, Virginia, USA, 104-114.

Schneeweiss, W.G. (1999). Petri nets for reliability modelling: in the fields of
engineering safety and dependability. LiLoLe Verlag GmbH, Hagen, Germany.

186

Soding. R. (2009). A Brief Introduction into UML 2. Available via:

http://www.metagear.de

SPARX Systems. (2018). Available via: http://www.sparxsystems.com

Stockwell, K.S. and Dunnett, S.J. (2013). Automatic construction of a reliability
model for a phased mission system. Proceedings of the 20th Advances in Risk and

Reliability Technology Symposium, 192-204.

Taibi, M., Ioualalen M. and Abdmeziem, R. (2013). An Automatic Petri-net Generator
for Modelling Multi-agent Systems. Proceedings of the 8" International Conference

on Software Engineering Advances, 128-133.

Tangkawarow [.LR.H.T. and Waworuntu, J. (2016). A Comparative of business process
modelling techniques. IOP Conference Series: Materials Science and Engineering,

128(1): 1-16.

Tsai, L.S. and Chang, Y. (1995). Timing Constraint Petri Nets and Their Application
to Schedulability Analysis of Real-Time System Specifications. I[EEE Transactions on
Software Engineering, 21(1): 32-49.

Valaityte, A., Dunnett, S.J. and Andrews, J.D. (2010). Development of an algorithm
for automated cause-consequence diagram construction. International Journal of

Reliability and Safety, 4(1): 46-68.

van der Aalst, W.M.P. (1998). The Application of Petri nets to Workflow

Managements. Journal of Circuits Systems and Computers, 8(1): 21-66.

van der Aalst, W.M.P. (1999). Formalization and Verification of Event-driven Process

Chains. Information and Software Technology, 41(10): 639-650.

van der Aalst, W.M.P. (2011). Alpha Algorithm: Limitations. Process Mining:
Discovery, Conformance and Enhancement of Business Processes. Springer-Verlag,

Berlin.

van der Aalst, W.M.P. (2011). Analysis of Process Models: Introduction, state space
analysis and simulation in CPN Tools. [Power Point Presentation] Available via:

cpntools.org/wp-content/uploads/2018/01/analysis.pdf (Accessed: 07 June 2017).

187

http://www.metagear.de/
http://www.sparxsystems.com/

van der Aalst, W.M.P., Weijters, A.JJM.M. and Maruster, L. (2004). Workflow
mining: Discovering process models from event logs. [EEE Transactions on

Knowledge and Data Engineering, 16(9): 1128-1142.

van Landeghem, R. and Bobeanu, C.-V. (2002). Formal modelling of supply chain:
An incremental approach using Petri nets. /4" European Simulations Symposium and

Exhibition.

Venkatesh, K., Zhou, M. and Claudill, R., J. (1994). Comparing Ladder Logic
Diagrams and Petri Nets for Sequence Controller Design Through a Discrete

Manufacturing System. IEEE Transactions on Industrial Electronics, 41(6): 611-619.

Villani, E., Miyagi, P.E. and Valette, R. (2007). Modelling and Analysis of Hybrid
Supervisory Systems: A Petri Net Approach. Advances in Industrial Control, Springer-
Verlag, London.

Villemeur, A. (1992). Reliability, Availability, Maintainability and Safety Assessment,
Vol.1: Methods and Techniques. Wiley, New Y ork.

Volovoi, V. V. (2004). Modeling of system reliability Petri Nets with aging tokens.
Reliability Engineering and System Safety, 84(2): 149-161.

Volovoi, V.V. (2013). Abridged Petri Nets. ArXiv, arXiv: 1312.2865.

Vyzaite, G., Dunnett, S.J. and Andrews, J.D. (2005). Cause-consequence analysis of
non-repairable phased missions. Reliability Engineering & System Safety, 91(4):398-
406.

Walker, M. and Papadopoulos, Y. (2009). Qualitative temporal analysis: towards a
full implementation of the fault tree handbook. Control Engineering Practise, 71(10):
1115-1125.

Wang, J. (2006). Petri nets dynamic event-driven system modelling. Paul Fishwick
(eds), Handbook of Dynamic System Modeling, 1-17. CRC Press.

Wang, P. (2017). Civil Aircraft Electrical Power System Safety Assessment: Issues
and Practices. Civil Aviation University of China, Tianjin, China, 270-276.

188

Xie, G, Xue, D. and Xi, S. (1993). Tree-Expert: A tree based expert system for fault
tree construction. Reliability Engineering and System Safety, 40(1): 295-309.

Zhao, C., Bhushan, M. and Venkatasubramanian, V. (2005). PHASUITE: An
automated HAZOP analysis tool for chemical processes: Part 1. Knowledge
Engineering Framework. Process Safety and Environmental Protection, 83(B6): 509-

532.

Zhou, M.C. and DiCesare, F. (1989). Adaptive design of Petri Net controllers for error
recovery in automated manufacturing systems. /EEE Transactions on Systems, Man,

and Cybernetics, 19(5): 963-973.

Zille, V., Bérenguer, C., Grall, A. and Despujols, A. (2010). Simulation of maintained
multicomponent systems for dependability assessment. In Faulin, Javier and Juan,
Angel A. and Martorell, Sebastian and Ramirez-Marquez, J.E. (eds), Simulation
Methods for Reliability and Availability of Complex Systems, Springer Series in
Reliability Engineering, 12(1): 253-272. London: Springer London.

189

Appendix A - Simple Process Example (XMI File)
Appendix A includes the XMI file for the simple process shown in Chapter 3.

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="20131001"
xmlns:xmi="http://www.omg.org/spec/XMI/20131001"
xmlns:uml="http://www.eclipse.org/UML 2/5.0.0/UML"
xmi:id="_vGtecNaPEeeXUKMyPHN3Zw" name="RootElement">
<packagedElement xmi:type="uml:Activity" xmi:id="_vIoKANaPEeeXUKMyPHN3Zw"

name="Activityl" node="_xBDrQNaPEeeXUKMyPHN3Zw _yMFT8NaPEeeXUKMyPHN3Zw
_OKiksNaPEeeXUKMyPHN3Zw _2ctboNaPEeeXUKMyPHN3Zw _XoMwINaQEee330p701iFb5A
_YsEn8NaQEee330p701Fb5A _aBN18NaQEee330p70iFb5A _b330gNaQEee330p701iFb5A">

<edge xmi:type="uml:ControlFlow" xmi:id="_f-3gINaQEee330p701Fb5A"
target="_0KiksNaPEeeXUKMyPHN3Zw" source="_xBDrQNaPEeeXUKMyPHN3Zw" />

<edge xmi:type="uml:ControlFlow" xmi:id="_gyJXMNaQEee330p701Fb5A"
target="_b330gNaQEee330p701Fb5A" source="_0KiksNaPEeeXUKMyPHN3Zw" />

<edge xmi:type="uml:ControlFlow" xmi:id="_hjulINaQEee330p701Fb5A"
name="action_1_pass" target="_2ctboNaPEeeXUKMyPHN3Zw"
source="_b330gNaQEee330p70iFb5A" />

<edge xmi:type="uml:ControlFlow" xmi:id="_1V_IgNaQEee330p70i1Fb5A"
name="action_1_fail" target="_XoMwINaQEee330p70iFb5A"
source="_b330gNaQEee330p70iFb5A" />

<edge xmi:type="uml:ControlFlow" xmi:id="_jNf UNaQEee330p701iFb5A"
target="_aBN18NaQEee330p70i1Fb5A" source="_2ctboNaPEeeXUKMyPHN3Zw" />

<edge xmi:type="uml:ControlFlow" xmi:id="_j433kNaQEee330p701Fb5A"
target="_aBN18NaQEee330p701Fb5A" source="_XoMwINaQEee330p70i1Fb5A"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_RLTfwNaQEee330p70i1Fb5A"
target="_YsSEn8NaQEee330p70i1Fb5A" source="_aBN18NaQEee330p70iFb5A"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_LRWGYNaQEee330p70iFb5A"
target="_yMFT8NaPEeeXUKMyPHN3Zw" source="_YsSEn8NaQEee330p70iFb5A"/>

<node xmi:type="uml:InitialNode" xmi:id="_xBDrQNaPEeeXUKMyPHN3Zw"
name="pin" outgoing="_f-3gINaQEee330p70iFb5A" />

<node xmi:type="uml:ActivityFinalNode" xmi:id="_yMFT8NaPEeeXUKMyPHN3Zw"
name="pout"” incoming="_LRWGYNaQEee330p701Fb5A" />

<node xmi:type="uml:0paqueAction” xmi:id="_@KiksNaPEeeXUKMyPHN3Zw"
name="Action_1" incoming="_f-3gINaQEee330p701iFb5A"
outgoing="_gyJXMNaQEee330p701Fb5A" />

<node xmi:type="uml:0paqueAction"” xmi:id="_2ctboNaPEeeXUKMyPHN3Zw"
name="Action_2" incoming="_hjulINaQEee330p701Fb5A"

190

outgoing="_jNf_UNaQEee330p701Fb5A"/>

<node xmi:type="uml:0paqueAction” xmi:id="_XoMwINaQEee330p701Fb5A"
name="Action_3" incoming="_1V_IgNaQEee330p70iFb5A"
outgoing="_3j433kNaQEee330p701Fb5A" />

<node xmi:type="uml:0OpaqueAction” xmi:id="_YsEn8NaQEee330p701Fb5A"
name="Action_4" incoming="_kLTfwNaQEee330p70iFb5A"
outgoing="_LRWGYNaQEee330p701iFb5A" />

<node xmi:type="uml:MergeNode" xmi:id="_aBN18NaQEee330p701iFb5A"
name="Merge_ 1" incoming="_jNf UNaQEee330p70iFb5A _j433kRNaQEee330p70iFb5A"
outgoing="_RLTfwNaQEee330p701Fb5A" />

<node xmi:type="uml:DecisionNode" xmi:id="_b330gNaQEee330p701Fb5A"
name="Decision_1" incoming="_gyJXMNaQEee330p70iFb5A"
outgoing="_hjulINaQEee330p701Fb5A _1V_IgNaQEee330p70iFb5A"/>

</packagedElement>

</uml:Model>

191

Appendix B - SQL Code [AT]
Appendix B shows the SQL code developed for the automated generation of the

transpose of the PN incidence matrix [AT], discussed in Chapter 3.

package data;
import java.sql.*;

public class incidence_matrix_s2s{
static String ti;
// IDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://127.0.0.1:3306/sql";
// Database credentials
static final String USER = "root";
static final String PASS = "Xristina23";

public static void main(String[] args) throws SQLException {
Connection con = null;
Statement stmt = null;
PreparedStatement pst = null;
ResultSet rs = null;

try {
con = DriverManager.getConnection(DB_URL, USER, PASS);

String codel ="drop table if exists edge xmi;"

+ "CREATE TABLE edge_xmi (id int NOT NULL AUTO_INCREMENT
PRIMARY KEY, xmi:type VARCHAR(200) NULL, xmi:id~ VARCHAR(200) NULL,
“name” VARCHAR(200) NULL, ~source” varchar(200)null, ~target® VARCHAR(200)
NULL) ;";
String code2 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/Activity Diagram_S2S.uml' INTO TABLE
edge_xmi ROWS IDENTIFIED BY '<edge>' ; "

+ "update edge_xmi as tl inner join edge_xmi as t2 on
(tl. name =t2. name’) and tl1. xmi:id" <> t2. xmi:id" set tl.name='place_

J
"

+ "drop table if exists place_name ;

+ "CREATE TABLE place_name as SELECT id, “xmi:type’, “xmi:id",
CONCAT(name, "', id) AS name, source, target FROM edge_xmi where
edge_xmi.name='place ' ;"

+ "drop table if exists edge_place_xmi ;

+ "CREATE TABLE edge_place_xmi SELECT * FROM place_name UNION
SELECT * FROM edge_xmi ;"

+ "ALTER IGNORE TABLE ~edge place xmi® ADD UNIQUE (id,

“xmizid) ;"

+ "drop table if exists node_xmi ;"

+ "CREATE TABLE node_xmi (id int NOT NULL AUTO_INCREMENT
PRIMARY KEY, “xmi:type’ VARCHAR(200) NULL, “xmi:id~ VARCHAR(200) NULL,
name VARCHAR(200) NULL, incoming VARCHAR(200) NULL, outgoing

varchar(200)null);";

String code3 = " LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/Activity_Diagram_S2S.uml' INTO TABLE
node_xmi ROWS IDENTIFIED BY ‘<node>'; ";
String code4 = "drop table if exists double_nodes_outgoing ;"

+ "create table double_nodes_outgoing as select * from node_xmi

o/t "

where outgoing like '% % _%' ;

192

+ "drop table if exists numbers ;

+ "create table numbers (n int not null) ;"

+ "insert into numbers (n) values (1), (2), (3), (4), (5), (6),
(7), (8), (9),(10), (11), (12), (13), (14), (15) ;"

+ "drop table if exists double_separate_nodes ;

+ "create table double_separate_nodes as select
double_nodes_outgoing.id, “xmi:type’, “xmi:id’, “name’, incoming,
SUBSTRING_INDEX(SUBSTRING_INDEX(double_nodes_outgoing.outgoing, ' ',
numbers.n), '_', -1) outgoing from numbers inner join double_nodes_outgoing

on CHAR_LENGTH(double_nodes_outgoing.outgoing)-

CHAR_LENGTH(REPLACE (double_nodes_outgoing.outgoing, ' ', ''))>=numbers.n-1
order by id, n, xmi:type’, “xmi:id’, “name’, incoming, outgoing ;"
+ "DELETE FROM double_separate_nodes WHERE outgoing = '' ;"

+ "update double_separate_nodes set outgoing = concat('_',
outgoing) ;"

+ "alter table “double_separate_nodes’ change column outgoing
outgoing varchar(255) after “id" ;"

+ "drop table if exists lessthanl7 ;

+ "create table lessthanl7 (id int NOT NULL AUTO_INCREMENT
PRIMARY KEY) as SELECT “outgoing , “xmi:type’, “xmi:id’, “name’, incoming
FROM double_separate_nodes WHERE LENGTH(outgoing) < 22 ;"

+ "drop table if exists merge_shorter_than22 ;

+ "create table merge_shorter_than22 (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY) as SELECT GROUP_CONCAT(outgoing SEPARATOR ''),
“xmi:type®, “xmi:id’, “name’, incoming FROM lessthanl7 GROUP BY name ;"

+ "ALTER TABLE “merge_shorter_than22 CHANGE COLUMN
" GROUP_CONCAT (outgoing SEPARATOR '')" “outgoing™ VARCHAR(255) NOT NULL ;"

+ "drop table if exists union_1 ;"

+ "create table union_1 select * from merge_shorter_than22
union all select * from double_separate_nodes ;"

+ "DELETE FROM union_1 where LENGTH(outgoing) < 21 ;"

+ "drop table if exists double_nodes_incoming ;"

+ "create table double_nodes_incoming as select * from node_xmi
where incoming like '% % %' ;"

+ "drop table if exists double_separate_nodes ;

+ "create table double_separate_nodes as select
double_nodes_incoming.id, “xmi:type’, “xmi:id’, “name’, outgoing,
SUBSTRING_INDEX(SUBSTRING_INDEX(double_nodes_incoming.incoming, '_',
numbers.n), '_', -1) incoming from numbers inner join double_nodes_incoming
on CHAR_LENGTH(double_nodes_incoming.incoming)-
CHAR_LENGTH(REPLACE(double_nodes_incoming.incoming, '_', '"))>=numbers.n-1
order by id, n, xmi:type’, “xmi:id’, “name’, incoming, outgoing ;"

+ "DELETE FROM double_separate_nodes WHERE incoming = '' ;"

+ "update double_separate_nodes set incoming = concat('_',
incoming) ;"

+ "alter table “double_separate_nodes’ change column incoming
incoming varchar(255) after “id™ ;"

+ "drop table if exists lessthanl7 ;

+ "create table lessthanl7 (id int NOT NULL AUTO_INCREMENT
PRIMARY KEY) SELECT “outgoing , xmi:type , “xmi:id, “name’, incoming FROM
double_separate_nodes WHERE LENGTH(incoming) < 22; "

+ "drop table if exists merge_shorter_than22 ;"

+ "create table merge_shorter_than22 (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY) as SELECT GROUP_CONCAT(incoming SEPARATOR ''),
“xmi:type’, “xmi:id’, “name’, outgoing FROM lessthanl7 GROUP BY name ;"

+ "ALTER TABLE “merge_shorter_than22® CHANGE COLUMN
" GROUP_CONCAT(incoming SEPARATOR '')" “incoming™ VARCHAR(255) NOT NULL ;"

+ "drop table if exists union_2a ;"

+ "create table union_2a select * from merge_shorter_than22

193

union all select * from double separate_nodes ;

+ "drop table if exists union_2 ;"

+ "create table union_2 as select id, “outgoing’, “xmi:type’,
“xmi:id’, “name’, incoming from union_2a ;"

+ "DELETE FROM union_2 where LENGTH(incoming) < 21 ;"

+ "drop table if exists unique_activities ;"

+ "create table unique_activities as select id, outgoing,
xmi:type , "xmi:id”, “name’, incoming from node_xmi ;"

+ "DELETE FROM unique_activities where incoming like '% % %'

+ "DELETE FROM unique_activities where outgoing like '% % %'
+ "drop table if exists union_node ;"

+ "create table union_node select * from union_1 union select *
from union_2 union select * from unique_activities ;"

+ "alter table union_node drop column id ;

+ "alter table union_node add column id int NOT NULL
AUTO_INCREMENT PRIMARY KEY FIRST ;"

+ "drop table if exists union_node_tablel ;

+ "CREATE TABLE union_node_tablel (place_before_node”
VARCHAR(200) NULL, “place after node’ VARCHAR(200) NULL) as SELECT id,
“xmi:type’, “xmi:id’, “name’, incoming, outgoing FROM union_node where
(union_node. xmi:type='uml:OpaqueAction') or
(union_node. xmi:type ="uml:MergeNode') or
(union_node. xmi:type ='uml:DecisionNode"');"

+ "ALTER TABLE union_node_tablel CHANGE COLUMN “xmi:id"
“xmi:id_primary’ VARCHAR(255) NULL; "

+ "ALTER TABLE union_node_tablel CHANGE COLUMN " name’
“name_primary” VARCHAR(255) NULL ;"

+ "drop table if exists union_node_node ;

+ "CREATE TABLE union_node_node AS SELECT m.*, u2. xmi:id",
u2. name” FROM union_node_tablel m INNER JOIN edge_place_xmi u2 ON
(m. incoming = u2. xmi:id") or (m. outgoing = u2. xmi:id*) ;"

+ "UPDATE union_node_tablel t1 INNER JOIN union_node_node t2 ON
= t2. xmi:id" SET tl.place_after_node = t2.name ;"

+ "UPDATE union_node_tablel t1 INNER JOIN union_node_node t2 ON
tl.incoming = t2. xmi:id" SET tl.place_before_node = t2.name ;"

+ "delete from union_node_tablel WHERE (place_before_node is
null) and (place_after_node is null) ; "

+ "drop table if exists final_table ;

+ "CREATE TABLE final table SELECT "place_before_node”,
“name_primary , “place_after_node’ FROM union_node_tablel;"

+ "drop table if exists initial_final_table ;"

+ "CREATE TABLE initial final table (transition_before node"
VARCHAR(200) NULL, "“transition_after_node’ VARCHAR(200) NULL) as SELECT id,
“xmi:type’, “xmi:id", “name® FROM union_node where
(union_node. xmi:type ="uml:ActivityFinalNode') or
(union_node. xmi:type ='uml:FlowFinalNode') or
(union_node. xmi:type ='uml:InitialNode');"

+ "ALTER TABLE initial_final_table CHANGE COLUMN "~ xmi:id"
“xmi:id_primary” VARCHAR(255) NULL ; "

+ "drop table if exists final_node;"

+ "CREATE TABLE final _node AS SELECT m.*, ul.target, ul.source
FROM initial_ final_table m INNER JOIN edge_place_xmi ul ON
(m. xmi:id_primary = ul.target);"

+ "ALTER TABLE ~final node™ ADD COLUMN “xmi:id~ VARCHAR(255)

tl.outgoing

NOT NULL ;"

194

+ "ALTER TABLE "“final_node™ DROP COLUMN "transition_after_node”

o
)

+ "UPDATE final node t1 INNER JOIN edge_place xmi t2 ON
tl.target = t2.target SET t1. xmi:id" = t2. xmi:id™ ;"

+ "UPDATE final _node INNER JOIN union_node ON final_node.source
= union_node. xmi:id" SET final _node.transition_before_node =
union_node.name ;"

+ "drop table if exists final_node_table ;

+ "create table final_node_table as select
“transition_before_node™, name® from final_node ;"

+ "ALTER TABLE final node_table CHANGE COLUMN " name’
“place_after_node® VARCHAR(255) NULL ;"

+ "ALTER TABLE final_node_table CHANGE COLUMN
“transition_before_node™ “name_primary~ VARCHAR(255) NULL ;"

+ "ALTER TABLE final_node_table ADD COLUMN "place_before_node”
VARCHAR(255) NULL FIRST;"

+ "drop table if exists initial_node ;

+ "CREATE TABLE initial node AS SELECT m.*, u2.target,
u2.source FROM initial_final table m INNER JOIN edge_place_xmi u2 ON
(m. xmi:id_primary = u2.source) ;"

+ "ALTER TABLE “initial node® ADD COLUMN “xmi:id> VARCHAR(255)
NOT NULL ;"

+ "UPDATE initial_node t1 INNER JOIN edge_place_xmi t2 ON
tl.source = t2.source SET t1. xmi:id" = t2. xmi:id" ;"

+ "ALTER TABLE “initial node™ DROP COLUMN
“transition_before_node" ;"

+ "UPDATE initial_node INNER JOIN union_node ON
initial_node.target = union_node. xmi:id~ SET
initial_node.transition_after_node = union_node.name ;

+ "drop table if exists initial_node_table;

+ "create table initial node_table as select “name’,
“transition_after_node® from initial node ;"

+ "ALTER TABLE initial node_table CHANGE COLUMN " name”
“place_before_node® VARCHAR(255) NULL ;"

+ "ALTER TABLE initial node_table CHANGE COLUMN
“transition_after_node’ “name_primary’ VARCHAR(255) NULL ;"

+ "ALTER TABLE initial node_table ADD COLUMN "place_after_node”
VARCHAR(255) NULL ;"

+ "update final_table as t1 inner join final_node_table as t2
on (tl. name_primary =t2. name_primary) set
tl.place_after_node=t2.place_after_node;"

+ "update final_table as tl1l inner join initial node_table as t2
on (tl1. name_primary =t2. name_primary) set
tl.place_before_node=t2.place_before_node;"

+ "drop table if exists null_after ;

+ "CREATE TABLE null after as SELECT * FROM final table where
place_after_node is null and name_primary in (select name_primary from
final_table GROUP BY name_primary HAVING COUNT(*)>1) ;"

+ "UPDATE null_after na, final_table mt SET na.place_after_node
= mt.place_after_node WHERE na.name_primary = mt.name_primary and
mt.place_after_node is not null and mt.place before_node is null ;

+ "drop table if exists null_before ;"

+ "CREATE TABLE null_before as SELECT * FROM final_table where
place_before_node is null and name_primary in (select name_primary from
final_table GROUP BY name_primary HAVING COUNT(*)>1) ;"

+ "UPDATE null_before na, final_table mt SET
na.place_before_node = mt.place_before_node WHERE na.name_primary =
mt.name_primary and mt.place_before_node is not null and
mt.place_after_node is null ;"

195

+ "drop table if exists final_table ;

+ "CREATE TABLE final table select * from null_after union
select * from null_before union select * from final_table ; "

+ "DELETE nl FROM final table nl1l JOIN final_table n2 ON
nl.name_primary = n2.name_primary AND nl.place_before_node =
n2.place_before_node and nl.place_after_node is null ;"

+ "DELETE nl1 FROM final table nl1 JOIN final_table n2 ON
nl.place_after_node = n2.place_after_node AND nl.place_before_node is null
AND nl.name_primary = n2.name_primary ;"

+ "alter table final table add column id int AUTO_INCREMENT
primary key;"

+ "drop table negative_records;"

+ "create table negative_records (id int not null
AUTO_INCREMENT PRIMARY KEY) as select distinct place_before_node,
name_primary from final_table;"

+ "drop table positive_records;"

+ "create table positive_records (id int not null
AUTO_INCREMENT PRIMARY KEY) as select distinct name_primary,
place_after_node from final_table;";

pst = con.prepareStatement(codel);
pst.execute();

pst = con.prepareStatement(code2);
boolean isResult2 = pst.execute();

pst = con.prepareStatement(code3);
boolean isResult3 = pst.execute();
pst = con.prepareStatement(code4);

boolean isResult4 = pst.execute();

boolean isResultl

String codelll = "drop table if exists negative;"
+ "SET group_concat_max_len=15000;"
+ "SELECT CONCAT('create table
negative as SELECT place_before_node, ', GROUP_CONCAT(sums), 'FROM
negative_records GROUP BY id') FROM (SELECT distinct CONCAT('(case when

negative_records.name_primary = ''', name_primary, ''' then -1 else @
end) as "', name_primary, '"')sums FROM negative_records GROUP BY id) s
INTO @sql;"
+ "PREPARE stmt FROM @sql;
+ "EXECUTE stmt; "
+ "DEALLOCATE PREPARE
stmt";
pst = con.prepareStatement(codelll); boolean

isResultlll = pst.execute();

String code222 = "drop
table if exists positive;"
+ "SELECT CONCAT('create
table positive as SELECT place_after_node,', GROUP_CONCAT(sums), 'FROM
positive_records GROUP BY id') FROM (SELECT distinct CONCAT('(case when

positive_records.name_primary = "'', name_primary, ''' then 1 else @ end)
as ', name_primary, '"')sums FROM positive_records GROUP BY id) s INTO
@sql;"

+ "PREPARE
stmt FROM @sql;"

+ "EXECUTE

stmt;"

196

+ "DEALLOCATE
PREPARE stmt;"

+ "drop table if exists overall;"

+ "create
table overall SELECT * FROM positive UNION SELECT * FROM negative;"

+ "drop table
if exists schema_table; "

+ "create
table schema_table as select * from overall;"

+ "drop table
if exists column_table; "

+ "create
table column_table (primary_id int NOT NULL AUTO_INCREMENT PRIMARY KEY) as
select column_name from information_schema.columns where
table_name='overall';"

+ "DELETE
FROM column_table where primary_id=1;"

+ "drop table
if exists matrix_pass_fail;"

+ "drop table
if exists incidence_matrix_single device;"

+ "drop table
if exists table_unionl";

pst =

con.prepareStatement(code222); boolean isResult222 =
pst.execute();

String code334 = "set session
sql mode = 'NO_ENGINE_SUBSTITUTION';"
+ "DROP PROCEDURE IF
EXISTS "Te ;"
+ "SET group_concat_max_len= 150000;";
code334 += "CREATE PROCEDURE "Te ()";
code334 += "BEGIN ";
code334 += "create table
matrix_pass_fail (column_name varchar(150000)) ";
code334 += " SELECT
@query7:=GROUP_CONCAT (CONCAT('sum(" ",column_name, ')" ',column_name,"'~ ")) "
+ "AS column_name from
column_table order by CHAR_LENGTH(column_name); ";
code334 += "PREPARE stmt FROM

@query7; ";
code334 += "EXECUTE stmt;";
code334 += "DEALLOCATE PREPARE

stmt;";
code334 += "END ";

pst.execute(code334); boolean
isResult334 = pst.execute();

String queryl
= "Call Te();";

pst = con.prepareStatement(queryl);
boolean isResultA = pst.execute();

}
catch(SQLException e){}

try{ if (rs != null) rs.close();

197

if (pst != null) pst.close();
if (con != null) con.close();}
catch(Exception e){}

try{
con

=DriverManager.getConnection("jdbc:mysql://127.0.0.1:3306/sql",
"root","Xristina23");

pst =con.prepareStatement("select * from
matrix_pass_fail");
rs= pst.executeQuery();

while (rs.next())
ti=(("create table table_unionl as select place_after_node,")
+ rs.getString("column_name")+ (" ") +("from overall group by
place_after_node;"));
System.out.println(t1);
}
catch(SQLException e){} try{ if (rs != null) rs.close(); if
(pst != null) pst.close();
if (con != null) con.close();}catch(Exception e){}
try{
//STEP 2: Register JDBC driver
Class.forName("com.mysql.jdbc.Driver");
//STEP 3: Open a connection
System.out.println("Connecting to a selected
database...");
con = DriverManager.getConnection(DB_URL, USER, PASS);
System.out.println("Connected database
successfully...");
//STEP 4: Execute a query
System.out.println("Creating table in given
database...");
stmt = con.createStatement();
String sqll = t1;
stmt.executeUpdate(sqll);

System.out.println("Created table in given
database...");
}catch(SQLException se){
//Handle errors for JDBC
se.printStackTrace();
}catch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();
}finally{
//finally block used to close resources
try{
if(stmt!=null)
con.close();
}catch(SQLException se){
}// do nothing
try{
if(con!=null)
con.close();
}catch(SQLException se){
se.printStackTrace();

198

}//end finally try
}//end try

try {
con = DriverManager.getConnection(DB_URL, USER, PASS);

String t2=("create table
incidence_matrix_single device as select * from table_unionl GROUP by
place_after_node asc;");

String query = "select * from
incidence_matrix_single_device;";

pst = con.prepareStatement(t2); boolean
isResultt2 = pst.execute();

pst = con.prepareStatement(query); boolean
isResult = pst.execute();

do {

rs = pst.getResultSet();
ResultSetMetaData rsmd = rs.getMetaData();
int columnsNumber = rsmd.getColumnCount();
int col = rsmd.getColumnCount();
for (int i = 1; i <= col; i++){
String col _name = rsmd.getColumnName(i);

System.out.print(col_name + " ");
}
System.out.println("
")
// Iterate through the data in the result set and
display it.

while (rs.next()) {
//Print one row
for(int i = 1 ; i <= columnsNumber; i++){
System.out.print(rs.getString(i) + "
"Y; //Print one element of a row

}

}
isResult = pst.getMoreResults();

System.out.println();

}
while (isResult);

}
finally {

if (rs != null) {
rs.close(); }

if (pst != null) {
pst.close();}

if (con != null) {
con.close();

}
}
System.out.println("Goodbye!");
}

}//end main
//end JIDBCExample

199

Appendix C - SQL Code [Mo]
Appendix C presents the SQL code developed for the automated generation of the PN

initial marking matrix [Mo], discussed in Chapter 3.

package stepl_initial_marking;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
public class initial _marking {
public static void main(String[] args) throws SQLException {
Connection con = null;
PreparedStatement pst = null;
ResultSet rs=null;
String cs =
"jdbc:mysql://localhost:3306/sql?allowMultiQueries=true";
String user = "root";
String password = "Xristina23";
try {
con = DriverManager.getConnection(cs, user, password);
String codel = "SET SQL_SAFE_UPDATES=0;"

+ "drop table if exists initial_marking;"

+ "create table initial_marking (primary_id int not null
auto_increment primary key, activity varchar(2590),
process_number_of_devices int);"

+ "insert into initial marking (activity) select
place_after_node from incidence_matrix_single_device;"

+ "drop table if exists m@_marking;"

+ "create table m@_marking (primary_id int not null
auto_increment primary key) SELECT IFNULL(process_number_of_devices, 0)
FROM initial_marking;"

+ "ALTER TABLE "m@_marking~ CHANGE COLUMN
"IFNULL(process_number_of_devices, ©) process_number_of_devices' int;

+ "alter table initial_marking drop column
process_number_of_devices;"

+ "drop table if exists initial_marking_final;"

+ "CREATE TABLE initial_marking_final AS (SELECT
initial_marking.*, m@_marking.process_number_of_devices FROM
initial _marking INNER JOIN m@ _marking ON initial_marking.primary_id =
m@_marking.primary_id);"

+ "UPDATE initial_marking_final SET
initial_marking_final.process_number_of_devices = "
+ "REPLACE(initial_marking final.process_number_of_devices,

lel, lll) 1]

+ " where initial_marking_final.activity like 'pin%';" ;

pst = con.prepareStatement(codel);
boolean isResultl = pst.execute();

String query = "select * from initial_marking_final;";
pst = con.prepareStatement(query);
boolean isResult = pst.execute();
do {
rs = pst.getResultSet();

200

it.

ResultSetMetaData rsmd = rs.getMetaData();
int columnsNumber = rsmd.getColumnCount();
int col = rsmd.getColumnCount();
for (int i = 1; i <= col; i++){

String col name = rsmd.getColumnName(i);

System.out.print(col_name + " ");

b
System.out.println(" ");

// Iterate through the data in the result set and

while (rs.next()) {

//Print one row

for(int i = 1 ; i <= columnsNumber; i++){
System.out.print(rs.getString(i) + "

//Print one element of a row

}

}
isResult = pst.getMoreResults();

System.out.println();

}

while (isResult);

} finally {
if (rs != null) {
rs.close();

}

if (pst != null) {
pst.close();

}

if (con != null) {
con.close();

}

201

display

")

Appendix D - Graphical Representation of PN Model

Part A - SQL Code for the Automated PN Generation
Appendix D, part A includes the SQL code created for the automated generation of
the graphical representation of PNs, discussed in Chapter 3.

package stepl_overall_visualisation_PN;

import java.io.InputStream;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.ArraylList;

import java.sql.PreparedStatement;

public class Visualisation_PN_Overall {

public static void main (String[] args) {

Connection conn = null;
PreparedStatement statement = null;
ResultSet rs = null;

try{

conn=DriverManager.getConnection("jdbc:mysql://localhost:3306/sql?verifySer
verCertificate=false&useSSL=true", "root","Xristina23");
//PreparedStatement statement
=conn.prepareStatement("select Input,Output from input_output");
statement =conn.prepareStatement("select * from
final_table");
rs= statement.executeQuery();

System.out.println("strict digraph OverallPetriNet{ size=\"40\"
;node [margin=0 fontcolor=black fontsize=17 width=0.6 height=1.2 shape=box
color=blue];");
while (rs.next())
System.out.println((

) + rs.getString("name_primary") + ('"")

+("3")); }
catch(SQLException e){}
try{
if (rs != null)
rs.close();
if (statement != null)
statement.close();
if (conn != null)
conn.close();
}catch(Exception e){}
try{

conn=DriverManager.getConnection("jdbc:mysql://localhost:3306/sql?verifySer
verCertificate=false&useSSL=true", "root","Xristina23");

statement =conn.prepareStatement("select *

from final table");
rs= statement.executeQuery();

202

System.out.println("node [margin=0
fontcolor=black fontsize=17 width=0.3 shape=circle color=blue];");

while (rs.next())
System.out.println(('""') +
rs.getString("place_before_node") + ('"') + (";")+ ('"") +
rs.getString("place_after_node")+ ('"') + (";"));
}
catch(SQLException e){}

try{
if (rs != null)
rs.close();
if (statement != null)
statement.close();
if (conn != null)
conn.close();
}catch(Exception e){}

try{

conn=DriverManager.getConnection("jdbc:mysql://localhost:3306/sql?ver

ifyServerCertificate=false&useSSL=true", "root","Xristina23");

statement
=conn.prepareStatement("select * from final table");

rs= statement.executeQuery();

System.out.println("edge [color=Blue,
style=normal] ");

while (rs.next())
System.out.println(('"")

+rs.getString("name_primary") + ('""') +(" -> ") + ('"") +
rs.getString("place_after_node™)+ ('"') + (";"));

}
catch(SQLException e){}

try{
if (rs != null)
rs.close();
if (statement != null)
statement.close();
if (conn != null)
conn.close();
}catch(Exception e){}

try{

conn=DriverManager.getConnection("jdbc:mysql://localhost:3306/sql?verifySer
verCertificate=false&useSSL=true", "root","Xristina23");

statement
=conn.prepareStatement("select * from final_table");

rs= statement.executeQuery();

while (rs.next())

System.out.println(('""') +
rs.getString("place_before_node") + ('"') + (" -> ") + ('""") +
rs.getString("name_primary")+ ('"') + (";"));

catch(SQLException e){}
try{

203

if (rs != null)
rs.close();
if (statement != null)
statement.close();
if (conn != null)
conn.close();
}catch(Exception e){}
System.out.println(
"overlap=false label=\"Automatic Layout of the Overall Petri Net Model for
the handler_case\" fontsize=13; } ");

}

Part B - DOT File for the PN Model Generation (GraphViz Input)
Appendix D, part B covers the DOT file obtained from the execution of the SQL code

shown in Appendix D, part A, for the recycling IT asset process, discussed in Chapter
4.

strict digraph OverallPetriNet{ size="20"; node [margin=0 fontcolor=black
fontsize=27 width=0.6 height=1.2 shape=box color=blue];

"Visual Inspection"; "Visual Inspection”; "D VI"; "D VI"; "D FT"; "D _FT";
"D DE"; "D DE"; "D R"; "D_R"; "Strip_Scrap"; "Strip_Scrap"; "Strip_Scrap"; "M";
"M"; "Asset Track"; "Functional Test"; "Data_Erasure"; "Repair";
"Cleaning_De_ Labelling";

node [margin=0 fontcolor=black fontsize=27 width=0.3 shape=circle color=blue];
"ATp";"place 1"; "Rp";"place 1"; "place 1";"VIp"; "place 1";"VIf";
"place 2";"FTp"; "place 2";"FTf"; "place 3";"DEp"; "place 3";"DEf";
"place 4";"Rf"; "place 4";"Rp"; "VIf"; "SSp"; "DEf"; "SSp"; "Rf"; "SSp"; "SSp";
"pout"; "CDp"; '"pout"; "pin"; "ATp"; "VIp";"place 2"; "FTp";"place 3";
"FT{";"place 4"; "DEp"; "CDp";

edge [color=Blue, style=normal]

"ATp" -> "Visual Inspection"; "Rp" -> "Visual Inspection"; "place 1" ->
"D VI";"place 1" ->"D VI"; "place 2" ->"D FT";"place 2" ->"D FT"; "place 3" -
>"D DE";"place 3" -> "D DE"; "place 4" -> "D R";"place 4" -> "D R"; "VIf" ->
"Strip_Scrap"; "DEf" -> "Strip_Scrap"; "Rf" -> "Strip_Scrap"; "SSp" -> "M"; "CDp" -
> "M"; "pin" -> "Asset Track"; "VIp" -> "Functional Test"; "FTp" ->
"Data_Erasure"; "FT{" -> "Repair"; "DEp" -> "Cleaning De Labelling";

"Visual Inspection" -> "place 1"; "Visual Inspection" -> "place 1"; "D VI" ->
"Vip"; "D_VI" -> "VIf'; "D _FT" -=> "FTp"; "D _FT" -> "FT{"; "D _DE" -> "DEp";
"D DE" -> "DEf"; "D R" -> "Rf"; "D R" -> "Rp"; "Strip_Scrap" -> "SSp";
"Strip_Scrap" -> "SSp"; "Strip_ Scrap" -> "SSp"; "M" -> "pout"; "M" -> "pout";
"Asset Track" -> "ATp"; "Functional Test" -> "place 2"; "Data Erasure" ->
"place 3"; "Repair" -> "place 4"; "Cleaning De Labelling" -> "CDp"; }

204

Appendix E - Recycling IT Asset Process Example (XMI File)

Appendix E includes the XMI file for the recycling IT asset process shown in Chapter
4.

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="20131001"
xmlns:xmi="http://www.omg.org/spec/XMI/20131001"
xmlns:uml="http://www.eclipse.org/UML 2/5.0.0/UML"
xmi:id="_BUZs8LJITEeaTirlhAX5dxQ" name="RootElement">
<packagedElement xmi:type="uml:Activity" xmi:id="_BxHeILJTEeaTirlhAX5dxQ"

name="Activityl" node="_FtmhOLITEeaTirlhAX5dxQ _InKv8LJITEeaTirlhAX5dxQ
_MAZVRLITEeaTirlhAX5dxQ _M-adALJTEeaTirlhAX5dxQ _NahxQLJITEeaTirlhAX5dxQ
_0IQZ8LITEeaTirlhAX5dxQ _PslTcLITEeaTirlhAX5dxQ _QDcUQLITEeaTirlhAX5dxQ
_ex_zYLITEeaTirlhAX5dxQ _iwxWELJITEeaTirlhAX5dxQ _jxsAgLJTEeaTirlhAX5dxQ
_ksMg8LITEeaTirlhAX5dxQ _LtzH4LJTEeaTirlhAX5dxQ _9v0ls8LJTEeaTirlhAX5dxQ">

<edge xmi:type="uml:ControlFlow" xmi:id="_pWiwMLITEeaTirlhAX5dxQ"
target="_InKv8LJITEeaTirlhAX5dxQ" source="_FtmhOLITEeaTirlhAX5dxQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_0ZeSILJTEeaTirlhAX5dxQ"
name="ATp" target="_MAZVRLITEeaTirlhAX5dxQ"
source="_InKv8LITEeaTirlhAX5dxQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_Ao6DcLJUEeaTirlhAX5dxQ"
name="place_1" target="_1iwxWELJTEeaTirlhAX5dxQ"
source="_MAZVRLITEeaTirLhAX5dxQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_FrRKELJUEeaTirlhAX5dxQ"
name="VIp" target="_M-adALJITEeaTirlhAX5dxQ"
source="_1wxWELJITEeaTirLlhAX5dxQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_JXp8QLJUEeaTirlhAX5dxQ"
name="VIf" target="_0IQZ8LJITEeaTirlhAX5dxQ"
source="_1wxWELJTEeaTirlhAX5dxQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_NbtAgLJUEeaTirlhAX5dxQ"
name="place_2" target="_jxsAgLITEeaTirlhAX5dxQ" source="_M-
adALJTEeaTirlhAX5dxQ" />

<edge xmi:type="uml:ControlFlow" xmi:id="_N9kXcLJUEeaTirlhAX5dxQ"
name="FTp" target="_NahxQLJITEeaTirlhAX5dxQ"
source="_jxsAgLITEeaTirlhAX5dxQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_QEscALJUEeaTirlhAX5dxQ"
name="FTf" target="_PsLTcLITEeaTirlhAX5dxQ"
source="_jxsAgLITEeaTirlhAX5dxQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_XKOxMLIUEeaTirlhAX5dxQ"
name="place_3" target="_ksMg8LJTEeaTirlhAX5dxQ"
source="_NahxQLJITEeaTirlhAX5dxQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_Ysk30LJUEeaTirlhAX5dxQ"
name="DEp" target="_QDcUQLITEeaTirlhAX5dxQ"
source="_ksMg8LITEeaTirLhAX5dxQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_d8HeOLJUEeaTirlhAX5dxQ"
name="DEf" target="_0IQZ8LJTEeaTirlhAX5dxQ"
source="_ksMg8LITEeaTirLhAX5dxQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_h5c3ELJUEeaTirlhAX5dxQ"
name="place_4" target="_LtzH4LJTEeaTirlhAX5dxQ"
source="_PslLTcLITEeaTirlhAX5dxQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_jOjoOLJUEeaTirlhAX5dxQ"
name="Rf" target="_0IQZ8LJITEeaTirlhAX5dxQ"
source="_LtzH4LJTEeaTirlLhAX5dxQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_LLpARLIJUEeaTirlhAX5dxQ"
name="Rp" target="_MAZVRLITEeaTirlhAX5dxQ"
source="_LtzH4LJTEeaTirlhAX5dxQ"/>

205

<edge xmi:type="uml:ControlFlow" xmi:id="_pJgkULJUEeaTirlhAX5dxQ"
name="SSp" target="_9vls8LITEeaTirlhAX5dxQ"
source="_0IQZ8LJTEeaTirlhAX5dxQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_vAOV8LJUEeaTirlhAX5dxQ"
name="CDp" target="_9vls8LITEeaTirlhAX5dxQ"
source="_QDcUQLITEeaTirlhAX5dxQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_1tIc8LJUEeaTirlhAX5dxQ"
target="_ex_zYLJITEeaTirlhAX5dxQ" source="_9vls8LITEeaTirlhAX5dxQ"/>

<edge xmi:type="uml:0ObjectFlow" xmi:id="_XOBqQLJtEeevDqMum9V7CA"
target="_1wxWELJTEeaTirlhAX5dxQ" source="_MAZVRLITEeaTirlhAX5dxQ">

<guard xmi:type="uml:LiteralBoolean" xmi:id="_XP7HsLJtEeevDgMum9V7CA"
value="true"/>
<weight xmi:type="uml:LiteralInteger"”

xmi:id="_XP7uwlLJtEeevDgMum9V7CA" value="1"/>

</edge>

<node xmi:type="uml:InitialNode" xmi:id="_FtmhOLITEeaTirlhAX5dxQ"
name="pin" outgoing="_pWiwMLITEeaTirlhAX5dxQ"/>

<node xmi:type="uml:0OpaqueAction” xmi:id="_InKv8LJITEeaTirlhAX5dxQ"
name="Asset_Track" incoming="_pWiwMLJITEeaTirlhAX5dxQ"
outgoing="_0ZeSILITEeaTirlhAX5dxQ"/>

<node xmi:type="uml:OpaqueAction” xmi:id="_MAZVRLITEeaTirlhAX5dxQ"
name="Visual_Inspection” incoming="_0ZeSILJTEeaTirlhAX5dxQ
_LLpARLIUEeaTirlLhAX5dxQ" outgoing="_Ao6DcLIUEeaTirlhAX5dxQ
__XOBgQLJtEeevDgMum9V7CA"/ >

<node xmi:type="uml:OpaqueAction” xmi:id="_M-adALITEeaTirlhAX5dxQ"
name="Functional_Test" incoming="_FrRKELJUEeaTirlhAX5dxQ"
outgoing="_NbtAgLJUEeaTirlhAX5dxQ"/>

<node xmi:type="uml:0OpaqueAction” xmi:id="_NahxQLJTEeaTirlhAX5dxQ"
name="Data-Erasure” incoming="_N9RXcLJUEeaTirlhAX5dxQ"
outgoing="_XKOxMLJIUEeaTirlhAX5dxQ"/>

<node xmi:type="uml:OpaqueAction” xmi:id="_0IQZ8LJITEeaTirlhAX5dxQ"
name="Strip_Scrap" incoming="_JXp8QLJUEeaTirlhAX5dxQ
__d8HeOLJUEeaTirlhAX5dxQ _jOjoOLJUEeaTirlhAX5dxQ"
outgoing="_pJgkULJUEeaTirlhAX5dxQ"/>

<node xmi:type="uml:0OpaqueAction"” xmi:id="_PslTcLITEeaTirlhAX5dxQ"
name="Repair" incoming="_QEscALJUEeaTirlhAX5dxQ"
outgoing="_h5c3ELJUEeaTirlhAX5dxQ"/>

<node xmi:type="uml:0paqueAction” xmi:id="_QDcUQLJITEeaTirlhAX5dxQ"
name="Cleaning_De_Labelling" incoming="_YsR30LJUEeaTirlhAX5dxQ"
outgoing="_vA@V8LJUEeaTirlhAX5dxQ"/>

<node xmi:type="uml:ActivityFinalNode" xmi:id="_ex_zYLJITEeaTirlhAX5dxQ"
name="pout"” incoming="_1tIc8LJUEeaTirlhAX5dxQ"/>

<node xmi:type="uml:DecisionNode" xmi:id="_1iwxWELJTEeaTirlhAX5dxQ"
name="D VI" incoming="_Ao6DcLJUEeaTirlhAX5dxQ _XOBqQLJtEeevDqMum9V7CA"
outgoing="_FrRKELJUEeaTirlhAX5dxQ _JXp8QLJUEeaTirlhAX5dxQ"/>

<node xmi:type="uml:DecisionNode" xmi:id="_jxsAgLITEeaTirlhAX5dxQ"
name="D_FT" incoming="_NbtAgLJUEeaTirlhAX5dxQ"
outgoing="_N9RXcLIJUEeaTirlhAX5dxQ _QEscALJUEeaTirlhAX5dxQ"/>

<node xmi:type="uml:DecisionNode" xmi:id="_ksMg8LJITEeaTirlhAX5dxQ"
name="D DE" incoming="_XKOxMLJUEeaTirlhAX5dxQ"
outgoing="_YskR30LJUEeaTirlhAX5dxQ _d8HeOLIUEeaTirlhAX5dxQ"/>

<node xmi:type="uml:DecisionNode" xmi:id="_LtzH4LJITEeaTirlhAX5dxQ"
name="D R" incoming="_h5c3ELJUEeaTirlhAX5dxQ"
outgoing="_3jOjoOLIUEeaTirlhAX5dxQ _LLpARLIUEeaTirlhAX5dxQ"/>

<node xmi:type="uml:MergeNode" xmi:id="_9vls8LITEeaTirlhAX5dxQ"
name="M" incoming="_pJgRULJUEeaTirlhAX5dxQ _vAOV8LIUEeaTirlhAX5dxQ"
outgoing="_1tIc8LJUEeaTirlhAX5dxQ"/>

</packagedElement>

</uml:Model>

206

Appendix F

Part A - Validation - PN Visual Check (Token Game)
This section covers the MATLAB code for the visual check of the PN model

generated for recycling IT asset process, as discussed in Chapter 5.

n=1000;
x=rand(n,1);
% pathl - [AT VI(pass) FT(pass) DE(pass) CD M]

if x(1,:)<=prob(l,1) % Asset Track (pass)
if x(1,:)<=prob(3,1) % D VI (pass)
if x(1,:)<=prob(5,1) % D FT (pass)
if x(1,:)<=prob(9,1) % D DE (pass)
if x(1,:)<=prob(ll,1) % Cleaning De Labelling
(pass)
if x(1,:)<=prob(l2,1) % M (pass)
Mn=MO+ (M_AT CD*T AT);
Mnew=Mn;
Mn=Mnew+ (M_AT CD*T VI)
Mnew=Mn;
Mn=Mnew+ (M_AT CD*T D VI);
Mnew=Mn;
Mn=Mnew+ (M_AT CD*T FT);
Mnew=Mn;
Mn=Mnew+ (M_AT CD*T D FT);
Mnew=Mn;
Mn=Mnew+ (M _AT CD*T DE);
Mnew=Mn;
Mn=Mnew+ (M_AT CD*T D DE);
Mnew=Mn;
Mn=Mnew+ (M_AT CD*T CD) ;
Mnew=Mn;
Mn=Mnew+ (M_AT CD*T M) ;
Mnew=Mn
end
end
end
end
end
end

% path2 - [AT VI(pass) FT(pass) DE(fail) SS M]
if x(1,:)<=prob(l,1) % Asset Track (pass)
if x(1,:)<=prob(3,1) % D VI (pass)
if x(1,:)<=prob(5,1) % D FT (pass)
if x(1,:)>prob(9,1) % D _DE (fail)
if x(1,:)<=prob(10,1) % Strip Scrap (pass)
if x(1,:)<=prob(l2,1) % M (pass)
Mn=M0+ (M AT SS*T AT);
Mnew=Mn;
Mn=Mnew+ (M_AT SS*T VI);
Mnew=Mn;
Mn=Mnew+ (M_AT SS*T D VI);
Mnew=Mn;
Mn=Mnew+ (M_AT SS*T FT);

207

Mnew=Mn;

Mn=Mnew+ (M_AT SS*T D _FT);

Mnew=Mn;
Mn=Mnew+ (M_AT SS*T DE);
Mnew=Mn;
Mn=Mnew+ (M_AT SS*T D DE);
Mnew=Mn;
Mn=Mnew+ (M_AT SS*T SS);
Mnew=Mn;
Mn=Mnew+ (M _AT SS*T M);
Mnew=Mn;
end
end
end
end
end
end
% path3 - [AT VI(fail SS M]
if x(1,:)<=prob(l,1) % Asset Track (pass)
if x(1,:)>prob(3,1) % D VI (fail)
if x(1,:)<=prob(10,1) % Strip Scrap (pass)
if x(1,:)<=prob(1l2,1) % M (pass)
Mn=M0+ (M AT VIf SS*T AT);
Mnew=Mn;
Mn=Mnew+ (M AT VIf SS*T VI);
Mnew=Mn;
Mn=Mnew+ (M_AT VIf SS*T D VI);
Mnew=Mn;
Mn=Mnew+ (M AT VIf SS*T SS);
Mnew=Mn;
Mn=Mnew+ (M_AT VIf SS*T M);
Mnew=Mn;
end
end
end
end
% pathd - [AT VI (pass) FT(fail) R(fail) SS M]
if x(1,:)<=prob(l,1) % Asset Track (pass)
if x(1,:)<=prob(3,1) % D VI (pass)
if x(1,:)>prob(5,1) % D FT (fail)
if x(1,:)>prob(7,1) % D R (fail)
if x(1,:)<=prob(10,1) % Strip Scrap (pass)
if x(1,:)<=prob(l2,1) % M (pass)
Mn=MO+ (M AT Rf SS*T AT);
Mnew=Mn;
Mn=Mnew+ (M AT Rf SS*T VI);
Mnew=Mn;
Mn=Mnew+ (M_AT Rf SS*T D VI);
Mnew=Mn;
Mn=Mnew+ (M AT Rf SS*T FT);
Mnew=Mn;
Mn=Mnew+ (M_AT Rf SS*T D FT);
Mnew=Mn;
Mn=Mnew+ (M_AT Rf SS*T R);
Mnew=Mn;

Mn=Mnew+ (M_AT Rf SS*T D R);

208

Mnew=Mn;

Mn=Mnew+ (M_AT Rf SS*T SS);

Mnew=Mn;
Mn=Mnew+ (M_AT Rf SS*T M);
Mnew=Mn;
end
end
end
end
end
end
% pathb - [AT VI(pass) FT(fail) R(pass) VI (pass) FT(pass) DE (pass)
CD M]
if x(1,:)<=prob(l,1) % Asset Track (pass)
if x(1,:)<=prob(3,1) % D VI (pass)
if x(1,:)>prob(5,1) % D FT (fail)
if x(1,:)<=prob(7,1) % D R (pass)
Mn=MO+ (M_AT Rp CD*T AT);
Mnew=Mn;
Mn=Mnew+ (M_AT Rp CD*T VI);
Mnew=Mn;
Mn=Mnew+ (M AT Rp CD*T D VI);
Mnew=Mn;
Mn=Mnew+ (M_AT Rp CD*T FT);
Mnew=Mn;
Mn=Mnew+ (M AT Rp CD*T D FT);
Mnew=Mn;
Mn=Mnew+ (M AT Rp CD*T R);
Mnew=Mn;
Mn=Mnew+ (M_AT Rp CD*T D R);
Mnew=Mn;
if x(1,:)<=prob(3,1) % D VI (pass)
if x(1,:)<=prob(5,1) % D _FT (pass)
if x(1,:)<=prob(9,1) % D DE (pass)
if x(1,:)<=prob(l1l,1) %
Cleaning De Labelling (pass)
if x(1,:)<=prob(l2,1) $ M
(pass)
Mn=Mnew+ (M AT Rp CD2*T VI);
Mnew=Mn;
Mn=Mnew+ (M AT Rp CD2*T D VI)
Mnew=Mn;
Mn=Mnew+ (M AT Rp CD2*T FT)
Mnew=Mn;
Mn=Mnew+ (M AT Rp CD2*T D FT);
Mnew=Mn;
Mn=Mnew+ (M_AT Rp CD2*T DE);
Mnew=Mn;
Mn=Mnew+ (M AT Rp CD2*T D DE) ;
Mnew=Mn;
Mn=Mnew+ (M_AT Rp CD2*T CD);
Mnew=Mn;
Mn=Mnew+ (M _AT Rp CD2*T M) ;
Mnew=Mn;

end
end

209

end

end
end
end
end
end
end
% path6é - [AT VI(pass) FT(fail) R(pass) VI (pass) FT(pass) DE(fail) SS
M]
if x(1,:)<=prob(l,1) % Asset Track (pass)
if x(1,:)<=prob(3,1) % D VI (pass)
if x(1,:)>prob(5,1) % D FT (fail)
if x(1,:)<=prob(7,1) % D R (pass)
Mn=MO+ (M AT Rp SS*T AT);
Mnew=Mn;
Mn=Mnew+ (M_AT Rp SS*T VI);
Mnew=Mn;
Mn=Mnew+ (M AT Rp SS*T D VI);
Mnew=Mn;
Mn=Mnew+ (M_AT Rp SS*T FT);
Mnew=Mn;
Mn=Mnew+ (M AT Rp SS*T D FT);
Mnew=Mn;
Mn=Mnew+ (M_AT Rp SS*T R);
Mnew=Mn;
Mn=Mnew+ (M_AT Rp SS*T D R);
Mnew=Mn;
if x(1,:)<=prob(3,1) % D VI (pass)
if x(1,:)<=prob(5,1) % D FT (pass)
if x(1,:)>prob(9,1) % D DE (fail)
if x(1,:)<=prob(10,1) % Strip Scrap
(pass)
if x(1,:)<=prob(l2,1) $ M
(pass)
Mn=Mnew+ (M AT Rp SS2*T VI);
Mnew=Mn;
Mn=Mnew+ (M AT Rp SS2*T D VI);
Mnew=Mn;
Mn=Mnew+ (M AT Rp SS2*T FT);
Mnew=Mn;
Mn=Mnew+ (M AT Rp SS2*T D FT);
Mnew=Mn;
Mn=Mnew+ (M_AT Rp SS2*T DE);
Mnew=Mn;
Mn=Mnew+ (M AT Rp SS2*T D DE);
Mnew=Mn;
Mn=Mnew+ (M AT Rp SS2*T SS);
Mnew=Mn;
Mn=Mnew+ (M _AT Rp SS2*T M) ;
Mnew=Mn;
end
end
end
end
end
end
end
end
end

210

Part B - Validation - PN Model Numerical Simulation
This section covers the MATLAB code for the numerical simulation of the PN model

generated for recycling IT asset process, as discussed in Chapter 5.

; % generate random n numbers

n,1);

% real activity time %

% create Asset Track time based on MATLAB table data
activity difference=max time-min time;

Cc_activity dif=double (activity difference);
Cc AT=x*(c_activity dif(1,1));

Cc_activity=double (min time) ;
t Asset Track=c AT+ (c_activity(l,1));

% estimate the average time for the Asset Track activity
avg_t AT= mean(t Asset Track);

% create Visual Inspection time based on MATLAB table data
c_VI=x*(c_ activity dif(2,1));
t Visual Inspection=c VI+(c activity(2,1));

s estimate the average time for the Visual Inspection activity
avg_t VI= mean(t Visual Inspection);

% create Functional Test time based on MATLAB table data
c _FT=x*(c_activity dif(4,1));
t Functional Test=c FT + (c_activity(4,1));

% estimate the average time for the FT activity
avg_t FT= mean(t Functional Test);

% create Data Erasure time based on MATLAB table data
c _DE=x*(c_activity dif(8,1));

t Data Erasure =c DE+(c_activity(8,1));

% estimate the average time for the DE activity

avg_t DE= mean(t Data Erasure);

% create Repair time based on MATLAB table data
¢ R=x*(c_activity dif(6,1));
t Repair=c_R+(c_activity(6,1));

% estimate the average time for the R activity
avg_t R= mean (t Repair);

% create Cleaning Delabelling time based on MATLAB table data
c _CD=x*(c_activity dif(11,1));

t Cleaning Delabelling=c CD+(c_activity(1l1l,1));

% estimate the average time for the CD activity

avg_t CD= mean(t Cleaning Delabelling);

% create Strip & Scrap time based on MATLAB table data
~SS=x*(c_activity dif (10,1));

_Strip Scrap=c_SS+(c_activity(10,1));

% estimate the average time for the SS activity

 Q

211

avg_t SS= mean(t Strip Scrap);
% interval activity time %
interval difference pass=max interval pass-min interval pass;
interval difference fail=max interval fail-min interval fail;
c_interval dif pass=double(interval difference pass);
c_interval dif fail=double(interval difference fail);

c_interval pass=double (min_interval pass);
c_interval fail=double(min_ interval fail);

% create Asset Track time based on MATLAB table data
Cc_interval AT=x*(c_interval dif pass(1l,1));
t interval Asset Track=c interval AT+ (c_interval pass(1l,1));

% estimate the average time for the AT interval
avg_int AT= mean(t_interval Asset Track);

% create D VI pass time based on MATLAB table data

c_interval VI pass=x*(c_interval dif pass(3,1));

t _interval Visual Inspection pass=c_interval VI pass+(c_interval pass
(3,1));

% estimate the average time for the D VI interval

avg_int VI pass= mean(t interval Visual Inspection pass);

% create D VI fail time based on MATLAB table data

c_interval VI fail=x*(c_interval dif fail(3,1));

t _interval Visual Inspection fail=c_interval VI fail+(c_interval fail
(3,1));

% estimate the average time for the D VI interval

avg_int VI fail= mean(t interval Visual Inspection fail);

% create D FT pass time based on MATLAB table data
interval FT pass=x*(c_interval dif pass(5,1));
interval Functional Test pass=c_interval FT pass +
c_interval pass(5,1));

estimate the average time for the D FT interval
avg_int FT pass= mean(t interval Functional Test pass);

c
t
(

% create D FT fail time based on MATLAB table data
Cc_interval FT fail=x*(c_interval dif fail(5,1));

t _interval Functional Test fail=c interval FT fail +
(c_interval fail(5,1));

% estimate the average time for the D FT interval
avg_int FT fail= mean(t interval Functional Test fail);

% create D DE pass and fail time based on MATLAB table data
Cc_interval DE pass=x*(c_interval dif pass(9,1));

t interval Data Erasure =c_interval DE pass+(c_interval pass(9,1));
% estimate the average time for the D DE interval

avg_int DE= mean(t_ interval Data Erasure);

% create D R time based on MATLAB table data

c_interval R pass=x*(c_interval dif pass(7,1));

t_interval Repair=c_interval R pass+(c_interval pass(7,1));
% estimate the average time for the D R interval
avg_int R= mean (t interval Repair);

% retrieve pass prrobabilities from excel file

=

£

x (1, :)<=Pass_Probability(3,1) % VI pass

Total Asset Trackl= avg t AT + avg int AT;

Total Visual Inspection pl= avg t VI + avg int VI pass;
pathl VI=n*Pass Probability(3,1);

if y(1,:)<=Pass_Probability(5,1) % D FT pass
Total Functional Test pl= avg t FT + avg int FT pass;
path FT p=pathl VI*Pass Probability(5,1);

if z(l,:)<=Pass_Probability(9,1) % D DE pass
Total Data Erasurel= avg t DE + avg int DE;
avg_t CDl= mean(t Cleaning Delabelling);
pathl DEp=path FT p*Pass Probability(9,1);

elseif z(1l,:)>Pass Probability(9,1) % D DE fail
Total Data Erasure f2= avg t DE + avg int DE;
avg_t SS2= mean(t Strip Scrap);
path2 DEf=path FT p*(l-Pass_Probability(9,1));
end

elseif y(1l,:)>Pass_Probability(5,1) % D FT fail
Total Functional Test f3= avg t FT + avg int FT fail;
path4 FT= pathl VI*(l1-Pass Probability(5,1));

if a(l,:)<=Pass_Probability(7,1) % D R pass

if b(l,:)<=Pass Probability(9,1) % D DE pass
Total Repair3= avg t R + avg int R;
Total Visual Inspection p3= avg t VI + avg int VI pass;
Total Functional Test p3= avg t FT + avg int FT pass;
Total Data Erasure3= avg t DE + avg int DE;
avg_t CD3= mean (t Cleaning Delabelling);

path4 R=path4 FT* (Pass Probability(7,1));
path4 VI=path4 R* (Pass Probability(3,1));
path4 FTp= path4 VI* (Pass Probability(5,1))
pathd4 DE=path4 FTp* (Pass Probability(9,1));

elseif b(l,:)>Pass Probability(9,1) % D DE fail
Total Repaird4= avg t R + avg int R;
Total Visual Inspection p4= avg t VI + avg int VI pass;
Total Functional Test p4= avg t FT + avg int FT pass;
Total Data Erasured4= avg t DE + avg int DE;
avg_t SS4= mean(t Strip Scrap);
path5 DE=path4 FTp* (l1-Pass Probability(9,1));
end
elseif a(l,:)>Pass Probability(7,1) % D R fail
Total Repairb5= avg t R + avg int R;
avg_t SS5= mean(t Strip Scrap);
path5 R=path4 FT* (l-Pass Probability(7,1));
end
end

elseif x(1,:)>Pass_Probability(3,1) %D VI fail

end

Total Visual Inspection f6= avg t VI + avg int VI fail;
avg_t SS6= mean(t Strip Scrap);
path6 VI=n* (1-Pass Probability(3,1));

213

Part C - Validation - PN Model Performance Analysis

This section presents the MATLAB code for the performance analysis of the PN
model generated for recycling IT asset process, as discussed in Chapter 5. From this
code, results for the average time of each transition and the number of visits to PN

places can be obtained.

% time needed for each path to be completed

% pathl - [AT VI (pass) FT(pass) DE(pass) CD M]

t pathl=(Total Asset Trackl+Total Visual Inspection pl+Total Function
al Test pl+Total Data Erasurel+avg t CDI)

% % path2 - [AT VI(pass) FT(pass) DE(fail) SS M]

t path2=(Total Asset Trackl+Total Visual Inspection pl+Total Function
al Test pl+Total Data Erasure f2+avg t S82)

% path3 - [AT VI(pass) FT(fail) R(pass) VI (pass) FT(pass) DE (pass)
CD M]
t path3=(Total Asset Trackl+Total Visual Inspection pl+Total Function
al Test f3+Total Repair3+Total Visual Inspection p3+Total Functional
Test p3+Total Data Erasure3+avg t CD3)
% path4 - [AT VI(pass) FT(fail) R(pass) VI (pass) FT(pass) DE(fail) SS
M]
t path4=(Total Asset Trackl+Total Visual Inspection pl+Total Function
al Test f3+Total Repair3+Total Visual Inspection p3+Total Functional
Test p3+Total Data Erasure3+avg t SS4)
% pathb - [AT VI(pass) FT(fail) R(fail) SS M]
t pathb5=(Total Asset Trackl+Total Visual Inspection pl+Total Function
al Test f3+Total Repair5+avg t SS5)
% path6e - [AT VI(fail SS M]
t path6=(Total Asset Trackl+Total Visual Inspection f6+avg t SS6)

o

number of visits in PN places based on paths identified

% pathl - [AT VI (pass) FT(pass) DE(pass) CD M]
device pathl=floor (pathl DEp)
% path2 - [AT VI(pass) FT(pass) DE(fail) SS M]
device path2=floor (path2 DEf)
% path3 - [AT VI(pass) FT(fail) R(pass) VI (pass) FT(pass) DE (pass) CD
M]
device path3=floor (path4 DE)
% path4 - [AT VI(pass) FT(fail) R(pass) VI (pass) FT(pass) DE(fail) SS
M]
device path4=floor (path5 DE)
% path5 - [AT VI (pass) FT(fail) R(fail) SS M]
device pathb5=floor (path5 R)
% path6 - [AT VI(fail SS M]

device pathé=floor (path6 VI)

214

Appendix G

Part A - AD Examples in Chapter 6 (XMI Files)
Appendix G, part A covers the XMI files obtained from the three AD examples
discussed in Chapter 6, shown in Figures 6.2, 6.4 and 6.6 respectively.

XMI file obtained from the first AD example in Figure 6.2

<?xml version="1.0" encoding="UTF-8"7>
<uml:Model xmi:version="20131001"
xmlns:xmi="http://www.omg.org/spec/XMI1/20131001"
xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"
xmi:id="_dPhHOF2YEeeC05B8erOjow" name="RootElement">
<packagedElement xmi:type="uml:Activity" xmi:id="_dPgqRwF2YEeeC05BS8erQjow"

name="1Ist_example" node=" gC3ZMF2YEeeC05BS8er(jow
JMOMsF2YEeeC05B8erOjow rC9pkF2YEeeC05BS8er(jow"”
group="_jMOMsF2YEeeC05B8erOjow">

<edge xmi:type="uml:ControlFlow" xmi:id=" _MI1-z8F2gEeeC05B8erljow"
target=" KB7X8F2gEeeC05B8erOjow" source=" HWo2YF2gEeeC05B8erQjow"/>

<edge xmi:type="uml:ControlFlow" xmi:id="___ VecMF2gEeeC05BS8erOjow"
target="_gbxocF2YEeeC05B8erljow" source=" pH KoF2YEeeC05BS8erQjow"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_fU6K40OBZEeelaM4coD475g"
target="_gNgoQF2YEeeC05BS8erOjow" source=" oW66EF2YEeeC05BS8erOjow"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_[z6 PcODFEeemJSjkM3-fqg"
target=" pH KoF2YEeeC05B8erOjow" source=" gC3ZMF2YEeeC05BS8erOjow"/>

<edge xmi:type="uml:ControlFlow" xmi:id=" 2mgxEODFEeemJ8jkM3-fqg"
target="_rC9pkF2YEeeC05B8erQjow" source=" gNgoQF2YEeeC05B8erOjow"/>

<structuredNode xmi:type="uml: ExpansionRegion"
xmi:id="_jMOMsF2YEeeC05B8erOjow" name="ExpansionRegion2" mode="parallel”
outputElement="_gNgoQF2YEeeC05BS8erQjow"
inputElement=" pH KoF2YEeeC05BS8erOjow">

<node xmi:type="uml:OpaqueAction" xmi:id="_gbxocF2YEeeC05B8erQjow"

name="Write Article" incoming="___ VeMF2gEeeC05B8erljow">

215

<outputValue xmi:type="uml: OQutputPin"
xmi:id=" HWo2YF2gEeeC05B8erOjow" outgoing=" M1-z8F2gEeeC05BS8erljow"
isControl Type="true">
<upperBound xmi:type="uml:Literallnteger"
xmi:id=" HWpdcF2gEeeC05B8erQjow" value="1"/>
</outputValue>
</node>
<node xmi:type="uml:OpaqueAction" xmi:id="_ oW66EF2YEeeC05B8erQjow"
name="Review_Article" outgoing=" fU6K4OBZEeelaM4coD475g">
<inputValue xmi:type="uml:InputPin" xmi:id="_ KB7X8F2gFEeeC05B8erOjow"
name=""incoming="_M1-z8F2gEeeC05B8erljow" isControl Type="true">
<upperBound xmi:type="uml:Literallnteger"
xmi:id=" KB7 AF2gEeeC05BS8erOjow" value="1"/>
</inputValue>
</node>
<node xmi:type="uml:ExpansionNode" xmi:id="_pH KoF2YEeeC05BS8er(jow"
name="List of Topics" incoming="_[z6PcODFEeemJ8jkM3-fqg"
outgoing="_ VeMF2gEeeC05B8erOjow" isControl Type="true"
regionAsInput="_jMOMsF2YEeeC05B8er(jow"
<upperBound xmi:type="uml:Literallnteger"
xmi:id=" pH xsF2YEeeC05BS8erOjow" value="1"/>
</node>
<node xmi:type="uml:ExpansionNode" xmi:id="_gNgoQF2YEeeC05B8er(jow"
name="List Box Pin" incoming=" fU6K40OBZEeelaM4coD475g"
outgoing=" 2mgxEODFEeemJ8jkM3-fqg" type=" dPgRwF2YEeeC05B8erQjow"
isControl Type="true" regionAsOutput="_jMOMsF2YEeeC05B8erQjow">
<upperBound xmi:type="uml:Literallnteger"
xmi:id="_gNhPUF2YEeeC05B8er(jow" value="1"/>
</node>
</structuredNode>
<node xmi:type="uml:OpaqueAction" xmi:id="_gC3ZMF2YEeeC05B8erOjow"
name="Choose_Topics" outgoing="_[z6PcODFEeemJ8jkM3-fqg"/>

216

<node xmi:type="uml:OpaqueAction" xmi:id=" rC9pkF2YEeeC05B8erQjow"
name="Publish Newsletter" incoming="_2mgxEODFEeemJ8jkM3-fqg"/>
</packagedElement>

</uml:Model>

XMI file obtained from the second AD example in Figure 6.4

<?xml version="1.0" encoding="UTF-8"7>
<uml:Model xmi:version="20131001"
xmlns:xmi="http://www.omg.org/spec/XMI1/20131001"
xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"
xmi:id=" MJToQF2tEeeC05B8erOjow" name="RootElement">
<packagedElement xmi:type="uml:Activity" xmi:id="_MJVdcF2tEeeC05B8erOjow"
name="2nd example" node=" NBPVOF2tEeeC05BS8erOjow
_NVix4F2tEeeC05B8erOjow Si61sF2tEeeC05B8er(jow
_XXc7sF2tEeeC05B8erOjow'™
<edge xmi:type="uml:ControlFlow" xmi:id="_mSSjUF2tEeeC05B8er(jow"
target="_Si61sF2tEeeC05B8erOjow" source=" XXc7sF2tEeeC05BS8erOjow"/>
<edge xmi:type="uml:ObjectFlow" xmi:id="_4BTiwF2tEeeC05BS8erljow"
target="_c2xrlF2tEeeC05B8erOjow" source="_ r6HugF2tEeeC05BS8er(jow ">
<guard xmi:type="uml:LiteralBoolean" xmi:id="_4Beh4F2tEeeC05B8erQjow"
value="true"/>
<weight xmi:type="uml:Literallnteger" xmi:id="_ 4Beh4V2tEeeC05BS8erQjow"
value="1"/>
</edge>
<edge xmi:type="uml:ObjectFlow" xmi:id="_5CXXIF2tEeeC05B8erQjow"
target="_xJt 4F2tEeeC05B8erOjow" source=" uaxtYF2tEeeC05B8erljow"™
<guard xmi:type="uml:LiteralBoolean" xmi:id="_5CpDS8F2tEeeC05B8erOjow"
value="true"/>
<weight xmi:type="uml:Literallnteger" xmi:id="_ 5CpD8V2tEeeC05BS8erOjow"
value="1"/>
</edge>
<node xmi:type="uml:OpaqueAction" xmi:id="_NBPVOF2tEeeCO05B8er(jow"

name="Create Order"™

217

<outputValue xmi:type="uml: OQutputPin" xmi:id="_r6 HugF2tEeeC05B8erQjow"
name="" outgoing="_4BTiwF2tEeeC05B8erQjow"/>
</node>
<node xmi:type="uml:OpaqueAction" xmi:id="_NVix4F2tEeeC05BS8erOjow"
name="Close Order"
<inputValue xmi:type="uml:InputPin" xmi:id="_xJt 4F2tEeeC05BS8er(jow"
name=""incoming="_5SCXXIF2tEeeC05B8erljow">
<upperBound xmi:type="uml:Literallnteger"
xmi:id=" xJum8F2tEeeC05B8erOjow" value="1"/>
</inputValue>
</node>
<node xmi:type="uml:AcceptEventAction" xmi:id="_Si6 IsF2tEeeC05B8er(jow"
name="Receive Payment" incoming="_mSSjUF2tEeeC05B8erOjow">
<result xmi:type="uml:OutputPin" xmi:id=" uaxtYF2tEeeC05BS8erOjow"
name=""outgoing="_5CXXIF2tEeeC05B8erOjow">
<upperBound xmi:type="uml:Literallnteger"
xmi:id=" uayUcF2tEeeC05B8erOjow" value="1"/>
</result>
<trigger xmi:type="uml:Trigger" xmi:id="_k Y7kF2uEeeC05B8erQjow"/>
</node>
<node xmi:type="uml:SendSignalAction" xmi:id=" XXc7sF2tEeeC05BS8erOjow"
name="Send Invoice" outgoing=" mSSjUF2tEeeC05B8erOjow"
signal="_auo58F2tEeeC05B8erQjow">
<target xmi:type="uml:InputPin" xmi:id="_c2xrlF2tEeeC05B8erljow"
incoming="_4BTiwF2tEeeC05B8erOjow" type="_auo58F2tEeeC05BS8erljow"
<lowerValue xmi:type="uml:Literallnteger"
xmi:id="_c2xrlV2tEeeC05B8erQjow" value="1"/>
<upperValue xmi:type="uml:LiteralUnlimitedNatural"
xmi:id="_c2xrll2tEeeC05BS8erOjow" value="1"/>
</target>
</node>

</packagedElement>

218

<packagedElement xmi:type="uml:Signal" xmi:id="_auo58F2tEeeC05B8erQjow"
name="Verify CC Funds"/>

</uml:Model>

XMI file obtained from the third AD example in Figure 6.6

<?xml version="1.0" encoding="UTF-8"7>
<uml:Model xmi:version="20131001"
xmlns:xmi="http.//www.omg.org/spec/XMI1/20131001"
xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"
xmi:id=" MV aYF2iEeeC05B8erOjow" name="RootElement">
<packagedElement xmi:type="uml:Activity"
xmi:id=" MWBPkF2iEeeC05B8erOjow" name="3rd _example"
node=" p4tRYF2iEeeC05B8erOjow sw3xUF2iEeeC05BS8erOjow"
<node xmi:type="uml:OpaqueAction" xmi:id=" p4tRYF2iEeeC05B8erOjow"
name="User Cancels">
<handler xmi:type="uml:ExceptionHandler"
xmi:id=" weswkF2nEeeC05BS8erOjow"”
exceptionlnput="_uQxEgF2nEeeC05B8erOjow"
exceptionType=" MWBPkF2iEeeC05B8erOjow"
handlerBody="_sw3xUF2iEeeC05B8erOjow"/>
</node>
<node xmi:type="uml:OpaqueAction" xmi:id=" sw3IxUF2iEeeC05B8erOjow"
name="Account_Cancelled">
<inputValue xmi:type="uml:InputPin" xmi:id="_uQOxEgF2nEeeC05B8erQjow"
name="InputPinl">
<upperBound xmi:type="uml:Literallnteger"
xmi:id="_uQxrkF2nEeeC05B8er(jow" value="1"/>
</inputValue>
</node>
</packagedElement>

</uml:Model>

219

Part B -XSLT Files
This section includes the XSLT files which are applied to XMI files and generate an
XMI and an XML file, as discussed in Chapter 6.

First XSLT document used for the first XMI transformation

<!--The root element of a style sheet. The root element declare the XSLT namespace
to get access to the XSLT elements and attributes-->
<xsl:stylesheet version="17.0" xmlns:xsl="http.//www.w3.0rg/1999/XSL/Transform">
<!--Specifies the format for the result document, i.e. xml format-->
<I--"yes" indicates that the output should be indented according to its hierarchic
structure-->
<xsl:output method="xm/" indent="yes"/>
<!--A template contains processing instructions and commands for nodes in the input
document that match the specified XPath expression.
@* | node() is a match pattern composed of three single patterns / matches a root
node, @* matches any attribute node and node() as a pattern matches any node other
than an attribute node and root node-->
<xsl:template match="@* | node()">
<!--Copy creates a duplicate of the current node being processed.-->

<xsl:copy>
<!--Applies template rules based on a given XPath selection criteria. If no template is
found the built in templates are used. Select chooses all attributes and immediate
children of the context node-->

<xsl:apply-templates select="@* | node()"/>

</xsl:copy>
</xsl:template>
<!--this template removes from the target XML document any upperBound node
element-->
<xsl:template match="upperBound"/>
<l--this template removes from the target XML document the name attribute from any
existing inputValue and outputValue node-->

<xsl:template match="inputValue/@name"/>

220

<xsl:template match="outputValue/@name"/>

</xsl:stylesheet>

Second XSLT document used for the second XMI transformation

<xsl:stylesheet version="17.0" xmlns:xsl="http.//www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xm/" indent="yes" />

<!--Template to match any child element of the XMI root element such as
packagedElement, node, edge, etc.-->

<xsl:template match="@* | node()">

<!-- Creates a copy of the child element-->

<xsl:copy>

<!--Apply template: selects all the attributes of the context elements-->
<xsl:apply-templates select="@* | node()" />

</xsl:copy>

</xsl:template>

<!--Template to match the XMI edge elements-->

<xsl:template match="edge">

<!--Creates a copy of the edge element-->

<xsl:copy>

<!l--Apply template: selects all the attributes of the context node, i.e. edge, and
transforms the attributes to elements-->

<xsl:apply-templates select="(@*" mode="to-element" />

</xsl:copy>

</xsl:template>

<!--Template to match the XMI node elements-->

<xsl:template match="node">

<!--Creates a copy of the node element-->

<xsl:copy>

<!--Apply template: selects all the attributes of the context node, i.e. node, and
transforms the attributes to elements-->

<xsl:apply-templates select="(@*" mode="to-element" />

</xsl:copy>

221

</xsl:template>

<!--XMI attributes with their values are transformed into XML child elements -->
<!--Template to match the edge and node elements of the 2 templates above-->
<!--The name of the mode is used to match up with the apply-templates mode
attribute.-->

<xsl:template match="@ *" mode="to-element">

<!--Transforms each attribute, exists in an edge/node element, to an element in the
result document. Name corresponds to the element is created.-->

<xsl:element name="{name()}">

<!--Used to pull the data values (context) from the element selected in the last row.-->
<xsl:value-of select="." />

</xsl:element>

</xsl:template>

</xsl:stylesheet>

Part C - Java Code for the XMI Transformations
Part C covers the two files of Java code developed for the two XMI model

transformations as explained in Chapter 6.

Java code for the first XMI transformation

package data;
//This package defines the generic (application programming interfaces) APIs for
processing transformation instructions, and performing a transformation from source
to result.
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;
public class Main2 {
public void simpleMessage2() {

222

//A TransformerFactory instance can be used to create Transformer and Templates
objects. The system property that determines which Factory implementation to create
is named "javax.xml.transform.TransformerFactory".
//This property names a concrete subclass of the TransformerFactory abstract class.

TransformerFactory factory = TransformerFactory.newlnstance();
// XSLT file that defines the rules for the XML transformation

StreamSource xslStream = new StreamSource("xmi2xmi.xsl");
//input model (XMI file from Activity Diagram)

StreamSource in = new StreamSource("Activity Diagram.uml");
/I output model (XML file)

StreamResult out = new StreamResult("new xmi_file.xml");

try{
/IAn instance of this abstract class can transform a source tree into a result tree. An
instance of this class can be obtained with the TransformerFactory.newTransformer
method. This instance may then be used to process XML from a variety of sources
and write the transformation output to a variety of sinks.
Transformer transformer = factory.newTransformer(xslStream);
//Transform the XML Source (in) to a Result (out)
transformer.transform(in, out);
//This class specifies an exceptional condition that occurred during the transformation
process.
} catch (TransformerException e){

//Print the trace of methods from where the error originated. This will trace all nested
exception objects, as well as this object.

e.printStackTrace();

Java code for the second XMI transformation

package data;
import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerException;

223

import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;
public class Main {
public void simpleMessage() {
TransformerFactory factory = TransformerFactory.newlnstance() ;
// XSLT file that defines the rules for the XML transformation
StreamSource xslStream = new StreamSource("xmi2xml.xsl");
//input model (XMI file from Activity Diagram)
StreamSource in = new StreamSource("Activity Diagram.uml");
// output model (XML file)
StreamResult out = new StreamResult("new xml file.xml");
try{
Transformer transformer = factory.newTransformer(xslStream);
transformer.transform(in, out);
} catch (TransformerException ¢){

e.printStackTrace();

}

Part D - Outputs from XMI Model Tranformation of AD in Figure 6.4
In this section, the two XMI and XML files generated after the two model

transformations of the XMI file obtained from the AD in Figure 6.4 are shown.

XMI File obtained from the first XMI transformation for the AD in

Figure 6.4

<?xml version="1.0" encoding="UTF-8"?><uml:Model
xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"
xmlns:xmi="http://www.omg.org/spec/XMI/260131001" xmi:version="20131001"
xmi:id="_MJIToQF2tEeeCO5B8erOjow" name="RootElement">

<packagedElement xmi:type="uml:Activity" xmi:id="_MJIVdcF2tEeeCO5B8erojow"
name="2nd_example" node="_NBPVOF2tEeeCO5B8erdjow _NVix4F2tEeeC05B8erojow
_Si61sF2tEeeCo5B8er0jow _XXc7sF2tEeeCO5B8er@jow" >

224

<edge xmi:type="uml:ControlFlow" xmi:id="_mSSjUF2tEeeCO5B8erojow"
target="_Si161sF2tEeeCO5B8er0jow" source="_XXc7sF2tEeeCO5B8erojow"/>
<edge xmi:type="uml:0bjectFlow" xmi:id="_4BTiwF2tEeeCO5B8erojow"
target="_c2xrIF2tEeeCO5B8erdjow" source="_r6HugF2tEeeCO5B8erfjow">
<guard xmi:type="uml:LiteralBoolean" xmi:id="_4Beh4F2tEeeC05B8ero0jow"
value="true"/>
<weight xmi:type="uml:LiteralInteger"”
xmi:id="_4Beh4V2tEeeCO5B8er0jow" value="1"/>
</edge>
<edge xmi:type="uml:0bjectFlow" xmi:id="_5CXXIF2tEeeCO5B8erojow"
target="_xJt_4F2tEeeCO5B8er0jow" source="_uaxtYF2tEeeCO5B8erdjow">
<guard xmi:type="uml:LiteralBoolean" xmi:id="_5CpD8F2tEeeCO5B8erojow"
value="true"/>
<weight xmi:type="uml:LiteralInteger"”
xmi:id="_5CpD8V2tEeeCO5B8er0jow" value="1"/>
</edge>
<node xmi:type="uml:0OpaqueAction"” xmi:id="_NBPVOF2tEeeCO5B8erojow"
name="Create_Order">
<outputValue xmi:type="uml:OutputPin”
xmi:id="_r6HugF2tEeeCO5B8er@jow" outgoing=" 4BTiwF2tEeeCO5B8erdjow"/>
</node>
<node xmi:type="uml:0OpaqueAction” xmi:id="_NVix4F2tEeeCO5B8erojow"
name="Close_Order">
<inputValue xmi:type="uml:InputPin" xmi:id="_xJt_4F2tEeeCO5B8erojow"
incoming="_LCXXIF2tEeeCO5B8erojow">
</inputValue>
</node>
<node xmi:type="uml:AcceptEventAction" xmi:id="_Si61sF2tEeeCO5B8erojow"
name="Receive_Payment" incoming="_mSSjUF2tEeeCO5B8ero@jow">
<result xmi:type="uml:OutputPin" xmi:id="_uaxtYF2tEeeCO5B8erojow"
name="" outgoing="_ 5CXXIF2tEeeCO5B8erojow">
</result>
<trigger xmi:type="uml:Trigger" xmi:id="_k_Y7RF2uEeeC05B8erojow"/>
</node>
<node xmi:type="uml:SendSignalAction" xmi:id="_XXc7sF2tEeeC05B8erojow"
name="Send_Invoice" outgoing="_mSSjUF2tEeeCO5B8erojow"
signal="_auo58F2tEeeCO5B8erojow">
<target xmi:type="uml:InputPin" xmi:id="_c2xrIF2tEeeC05B8erojow"
incoming="_4BTiwF2tEeeC05B8er0jow" type="_auo58F2tEeeCO5B8erojow">

225

<lowerValue xmi:type="uml:LiteralInteger"”
xmi:id="_c2xrIV2tEeeCo05B8erojow" value="1"/>
<upperValue xmi:type="uml:LiteralUnlimitedNatural"
xmi:id="_c2xrIl2tEeeCO05B8er@jow" value="1"/>
</target>
</node>
</packagedElement>
<packagedElement xmi:type="uml:Signal" xmi:id="_auo58F2tEeeCO5B8erojow"
name="Verify CC_Funds"/>
</uml:Model>

XML file obtained from the second XMI transformation for the AD
in Figure 6.4

<?xml version="1.0" encoding="UTF-8"?><uml:Model
xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"
xmlns:xmi="http://www.omg.org/spec/XMI/260131001" xmi:version="20131001"
xmi:id="_MJIToQF2tEeeCO5B8er@jow" name="RootElement">
<packagedElement xmi:type="uml:Activity" xmi:id="_MIVdcF2tEeeCO5B8erojow"

name="2nd_example" node="_NBPVOF2tEeeCO5B8erdjow _NVix4F2tEeeCO05B8erojow
_Si61sF2tEeeCO5B8erfjow _XXc7sF2tEeeCO5B8erdjow">

<edge>
<xmi:type>uml:ControlFlow</xmi:type>
<xmi:id>_mSSjUF2tEeeC@5B8er@jow</xmi:id>
<target>_Si6lsF2tEeeC@5B8er@jow</target>
<source>_XXc7sF2tEeeC@5B8er@jow</source>
</edge>

<edge>
<xmi:type>uml:0ObjectFlow</xmi:type>
<xmi:id>_ABTiwF2tEeeC@5B8er@jow</xmi:id>
<target>_c2xrIF2tEeeC@5B8erojow</target>
<source>_r6HugF2tEeeC@5B8er0@jow</source>
</edge>

<edge>
<xmi:type>uml:ObjectFlow</xmi:type>
<xmi:id>_ 5CXXIF2tEeeC@5B8er@jow</xmi:id>
<target>_xJt_A4F2tEeeC@5B8er@jow</target>
<source>_uaxtYF2tEeeCO®5B8er0@jow</source>
</edge>

<node>

226

<xmi:type>uml:OpaqueAction</xmi:type>
<xmi:id>_NBPVOF2tEeeC@5B8er0@jow</xmi:id>
<name>Create_Order</name>
</node>

<node>
<xmi:type>uml:OpaqueAction</xmi:type>
<xmi:id>_NVix4F2tEeeCO5B8er0@jow</xmi:id>
<name>Close_Order</name>
</node>

<node>
<xmi:type>uml:AcceptEventAction</xmi:type>
<xmi:id>_Si6lsF2tEeeC@5B8er@jow</xmi:id>
<name>Receive_Payment</name>
<incoming>_mSSjUF2tEeeC@5B8erojow</incoming>
</node>

<node>
<xmi:type>uml:SendSignalAction</xmi:type>
<xmi:id>_ XXc7sF2tEeeC@5B8er@jow</xmi:id>
<name>Send_Invoice</name>
<outgoing>_mSSjUF2tEeeC@5B8erojow</outgoing>
<signal>_auo58F2tEeeC@5B8erdjow</signal>
</node>

</packagedElement>
<packagedElement xmi:type="uml:Signal" xmi:id="_auo58F2tEeeCO5B8erojow"

name="Verify CC_Funds"/>
</uml:Model>

227

Appendix H - Advanced Generic SQL Code [AT]

Appendix H shows the advanced generic SQL code developed for the automated

generation of the transpose of the PN incidence matrix [AT], discussed in Chapter 6.

package data;
import java.sql.*;

public class multiple_execution_of classes{

static String to;

static String ti;

static String t2;

static String t3;
// JIDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://127.0.0.1:3306/sql";
// Database credentials
static final String USER
static final String PASS

"root";
"Xristina23";

@SuppressWarnings({ "unused", "resource" })
public static void main(String[] args) throws SQLException {

Main MainObject = new Main();
MainObject.simpleMessage();
Main2 Main20bject = new Main2();
Main20bject.simpleMessage2();

Statement stmt = null;

PreparedStatement pst = null;

String cs =
"jdbc:mysql://localhost:3306/sql?allowMultiQueries=true";

Connection connl = null;

ResultSet rs = null;

try {
connl = DriverManager.getConnection(cs, USER, PASS);
String codel = "drop table if exists edge xmi;"

+ " CREATE TABLE edge xmi (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY, xmi:type® VARCHAR(200) NULL, xmi:id"
VARCHAR(200) NULL, “name™ VARCHAR(200) NULL, “source’ varchar(200)null,
“target™ VARCHAR(200) NULL);";

String code2 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xml_file.xml' INTO TABLE edge_xmi
ROWS IDENTIFIED BY '<edge>'; "

+ "update edge_xmi as tl inner join edge_xmi as t2
on (tl. name =t2. name’) and t1. xmi:id" <> t2. xmi:id> set
tl.name="place_';"

+ "update edge_xmi as tl inner join
edge_xmi as t2 on (tl. name =t2. name’) and t1. xmi:id> <> t2. xmi:id" set
tl.name="place_';"

+ "drop table if exists place_name;"

+ "CREATE TABLE place_name as SELECT id,
“xmi:type’, “xmi:id”, CONCAT(name,'', id) AS name, source, target FROM
edge_xmi where edge_xmi.name='place_';" +"drop table if exists

edge place_xmi;"

228

+"CREATE TABLE edge_place_xmi SELECT *
FROM place_name UNION SELECT * FROM edge_xmi;"

+ "ALTER IGNORE TABLE "edge_place_xmi® ADD
UNIQUE (id, “xmi:id");"

+ "drop table if exists
in_outputValue_xmi;"

+ "CREATE TABLE in_outputValue xmi (id int
NOT NULL AUTO_INCREMENT PRIMARY KEY, xmi:type’ VARCHAR(200) NULL, xmi:id"
VARCHAR(200) NULL, name VARCHAR(200) NULL,incoming VARCHAR(200) NULL,
outgoing varchar(200)null);";

String code3 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xmi_file.xml' INTO TABLE
in_outputValue_xmi ROWS IDENTIFIED BY '<inputValue>';";

String code4 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xmi_file.xml"' INTO TABLE
in_outputValue_xmi ROWS IDENTIFIED BY ‘<outputValue>';"

+ "UPDATE in_outputValue_xmi t1 INNER JOIN
edge_place_xmi t2 ON tl.incoming = t2. xmi:id" SET tl.incoming = t2.name;";

String code5 = "UPDATE in_outputValue_xmi t1 INNER JOIN
edge place_xmi t2 ON tl.outgoing = t2. xmi:id" SET tl.outgoing = t2.name;"

+ "ALTER TABLE in_outputValue_xmi
CHANGE incoming place_before_node varchar(200) null;"
+ "ALTER TABLE in_outputValue_xmi
CHANGE outgoing place_after_node varchar(200) null;"
+ "ALTER TABLE in_outputValue_xmi
CHANGE “name” name_primary varchar(200) null;"
+ "DELETE FROM in_outputValue_xmi
WHERE place_after_node is null and place_before_node is null;"
+ "UPDATE in_outputValue_xmi t,
(SELECT DISTINCT place_before_node, name_primary, place_after_node FROM
in_outputValue_xmi) t1 SET t.place_after_node = tl.place_after_node WHERE
t.name_primary = tl.name_primary;"
+ "DELETE FROM in_outputValue_xmi
WHERE place_after_node is null or place_before_node is null;"
+ "drop table if exists
in_outputValue_final;"
+ "CREATE TABLE in_outputValue_final
(place_before_node VARCHAR(200) NULL, name_primary VARCHAR(200) NULL,
place_after_node varchar(200)null) as select place_before_node,
name_primary, place_after_node from in_outputValue_ xmi;";
String code5a = "drop table if exists node_xmi_send_accept;"
+ "create table node_xmi_send_accept as select *
from node_xmi where "“element_type_nested ='target' or
“element_type _nested ='result';UPDATE node_xmi_send_accept tl1 INNER JOIN
edge_place_xmi t2 ON tl.incoming_nested =t2. xmi:id~ SET tl.incoming_nested
= t2.name;UPDATE node_xmi_send_accept tl INNER JOIN edge_place_xmi t2 ON
tl.outgoing nested = t2. xmi:id"~ SET tl.outgoing nested = t2.name;"
+ "ALTER TABLE node_xmi_send_accept CHANGE
incoming_nested place_before_node varchar(200) null;"
+ "ALTER TABLE node_xmi_send_accept CHANGE
outgoing nested place_after_node varchar(200) null;"
+ "ALTER TABLE node_xmi_send_accept CHANGE " name’
name_primary varchar(200) null;"
+ "drop table if exists send_accept_final;"
+ "CREATE TABLE send_accept_final
(place_before_node VARCHAR(200) NULL, name_primary VARCHAR(200) NULL,
place_after_node varchar(200)null) as select place_before_node,
name_primary, place_after_node from node_xmi_send_accept;"
+ "drop table if exists expansionNode_xmi;"

229

+ "CREATE TABLE expansionNode_xmi (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY, xmi:type® VARCHAR(200) NULL, xmi:id"
VARCHAR(200) NULL, name VARCHAR(200) NULL, incoming VARCHAR(200) NULL,
outgoing varchar(200)null, inputElement VARCHAR(200) NULL, outputElement
varchar(200)null, regionAsInput varchar(200) null);";

String codeS5b = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xmi file.xml' INTO TABLE
expansionNode_xmi ROWS IDENTIFIED BY '<node>';"

+ "DELETE from expansionNode_xmi where
inputElement is null and outputElement is null;";

String code5c = "DELETE from expansionNode_xmi
where incoming is null and outgoing is null;"

+ "UPDATE expansionNode_xmi t1 INNER
JOIN edge_place_xmi t2 ON tl.inputElement = t2. source’ SET tl.inputElement
= t2.name;"

+ "UPDATE expansionNode_xmi t1 INNER
JOIN edge_place_xmi t2 ON tl.outputElement = t2. target™ SET
tl.outputElement = t2.name;"

+ "UPDATE expansionNode_xmi t1 INNER
JOIN edge_place_xmi t2 ON tl.incoming = t2. xmi:id"~ SET tl.incoming =
t2.name;"

+ "UPDATE expansionNode_xmi t1 INNER
JOIN edge_place_xmi t2 ON tl.outgoing = t2. xmi:id" SET tl.outgoing =
t2.name;"

+ "drop table if exists
expansionNode_xmi_for_delete;"

+ "create table
expansionNode_xmi_for_delete as select * from expansionNode_xmi where
“xmi:type ="uml:OpaqueAction’;"

+ "UPDATE expansionNode_xmi t, (SELECT
DISTINCT * FROM expansionNode_xmi) t1 SET t.incoming = tl.incoming WHERE
t.inputElement = tl.outgoing and t.outgoing = tl.outputElement and
t. xmi:type ="uml:OpaqueAction';"

+ "UPDATE expansionNode_xmi t, (SELECT
DISTINCT * FROM expansionNode_xmi) t1 SET t.outgoing = tl.outgoing WHERE
t.outputElement = tl.incoming and t1. xmi:type ='uml:ExpansionNode' and
t. xmi:type ="'uml:OpaqueAction';"

+ "ALTER TABLE expansionNode_xmi
CHANGE incoming place_before_node varchar(200) null;"

+ "ALTER TABLE expansionNode_xmi
CHANGE outgoing place_after_node varchar(200) null;"

+ "ALTER TABLE expansionNode_xmi
CHANGE “name” name_primary varchar(200) null;"

+ "drop table if exists
expansionNode_final;"

+ "CREATE TABLE expansionNode_final
(place_before_node VARCHAR(200) NULL, name_primary VARCHAR(200) NULL,
place_after_node varchar(200)null) as select place_before_node,
name_primary, place_after_node from expansionNode_xmi where
“xmi:type ='uml:OpaqueAction’;";

String code6 = "drop table if exists exceptionHandler_xmi;"
+"CREATE TABLE exceptionHandler_xmi (id
int NOT NULL AUTO_INCREMENT PRIMARY KEY, ~xmi:type® VARCHAR(200)
NULL, xmi:id”~ VARCHAR(200) NULL, name VARCHAR(200) NULL, incoming
VARCHAR(200) NULL,outgoing varchar(200)null, signal’
varchar(200)null, element_type _nested” varchar(200)null);";

230

String code7 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xmi_ file.xml' INTO TABLE
exceptionHandler_xmi ROWS IDENTIFIED BY ‘<handler>';"

+"UPDATE exceptionHandler_xmi SET
“element_type _nested” = 'handler';";

String code8 = "drop table if exists result xmi;"

+"CREATE TABLE result xmi (id int NOT
NULL AUTO_INCREMENT PRIMARY KEY, “xmi:type® VARCHAR(200) NULL, xmi:id’
VARCHAR(200) NULL, name VARCHAR(200) NULL, incoming VARCHAR(200)
NULL,outgoing varchar(200)null, signal’
varchar(200)null, “element_type_nested” varchar(200)null);";

String code9 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xmi_file.xml' INTO TABLE result_xmi
ROWS IDENTIFIED BY '<result>';"

+"UPDATE result_xmi SET
“element_type_nested” = 'result';";
String codel@ = "drop table if exists target_xmi;"
+"CREATE TABLE target_xmi (id int NOT
NULL AUTO_INCREMENT PRIMARY KEY, ~xmi:type~ VARCHAR(200) NULL, xmi:id"
VARCHAR(200) NULL, name VARCHAR(200) NULL, incoming VARCHAR(2090)
NULL,outgoing varchar(200)null, signal”
varchar(200)null, element_type_nested” varchar(200)null);";

String codell = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xmi_file.xml' INTO TABLE target_xmi
ROWS IDENTIFIED BY '<target>';"

+"UPDATE target_xmi SET
“element_type nested” = 'target';";

String codel2 = "drop table if exists node_xmi;"

+ "CREATE TABLE node_xmi SELECT * FROM
exceptionHandler_xmi UNION SELECT * FROM target_xmi UNION SELECT * FROM
result_xmi;";

String codel3 = "drop table if exists node_xmi;"

+ "CREATE TABLE node_xmi SELECT * FROM
exceptionHandler_xmi UNION SELECT * FROM target_xmi UNION SELECT * FROM
result_xmi;"

+ "ALTER TABLE “node_xmi~ CHANGE COLUMN “xmi:id"
“xmi:id _nested’ VARCHAR(255) NULL; ALTER TABLE “node_xmi® CHANGE COLUMN
“xmi:type” “xmi:type nested” VARCHAR(255) NULL; ALTER TABLE “node xmi"
CHANGE COLUMN ~incoming™ “incoming nested™ VARCHAR(255) NULL;"

+ "ALTER TABLE “node_xmi~ CHANGE COLUMN "outgoing’
“outgoing nested’ VARCHAR(255) NULL; ALTER TABLE “node_xmi® CHANGE COLUMN
“signal® “signal_nested® VARCHAR(255) NULL;"

+ "ALTER TABLE “node_xmi~ DROP COLUMN id"; ALTER
TABLE “node_xmi~ ADD id INT PRIMARY KEY AUTO_INCREMENT first;";

String codeld = "update node_xmi as tl1 inner join node_xmi
as t2 on (tl. name =t2. name) and tl. xmi:id nested” <> t2. xmi:id nested”
set tl.name='transition_';"

+ "drop table if exists transition_name;"

+ "CREATE TABLE transition_name as SELECT id,
“xmi:type_nested’, “xmi:id _nested’, CONCAT(name,'', id) AS name,
incoming_nested, outgoing nested, signal nested, element_type_nested FROM
node_xmi where node_xmi.name='transition_';"

+ "drop table if exists node_transition_xmi;"

+ "CREATE TABLE node_transition_xmi SELECT * FROM
transition_name UNION SELECT * FROM node_xmi;"

+"ALTER IGNORE TABLE “node_transition_xmi"~ ADD
UNIQUE (id, “xmi:id_nested);";

String codel5 = "drop table if exists node_xml;"

231

+"CREATE TABLE node_xml (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY, “xmi:type VARCHAR(200) NULL, " xmi:type nested
VARCHAR(200) NULL, “xmi:id~ VARCHAR(200) NULL, “xmi:id nested’
VARCHAR(200) NULL, name VARCHAR(200) NULL, incoming VARCHAR(200) NULL,
outgoing varchar(200)null, “signal® varchar(200)null, element_type”
varchar(200)null, "element_type_nested” varchar(200)null);";

String codel6 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xmi_ file.xml' INTO TABLE node_xml
ROWS IDENTIFIED BY '<node>';";

String codel7 = "UPDATE node_xml SET “element_type_nested =
'node" ;"
+"update node_xml as tl inner join node_xml as
t2 on (tl. name =t2. name’) and tl. xmi:id" <> t2. xmi:id> set
tl.name="transitionl_";"

+ "drop table if exists transitionl_name;"

+ "CREATE TABLE transitionl_name as SELECT id,
“xmi:type’, “xmi:type_nested’, “xmi:id’, “xmi:id_nested’, CONCAT(name,'',
id) AS name, incoming, outgoing, “signal’, “element_type’,

“element_type nested” FROM node_xml where node_xml.name='transitionl_ ';"

+ "drop table if exists node_transition_xml;"

+ "CREATE TABLE node_transition_xml SELECT * FROM
transitionl_name UNION SELECT * FROM node_xml;"

+ "ALTER IGNORE TABLE "“node_transition_xml™ ADD
UNIQUE (id, “xmi:id");"

+ "drop table if exists node_xmi_xml;"

+ "create table node_xmi_xml as SELECT cl1.id,
cl. xmi:type , c2. xmi:type_nested’, cl. xmi:id , c2. xmi:id_nested’,
cl.name, cl.incoming, cl.outgoing, cl.signal, cl. element_type’,
c2. element_type_nested’ FROM node_transition_xml c1l INNER JOIN node_xmi c2
ON cl.name = c2.name or c2.incoming_nested = cl.incoming or
c2.outgoing nested = cl.outgoing ORDER BY cl.id;"

+ "UPDATE node_xmi xml T SET T.incoming =(SELECT
incoming_nested FROM node_xmi A WHERE A.name = T.name or A.incoming_nested
= T.incoming);"

+ "UPDATE node_xmi_xml T SET T.outgoing =(SELECT
outgoing nested FROM node_xmi A WHERE A.name = T.name or A.outgoing_nested
= T.outgoing);"

+ "UPDATE node_xmi_xml T SET T.signal =(SELECT
signal_nested FROM node_xmi A WHERE A.name = T.name);"

+ "drop table if exists final_node_xmi_xml;

+ "CREATE TABLE final_node_xmi_xml SELECT * FROM
node_xmi_xml UNION SELECT * FROM node_transition_xml;"

+ "ALTER IGNORE TABLE “final _node_xmi_xml" ADD

UNIQUE (id); "

+ "ALTER TABLE final_node_xmi_xml DROP COLUMN
“signal ;"

+ "update "final node_xmi_xml® set “name = replace
("name’, 'transitionl’', 'decision') where “xmi:typelike
'uml:DecisionNode"’ ;"

+ "update "final_node_xmi_xml® set “name = replace
("name’, 'transitionl’, 'merge') where “xmi:type like 'uml:MergeNode';"

+ "update “final _node_xmi_xml® set “name = replace
("name”, "transitionl', 'fork') where ~xmi:type like 'uml:ForkNode';"

+ "update "final_node_xmi_xml® set “name = replace
("name”, "transitionl', 'join') where “xmi:type like 'uml:JoinNode';"

+ "update “final node_xmi_xml® set “name = replace
("name’, 'transitionl’', 'pin') where “xmi:type like ‘uml:InitialNode';"

232

+ "update "final_node_xmi_xml® set “name = replace
("name”, 'transitionl', 'flow_pout') where ~xmi:type like
'uml:FlowFinalNode';"

+ "update "final_node_xmi_xml® set “name = replace
("name”, "transitionl', 'pout') where “xmi:type like
'uml:ActivityFinalNode"' ;"

+ "update "final _node_xmi_xml® set “name = replace
("name’, 'transitionl’', 'parameter_node') where “xmi:type like
"uml:ActivityParameterNode';"

+ "update "final_node_xmi_xml® set “name = replace
("name’, 'transitionl’, 'buffer_node') where “xmi:type’ like
‘uml:CentralBufferNode';"

+ "update "final_node_xmi_xml® set “name = replace

("name”, "transitionl', 'datastore_node') where “xmi:type like
'uml:DataStoreNode’;"

+ "UPDATE final_node_xmi_xml SET incoming
REPLACE(incoming, '_*, "");"

+ "UPDATE final node_xmi_xml SET incoming
REPLACE(incoming, " ', '_');"

+ "UPDATE final_node_xmi_xml SET outgoing
REPLACE (outgoing, '_', '");"

+ "UPDATE final_node_xmi_xml SET outgoing
REPLACE (outgoing, " ', "_");";

String codel8 = "drop table if exists double_nodes_outgoing

on
)

+ "create table double_nodes_outgoing as select *
from final_node_xmi_xml where outgoing like '% % %' ;"

+ "drop table if exists double_nodes_outgoing ;

+ "create table double_nodes_outgoing as select *
from final_node_xmi_xml where outgoing like '% % %' "

+ "drop table if exists numbers ;

+ "create table numbers (n int not null) ;"

+ "insert into numbers (n) values (1), (2), (3),
(4)) (5): (6): (7)) (8)) (9),(1@), (11), (12)1 (13)) (14)) (15) ;"

+ "drop table if exists double_separate_nodes ;

+ "create table double_separate_nodes as select
double_nodes_outgoing.id, “xmi:type’, “xmi:type nested’, “xmi:id",
“xmi:id_nested’, "name’, incoming, “element_type , “element_type_nested’,
SUBSTRING_INDEX(SUBSTRING_INDEX(double_ nodes_outgoing.outgoing, ' ',
numbers.n), '_', -1) outgoing from numbers inner join double_nodes_outgoing
on CHAR_LENGTH(double nodes_outgoing.outgoing)-
CHAR_LENGTH(REPLACE(double_nodes_outgoing.outgoing, ' ', ''))>=numbers.n-1
order by id, n, xmi:type , “xmi:type nested’, "xmi:id , “xmi:id_nested’,
“name’, incoming, outgoing, element_type , “element_type_nested ;"

+ "DELETE FROM double_separate_nodes WHERE outgoing

+ "update double_separate_nodes set outgoing =
concat('_', outgoing) ;"

+ "alter table “double_separate_nodes™ change
column outgoing outgoing varchar(255) after “id™ ;"

+ "drop table if exists lessthanl7 ;

+ "create table lessthanl7 (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY) as SELECT “outgoing , “xmi:type’,
“xmi:type_nested’, “xmi:id’, “xmi:id_nested’, “name’, incoming,
“element_type’, “element_type nested’ FROM double_separate_nodes WHERE
LENGTH(outgoing) < 22;"

+ "drop table if exists greaterthanll ;

233

+ "create table greaterthanll (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY) as SELECT “outgoing , “xmi:type’,
“xmi:type_nested’, “xmi:id", “xmi:id_nested’, "name’, incoming,
“element_type’, “element_type_nested” FROM lessthanl7 WHERE
LENGTH(outgoing) »>11 ;"

+ "DELETE FROM lessthanl7 where LENGTH(outgoing) >
11 ;"

+ "alter table "“lessthanl7” drop column id ;"

+ "alter table "lessthanl7” add column id int NOT
NULL AUTO_INCREMENT PRIMARY KEY first;"

+ "drop table if exists merge_1_ table;"

+ "create table merge_1_table select * from
greaterthanll union all select * from lessthanl?7; "

+ "drop table if exists merge_shorter_than22; "

+ "create table merge_shorter_than22 (id int NOT
NULL AUTO_INCREMENT PRIMARY KEY) as SELECT GROUP_CONCAT(outgoing SEPARATOR
"), “xmi:type’, “xmi:type_nested’, “xmi:id’, “xmi:id_nested’, “name’,
incoming, “element_type’, “element_type_nested” FROM lessthanl7 GROUP BY
name;"

+ "ALTER TABLE “merge_shorter_than22” CHANGE COLUMN
" GROUP_CONCAT (outgoing SEPARATOR '')" “outgoing’ VARCHAR(255) NOT NULL "

+ "drop table if exists union_1 ;"

+ "create table union_1 select * from
merge_shorter_than22 union all select * from double_separate_nodes ;"

+ "DELETE FROM union_1 where LENGTH(outgoing) < 21

on
)
"

+ "drop table if exists double_nodes_incoming ;

+ "create table double_nodes_incoming as
select * from final_node_xmi_xml where incoming like '% % %' ; "

+ "drop table if exists
double_separate_nodes ;"

+ "create table double_separate_nodes as

select double nodes_incoming.id, “~xmi:type’, “xmi:type_nested , "xmi:id’,
"xmi:id_nested’, “name’, outgoing, “element_type , “element_type_nested’,
SUBSTRING_INDEX(SUBSTRING_INDEX(double_nodes_incoming.incoming, '_',
numbers.n), '_', -1) incoming from numbers inner join double_nodes_incoming
on CHAR_LENGTH(double nodes_incoming.incoming)-
CHAR_LENGTH(REPLACE (double_nodes_incoming.incoming, '_', ''))>=numbers.n-1
order by id, n, xmi:type , “xmi:type nested’, "xmi:id , “xmi:id_nested’,
“name’, incoming, outgoing, element_type’, element_type_nested ;"

+ "DELETE FROM double_separate_nodes WHERE
incoming = '';"

+ "update double_separate_nodes set incoming
= concat('_"', incoming) ;"

+ "alter table “double_separate_nodes”
change column incoming incoming varchar(255) after “id" ;"

+ "drop table if exists lessthanl7 ;"

+ "create table lessthanl7 (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY) SELECT outgoing™, xmi:type",
“xmi:type_nested’, “xmi:id’, “xmi:id_nested , “name’, incoming,
“element_type’, “element_type nested FROM double_separate_nodes WHERE
LENGTH(incoming) < 22;"

+ "drop table if exists greaterthanil ;"

+ "create table greaterthanll (id int NOT
NULL AUTO_INCREMENT PRIMARY KEY) as SELECT “outgoing™, “xmi:type’,
“xmi:type_nested’, “xmi:id", “xmi:id_nested’, "name’, incoming,
“element_type’, “element_type nested” FROM lessthanl7 WHERE
LENGTH(incoming) »>11 ;"

234

+ "DELETE FROM lessthanl7 where
LENGTH(incoming) > 11 ;"
+ "alter table "“lessthanl7” drop column id

on
)

+ "alter table " lessthanl7” add column id
int NOT NULL AUTO_INCREMENT PRIMARY KEY first;"

+ "drop table if exists merge_1_ table;"

+ "create table merge_1 table select * from
greaterthanll union all select * from lessthani7;"

+ "drop table if exists
merge_shorter_than22; "+ "create table merge_shorter_than22 (id int NOT
NULL AUTO_INCREMENT PRIMARY KEY) as SELECT GROUP_CONCAT(incoming SEPARATOR
""), “xmi:type , “xmi:type nested’, “xmi:id , “xmi:id_nested’, “name’,
outgoing, “element_type’, “element_type_nested’ FROM lessthanl7 GROUP BY
name;"

+ "ALTER TABLE “merge_shorter_than22" CHANGE
COLUMN "~ GROUP_CONCAT (incoming SEPARATOR '')" “incoming™ VARCHAR(255) NOT
NULL ; "

+ "drop table if exists union_2a ;"

+ "create table union_2a select * from
merge_shorter_than22 union all select * from double_separate_nodes ;"

+ "drop table if exists union_2 ;"

+ "create table union_2 as select id,
“outgoing, “xmi:type’, “xmi:type_nested’, "xmi:id’, “xmi:id_nested’,
“name’, incoming, “element_type’, “element_type_nested’ from union_2a ;

+ "DELETE FROM union_2 where

LENGTH(incoming) < 21 ; “;

String codel9b= "drop table if exists unique_activities;"

+ "UPDATE final_node_xmi_xml SET incoming = Concat('_"',
incoming); "

+ "UPDATE final node_xmi_xml SET outgoing = Concat('_',
outgoing); "

+ "create table unique_activities as select id, outgoing,
“xmi:type, “xmi:type_nested’, “xmi:id’, “xmi:id_nested’, “name’, incoming,
“element_type’, “element_type_nested’ from final node_xmi_xml ;"

+ "DELETE FROM unique_activities where LENGTH(incoming) >

22 ;"

+ "DELETE FROM unique_activities where LENGTH(outgoing) >
22 ;"

+ "UPDATE edge_place_xmi SET “xmi:id~ = REPLACE(xmi:id",
l_l, ll) ; n

+ "UPDATE edge place xmi SET “xmi:id"™ = Concat('_"',
“xmizidt) ;"

+ "UPDATE edge_place_xmi SET “source’ = REPLACE(source’,
l_l, ll) ; n

+ "UPDATE edge place xmi SET “source’ = Concat('_"',
“source’) ; "

+ "UPDATE edge_place_xmi SET target = REPLACE(target”,
)y s

+ "UPDATE edge place xmi SET “target™ = Concat('_"',
“target) ; "

+ "drop table if exists union_node;"

+ "UPDATE union_1 SET “incoming™ = Concat('_',
“incoming™) ;

+ "UPDATE union_2 SET “outgoing = Concat('_",
“outgoing’)

+ "create table union_node select * from union_1 union
select * from union_2 union select * from unique_activities;"

235

+ "alter table union_node drop column id;

+ "alter table union_node add column id int NOT NULL
AUTO_INCREMENT PRIMARY KEY FIRST; "

+ "drop table if exists handler_xmi;"

+ "CREATE TABLE handler_xmi (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY, “xmi:type® VARCHAR(200) NULL, “xmi:id"
VARCHAR(200) NULL, name VARCHAR(200) NULL, incoming VARCHAR(200) NULL,
outgoing varchar(200)null, "“exceptionInput® varchar(200)null,
“exceptionType™ varchar(200)null, “handlerBody™ varchar(200)null);";

String codel9 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xmi_file.xml' INTO TABLE handler_xmi
ROWS IDENTIFIED BY ‘'<handler>"';"

+ "UPDATE handler_xmi SET ~name =CONCAT_WS('_', “name”,
"handler');" ;

String code20 = "drop table if exists handler_node_table;"

+ "CREATE TABLE handler_node_table
("transition_before_node® VARCHAR(200) NULL, “transition_after_node”
VARCHAR(200) NULL) as SELECT * FROM handler_xmi where
(handler_xmi. xmi:type ='uml:ExceptionHandler'); "

+ "ALTER TABLE handler_node_table CHANGE COLUMN " xmi:id"
“xmi:id_primary® VARCHAR(255) NULL; "

+ "ALTER TABLE handler_node_table CHANGE COLUMN " name”
“name_primary” VARCHAR(255) NULL;"

+ "UPDATE handler_node_table t1 INNER JOIN
handler_node_node t2 ON tl.incoming = t2. incoming™ SET
tl.transition_before_node = t2.name;"

+ "drop table if exists handler_node_node;

+ "drop table if exists handler_node_node;

+ "CREATE TABLE handler_node_node AS SELECT m.*,
u2. xmi:id", u2. name’ FROM handler_node_table m INNER JOIN union_node u2
ON (m. exceptionInput = u2. xmi:id") or (m. incoming = u2. incoming’);"

+ "UPDATE handler_node_table t1 INNER JOIN
handler_node_node t2 ON tl1. exceptionInput™ = t2. xmi:id" SET
tl.transition_after_node = t2.name; "

+ "UPDATE handler_node_table t1 INNER JOIN edge place_ xmi
t2 ON tl.incoming = t2. xmi:id~ SET tl.incoming = t2.name;"

+ "UPDATE handler_node_table t1 INNER JOIN union_node t2
ON tl.transition_after_node = t2. name’ SET tl.outgoing = t2.outgoing;"

+ "UPDATE handler_node_table t1 INNER JOIN edge place_xmi
t2 ON tl.outgoing = t2. xmi:id" SET tl.outgoing = t2.name;"

+ "drop table if exists handler_node_table_b;

+ "create table handler_node_table_b as select
“transition_before_node’, name_primary~ from handler_node_table;

+ "ALTER TABLE handler_node_table b CHANGE COLUMN
“name_primary" “place_after_node® VARCHAR(255) NULL; "

+ "ALTER TABLE handler_node_table b CHANGE COLUMN
“transition_before_node™ “name_primary® VARCHAR(255) NULL; "

+ "ALTER TABLE handler_node_table_b ADD COLUMN
“place_before_node® VARCHAR(255) NULL FIRST;"

+ "drop table if exists handler_node_table_a;

+ "create table handler_node_table_a as select
“name_primary , “transition_after_node® from handler_node_table;

+ "ALTER TABLE handler_node_table_a CHANGE COLUMN
“name_primary” “place_before_node® VARCHAR(255) NULL;"

+ "ALTER TABLE handler_node_table_a CHANGE COLUMN
“transition_after_node® “name_primary~ VARCHAR(255) NULL; "

236

+ "ALTER TABLE handler_node_table_a ADD COLUMN
“place_after_node® VARCHAR(255) NULL;"

+ "drop table if exists handler_node_table_a b;"

+ "create table handler_node_table_a b select * from
handler_node_table_b union all select * from handler_node_table_a;"

+ "UPDATE handler_node_table_a b t1 INNER JOIN
handler_node_table t2 ON tl.name_primary = t2.transition_before_node SET
tl.place_before _node = t2.incoming;"

+ "UPDATE handler_node_table_a_b t1 INNER JOIN
handler_node_table t2 ON tl.name_primary = t2.transition_after_node SET
tl.place_after_node = t2.outgoing;"

+ "drop table if exists initial_final_table;"

+ "CREATE TABLE initial_final_table
("transition_before_node’ VARCHAR(200) NULL, “transition_after_node’
VARCHAR(200) NULL) as SELECT id, “xmi:type , “xmi:id", “name” FROM
union_node where (union_node. xmi:type ='uml:ActivityFinalNode') or
(union_node. xmi:type ='uml:FlowFinalNode"') or
(union_node. xmi:type ='uml:InitialNode');"

+ "ALTER TABLE initial_ final_table CHANGE COLUMN ~xmi:id"
“xmi:id_primary® VARCHAR(255) NULL;"

+ "drop table if exists final_node;"

+ "CREATE TABLE final_node AS SELECT m.*, ul.target,
ul.source FROM initial_final table m INNER JOIN edge_place_xmi ul ON
(m.”xmi:id_primary = ul.target); "

+ "ALTER TABLE “final _node™ ADD COLUMN "xmi:id"
VARCHAR(255) NOT NULL;"

+ "ALTER TABLE “final_node” DROP COLUMN
“transition_after_node™ ;"

+ "UPDATE final node t1 INNER JOIN edge_place_xmi t2 ON
tl.target = t2.target SET t1. xmi:id" = t2. xmi:id"; "

+ "UPDATE final_node INNER JOIN union_node ON
final _node.source = union_node. xmi:id" SET
final node.transition_before_node = union_node.name;"

+ "drop table if exists final_node_table;

+ "create table final_node_table as select
“transition_before_node , name® from final_node; "

+ "ALTER TABLE final_node_table CHANGE COLUMN " name"
“place_after_node’ VARCHAR(255) NULL;"

+ "ALTER TABLE final_node_table CHANGE COLUMN
“transition_before_node® “name_primary® VARCHAR(255) NULL;"

+ "ALTER TABLE final_node_table ADD COLUMN
“place_before_node® VARCHAR(255) NULL FIRST;"

+ "drop table if exists initial_node;"

+ "CREATE TABLE initial_node AS SELECT m.*, u2.target,
u2.source FROM initial_final_table m INNER JOIN edge_place_xmi u2 ON
(m. xmi:id_primary = u2.source); "

+ "ALTER TABLE “initial node™ ADD COLUMN " xmi:id"
VARCHAR(255) NOT NULL;"

+ "UPDATE initial node t1 INNER JOIN edge_place_xmi t2 ON
tl.source = t2.source SET t1. xmi:id" = t2. xmi:id ;"

+ "ALTER TABLE “initial_node™ DROP COLUMN
“transition_before_node” ;"

+ "UPDATE initial_node INNER JOIN union_node ON
initial_node.target = union_node. xmi:id" SET
initial_node.transition_after_node = union_node.name;"

+ "drop table if exists initial_node_table; create table
initial_node_table as select "name’, "transition_after_node™ from
initial_node; "

237

+ "ALTER TABLE initial_node_table CHANGE COLUMN "name"
“place_before _node’ VARCHAR(255) NULL; "

+ "ALTER TABLE initial_node_table CHANGE COLUMN
“transition_after_node® “name_primary~ VARCHAR(255) NULL; "

+ "ALTER TABLE initial_node_table ADD COLUMN
“place_after_node’ VARCHAR(255) NULL;"

+ "delete from edge_place_xmi WHERE “target”™ in (SELECT
DISTINCT “target™ FROM ~final node’); "

+ "delete from edge_place_xmi WHERE "“target™ in (SELECT
DISTINCT "target™ FROM “initial _node’);";

String code2l = "drop table if exists activity_parameter_table; "

+ "CREATE TABLE activity_parameter_table
("transition_after_node’ VARCHAR(200) NULL) as SELECT id, “xmi:type’,
“xmi:id’, “name’, outgoing FROM union_node where
(union_node. xmi:type ='uml:ActivityParameterNode');"

+ "ALTER TABLE activity_parameter_table CHANGE COLUMN
“xmi:id® “xmi:id_primary® VARCHAR(255) NULL;"

+ "drop table if exists parameter_node;

+ "CREATE TABLE parameter_node AS SELECT m.*, u2.target,
u2.source FROM activity_parameter_table m INNER JOIN edge_place_xmi u2 ON
(m. xmi:id_primary = u2.source); ALTER TABLE " parameter_node® ADD COLUMN
“xmi:id® VARCHAR(255) NOT NULL; UPDATE parameter_node t1 INNER JOIN
edge_place_xmi t2 ON tl.source = t2.source SET tl. xmi:id = t2. xmi:id ;

+ "drop table if exists par_node; "

+ "CREATE TABLE par_node AS SELECT * FROM union_node
where “xmi:type ='uml:ActivityParameterNode';"

+ "drop table if exists par_union_node;

+ "CREATE TABLE par_union_node AS SELECT c.* FROM
union_node c¢ inner join par_node a on c.incoming=a.outgoing;"

+ "drop table if exists par_union_union; "

+ "CREATE TABLE par_union_union SELECT * FROM par_node
union select * from par_union_node; "

+ "UPDATE activity_parameter_table t1 INNER JOIN
par_union_union t2 ON tl.outgoing = t2.incoming SET
tl.transition_after_node = t2.name;"

+ "delete from edge_place_xmi WHERE ~target™ in (SELECT
DISTINCT "target™ FROM parameter_node’); "

+ "drop table if exists activity_parameter_table_a;

+ "create table activity_parameter_table_a as select
“name”, “transition_after_node® from activity_parameter_table; "

+ "ALTER TABLE activity parameter_table_a CHANGE COLUMN
“name” “place_before node® VARCHAR(255) NULL; "

+ "ALTER TABLE activity_parameter_table_a CHANGE COLUMN
“transition_after_node® “name_primary~ VARCHAR(255) NULL;"

+ "ALTER TABLE activity_parameter_table_a ADD COLUMN
“place_after_node® VARCHAR(255) NULL; "

+ "drop table if exists activity_parameter_tablel;

+ "CREATE TABLE activity_ parameter_tablel
("transition_before_node® VARCHAR(200) NULL) as SELECT id, “xmi:type’,
“xmi:id’, “name’, incoming FROM union_node where
(union_node. xmi:type ='uml:ActivityParameterNode'); "

+ "ALTER TABLE activity_parameter_tablel CHANGE COLUMN
“xmi:id® “xmi:id_primary® VARCHAR(255) NULL;"

+ "drop table if exists parameter_nodel;"

+ "CREATE TABLE parameter_nodel AS SELECT m.*,
u2.target, u2.source FROM activity_parameter_tablel m INNER JOIN
edge place_xmi u2 ON (m. xmi:id_primary = u2.target);"

238

+ "ALTER TABLE " parameter_nodel™ ADD COLUMN "~ xmi:id"
VARCHAR(255) NOT NULL;"

+ "UPDATE parameter_nodel t1 INNER JOIN edge place_xmi t2
ON tl.target = t2.target SET tl. xmi:id® = t2. xmi:id ;"

+ "drop table if exists par_nodel;"

+ "CREATE TABLE par_nodel AS SELECT * FROM union_node
where “xmi:type ='uml:ActivityParameterNode';"

+ "drop table if exists par_union_nodel;"

+ "CREATE TABLE par_union_nodel AS SELECT c.* FROM
union_node c¢ inner join par_node a on c.outgoing=a.incoming;"

+ "drop table if exists par_union_unionl; "

+ "CREATE TABLE par_union_unionl SELECT * FROM par_nodel
union select * from par_union_nodel;"

+ "UPDATE activity parameter_tablel tl1 INNER JOIN
par_union_unionl t2 ON tl.incoming = t2.outgoing SET
tl.transition_before_node = t2.name;"

+ "delete from edge_place_xmi WHERE “source’ in (SELECT
DISTINCT "source™ FROM ~parameter_node™);"

+ "drop table if exists activity_parameter_tablel b;

+ "create table activity_parameter_tablel b as select
“transition_before_node™, name’ from activity_parameter_tablel; "

+ "ALTER TABLE activity_parameter_tablel_b CHANGE COLUMN
“name” “place_after_node® VARCHAR(255) NULL; "

+ "ALTER TABLE activity_parameter_tablel b CHANGE COLUMN
“transition_before_node® “name_primary® VARCHAR(255) NULL; "

+ "ALTER TABLE activity_parameter_tablel_b ADD COLUMN
“place_before_node® VARCHAR(255) NULL FIRST;"

+ "drop table if exists activity_parameter_table_a_b;

+ "create table activity_parameter_table_a b select *
from activity parameter_tablel b union all select * from
activity_parameter_table_a;"

+ "drop table if exists datastore_table;

+ "CREATE TABLE datastore_table
(" transition_before_node® VARCHAR(200) NULL, “transition_after_node’
VARCHAR(200) NULL) as SELECT id, “xmi:type’, “xmi:id", “name’, incoming,
outgoing FROM union_node where
(union_node. xmi:type ='uml:DataStoreNode');"

+ "ALTER TABLE datastore_table CHANGE COLUMN " xmi:id"
“xmi:id_primary® VARCHAR(255) NULL;"

+ "drop table if exists datastore_node; CREATE TABLE
datastore_node AS SELECT m.*, wu2.target, u2.source FROM datastore_table m
INNER JOIN edge_place_xmi u2 ON (m. xmi:id_primary = u2.source);"

+ "ALTER TABLE “datastore_node’ ADD COLUMN ~xmi:id"
VARCHAR(255) NOT NULL;"

+ "UPDATE datastore_node tl INNER JOIN edge place xmi t2
ON tl.source = t2.source SET tl1. xmi:id" = t2. xmi:id ;"

+ "drop table if exists data_node; CREATE TABLE data_node
AS SELECT * FROM union_node where “xmi:type ='uml:DataStoreNode';"

+ "drop table if exists data_union_node; "

+ "CREATE TABLE data_union_node AS SELECT c.* FROM
union_node c inner join data_node a on c.incoming=a.outgoing;"

+ "drop table if exists data_union_union; "

+ "CREATE TABLE data_union_union SELECT * FROM data_node
union select * from data_union_node;"

+ "UPDATE datastore_table tl1 INNER JOIN data_union_union
t2 ON tl.outgoing = t2.incoming SET tl.transition_after_node = t2.name;"

+ "delete from edge place_xmi WHERE “target™ in (SELECT
DISTINCT "target™ FROM “datastore_node™);"

239

+ "drop table if exists datastore_nodel;

+ "CREATE TABLE datastore_nodel AS SELECT m.*,
u2.target, u2.source FROM datastore_table m INNER JOIN edge_place_xmi u2
ON (m. xmi:id_primary = u2.source); "

+ "ALTER TABLE “datastore_nodel™ ADD COLUMN "~ xmi:id"
VARCHAR(255) NOT NULL; "

+ "UPDATE datastore_nodel t1 INNER JOIN edge place_xmi t2
ON tl.target = t2.target SET tl. xmi:id = t2. xmi:id ; "

+ "drop table if exists data_union_nodel;

+ "CREATE TABLE data_union_nodel AS SELECT c.* FROM
union_node c inner join data_node a on c.outgoing=a.incoming;"

+ "drop table if exists data_union_unionl; "

+ "CREATE TABLE data_union_unionl SELECT * FROM data_node
union select * from data_union_nodel;"

+ "UPDATE datastore_table tl1 INNER JOIN data_union_unionl
t2 ON tl.incoming = t2.outgoing SET tl.transition_before_node = t2.name;"

+ "delete from edge_place_xmi WHERE “source’ in (SELECT
DISTINCT "source™ FROM “datastore_nodel);"

+ "drop table if exists datastore_table_b;

+ "create table datastore_table_b as select
“transition_before_node”, name’ from datastore_table; "

+ "ALTER TABLE datastore_table_b CHANGE COLUMN "name’
“place_after_node’ VARCHAR(255) NULL; "

+ "ALTER TABLE datastore_table_b CHANGE COLUMN
“transition_before_node® “name_primary"® VARCHAR(255) NULL; "

+ "ALTER TABLE datastore_table_b ADD COLUMN
“place_before_node® VARCHAR(255) NULL FIRST;"

+ "drop table if exists datastore_table_a;"

+ "create table datastore_table_a as select “name’,
“transition_after_node® from datastore_table; "

+ "ALTER TABLE datastore_table_a CHANGE COLUMN "name’
“place_before_node® VARCHAR(255) NULL;"

+ "ALTER TABLE datastore_table_a CHANGE COLUMN
“transition_after_node® “name_primary® VARCHAR(255) NULL;"

+ "ALTER TABLE datastore_table_a ADD COLUMN
“place_after_node® VARCHAR(255) NULL;"

+ "drop table if exists datastore_table_a b;"

+ "create table datastore_table_a b select * from
datastore_table_b union all select * from datastore_table_a;"

+ "drop table if exists central_buffer_table;

+ "CREATE TABLE central buffer_table
("transition_before_node® VARCHAR(200) NULL, “transition_after_node”
VARCHAR(200) NULL) as SELECT id, “xmi:type’, “xmi:id", “name’, incoming,
outgoing FROM union_node where
(union_node. xmi:type ='uml:CentralBufferNode');"

+ "ALTER TABLE central buffer_table CHANGE COLUMN
“xmi:id® “xmi:id_primary® VARCHAR(255) NULL;"

+ "drop table if exists central_buffer_node;"

+ "CREATE TABLE central_buffer_node AS SELECT m.*,
u2.target, u2.source FROM central buffer_table m INNER JOIN edge_place xmi
u2 ON (m. xmi:id_primary = u2.source);"

+ "ALTER TABLE "central_buffer_node” ADD COLUMN ~xmi:id"
VARCHAR(255) NOT NULL;"

+ "UPDATE central_buffer_node tl INNER JOIN
edge place_xmi t2 ON tl.source = t2.source SET tl. xmi:id" = t2. xmi:id ;"

+ "drop table if exists buffer_node; "

+ "CREATE TABLE buffer_node AS SELECT * FROM union_node
where ~xmi:type ='uml:CentralBufferNode';"

240

+ "drop table if exists buffer_union_node;

+ "CREATE TABLE buffer_union_node AS SELECT c.* FROM
union_node c¢ inner join buffer_node a on c.incoming=a.outgoing;"

+ "drop table if exists buffer_union_union; CREATE TABLE
buffer_union_union SELECT * FROM buffer_node union select * from
buffer_union_node;"

+ "UPDATE central_buffer_table t1l INNER JOIN
buffer_union_union t2 ON tl.outgoing = t2.incoming SET
tl.transition_after_node = t2.name;"

+ "delete from edge_place_xmi WHERE "“target™ in (SELECT
DISTINCT “target™ FROM “central_buffer_node);"

+ "drop table if exists central_buffer_nodel;"

+ "CREATE TABLE central_buffer_nodel AS SELECT m.*,
u2.target, u2.source FROM central_buffer_table m INNER JOIN edge_place_xmi
u2 ON (m. xmi:id_primary = u2.target); "

+ "ALTER TABLE "central_buffer_nodel™ ADD COLUMN “xmi:id"
VARCHAR(255) NOT NULL; UPDATE central_ buffer_nodel t1 INNER JOIN
edge_place_xmi t2 ON tl.target = t2.target SET tl. xmi:id = t2. xmi:id ;"

+ "drop table if exists buffer_union_nodel;"

+ "CREATE TABLE buffer_union_nodel AS SELECT c.* FROM
union_node c inner join buffer_node a on c.outgoing=a.incoming;"

+ "drop table if exists buffer_union_unionl;"

+ "CREATE TABLE buffer_union_unionl SELECT * FROM
buffer_node union select * from buffer_union_nodel;"

+ "UPDATE central_buffer_table tl1 INNER JOIN
buffer_union_unionl t2 ON tl.incoming = t2.outgoing SET
tl.transition_before_node = t2.name;"

+ "delete from edge place_xmi WHERE “source™ in (SELECT
DISTINCT "source™ FROM "central_buffer_nodel);"

+ "drop table if exists central_buffer_table b;"

+ "create table central_buffer_table b as select
“transition_before_node™, name® from central_buffer_table; "

+ "ALTER TABLE central_buffer_table b CHANGE COLUMN
“name” “place_after_node® VARCHAR(255) NULL; "

+ "ALTER TABLE central_buffer_table_b CHANGE COLUMN
“transition_before_node® “name_primary® VARCHAR(255) NULL; "

+ "ALTER TABLE central_buffer_table b ADD COLUMN
“place_before_node® VARCHAR(255) NULL FIRST;"

+ "drop table if exists central_buffer_table_a;"

+ "create table central_buffer_table_a as select "name’,
“transition_after_node® from central_buffer_table; "

+ "ALTER TABLE central_ buffer_table a CHANGE COLUMN
“name” “place_before node® VARCHAR(255) NULL;"

+ "ALTER TABLE central_buffer_table_a CHANGE COLUMN
“transition_after_node® “name_primary~ VARCHAR(255) NULL;"

+ "ALTER TABLE central_buffer_table _a ADD COLUMN
“place_after_node® VARCHAR(255) NULL;"

+ "drop table if exists central_buffer_table a b;

+ "create table central_buffer_table_a b select * from
central_buffer_table b union all select * from central_buffer_table a;";

String code22a = "drop table if exists

union_node_table; "
+ "CREATE TABLE union_node_table (" place_before_node"

VARCHAR(200) NULL, “place_after_node’ VARCHAR(200) NULL) as SELECT id,
“xmi:type’, “xmi:id’, “name’, incoming, outgoing FROM union_node where
(union_node. xmi:type’='uml:OpaqueAction') or
(union_node. xmi:type ="uml:MergeNode') or
(union_node. xmi:type ='uml:DecisionNode') or

241

(union_node. xmi:type ="uml:ForkNode') or
(union_node. xmi:type ='uml:JoinNode') or
(union_node. xmi:type ='uml:AcceptEventAction') or
(union_node. xmi:type ='uml:SendSignalAction') or
(union_node. xmi:type ='uml:CallBehaviorAction');"

+ "ALTER TABLE union_node_table CHANGE COLUMN " xmi:id"
“xmi:id_primary® VARCHAR(255) NULL; "

+ "ALTER TABLE union_node_table CHANGE COLUMN " name"
“name_primary” VARCHAR(255) NULL;"

+ "drop table if exists union_node_node;"

+ "CREATE TABLE union_node_node AS SELECT m.*,
u2. xmi:id", u2. name’ FROM union_node_table m INNER JOIN edge_place_xmi
u2 ON (m. incoming = u2. xmi:id") or (m. outgoing = u2. xmi:id");"

+ "UPDATE union_node_table t1 INNER JOIN union_node_node
= t2. xmi:id" SET tl.place_after_node = t2.name;"

+ "UPDATE union_node_table t1 INNER JOIN union_node_node
= t2. xmi:id" SET tl.place_before_node = t2.name;"

+ "delete from union_node_table WHERE (place_before_ node
is null) and (place_after_node is null);"

+ "delete from edge place_xmi WHERE “xmi:id” in (SELECT
DISTINCT “xmi:id~ FROM “union_node_node™);"

+ "drop table if exists main_table;"

+ "CREATE TABLE main_table SELECT "place_before_node”,
“name_primary , “place_after_node’ FROM union_node_table union all select *
from initial_node_table union all select * from final_node_table union all
select * from handler_node_table_a b union all select * from
activity_parameter_table_a_b union all select * from
central_buffer_table_a b union all select * from datastore_table_a b;"

+ "drop table if exists null_after;"

+ "CREATE TABLE null_after as SELECT * FROM main_table
where place_after_node is null and name_primary in (select name_primary
from main_table GROUP BY name_primary HAVING COUNT(*)>1);"

+ "drop table if exists null_before;"

+ "CREATE TABLE null_before as SELECT * FROM main_table
where place_before_node is null and name_primary in (select name_primary
from main_table GROUP BY name_primary HAVING COUNT(*)>1);"

+ "UPDATE null after na, main_table mt SET
na.place_after_node = mt.place_after_node WHERE na.name_primary =
mt.name_primary and mt.place_after_node is not null and
mt.place_before_node is null;"

+ "UPDATE null_before na, main_table mt SET
na.place_before_node = mt.place_before_node WHERE na.name_primary =
mt.name_primary and mt.place_before_node is not null and
mt.place_after_node is null;"

+ "DELETE nl FROM main_table nl1l JOIN main_table n2 ON
nl.name_primary is null AND nl.place_before_node is null;"

+ "DELETE nl FROM main_table nl JOIN main_table n2 ON
nl.name_primary is null AND nl.place_after_node is null;"

+ "drop table if exists final_table;"

+ "CREATE TABLE final_table select * from null_after
union select * from null_before union select * from main_table;"

+ "drop table if exists finale_table;"

+ "create table finale_table as select * from

t2 ON tl.outgoing

t2 ON tl.incoming

final_table;"

+ "DELETE nl FROM finale_table nl JOIN finale_table n2
ON nl.name_primary = n2.name_primary AND nl.place_before_node =
n2.place_before_node and nl.place_after_node is null;"

242

+ "DELETE nl FROM finale_table nl JOIN finale_table n2
ON nl.place_after_node = n2.place_after_node AND nl.place_before_node is
null AND nl.name_primary = n2.name_primary;"

+ "ALTER IGNORE TABLE “final_table® ADD UNIQUE
(place_before_node, place_after_node);"

+ "ALTER IGNORE TABLE “final_ table® ADD UNIQUE
(place_after_node, name_primary);"

+ "ALTER IGNORE TABLE “final_ table® ADD UNIQUE
(place_before_node, name_primary);"

+ "DELETE FROM final_table where place_after_node is not
null and place_before_node is not null;"

+ "drop table if exists place_tr_placel;"

+ "CREATE TABLE place_tr_placel select * from
finale_table union all select * from final_table union all select * from
in_outputValue_final union all select * from expansionNode_final union all
select * from send_accept_final;"

+ "DELETE FROM place_tr_placel where place_after_node is
null and place_before_node is null;"

+ "DELETE FROM place_tr_placel where place_after_node is
null and name_primary is null; "

+ "DELETE FROM place_tr_placel where name_primary is null
and place_before_node is null;"

+ "update place_tr_placel as tl inner join
place_tr_placel as t2 on tl.name_primary = t2.name_primary and
tl.place_after_node<> t2.place_after_node and t2.place_before_node is null
and tl.place_after_node like'place %' set tl.place_after_node =
t2.place_after_node;"

//+ "DELETE nl FROM place_tr_placel nl JOIN
place_tr_placel n2 ON nl.name_primary = n2.name_primary AND
nl.place_after_node = n2.place_after_node and nl.place before node is
null;"

+ "update place_tr_placel as tl inner join
place_tr_placel as t2 on tl.name_primary = t2.name_primary and
tl.place_before_node<> t2.place_before_node and t2.place_after_node is null
and tl.place_after_node like'place_%' set tl.place_before_node =
t2.place_before_node;"

//+ "DELETE nl FROM place_tr_placel nl JOIN
place_tr_placel n2 ON nl.name_primary = n2.name_primary AND
nl.place_before_node = n2.place_before_node and nl.place_after_node is
null;"

+ "alter table place_tr_placel add column id int
AUTO_INCREMENT primary key;"

+ "drop table if exists check_pan;"

+ "create table check_pan as select * FROM
place_tr_placel pl WHERE NOT EXISTS (SELECT place_before _node FROM
place_tr_placel p2 WHERE pl.place after node = p2.place_before_node);"

+ "DELETE from check_pan where place_after_node like
"flow_pout%' or place_after_node like 'pout_%';"

+ "drop table if exists check_pbn;"

+ "create table check_pbn as select * FROM
place_tr_placel pl WHERE NOT EXISTS (SELECT place_before_node FROM
place_tr_placel p2 WHERE pl.place_before_node = p2.place_after_node);"

+ "DELETE from check_pbn where place_before_node like
'pin%' ;"

+ "drop table if exists check_pan_pbn;™"

+ "create table check_pan_pbn select * FROM check_pan
union select * from check_pbn; "

243

+ "DELETE nl FROM place_tr_placel nl INNER JOIN
check_pan_pbn n2 ON nl.id = n2.id;"

+ "DELETE nl FROM check_pan_pbn n1l INNER JOIN
expansionNode_xmi_for_delete n2 ON nl.place_before_node = n2.incoming and
nl.place_after_node = n2.outgoing and nl.name_primary = n2.name; "

//+ "UPDATE check_pan_pbn SET place_after_node =
REPLACE(place_after_node, 'place', 'pout');"

+ "drop table if exists place_tr_place;"

+ "create table place_tr_place select * from
place_tr_placel union all select * from check_pan_pbn;"

+ "UPDATE place_tr_place SET place before_node
='initial_node_x' WHERE "“place_before_node’ is null; "

+ "UPDATE place_tr_place SET place_after_node
='final_node_x' WHERE "place_after_node™ is null;"

+ "alter table place_tr_place drop column id;"

+ "alter table place_tr_place add column id int
AUTO_INCREMENT primary key;"

+ "UPDATE place_tr_place SET place_after_node = NULL
WHERE place_after_node like 'pout_%';"
+ "UPDATE place_tr_place SET place_after_node = 'pout’

WHERE place_after_node is null;"

+ "drop table negative_records;"

+ "create table negative_records (id int not null
AUTO_INCREMENT PRIMARY KEY) as select distinct place_before_node,
name_primary from place_tr_place;"

+ "drop table positive_records;"

+ "create table positive_records (id int not null
AUTO_INCREMENT PRIMARY KEY) as select distinct name_primary,
place_after_node from place_tr_place;";

pst = connl.prepareStatement(codel);
boolean isResultl = pst.execute();
pst = connl.prepareStatement(code2);
boolean isResult2 = pst.execute();
pst = connl.prepareStatement(code3);
boolean isResult3 = pst.execute();
pst = connl.prepareStatement(code4);
boolean isResult4 = pst.execute();
pst = connl.prepareStatement(code5);

boolean isResult5 = pst.execute();

pst = connl.prepareStatement(code5a);
pst.execute();

pst = connl.prepareStatement(code5b);
pst.execute();

pst = connl.prepareStatement(code5c);
pst.execute();

pst = connl.prepareStatement(code6);
pst.execute();

pst = connl.prepareStatement(code7);
boolean isResult7 = pst.execute();

pst = connl.prepareStatement(code8);
pst.execute();

pst = connl.prepareStatement(code9);
boolean isResult9 = pst.execute();

pst = connl.prepareStatement(codel®);
pst.execute();

pst = connl.prepareStatement(codell);
pst.execute();

boolean isResult5a

boolean isResult5b

boolean isResult5c

boolean isResult6

boolean isResult8

boolean isResult10

boolean isResultill

244

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

isResult12

isResulti13

isResulti14

isResult15s

isResultil6

isResult17

isResult18

pst
pst.
pst
pst.
pst
pst.
pst
pst.
pst
pst.
pst
pst.
pst
pst.
pst

= connl.prepareStatement(codel2);
execute();
= connl.prepareStatement(codel3);
execute();
= connl.prepareStatement(codeld);
execute();
= connl.prepareStatement(codel5);
execute();
= connl.prepareStatement(codel6);
execute();
= connl.prepareStatement(codel?7);
execute();
= connl.prepareStatement(codel8);
execute();

= connl.prepareStatement(codel9b);
isResult19b = pst.execute();

pst = connl.prepareStatement(codel9);
boolean isResultl9 = pst.execute();
pst = connl.prepareStatement(code20); boolean isResult20 =
pst.execute();
pst = connl.prepareStatement(code21l); boolean isResult2l =

pst.execute();

pst = connl.prepareStatement(code22a);

= pst.execute();

String codelll = "drop table if exists negative;"

+ "SET group_concat_max_len
+ "SELECT CONCAT('create ta

SELECT place_before_node,', GROUP_CONCAT(sums), 'FROM nega
GROUP BY id') FROM (SELECT distinct CONCAT('(case when

negative_records.name_primary =

end) as ', name_primary,

INTO @sql;"

pst = connl.prepareStatement(codelll);

= pst.execute();

exists positive;"

boolean isResult22a

=15000; "
ble negative as
tive_records

, hame_primary, ''' then -1 else ©

"“")sums FROM negative_records GROUP BY id) s

+ "PREPARE stmt FROM @sql; "
+ "EXECUTE stmt; "
+ "DEALLOCATE PREPARE stmt";

String code222

+ "SELECT CONCAT('

positive as SELECT place_after _node,', GROUP_CONCAT(sums),
positive_records GROUP BY id') FROM (SELECT distinct CONCAT('(case when

positive_records.name_primary =

as ', name_primary,

@sql;"

@sql;”

PREPARE

stmt;"

exists overall;"

boolean isResultlll

= "drop table if

create table
'FROM

, hame_primary, ''' then 1 else @ end)

"“')sums FROM positive records GROUP BY id) s INTO

+

+

"PREPARE stmt FROM

"EXECUTE stmt;"
"DEALLOCATE

"drop table if

"create table

overall SELECT * FROM positive UNION SELECT * FROM negative;"

exists schema_table;

+

245

"drop table if

+ "create table
schema_table as select * from overall;"

+ "drop table if
exists column_table; "

+ "create table
column_table (primary_id int NOT NULL AUTO_INCREMENT PRIMARY KEY) as select
column_name from information_schema.columns where table name='overall';"

+ "DELETE FROM
column_table where primary_id=1;"

+ "drop table if
exists matrix_pass_fail;"

+ "drop table if
exists incidence_matrix_single_device;"

+ "drop table if

exists table_unionl";

pst = connl.prepareStatement(code222);
boolean isResult222 = pst.execute();

String code334 = "set session sql_mode =
"NO_ENGINE_SUBSTITUTION';"
+ "DROP PROCEDURE IF EXISTS
"Te ;"+ "SET group_concat_max_len= 150000;";
code334 += "CREATE PROCEDURE “Te () ";
code334 += "BEGIN ";
code334 += "create table matrix_pass_fail (column_name varchar(150000)) ";
code334 += " SELECT
@query7:=GROUP_CONCAT (CONCAT('sum(" ',column_name,"')" ',column_name,"' ")) "
+ "AS column_name from
column_table order by CHAR_LENGTH(column_name); ";
code334 += "PREPARE stmt FROM @query7; ";
code334 += "EXECUTE stmt;";
code334 += "DEALLOCATE PREPARE stmt;";
code334 += "END ";

pst.execute(code334);
pst.close();

String queryl =
"Call Te();";

pst = connl.prepareStatement(queryl);
boolean isResultA = pst.execute();

}

catch(SQLException e){} try{ if (rs != null) rs.close(); if
(pst != null) pst.close();

if (connl != null) connl.close();}catch(Exception e){}

try{
connl

=DriverManager.getConnection("jdbc:mysql://127.0.0.1:3306/sql",
"root","Xristina23");

pst =connl.prepareStatement("select * from
matrix_pass_fail");
rs= pst.executeQuery();

while (rs.next())

246

t1=(("create table table unionl as select place_after_node,") +
rs.getString("column_name")+ (" ") +("from overall group by
place_after_node;"));

System.out.println(tl);
}
catch(SQLException e){} try{ if (rs != null) rs.close(); if (pst
!= null) pst.close();
if (connl != null) connl.close();}catch(Exception e){}
try{
//STEP 2: Register JDBC driver
Class.forName("com.mysql.jdbc.Driver");
//STEP 3: Open a connection
System.out.println("Connecting to a selected database...");
connl = DriverManager.getConnection(DB_URL, USER, PASS),
System.out.println("Connected database successfully...");
//STEP 4: Execute a query
System.out.println("Creating table in given database...");
stmt = connl.createStatement();
String sqll = t1;
stmt.executeUpdate(sqll);

System.out.println("Created table in given database...");
}catch(SQLException se){
//Handle errors for 3JDBC

se.printStackTrace();
}catch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();
}finally{
//finally block used to close resources
try{
if(stmt!=null)
connl.close();
}catch(SQLException se){
}// do nothing
try{
if(connl!=null)
connl.close();
}catch(SQLException se){
se.printStackTrace();
}//end finally try
}//end try
try {
connl = DriverManager.getConnection(cs, USER, PASS);
String t3=("create table incidence_matrix_single_device
as select * from table_unionl GROUP by place_after_node asc;");

String query = "select * from
incidence_matrix_single_device;";

pst = connl.prepareStatement(t3); boolean
isResultt3 = pst.execute();

pst = connl.prepareStatement(query); boolean
isResult = pst.execute();

do {

rs = pst.getResultSet();
ResultSetMetaData rsmd = rs.getMetaData();

247

display it.

int columnsNumber = rsmd.getColumnCount();
int col = rsmd.getColumnCount();
for (int i = 1; i <= col; i++){
String col name = rsmd.getColumnName(i);
System.out.print(col_name + " ");
}
System.out.println(" ")
// Iterate through the data in the result set and

while (rs.next()) {

//Print one row

for(int i = 1 ; i <= columnsNumber; i++){
System.out.print(rs.getString(i) + "

"Y; //Print one element of a row

}

}
isResult = pst.getMoreResults();

System.out.println();

} while (isResult); } finally {
if (rs != null) {

rs.close(); }

if (pst != null) {

pst.close();}

if (connl != null) {

connl.close();

System.out.println("Goodbye!"); }

}//end main
//end JIDBCExample

248

Appendix I - Advanced Generic SQL Code [Mo]

Appendix I presents the advanced generic SQL code developed for the automated

generation of the PN initial marking matrix [Mo], discussed in Chapter 6.

package stepl_initial_marking;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
public class initial marking {
public static void main(String[] args) throws SQLException {
Connection con = null;
PreparedStatement pst = null;
ResultSet rs=null;
String cs =
"jdbc:mysql://localhost:3306/sql?allowMultiQueries=true";
String user = "root";
String password = "Xristina23";
try {
con = DriverManager.getConnection(cs, user, password);
String codel = "SET SQL_SAFE_UPDATES=0;"

+ "drop table if exists initial_marking;"

+ "create table initial_marking (primary_id int not null
auto_increment primary key, activity varchar(250),
process_number_of_devices int);"

+ "insert into initial_marking (activity) select
place_after_node from incidence_matrix_single_device;"

+ "drop table if exists m@_marking;"

+ "create table m@_marking (primary_id int not null
auto_increment primary key) SELECT IFNULL(process_number_of_devices, 0)
FROM initial_marking;"

+ "ALTER TABLE “m@_marking™ CHANGE COLUMN
"IFNULL(process_number_of_devices, @) “process_number_of_devices int;

+ "alter table initial_marking drop column
process_number_of_devices;"

+ "drop table if exists initial_marking_final;"

+ "CREATE TABLE initial_marking_final AS (SELECT
initial_marking.*, m@_marking.process_number_of_devices FROM
initial_marking INNER JOIN m@ _marking ON initial marking.primary_id =
m@_marking.primary_id);"

+ "UPDATE initial_marking_final SET
initial_marking_final.process_number_of_devices = "
+ "REPLACE(initial _marking_final.process_number_of devices,

lel’ lll) n
+ " where 1initial_marking_ final.activity like 'pin%' or
initial_marking_final.activity like 'initial_place%' or

initial_marking_final.activity like 'initial_node_x%';"

+ "drop table if exists find_initial_node;"

+ "create table find_initial_node as select * from
place_tr_place;"

+ " DELETE nl FROM find_initial node nl JOIN
find_initial_node n2 ON nl.place_before_node = n2.place_after_node;"

249

+ "ALTER TABLE find_initial_node DROP column name_primary,
drop place_after_node, drop id;"

+ " ALTER TABLE find_initial_node ADD COLUMN " primary_id"
int NOT NULL AUTO_INCREMENT PRIMARY KEY; "

+ "ALTER TABLE find_initial_node ADD COLUMN
“process_number_of_devices® INT;"

+ "ALTER TABLE find_initial node CHANGE place_before_node
activity char(250);"

+ "UPDATE find_initial_node SET process_number_of_devices =
1 WHERE process_number_of_devices IS NULL;"

+ "ALTER TABLE find_initial_node MODIFY activity
varchar(250) AFTER primary_id;"

+ "drop table if exists initial_marking_final 1;

+ "create table initial_marking_final_1 select * from
find_initial_node UNION select * from initial marking_final;"

+ "DELETE nl FROM initial_marking_final_1 nl1 JOIN
find_initial_node n2 ON nl.activity=n2.activity AND
nl.process_number_of_devices=0;"

+ "ALTER TABLE initial_marking_final_1 DROP column

primary_id;"
+ "drop table if exists process_device_number;"

+ "CREATE TABLE process_device_number (number_of_devices
int, activity varchar(50), min_time int, max_time int, probability pass
double, probability fail double, min_interval _pass int, max_interval_pass
int, min_interval_fail int, max_interval_fail int, initial_marking int);";

String code2 = "LOAD DATA LOCAL INFILE
"E:/online_shopping/excel _data_number_of _devices.csv' INTO TABLE
process_device_number FIELDS TERMINATED BY ';' LINES TERMINATED BY '\r\n'
(number_of_devices, activity, min_time, max_time, probability_ pass,
probability fail, min_interval_pass, max_interval_pass, min_interval_fail,
max_interval_fail, initial_marking);";

String code3 = "ALTER TABLE process_device_number ADD primary_id
int NOT NULL AUTO_INCREMENT PRIMARY KEY ;"

+ "DELETE FROM process_device_number where primary_id=1;"

+ "drop table if exists initial_marking_table;"

+ "create table initial_marking_table (primary_id int NOT
NULL AUTO_INCREMENT PRIMARY KEY) as select initial_marking from
process_device_number;";

String coded4 = "UPDATE initial_marking_final, initial _marking_table SET
initial_marking_final.process_number_of_devices =
REPLACE(initial_marking_ final.process_number_of_devices, '1’',

initial _marking_table.initial marking) where

initial _marking_table.primary_id="'1"';"

+"ALTER IGNORE TABLE initial marking_final_1 ADD UNIQUE (activity,
process_number_of_devices);";

pst = con.prepareStatement(codel); boolean isResultl =
pst.execute();

pst = con.prepareStatement(code2); boolean isResul2t =
pst.execute();

pst = con.prepareStatement(code3); boolean isResult3 =
pst.execute();

pst = con.prepareStatement(code4); boolean isResult4 =

pst.execute();

String query = "select * from initial_marking_final;";
pst = con.prepareStatement(query);

boolean isResult = pst.execute();

do {

250

it.

rs = pst.getResultSet();

ResultSetMetaData rsmd = rs.getMetaData();
int columnsNumber = rsmd.getColumnCount();
int col = rsmd.getColumnCount();

for (int 1 = 1; i <= col; i++){

String col name = rsmd.getColumnName(i);

System.out.print(col_name + " ");

¥
System.out.println(" ");

// Iterate through the data in the result set and

while (rs.next()) {

//Print one row

for(int i = 1 ; i <= columnsNumber; i++){
System.out.print(rs.getString(i) + "

//Print one element of a row

}

}
isResult = pst.getMoreResults();

System.out.println();

}

while (isResult);

} finally {
if (rs != null) {
rs.close();

}

if (pst != null) {
pst.close();

}

if (con != null) {
con.close();

}

251

display

")

Appendix]
Appendix J covers the XMI files for the two AD examples shown in Chapter 7.

Part A- Production System Example (XMI File)
XMI obtained from the AD for the Production System, shown in Figure 7.2.

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="20131001"
xmlns:xmi="http://www.omg.org/spec/XMI/20131001"
xmlns:uml="http://www.eclipse.org/uml2/5.6.0/UML"
xmi:id="__mtawCH2Eeilppsn_eFPfg" name="RootElement">
<packagedElement xmi:type="uml:Activity" xmi:id="__ tTyACH2Eeilppsn_eFPfg"
name="Activityl" node="_tcQnECH3Eeilppsn_eFPfg _vGIWACH3Eeilppsn_eFPfg
_250gcCH3Eeilppsn_eFPfg _95hqwCH3Eeilppsn_eFPfg _FaRfYCH4Eeilppsn_eFPfg
_So3ARCH4Eeilppsn_eFPfg _bRFaoCH4Eeilppsn_eFPfg _cdQSOCH4Eeilppsn_eFPfg
_tXuP4CH4Eeilppsn_eFPfg _-95cYCH4Eeilppsn_eFPfg _F39rgCH5Eeilppsn_eFPfg
_G82P8CH5Eeilppsn_eFPfg _JucNOCH5Eeilppsn_eFPfg _Qy©2kCH5Eeilppsn_eFPfg
_WQZ5RCH5Eeilppsn_eFPfg _YwFBACH5Eeilppsn_eFPfg _tP9LRCH5Eeilppsn_eFPfg
_ufdekCH5Eeilppsn_eFPfg _yrbvwCH5Eeilppsn_eFPfg _AL2nOCH6Eeilppsn_eFPfg
_C6190CH6Eeilppsn_eFPfg _GpmuYCH6Eeilppsn_eFPfg _JrgZICH6Eeilppsn_eFPfg
_ND_X4CH6Eeilppsn_eFPfg _TATRUCH6Eeilppsn_eFPfg _VVvAnQCH6Eeilppsn_eFPfg
_WuXygCH6Eeilppsn_eFPfg _fZyqgCH6Eeilppsn_eFPfg _gUwd8CH6Eeilppsn_eFPfg
_7YpCYCH3Eeilppsn_eFPfg _Gr_9QCIJEeilppsn_eFPfg _ZOymMCINEeilppsn_eFPfg
_sqt-UCJYEeimD_iX8LXVAA">
<edge xmi:type="uml:ControlFlow" xmi:id="_uzeUOCH7Eeilppsn_eFPfg"
target="_vGIWACH3Eeilppsn_eFPfg" source="_tcQnECH3Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_wBAe8CH7Eeilppsn_eFPfg"
target="_250gcCH3Eeilppsn_eFPfg" source="_vGIWACH3Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_xTTNQCH7Eeilppsn_eFPfg"
target="_250gcCH3Eeilppsn_eFPfg" source="_95hqwCH3Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_ymKjUCH7Eeilppsn_eFPfg"
target="_7YpCYCH3Eeilppsn_eFPfg" source="_250gcCH3Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_zYyTECH7Eeilppsn_eFPfg"
target="_95hqwCH3Eeilppsn_eFPfg" source="_7YpCYCH3Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_OgulLgCH7Eeilppsn_eFPfg"
target="_Gr_9QCIJEeilppsn_eFPfg" source="_7YpCYCH3Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_8-XtQCH7Eeilppsn_eFPfg"
target="_bRFaoCH4Eeilppsn_eFPfg" source="_So3ARCH4Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow"” xmi:id="_9stZ8CH7Eeilppsn_eFPfg"
target="_cdQSOCH4Eeilppsn_eFPfg" source="_bRFaoCH4Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_-UqKwCH7Eeilppsn_eFPfg"
target="_tXuP4CH4Eeilppsn_eFPfg" source="_bRFaoCH4Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_CEhHsCH8Eeilppsn_eFPfg"
target="_-95cYCH4Eeilppsn_eFPfg" source="_cdQSOCH4Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_IQ-p8CH8Eeilppsn_eFPfg"
target="_F39rgCH5Eeilppsn_eFPfg" source="_tXuP4CH4Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_JC52ICH8Eeilppsn_eFPfg"
target="_G82P8CH5Eeilppsn_eFPfg" source="_F39rgCH5Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_J3yPsCH8Eeilppsn_eFPfg"
target="_JucNOCH5Eeilppsn_eFPfg" source="_F39rgCH5Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_MT_zcCH8Eeilppsn_eFPfg"
name="Filling _with_base" target="_QyO02kCH5Eeilppsn_eFPfg"
source="_G82P8CH5Eeilppsn_eFPfg"/>

252

<edge xmi:type="uml:ControlFlow" xmi:id="_PdIuoCH8Eeilppsn_eFPfg"
name="Filling with_additive" target="_WQZ5kRCH5Eeilppsn_eFPfg"
source="_JucNOCH5Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_SUxDECH8Eeilppsn_eFPfg"
target="_YwFBACH5Eeilppsn_eFPfg" source="_WQZ5RCH5Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_TCtHICH8Eeilppsn_eFPfg"
target="_tPI9LkRCH5Eeilppsn_eFPfg" source="_YwFBACH5Eeilppsn eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_UpSDYCH8Eeilppsn_eFPfg"
target="_ufdekCH5Eeilppsn_eFPfg" source="_tP9LRCH5Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_VWThcCH8Eeilppsn_eFPfg"
target="_ufdekCH5Eeilppsn_eFPfg" source="_Qy02kCH5Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_WBVEECH8Eeilppsn_eFPfg"
target="_yrbvwCH5Eeilppsn_eFPfg" source="_tP9LRCH5Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_mS6zkCH8Eeilppsn_eFPfg"
target="_AL2nOCH6Eeilppsn_eFPfg" source="_ufdekCH5Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_nHLKsCH8Eeilppsn_eFPfg"
name="Mixing_in_M1" target="_C6190CH6Eeilppsn_eFPfg"
source="_AL2nOCH6Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_rRdxMCH8Eeilppsn_eFPfg"
name="Emptying M1" target="_GpmuYCH6Eeilppsn_eFPfg"
source="_C6190CH6Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_u3FOECH8Eeilppsn_eFPfg"
target="_JrgZICH6Eeilppsn_eFPfg" source="_GpmuYCH6Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_zKXAECH8Eeilppsn_eFPfg"
target="_T4TRUCH6Eeilppsn_eFPfg" source="_JrgZICH6Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_0eAZQCH8Eeilppsn_eFPfg"
target="_ND_X4CH6Eeilppsn_eFPfg" source="_T4TRUCH6Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_BExFcCH9Eeilppsn_eFPfg"
target="_VVAnQCH6Eeilppsn_eFPfg" source="_yrbvwCH5Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow"” xmi:id="_CTKyQCH9Eeilppsn_eFPfg"
target="_WuXygCH6Eeilppsn_eFPfg" source="_VVAnQCH6Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_IwmIsCH9Eeilppsn_eFPfg"
target="_fZyqgCH6Eeilppsn_eFPfg" source="_WuXygCH6Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_Jf768CH9Eeilppsn_eFPfg"
target="_gUwd8CH6Eeilppsn_eFPfg" source="_fZyqgCH6Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_Ms1UwCH9Eeilppsn_eFPfg"
target="_T4TRUCH6Eeilppsn_eFPfg" source="_fZyqgCH6Eeilppsn eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_WrgkYCH9Eeilppsn_eFPfg"
target="_sqt-UCJYEeimD_iX8LXVAA" source="_ND_X4CH6Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_zHTPkCH9Eeilppsn_eFPfg"
name="Valve_open" target="_VVAnQCH6Eeilppsn_eFPfg" source="_-
95cYCH4Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_L_fkcCIAEeilppsn_eFPfg"
target="_sqt-UCJYEeimD_ iX8LXVAA" source="_7YpCYCH3Eeilppsn _eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_LS8TMCIJEeilppsn_eFPfg"
target="_FaRfYCH4Eeilppsn_eFPfg" source="_Gr_9QCIJEeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_az7YACINEeilppsn_eFPfg"
target="_ZOymMCINEeilppsn_eFPfg" source="_gUwd8CH6Eeilppsn_eFPfg"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_2mHQcCIYEeimD_1iX8LXVAA"
target="_S03AkCH4Eeilppsn_eFPfg" source="_sqt-UCIJYEeimD_1iX8LXVAA"/>
<node xmi:type="uml:InitialNode" xmi:id="_tcQnECH3Eeilppsn_eFPfg"
name="" outgoing="_uzeUOCH7Eeilppsn_eFPfg"/>
<node xmi:type="uml:0paqueAction” xmi:id="_vGIWACH3Eeilppsn_eFPfg"
name="Production_Order_1_asks_Receipt P1_to_produce P1"
incoming="_uzeUOCH7Eeilppsn_eFPfg" outgoing="_wBAe8CH7Eeilppsn_eFPfg"/>
<node xmi:type="uml:MergeNode" xmi:id="_250gcCH3Eeilppsn_eFPfg"
name="M1" incoming="_wBAe8CH7Eeilppsn_eFPfg _xTTNQCH7Eeilppsn_eFPfg"
outgoing="_ymKjUCH7Eeilppsn_eFPfg"/>

253

<node xmi:type="uml:DecisionNode" xmi:id="_7YpCYCH3Eeilppsn_eFPfg"
name="D1" incoming="_ymKjUCH7Eeilppsn_eFPfg"
outgoing="_zYyTECH7Eeilppsn_eFPfg _OgulLgCH7Eeilppsn_eFPfg
_L_fkcCIAEeilppsn_eFPfg"/>

<node xmi:type="uml:0OpaqueAction"” xmi:id="_95hqwCH3Eeilppsn_eFPfg"
name="Production_of a_batch_of P1_in M2(similar_to M1)"
incoming="_zYyTECH7Eeilppsn_eFPfg" outgoing="_xTTNQCH7Eeilppsn_eFPfg"/>

<node xmi:type="uml:ActivityFinalNode" xmi:id="_FaRfYCH4Eeilppsn_eFPfg"
incoming="_LS8TMCIJEeilppsn_eFPfg"/>

<node xmi:type="uml:0OpaqueAction” xmi:id="_So3ARCH4Eeilppsn_eFPfg"
name="Receipt P1_requests_M1_to Interface CM1"
incoming="_2mHQcCJIYEeimD_1iX8LXVAA" outgoing="_8-XtQCH7Eeilppsn_eFPfg"/>

<node xmi:type="uml:ForkNode" xmi:id="_bRFaoCH4Eeilppsn_eFPfg" name=
incoming="_8-XtQCH7Eeilppsn_eFPfg" outgoing="_9stZ8CH7Eeilppsn_eFPfg _-
UgKwCH7Eeilppsn_eFPfg"/>

<node xmi:type="uml:0paqueAction” xmi:id="_cdQSOCH4Eeilppsn_eFPfg"
name="Receipt_P1_asks_Interface_VT2--1_to _open VT2-1"
incoming="_9stZ8CH7Eeilppsn_eFPfg" outgoing="_CEhHsCH8Eeilppsn_eFPfg"/>

<node xmi:type="uml:0OpaqueAction” xmi:id="_tXuP4CH4Eeilppsn_eFPfg"
name="Interface CM1_requests_M1_to controller CM1" incoming="_-
UgKwCH7Eeilppsn_eFPfg" outgoing="_IQ-p8CH8Eeilppsn_eFPfg"/>

<node xmi:type="uml:0paqueAction” xmi:id="_-95cYCH4Eeilppsn_eFPfg"
name="Interface VT2-1_opens_VT2-1" incoming="_CEhHsCH8Eeilppsn_eFPfg"
outgoing="_zHTPRCH9Eeilppsn_eFPfg"/>

<node xmi:type="uml:ForkNode" xmi:id="_F39rgCH5Eeilppsn_eFPfg" name=
incoming="_IQ-p8CH8Eeilppsn_eFPfg" outgoing="_JC52ICH8Eeilppsn_eFPfg
_J3yPsCH8Eeilppsn_eFPfg"/>

<node xmi:type="uml:0OpaqueAction” xmi:id="_G82P8CH5Eeilppsn_eFPfg"
name="CM1_opens_VM1-1" incoming="_JC52ICH8Eeilppsn_eFPfg"
outgoing="_MT_zcCH8Eeilppsn_eFPfg"/>

<node xmi:type="uml:0paqueAction” xmi:id="_JucNOCH5Eeilppsn_eFPfg"
name="CM1_opens_VM1-2" incoming="_J3yPsCH8Eeilppsn_eFPfg"
outgoing="_PdIuoCH8Eeilppsn_eFPfg"/>

<node xmi:type="uml:0OpaqueAction” xmi:id="_QyO2kCH5Eeilppsn_eFPfg"
name="CM1_closes_VM1-1" incoming="_MT_zcCH8Eeilppsn_eFPfg"
outgoing="_VWThcCH8Eeilppsn_eFPfg"/>

<node xmi:type="uml:0OpaqueAction" xmi:id="_WQZ5kRCH5Eeilppsn_eFPfg"
name="CM1_closes_VM1-2" incoming="_PdIuoCH8Eeilppsn_eFPfg"
outgoing="_SUXDECH8Eeilppsn_eFPfg"/>

<node xmi:type="uml:0OpaqueAction"” xmi:id="_YwFBACH5Eeilppsn_eFPfg"
name="CM1_informs_end_of_additive_loading_to_Interface CM1"
incoming="_SUXDECH8Eeilppsn_eFPfg" outgoing="_TCtHICH8Eeilppsn _eFPfg"/>

<node xmi:type="uml:ForkNode" xmi:id="_tP9LRCH5Eeilppsn_eFPfg" name=""
incoming="_TCtHICH8Eeilppsn_eFPfg" outgoing="_UpSDYCH8Eeilppsn_eFPfg
_WBVEECH8Eeilppsn_eFPfg"/>

<node xmi:type="uml:JoinNode" xmi:id="_ufdekRCH5Eeilppsn_eFPfg"
incoming="_UpSDYCH8Eeilppsn_eFPfg _VWThcCH8Eeilppsn_eFPfg"
outgoing="_mS6zkCH8Eeilppsn_eFPfg"/>

<node xmi:type="uml:0paqueAction” xmi:id="_yrbvwCH5Eeilppsn_eFPfg"
name="Interface CM1_1informs_end_of additive loading to_Receipt P1"
incoming="_WBVEECH8Eeilppsn_eFPfg" outgoing="_BExFcCH9Eeilppsn_eFPfg"/>

<node xmi:type="uml:0OpaqueAction"” xmi:id="_AL2nOCH6Eeilppsn_eFPfg"
name="CM1_starts_mixing_in_M1" incoming="_mS6zkCH8Eeilppsn_eFPfg"
outgoing="_nHLKsCH8Eeilppsn_eFPfg"/>

<node xmi:type="uml:OpaqueAction” xmi:id="_C6190CH6Eeilppsn_eFPfg"
name="CM1_stops_mixing_and_starts_emptying M1"
incoming="_nHLKsCH8Eeilppsn_eFPfg" outgoing="_rRdxMCH8Eeilppsn_eFPfg"/>

nn

"o

254

<node xmi:type="uml:0OpaqueAction"” xmi:id="_GpmuYCH6Eeilppsn_eFPfg"
name="CM1_detects_M1_empty" incoming="_rRdxMCH8Eeilppsn_eFPfg"
outgoing="_u3FOECH8Eeilppsn_eFPfg"/>

<node xmi:type="uml:0OpaqueAction"” xmi:id="_JrgZICH6Eeilppsn_eFPfg"
name="CM1_informs_end_of_batch_to_Interface_ CM1"
incoming="_u3FOECH8Eeilppsn_eFPfg" outgoing="_zKXAECH8Eeilppsn_eFPfg"/>

<node xmi:type="uml:0paqueAction” xmi:id="_ND X4CH6Eeilppsn_eFPfg"
name="Interface CM1_1informs_end_of batch_to_ Receipt P1"
incoming="_0eAZQCH8Eeilppsn_eFPfg" outgoing="_WrgkYCH9Eeilppsn_eFPfg"/>

<node xmi:type="uml:JoinNode" xmi:id="_T4TRUCH6Eeilppsn_eFPfg" name=
incoming="_zKXAECH8Eeilppsn eFPfg _Ms1UwCHS9Eeilppsn_eFPfg"
outgoing="_0eAZQCH8Eeilppsn_eFPfg"/>

<node xmi:type="uml:JoinNode" xmi:id="_WVAnQCH6Eeilppsn_eFPfg" name=
incoming="_BExFcCH9Eeilppsn_eFPfg _zHTPRCHS9Eeilppsn_eFPfg"
outgoing="_CTKyQCH9Eeilppsn_eFPfg"/>

<node xmi:type="uml:0paqueAction” xmi:id="_WuXygCH6Eeilppsn_ eFPfg"
name="Receipt P1_requests_Interface VT2--1_to close VT2-1"
incoming="_CTKyQCH9Eeilppsn_eFPfg" outgoing="_IwmIsCHS9Eeilppsn_eFPfg"/>

<node xmi:type="uml:ForkNode" xmi:id="_fZyqgCH6Eeilppsn_eFPfg" name=
incoming="_IwmIsCH9Eeilppsn_eFPfg" outgoing="_Jf768CH9Eeilppsn_eFPfg
_Ms1UwCH9Eeilppsn_eFPfg"/>

<node xmi:type="uml:0paqueAction” xmi:id="_gUwd8CH6Eeilppsn_eFPfg"
name="Interface VT2 closes_VT2" incoming="_Jf768CH9Eeilppsn_eFPfg"
outgoing="_az7YACINEeilppsn_eFPfg"/>

<node xmi:type="uml:0OpaqueAction” xmi:id="_Gr_9QCIJEeilppsn_eFPfg"
name="Terminate_production_P1" incoming="_6OgulLgCH7Eeilppsn_eFPfg"
outgoing="_LS8TMCIJEeilppsn_eFPfg"/>

<node xmi:type="uml:FlowFinalNode" xmi:id="_ZOymMCINEeilppsn_eFPfg"
name="" incoming="_az7YACINEeilppsn_eFPfg"/>

<node xmi:type="uml:MergeNode" xmi:id="_sqt-UCJIYEeimD_iX8LXVAA"
incoming="_L_fRcCIAEeilppsn_eFPfg _WrgkYCH9Eeilppsn_eFPfg"
outgoing="_2mHQcCJIYEeimD_1iX8LXVAA"/>

</packagedElement>

</uml:Model>

nmn

mn

mn

Part B - Online Shopping Process (XMI File)
XMI obtained from the AD for the online shopping process, illustrated in Figure 7.4.

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="20131001"
xmlns:xmi="http://www.omg.org/spec/XMI/20131001"
xmlns:uml="http://www.eclipse.org/uml2/5.6.0/UML"
xmi:id="__QzSOJR1EeebXObshy6vlA" name="RootElement">

<packagedElement xmi:type="uml:Activity" xmi:id="__h8GIJR1EeebXObshy6vlA"
name="Activityl" node="_M-oUwJR2EeebXObshy6vlA _ZigFAJR2EeebXObshy6vLA
_1zGGoJR2EeebX0Obshy6vIlA _RVjX4JR2EeebXObshy6vlA _mIulsJIR2EeebXObshy6vlA
_0gUVMIR2EeebX0Obshy6vlA _qBiqUIR2EeebXObshy6vlA _uPNkoJR2EeebXObshy6vlA
_XFJ3AJR2EeebXObshy6vlA _5F6BYJR2EeebXObshy6vlA _BYaDEJR3EeebXObshy6vLA
_QZxwgJR3EeebXObshy6vlA _Rr-_QJR3EeebXObshy6vlA _Xq6b0JR3EeebXObshy6vLA
_edbRcIR3EeebXObshy6vlA __WTroJR6EeebXObshy6vlA _NbgrwIJR7EeebXObshy6vLA
_aY0ZOJR7EeebX0Obshy6vlA _ifxIsJR7EeebXObshy6v0lA _j6mvAIR7EeebXObshy6vlA
_LNZMRIR7EeebX0Obshy6vlA _pyfIYIR7EeebXObshy6vlA _AIObUJR8EeebXObshy6vlA
__NomQEJR8EeebXObshy6vlA _©04CUIR8EeebXObshy6vlA _7TENwIR8EeebXObshy6vLA
_8nxW4JIR8EeebXObshy6vlA _PHurEJR9EeebXObshy6vlA _rq 3QJR9EeebXObshy6vlA _-
VKQUIR9EeebX0Obshy6vlA _PT9TwIR-EeebXObshy6vlA _aCiWUJR-EeebXObshy6vLA

255

_ORXPMIR-EeebXObshy6vlA _DZXURJR_EeebXObshy6vlA _DquxYJIR_EeebXObshy6vlA
__ESTHsJR_EeebXObshy6vlA _YXy2UJR_EeebXObshy6vlA _JOhUoJSAEeebXObshy6vLA
_5kIOgISBEeebXObshy6vIA _BpfyEJISCEeebXObshy6vlA _DOQwcISCEeebXObshy6vLA
_D1IjMISCEeebX0Obshy6vlA _OxpUEJSCEeebXObshy6vlA _UJ2u4ISCEeebXObshy6vlA
_7TV_kJRnEeeOIORO-VyZIA SO E8JkoEeeOIORO-VyZIA _gEelEJRoEeeOIORO-VyZIA
_zb-c4JunEeeMIso6T-JfIQ _ZLMygJl7uEeel -svp6Z91RQ _LcXMsJ7vEeel-svp6Z91RQ"
group="_YXy2UJR_EeebXObshy6vlA">

<ownedBehavior xmi:type="uml:Activity"” xmi:id="_e76kQIR3EeebXObshy6vlA"
name="Activityl">

<nestedClassifier xmi:type="uml:Signal" xmi:id="_VyjEcJuoEeeMJso6T-
JfI1Q"/>
<nestedClassifier xmi:type="uml:Signal"” xmi:id=

JfIQ" name="Verify CC_Funds"/>

</ownedBehavior>

<edge xmi:type="uml:ControlFlow" xmi:id="_vkR2scJR3EeebXObshy6vlA"
target="_ZigFAJR2EeebXObshy6vlA" source="_M-oUwJR2EeebXObshy6vLA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_wxh68IR3EeebXObshy6vlA"
target="_gEelEJROEeeOIORO-VyZIA" source="_ZigFAJR2EeebXObshy6vlLA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_x0AP8JR3EeebXObshy6vlA"
target="_RVjX4JR2EeebXObshy6vlA" source="_1zGGoIJR2EeebXObshy6vLA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_y2k74IR3EeebXObshy6vlA"
target="_mIulsJR2EeebXObshy6vlA" source="_1zGGoIJR2EeebXObshy6vLA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_zrTkcJR3EeebXObshy6vlA"
target="_ogUvMIR2EeebXObshy6vlA" source="_kVjX4JR2EeebXObshy6vlA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_6qqvsJIR3EeebXObshy6vlA"
target="_ogUvMIR2EeebXObshy6vlA" source="_mIulsJR2EeebXObshy6vlA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_1s9TIJR3EeebXObshy6vlA"
target="_uPNkoJR2EeebXObshy6vlA" source="_LcXMsJ7vEeel-svp6Z91RQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_7tsGgJR3EeebXObshy6vlA"
target="_BYaDEJR3EeebXObshy6vlA" source="_5F6BYJR2EeebXObshy6vLA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_EnCFwJR4EeebXObshy6vlA"
name="Authorised" target="_QZxwgJR3EeebXObshy6vLA"
source="_BYaDEJR3EeebXObshy6vlLA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_Gi3gUJR4EeebXObshy6vlA"
name="Not_Authorised"” target="_Rr-_QJR3EeebXObshy6vlA"
source="_BYaDEJR3EeebXObshy6vlA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_Ltr YJR4EeebXObshy6vlA"
target="_Xq6bOJR3EeebXObshy6vlA" source="_QZxwgIJR3EeebXObshy6vLA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_M-guEJR4EeebXObshy6vlA"
target="_Xq6bOJR3EeebXObshy6vlA" source="_Rr-_QJR3EeebXObshy6vlA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_N5JKUJR4EeebXObshy6vlA"
target="_edbRcIR3EeebXObshy6vlA" source="_Xq6bOJIR3EeebXObshy6vlA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_QEZZRJR7EeebXObshy6vlA"
name="Acount_Information_(pending)" target="__WTroJR6EeebXObshy6vlA"
source="_ZLMygJ7uEeel -svp6Z91RQ"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_VcBLRIR7EeebXObshy6vlA"
target="_NbgrwJR7EeebXObshy6vlA" source="_WTroJR6EeebXObshy6vlA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_cAnT8JR7EeebXObshy6vlA"
name="Verify Account_by Phone" target="_aYO0ZOJR7EeebXObshy6vlA"
source="__WTroJR6EeebXObshy6vlA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_q540QJR7EeebXObshy6vlA"
target="_1fxIsJR7EeebXObshy6vlA" source="_aYOZOIR7EeebXObshy6vlLA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_rrpCYJR7EeebXObshy6vlA"
target="_j6mvAJR7EeebXObshy6vlA" source="_aYOZOJR7EeebXObshy6vlA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_sorSYJR7EeebXObshy6vlLA"
target="_LNZMkIR7EeebXObshy6vlA" source="_aYOZOJIR7EeebXObshy6vlA"/>

<edge xmi:type="uml:ControlFlow" xmi:id="_tVswcIR7EeebXObshy6vlA"
target="_pyfIYJR7EeebXObshy6vlA" source="_1ifxIsJR7EeebXObshy6vLA"/>

"

'_uagpsJuoEeeMIso6T-

256

<edge xmi:type="uml:ControlFlow" xmi:id="_uU3HYJR7EeebXObshy6vlA"
target="_pyfIYIJR7EeebXObshy6vlA" source="_j6mvAIJR7EeebXObshy6vLA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_vH6U8JR7EeebXObshy6vlA"
target="_pyfIYJR7EeebXObshy6vlA" source="_LNZMRIR7EeebXObshy6vLlA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_0zc50JR8EeebXObshy6vlA"
target="_NomQEJR8EeebXObshy6vlA" source="_AIObUJR8EeebXObshy6vLA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="__uP_oJR8EeebXObshy6vlLA"
target="_004CUJR8EeebXObshy6vlA" source="_pyfIYIJR7EeebXObshy6vlA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_BV4EwJR9EeebXObshy6vlA"
name="Request_More_Information" target="_7TENwJR8EeebXObshy6vlA"
source="_004CUJR8EeebX0Obshy6vlA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_JTy9kIR9EeebXObshy6vlA"
target="_8nxW4JR8EeebXObshy6vlA" source="_004CUIJR8EeebXObshy6vlA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_xAmORIR-EeebXObshy6vlA"
target="_-VKQUJR9EeebXObshy6vlA" source="_rq_3QJR9EeebXObshy6vlA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_3PXc4JR-EeebXObshy6vlA"
target="_0ORXPMJIR-EeebXObshy6vlA" source="_-VKQUIR9EeebXObshy6vlA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_q2F90JR_EeebXObshy6vlA"
target="_c_FxkJR_EeebXObshy6vlA" source="_aPQHMIR_EeebXObshy6vlA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_rrkkcJR_EeebXObshy6vlA"
target="_baUzMJIR_EeebXObshy6vlA" source="_c_FxkRIR_EeebXObshy6vlA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_S8Dw8JISAEeebXObshy6vlA"
target="_JOhUoJSAEeebXObshy6vlA" source="_8nxW4JR8EeebXObshy6vlA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_UJILRISBEeebXObshy6vlA"
target="_NomQEJR8EeebXObshy6vlA" source="_JOhUoJSAEeebXObshy6vlA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_ZxRDUJSCEeebXObshy6vlA"
target="_BpfyEJSCEeebXObshy6vlA" source="_wJ6DO0ISDEeebXObshy6vLA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_btyaYJSCEeebXObshy6vlA"
name="Monitor" target="_JdkyYJISCEeebXObshy6vlA"
source="_BpfyEJSCEeebXObshy6vlA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_fP6dUJISCEeebXObshy6vlA"
name="Computer" target="_IswZcIJSCEeebXObshy6vlA"
source="_BpfyEJSCEeebXObshy6vlLA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_2ciU8JSCEeebXObshy6vlA"
target="_7TV_kJRnEeeOIORO-VyZIA" source="_K IrwJSCEeebXObshy6vlA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="__UORQISCEeebXObshy6vlA"
target="_UJ2u4JSCEeebXObshy6vlA" source="_OxpUEJSCEeebXObshy6vlA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_Uwro4JSDEeebXObshy6vlA"
target="_NomQEJR8EeebXObshy6vlA" source="_UJ2u4JSCEeebXObshy6vLA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_9x2pYJIknEeeOIORO-VyZIA"
target="_OxpUEJSCEeebXObshy6vlA" source="_7TV_kJknEeeOIORO-VyZIA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_bDae8JkoEeeOIORO-VyZIA"
target="_5S0 E8JkoEeeOIORO-VyZIA" source="_M-oUwJR2EeebXObshy6vlA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_hjlfAJkRoEeeOIORO-VyZIA"
target="_gEelEJkoEeeOIORO-VyZIA" source="_SO E8JkoEeeOIORO-VyZIA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_7aWKAJkRoEeeOIORO-VyZIA"
target="_1zGGoJR2EeebXObshy6vlA" source="_gEelEJROEeeOIORO-VyZIA"/>
<edge xmi:type="uml:0ObjectFlow" xmi:id="_34ePoJuiEeeMIso6T-JfIQ"
target="_vSm7IJukEeeMIso6T-IfIQ" source="_Ti185MIR9EeebXObshy6vLA">
<guard xmi:type="uml:LiteralBoolean" xmi:id="_35aq@JuiEeeMIso6T-JfIQ"
value="true"/>
<weight xmi:type="uml:LiteralInteger" xmi:id="_35aq0ZuiEeeMJso6T-
JfIQ" value="1"/>
</edge>
<edge xmi:type="uml:ControlFlow" xmi:id="_k1_AsJujEeeMJso6T-JfIQ"
target="_aCiWUJIR-EeebXObshy6vlA" source="_PT9TwIR-EeebXObshy6vlA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_FIbNUJukREeeMJso6T-JfIQ"
target="_7TV_kRJIRnEeeOIORO-VyZIA" source="_MM4RQISCEeebXObshy6vLA"/>

257

<edge xmi:type="uml:ControlFlow" xmi:id="_pzIasJukREeeMJso6T-JfIQ"
target="_PHurEJR9EeebXObshy6vlA" source="_004CUIJR8EeebXObshy6vLA"/>

<edge xmi:type="uml:0bjectFlow" xmi:id="_TTcPoJumEeeMIso6T-JfIQ"
name="0Order_Items" target="_9mQmIJISBEeebXObshy6vlA"
source="_KtnewJulEeeMJso6T-JfIQ">

<guard xmi:type="uml:LiteralBoolean" xmi:id="_TUQvAJumEeeMJso6T-JfIQ"

value="true"/>

<weight xmi:type="uml:LiteralInteger"” xmi:id="_TUQVAZumEeeMJIso6T-

JFIQ" value="1"/>
</edge>
<edge xmi:type="uml:ControlFlow" xmi:id="_b bdcJuoEeeMIso6T-JfIQ"
target="_wEoRIJuoEeeMJso6T-JfIQ" source="_-VKQUIR9EeebXObshy6vLA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_DAIegJ7uEeel-svp6Z91RQ"
target="_5F6BYJR2EeebXObshy6vlA" source="_LcXMsJ7vEeel-svp6Z91RQ"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_LId3kJ7uEeel-svp6Z91RQ"
target="_xFJ3AJR2EeebXObshy6vlLA" source="_uPNkoIJR2EeebXObshy6vLA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_L8ShMJ7uEeel -svp6Z91RQ"
target="_gBiqUJR2EeebXObshy6vlA" source="_xFJ3AJR2EeebXObshy6vLA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_aoYiMJ7uEeel -svp6Z91RQ"
target="_ZLMygJ7uEeel -svp6Z91RQ" source="_gBiqUIR2EeebXObshy6vLA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_g@YxcJ7uEeel -svp6Z91RQ"
target="_ZLMygJi7uEeel -svp6Z91RQ" source="_edbRcIR3EeebXObshy6vLA" />
<edge xmi:type="uml:ControlFlow" xmi:id="_nhGroJ7vEeel -svp6Z91RQ"
target="_LcXMsJ7vEeel -svp6Z91RQ" source="_ogUvMIR2EeebXObshy6vLA"/>
<edge xmi:type="uml:ControlFlow" xmi:id="_kq7BwKg8Eeez4cgOfIXL4g"
target="_NomQEJR8EeebXObshy6vlA" source="_baUzMIR_EeebXObshy6vLA"/>
<edge xmi:type="uml:ControlFlow"” xmi:id="_LyGsQKg8Eeez4cgOfIXL4g"
target="_aPQHMIR_EeebXObshy6vlA" source="_ORXPMIR-EeebXObshy6vlA"/>
<structuredNode xmi:type="uml:ExpansionRegion"
xmi:id="_YXy2UJR_EeebXObshy6vlA" name="ExpansionRegionl"” mustIsolate=
mode="parallel" outputElement="_baUzMIR_EeebXObshy6vlA"
inputElement="_aPQHMJIR_EeebXObshy6vlA">

"true"

<node xmi:type="uml:ExpansionNode" xmi:id="_aPQHMJR_EeebXObshy6vlA"

name="ExpansionNodel" incoming="_LyGsQKg8Eeez4cgOfIXL4g"
outgoing="_g2F90JR_EeebXObshy6vlA" isControlType="true"
regionAsInput="_YXy2UJR_EeebXObshy6vlA"
regionAsOutput="_afnHoKkpEeeSpPjONkcV Q">
<upperBound xmi:type="uml:LiteralInteger"”
xmi:id="_aPRVUJR_EeebXObshy6vlA" value="1"/>
</node>

<node xmi:type="uml:ExpansionNode" xmi:id="_baUzMJIR_EeebXObshy6vlA"

4

name="ExpansionNode2" incoming="_rrkkcJR_EeebXObshy6vLA"
outgoing="_kq7BwKg8Eeez4cgOfIXL4g" isControlType="true"
regionAsOutput="_YXy2UJR_EeebXObshy6vlA">
<upperBound xmi:type="uml:LiteralInteger”
xmi:id="_baVaQJR_EeebXObshy6vlA" value="1"/>
</node>

<node xmi:type="uml:0OpaqueAction” xmi:id="_c_FxkRJR_EeebXObshy6vlA"

name="Contact_Suppliers"” incoming="_qg2F90JR_EeebXObshy6vlA"
outgoing="_rrkkcJR_EeebXObshy6vlA"/>

<node xmi:type="uml:ExpansionRegion" xmi:id="_afnHoKkpEeeSpPjONkcV_Q"

outputElement="_aPQHMIR_EeebXObshy6vlA"/>

</structuredNode>

<node xmi:type="uml:InitialNode" xmi:id="_M-oUwIR2EeebXObshy6vlA"
outgoing="_vk2scIR3EeebXObshy6vlA _bDae8JkoEeeOIORO-VyZIA"/>

<node xmi:type="uml:0paqueAction” xmi:id="_ZigFAJR2EeebXObshy6vlA
name="Ask_to_Create_Account_for_New_Users"

"

incoming="_vk2scJR3EeebXObshy6vlA" outgoing="_wxh68JR3EeebXObshy6vLA"/>

258

<node xmi:type="uml:ForkNode" xmi:id="_1zGGoJR2EeebXObshy6vlLA"
incoming="_7aWKAJRoEeeOIORO-VyZIA" outgoing="_xo0AP8JR3EeebXObshy6vlA
_y2k74IR3EeebXObshy6vIA"/ >

<node xmi:type="uml:0OpaqueAction” xmi:id="_RVjX4JR2EeebXObshy6vlA"
name="Enter_User_Name" incoming="_x0AP8JR3EeebXObshy6vLA"
outgoing="_zrTkcIR3EeebXObshy6vlA" />

<node xmi:type="uml:0paqueAction” xmi:id="_mIulsJR2EeebXObshy6vlA"
name="Enter_Password" incoming="_y2kR74JR3EeebXObshy6vlA"
outgoing="_0qqvsJR3EeebXObshy6vlA" />

<node xmi:type="uml:JoinNode" xmi:id="_ogUvMIR2EeebXObshy6vlA" name=
incoming="_zrTkcJR3EeebXObshy6vlA _0qqvsIR3EeebXObshy6vlA"
outgoing="_nhGroJ7vEeel -svp6Z91RQ"/>

<node xmi:type="uml:0OpaqueAction” xmi:id="_qBiqUJR2EeebXObshy6vlA"
name="Verify User_Data" incoming="_L8ShMJ7uEeel -svp6Z91RQ"
outgoing="_aoYiMJ7uEeel -svp6Z91RQ"/>

<node xmi:type="uml:OpaqueAction” xmi:id="_uPNkoJR2EeebXObshy6vlLA"
name="Find_User_Data" incoming="_1s9TIJR3EeebXObshy6vlA"
outgoing="_LId3kJ7uEeel-svp6Z91RQ"/>

<node xmi:type="uml:DataStoreNode" xmi:id="_xFJ3AJR2EeebXObshy6vlLA'
name="User_Profile"” incoming="_LId3kRJ7uEeel-svp6Z91RQ"
outgoing="_L8ShMJ7uEeel -svp6Z91RQ" isControlType="true">

<upperBound xmi:type="uml:LiteralInteger"”

xmi:id="_xFYggJR2EeebXObshy6vlA" value="1"/>

</node>

<node xmi:type="uml:OpaqueAction” xmi:id="_5F6BYJR2EeebXObshy6vLA"
name="Assign_User_Data" incoming="_DAIegJ7uEeel-svp6Z91RQ"
outgoing="_7tsGgIR3EeebXObshy6vlA"/>

<node xmi:type="uml:DecisionNode" xmi:id="_BYaDEJR3EeebXObshy6vlA"
name="" incoming="_7tsGgJR3EeebXObshy6vlA"
outgoing="_EnCFwJR4EeebXObshy6vlA _Gi3gUJR4EeebXObshy6vLA"/>

<node xmi:type="uml:OpaqueAction” xmi:id="_QZxwgIJR3EeebXObshy6vLA"
name="Create_Account” incoming="_EnCFwJR4EeebXObshy6vLA"
outgoing="_Ltr_ YJR4EeebXObshy6vlA"/>

<node xmi:type="uml:0paqueAction” xmi:id="_Rr-_QJR3EeebXObshy6vlA"
name="Reject_Account” incoming="_Gi3gUJR4EeebXObshy6vlA" outgoing="_M-
guEJR4EeebXObshy6vlA" />

<node xmi:type="uml:MergeNode" xmi:id="_Xq6bOJIR3EeebXObshy6vlA" name=
incoming="_Ltr YJR4EeebXObshy6vlA _M-guEJR4EeebXObshy6vlA"
outgoing="_N5JKUJR4EeebXObshy6vlA"/>

<node xmi:type="uml:CallBehaviorAction"
xmi:id="_edbRcIR3EeebXObshy6vlA" name="Update_ System"
incoming="_N5JKUJR4EeebXObshy6vlA" outgoing="_gOYxcJ7uEeel -svp6Z91RQ"
behavior="_e76RQIR3EeebX0Obshy6vLA"/>

<node xmi:type="uml:DecisionNode" xmi:id="__WTroJR6EeebXObshy6vlA"
incoming="_QEZZRIR7EeebXObshy6vlA" outgoing="_VcBLkRIR7EeebXObshy6vlA
_CAnT8JR7EeebX0Obshy6vLA"/>

<node xmi:type="uml:0paqueAction"” xmi:id="_NbgrwJR7EeebXObshy6vlA"
name="User_Cancels" incoming="_VcBLRIR7EeebXObshy6vlA">

<handler xmi:type="uml:ExceptionHandler"

xmi:id="_HmLDQJIR8EeebXObshy6vlA" exceptionInput="_DulU UJR8EeebXObshy6vlA"
exceptionType="__h8GIJR1EeebXObshy6vLA"
handlerBody="_AIObUJR8EeebXObshy6vlA"/>

</node>

<node xmi:type="uml:ForkNode" xmi:id="_aYO0ZOJR7EeebXObshy6vlA" name=""
incoming="_cAnT8JR7EeebXObshy6vlLA" outgoing="_q540QIR7EeebXObshy6vlA
_rrpCYJR7EeebX0Obshy6vlA _sorSYJR7EeebXObshy6vlA"/>

<node xmi:type="uml:0OpaqueAction” xmi:id="_1ifxIsJR7EeebXObshy6vlA"
name="Verify Email" incoming="_q540QJR7EeebXObshy6vlA"
outgoing="_tVswcIR7EeebXObshy6vlA" />

nmn

259

<node xmi:type="uml:0OpaqueAction"” xmi:id="_j6mvAJR7EeebXObshy6vlA"
name="Verify Password"” incoming="_rrpCYJR7EeebXObshy6vlA"
outgoing="_uU3HYJR7EeebXObshy6vlA" />
<node xmi:type="uml:0OpaqueAction” xmi:id="_LNZMRIR7EeebXObshy6vlA"
name="Verify Phone_Number" incoming="_sorSYJR7EeebXObshy6vlA"
outgoing="_vH6U8JIR7EeebXObshy6vlA" />
<node xmi:type="uml:MergeNode" xmi:id="_pyfIYIR7EeebXObshy6vlA" name=
incoming="_tVswcIR7EeebXObshy6vlA _uU3HYJR7EeebXObshy6vlA
_VH6U8JR7EeebX0Obshy6vIlA" outgoing="__uP_oJR8EeebXObshy6vLA"/>
<node xmi:type="uml:0OpaqueAction” xmi:id="_AIObUJR8EeebXObshy6vlA"
name="Account_Cancelled" outgoing="_0zc50JR8EeebXObshy6vlA">
<inputValue xmi:type="uml:InputPin" xmi:id="_DuU_UJR8EeebXObshy6vlA"
name="InputPin">
<upperBound xmi:type="uml:LiteralInteger"”
xmi:id="_DuVmYJR8EeebXObshy6vlA" value="1"/>
</inputValue>
</node>
<node xmi:type="uml:ActivityFinalNode" xmi:id="_NomQEJR8EeebXObshy6vLA"
name="" incoming="_0zc50JR8EeebX0bshy6vlA _UJILRISBEeebXObshy6vLA
_Uwro43SDEeebXObshy6vlA _kq7BwKg8Eeez4cgOfIXL4g"/>
<node xmi:type="uml:DecisionNode" xmi:id="_004CUJR8EeebXObshy6vLA"
name="" incoming="__uP_o0JR8EeebXObshy6vlLA"
outgoing="_BV4EwJR9EeebXObshy6vlA _JTy9kRIR9EeebXObshy6vLA
_pzIasJuREeeMJso6T-JIfIQ"/>
<node xmi:type="uml:FlowFinalNode" xmi:id="_7TENwIJR8EeebXObshy6vLA"
name="" incoming="_BV4EwJR9EeebXObshy6vLA" />
<node xmi:type="uml:OpaqueAction” xmi:id="_8nxW4IJR8EeebXObshy6vLA"
name="Customer_Complains" incoming="_JTy9kRJIR9EeebXObshy6vLA"
outgoing="_S8Dw8JSAEeebXObshy6vlA"/>
<node xmi:type="uml:0OpaqueAction” xmi:id="_PHurEJR9EeebXObshy6vLA"
name="Account_1information_Approved” incoming="_pzIasJukREeeMIso6T-JfIQ">
<outputValue xmi:type="uml:OutputPin”
xmi:id="_Ti185MIR9EeebXObshy6vlA" name="" outgoing="_34ePoJuiEeeMJIso6T -

JFIQ">

mn

<upperBound xmi:type="uml:LiteralInteger"”
xmi:id="_T185MZR9EeebXObshy6vlA" value="1"/>
</outputValue>
</node>
<node xmi:type="uml:0OpaqueAction” xmi:id="_rq_3QJR9EeebXObshy6vlA"
name="Receive_Order" outgoing="_xAmORIR-EeebXObshy6vlLA">
<inputValue xmi:type="uml:InputPin" xmi:id="_vSm7IJukREeeMIso6T-JfIQ"
name="" incoming="_34ePoJuiEeeMJso6T-JfIQ">
<upperBound xmi:type="uml:LiteralInteger"”
xmi:id="_vSoJQJukEeeMIso6T-JfIQ" value="1"/>
</inputValue>
</node>
<node xmi:type="uml:DecisionNode" xmi:id="_-VKQUIR9EeebXObshy6vlA"
name="" incoming="_xAmORJIR-EeebXObshy6vlA" outgoing="_3PXc4JR-
EeebXObshy6vlA _b _bdcJuoEeeMIso6T-JfIQ"/>
<node xmi:type="uml:SendSignalAction"” xmi:id="_PT9TwJIR-EeebXObshy6vlA"
name="Verify CC_Funds" outgoing="_R1_AsJujEeeMJso6T-JfIQ"
signal="_uaqgpsJuoEeeMJso6T-JIfIQ">
<target xmi:type="uml:InputPin" xmi:id="_wEoRIJuoEeeMJso6T-JfIQ"
incoming="_b_bdcJuoEeeMIso6T-JfIQ" type="_PL28EJR-EeebXObshy6vlA"
isControlType="true">
<lowerValue xmi:type="uml:LiteralInteger"”
xmi:id="_wEoRIZuoEeeMJso6T-JfIQ" value="1"/>
<upperValue xmi:type="uml:LiteralUnlimitedNatural™”
xmi:id="_wEoRIpuoEeeMJso6T-JfIQ" value="1"/>

260

</target>
</node>
<node xmi:type="uml:AcceptEventAction" xmi:id="_aCiWUJR-EeebXObshy6vlA"
name="Received_Verification" incoming="_k1_AsJujEeeMJso6T-JfIQ">
<result xmi:type="uml:OutputPin" xmi:id="_KtnewJulEeeMJso6T-JfIQ"
name="" outgoing="_TTcPoJumEeeMIso6T-JfIQ" isControlType="true">
<upperBound xmi:type="uml:LiteralInteger"”
xmi:id="_KtoFO@JulEeeMJIso6T-JfIQ" value="1"/>
</result>
<trigger xmi:type="uml:Trigger" xmi:id="_4LTycJugEeeMIso6T-JfIQ"
name="Trigger"/>
</node>
<node xmi:type="uml:0OpaqueAction” xmi:id="_ORXPMJIR-EeebXObshy6vlA"
name="0ut_of Stock_Items" incoming="_3PXc4JR-EeebXObshy6vlA"
outgoing="_LyGsQKg8Eeez4cgOfIXL4g"/>
<node xmi:type="uml:CallBehaviorAction"
xmi:id="_DZXURJR_EeebXObshy6vlA" name="CallBehaviorActionl”
behavior="__h8GIJR1EeebXObshy6vlA"/>
<node xmi:type="uml:CallBehaviorAction"
xmi:id="_DquxYJR_EeebXObshy6vlA" name="CallBehaviorAction2"
behavior="__h8GIJR1EeebXObshy6vlA"/>
<node xmi:type="uml:CallBehaviorAction"
xmi:id="_ESTHsJR_EeebXObshy6vlA" name="CallBehaviorAction3"
behavior="__h8GIJR1EeebXObshy6vlA" />
<node xmi:type="uml:OpaqueAction” xmi:id="_JOhUoJSAEeebXObshy6vLA"
name="Customer_Complaint_Handled (complaint_dept.)"
incoming="_S8Dw8JSAEeebXObshy6vlA" outgoing="_UJILRISBEeebXObshy6vlA"/>
<node xmi:type="uml:0OpaqueAction” xmi:id="_b5krIOgISBEeebXObshy6vlA"
name="Get_Products">
<inputValue xmi:type="uml:InputPin" xmi:id="_9mQmIJSBEeebXObshy6vLA"
name="" incoming="_TTcPoJumEeeMIso6T-JfIQ" isControlType="true">
<upperBound xmi:type="uml:LiteralInteger"”
xmi:id="_9mQmIZSBEeebXObshy6vlA" value="1"/>
</inputValue>
<outputValue xmi:type="uml:OutputPin”
xmi:id="_wJ6DOISDEeebXObshy6vlA" outgoing="_ZxRDUJSCEeebXObshy6vLA"
isControlType="true">
<upperBound xmi:type="uml:LiteralInteger"”
xmi:id="_wJ6q4ISDEeebXObshy6vlA" value="1"/>
</outputValue>
</node>
<node xmi:type="uml:DecisionNode" xmi:id="_BpfyEJSCEeebXObshy6vlA"
name="" incoming="_ZxRDUJSCEeebXObshy6vlA"
outgoing="_btyaYJISCEeebXObshy6vlA _fP6dUJSCEeebXObshy6vLA"/>
<node xmi:type="uml:0paqueAction” xmi:id="_DOQwcISCEeebXObshy6vlA"
name="Test_Computer">
<inputValue xmi:type="uml:InputPin" xmi:id="_IswZcJISCEeebXObshy6vlLA"
incoming="_fP6dUJSCEeebXObshy6vlA" isControlType="true">
<upperBound xmi:type="uml:LiteralInteger"”
xmi:id="_IswZcZSCEeebXObshy6vlA" value="1"/>
</inputValue>
<outputValue xmi:type="uml:OutputPin"
xmi:id="_K_IrwJSCEeebXObshy6vlA" outgoing="_2ciU8ISCEeebXObshy6vlA"
isControlType="true">
<upperBound xmi:type="uml:LiteralInteger"”
xmi:id="_K JSO©JSCEeebXObshy6vlA" value="1"/>
</outputValue>
</node>

261

<node xmi:type="uml:0OpaqueAction"” xmi:id="_D1IjMISCEeebXObshy6vlA"
name="Test_Monitor">
<inputValue xmi:type="uml:InputPin" xmi:id="_JdkRyYJISCEeebXObshy6vlA"
incoming="_btyaYJSCEeebXObshy6vlA" isControlType="true">
<upperBound xmi:type="uml:LiteralInteger"”
xmi:id="_JdlZcISCEeebXObshy6vlA" value="1"/>
</inputValue>
<outputValue xmi:type="uml:OutputPin"
xmi:id="_MM4RQISCEeebXObshy6vlA" outgoing="_FIbNUJukEeeMJso6T-JfIQ"
isControlType="true">
<upperBound xmi:type="uml:LiteralInteger"”
xmi:id="_MM4RQZSCEeebXObshy6vlA" value="1"/>
</outputValue>
</node>
<node xmi:type="uml:CentralBufferNode" xmi:id="_OxpUEJSCEeebXObshy6vlA"
name="Product"” incoming="_9x2pYJknEeeOIORO-VyZIA"
outgoing="__ UORQISCEeebXObshy6vlA" isControlType="true">
<upperBound xmi:type="uml:LiteralInteger"”
xmi:id="_Oxp7IJSCEeebXObshy6vlA" value="1"/>
</node>
<node xmi:type="uml:OpaqueAction” xmi:id="_UJ2u4JSCEeebXObshy6vLA"
name="Send_Order_for_Shipment"” incoming="__UORQISCEeebXObshy6vlA"
outgoing="_Uwro4JSDEeebXObshy6vlA"/>
<node xmi:type="uml:MergeNode" xmi:id="_7TV_kRJIknEeeOIORO-VyZIA" name=""
incoming="_2c1U8JSCEeebX0Obshy6vlA _FIbNUJukEeeMIso6T-JfIQ"
outgoing="_9x2pYJknEeeOIORO-VyZIA"/>
<node xmi:type="uml:0paqueAction” xmi:id="_SO E8JRoEeeOIORO-VyZIA"
name="Ask_to Login_for_Registered _Users" incoming="_bDae8JkoEeeOIORO-VyZIA"
outgoing="_hjl1fAJRoEeeOIORO-VyZIA"/>
<node xmi:type="uml:MergeNode" xmi:id="_gEelEJkRoEeeOIORO-VyZIA" name=
incoming="_wxh68JR3EeebX0Obshy6vlA _hjlfAJkoEeeOIORO-VyZIA"
outgoing="_7aWKAJRoEeeOIORO-VyZIA"/>
<node xmi:type="uml:0OpaqueAction” xmi:id="_zb-c4JunEeeMIso6T-JfIQ"
name="">
<outputValue xmi:type="uml:OutputPin" xmi:id="_46hwQJunEeeMJIso6T -
JfIQ" name="">
<upperBound xmi:type="uml:LiteralInteger"”
xmi:id="_46iXUJunEeeMIso6T-IfIQ" value="1"/>
</outputValue>
</node>
<node xmi:type="uml:MergeNode" xmi:id="_ZLMygJ7uEeel -svp6Z91RQ"
incoming="_aoYiMJ7uEeel -svp6Z91RQ _gOYxcJ7uEeel-svp6Z91RQ"
outgoing="_QEZZRIJR7EeebXObshy6vlA"/>
<node xmi:type="uml:DecisionNode" xmi:id="_LcXMsJ7vEeel -svp6Z91RQ"
name="" incoming="_nhGroJ7vEeel-svp6Z91RQ" outgoing="_DAIegJ7uEeel-
SVp6Z91RQ _1s9TIJR3EeebXObshy6vlA"/>
</packagedElement>
<packagedElement xmi:type="uml:Signal" xmi:id="_PL28EJR-EeebXObshy6vlA"
name="Signal1"/>
</uml:Model>

mn

262

Appendix K - PN Mathematical Forms of the Production System

and Online Shopping Process

Part A
This section includes the file retrieved from the transpose of the incidence matrix

automatically generated for the production system as discussed in Chapter 7.

place after node,D1,Production of a batch of P1 in M2(similar to M1),Receipt
P1 requests M1 to Interface CMl,fork 8,Receipt P1 asks Interface VT2--

1 to open VT2-1,Interface CM1 requests M1 to controller CMI1,Interface VT2-
1 opens VT2-1,fork 12,CM1 _opens VMI1-1,CM1 opens VMI-

2,CM1 closes VM1-1,CM1 closes VM-

2,CMI1 informs _end of additive loading to Interface CMI,fork 18,Interface CM1
_informs_end of additive loading to Receipt P1,CMI starts mixing in M1,CM1
_stops_mixing and starts emptying M1,CM1_detects M1 empty,CM1_informs_en
d of batch to Interface CMI,Interface CM1 informs end of batch to Receipt Pl
,Receipt P1 requests Interface VT2--1 to close VT2-

1,fork 29,M1,join_19,join_26,join_27,merge 33,Interface VT2 closes VT2, Termin
ate_production P1,Production Order 1 asks Receipt P1 to produce P1
Emptying M1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0

Filling_with additive,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Filling_with base,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Mixing_in_M1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0

place 1,0,-1

place 10,0,0,0,0,1,0,-1,0

place 11,0,0,0,0,0,1,0,-1,0

place 12,0,0,0,0,0,0,0,1,-1,0

place 13,0,0,0,0,0,0,0,1,0,-1,0

place 16,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

place 17,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

place 18,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0

place 19,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0

place 2,0,-1,0,0,0,0,0,0,0

place 20,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

place 21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0

place 24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0

place 25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0

place 26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0

place 27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0

place 28,0,-1,0,0,0,0,1,0,0,0,0

place 29,0,1,-1,0,0,0,0,0,0,0,0

place 3,0,1,0,-1,0,0,0,0,0,0,0

263

place 30,1,0,0,0,0,0,-1,0,0
place 31,0,1,0,0,-1,0,0,0,0,0
place 32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0
place 34,1,0,-1,0,0,0
place 37,0,0,-1,0,1,0,0,0
place 4,-1,0,1,0,0,0,0,0,0,0
place 5,1,-1,0
place 6,1,0,-1,0
place 7,0,0,1,-1,0
place 8,0,0,0,1,-1,0
place 9,0,0,0,1,0.,-1,0
pout,0,1,1,1,1,1,1,1,1
Valve open,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0

Part B
This section presents the initial marking table automatically generated for the

production system as discussed in Chapter 7.

Table K.1 MySQL ‘intial marking’ Table for the Production System

activity process_number_of _devices
place_1
Emptying_M1
Filling_with_additive
Filling_with_base
Mixing_in_M1
place_10
place_11
place_12
place_13
place_16
place_17
place_18
place_19
place_2
place_20
place_21
place_24
place_25
place_26
place_27
place_28
place_29
place_3
place_30
place_31
place_32
place_34
place_35
place_36
place_37
place_4
place_5
place_6
place_7
place_8
place_9
valve_open

odococooocoloo oo oocooodoo ococoaolood oo =

264

Part C
This section includes the file retrieved from the transpose of the incidence matrix

automatically generated for the online shopping process as discussed in Chapter 7.

place after node,decision 29,Customer Complaint Handled (complaint dept.),merg
e 48,Ask to Create Account for New Users,Send Order for Shipment,Verify Us
er Data,fork 7,Enter User Name,Enter Password,Find User Data,Assign User Da
ta,decision_15,Create Account,Reject Account,Update System,decision 20,fork 22,
Verify Email,Verify Password,Verify Phone Number,Customer Complains,decisio
n 34,Verify CC Funds,Received Verification,Out of Stock Items,decision 43,deci
sion_53,join_10,merge 18 ,merge 26,merge 50,merge 52,Receive Order,Get Produ
cts,Test Computer,Test Monitor,Account_information Approved,User Cancels,Cont
act_Suppliers,Account_Cancelled,"Ask to Login for Registered Users"

Acount Information (pending),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0

Authorised,0,0,0,0,0,0,0,0,0,0,0,1,-
1,0
Computer,0,1,0,0,0,0,0,0,0,0,-
1,0,0,0,0,0,0

flow_pout 30,1,0,
0,0,0
Monitor,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0
Not_Authorised,0,0,0,0,0,0,0,0,0,0,0,1,0,-
1,0
Order_Items,0,1,0,0,0,0,0,0,0,0,0,-
1,0,0,0,0,0,0,0
pin_5,0,0,0,-1,0
place 11,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0
place 12,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0
place 13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
place 15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0
place 17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0
place 18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0
place 19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0
place 2,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0
place 20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0
place 21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0
place 22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0
place 24,.-1,0,1,0,0,0,0,0,0,0,0,0,0,0
place 26,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0
place 27,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0
place 28,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
place 3,0,0,0,0,0,0,1,-1,0

265

place 31,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0
place 33,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
place 36,0,0,-1,0,1,0,0,0,0,0,0
place 4,0,0,0,0,0,0,1,0,-1,0
place 41,0,-1,0,0,0,0,0,0,0,0,0,1
place 42,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0
place 43,0,-1,0,0,0,1,0,0,0,0
place 44,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
place 45,0,0,-1,0,1,0,0,0,0,0
place 46,1,0,-1,0,0,0,0
place 48,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
place 49,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
place 5,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0
place 52,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0
place 53,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0
place 54,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
place 55,0,1,0,0
place 56,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0
place 6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0
place 7,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
place 8,0,0,0,0,0,0,0,0,0,0,1,-1,0
pout,0,1,0,0,1,0,1,0
Product,0,0,1,0,-1,0
User Profile,0,0,0,0,0,-
1,0,0,0,1,0

Verify Account by Phone,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-
1,0

266

PartD
This section presents the initial marking table automatically generated for the online

shopping process as discussed in Chapter 7.

Table K.2 MySQL ‘intial marking’ Table for the Online Shopping Process

activity process_number_of_devices

Acount Information (oending)
Authorised

Computer

flow pout 30

Monitor

Mot Authorised

Order Items

oin 5

olace 11

place 12

place 13

olace 15

place 17

place 18

place 19

olace 2

olace 20

place 21

olace 22
place 24
place 28
olace 27
olace 28
place 3
place 31
place 33
place 35
place
olace
place 42
Dlace 43
place 44
place 45
place 46
olace 48
place 49
place 5
place 52
olace 53
place 54
Dlace 55
olace 56
olace &
place 7
olace 8
pout
Product
User Profile

1]
1]
1]
1]
1]
i}
1]
1
0
1]
1]
0
1]
1]
1]
i}
1]
1]
0
1]
1]
i}
1]
1]
1]
1]
1]
1]
0
1]
1]
i}
1]
1]
o]
1]
1]
1]
0
1]
1]
i}
1]
1]
0
1]
1]
1]
Verify Account bv Phone i

267

Appendix L - Verification of the Production System and Online
Shopping Process

Appendix L includes figures obtained from HIPS proving that the production system
and online shopping process, discussed in Chapter 7, are (i) structurally and
behaviourally bounded as can be seen in Figures L.1 and L.3 respectively; and (ii)

behaviourally live and safe as can be seen in Figures L.2 and L.4 respectively.

i Bounded

- o x
4 Reachability/Coverability Analyze (Auto)- ALDEBARAN graph format —
0,0,0,0) !
Structurally Bounded . :‘::Z:‘;‘ oe)
Continue to Reachahility Anahze 001,320/ 8,mbing I

Figure L.1 Structurally and Behaviourally Bounded Check in HiPS for the Production System

#-§ FC/AC Liveness/Safeness Checker

Log Resut Result Table Detected Sphons

[\oriored Places/ Transbions | 1]
|idDfplace_1)id6fplace_35)id25{p25)id 1iplace_2)idiplace_5)id 36{p 36) id 38(production_order_1)id43
| (Teminate_prod)id12¥nterface_VT2.),

| O FC Liveness Check

“1-; :: L';m (®) FC Liveness & Safeness Check

[[] FCIAC Check Only

Figure L.2 Behavioural Liveness and Safeness Properties Check in HiPS for the Production System

& Bounded

oertn

T-bounded
; . _ |(1,0,0,0,0,00000,000000000000,0,0,00,0,00,00,0,00.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
5 Reachability/Coverability Analyze (Auto)- ALDEBARAN graph format (0,1,0, 0,0, 0, 0,0, 0,0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0,0,0,0,0,1, 0,0, 0,0,0,0,0, 0,0, 0,0,0,0,0, 0,0, 0, 0,0, 0,0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
Structurally Bounded placelD: (0, 42,3, 7 B9, i1 O, 1.l 2, 3,ich 4 5,icl 6, it 7, e 2,120,121 c22,el24, 125,26, 27,128,120 130,32,
Continue to Reachakilty Analyze PlaceNAME: (in.5,place_2,place_42,0lace.3,dace_4,place 41 place 6,lacs 54,placs. 1 place_49,user. profilepiace 8, flace_20,ace 52,1

Figure L.3 Structurally and Behaviourally Bounded Check in HiPS for the Online Shopping Process

- FC/AC Liveness/Safeness Checker

Log Result Result Table Detected Siphons State Machines

lanored Places/Transttions

idDipin_5)d21{flow_pout)id 165(pout)id 1 {place_2)id 7iplace_41)id33{us_cancels_handler)id135(lace -31)id 136
(place_56)id 166fproduct) id2(place_42)id 18iplace _15)id28{place_26)id31iplace_28)id167(place_36}id168{place_15)id3 i
{place 3} id4{place_4)id169(computer)id 1 70fmonitor) idBiplace_6)id5place_5)id171(place_33)iddiplace_54)d157 OFcl chlase
(order ftems)id 10{place_ 7)id 1 1(place_49) id133{place_44)id12{user_profiie)id13{place_8)id122{place_48)id15 yencss

[] FCIAC Check Only

Iplace_52}id 16inot_suthorised)id24autherised) id 12 1place_27) id25(place_43)d30iplace_11)id32place_12)id26 N
{place_13)id35(place_46)id20(lace_24)id36{place 53)id12(place_20)id19iplace_21)id27(place_22)id23 O b s Bt

(accou info_pend)idT7place. 18)d22place_19)1d29¢place_17)1d36(verfy_sccount phone)id37

{account_cancelled);d133{ask 1o, login)id23{customer_com_hand)d 155(contact_sup)d159(send ¢

(M1) d4Sfuser_cancels) id5%(customer_complains)id109(out_of_stock)d 160imerge_48)id39fark_7)id 16

test_computer] id1620est_monitor)jd4T(enter_passward)idd2isnter_ussmame)id163ecision_43)id40join_10)id 164 Grobal Settings-

(aet products)d44(decisian, 53)d55(eceived. vert)id45find user data)id4b(assian user data)id111(verfy_cc)jd47

(deusmn 15)ddB(uerfy |user.data)id1 10jdesision 54)id53eject ackount)id57(create. accourt)id! 14eceive order)idBd *~"F* | longre flons
e_13) info 29)idE5{undate_system)id51imerge_52)id62merge_26)id50 < Piécey

(decition 20)id5G(verty. passhord) dG0iverty. emal)idé(ver phone. rimben dbafork. 227

Free Choics Het Contract

[] DevideToMG

This Net is Free-Choice Net

This net is Safeness

This net is Liveness [No Log

Figure L.4 Behavioural Liveness and Safeness Properties Check in HiPS for the Online Shopping Process

268

	Methodology for automated Petri Net model generation to support Reliability Modelling
	by
	Contents
	List of Figures
	List of Tables
	CHAPTER 1
	1.1 Introduction to Reliability Modelling
	1.1.1 Analytical Reliability Modelling Methods
	1.1.1.1 Fault Tree
	1.1.1.2 Cause-Consequence Diagram
	1.1.1.3 Reliability Block Diagram
	1.1.1.4 Markov Method
	1.1.1.5 Petri Net

	1.1.2 Simulation Modelling Methods
	1.1.3 Reliability Modelling, Implementation and Deficiencies

	1.2 Introduction to Automated Reliability Model Generation
	1.3 Industrial Representation of Systems
	1.3.1 Introduction to System Modelling Tools
	1.3.2 Summary of System Modelling Tools

	1.4 Research Scope and Delimitations
	1.5 Aim and Objectives
	1.6 Thesis Layout
	CHAPTER 2
	2.1 Introduction
	2.2 Industrial System Representation
	2.2.1 Systems Modelling Languages Review: UML and SysML
	2.2.1.1 UML/SysML Activity Diagram

	2.3 Petri Net Modelling Review
	2.4 Methods for Automation of Reliability Models
	2.4.1 Introduction
	2.4.2 Overview of Methods for Automated Reliability Modelling (not including PN)
	2.4.2.1 Automated generation of the Fault Tree Model
	2.4.2.2 Automated generation of other Reliability Models
	2.4.2.3 Summary of Methods

	2.5 Automated Generation of the Petri Net Model
	2.5.1 Review of Methods for Automated Petri Net Modelling (Process-based Approaches)
	2.5.2 Review of Methods for Automated Petri Net Modelling (System-based Approaches)
	2.5.3 Summary of Methods for Automated Petri Net Modelling

	2.6 Review and Research Motivations
	CHAPTER 3
	3.1 Introduction
	3.2 Overview of Developed Methodology
	3.3 Input – System Modelling
	3.4 Algorithm – Java Database Programming
	3.4.1 Transformation Rules
	3.4.2 Database Introduction
	3.4.2.1 Relational Database Management Systems Products Review

	3.4.3 Algorithm – Java Database Programming – Transpose of the Petri Net Incidence Matrix
	3.4.4 Algorithm – Java Database Programming – Petri Net Initial Marking Matrix

	3.5 Automated Graphical Representation of a Petri Net Model
	3.6 Summary
	CHAPTER 4
	4.1 Introduction
	4.2 Process Description
	4.3 Manual Development of the Petri Net Model for the Recycling IT Asset Process
	4.4 Automated Mathematical Representation of the Petri Net Model for the Recycling IT Asset Process
	4.4.1 Input – System Modelling
	4.4.2 Algorithm – Java Database Programming – Transpose of the Petri Net Incidence Matrix
	4.4.3 Algorithm – Java Database Programming – Petri Net Initial Marking Matrix

	4.5 Automated Graphical Representation of the Petri Net Model for the Recycling IT Asset Process
	4.6 Summary
	CHAPTER 5
	5.1 Introduction
	5.2 Petri Net Model Verification Methods
	5.2.1 Static Verification Methods
	5.2.2 Dynamic Verification Method
	5.2.3 Comparison of PN Models (Bi-simulation) for Verification

	5.3 Verification of Automated Petri Net Development
	5.4 Petri Net Model Validation Methods
	5.4.1 Expert Intuition Validation Method
	5.4.2 Real System Measurements Validation Method
	5.4.3 Theoretical Results/Analysis Method

	5.5 Validation of Automated Petri Net Development
	5.5.1 Petri Net Model Simulation Algorithm
	5.5.2 Process Input Data
	5.5.3 Petri Net Model Visual Check
	5.5.4 Petri Net Model Numerical Simulation and Performance Analysis
	5.5.5 Performance Analysis Results and Discussion

	5.6 Summary
	CHAPTER 6
	6.1 Introduction
	6.2 Introduction of UML/SysML AD Additional Elements Notation
	6.3 Input – System Modelling
	6.3.1 Introduction
	6.3.2 UML/SysML AD: Review of XMI Nested Elements
	6.3.3 The Need of XMI Model Transformation using XSLT
	6.3.3.1 First XMI Model Transformation using XSLT
	6.3.3.2 Second XMI Model Transformation using XSLT

	6.3.4 Application of the XMI Model Transformations to a Simple AD Example

	6.4 Generic Algorithm – Java Database Programming
	6.4.1 Transformation Rules
	6.4.2 Algorithm – Java Database Programming – Transpose of the Petri Net Incidence Matrix
	6.4.3 Algorithm – Java Database Programming – Petri Net Initial Marking Matrix

	6.5 Summary
	CHAPTER 7
	7.1 Introduction
	7.2 Production System
	7.2.1 Process Description
	7.2.2 Automated Mathematical Representation of the Petri Net Model for the Production System
	7.2.2.1 Input – System Modelling
	7.2.2.2 Algorithm – Java Database Programming – Transpose of the Petri Net Incidence Matrix
	7.2.2.3 Algorithm – Java Database Programming – Petri Net Initial Marking Matrix
	7.2.3 Automated Graphical Representation of the Petri Net Model for the Production System

	7.3 Online Shopping Process
	7.3.1 Process Description
	7.3.2 Automated Mathematical Representation of the Petri Net Model for the Online Shopping Process
	7.3.2.1 Input – System Modelling
	7.3.2.2 Algorithm – Java Database Programming – Transpose of the Petri Net Incidence Matrix
	7.3.2.3 Algorithm – Java Database Programming – Petri Net Initial Marking Matrix
	7.3.3 Automated Graphical Representation of the Petri Net Model for the Online Shopping Process

	7.4 Verification and Validation of Real-Life Scenarios
	7.5 Summary
	CHAPTER 8
	8.1 Introduction
	8.2 Conclusions
	8.3 Contributions to Knowledge
	8.4 Recommendations for Future Work
	8.4.1 Automated sub-PNs Construction followed by Simulation Analysis
	8.4.2 Automated Reliability Analysis
	8.4.3 Additional PN Model Features
	8.4.4 Investigation of Inputs
	8.4.5 Representation of PN results into the UML/SysML AD

	Bibliography
	Appendix A - Simple Process Example (XMI File)
	Appendix A includes the XMI file for the simple process shown in Chapter 3.
	Appendix B – SQL Code [AT]
	Appendix B shows the SQL code developed for the automated generation of the transpose of the PN incidence matrix [AT], discussed in Chapter 3.
	Appendix C – SQL Code [M0]
	Appendix C presents the SQL code developed for the automated generation of the PN initial marking matrix [M0], discussed in Chapter 3.
	Appendix D – Graphical Representation of PN Model
	Part A – SQL Code for the Automated PN Generation
	Part B – DOT File for the PN Model Generation (GraphViz Input)

	Appendix E – Recycling IT Asset Process Example (XMI File)
	Appendix E includes the XMI file for the recycling IT asset process shown in Chapter 4.
	Appendix F
	Part A – Validation – PN Visual Check (Token Game)

	This section covers the MATLAB code for the visual check of the PN model generated for recycling IT asset process, as discussed in Chapter 5.
	Part B – Validation – PN Model Numerical Simulation

	This section covers the MATLAB code for the numerical simulation of the PN model generated for recycling IT asset process, as discussed in Chapter 5.
	Part C – Validation – PN Model Performance Analysis

	This section presents the MATLAB code for the performance analysis of the PN model generated for recycling IT asset process, as discussed in Chapter 5. From this code, results for the average time of each transition and the number of visits to PN plac...
	Appendix G
	Part A – AD Examples in Chapter 6 (XMI Files)

	Appendix G, part A covers the XMI files obtained from the three AD examples discussed in Chapter 6, shown in Figures 6.2, 6.4 and 6.6 respectively.
	Part B –XSLT Files

	This section includes the XSLT files which are applied to XMI files and generate an XMI and an XML file, as discussed in Chapter 6.
	Part C – Java Code for the XMI Transformations

	Part C covers the two files of Java code developed for the two XMI model transformations as explained in Chapter 6.
	Part D – Outputs from XMI Model Tranformation of AD in Figure 6.4

	Appendix H – Advanced Generic SQL Code [AT]
	Appendix I – Advanced Generic SQL Code [M0]
	Appendix I presents the advanced generic SQL code developed for the automated generation of the PN initial marking matrix [M0], discussed in Chapter 6.
	Appendix J
	Part A- Production System Example (XMI File)
	Part B – Online Shopping Process (XMI File)

	Appendix K – PN Mathematical Forms of the Production System and Online Shopping Process
	Part A
	Part B
	Part C
	Part D

	Appendix L – Verification of the Production System and Online Shopping Process

