
Methodology for automated Petri Net

model generation to support Reliability

Modelling

by

Christina Latsou

Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the award of

Doctor of Philosophy

of Loughborough University

December 2018

© by Christina Latsou 2018

iv

Dedicated to my parents, Theodora and Christos,

and to Dimitris

Acknowledgments

I would like to thank my supervisors, Sarah Dunnett and Lisa Jackson, for their

support, guidance and their confidence in me throughout my Ph.D. I am lucky to have

had two committed supervisors, who in their different, yet complementary ways have

guided and shaped this research. I would like to express my sincerest thanks to Sarah

and Lisa for their contributions, and for their continued help and encouragement over

the years. I learned from their insights a lot.

Special thanks to all my friends and fellow researchers in the office, with whom I

have shared the good and bad times and all of those at Loughborough University who

have directly or indirectly offered help, suggestions in bringing towards the

completion of this research.

My sincerest thanks go to my family, particularly to my parents for their love, support

and for believing in me. Finally, my deepest gratitude goes to my partner, Dimitris,

for his understanding and unending encouragement throughout the last 3 years.

Abstract

As the complexity of engineering systems and processes increases, determining their

optimal performance also becomes increasingly complex. There are various reliability

methods available to model performance but generating the models can become a

significant task that is cumbersome, error-prone and tedious. Hence, over the years,

work has been undertaken into automatically generating reliability models in order to

detect the most critical components and design errors at an early stage, supporting

alternative designs. Earlier work lacks full automation resulting in semi-automated

methods since they require user intervention to import system information to the

algorithm, focus on specific domains and cannot accurately model systems or

processes with control loops and dynamic features.

This thesis develops a novel method that can generate reliability models for complex

systems and processes, based on Petri Net models. The process has been fully

automated with software developed that extracts the information required for the

model from a topology diagram that describes the system or process considered and

generates the corresponding mathematical and graphical representations of the Petri

Net model. Such topology diagrams are used in industrial sectors, ranging from

aerospace and automotive engineering to finance, defence, government, entertainment

and telecommunications. Complex real-life scenarios are studied to demonstrate the

application of the proposed method, followed by the verification, validation and

simulation of the developed Petri Net models. Thus, the proposed method is seen to

be a powerful tool to automatically obtain the PN modelling formalism from a

topology diagram, commonly used in industry, by:

 Handling and efficiently modelling systems and processes with a large number

of components and activities respectively, dependent events and control loops.

 Providing generic domain applicability.

 Providing software independence by generating models readily understandable

by the user without requiring further manipulation by any industrial software.

Finally, the method documented in this thesis enables engineers to conduct reliability

and performance analysis in a timely manner that ensures the results feed into the

design process.

Contents

List of Figures .. xvii

List of Tables ... xx

CHAPTER 1 - Introduction .. 1

1.1 Introduction to Reliability Modelling .. 1

1.1.1 Analytical Reliability Modelling Methods.……………...………. 2

1.1.1.1 Fault Tree ...…………………………..……………....….. 2

1.1.1.2 Cause-Consequence Diagram ...……………………….… 3

1.1.1.3 Reliability Block Diagram ...……...…………………...….. 3

1.1.1.4 Markov Method ..………………….....……………………4

1.1.1.5 Petri Net ...……………………………….……….……..... 5

1.1.2 Simulation Modelling Methods ... 5

1.1.3 Reliability Modelling, Implementation and Deficiencies 6

1.2 Introduction to Automated Reliability Model Generation 7

1.3 Industrial Representation of Systems... 9

1.3.1 Introduction to System Modelling Tools ... 9

1.3.2 Summary of System Modelling Tools ... 13

1.4 Research Scope and Delimitations ... 14

1.5 Aim and Objectives.. 14

1.6 Thesis Layout ... 16

CHAPTER 2 – Modelling Tools and Methods – Automated Reliability Modelling 19

2.1 Introduction .. 19

2.2 Industrial System Representation .. 20

2.2.1 Systems Modelling Languages Review: UML and SysML 20

2.2.1.1 UML/SysML Activity Diagram ... 25

2.3 Petri Net Modelling Review .. 28

2.4 Methods for Automation of Reliability Models... 33

2.4.1 Introduction.. 33

xii

2.4.2 Overview of Methods for Automated Reliability Modelling

(Not Including PN) ... 34

2.4.2.1 Automated Generation of the Fault Tree Model ………..... 34

2.4.2.2 Automated Generation of Other Reliability Models ..….… 38

2.4.2.3 Summary of Methods ...……………………….....….....… 39

2.5 Automated Generation of the Petri Net Model ..41

2.5.1 Review of Methods for Automated Petri Net Modelling 41

2.5.2 Summary of Methods for Automated Petri Net

Modelling. .. 55

2.6 Review and Research Motivations .. 56

CHAPTER 3 – Methodology for the Automated Generation of a Petri Net Model 58

3.1 Introduction .. 58

3.2 Overview of Developed Methodology... 59

3.3 Input – System Modelling .. 60

3.4 Algorithm – Java Database Programming ... 63

3.4.1 Transformation Rules .. 63

3.4.2 Database Introduction .. 64

3.4.2.1 Relational Database Management Systems Products

Review ... 64

3.4.3 Algorithm – Java Database Programming – Transpose of the

Petri Net Incidence Matrix... …..66

3.4.4 Algorithm – Java Database Programming – Petri Net Initial

Marking Matrix……………………… .. 76

3.5 Automated Graphical Representation of a Petri Net Model 78

3.6 Summary .. 81

CHAPTER 4 – Application of the Automated Petri Net Model Generation

Methodology to a Recycling IT Asset Process ... 82

4.1 Introduction .. 82

4.2 Process Description .. 82

xiii

4.3 Manual Development of the Petri Net Model for the Recycling IT Asset

Process ... 84

4.4 Automated Mathematical Representation of the Petri Net Model for the

Recycling IT Asset Process .. 86

4.4.1 Input – System Modelling ... 86

4.4.2 Algorithm – Java Database Programming – Transpose of the

Petri Net Incidence Matrix... 87

4.4.3 Algorithm – Java Database Programming – Petri Net Initial

Marking Matrix .. 92

4.5 Automated Graphical Representation of the Petri Net Model for the

Recycling IT Asset Process .. 93

4.6 Summary .. 94

CHAPTER 5 – Verification & Validation of Petri Net Model 95

5.1 Introduction .. 95

5.2 Petri Net Model Verification Methods .. 96

5.2.1 Static Verification Methods ... 96

5.2.2 Dynamic Verification Method ... 99

5.2.3 Comparison of PN Models (Bi-Simulation) for Verification 100

5.3 Verification of Automated Petri Net Development 100

5.4 Petri Net Model Validation Methods ... 105

5.4.1 Expert Intuition Validation Method... 105

5.4.2 Real System Measurements Validation Method.......................... 105

5.4.3 Theoretical Results/Analysis Method .. 106

5.5 Validation of Automated Petri Net Development .. 106

5.5.1 Petri Net Model Simulation Algorithm 107

5.5.2 Process Input Data ... 109

5.5.3 Petri Net Model Visual Check ... 111

5.5.4 Petri Net Model Numerical Simulation and Performance

Analysis ... 114

5.5.5 Performance Analysis Results and Discussion 116

5.6 Summary .. 118

xiv

CHAPTER 6 – Advanced Generic Methodology for the Automated Generation of a

Petri Net Model .. 121

6.1 Introduction .. 121

6.2 Introduction of UML/SysML AD Additional Elements Notation 122

6.3 Input – System Modelling .. 125

6.3.1 Introduction.. 125

6.3.2 Uml/Sysml AD: Review of XMI Nested Elements 126

6.3.3 The Need of XMI Model Transformation using XSLT............... 133

6.3.3.1 First XMI Model Transformation using XSLT134

6.3.3.2 Second XMI Model Transformation using XSLT136

6.3.4 Application of the XMI Model Transformations to a Simple

AD Example .. 137

6.4 Generic Algorithm – Java Database Programming 139

6.4.1 Transformation Rules .. 139

6.4.2 Algorithm – Java Database Programming – Transpose of the

Petri Net Incidence Matrix... 143

6.4.3 Algorithm – Java Database Programming – Petri Net Initial

Marking Matrix .. 146

6.5 Summary .. 147

CHAPTER 7 – Application of the Generic Automated Petri Net Model Generation

Methodology to Real Life Scenarios .. 149

7.1 Introduction .. 149

7.2 Production System ... 149

7.2.1 Process Description ... 149

7.2.2 Automated Mathematical Representation of the Petri Net

Model for the Production System .. 152

7.2.2.1 Input – System Modelling ... 152

7.2.2.2 Algorithm – Java Database Programming – Transpose

of the Petri Net Incidence Matrix 153

7.2.2.3 Algorithm – Java Database Programming – Petri Net

Initial Marking Matrix .. 156

xv

7.2.3 Automated Graphical Representation of the Petri Net Model

for the Production System ... 157

7.3 Online Shopping Process ... 159

7.3.1 Process Description ... 159

7.3.2 Automated Mathematical Representation of the Petri Net

Model for the Online Shopping Process 161

7.3.2.1 Input – System Modelling ... 161

7.3.2.2 Algorithm – Java Database Programming – Transpose

of the Petri Net Incidence Matrix 161

7.3.2.3 Algorithm – Java Database Programming – Petri Net

Initial Marking Matrix .. 167

7.3.3 Automated Graphical Representation of the Petri Net Model

for the Online Shopping Process ... 167

7.4 Verification and Validation of Real-Life Scenarios 169

7.5 Summary .. 170

CHAPTER 8 – Conclusions and Future Work ... 171

8.1 Introduction .. 171

8.2 Conclusions .. 171

8.3 Contributions to Knowledge .. 173

8.4 Recommendations for Future Work... 173

8.4.1 Automated Sub-PNs Construction followed by Simulation

Analysis ... 173

8.4.2 Automated Reliability Analysis ... 174

8.4.3 Additional PN Model Features .. 175

8.4.4 Investigation of Inputs ... 175

8.4.5 Representation of PN Results into the UML/SysML AD 176

Bibliography ... 178

Appendix A - Simple Process Example (XMI File) ... 190

Appendix B – SQL CODE [AT] .. 192

Appendix C – SQL CODE [M0] ... 200

xvi

Appendix D – Graphical Representation of PN Model .. 202

Part A – SQL Code for the Automated PN Generation 202

Part B – DOT File for the PN Model Generation (GraphViz Input) 204

Appendix E – Recycling IT Asset Process Example (XMI File) 205

Appendix F ... 207

Part A – Validation – PN Visual Check (Token Game) 207

Part B – Validation – PN Model Numerical Simulation 211

Part C – Validation – PN Model Performance Analysis 214

Appendix G ... 215

Part A – AD Examples in Chapter 6 (XMI Files) .. 215

Part B –XSLT Files .. 220

Part C – Java Code for the XMI Transformations .. 222

Part D – Outputs from XMI Model Tranformation of AD in Figure 6.4 224

Appendix H – Advanced Generic SQL Code [AT] ... 228

Appendix I – Advanced Generic SQL Code [M0] .. 249

Appendix J .. 252

Part A- Production System Example (XMI File) ... 252

Part B – Online Shopping Process (XMI File) ... 255

Appendix K – PN Mathematical Forms of the Production System and Online

Shopping Process .. 263

Part A ..…………………………………………………………………….. 263

Part B ..…………………………………………………………………….. 264

Part C ..…………………………………………………………………….. 265

Part D..……………………………………………………………….…….. 267

Appendix L – Verification of the Production System and Online Shopping

Process .. 268

xvii

List of Figures

Figure 2.1 Illustration of the Structure of Chapter 2 .. 19

Figure 2.2 UML 2 Diagrams Taxonomy (OMG Unified Modelling Language

(UML),Version 2.5, 2015) ... 21

Figure 2.3 SysML Diagrams Taxonomy (Object Management Group, 2006) 23

Figure 2.4 UML Activity Diagram Example (OMG Unified Modelling Language

(UML), Version 2.5, 2015) .. 28

Figure 2.5 Inhibitor Arc ... 30

Figure 2.6 PN Firing Process with Inhibitor Arc ... 30

Figure 2.7 PN Firing Process ... 31

Figure 2.8 Reachability Matrix .. 38

Figure 2. 9 Simple Component Conversion into a Simple-Component CPN

(Robidoux et al., 2010) ... 48

Figure 3.1 Illustration of the Structure of Chapter 3 .. 58

Figure 3.2 Methodology Steps for Automated PN Generation.................................. 59

Figure 3.3 AD for a Simple Process .. 61

Figure 3.4 Part of XMI File retrieved from the AD for the Simple Scenario 61

Figure 3.5 Model developed for the AD for the Simple Process 63

Figure 3.6 Flowchart for the steps followed for the Automated Generation of the

Mathematical Representation of a PN Model .. 68

Figure 3.7 Part of XMI File retrieved from the AD ... 70

Figure 3.8 Part of XMI File retrieved from the AD ... 70

Figure 3.9 Flowchart for Step 2 for the Automated Graphical Representation of a

PN Model ... 79

Figure 3.10 Automated Layout of the Petri Net Model for the Simple Example 80

Figure 4.1 UML AD of the Recycling IT Asset Process .. 84

Figure 4.2 PN Model developed for the UML AD for the Recycling IT Asset

Process .. 85

Figure 4.3 Part of XMI File retrieved from the AD for Table 4.2 Generation 87

xviii

Figure 4.4 Part of XMI File retrieved from the AD for Table 4.3 Generation 88

Figure 4.5 PN Model for the Recycling IT Asset Process ... 93

Figure 5.1 Illustration of the Structure of Chapter 5 .. 95

Figure 5.2 Reachability Graph Example (Aalst, 2011).. 98

Figure 5.3 Petri Net developed in HiPS for the Recycling IT Asset Process 102

Figure 5.4 Structurally and Behaviourally Bounded Check in HiPS for the

Recycling IT asset Process ... 104

Figure 5.5 Behavioural Liveness and Safeness Properties Check in HiPS for the

Recycling IT asset Process ... 104

Figure 5.6 Flowchart for the Simulation Steps followed for the Recycling IT

Asset Process .. 108

Figure 5.7 PN Model Extract from the Recycling IT Asset Process 111

Figure 5.8 PN Model Extract from the Recycling IT Asset Process 112

Figure 5.9 Simulation Results for the 1st Path of the Recycling IT Asset Process

for 2500 Simulations .. 115

Figure 6.1 Illustration of the Structure of Chapter 6 .. 122

Figure 6.2 AD Example (Fowler, 2004) .. 127

Figure 6.3 XMI Extract for the AD in Figure 6.2 .. 128

Figure 6.4 AD Example (MSDN Microsoft, 2017) ... 130

Figure 6.5 XMI Extract for the AD in Figure 6.4 .. 130

Figure 6.6 AD Example (Sparx Systems, 2018) .. 131

Figure 6.7 XMI Extract for the AD in Figure 6.6 .. 132

Figure 6.8 Part of the XMI File developed form the 1st XMI Model

Transformation ... 138

Figure 6.9 Part of the XML File developed form the 2nd XMI Model

Transformation ... 139

Figure 6.10 PN Model developed for the AD in Figure 6.2 139

Figure 6.11 PN Model developed for the AD in Figure 6.4 139

Figure 6.12 PN Model developed for the AD in Figure 6.6 140

Figure 6.13 AD (Central Buffer Node) and Corresponding PN Model (Pilone &

Pitman, 2005) ... 140

xix

Figure 6.14 AD (Data Store Node) and Corresponding PN Model (Pilone &

Pitman, 2005) ... 140

Figure 6.15 AD (Call Behaviour Action) and Corresponding PN Model (Söding,

2009)... 141

Figure 6.16 AD (Activity Parameter Node) and Corresponding PN Model (Pilone

& Pitman, 2005) ... 141

Figure 6.17 AD (Structured Activity Node) and Corresponding PN Model (Bock,

2005)... 142

Figure 6.18 Flowchart for the steps followed for the Generic Automated

Generation of the Mathematical Representation of a PN Model 145

Figure 7.1 Production System (Villani et al., 2007) .. 150

Figure 7.2 UML AD for the Production System (Villani et al., 2007) 151

Figure 7.3 PN Model Automatically developed for the Production System 158

Figure 7.4 UML AD for the Online Shopping Process (Banas, 2012) 159

Figure 7.5 PN Model Automatically developed for the Online Shopping Process ... 168

Figure L.1 Structurally and Behaviourally Bounded Check in HiPS for the

Production System.. 268

Figure L.2 Behavioural Liveness and Safeness Properties Check in HiPS for the

Production System.. 268

Figure L.3 Structurally and Behaviourally Bounded Check in HiPS for the

Online Shopping Process ... 268

Figure L.4 Behavioural Liveness and Safeness Properties Check in HiPS for the

Online Shopping Process ... 268

xx

List of Tables

Table 2.1 Notation and Description of Activity Diagram Control Nodes 26

Table 2.2 Notation and Description of Activity Diagram Nodes 27

Table 2.3 Notation and Description of Activity Diagram Edge 27

Table 2.4 Table of Methods for Automated Reliability Modelling (not including

PN) ... 40

Table 3.1 Relationships between the AD and PN Notation and Symbols 63

Table 3.2 MySQL ‘node_xmi’ Table Extract .. 70

Table 3.3 MySQL ‘edge_place_xmi’ Table Extract .. 70

Table 3.4 MySQL ‘union_1’ Table Extract ... 71

Table 3.5 MySQL ‘unique_activities’ Table ... 72

Table 3.6 MySQL ‘union_node’ Table .. 72

Table 3.7 MySQL ‘union_node_table1’ Table Extract ... 73

Table 3.8 MySQL ‘union_node_table2’ Table .. 73

Table 3.9 MySQL ‘union_node_table2’ Table Extract ... 74

Table 3.10 MySQL ‘final_table’ Table ... 74

Table 3.11 MySQL ‘negative’ Table ... 75

Table 3.12 MySQL ‘positive’ Table .. 75

Table 3.13 MySQL ‘transpose_of_the_incidence_matrix’ Table 76

Table 3.14 MySQL Database ‘initial_marking Table .. 77

Table 4.1 Abbreviations and Full Names of Nodes and Edges from UML AD 84

Table 4.2 MySQL ‘node_xmi’ Table Extract .. 87

Table 4.3 MySQL ‘edge_place_xmi’ Table Extract .. 88

Table 4.4 MySQL ‘union_1’ Table Extract ... 88

Table 4.5 MySQL ‘union_node’ Table Extract ... 89

Table 4.6 MySQL ‘union_node_table1’ Table Extract ... 89

Table 4.7 MySQL ‘union_node_table2’ Table .. 90

Table 4.8 MySQL ‘final_table’ Table ... 90

Table 4.9 MySQL ‘Negative’ Table Extract.. 91

xxi

Table 4.10 Transpose of the PN Incidence Matrix .. 91

Table 4.11 MySQL ‘initial_maeking’ Table ... 92

Table 5.1 Abbreviations and Full Names of Places and Transitions incluced in

the PN in Figure 5.3 ... 102

Table 5.2 Probabilities for the PN developed for the Recycling IT Asset Process ... 109

Table 5.3 Activity Times for the PN developed for the Recycling IT Asset

Process PN.. 110

Table 5.4 Interval Times for PN developed for the Recycling IT Asset Process 110

Table 5.5 Average Completion Time for Each Path of the Recycling IT Asset

Process .. 116

Table 5.6 Average Time for each Activity Timed Transition of the Recycling IT

Asset Process PN .. 117

Table 5.7 Average Time for each the Interval Timed Transition of the Recycling

IT Asset Process PN ... 117

Table 5.8 Number of Visits to Places of the Recycling IT asset Process PN 118

Table 6.1 Notation and Description of Activity Diagram Object Nodes 123

Table 6.2 Notation and Description of Activity Diagram Actions (Nodes) 123

Table 6.3 Notation and Description of Activity Diagram Structured Activity

Elements (Nodes) ... 124

Table 6.4 Notation and Description of Activity Diagram Notes (Nodes) 124

Table 6.5 Notation and Description of Activity Diagram Edges 125

Table 6.6 MySQL ‘node_xmi’ Table for XMI in Figure 6.3 129

Table 6.7 MySQL ‘node_xmi’ Table for the XMI in Figure 6.4 131

Table 6.8 MySQL ‘node_xmi’ Table for XMI in Figure 6.7 133

Table 6.9 Relationships between the AD and PN Notation and Symbols 143

Table 7.1 MySQL ‘union_node’ Table Extract .. 154

Table 7.2 MySQL ‘initial_node_table’ .. 154

Table 7.3 MySQL ‘final_node_table’ .. 155

Table 7.4 MySQL ‘final_table’ Extract ... 155

Table 7.5 MySQL ‘Transpose_of_the_PN_Incidence Matrix’ Extract 156

Table 7.6 MySQL ‘initial_marking’ Extract ... 157

xxii

Table 7.7 MySQL ‘union_node’ Table Extract .. 162

Table 7.8 MySQL ‘initial_node_table’ .. 163

Table 7.9 MySQL ‘final_node_table’ .. 164

Table 7.10 MySQL ‘exception_handler’ Table ... 164

Table 7.11 MySQL ‘datastore_table_a_b’ Table ... 164

Table 7.12 MySQL ‘central_buffer_table-a_b’ Table ... 164

Table 7.13 MySQL ‘in_outputValue_final’ Table .. 165

Table 7.14 MySQL ‘expansionNode_final’ Extract Table .. 165

Table 7.15 MySQL ‘final_table’ Extract ... 165

Table 7.16 MySQL ‘Transpose_of_the_PN_Incidence Matrix’ Extract 166

Table 7.17 MySQL ‘initial_marking’ Extract ... 167

Table K.1 MySQL ‘intial_marking’ Table for the Production System 264

Table K.2 MySQL ‘intial_marking’ Table for the Online Shopping Process 267

1

CHAPTER 1

1 Introduction

1.1 Introduction to Reliability Modelling
The reliability of a system at time t, denoted by R(t), is the probability that the system

can perform a required function in time interval [0, t] without a system failure

occurring. In the context of process modelling, reliability, denoted by R(A), is defined

as the probability that the activities operate on users demand, following a discrete-

time model (Cardoso, 2002). In this context, the reliability of an activity is given as

the ratio of successful executions over scheduled executions. Reliability modelling,

i.e. the prediction of the reliability of a component/activity or system/process prior to

its implementation (Richardeau & Pham, 2013), has become one of the most

important design considerations in industry. Reliability modelling should be applied at

the earliest stages of the design effort in order to be effective given that failures can be

avoided and mitigations put in place before they create greater financial and logistical

problems later in the lifecycle.

The methods available to perform a reliability assessment of a system can be divided

into two main categories, analytical and simulation methods. The analytical

reliability modelling methods include various approaches from which an analyst

should select the most suitable method for their given problem. The methods for

failure analysis consist of combinatorial models, including Fault Trees (FTs), Cause-

Consequence Diagrams (CCDs), Reliability Block Diagrams (RBDs), state-space

models, including the subcategory of Markov approaches or alternative approaches

such as the encoding of the state-space model in a Petri Net (PN) (Zille et al., 2010)

and hierarchical models generated by the composition of combinatorial and state-

space models, which are able to simplify the model and ease further analysis (Lanus et

al., 2003). The simulation reliability modelling methods, such as the Monte Carlo

method, simulate a modelled system via computer algorithms that rely on repeated

random sampling to obtain numerical results.

2

1.1.1 Analytical Reliability Modelling Methods

In this section, analytical modelling methods are examined introducing the basics of

combinatorial, state-space and hierarchical models.

1.1.1.1 Fault Tree

Fault Trees (FTs), a concept first introduced by H.A. Watson in the early 1960s, are

the most widely used tool in assessing system reliability (Chew, 2010). These models,

commonly used in the aeronautical and automotive industries, show a clear

representation of the logic of a given system failure mode via the interconnections

between the components failures. The construction of FTs typically follows a top-

down approach, meaning that the model begins with the identification of the system

failure mode, which becomes the top event of the tree, to be further analysed to

component failures, represented by basic events. Intermediate events are also used to

show events between the system failure and component failures. Gates link events

logically. Therefore, Boolean logic gates such as AND, OR, PAND (priority AND)

and NOT are used in the tree to decompose the top failure event into the component

events that cause it. Multiple FTs should be created if a system has more than one

failure mode.

Fault Tree models support both quantitative and qualitative evaluations. FT qualitative

assessment can be characterised by the logical expression of the top event in terms of

the basic events, using Boolean algebra rules to derive minimal cut sets. FT

quantitative analysis is performed to evaluate the performance of a system, i.e. to

determine the probability of occurrence of the top event of the FT in terms of the

probabilities of the basic events. The system evaluation can be conducted using

Boolean algebra techniques and probability rules, or computer software is available to

perform the calculations.

The assumption of the modelling is that all the basic events are independent therefore,

it is unable to capture the dynamic behaviour of real world applications including

modelling of: sequence-dependent events, spare/repair/redundant components and

priority of failure events. The Dynamic Fault Tree (DFT), introduced by Gulati

(1996), is an enhancement of traditional FT including additional dynamic gates in

order to enable the modelling of complex systems with dynamic characteristics.

However, this formalism cannot cover all industrial cases, since it includes only a few

3

specific kinds of dependencies (Bouissou, 2006), and hence cannot provide a generic

applicability.

1.1.1.2 Cause-Consequence Diagram

Cause-Consequence Diagrams (CCDs) combine two conventional reliability methods,

the FTA (Fault Tree Analysis) method and the Event Tree Analysis (ETA) method.

This method allows the modelling of sequential and dependent systems. The

qualitative analysis of the CCD model is based on a list that includes the causes for

each outcome condition (Vyzaite et al., 2005). The lists of component conditions can

then be quantified using the probabilities of each event. Boolean algebra techniques

and probability rules are used to perform the calculations. Despite the method

addressing the dependency issue, generally, software packages for the analysis of

CCDs cannot handle these dynamic characteristics, including loops and repair actions,

and dependencies between systems components. Therefore, this method has very

limited application to current systems in industry since it cannot provide advanced

modelling capabilities.

1.1.1.3 Reliability Block Diagram

Reliability Block Diagrams (RBDs) are directed graphs enabling analysts to represent

how components of a system are connected in a logical way. Contrary to FTA, RBDs

are success-oriented illustrating how the component reliability contributes to the

system success (Andrews & Moss, 2002). They are composed of a start and an end

node on the left and on the right side, respectively. Between these models are all the

remaining system components denoted by blocks. The blocks are connected in series,

parallel or k-out-of-n depending on the logic of the system. Both a qualitative

(yielding combinations of working components that contribute to the system working)

and quantitative (yielding numerical performance measures) analysis can be carried

out. RBDs do have some limitations rendering it not applicable to some cases,

especially when the system includes complex structures, such as dependencies,

standby redundancy or load sharing, which cannot be represented in a clear way.

The Dynamic Reliability Block Diagram (DRBD) was introduced by Distefano and

Xing in 2006 as an extension of the traditional RBD, enhancing the model capabilities

considering dependencies and system dynamics. Although the DRBD formalism

4

enhances the ability of the static RBD, it is rarely used in industry due to its high

modelling complexity.

1.1.1.4 Markov Method

The assumption of statistical independent components in complex systems, made in

combinatorial modelling methods, may ease the reliability analysis but it can be an

incorrect assumption leading to an underestimation of system unavailability.

Therefore, the dependency between components is a major factor in modern systems.

Failure dependencies have been studied from the late 1980’s mostly on behalf of the

nuclear power industry (Fleming & Kalinowski, 1983; Mosleh et al., 1988). During

that period, mathematical modelling techniques such as Markov methods have been

developed that enable time dependency to be considered facilitating the reliability

analysis of complex systems.

Markov methods including Discrete Markov chains and Continuous Markov

processes,are used to model stochastic processes. These methods can describe a

system in time and space using probability laws. Discrete systems move from one

state to another at set points in time, whereas continuous systems move from one state

to another at any point in time. Discrete systems have a set of non-overlapping

exhaustive states identified, where the systems must be in one of those at any given

time, Continuous system states can degrade continuously between working and failed.

These methods are applicable in modelling complex systems with dynamic properties

such as dependent events (e.g. common-causes, standby redundant events and

secondary failures) and repairs given the repairs rates are known (Villemeur, 1992).

The basic assumption of Markov approaches is that the system behaviour in each state

is memoryless/random. A lack of memory is defined by two characteristics: the future

state is only dependent on the immediately preceding state and not on the full history;

and the system should be stationary (Andrews & Moss, 2002). In Markov processes

each component of the system is represented by a state and all the states are connected

together by transitions. State transition diagrams are used to represent the structure of

the system.

Although Markov methods are capable of handling systems with dependencies, they

suffer the state-space explosion as the number of components increases. Hence, large

systems are difficult to be modelled using Markov methods, as the final diagram can

5

be very large, difficult to build due to its complexity and computationally costly.

However, many papers (for example Gulati & Dugan, 1997; Andrews & Ridley,

2001) have mentioned the application of Markov methods in combination with

traditional approaches, such as Fault Trees. Small sections of the FT are analysed

using Markov methods and the results from these Markov model sections can be fed

into the combinatorial models (FTs) for a quantitative evaluation. However, the

combination of these two methods cannot provide a generic applicability, since it

presupposes that the dependencies can be isolated in a small enough section of a FT

for a Markov model to be applied.

1.1.1.5 Petri Net

According to the Markov methods review, large complex systems are difficult to be

modelled using Markov approaches, hence, alternative approaches have been

developed such as the encoding of the state-space model in a Petri Net (Zille et al.,

2010), that can handle all the aforementioned limitations.

The Petri Net (PN) model, introduced in the thesis of C.A. Petri in 1962, is a bipartite

directed graph, including two types of nodes, places and transitions. The nodes are

connected together with directed arcs.

In the area of applied mathematics, Petri Nets are of special interest since once the

bipartite graph (PN structure) and the marking (PN behaviour) are defined the user

can analyse, simulate and model numerically and graphically the PN, obtaining

information about the behaviour of the system. This model has been applied to

complex systems, workflows, networks and other cases handling efficiently complex

structures such as loops, dynamic characteristics, dependent failures (Volovoi, 2004),

phased missions (Mura & Bondavalli, 2001; Chew et al., 2008). Over the years, the

standard PN has been extended and hence, several models with advanced capabilities

such as Coloured Petri Nets (CPNs) (Jensen, 1990) have been developed enabling the

modelling of real systems used in industry.

1.1.2 Simulation Modelling Methods
Complex industrial systems often introduce many dependencies or/and inconstant

failure and repair rates, and hence, the application of analytical methods with the view

to obtain performance measures such as system reliability, availability and

6

maintainability, becomes inaccurate. In such cases, the Monte Carlo method, a

ubiquitous and flexible modelling method widely used for the behavioural analysis of

industrial systems, is commonly used to computationally simulate complex models,

using repeated random sampling and statistical analysis to obtain the required

performance (Raychaudhuri, 2008). The construction of a computer model for

performing a Monte Carlo simulation is based on the logic representation of the

system’s operation, with the view to identify all events that may occur, all activities

that can be conducted and the correspondence relationship between these events and

activities. If a graphical model, which can be represented with the help of analytical

methods such as PNs, is available, it can provide useful information for the system

operational flow that can then be used to develop the corresponding computer model,

using computer languages such as MATLAB, Java, C++ and C#.

Monte Carlo simulation is carried out to conduct system performance analysis, by

simulating the occurring system events and the performing system activities for a

predefined period of time with the help of the computer model. The times related to

model’s events and activities can be generated by randomly sampling the

corresponding probability distribution, such as exponential, Weibull or normal

distributions, for the real system. Computer models are repeatedly simulated for a

number of replications so system’s performance can be obtained.

1.1.3 Reliability Modelling, Implementation and Deficiencies
The analysis of reliability models once constructed has been the main focus of

analysts over the years and this can now be conducted systematically, using bespoke

computer software, providing advanced qualitative and quantitative analysis results

for a given system (Dugan et al., 2000). However, the model generation is still a

manual process and requires considerable time and effort with the user needing to

have experience and understanding of the method. The requirement to detect the most

critical components and design errors at an early stage of design becomes more

challenging due to the increase in complexity of today’s systems. Hence, the need for

a full automated reliability analysis including model construction, with the aim to save

time, money and effort increases. Hence, to overcome the limitations of existing

reliability model analysis requiring human-aided model construction, the automated

generation of reliability modelling methods for complex systems is investigated.

7

1.2 Introduction to Automated Reliability Model Generation
Automating the generation of reliability models reduces the model construction time

and cost, and minimises human error; therefore, over the last 40 years there have been

several attempts to automate the construction of reliability models. In the case of Fault

Trees two main techniques have been introduced in the 1970’s that were considered as

pioneering concepts, namely, the decision table method (Salem et al., 1977) and the

digraph method (Lapp & Powers, 1977). Some of these techniques, such as the

modified decision tables proposed by Henry and Andrews (1997) and the component-

model based methods, are alternatives of the decision table and digraph methods.

As systems complexity increased due to complex structures such as loops and electric

circuits, higher level automated methods such as Expert system methods (Xie et al.,

1993) and others such as HiP-HOPS (Papadopoulos et al., 2001) and AltaRica (Point

& Rauzy, 1999) were developed. More recent approaches have been proposed for the

automated construction of other reliability models such as FMEA (Papadopoulos &

Grante, 2005), Hazard and Operability (Zhao et al., 2005) and Petri Nets. In the case

of Petri Nets, several semi-automated methods were introduced (Alhroob et al., 2010;

Stockwell & Dunnett, 2013; Taibi et al., 2013).

Some of the methods reviewed for the automated reliability model generation present

difficulties in handling complex systems such as the decision table methods that do

not provide any facilities for the detection and classification of control loops and

circuits. In many cases such as in the decision table methods, digraph methods and the

modified decision table method, there is not a software package available but an

algorithm which is applied manually. Additionally, some of the reviewed approaches

enable the automated generation of reliability models for systems with certain types of

characteristics, such as the modified decision table methods that focus on circuit

systems, without providing a generic applicability. The most frequent shortcoming,

found in the literature of the current methods for automated reliability modelling, is

that the system representation used for input into the automation process is conducted

manually by the user.

Therefore, the main deficiencies for the automated generation of reliability models

identified in the literature are as follows:

8

 The range and domain that the approach targets: There are approaches that

focus on specific domains such as mechatronics (Mhenni et al., 2014), without

providing a general methodology applicable to any system.

 The degree of automation: Some efforts result in semi-automated reliability

model generation, since the algorithm execution needs the intervention of

analysts, carrying out one or more steps manually or the data is not derived

automatically from the description diagram, but the user imports it manually.

 The level of the system’s complexity: Although most approaches argue that

they are applicable in complex cases, only a limited number of methods prove

their semi-automated model generation of complex systems, including

dynamic characteristics.

According to the deficiencies discussed in this section for the reviewed methods for

automated reliability modelling, this research study can contribute to the literature,

targeting the enhancement of the generation of reliability models from semi-

automated to fully automated methods, using directly an industrial system

representation.

Additionally, according to the review conducted for reliability models, Fault Trees

and Petri Nets are singled out due to the common applicability of the former in

industry for reliability modelling, and the dynamic capabilities of the latter for future

implementation. Therefore, although FT is a widely applied reliability method in the

industrial sector, Petri Net has been selected to be automatically generated due to the

flexibility of this model to handle complex systems with loops and dynamic

characteristics such as dependent and repair components. In addition to the automated

generation of a PN, the model can also be simulated, enabling the detection of the

most critical components and design errors existing in a system at an early design

stage, contributing to the literature by improving decision-making and enabling

different designs to be investigated in a short-time.

Therefore, the purpose of this research is the development of an algorithm that can

accept as an input an industrial description diagram of a given system and

automatically generate the corresponding Petri Net model.

9

1.3 Industrial Representation of Systems
Main key challenge in the automated construction of reliability models is the starting

point of the automation process, which is the system representation as used in

industry. This step corresponds to how systems should be modelled in order to

develop comprehensive models that include high level of detail. Additional challenge

in the automation process is that the selected modelling technique should provide a

wide applicability covering various domains. Hence, in this section, various system

modelling tools, used to represent systems, are discussed in order to identify the

strengths and weakness of each method.

1.3.1 Introduction to System Modelling Tools

System modelling is the use of tools and techniques to conceptualise and construct

systems in business and IT development. The modelling of a given system refers to

the analytical description of its visual representation that depicts the flow of

information/data from one component to another. Hence, generally, the system models

from a reliability perspective can include the following:

 System topology, including the component interconnectivity.

 Multiplicity and failure modes of each component.

The first requirement in the list is extracted from the description diagram of the

system given by industry, whereas the multiplicity and failure modes of the

components are provided either by the industry that is responsible for the system

design or the component manufacturers.

The modelling tool employed to generate a system description (topology), used as

input into the automation process, should ideally satisfy some criteria which have

been identified during the literature review of this research study and selected with the

view to enable the modelling of complex systems. These criteria are as follows:

1. Enable the accurate and realistic modelling of a given system, providing a high

level of expressiveness of the model towards timing concepts for reliability.

2. Provide a language with a rich variety of notations so as to enable modelling

of various industrial systems and processes and, hence, offer a broad-spectrum

applicability.

10

3. Store model information in a markup-language-based format, i.e. a computer

language that uses tags to define elements within a document, such as XML.

This markup-language-based format is required to define a set of rules for

encoding topology information into a format for data interchange between

modelling tools. This format should be simple, generic and usable to be easily

manipulated for further analysis.

4. Be commonly applicable in industry.

There are several graphical tools used for system modelling to capture in a realistic

way the representation of any scenario. They provide simplicity, usefulness and

flexibility to the user, aiming to increase the modelling accuracy and contribute in

decision-making. The system modelling tools can be categorised in terms of their

current domains of use, as follows:

 Software design modelling tools, mostly applicable in embedded and real-

time software systems to design, implement and test software components

such as network and internet services, graphics engine, computer hardware,

processors, buses, memory, user interface, system utilities, services and others.

 Business Process Modelling (BPM) tools, mostly applicable in enterprise and

business processes to design, implement and test business aspect of processes

and activities.

 Mechanical modelling tools, mostly applicable to design, implementation and

testing of the engineering aspects of systems and components.

The software modelling tools, used to design, implement, and test software

components, enabling the software representation and analysis of components of real-

time embedded systems, are the following: Architecture Analysis and Design

Language (AADL); Unified Modelling Language (UML); and System Modelling

Language (SysML).

Architecture Analysis and Design Language (AADL) was released in 2004 by the

Society of Automotive Engineers (SAE) as an aerospace standard AS5506 and finds

common applicability in industry in a wide spectrum of disciplines such as in

avionics, automotive, aerospace and autonomous systems (Feiler & Lewis, 2004).

AADL, a textual and graphical modelling language, employs formal and high-level

11

concepts enabling precise description and architectural analysis of the structural and

behavioural aspects of highly complex systems, conducting performance,

schedulability and reliability (Feiler et al., 2006). This language provides a well-

defined syntax, and hence the user can describe complex scenarios including data

inputs and outputs, interactions between the systems components and timing

requirement properties of components, if available (Feiler et al., 2004).

AADL consists of software, hardware and system component abstractions enabling

the specification and performance analysis of complex real-time embedded systems,

complex systems of systems and specialised performance capability systems (SAE

ASD AS-2C Subcommittee, 2004). The structure of systems is described as an

assembly of software elements, such as data, threads, processes, etc., that are mapped

onto computational hardware components, such as processors, memory, bus and

devices (Feiler et al., 2006). Additionally, the AADL core has been enhanced with the

AADL Error Model Annex, a textual model which was standardised in 2006 and is

defined manually by the user complementing the description capabilities of AADL.

The AADL Error Model Annex provides features able to describe dependability-

related characteristics of AADL models such as faults, failure modes, repair policies

and error propagations (Wang, 2017).

Unified Modelling Language (UML) language was developed by Brooch, Jacobson

and Rumbaugh at Rational Software in 1994-1996, but since 1997 it has been adopted

as a standard by the Object Management Group (OMG), an international, open

membership, not-for-profit technology standards consortium.

UML is a general-purpose modelling language that provides a standard way to

represent the design of a given system. In 2005, UML version 2.0 advances the

successful UML version 1.5 by adding more precise definitions of its abstract syntax

rules and semantics, a more modular structure of the language and an enhanced

capability for modelling large-scale systems (OMG UML 2: Infrastructure, 2005).

Following this update, System Modelling Language (SysML) was introduced and

defined as a subnet of UML 2 with some dialectical extensions. SysML, developed by

the Object Management Group (OMG), International Council on Systems Engineering

(INCOSE), a systems engineering professional society, and Application Protocol 233

(AP233 consortium), is a STEP-based data exchange standard that supports the needs

12

of the systems engineering community. This language is used for the specification,

analysis, design, verification and validation of systems and systems of systems.

These two industry standard modelling languages, UML and SysML, are

characterised as critical enablers for Model Driven Systems Engineering that allow the

user to model the structure, behaviour and architecture of complex systems and

business processes, providing a wide variety of notations (representation of meaning)

enhancing the effective expressiveness of systems (Hause, 2006; Kapos et al., 2014).

UML and SysML also support model and data interchange via XML Metadata

Interchange (XMI) and the evolving AP233. However, the wide variety of the

diagrams and profiles application can cause a large learning curve for the users.

The main Business Process Modelling (BPM) tools, identified for defining and

outlining business processes, information flows, data stores and systems (SPARX

Systems, 2018), are the following: flowcharts; Event-driven Process Chain (EPC)

flowchart, Business Process Model and Notation (BPMN), Unified Modelling

Language (UML) Activity Diagram (AD) and Integrated DEfinition for Function

modelling (IDEF).

According to a review conducted for these tools, the flowchart provides limited

modelling capabilities (Heller, 1997) as well as informal and ambiguous syntax; the

EPC flowchart lacks a formal syntax, restricting its applicability spectrum (Aalst,

1999), and the graphical representation of the IDEF tool is not as user-friendly as the

representation of other BPM tools, such as BPMN and UML 2 AD (Tangkawarow &

Waworuntu, 2016). Therefore, the three first BPM tools introduced above have

initially been rejected, since they do not meet the criteria, identified in section 1.3.1

for the representation of a system topology.

The BPMN diagram and the UML AD are the most commonly applied BPM

techniques, sharing many characteristics and elements that have the same semantic

meaning. Johansson et al. (2007) performed a literature review regarding BPM tools

used in industry mentioning that these two tools concentrate the most benefits such as

high expressiveness, simplicity and directness. However, the BPMN application

entails the danger of missing information regarding the flow of physical objects,

processes and data since it lacks the accurate modelling of business processes (Bao,

13

2010; Khabbazi et al., 2013) compared to the UML AD notation that provides a wide

variety of elements such as receiving and sending signal, central buffer and data store

elements that enable the modelling of any business process. Additionally, the BPMN

is mainly used for the modelling of business processes, whereas the AD brings the

benefits of UML enabling the modelling of both business processes and engineering

systems, which cover the focus of this research study. Hence, it was concluded that

the UML AD is more suitable than the BPMN for this research study.

The main mechanical modelling tools identified for the development of a system

topology, are the following: Computer Aided Design (CAD), Piping and

Instrumentation Diagrams (P&IDs), used to provide a detailed graphic description

regarding the industrial process equipment interconnections of pipeline systems

(Walker, 2009), and Simulink (MATLAB). However, the primary purpose of CAD

and P&IDs is simulation and analysis of mechanical aspects of a design, using

physical quantities i.e. mass, stress, strain, etc., dynamic characteristics and others

(Friedenthal et al., 2011). Similarly, the primary purpose of Simulink is simulation,

automated code generation and continuous test and verification (MathWorks, 2017).

Hence, for these reasons the mechanical modelling tools were found unsuitable and

have not been taken forward as a starting representation for further automated

reliability modelling.

1.3.2 Summary of System Modelling Tools
From the review conducted for the software design modelling tools, it is concluded

that AADL, UML and SysML meet the criteria defined in section 1.3.1 for the

industrial representation of system topology, which would be used as a starting point

in the methodology for the automated generation of PN models. Following the review

for these powerful software design-modelling languages, it is identified that they

provide two different views of the same system. AADL is usually used for the design

and analysis of embedded systems, allowing the development of the low-level view

for the software engineer (De Saqui-Sannes & Hugues, 2012), where in contrast,

UML and SysML are mostly used at the early stages of system engineering, allowing

the high level view for the system engineers. Regarding the fields of their

applications, AADL is mostly used in computer science, whereas UML and SysML in

business processes and engineering systems (de Niz, 2007; Evensen & Weiss, 2010).

14

Therefore, referring to the software design modelling tools, UML and SysML were

concluded to be more suitable for this study, since AADL restricts the spectrum of

applications focusing mainly on computer systems modelling. On the contrary, the

UML and SysML diagrams, commonly used in industry at the early modelling stages,

support modelling of general-purpose systems engineering applications, including

systems and processes, which is also the focus of this research study. Thus, if the

Model-based Systems Engineering (MBSE) approach, which allows for the reuse of

system specifications, enhances quality of specification and design and improves

communications between members of the development team, is used in system design,

then it can be expected that behavioural models (in the form of UML/SysML

diagrams) are a priori available. So, an automation to PN model could then save time

if PNs are the basis of reliability analysis for the system.

To conclude, UML and SysML, which are attracting growing interest as system level

visual languages, are increasingly applied for modelling and analysis of complex

systems from a reliability and safety perspective. The development of a UML/SysML

diagram from which the PN can be automatically constructed is a more efficient

approach than constructing the PN directly, as these languages increase model

availability, facilitating the modelling of systems across various domains and

developing comprehensive models while maintaining sufficient level of detail.

Therefore, the UML (including UML 2 AD) and SysML diagrams, which satisfy all

the criteria defined in section 1.1.3, are the most suitable modelling tools to represent

efficiently the topology of industrial systems, which can be used as a starting point for

the automated generation of PN models and, hence, they are taken forward.

1.4 Research Scope and Delimitations
The scope of this research is the development of a methodology, implemented in

computer software, which takes as an input the descriptions of real-life industrial

scenarios and automatically generates the corresponding PN models. The input

information is to be provided by a modelling tool, commonly applied in industry,

which can be used to extract topological information from the real-life industrial

scenarios and source it to the algorithm.

The delimitations of this research are identified as follows:

15

1. The PN model, generated following the automation procedure, will enable via

the simulation the prediction (estimation) of the: (i) average time each path of

which the model consists requires to be completed; (ii) average time for each

transition; (iii) most common visited places in each path; and (iv) the paths

resulted most in failure and the nodes most involved with route to failure.

2. The proposed methodology is predominantly aimed to be applied to industrial

business processes rather than engineering systems. However, a limited

number of systems is to be considered.

3. The systems and processes considered in this research provide the topology

information, by describing how the components and activities of which they

consist connect together. The examined systems may include a large number

of comonents/activities, dependent evenets and loops.

4. The components/activities, of which the examined systems/processes consist,

are described in terms of timed and probabilistic data. The timed data

represents the time a component/activity requires to either complete an action

or move from one component/activity to the following. The probabilistic data

shows the pass and fail probabilities of components/activities through the

various flow paths included in a system/process.

5. The PN model automatically generated, by applying the proposed

methodology, can be: (i) verified, showing that the initial UML/SysML

diagram, which depicts the system/process representation and lacks formal

sysntax and semantics, is correct; and (ii) simulated. According to the results

obtained from the PN simulation, predictions can be made about the PN model

behaviour and, by extension, of the initial system or process. These perdictions

may consider the performance assessment and the detection of any limiting

factors/deficiencies of the examined system/process. Then, these predictions

can be used to suggest modifications to be made in the developed PN,

supporting the quality of the decision-making process and, hence, enhancing

the system’s/process’ performance. Thus, modellers can help decision-makers

to make more credible decisions according to company’s requirements,

maximise the profit, reputation and lifetime of businesses, by considering

minimum execution time and cost of systems/processes, efficient usage of staff

resources and equipment, and others.

16

1.5 Aim and Objectives
The aim of this research study is to automatically generate Petri Net models by

applying an algorithm that accepts as an input the industrial description diagram of a

system/process and generates the corresponding Petri Net model. The developed

algorithm, will be able to handle complex systems/processes including a large number

of components/activities and characteristics such as dependencies and control loops.

The potential to apply the proposed methodology more broadly to processes will be

explored. To achieve this aim, the following objectives will be accomplished:

1. Identify the most suitable UML or SysML diagram: to be used as a starting

point for the automated PN model generation. The selected system/process

description diagram, used to extract from it the behavioural aspects of system

components/process activities and import this information into an algorithm,

needs to be applicable in complex systems/processes.

2. Perform a detailed literature review of Petri Net model: identifying model’s

characteristics, strengths and weaknesses, other PN formalisms and types of

model analysis.

3. Review the automated model generation methods: that exist in literature,

highlighting their benefits and limitations so that the most feasible method for

the automated Petri Net model generation can be developed.

4. Develop a methodology for the automated Petri Net model generation: using

as a starting point the most suitable UML or SysML diagram according to the

findings identified in objective 1, and dealing with the limitations identified in

the current automated reliability model generation methods according to the

findings identified in objective 3.

5. Validate and verify the Petri Net model: developed in objective 4, to prove the

correctness, completeness and consistency of the PN model and, by extension,

of the automation procedure.

6. Extend the proposed methodology providing advanced applicability and

scalability: developing an algorithm that enables the automated generation of

PNs for systems/processes represented by the chosen UML or SysML

diagram. The proposed methodology should be applied both to industrial

complex systems and processes including loops and dependencies, in order to

prove its advanced applicability and scalability.

17

1.6 Thesis Layout
The thesis is structured as follows:

Chapter 2 gives a detailed review of UML and SysML software design modelling

tools, since one or more diagrams from these tools will be used as a starting point for

industrial system representation; an evaluation of the diagrams is carried out and the

most suitable to model complex industrial systems/processes is selected. The Petri Net

model is also reviewed, identifying its strengths and capabilities. Additionally, in this

chapter, a review of past work focused on the automated generation of reliability

models using FTs, CCDs, RBDs and Markov chains, is conducted. A recent literature

review for the various approaches developed for the automated Petri Net generation is

also performed and a summary of the methods is conducted, where research

motivations of this research are identified.

Chapter 3 gives a detailed overview of the methodology proposed for the automated

generation of PN models. The database concept is introduced and a review of the

database tools is undertaken to identify the suitable tool for this research study. The

steps followed for the methodology development, which uses as a starting point an

industrial system representation and generates the mathematical and graphical

representations of PN models, are thoroughly discussed.

Chapter 4 presents a case study in which the proposed methodology from Chapter 3

is demonstrated by its application to an end of life manufacturing process, including a

discussion about the resulting model and its limitations.

Chapter 5 provides an overview of the methods used for the verification and

validation of Petri Net models. The PN automation procedure is verified and validated

via evaluation of the PN model obtained from the case study in Chapter 4. This is

achieved, by checking: (i) the model’s structural and behavioural properties; (ii) the

system’s behaviour playing the token game; (iii) the PN model’s quality performing

numerical simulation; and (iv) if there exist any limitations or incorrect/omitted logic

by conducting performance analysis.

Chapter 6 extends the automated PN model generation discussed in Chapter 3 by

considering the transformation of any element included in the UML/SysML diagram,

selected in Chapter 2, to the corresponding Petri Net element. Hence, in this chapter,

18

new transformation rules are introduced. The structure of XMI files obtained from the

selected UML/SysML diagram is also examined focusing on the structure of nested

elements included in these documents and how they are loaded into the database. The

need to transform the structure of XMI documents arises so that the information

included in them can be properly loaded into the database to be further analysed.

XML-related terms and definitions are also introduced. The steps followed for this

advanced generic methodology development as well as the newly introduced

transformations rules are discussed in detail.

Chapter 7 applies the proposed methodology outlined in Chapter 6 to two complex

real-life scenarios. The complexity includes: (i) using all the elements available in the

selected modelling diagram; (ii) a large number of components/activities; (iii)

dependent events; and (iv) control loops to demonstrate the capability of this

advanced methodology for the automated mathematical and graphical representation

of PNs. Thus, in this chapter, the methodology’s efficiency is enhanced by proving its

applicability in both complex systems and processes.

Chapter 8 drawn some conclusions from the methodology proposed in the thesis;

presents the contributions to knowledge; and provides recommendations for future

work.

19

CHAPTER 2

2 Modelling Tools and Methods – Automated

Reliability Modelling

2.1 Introduction
In this chapter, a review of UML and SysML modelling languages is conducted and

the most suitable diagram(s) to be used as a starting point for automated PN model

generation is/are selected. The Petri Net model is also reviewed; identifying its

characteristics, strengths, applicability as well as the model’s extended formalisms.

Additionally, literature reviews are conducted on automated reliability model

generation methods. More explicitly, a review of the attempts at automating the

process initially focusing on the automation of reliability models such as Fault Trees,

Cause-Consequence Diagrams, Reliability Block Diagrams and Markov Chains; and

additionally investigating attempts that target the automated generation of PN

models., The current PN model deficiencies in automation are also identified and the

research motivations of this thesis are highlighted. The layout of this chapter is

illustrated in Figure 2.1.

Figure 2.1 Illustration of the Structure of Chapter 2

20

2.2 Industrial System Representation
The system topology, derived from the initial representation of a system, constitutes

the basic input for the automated generation of reliability models. Hence, the detailed

topological representation of an industrial system is considered as a vital tool for the

automated generation of a reusable and versatile reliability model. The system

topology focuses on the structural and behavioural description of the system being

modelled. The structural description includes information about the inputs and outputs

to and from each component and the way in which the components are connected with

each other, whereas the behavioural information corresponds to the role and behaviour

that each component plays in the entire system.

According to the findings in Chapter 1, section 1.3, regarding the industrial

representation of systems, UML and SysML diagrams have been concluded to be the

most suitable to model an industrial system. These languages have been selected due

to: (i) their modelling capabilities that allow the accurate representation of a given

system/process; (ii) the wide variety of notations they provide to describe a broad-

spectrum of industrial systems and processes; (iii) the data interchange via XMI

format; and (iv) their wide industrial applicability to model systems and processes. In

this section, the UML 2 and SysML are reviewed in order to identify the most suitable

diagram(s) to be used as a starting point for the automated construction of a Petri Net

model.

It is stated in this section that once we talk about systems it covers processes as well

and the systems consists of components, whereas the processes of activities.

2.2.1 Systems Modelling Languages Review: UML and SysML

UML version 2 (OMG UML 2: Infrastructure, 2005) is the latest version of UML and

it consists of 14 diagrams. Figure 2.2 shows the taxonomy of these 14 diagrams.

According to this taxonomy, two diagram groups can be identified: the structural

consisting of seven sub-diagrams and the behavioural also consisting of seven sub-

diagrams. The terms “structural” and “behavioural” refer to the static and dynamic

aspects of systems. The UML 2 behavioural diagrams describe how a system works,

showing the dynamic behaviour of components included in a system. The dynamic

behaviour is described as a series of changes (operations) of the system over time,

21

tracking how this system will act in a real-world environment and observing the

effects of an operation/event, including its results.

Figure 2.2 UML 2 Diagrams Taxonomy (OMG Unified Modelling Language (UML),Version 2.5, 2015)

A brief description of the diagrams is as follows:

 Class Diagram: It describes the structure in a system, showing the

system’s classes, their attributes, operations and the relationships

between classes. A class, the building block of this diagram, is

represented as a rectangle divided into three parts: the name of the

class is placed in the first part; the attributes of the class (values

attached to instances of the class) in the second; and the operations of

the class (method/function that can be executed by an instance of a

class) are listed in the third partition.

 Component Diagram: It shows how the system is split up into

components and describes the dependencies among these components.

The term “component” refers to a set of classes that can represent

independent systems/subsystems that interfere with the rest of the

system.

 Object Diagram: It shows a complete/partial view of the model’s

structure at a specific time.

 Composite Structure Diagram: It presents the internal structure of a

class.

22

 Deployment Diagram: It models the allocation of modes that can be

either hardware or software and shows how software elements and

artifacts, i.e. products of the software development process, such as

design models, source files, design documents, etc. are mapped to

those nodes.

 Package Diagram: It shows the arrangement and organisation of model

elements, representing both the structure and dependencies between the

packages that made up a model. This diagram is used to make the UML 2

diagrams simpler and easier to understand.

 Profile Diagram: It is used to add new building blocks with properties, which

can be used to user’s specific domain. This diagram provides three types of

mechanisms: stereotypes, which are used to introduce new building blocks,

which are created for a specific domain, tagged values used to specify any

desired attribute values and constraints, which are used to specify conditions

that should be satisfied all the time.

 Activity Diagram: It graphically shows the flow of activities and actions that

show a step within an activity.

 Use Case Diagram: It describes the system functionality, representing

interactions between the actor and the system. An actor can be either a human

user of the modelled system such as a customer, supplier, passenger, etc., or

other systems/hardware using services of the system such as authority, bank

and others.

 State Machine Diagram: It is used to describe the state transitions and actions

of the system/components.

 Sequence Diagram: It graphically represents how and in what order the

collaborating parts are interconnected in the system.

 Interaction Overview Diagram: It is used in a similar way as the Activity

Diagrams showing an overview of the control flow of nodes presented as

interaction diagrams. Interaction diagrams can include sequence,

communication and timing diagrams.

 Communication Diagram: It shows the message flow between objects and

the interactions between classes.

23

 Timing Diagram: It shows how the state/value of objects changes throughout

a given period of time.

SysML, officially issued by the OMG in 2007, was defined as a subnet of UML 2

with some extensions compared to UML. The SysML diagrams, which can be

grouped into three types: diagrams borrowed from UML 2 reused without

modification; modified constructs from UML 2; or new modelling constructs defined

for SysML, as shown in Figure 2.3. The first group includes four diagrams that focus

on the behavioural aspects of the system. The second group includes the requirement

diagram in which the system requirements are described based on the needs of the

customer. Finally, the third group consists of four diagrams that focus on the structural

aspects of the system.

Figure 2.3 SysML Diagrams Taxonomy (Object Management Group, 2006)

A brief description of the diagrams modified or new to SysML is given below:

 Requirement Diagram: It captures system requirements and their

relationships with other elements.

 Activity Diagram: has been slightly modified in SysML by adding some

extensions such as definition of the rate and probability of the control/object

flows, definition of the flow rate (discrete or continuous) and also control to

support disabling of already executed actions.

 Block Definition Diagram: It describes the hierarchy and classifications of

system and components. In this diagram the classes used in UML 2 Class

Diagram are replaced with blocks and additional ports for physical flows are

24

introduced showing the flow of data or energy that can go through a block

(input/output).

 Internal Block Diagram: It is used to describe the internal structure of the

system. This diagram replaces UML 2 Composite Structure Diagram by

replacing classes with blocks and introducing flow ports.

 Parametric Diagram: It represents constraints such as performance,

reliability and mass properties by using mathematical relations.

Regarding the development of the SysML diagrams, the SysML specification does not

define at which point of a system’s life cycle they have to be created or the order

which these diagrams are constructed. Additionally, the types of diagrams, which are

required to be developed for the complete system representation, are not dictated. This

implies that methodological decisions need to be taken by the corresponding project

team in order to achieve the project’s objectives (Delligatti, 2013).

To capture the full integrated system model must address multiple aspects of a system

(Friedenthal et al., 2011), and hence for the complete representation of industrial

systems, modelled using SysML, both structural diagrams such as Block Definition

Diagram (BDD) and Internal Block Diagram (IBD) and behavioural diagrams such as

Activity Diagram (AD) and State Machine (STM) Diagram, need to be developed to

statically and dynamically represent a system. The order which these diagrams are

constructed is not formally defined.

Regarding the structural diagrams, the BDD and the IBD which provide

complementary views of a block, are two of the most commonly used in industry. A

BDD that defines a block, i.e. a system component, and its properties and an IBD

specifies the internal structure of a block, making clear all the relations between the

SysML blocks. However, behavioural diagrams need to be constructed, since a

complex system is not only the collection of its components and their structural

architecture, but also its behaviour, which is derived from the collaboration of its

components (Karban et al., 2011). The behavioural aspect of systems helps the user to

understand how systems act in a real-world environment, observing the effects of

operations/events, including their results. One of the most widely used in industry

behavioural diagrams is the AD, which dynamically shows the actions undertaken by

the system as well as system/components data, control flows and physical effects.

25

This diagram can express control logic of complex systems better than other

behavioural diagrams such as Sequence and State Machine diagrams (Delligatti,

2013), providing readability, and hence is usually used to communicate with

stakeholders and other team members. ADs can be created at any point in the system

life cycle, since they are not tied to any particular stage (Delligatti, 2013).

Ultimately, following this SysML review, the BDD in conjunction with the IBD and

the AD are concluded to be the most suitable diagrams to be used as a starting point

for the automated PN model generation. These two potential diagrammatical options

provide adequate information for the topology, i.e. components and interconnections,

of a system that is the requirement input for PN model generation. Comparing these

diagrams, the AD has been selected to be the initial point of the automation procedure

of PN models because it can model both industrial systems and processes, whereas the

BDD and IBD are mostly used for systems representation. Additionally, the

applicability of the AD to current industrial system representation is widened since all

the definitions of ADs used in UML can also be applied to SysML. Finally, ADs are

readily understandable by all business stakeholders, providing an implicit and flexible

graphical system representation, whereas the representation of IBDs once used to

model complex systems can become complex. Hence, for these reasons the AD has

been taken forward.

2.2.1.1 UML/SysML Activity Diagram

In this section, basic elements used in UML/SysML ADs are initially reviewed and

then a simple AD example is introduced to show the applicability of this diagram.

Definitions and terminologies adopted in this work used in UML Specification 2.5

Standard.

An AD is used to describe industrial systems and processes flow, expressing how

actions are taken, what they do, when they take place, where they take place and how

they affect other actions around them, i.e. their effects. An AD consists of nodes such

as the initial, activity final, opaque action, decision, etc. and edges such as the control

flow edges, used to link nodes together. The concept of this diagram is based upon the

flow of tokens. These tokens can represent data, information, items, energy, etc.

Tables 2.1 and 2.2 review the basic AD node notations, whereas the most commonly

used AD edge is described in Table 2.3.

26

Table 2.1 includes the control flow nodes used in Activity Diagrams to coordinate the

flows between other nodes. In an AD, the token flow starts using an activity initial

node and is terminated by an activity final or a flow final node. The difference

between these two terminal nodes is that the former represents the completion of all

flows existing in a process, whereas the latter the completion of a flow, destroying all

tokens arriving at it without affecting any other flow existing in the activity.

Additionally, as seen in Table 2.1, decision and merge nodes share the same notation:

a diamond shape, whereas similarly fork and join nodes use the same notation: a bar

(vertical/horizontal). Fork nodes that synchronise outgoing concurrent flows and join

nodes that synchronise incoming concurrent flows, have been introduced in the AD to

enable modelling of parallel activities.

Table 2.1 Notation and Description of Activity Diagram Control Nodes

Nodes
Notation

Description
Name Symbol
Activity Initial
Node

Represents the beginning of a process/workflow.

Activity Final
Node

Represents the completion of a process/workflow.

Flow Final
Node

Represents the completion of one flow exists in a
process.

Decision Node

Represents the branching of two or more activity
flows.

Merge Node

Represents the merging of two or more activity
flows.

Join Node

Represents the combination of two concurrent
activities, reintroducing them into the flow as one.

Fork Node

Represents the separation of one activity flow into
two concurrent activities.

Apart from the control nodes, additional fundamental AD nodes such as action and

activities are reviewed in Table 2.2. The execution of an action node shows the

execution of a part of a process in the modelled system, i.e. action nodes are contained

27

in an AD. There are various kinds of actions in UML2/SysML. Among them, the

opaque action node, which is considered as one of the most commonly deployed in

ADs, is a type of action that can be used to represent implementation of information

or a temporary placeholder before other actions are chosen. The execution of an

activity node shows the executions of actions included within it, i.e. an activity node

contains an AD.

Table 2.2 Notation and Description of Activity Diagram Nodes

Nodes
Notation

Description
Name Symbol

Action

This node cannot be further decomposed within the activity.
An action node that represents a single step within an activity
can have input and output control flow edges.

Activity Represents a behaviour composed of actions.

Table 2.3 shows the most commonly used AD edge, the control flow edge, which

connects the nodes together and enables the flow of tokens.

Table 2.3 Notation and Description of Activity Diagram Edge

Edges
Notation

Description
Name Symbol

Control
Flow

This edge illustrates the control flow within an activity.
Within the control flow, an incoming arrow starts a single
step of an activity; after the step is completed, the flow
continues along the outgoing arrow.

Figure 2.4 illustrates a simple Activity Diagram (OMG Unified Modelling Language

(UML), Version 2.5, 2015) including one initial node, two activity final nodes, 5

opaque action nodes, one merge node, one decision node and one fork node.

Interconnections between the nodes are represented by the control flow edges (arcs).

The diagram in Figure 2.4 shows a process in which a proposal can have two

outcomes, either to be published or rejected. It is seen from the AD that once a

28

proposal is modified (‘Modify Proposal’) and reviewed (‘Review Proposal’) then a

decision is made, using the decision node. There are three outgoing edges from the

decision node dictating the three following paths for the proposal to: (i) be accepted

and published (‘Publish Proposal’); (ii) be rejected without considering publication

(‘Notify of Rejection’); and (iii) require further modification and hence a notification

for this modification is identified using the ‘Notify of Modification’ opaque action

node and concurrently the proposal returns though the merge node to the first opaque

action node (‘Modify Proposal’) as seen in the AD for modification.

Figure 2.4 UML Activity Diagram Example (OMG Unified Modelling Language (UML), Version 2.5, 2015)

The diagram in Figure 2.4 shows a process in which a proposal can have two

outcomes, either to be published or rejected. It is seen from the AD that once a

proposal is modified (‘Modify Proposal’) and reviewed (‘Review Proposal’) then a

decision is made, using the decision node. There are three outgoing edges from the

decision node dictating the three following paths for the proposal to: (i) be accepted

and published (‘Publish Proposal’); (ii) be rejected without considering publication

(‘Notify of Rejection’); and (iii) require further modification and hence a notification

for this modification is identified using the ‘Notify of Modification’ opaque action

node and concurrently the proposal returns though the merge node to the first opaque

action node (‘Modify Proposal’) as seen in the AD for modification. The first two

paths can terminate the process illustrated in Figure 2.4. In this diagram a loop is

identified, once the proposal token returns to the merge and ‘Modify Proposal’ nodes

after it has passed from the decision and fork nodes, as seen in Figure 2.4.

2.3 Petri Net Modelling Review
According to the findings regarding reliability modelling in Chapter 1, section 1.2, the

Petri Net model has been selected to be automatically generated due to: (i) its ability

29

to efficiently handle complex structures such as loops and dynamic characteristics,

existing in complex industrial systems; and (ii) its mathematical and graphical

perspectives. An overview of Petri Net model is carried out in this section.

Petri Nets (PNs), which have their origins in the thesis of C.A Petri in 1962 (Petri,

1962) and for which an international standard IEC 62551 has been published

(Analysis techniques for dependability – Petri net techniques), are a visual tool that

provide a rigorous and precise model analysis (Wang, 2006). PNs have been applied

to a wide spectrum of cases in different sectors, such as computer networks (Marsan,

1986), communication systems (Wang, 2006), manufacturing plants (Venkatesh et al.

1994; Zhou & DiCesare, 1989), command and control systems (Andreadakis & Levis,

1988), real-time computing systems (Tsai et al. 1995; Mandrioli et al. 1996), logistic

networks (Landeghem & Bobeanu, 2002) and workflows, for reliability, visualisation

and verification reasons. This model can capture and describe different component

combinations such as connected in series or parallel, repairable systems with warm

spares, load sharing, multiphase missions, pooled repair, system on demand and

damage tolerance (Volovoi, 2004). PNs are based on strong mathematical foundations

and used as a visual communication aid to model the system/process behaviour

(Girault & Valk, 2003).

The formal definition of a PN is taken from Schneeweiss (1999) and given in equation

2.1:

𝐺𝐺𝑃𝑃𝑃𝑃 = (𝑉𝑉𝑝𝑝,𝑉𝑉𝑡𝑡,𝐸𝐸;𝑀𝑀(0),𝐷𝐷,𝑊𝑊) (2.1)

Where: GPN is the Petri Net graph; Vp is the set of places; Vt is the set of transitions; E

is the set of edges (ordered pairs of nodes), where 𝐸𝐸 ⊆ �𝑉𝑉𝑝𝑝 × 𝑉𝑉𝑡𝑡� 𝘹𝘹 (𝑉𝑉𝑡𝑡 × 𝑉𝑉𝑝𝑝); M(0) is

the initial marking vector of the set Vp of places; D is the vector of switching delays

(transition times); W is the vector of weights of edges.

For applications a Petri Net is a bipartite directed graph that includes two types of

nodes: places, drawn as circles, and transitions, drawn as bars. There are two types of

transitions, the immediate (drawn as solid rectangles), and timed (drawn as hollow

rectangles). Directed edges (arcs) connect places to transitions and vice versa.

Inhibitor arcs, an element that was added in order to increase the decision power of

the Petri Nets, prevents the firing of a transition when the place it comes from is

30

marked. Inhibitor arcs are denoted as arcs terminated with a hollow circle. In Figure

2.5, t1 is enabled if p1 contains a token and will fire immediately removing the token

from p1 and placing a token in p1’. The transition t2 is enabled if p2 contains a token

and p1 has no token.

Figure 2.5 Inhibitor Arc

Figure 2.6 presents a timed Petri Net consisting of three transitions (T1, T2 and T3)

and five places (p1, p2, p3, p4 and p5). Places p1 and p2 are marked, containing one

token each. The firing delays are t1, t2 (t1<t2) and t3. Transitions T1 and T2 are

initially enabled and after time t1 one token is moved from p1 and adds it to p3.

Figure 2.6 PN Firing Process with Inhibitor Arc

After time T3, the token from p3 is moved to p5. The firing of transition T2 is

interrupted due to the inhibitor arc from p3 to T2, so the remaining life of the token in

p2 has deceased to t2-t1 and will stop dropping P3 is marked. Once p3 is unmarked,

T2 is enabled again and the previous firing process is resumed. Hence, T2 fires after

t2-t1, removing the token from p2 to p4.

The movement of tokens through a Petri Net can be transformed into matrix form.

Then the marking of the PN after the rth transition, Mr, can be found by equation 2.2.

Mr = M0 + AT . T1 (2.2)

Where: M0 is a column matrix (n, 1), where n is the number of places, showing the

initial marking of the net. T1 is a column matrix (m, 1) where m is the number of

transitions, showing the number of times each transition has fired in the r transitions,

A is the incidence matrix (m, n) where each element aij corresponds to the effect that

31

transition i has on place j. Using equation 2.2 the marking of a net, the distribution of

tokens within it, can be determined at any time.

Figure 2.7 shows a PN with three transitions (T1, T2 and T3) and five places (p1, p2,

p3, p4 and p5). Places p1, p2 and p4 are marked, including one token each. It is also

known that T1<T2<T3. The initial marking, M0, seen in equation 2.3 represents the

marking of the PN places in Figure 2.7, and shows that places p1, p2 and p4 hold one

token each, whereas all the other places are empty. Similarly, the transpose of the

incidence matrix, AT, in equation 2.4, corresponds to the underlying transitions and

places (the places and transitions are presented on the left and above the matrix,

correspondingly), showing how a token moves from one place to another, once a

transition fires. For instance, once transition T1 fires, a token is removed from places

p1 and p2 and reproduced to place p3.

Figure 2.7 PN Firing Process

Hence, in the first column of equation 2.4, the value ‘-1’ is placed in the first and

second rows that correspond to places p1 and p2 from which the tokens are removed,

whereas the value ‘1’ is placed in the third row of the matrix that corresponds to place

p3 to which the token is added.

 𝑇𝑇1 𝑇𝑇2 𝑇𝑇3

M0=

⎣
⎢
⎢
⎢
⎡
1
1
0
1
0⎦
⎥
⎥
⎥
⎤
 (2.3) AT=

𝑝𝑝1
𝑝𝑝2
𝑝𝑝3
𝑝𝑝4
𝑝𝑝5

⎣
⎢
⎢
⎢
⎡
−1 0 0
−1 0 1
1
0
0

−1
−1
1

−1
0
0 ⎦
⎥
⎥
⎥
⎤
 (2.4)

Additionally, the matrices in equations 2.5 and 2.6 are created for each PN transition.

For instance, equation 2.5, the transition matrix for T1, when it is applied in equation

2.2 M1 is developed, showing that a token should be moved from p1 and p2 and added

to place p3. Hence, places p3 and p4 are marked with one token each. Similarly, once

equation 2.6, the transition matrix for T2, is applied in equation 2.2 matrix M1 is used

instead of M0.

32

𝑇𝑇1 = �
1
0
0
� (2.5) 𝑇𝑇2 = �

0
1
0
� (2.6) 𝑀𝑀1 =

⎣
⎢
⎢
⎢
⎡
0
0
1
1
0⎦
⎥
⎥
⎥
⎤
 (2.7) 𝑀𝑀2 =

⎣
⎢
⎢
⎢
⎡
0
0
0
0
1⎦
⎥
⎥
⎥
⎤
 (2.8)

In this case, T2 fires and the tokens from p3 and p4 are added to place p5 as seen from

matrix M2 in equation 2.8.

Petri Net models can be analysed statically and dynamically. The static analysis can

be performed by either developing the reachability graph or applying the invariants

method (place/transition invariants). They can be analysed, simulated and modelled

numerically and graphically, using various software tools, such as C++,

MATLAB/Simulink, CPN toolset, PN Toolbox, SimHPN (GISED). The dynamic

analysis of the PN is conducted performing model simulation in order to ensure that

all the paths of the model have been executed properly and to detect any possible

undesirable behaviour and incorrect or omitted logic. The static and dynamic analysis

can also be used to validate the model, i.e. check its correctness and completeness,

either in terms of syntax, semantics and structure through the structural and

behavioural PN properties or in terms of logic though the simulation analysis

detecting undesirable PN behaviour.

Over the years, the standard PN has been extended and hence, several models with

advanced capabilities have been developed enabling the modelling of real systems

used in industry.

Coloured Petri Nets (CPNs), an extension of PNs, introduced by K. Jensen 1990, is a

high level PN form that uses tokens with colours, holding complex information. The

tokens of this model can carry data values, i.e. system information, around the net and

can hence be distinguished from each other. Each token can affect the firing of a

particular transition in a different way, depending on its colour. The colour is a

graphical way of distinguishing between different tokens, by giving them a label. The

label/colour of the token can change once it has passed through a transition.

Stochastic Petri Nets with Aging Tokens (Volovoi, 2004) can be considered as an

extension of CPNs providing more flexibility and agility to system modelling. The

main idea of Stochastic Petri Nets (SPNs) with aging tokens is the introduction of

tokens with memory. This extension is useful for modelling applications such as load

33

sharing, multiphase missions, repairable systems with spares, systems on demand and

shared pools of identical imperfectly repaired components.

Another variation of traditional PNs is the Abridged Petri Net (APN), introduced by

Volovoi (2013), ensuring flexibility of token tracking through the transitions, which

are depicted as directed arcs. The change of state in a system is modelled by moving a

token from an input place to an output through the transition, i.e. the arc that connects

the input and output places. Additionally, each transition can have at most one input

and output place. This model includes two types of tokens, discrete (‘colours’) and

continuous (‘ages’). Discrete event and Monte-Carlo simulations can be used for the

analysis and evaluation of system performance. The tokens are able to change during

the simulation (be stationary or move during time) and either inhibitors or enablers are

used for the modelling of component interactions. The basic characteristic of this

model is its ability to link place nodes directly by arcs, similar to Markov models.

APNs can be applied to large models taking advantage of the hierarchical model

representation and also to complex systems with dynamic features.

2.4 Methods for Automation of Reliability Models

2.4.1 Introduction
The idea of automated reliability model generation is an important area of reliability

engineering, which has been under development since the 1970s with the introduction

of two major methods for the automatic construction of FTs namely, the decision table

method (Salem et al., 1977) and the digraph method (Lapp & Powers, 1977). In the

following years, several other methods have been developed considering commonly

found structural complexities in engineering systems such as loops and electric

circuits. Approaches have been presented for the automated construction of other

reliability models such as Cause-Consequence Diagrams (Valaityte et al., 2010)

Reliability Block Diagrams (Liu et al., 2013), Markov Chain Models (Katayama et al.,

2014; Brameret et al., 2015) and Petri Nets (Aalst et al., 2004; Robidoux et al., 2009;

Agarwal, 2013; Stockwell & Dunnett, 2013; André et al., 2014).

A review of various automated reliability methods has been undertaken in this section

in order to identify advantageous properties for automation and to identify potential

34

gaps within the literature that this PN research study will attempt to address to support

automation of this reliability modelling method.

2.4.2 Overview of Methods for Automated Reliability Modelling (not

including PN)

2.4.2.1 Automated generation of the Fault Tree Model

The automated generation of Fault Trees has received the most attention, based on

literature findings. Several methods have been proposed for the automated

construction of this reliability model, as reviewed in this section.

Decision table method, introduced by Salem et al. (1977), models the system

behaviour describing the relation between the inputs, outputs and the states of

components. This method acts as a matrix in which the columns of decision tables

correspond to the inputs, outputs and states of the components and the rows present all

the possible combinations between the inputs and component states along with their

respective outputs. Therefore, the tables can present different states of the component

such as working or failed and how the component behaves as a result of different

inputs from other components within the system.

Salem et al. introduced the decision table method by developing in 1979 a computer

package, the Computer Automated Tree (CAT). The CAT code takes as an input the

decision tables, created by the user, and the TOP event specification to generate the

fault trees. The software has been designed to cater for multiple FTs simultaneously.

The CAT code has been successfully applied in a Residual Heat Removal (RHR)

system, generating the required FT in a short time. The main limitations of this

methodology are the effort the user should make to recognise and define the TOP

event and create the components decision tables. Also, this method does not provide

any facilities for the detection and classification of control loops or circuits.

A relatively new method based on decision tables is that introduced by Majdara and

Wakabayashi (2010). This method introduces the concept of two types of tables to

model system components. The first table is the function table, which is the same of

the decision table introduced by Salem et al. 1977 and the second type is the novel

state-transition table that describes the operational states of a component. The state

transition table is created for components with different states and shows the state

35

changes from initial state to final state. For example, the operational states of a switch

are the open and close states. Both function and transition state tables are manually

created by the user. Majdara and Wakabayashi also developed an algorithm to

generate a FT based on an occurrence of an undesired event being defined. The code

uses the input-output connections of components to trace the cause of the undesired

event. The algorithm traces back from the occurrence and identifies the component

states or outputs caused the event. Then the FT is generated based on the outputs. The

FT is generated using the new tables following the same approach employed by Salem

et al.

The digraph method is based on the construction of a directed graph, which consists

of nodes that represent process variables. The process variables indicate properties of

the flow such as mass flow rate, pressure, temperature and others. Any system or

process can be described in terms of a flow such as flow of fluid, charge, data,

information and signal. The nodes are connected by directed edges, where the

direction is determined according to the relationship between the variables it joins. If a

deviation in a variable A produces a deviation in variable B then the direction of the

edge is from variable A to variable B. A directed edge can be characterised as: normal

when the relationship is normally true; conditional when the relationship occurs only

when a certain condition is satisfied; and mutually exclusive when several edges

connect the same pair of nodes. Only one relationship is in operation at any one time.

A number is assigned to the edge depending on the rate of change of the second

deviation relative to the first. The values that can be used are: ‘-10’, ‘-1’, ‘0’, ‘+1’ and

‘+10’. The magnitude of deviation is indicated by none (0), moderate (1) or very large

(10), by implying the following:

 None (0): if a moderate deviation in one process variable causes

none/negligible deviation in another; there is no edge drawn between the two

nodes.

 Moderate (1): if a moderate deviation in one causes a moderate deviation in

another, the directed edge between the two nodes is denoted by 1 preceded by

a sign.

36

 Very large (10): if a moderate deviation in one causes a very large deviation in

another, their relationship is denoted by 10 preceded by a sign.

The signs ‘+’ and ‘-’ depend on whether the deviations in the dependent variable

increase, or decrease, when the independent variable increases. The number associated

with directed edges is called gain and be considered as the partial derivative of the

first variable with respect to the second variable.

Lapp and Powers 1977 were the first to integrate the digraph (directed graph) method

into automated FT construction. This method starts with the development of the

digraph by the user for a given system and then uses a programmed algorithm in order

to transform the digraph into a fault tree. The digraph method constituted a

remarkable achievement in the evolution of the automated generation of reliability

models since it targeted modelling of complex systems including the identification

and classification of control loops. In this approach, operators have been introduced

which logically traverse fault propagation through Negative Feed-Back Loops

(NFBL) and Negative Feed-Forward Loops (NFFL).

Andrews and Henry 1997 introduced the modified decision table method combining

the decision table method due to its ability to identify the normal state of systems and

the digraph method due to its ability to detect, classify and analyse control loops. The

classification and analysis of control loops is accomplished by using two new circuit

operators, one for tracing current and the other for tracing no current in circuits. These

operators provide a more efficient FT development in terms of its logical consistency

since the operators can significantly reduce the size of trees by eliminating repeated

events. The modified decision tables include the inputs, outputs and states of the

components as traditional decision tables.

AltaRica, a high-level formal description modelling language, first created at the

Computer Science Laboratory of Bordeaux (LaBRI) by Point and Rauzy in 1999, is

dedicated to safety analysis. A second version of this language, AltaRica Data-flow

(ADF) (Rauzy, 2002; Boiteau et al., 2006), was developed to handle industrial scale

models. This second version was improved in 2013 and AltaRica 3.0 was developed.

In 2013, Prosvirnova and Rauzy proposed a method that compiles a mathematical

model, the Guarded Transition System (GTS), which supports the representation of

37

components with bidirectional flows, into the description of a system model using the

AltaRica syntax in order to automatically generate FTs for systems containing control

loops. GTS is a state/transition formalism that uses concepts from various reliability

modes such as Reliability Block Diagrams, Markov chains and PNs. This formalism

provides higher efficiency to the system making it possible to design acausal

components, i.e. components for which the input and output flows are decided at run

time, and to handle control loops in the system. The GTS formalism enables the

generation of FTs by transforming the states/transitions of the behavioural model into

a set of Boolean formulae and also enhances the reusability of FTs and facilitates their

maintenance since it is considered a high level structure.

Papadopoulos et al. (2001) developed the Hierarchical Performed Hazard Origin

and Propagation Studies (HiP-HOPS) tool that performs an automated reliability

analysis. The main idea of the HiP-HOPS is the automatic synthesis of FTs and

Failure Modes and Effects Analyses (FMEAs) using fast linear-time algorithms.

Adachi et al. (2011) integrated system modelling, automated dependability (reliability,

availability, safety maintainability and security) and optimization techniques using

HiP-HOPS, rendering this tool applicable to highly interactive and dynamic systems.

This work overcomes limitations such as difficulties in conducting automatic analysis

of complex systems with multiple failure modes, dealing with the assumption of the

previous work that the system behaviour remains stable over time. HiP-HOPS,

commercialised in 2012 by University of Hull, has been used in several automotive

and engineering industrial cases. This tool is compatible with a range of modelling

notations and offers scalability of the analysis and unique capabilities for fault

modelling.

Joshi et al. (2007) proposed a method in which Static Fault Tree (SFT) models are

developed, taking as input AADL models. In this work, an AADL model that captures

the architectural aspects of a system such as the properties of the components, features

of the interactions between components, internal structure of components such as

subcomponents’ connections and properties, is used as an input and an Error Model

Annex that captures the component faults and failure modes is manually developed by

the analyst. Using these two models, a Directed Graph (DG), including topology

system information faults and failure modes, is created that is then used to generate an

38

intermediate FT, by applying a recursive algorithm. Finally, Computer Aided Fault

Tree Analysis (CAFTA), a commercial FTA tool, is applied to the intermediate FT

and CAFTA FT is generated using software capabilities.

2.4.2.2 Automated generation of other Reliability Models

Valaityte et al. 2010 developed an algorithm for the automatic generation of the

Cause Consequence Diagram method. The system information provided as inputs to

this algorithm are: a topology diagram for a given system; failure modes and rates of

system components; decision tables for each component; the initiating

event/component and its function; and the stopping criteria, i.e. consequences from

which the diagram path can be terminated. The proposed algorithm starts from the

initiating component and then by determining the potential outputs of the component,

creates a decision box with ‘YES’/’NO’ branches, according to the output. If the

stopping criteria are satisfied, then a consequence box related to the output is added

and the number of decision boxes is checked. Once all the boxes have been developed

the CCD has been constructed.

Liu et al., 2013 proposed the automated generation of Reliability Block Diagrams

(RBDs) from a SysML Internal Block Diagram (IBD) to describe the internal

structure of the system. Once the IBD model is created, and expressed in XMI format,

then the reachability matrix is generated. This matrix, A, that shows the physical

relations between the system’s blocks, is based on graph theory and presented in the

matrix in Figure 2.8 (a).

Figure 2.8 Reachability Matrix

The reachability matrix is translated into a RBD and each row of the reachability

matrix is examined identifying the inputs to each block and the connectivity between

blocks. The transformation rule is better explained with the help of a simple example.

Hence, according to the transformation rule for matrix A in Figure 2.8 (b), block c has

39

two input blocks, a and b, denoted with value 1 in the first and second rows of the

third column respectively. Additionally, the input blocks to block c, i.e. blocks a and

b, constitute a parallel model since these blocks do not have any other inputs/outputs.

The corresponding RBD for the matrix in Figure 2.8 (b) is illustrated in Figure 2.8 (c).

Katayama et al. (2014) proposed a methodology for the generation of Markov chain

usage models from De-sequence diagram. This diagram is generated from the

combination of UML Sequence diagram and UML Deployment diagram. Therefore,

once the De-sequence diagram is developed, the system is decomposed into cases to

establish the time points based on the instances of the messages. For each case

identified, initial and final states, pre-condition, post-condition and state name, and

time violation and probability of time violation are defined. The pre-conditions that

refer to the system or objects before execution of the operation and post-conditions

that refer to the state of objects after completion of the operation, are examined to

describe how the cases connect together, i.e. sequence of relationships of cases. Once

individual Markov chain usage models have been developed for each case identified

in system, the pre and post-conditions are examined for all the cases and are finally

combined to generate the final Markov chain usage model of the system.

Brameret et al. (2015) proposed a heuristic algorithm for the automated generation of

partial Markov chains from AltaRica. This method generates a partial reachability

graph for a given system avoiding the state-space explosion problem, keeping only the

‘best’ states, i.e. trying to keep states visited only once. Therefore, once the system is

defined using the AltaRica syntax, applying the Guarded Transition System (GTS)

variables, a partial reachability graph is automatically generated by discarding

revisited states safely, keeping only the shortest paths from the source to the selected

candidate, avoiding the state-explosion limitation from which the conventional

Markov chains suffer.

2.4.2.3 Summary of Methods

The goal of the literature review conducted for the automated generation of the FT,

CCD, RBD and Markov chain models is to identify merits, limitations and challenges

regarding the automation procedure. The methods reviewed in this section for the

automated reliability modelling have been summarised in Table 2.4, and advantages,

disadvantages and automation challenges, describing the level of automation of each

40

Table 2.4 Table of Methods for Automated Reliability Modelling (not including PN)

Advantages Disadvantages Challenges

Requires the user’s intervention to manually develop
decision tables of system components.

Only limited system characteristics are catered for
(no loops/circuits).

Requires the user’s intervention to construct the
initial digraph structure from the system
diagram/knowledge

The algorithm is not rigorous to be integrated into a
computer package since it cannot be always known
with certainty if FTs produce the correct minimal cut
sets.

Modified
Decision Table

Able to handle control loops and enables
the identification of any circuits within
systems.

Requires the user’s intervention to manually develop
decision tables of system components.

Lacks full
automation.

Requires the user to input the system’s requirements
(state, transitions, initial conditions, etc.) to describe
the model by developing the corresponding code
using AltaRica syntax.

AltaRica syntax can be complicated.

Unable to handle control loops.

Requires the user's intervention to define the failure
modes of components and failure expressions that
link these modes and inputs to the output of each
component.

An AADL Error Model Annex is developed by the
user who requires advanced knowledge of the AADL
modelling language.

Focus only on SFTs.

CAFTA used for model’s construction is not able to
handle large trees, since it cannot find all the minimal
cut sets.

Focus only on static RBDs. Does not provide a
universal algorithm to support dynamic RBD
modelling.

Unable to handle control loops.

The algorithm input, De-sequence diagram,
development requires manual effort and knowledge by
the user to generate it, since this diagram does not
belong to the standard UML/SysML diagrams.

Lacks evidence about the automation part of the
reliability model generation since the technical
information about the code development and software
package is inadequate.

Applied only to simple systems.

AltaRica to
Markov Chain
(Brameret et al.,
2015)

Able to avoid the state-space explosion
problem.

Requires the user's intervention to manually define
the AltaRica GTS variables for a given system.

Lacks full
automation.

Applicable to highly interactive and
dynamic systems.

AADL models to
SFTs (Joshi et al.,
2007)

C
C

D Decision Tables to
CCD (Valaityte et
al., 2007)

Methods

AltaRica
Able to handle control loops and enables
the identification of any circuits within
systems.

Lacks full
automation.

M
ar

ko
v

C
ha

in

Decision Table
Built into a computer package, the CAT,
which is able to cater for multiple FTs
simultaneously.

Able to handle some complex system
characteristics such as detection and
classification of control loops and
circuits.

Digraph

HiP-HOPS

R
BD

SysML IBD to
RBD (Liu et al.,
2013)

Able to generate static RBD from SysML
IBD that belongs to standard SysML
diagrams.

De-sequence
Diagram to
Markov Chain
(Katayama et al.,
2014)

The concepts of standard UML diagrams
(Sequence and Deployment) have used.

Lacks full
automation.

FT

Lacks full
automation.

Lacks full
automation.

Lacks full
automation.

Requires the user’s intervention to manually develop
decision tables of system components and input
system requirements such as failure modes and rates,
stopping criteria and others to the algorithm.

Lacks full
automation.

Lacks full
automation.

Full
automated
method.

Built into a computer package named
CAFTA.

Able to handle some complex system
characteristics such as detection and
classification of control loops and
circuits.

41

method, have been identified. Therefore, as can be seen from Table 2.4, the automated

generation of the FT model has received considerable attention compared to the

others, due to the extensive application of this model in industry. Additionally,

following Table 2.4, the most common limitations and challenges met during the

review of the methods proposed for the automated generation of these reliability

models are that: (i) only some of the methods can model control loops; and (ii) the

majority of the methods result in the semi-automated generation of reliability models,

since only a limited number of them can automatically retrieve a given industrial

system representation. Hence, during the automated construction of PN models,

considerable attention should be given to these commonly met challenges, by

developing a methodology that overcomes these limitations.

2.5 Automated Generation of the Petri Net Model

Given the Petri Net model has been selected in section 1.2 to be automatically

generated, it is required to establish the current state of art regarding the automation

procedure. Therefore, the methods identified for the PN automated generation and

applied to industrial processes and systems are reviewed in the following sub-sections.

2.5.1 Review of Methods for Automated Petri Net Modelling (Process-

based Approaches)

The Alpha algorithm put forward by van der Aalst, Weijters and Măruşter in 2004

with the aim to reconstruct causality from event logs was first used in process mining.

An event log consists of a multiset of traces, whereas a trace describes the order of

activities following a particular path within the process. This algorithm is able to

create automatically a Petri Net process model, taking as input an event log that

contains all the possible traces of a model describing the control flow of different

paths that exist in the model. The event logs are stored either in flat files, files without

internal hierarchy, or database tables. This algorithm is also able to discover and

handle concurrency, loops and choices if they exist in the models.

The following steps are pre-steps for application of the Alpha algorithm:

1. Obtain or create an Excel/XML file with the process traces (process data).

42

2. Convert the file from step 1 into eXtensible Event Stream (XES)/(Mining

eXtensible Markup Language) MXML format using a tool such as Nitro or

XESame.

3. Import the file created in step 2 into Process Mining (ProM) framework, an

open source tool, developed at Eindhoven University of Technology, with

more than 300 plug-ins that allow process mining algorithms.

Then, the Alpha algorithm is applied.

A simple example in terms of the Alpha Algorithm is discussed. The event log is

assumed to be L1 which is presented in equation 2.9.

𝐿𝐿1 = [< 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 >, < 𝑎𝑎, 𝑐𝑐, 𝑏𝑏, 𝑑𝑑 >, < 𝑎𝑎, 𝑒𝑒, 𝑑𝑑 >] (2.9)

Where: a, b, c, d, e are different activities.

There are three traces (paths) in the event log as can be seen from equation 2.9. The

first is ‘abcd’, the second ‘acbd’ and the third ‘aed’. Once L1 event log is fed into

ProM tool, the Alpha algorithm is applied and the corresponding PN is generated. The

generated PN model has an initial place and a final place and all the activities included

in L1 such a, b, c and d are transformed into PN transitions and between these

transitions, places denoted as p1, p2, etc. are added. Arcs connect the places to

transitions following the sequences of activities in the paths. The Alpha algorithm is

used with the objective of automatically visualising business processes in terms of PN

models and animated simulations. Additionally, this algorithm can be used to predict

the completion time of a model or specific traces of a model, using data such as times

and frequencies for the PN transitions provided by the user. According to the

visualisation and animation of PN’s behaviour and simulation results obtained from

the PN model analysis, limiting factors such as unintended behaviour regarding the

flow of information in the process or bottlenecks can be detected and, hence,

recommendations can be made to enhance process’ performance.

To conclude, this algorithm requires the order that the activities happen during the

process and hence, the user needs to obtain or create the input file identifying the

event logs, i.e. the sequence of activities, path id, i.e. a unique identification number,

and pass and fail probability of each path. The main limitation is its weakness to

43

handle specific complex cases such as complex nested loops or multiple activities

logged with the same footprint (does not allow duplicates). In such cases, the

algorithm generates inaccurate PN models since it cannot graphically represent these

features (Aalst, 2011). The Alpha algorithm cannot be taken forward due to the

weakness to automatically retrieve the system description and to model the

aforementioned advanced structural characteristics which are within the scope of this

study.

Alhroob et al. 2010 presented a new methodology that transforms the UML Sequence

Diagram (SD) and Class Diagram into High Level Petri Net (HLPN) models, known

as Coloured Petri Nets. HLPN models use algebraic terms to explain PN elements and

the places in these models are marked by tokens that hold complex structured data.

The UML SD and Class diagram are used as the source of system behavioural

specifications. The Object Constraint Language (OCL) is also used to provide

structural specifications such as preconditions (must be true at the moment the

operation is executed), postconditions (evaluated to true at the moment the operation

ends) and guards (must be true before state transition can occur). The requirement of

this methodology is the topology (events in the system and their ordering) of a given

system. The steps of the methodology are described as follows:

1. A SD and a Class diagram are created or provided by industry.

2. Decomposition of the SD into fragments such as sequence (for events executed

in series), parallel (for parallel processes that contain two or more sets of

events executed concurrently), loop (for series of repeated events), alternative

(divides fragment into two groups and defines conditions for each one) and

option (for events executed only if a condition is true).

• The SD of a system is manually decomposed into fragments by the

user. If the system is complex, this step can entail much effort. Once

the system is complex, this step can entail much effort. The fragments

are used to provide flexibility in the next steps since the XML exported

differentiates the fragments based on the labels mentioned earlier, i.e.

sequence, loop, parallel etc. Once the fragment decomposition is

completed, then, the software used divides each fragment into its

events.

44

3. Transformation of the SD fragments edges to HLPN nodes.

• For each SD edge, a HLPN node is created. A HLPN node consists of

two classes (an input and an output) which are connected by an event

as described in step 2. In a node, the event is represented by a

rectangle, whereas the input and output with ovals. An algorithm is

developed as follows:

a) Enumerate all the events.

b) The algorithm traces around the diagram and it detects the first

event and checks if it was visited before. If it was not visited

before, check if it has input and output arguments.

c) Determine the input and output arguments.

d) Once an event has input and output class, it becomes node.

e) Represent the event in rectangle shape, input and output with

oval.

f) Connect the nodes with output arrow from input class to the

event and second arrow from the event to the output class.

4. Join each node with its input derived from the class diagram and OCL.

• HLPN models require more information and specifications and thus

this additional information is derived from the class diagram (XML

format) and OCL. The required information is stored in a table, named

Information Table (InfT). The algorithm selects methods of Class

diagram that are used in SD and stores its input and output to a table,

the Information Table (InfT). Additionally, the event attributes from the

Class diagram and the remaining information (preconditions, guards,

etc.) are transferred from the OCL to InfT.

5. Identification of relationships between the HLPN nodes.

• A Nodes Relationship Table (NRT) is proposed to set the relationships

between the HLPN nodes, as developed in step 3, using the InfT. An

algorithm has been developed to capture the relationship for every pair

of nodes. The algorithm consists of various conditions that define the

relationships between the nodes. This algorithm can identify if node X

is ancestor/ parent of node Y. It can also identify if two nodes are

connected in parallel or if two nodes are connected under a loop or if a

45

node is the last one before the final node. Each relationship is denoted

by a different symbol in the NRT. A Node Relationships Table (NRT)

is used to store all the possible conditions for the nodes.

6. Combination of the HLPN blocks developing a Combined Fragment Net

(CFN).

• According to the information stored in the NRT, a CFN is developed

by connecting all nodes according to SD fragment ordering logic. This

step is done manually.

7. The final step is the development of the PN model based on the NRT

information and the CFN.

The proposed methodology, which is developed to formally verify the informal syntax

and semantics of the UML diagrams, is demonstrated by its applicability to a process

describing the operation of a car parking ticket machine.

To conclude, this approach focuses on the HLPN (CPN) generation using UML Class

and Sequence diagrams to represent the behavioural and structural aspects of a given

system respectively. A HLPN model is generated by the user based on the topology

information stored in the NRT that is obtained from the UML SD. The proposed

methodology, which is not fully automated, requires model pre-processing, since the

system information cannot be obtained automatically from the UML diagrams. This

technique indicates the semi-automated level of the method and hence, it has not been

taken forward.

Agarwal (2013) proposes the UML 2 Activity Diagram (AD) transformation into PN

models for verification purposes. This approach covers the transformation of

fundamental elements of UML 2 AD, such as control edges (arcs in AD), opaque

action nodes, fork and join nodes, decision and merge nodes, as well as initial and

final activity nodes, into PNs. The mapping rules for the AD translation into a PN are

explained in detail. Thus, the control edges, initial nodes, final activity nodes, decision

and merge nodes of the UML 2 AD are mapped into the PN places, whereas the

opaque action, fork and join nodes are mapped into the PN transitions. The tool

developed is based on the Eclipse Java Platform and named AD2petri. AD2petri has

as input the UML 2 AD in the form of an XML file and outputs PN files written in the

Petri Net Markup Language (PNML).

46

The PNML is a standard defined by ISO/IEC 15909-2 that provides an intermediate

representation, which enables the automated generation of various types of PNs such

as Coloured PNs, Timed PNs and Stochastic PNs. The PNML interface is Extensible

Markup Language-based meta-language, which supports the interoperability and

exchangeability between various tools that used for PN models, such as Ina,

CPN/Tools, PEP, TimeNet, etc. PNML can take as input XML files with specific

structure that should comply with predefined rules.

Although some of the proposed transformation rules are validated by their application

into a simple example for a management process, the documentation in this work

regarding the information about the code development is inadequate, since the code

proposed for the model transformation is not explained thoroughly. Additionally, two

of the transformation rules, for the control loops and preceding transitions (where

action x should precede action y), are not validated since these characteristics are not

included in the UML 2 AD used for the proposed example. Finally, this approach does

not provide a generic applicability, because firstly, it is only applied to a simple

process without considering complex processes and secondly, the code does not cover

the transformation of all the elements included in a UML 2 AD. For all the

aforementioned limitations, this method has not been taken forward.

2.5.2 Review of Methods for Automated Petri Net Modelling (System-based

Approaches)

Robidoux et al. (2009) presented an approach for formal modelling and verifying an

extension to State-based RBD (SRBD), named Dynamic Reliability Block Diagram

(DRBD), for computer-based systems. In this work, an algorithm that generates

Coloured Petri Nets (CPNs) using as a starting point DRBD models is introduced. In

order to identify design flaws and faulty states, the behavioural properties of the

DRBD model are also verified, using existing CPN Tools. The novelty of DRBD is

the ability to model the dynamic behaviour of systems, i.e. to model dependencies

among components or subsystems. The capabilities of this model have been enhanced

by introducing two new controller blocks, called State-based Dependency controller

(SDEP) and Spare part controller (SPARE), that allow the modelling of dependency

and redundancy relationships between components in a system, respectively.

47

In this work, a formal Reliability Markup Language (RML), an XML-based language,

is introduced to formally describe the components, structure and dynamic behaviour

of DRBD models. RML is based on the Backus-Naur Form (BNF) which is a formal

notation used to describe the syntax of a given language. Therefore, DRBD is defined

in RML including all the components and controllers that exist in the model. The

properties of these components and controllers, such as the connection of components

in series or parallel, the initial state of components (active/standby/failed), the trigger

and target events as well as the state-based dependency between the components

(activation/deactivation/failure), are presented as nested RML elements. This RML

file, which is manually developed, is the input to the algorithm for the CPN

generation.

Once the DRBD model has been manually defined according to RML, an algorithm is

applied to the model transforming it into a CPN. The model transformation is

conducted into two steps: in the first step the SRBD is converted into a CPN; in the

second step the controller blocks of the model, such as SPARE and SDEP, are

converted into controllers CPNs and then added into the CPN developed in the first

step. A controller CPN has transitions and arcs that connect to the start places of the

simple CPN components created in the first step.

Before presenting the algorithm steps for the SRBD conversion into a CPN model, the

steps followed for a simple component conversion into a simple-component CPN are

described as follows:

1. A simple-component CPN consists of two places, C1_start and C1_up and three

transitions, in_C1, C1_fail and C1_destruct, as seen in Figure 2.9. C1_start contains an

active token, since the initial state of component is active, whereas the token

state can have one of the following values: Active, Standby or Failed.

2. Once C1 remains active and another input connection to the component has an

‘active’ token, then in_C1 may fire.

3. This firing moves an ‘active’ token into place C1_up, showing that component

is active, as seen in Figure 2.9. This ‘active’ token can be moved into other

nodes through the output connection (active) shown in Figure 2.9.

4. While C1 is active and transition C1_destruct fires, then the active token in place

C1_start is replaced by a failed one.

48

5. Transition C1_fail is enabled and a ‘true’ token is generated showing that C1 has

failed. This ‘true’ token can be moved into other nodes through the output

connections (failed) as illustrated in Figure 2.9.

Figure 2. 9 Simple Component Conversion into a Simple-Component CPN (Robidoux et al., 2010)

The algorithm for the SRBD transformation into CPN performs the following steps:

1. SRBD model is considered as a serial component and input and output

connections are created. A serial component may contain one or more

simple/parallel components.

2. A for-loop is applied in order to convert each of the structural components into

a CPN. If a contained compoennet is a:

a. simple (connected in series) or spare component, thenit is directly

converted into a CPN model.

b. parallel component, then input and output connections are created and

then a for-loop is applied again to transform each of the contained

components into a CPN. Step 2 is repeated for each contained

structural component in the parallel component.

3. A parallel CPN component is generated by the connection of all simple and

series CPN components only when all contained components in a parallel

component have been transformed into CPNs.

4. A serial CPN component is generated by the connection of all simple and

parallel CPN components only when all contained components in a serial

component have been transformed into CPNs.

Similarly, the algorithms for the transformation of SPARE and SDEP controllers into

controllers CPN is described as follows:

49

 Spare controller conversion into spare-controller DRBD is explained as

follows:

1. A place P1_start and a transition P1_fail are created for the primary

component.

2. For each spare component a place Si_start and a transition Si_fail.

3. SPC_P1 transition is introduced connecting place P1_start with place

S1_start such that when P1 fails and S1 is standby, S1 to be activated.

4. For each spare component Si (i=1 to i=n-1) a transition SPC_Si is created

and connecting Si_start and S(i+1)_start such that when S1 fails and S(i+1) is

standby, S(i+1) to be activated.

5. Place SPC_sync1 is created connecting transitions SPC_P1 and P1_fail.

6. For each spare component Si (i=1 to i=n-1) a place SPC_sync(i+1) is created

connecting transitions SPC_Si and Si_fail.

 State controller conversion into state-controller DRBD is explained as follows:

1. A place C1_start is created for the trigger component..

2. For each target component a place Ti_start is created, for i>=2.

3. Transition SDEP is introduced connecting all places Ti_start according

to the trigger and target events defined in step 2.

4. If trigger event is activated create a transition in_Ci for trigger

component and a place SDEP_sync that connects SDEP and in_Ci.

5. If trigger event failed create a transition C1_fail for trigger component

and a place SDEP_sync that connects SDEP and C1_fail.

Finally, the controller CPNs are added into the CPN developed from the SRBD

model. This is accomplished by merging the starting places such as P1_start and status

transitions such as S1_start from the controller CPN to the corresponding places and

transitions presented in the CPN for the SRBD.

The proposed methodology is demonstrated by its applicability to a redundant

generator system. Thus, the algorithm creates a CPN model for the redundant

generator system, taking as input static and dymamic RBDs with the system

description in RML format. The output CPN model is successfully verified using CPN

Tools in order to guarantee the correctness of the DRBD model, by checking the

absence of deadlocks. Although this approach enables the automated CPN model

50

generation, the main limitation of this work is the development of the system

representation i.e. development of SRBDs and DRBDs using RML, since it requires

manual effort as well as programming language knowledge by the user.

Stockwell and Dunnett (2013) presented a novel approach for the automated

generation of reliability models for phased-mission systems, based on Petri Nets. The

system modelling consists of the: (i) component, system and mission descriptions; (ii)

system failure conditions; and (iii) failure and repair data. For the component

modelling two tables, the decision and operational mode tables, are manually

developed for each component and added to the component library of the system. This

library allows the reuse of components. Operational tables are only created for

components that have more than one mode of operation. The system description

corresponds to a topology diagram that shows how the components link together. The

mission description corresponds to the development of phase models that describes

the different phases the mission can enter with the conditions of the system needed to

transition from one phase to another. The initial and starting conditions are also

identified. Additional input information is the failure conditions and the system failure

modes. Finally, the failure and repair (if available) data for each component is

provided to determine a reliability estimate. It is noted that decision tables are

required to include time dependencies in order to describe components’ behaviour

when the system undertakes different phases of the mission.

The main steps of the algorithm are reviewed as follows:

1. The circuit lists, only required when the system contains electrical

components, are automatically generated by the code, written in C++, using

the information stored in the component tables within the library and the

system topology. These lists contain the unique identities of components, i.e.

whether or not current flows, in an electrical system. Each of the circuit list is

used to create a circuit PN (CiPN).

2. Each action of each component is presented using Petri Net models, and hence

Component Petri Net (CPN), System Petri Net (SPN), Circuit Petri Net (CiPN)

and Phase Petri Net (PPN) models are automatically generated.

3. The reliability model is the SPN, which is created from the combination of the

CiPNs and CPNs, and the PPN connected together.

51

A simulator implemented to the proposed algorithm can perform a number of

simulations to calculate the unreliability of the system for both a single mission and

multiple successive missions. The shortcoming is that the user is required to generate

as input to the software a system structure file including topology information,

number of phases the system can reside in, failure modes and the repair data, etc.,

which is an error-prone and time-consuming process, particularly for larger systems,

as the authors state.

Taibi et al. (2013) proposed an automatic transformation to model multi-agent

systems (MAS.) The proposed automation procedure follows two steps: (i) the system

is described using a language named Multi-Agent System Description Language

(MASDL); and (ii) transformation rules are applied to the file obtained from the first

step to generate formal Coloured Petri Net (CPN) models from the system

specification with the view to analyse and verify multi-agent system. A Multi-Agent

System is a computerised system or program that presents several complex

characteristics interacting to achieve a common goal. A MAS consists of a set of

agents, i.e. any entity that senses its environment and acts over it (Glavic, 2006),

interacting to achieve a common goal. MAS are usually met in a dynamic large-scale

environment providing properties such as autonomy, robustness, and flexibility. The

steps followed for the CPN generation are:

1. An XML file, using Multi-Agent System Description Language (MASDL), is

manually developed in order to describe the computer system. The information

comes from the system topology, the state of the system, its initial conditions

and failure modes. The Multi-Agent System specification contains a list of

agents consisting of the agent name, a list of its attributes, the current state and

a list of (entry) actions, a list of resources that specifies objects except for

agents existing in the system, a set of objects including information about the

system environment, a list of states that describes the agents’ states and objects

states and a list of actions that can be undertaken by agents.

2. Once the XML MASDL file is created, it is transformed into the

corresponding CPN models, using an XML-based language with a specific

syntax, the Petri Net Description Language (PNDL). The main rules of the

transformation algorithm are outlined as follows:

52

• The agents and resources obtained from the first step can be

transformed to the PN colours.

• The states and actions obtained from the first step correspond to the

CPN places and transitions respectively.

• The entry states in combination with the transitions create the arcs.

The output of this second step is an XML file that includes all the necessary

information for the generation of CPN models.

Both MASDL and PNDL are XML-based languages, providing many advantages such

as interoperability due to its universal syntax since XML can be easily readable

between systems and universality due to its ability to represent most of the models

with its simple and powerful syntax.

To conclude, in this work, MASD language is introduced for the specification of the

agents and their environment and transformation rules are proposed for the

formalisation, i.e. verification, of multi-agent systems. The main drawbacks of this

method are that: the user needs to write the MASDL code in order to import the

system information into the algorithm; and the method cannot provide generic

applicability since it targets computer systems.

André et al. (2014) proposed a method in which UML State Machine Diagrams

(SMDs) are transformed automatically into Coloured Petri Net (CPN) models to

formally guarantee the system safety by verifying it against properties. Although

UML is widely used in industry its semantics are not formally expressed, preventing

the application of model checking techniques that can guarantee the system safety.

The objective of this approach, which is mainly applied to systems with different

states, is to provide formal semantics for the UML SMD by translation to the CPN

formalism. The automatically generated CPNs are used to test and check the model

using powerful tools such as CPN Tools, which can formally prove/disprove the initial

system safety.

This approach is based on the model-to-text (M2T) transformation technique and is

carried out using the Acceleo, a user-friendly tool, which is integrated into the Eclipse

environment and facilitates the CPN generation by generating templates. These

templates are used to define the transformation rules between the SMD metamodel,

53

the SMD model and the final CPN that should be developed, as explained in the

following methodology steps. Therefore, the methodology steps are as follows:

1. OMG SMD metamodel development. Metamodel is the abstract syntax of

models in which the general modelling frame, rules and constraints can be

defined (OMG Unified Modelling Language (UML), Version 2.5, 2015). The

OMG provides a predefined metamodel for the SMD that has been used in this

work conducting a few minor simplifications. The SMD metamodel consists of

a global state machine (class StateMachine) and each state machine includes

states (class State and FinalState), transitions (class Transition), behaviours

(class Behaviour), pseudostates (class HistoryState) and arcs between the

states and transitions (class InputArc and OutputArc). Each class is

represented by a block and in each block there are several properties such as

id, name, state, action etc. that provide information for each class.

2. SMD development (input model). Based on the SMD metamodel structure, the

SMD for a given system is developed, using the classes referred to in step 1.

3. Acceleo template generation. Each rule developed in the template will map an

element from the metamodel and model to the text that is generated and

corresponds to the desired CPN model. In this method, three algorithms

(templates) are developed, one for the SMD states, one for the transitions and

one for the history pseudostates respectively.

4. CPN model generation. The templates in step 3 are applied to the models

developed in steps 1 and 2 and the CPN model is automatically generated,

using Acceleo. The CPN generated is presented in an XML format. The SMD

states are transformed into CPN places, the SMD transitions into CPN

transitions, whereas the history pseudostates are mapped into the CPN arcs.

Once the CPN model has been created in XML format, then the user can import the

XML file into CPN Tools, a free software used for modelling and verifying CPN

models.

A main advantage of this method is that the starting point is a well-structured OMG

UML diagram, the SMD, which eases the user to import automatically the system

data/information. Nevertheless, limitations of this work are the inefficiency of this

method to deal with complex and large SMD models and model systems including

54

loops. Additional shortcomings are the weakness of the Acceleo tool to provide

advanced features such as functions, global variables and data structures leading to the

development of complicated codes that require additional time to be analysed. Finally,

this method is highly dependable on the CPN Tools syntax, since the rules defined in

the Acceleo templates for the model transformation have been defined according to

the CPN Tool syntax. Therefore, if this syntax changes, the Acceleo templates will be

incompatible with the CPN Tool, and hence the output CPN model either will be

incomplete/faulty/missing.

Reza and Chatterjee (2014) developed a method in which an AADL model is

transformed into a PN model for verification purposes, using a set of mappings and

mapping rules between AADL and Petri Net Markup Language (PNML). In this

approach, PN models are developed to specify and verify the logical behaviours of

real time-embedded systems used in critical application systems such as nuclear and

power plants, medical devices, etc.

The steps followed for the translation of a given system modelled in AADL into a PN

are reviewed as follows:

1. First transformation: transformation of AADL text model (input model) to

XML format using mapping rules.

2. Second transformation: mapping of XML model to PNML using XSLT

templates. The first action of this step is the development of an XSLT

template. The XSLT template acts as a path that defines how the AADL model

is translated into a PNML model. The output of this mapping is an XML file.

Some of the mapping rules between the AADL and PNML components as

used in this work are presented as follows:

• AADL in/out data port, event port, port group and data access are

transformed into PNML Places.

• AADL system, process, thread and memory are transformed into

PNML transitions.

• AADL connection and bus are transformed into PNML arcs.

Despite the PN model generation, this method is not fully automated since the user’s

intervention is still required to import the AADL-XML model, obtained from the 1st

55

transformation, into the PNML framework. Additional shortcomings of this approach

are the weakness of this method to handle complex systems and the software

dependency.

2.5.3 Summary of Methods for Automated Petri Net Modelling

Following the literature review conducted to identify the attempts targeting the PN

model generation, it was found that in most cases, the industrial system

representations have been manually developed. All these methods that require the user

intervention to import system information to the algorithm result in the semi-

automated generation of PN models. Some of the inputs used to describe system

topology are: Excel/XML files; decision and operational mode tables; AADL models;

and newly introduced diagrams such as the Class Diagram. However, two of the

reviewed methods support the full automation PN model generation. These are the

methods proposed by Agarwal (2013) and André et al. (2014), in which the algorithm

can automatically retrieve the system topology from a UML 2 AD and a UML SMD,

respectively. However, a shortcoming of André’s methodology is its weakness to

model large systems or control loops.

According to the review for the PN model generation, only a limited number of

methods, such as the methods proposed by Robidoux et al. (2009) and Alhroob et al.

(2010), can handle and efficiently model systems with many components or complex

characteristics such as control loops. Unfortunately, these two methods (Robidoux et

al. 2009; Alhroob et al., 2010) require the user’s intervention to input to the algorithm

the industrial system representation, lacking full automation. Additionally, some of

the reviewed methods can only be applied to specific domains, such as the work

proposed by Taibi et al. (2013) that focuses only on computer systems, or can only be

applied to specific cases, such as the Agarwal’s methodology which firstly does not

provide transformation rules for all the elements included in a UML 2 AD and

secondly has only been applied to a simple process. Hence, these methods cannot

provide a generic applicability.

Finally, the majority of the reviewed methods has used XML-based languages, such

as the RML (Robidoux et al., 2009), PNML (Agarwal, 2013; Reza & Chatterjee,

2014), PNDL (Taibi et al., 2013) or tools such as the Acceleo tool (André et al.,

2014), to generate an XML file, with the view to import it in an industrial tool, such as

56

the CPN Tools, to enable the automated PN generation. Although these methods can

automatically generate PN models, they lack efficiency and cannot provide a robust

and rigorous methodology. This is explained with the help of an example. Therefore,

taking as a starting point a UML/SysML diagram, an XMI file can be obtained and

then following these methods the syntax of the XMI file should be transformed into a

format that can be used as input to the selected industrial PN tool. This input is a well-

formed XML file that conforms to a set of very strict rules defined for the

corresponding PN tool. However, if the version of the selected PN tool is updated

(versions of these tools are updated at least once every year), and hence its syntax

changes, these methods cannot guarantee accurate PN model generation, since the

XML file developed from the methodology may not comply with the syntax of the

XML file used as input to the tool.

2.6 Review and Research Motivations
A common characteristic of all the reviewed methods identified was the requirement

of a realistic representation/description of the system topology, which is performed

using tables/graphs/high-level modelling languages/markup languages.

Additionally, it was concluded that there is a lot of room for improvement and

development in the automated generation of PN model since the current attempts

target the generation of this model, are limited regarding the:

 Level of automation, requiring the user intervention as described in the

aforementioned models.

 Systems/Processes structural characteristics, as described in the

aforementioned models.

 Spectrum of their applicability, targeting to specific domains without

providing a generic applicability.

 Software dependency, developing an XML file, used as input to a PN tool,

with tailored syntax that only complies with a specific version of the selected

tool. This syntax may be incomplete/wrong after a version update and hence

the PN model is considered inaccurate.

57

Therefore, the research motivations, drawn from the literature review for the

automated generation of a Petri Net model, should cover existing literature gaps and

extend current techniques that automatically generate reliability models by:

 Retrieving fully automatically without the user intervention the topology

information from the graphical diagram, i.e. the UML/SysML AD, of the

system description.

 The automated PN model generation methodology should be able to handle

large systems/processes with control loops.

 The proposed method requires to provide a generic applicability, enabling the

generation of PN models from any system/process being modelled using an

AD. This means that all the elements included in an AD should be considered.

 The proposed methodology for the PN model generation should be software

independent, by introducing a novel code without being based upon the syntax

of any industrial software which can be easily modified after a version update,

and hence to fail the desired model generation.

58

CHAPTER 3

3 Methodology for the Automated Generation of

a Petri Net Model

3.1 Introduction
This chapter describes the methodology followed for automated Petri Net model

generation. The steps required to automate a PN model are identified at first and then

the methodology to undertake these steps, input-system modelling; and algorithm-

Java database programming using Structured Query Language (SQL), is explained

in detail. Following the algorithm developed, the mathematical representation of a

PN model, i.e. the transpose of the incidence matrix and initial marking, is

automatically generated. Additionally, the graphical representation of a PN model

is automatically generated, using data obtained during the Java database programming

step. The proposed methodology is explained with the help of a generic example that

applies both to systems and processes, but for simplification purposes, the term

systems is used to cover processes as well. It is also noted that systems consist of

components, whereas processes of activities. The layout of this chapter is illustrated in

Figure 3.1.

Figure 3.1 Illustration of the Structure of Chapter 3

59

3.2 Overview of Developed Methodology
This section describes the procedure followed for the automated PN model generation

using as an input a commonly used description diagram of industrial systems, the

UML/SysML Activity Diagram. Figure 3.2 illustrates a diagram outlining the

methodology.

Figure 3.2 Methodology Steps for Automated PN Generation

Thus, the automation procedure takes as a starting point (input) a UML/SysML

Activity Diagram and applying the algorithm developed for the manipulation of this

input information, the mathematical and graphical representations of a PN model are

generated (outputs). Each of these methodology steps is briefly explained:

 Input (System Modelling): The input to the proposed algorithm is the

UML/SysML AD file created for a given system.

 Algorithm (Java Database Programming): The developed algorithm

initially establishes a connection to an SQL-based database with Java, using

Java Database Connectivity (JDBC). The SQL-based databases are able to

capture and analyse data by organising it in an easy way to be accessed,

managed and updated. Thus, once JDBC establishes connectivity, the

UML/SysML AD (input file) is loaded into the database by executing SQL

statements. This loaded file is in an XML Metadata Interchange (XMI) format.

XMI, a specific application of XML, is an Object Management Group (OMG)

standard for exchanging metadata information via Extensible Markup

Language (XML). The data within this XMI file, obtained from the input AD,

is stored in tables in the selected database and an SQL code is developed to

manipulate and organise this data into a matrix form, similar to that used to

describe the mathematical representation of PN models.

60

 Output (PN model generation): The output of the developed algorithm is the

transpose of the incidence matrix and the initial marking matrix, described in

equation 2.2. Additionally, the PN graphical representation is developed. The

output PN model can be used for: (i) verification purposes, as it can prove the

correctness of UML/SysML ADs, which have an informal syntax and

semantics; and (ii) simulation purposes, as it can assess the performance of the

initial system/process by predicting the average execution time of the various

paths of which the system/process consists, the most common visited places in

each path, as well as the paths resulting in the most failures and the nodes most

involved in the route to failure; and make recommendations in order to

enhance its efficiency. In addition to the PN mathematical form, the data

required for the PN simulation is timed and probabilistic data, which

correspond to the PN transitions. This data, provided by industry in an Excel

file, is automatically retrieved in MATLAB where the simulation is carried

out.

The methodology is explained in detail in the following sections.

3.3 Input – System Modelling
The system modelling tools focus on the graphical representation of a system and the

retrieval of information for further analysis. This is the starting point of the

automation process and it is assumed that this model is available, either created by

software engineers or provided by industry. According to the modelling tools

reviewed in section 2.2, it was concluded that the UML/SysML AD satisfies all the

criteria, and hence is selected for this study.

The input used for the automated PN generation is described here using the Activity

Diagram for a simple scenario, illustrated in Figure 3.3. This diagram consists of the

most commonly used elements in system modelling, including an initial node, an

activity final node, shown as ‘pin’ and ‘pout’ respectively, 4 opaque action nodes

‘Action_1’, ‘Action_2’, ‘Action_3’ and ‘Action_4’, a decision node named

‘Decision_1’, and a merge node, named ‘Merge_1’.

61

Figure 3.3 AD for a Simple Process

Once the validation of the diagram is successful, using the ‘Validate model’ option

available in the Eclipse software, then its XMI format can be automatically loaded

into a database system for further manipulation. The model validation considers

possible errors found in an AD due to disconnected objects or errors regarding the

connection between nodes and edges, for instance Input Pin nodes should be followed

by object flow edges. The XMI file includes two necessary elements for the

automated generation of a PN model, the nodes (<node …/>) and edges (<edge …/>).

The XMI nodes are derived from the initial and activity final nodes, the opaque action

nodes and the control nodes such as merge or decision nodes. Similarly, the XMI

edges are derived from the control flow edges (shown as arcs in ADs).

The XMI file for the AD in Figure 3.3 can be found in Appendix A. This file consists

of XMI nodes such as the ‘pin’, ‘Action_1’, ‘Decision_1’, ‘pout’, etc. and XMI edges

such as the ‘action_1_pass’, ‘action_1_fail’, etc. A part of this XMI file, presented in

Figure 3.4, has been used to describe the syntax of XMI nodes and edges.

Figure 3.4 Part of XMI File retrieved from the AD for the Simple Scenario

Each XMI edge element consists of the following attributes:

 A “xmi:type” that corresponds to the edge used in the AD.

 A “xmi:id” that acts as a unique identifier for each element.

62

 A “name” as presented in the AD. If the edge does not have a name, then the

“name” attribute is omitted.

 A “target” that corresponds to the node id attribute in which the edge ends up.

 A “source” that corresponds to the node id attribute from which the edge

starts.

For example, the edge ‘action_1_pass’ in Figure 3.3 has:

xmi:type="uml:ControlFlow", xmi:id="_hjulINaQEee33Op70iFb5A",

name="action_1_pass", target="_2ctboNaPEee XUKMyPHN3Zw" that corresponds

to the xmi:id of ‘Action_2’ and source="_b33OgNaQEee33Op70iFb5A" that

corresponds to the xmi:id of ‘Decision_1’.

Similarly, each XMI node element consists of the following attributes:

 A “xmi:type” that corresponds to the node used in the diagram.

 A “xmi:id” that acts as a unique identifier for each element.

 A “name” as presented in the AD.

 An “incoming” that corresponds to the edge id attribute that enters the node.

 An “outgoing” that corresponds to the edge id attribute that leaves the node.

For example, the node ‘Decision_1’ in Figure 3.4 has: xmi:type="uml:DecisionNode",

xmi:id="_b33OgNaQEee33Op70iFb5A", name="Decision_1",

incoming="_gyJXMNa QEee33Op70iFb5A" which corresponds to the xmi:id of the

edge that enters the node and outgoing="_hjulINaQEee33Op70iFb5A

_iV_IgNaQEee33Op70iFb5A" which corresponds to the xmi:id of ‘action_1_pass’

and ‘action_1_fail’.

The XMI file obtained from the AD for the simple process in Figure 3.3 consists of 16

elements, 8 edges and 8 nodes. The 8 nodes found in the XMI document include, 1

initial node, 1 activity final node, 4 opaque action nodes, 1 decision node, and 1 merge

node.

63

3.4 Algorithm – Java Database Programming

3.4.1 Transformation Rules

It is important to define the transformation rules used for the translation of elements

used in UML/SysML Activity Diagrams to Petri Net models. Therefore, before

explaining the algorithm (database modelling) followed for the automated PN model

generation these rules are introduced. This section, defines the mapping rules for the

most commonly used Activity Diagram elements such as opaque action, decision,

merge, initial and activity final nodes and control flow edges. Therefore, for the AD,

shown in Figure 3.3, a PN has been manually developed and presented in Figure 3.5,

in order to help with the identification of these transformation rules.

Figure 3.5 Model developed for the AD for the Simple Process

The PN model in Figure 3.5 consists of 7 transitions and 7 places. From the

comparison of the manually developed PN and the given AD for the simple process,

the relationships between the AD and PN notation and symbols are shown in Table

3.1.

Table 3.1 Relationships between the AD and PN Notation and Symbols

As can be seen, the edges of the AD are transformed into PN places, whereas the

opaque action nodes are mapped into PN transitions. The decision and merge nodes

have a certain sequence of PN places and transitions, as seen from Table 3.1. In the

64

PN structure, which is created by an AD decision node, the two transitions used

correspond to the two outgoing edges from the AD decision node. Thus, in this

transformation, the number of PN transitions should equal the number of the outgoing

edges from the AD decision node. Hence, a PN structure developed by an AD

decision node represents the branching of two or more PN edges, represented by two

or more transitions, each followed by a PN place, as seen in Table 3.1. In the Place &

Transition, which is created by an AD merge node, the PN developed represents the

merging of two or more PN edges to a place which is followed by a transition. The

initial node followed by an outgoing edge and the activity final/final flow node

accepting an incoming edge are both transformed into PN places. Therefore, these are

the mapping rules that were followed in the database modelling step of the

methodology.

3.4.2 Database Introduction

A versatile development in the field of software engineering is the database concept

that over the last 30 years has been used widely in industry (Connolly & Begg, 2005).

The main idea of the database is to capture and analyse a collection of data by

organising it in an easy way to be accessed, managed and updated. Databases can be

categorised into relational and non-relational. The main difference between relational

and non-relational databases is that the former stores the data in a tabular form,

whereas the latter stores it as files.

A Database Management System (DBMS) is a software package that captures and

analyses data, interacting with end-users and other applications, and the database

itself. An extension of DBMS is the Relational Database Management System

(RDBMS) that uses the relational model and hence allows the row-based table

structure that connects related data elements to one another. Hence, the RDBMS

supports a tabular structure for the data with enforced relations between the tables

(Codd, 1970). Moreover, each row in a RDBMS table contains a unique value and

each column lists values from the same domain, for instance, a column named address

includes only addresses.

3.4.2.1 Relational Database Management Systems Products Review

Most Relational Database Management Systems (RDBMS) use the Structured Query

Language (SQL), which is a computer language for storing, manipulating and

65

retrieving data stored in a RDBMS. SQL allows the user to link information from

different tables using foreign keys/indexes, in order to identify uniquely stored data

within the table. Other tables may refer to that foreign key/index, creating a link

between the data. Hence, relational databases using SQL are good for applications

involving connections between data in different tables. The research described in this

work requires various transactions and hence, relational databases tools will be

applied.

The most popular Relational Database Management Systems (RDBMS) products

according to DB-Engines (2018) are:

 IBM DB2 was released in 1983 by IBM.

 Oracle was introduced by Relational Software in 1977 was the first

commercially available SQL-based RDBMS.

 Microsoft SQL Server is first released in 1998.

 MySQL (Michael Widenius Structured Query Language), owned by Oracle

Corporation in 2009, was first released in 1996 by Ulf Michael Widenius and

David Axmark.

 PostgreSQL was officially released in 1996 by PostgreSQL Global

Development Group.

According to a review conducted for RDBMS, IBM DB2 and Oracle are not open-

source products, restricting their usage. Additionally, Microsoft SQL Server,

although providing high flexibility, has a huge licensing cost and limited compatibility

to run on non-Windows platforms (Microsoft, 2015). Hence, these three RDBMS

have been singled out and are deemed not appropriate due to their aforementioned

limitations.

MySQL and PostgreSQL are both open source relational systems. They are both

row-oriented, general-purpose relational databases with many common characteristics.

More specifically, MySQL is a powerful RDBMS with high-performance and

scalability that uses the SQL data language and can work very efficiently with large

data sets and with many languages, including C, C++, JAVA, PHP, etc. Its popularity

has increased over the last few years and more specifically since 2010 when several

Windows specific features and improvements were added enhancing its performance

66

and scalability (DB-Engines, 2018). Regarding PostgreSQL, this database offers

various dynamic characteristics and functionalities (PostgreSQL, 2018), providing

robustness, security and advanced features such as high reliability, data integrity, data

analysis of complex systems, high speed and simple set ups (Riggs & Krosing, 2010).

However, according to the RDBMS review, MySQL has been found to be more

powerful than PostgreSQL, providing higher speed, dynamic characteristics and

ability to create new projects quickly, and hence it has been selected for this work.

The software that is used for the database development is MySQL Workbench, a

visual database design tool suitable for SQL development, data modelling, server

administration and data migration.

3.4.3 Algorithm – Java Database Programming – Transpose of the

Petri Net Incidence Matrix
The data manipulation (representative of the AD) and organisation for the PN

construction is carried out by generating an SQL code using the MySQL database. In

order to achieve faster execution of complex SQL querying logic, i.e. SQL statements

that return data, and avoid the user’s intervention once SQL stored procedures are

executed, the MySQL database has been accessed from Java via JDBC Application

Programming Interface (API), used for database independent connectivity between

Java programming language and databases. Using JDBC, SQL statements can be sent

to any relational database. A stored procedure, mentioned earlier, is a set of SQL

statements that has been created and stored in the dataset to perform a task. Although

SQL stored procedures can be executed in MySQL, it is possible they require user

intervention in order to input manually the output of a stored procedure to the SQL

code. Therefore, for an SQL stored procedure in a Java application, a string is created

outside the stored procedure and then this string is passed as one variable containing

the complete SQL statement, without user’s intervention.

The steps followed to connect the Java Programming language with the MySQL

database in Java using JDBC and execute the SQL statements are:

1. Register the MySQL JDBC driver. This driver is a component that enables a

Java application such as JDBC API to communicate with the MySQL

database.

67

2. Open a new connection. In this step a new connection with the MySQL

database is established, using the getConnection() method.

3. Execute SQL queries. In this step, SQL statements are created to build and

submit SQL queries to the database in order to generate the mathematical

representation of a PN model.

4. Extract data from result-sets. Having executed the SQL queries in step 3, the

result-set objects are used in this step to return/present the results of these SQL

queries in Java. This step is executed using the ResultSet.get() method.

5. Close the connection. In this final step, the connection with the MySQL

database (set up in step 2), the statements (from step 3) and result-sets (from

step 4) are terminated, using the corresponding .close() methods.

The SQL code developed in step 3 of the aforementioned list, has been used in this

work to retrieve, manipulate and store the data included in the input UML/SysML AD

file for the automated generation of the mathematical form of a PN model. The input

AD file is loaded to the MySQL database using SQL statements. This file has an XMI

format, and hence its data can be manipulated and appropriately stored in tables and,

by extension, to generate the desired mathematical form of PNs. The purpose of each

step followed in this SQL code is introduced in the flowchart illustrated in Figure 3.6.

In this flowchart, these 12 steps can be categorised as follows:

 Retrieve data (steps 1.a and 1.b): In this first step, the XMI attributes, such

as “xmi:type”, “xmi:id”, “incoming”. “outgoing”, etc. of the AD nodes and

edges are stored in two tables respectively.

 Separate multiple edges (steps 2 - 5): The values stored in the “incoming”

and “outgoing” columns of the table created in the first step (step 1.a) for the

AD nodes, named ‘node_xmi’, are scanned. If an AD node has multiple

incoming/outgoing edges then multiple values are correspondingly stored in

the “incoming”/“outgoing” columns of the ‘node_xmi’. Hence, the multiple

values in these columns are separated to enable their further analysis and two

tables are created: (i) the table in step 2 if multiple “outgoing” values exist;

and (ii) the table in step 3 if multiple “incoming” values exist. Additionally,

for the AD nodes that have only one incoming and one outgoing edge a third

table in step 4 is created. Hence, the table (in step 4) is created for the nodes

68

that have both single “incoming” and “outgoing” records in the corresponding

columns of the ‘node_xmi’. Finally, these three tables are unified, creating a

new table in step 5, the ‘union_node’, in which each cell contains a unique

value for any “incoming” and “outgoing” record. This last step creates a

fundamental table from which the sequence of AD elements can be found in

the following four steps.

Figure 3.6 Flowchart for the steps followed for the Automated Generation of the Mathematical Representation of a

PN Model

69

 Find the sequence of AD edges and AD nodes (steps 6 - 9): The values

stored in the “xmi:type” column of the table created in the step 5 are scanned.

The code identifies the type of each node and stores them in two tables: (i) one

for the opaque action, decision and merge nodes (step 6); and (ii) one for the

initial node (step 7), activity final and final flow nodes (step 8). The names of

the incoming and outgoing edges to and from the nodes stored in these three

tables are identified with the help of the table created in step 1.b and stored in

these tables. Hence, each row of the tables created in steps 6, 7 and 8 includes

the name of a node, the name of the edge exists before this node (if available)

and the name of the edge exists after this node (if available). Finally, the tables

obtained from these three steps are unified, creating a new table in step 9.

 Matrix generation (steps 10 - 11): Two tables in the form of matrices are

created, retrieving the connectivity information from table developed in step 9.

Therefore, the matrix in step 10 shows connections of AD edges/initial

node/activity final nodes/final flow nodes (PN places) to AD opaque

action/decision/merge nodes (PN transitions). Similarly, the matrix generated

in step 11 shows connections of AD opaque action/decision/merge nodes (PN

transition) to AD edges/initial nodes/activity final nodes/final flow nodes (PN

places).

 Mathematical representation of a PN model (step 12): In this final step, the

PN is generated by combining the two matrices developed in steps 11 and 12

respectively.

The SQL code followed for the automated PN generation, presented in Figure 3.6, can

be better explained with the help of the SysML /UML AD, presented in Figure 3.3 for

a simple scenario. The mathematical representation of a PN model is generated by

applying the following steps:

1. The XMI file obtained from the AD, provided as input of the methodology, is

loaded into the MySQL database. Two tables, named ‘node_xmi’ and

‘edge_place_xmi’, are created as follows:

Retrieve data for AD nodes. The ‘node_xmi’ table, part of which is

shown in Table 3.2 for three elements from Figure 3.3, is created from

the XMI file. The corresponding part of the XMI file used for the

70

development of Table 3.2 is illustrated in Figure 3.7. It can be seen

from Table 3.2 that a column is initially created for each XMI attribute,

such as “xmi:type”, “xmi:id”, “name”, etc. and then the values of these

attributes are stored in the corresponding columns.

Figure 3.7 Part of XMI File retrieved from the AD

Table 3.2 MySQL ‘node_xmi’ Table Extract

Retrieve data for AD edges. As for the ‘node_xmi’ table, the

‘edge_place_xmi’ table, part of which is presented in Table 3.3 for two

elements from Figure 3.3, is created from the XMI file. The

corresponding part of the XMI file used for the development of Table

3.3 is illustrated in Figure 3.8. It can be seen from Table 3.3 that a

column is initially created for each XMI attribute, such as “xmi:type”,

“target”, etc. and then the values of these attributes are stored in the

corresponding columns.

Figure 3.8 Part of XMI File retrieved from the AD

Table 3.3 MySQL ‘edge_place_xmi’ Table Extract

The “incoming” and “outgoing” columns of ‘node_xmi’ table created in step 1.a, may

contain multiple text values, separated by a space if a node has more than one

incoming/outgoing edge. For instance, this is observed in the 2nd and 3rd rows of Table

3.2 in the “incoming” and “outgoing” columns respectively. These multiple text data

should be separated, since all the cells of tables have to store single text values in

71

order to allow the identification of these values in other tables and, by extension, the

accurate generation of the mathematical representation of PN. It can be seen from

Table 3.2 in the “outgoing” column in the 3rd row that the 1st part of the value,

“_hjulINaQEee33Op70iFb5A”, also exists in Table 3.3 in the “xmi:id” column in the

2nd row. If double value, placed in Table 3.2, is not separated, then SQL code is not

able to identify that these two cells refer to the same edge. Therefore, outgoing and

incoming values are separated and steps 2 and 3 are carried out to achieve this. Step 4

creates a table for the nodes that have single incoming and outgoing edges and then

step 5 combines the tables created in steps 2, 3 and 4. Hence, the table created in step

5 stores information about all the nodes included in AD, holding single values in each

cell.

Steps 2, 3, 4 and 5 are explained in detail, as follows:

2. Separate multiple “outgoing” values. In this step, the values stored in the

‘node_xmi’ table are scanned to determine if there are any multiple values in

the “outgoing” column. If so, these are separated so there is one row for each

value and these are stored in a table called ‘union_1’. Therefore, for the simple

example illustrated in Figure 3.3, Table 3.4 is created, for the decision node,

“Decision_1”, whose outgoing value is more than one, as can be seen from the

“outgoing” column of Table 3.2 (3rd row). Two rows are created for the

decision node in Table 3.4, showing that this node has two outgoing arcs.

Table 3.4 MySQL ‘union_1’ Table Extract

3. Separate multiple “incoming” values. In this step, similar code to step 2 was

developed for the values in the “incoming” column of ‘node_xmi’ table.

Therefore, if there are multiple values in this column, they are separated and

stored in different rows in a table called ‘union_2’.

4. Store single “incoming” and “outgoing” values. This step creates a ‘unique-

activities’ table retrieving the rows from the ‘node_xmi’ table from step 1.a

that only have one incoming and one outgoing record in the corresponding

columns. For the AD presented in Figure 3.3, the ‘unique_activities’ table is

presented in Table 3.5.

72

Table 3.5 MySQL ‘unique_activities’ Table

5. Create a table in which single values are stored in each cell. This step

creates a ‘union_node’ table, unifying the tables created in steps 3, 4 and 5, i.e.

the ‘union_1’, ‘union2’ and ‘unique-activities’ tables. For the AD presented in

Figure 3.3, the ‘union_node’ table, presented in Table 3.6, is created unifying

tables created in steps 2,3 and 4. At this point Table 3.6 includes all the

information of nodes, included in the AD, and additionally each node has

unique incoming and outgoing arcs.

Table 3.6 MySQL ‘union_node’ Table

The next four steps generate a table that shows the sequence of AD edges and AD

nodes. Thus, step 6 creates a table storing all the opaque action, decision and merge

nodes that exist in the AD, including their pre-edges, i.e. incoming edge(s), and post-

edges, i.e. outgoing edge(s). Steps 7 and 8 generate similar tables for the initial and

final nodes of the AD, respectively. Finally, the tables created in steps 6, 7 and 8 are

unified in step 9. Steps 6 - 9 are explained in detail, as follows:

6. Identify the sequence between the AD opaque/decision/merge nodes and

their preceding and following edges. This step initially creates a table,

named ‘union_node_table1’, retrieving the rows from the ‘union_node’ table

(from step 5) where their “xmi:type” is equal to `uml:OpaqueAction` or

`uml:DecisionNode` or `uml:MergeNode’. Two null (empty) new columns are

added in this table, called “place_before_node” and “place_after_node”. The

‘union_node_table1’ is then updated inserting to the “place_after_node”

73

column the records from the “name” column of the ‘edge_place_xmi’ table

where the “outgoing” values (from the ‘union_node_table1’) are equal to the

“xmi:id” values from the ‘edge_place_xmi’ table. The ‘union_node_table1’ is

updated again inserting in the “place_before_node” column the records from

the “name” column of the ‘edge_place_xmi’ table where the “incoming”

values (from the ‘union_node_table1’) are equal to the “xmi:id” values from

the ‘edge_place_xmi’ table. Therefore, for the AD presented in Figure 3.3, the

‘union-node_table1’ is created retrieving the data from Table 3.6 and part of it

for the decision node is illustrated in Table 3.7.

Table 3.7 MySQL ‘union_node_table1’ Table Extract

7. Identify the sequence between the AD initial nodes and their following

nodes. This step creates a table called ‘union_node_table2’, consisting of three

columns, the “place_before_node”, “name_primary” and “place_after_node”.

This table initially stores to the “place_before_node” column the records from

the “name” column of the ‘union_node’ table (from step 5) where their

“xmi:type” is equal to `uml:InitialNode’. The table is then updated storing to

the “name_primary” column the record from the “name” column of the

‘union_node’ table where the “outgoing” value of the examined initial node is

equal to the value stored in the “incoming” column of the same table (step 5).

For the initial node of the example in Figure 3.3, the ‘union_node_table2’,

shown in Table 3.8, is created retrieving the “name_primary” and

“place_after_node” values, which will be used in the next steps, from Table

3.6.
Table 3.8 MySQL ‘union_node_table2’ Table

8. Identify the sequence between the AD final nodes and their preceding

nodes. This step initially stores to the “place_after_node” column of the

‘union_node_table2’, created in step 7, the records from the “name” column of

the ‘union_node’ table (from step 5) where their “xmi:type” is equal to

`uml:ActivityFinalNode’ or ‘uml:FlowFinalNode’. The table is then updated

storing to the “name_primary” column the record from the “name” column of

74

the ‘union_node’ table where the “incoming” value of the examined final node

is equal to the value stored in the “outgoing” column of the same table (step

5). For the final node of the example in Figure 3.3, the ‘union_node_table2’

shown in Table 3.9, is created retrieving the “name_primary” and

“place_after_node” values, which will be used in the next steps, from Table

3.6.
Table 3.9 MySQL ‘union_node_table2’ Table Extract

9. Identify the sequence of nodes and edges in an AD. This step creates a table

named ‘final_table’ selecting the “place_before_node”, “name_primary” and

“place_after_node” columns from the table developed in steps 6, 7 and 8. For

the simple example in Figure 3.3, examined in this section, Table 3.10 is

created, retrieving data from Tables 3.7 and 3.8 and 3.9.

Table 3.10 MySQL ‘final_table’ Table

The ‘final_table’ shows the sequence of nodes and edges. The

“name_primary” column includes the values for the opaque action, decision

and merge nodes of the AD in Figure 3.3, whereas the “place_before_node”

and “place_after_node” columns include all the edges placed before and after

each node. The 1st and 3rd columns of the table created in step 9 correspond to

PN places, whereas the 2nd column contains all the PN transitions.

The following three steps, 10, 11 and 12, describe the generation of the mathematical

representation of PN model, retrieving the information from the table created in step

9.

10. Create a matrix that shows how a token is removed from each of its pre-

places, when an enabled transition fires (shows the connection from PN

places to PN transitions). This step creates a matrix, named ‘negative’, with

the columns defined by the records retrieved from the “name_primary”

column of the ‘final_table’ table and the rows defined by the records retrieved

75

from the “place_before_node” column of the same table. If a “name_primary”

record and a “place_before_node” record are in the same row in the

‘final_table’ table, then the value ‘-1’ should be put in the corresponding

matrix cell otherwise a ‘0’ is inserted. Table 3.11 shows the ‘negative’ matrix

created for the AD in Figure 3.3, using Table 3.10.

Table 3.11 MySQL ‘negative’ Table

11. Create a matrix that shows how a token is inserted to each of its PN post-

places, when an enabled transition fires (shows the connection from PN

transitions to PN places). This step creates a second matrix, named ‘positive’,

with the columns defined by the records stored in the “name_primary” column

of the ‘final_table’ table and the rows defined by the entries in the

“place_after_node” column of the same table. If a “name_primary” record and

a “place_after_node” record are in the same row in the ‘final_table’ table, then

the value ‘1’ should be put in the corresponding matrix cell otherwise ‘0’ is

inserted. Table 3.12 shows the ‘positive’ matrix created for the AD in Figure

3.3, using Table 3.10.

Table 3.12 MySQL ‘positive’ Table

Generate the mathematical form of PN model. This step creates the

transpose of the incidence matrix of the PN model by adding the ‘negative’

and ‘positive’ matrices created in steps 10 and 11. This matrix expresses the

connectivity between the places and the transitions of PN models defining the

movement of tokens through the net. Table 3.13 shows the combination of the

matrices shown in Tables 3.11 and 3.12. This is the mathematical

76

representation of the Petri net for the AD in Figure 3.3 in the form of the

transpose of the incidence matrix

Table 3.13 MySQL ‘transpose_of_the_incidence_matrix’ Table

The code, developed for the automated generation of the transpose of the incidence

matrix of a PN model is found in Appendix B.

In order to check the correctness of the matrix in Table 3.13, the transpose of the

incidence matrix for the PN model illustrated in Figure 3.5 has been manually

constructed in equation 3.1, showing the sequence of PN places and transitions in

Figure 3.5.

 Dec … _pass 𝐷𝐷𝐷𝐷𝐷𝐷… _𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 Merge_1 Action_1 Action_2 Action_3 Action_4

 AT =

place_2
place_5
place_6

pout
pin

action_1_fail
action_1_pass ⎣

⎢
⎢
⎢
⎢
⎢
⎡

−1 −1 0 1 0 0 0
 0 0 −1 0 1 1 0
 0 0 1 0 0 0 −1
 0 0 0 0 0 0 1
 0 0 0 −1 0 0 0
 0 1 0 0 0 −1 0
 1 0 0 0 −1 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (3.1)

The transpose of the incidence matrix consists of 7 columns (PN transitions) and 7

rows (PN places). The transpose of the PN incidence matrix in Table 3.13 is identical

with the matrix developed manually for the simple process, shown in equation 3.1,

showing the models correlation.

Therefore, since this representation is created from the system information, the

automated generation of the PN has been successful. Using this matrix, a graphical PN

representation developed and also the system can be simulated if desired.

3.4.4 Algorithm – Java Database Programming – Petri Net Initial

Marking Matrix
The mathematical form of a PN model is considered to be completed with the

generation of its initial marking matrix, after obtaining the transpose of the incidence

77

matrix of this model. Therefore, as for the transpose of the incidence matrix in section

3.4.3, a code is also developed to execute SQL queries for the generation of the PN

initial marking. The initial marking matrix shows the number of token(s) included in

each PN place before any transition is enabled.

The procedure followed for the PN initial marking has been applied to the simple

process shown in Figure 3.3 and the following step, for which an SQL code has been

developed in step 3 of the algorithm introduced in section 3.4.3 to execute SQL

queries, is completed:

1. Generate the initial marking of a PN model. In this step a table named

‘initial_marking’ is created consisting of three columns, the “primary_id”

column, the “activity” column in which the places of PN models are listed and

the “process_number_of_devices” column, in which the number of tokens, i.e.

marking, is placed. Once the table is created, the ‘pin’ value is found in the

“activity” column and the corresponding value of the

“process_number_of_devices” column replaced by ‘1’, whereas in all the other

rows of this column value ‘0’ is inserted. For the AD in Figure 3.3, the

‘initial_marking’ table is obtained and presented in Table 3.14. The records in

the “activity” column correspond to the PN places, whereas the records in the

“process_number_of_devices” column show that the ‘pin’ place holds one

token, i.e. one device, and all the other places hold zero tokens.

Table 3.14 MySQL Database ‘initial_marking Table

The initial marking for the PN model shown in Figure 3.5 has been manually

developed and illustrated in equation 3.2, showing that place ‘pin’ contains one token,

i.e. one device. The matrix of the initial marking in Table 3.14 is identical with the

manually developed matrix in equation 3.2 for the simple process, showing the

models correlation. At this stage, the ‘pin’ value is always considered as the first place

of the PN, which always includes 1 token.

78

M0 =

action_1_fail
action_1_fail

pin
place_2
place_5
place_6

pout ⎣
⎢
⎢
⎢
⎢
⎢
⎡

0
0
1
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (3.2)

Later in this thesis, cases that are more complicated have been investigated for the

initial marking generation. The code developed for the automated generation of the

PN initial marking matrix can be found in Appendix C.

3.5 Automated Graphical Representation of a Petri Net Model
In this section, the graphical representation of the PN model is generated

automatically. Since the PN mathematical representation has been automatically

generated, the graphical representation of the model is not necessary for its definition.

However, the PN graphical representation can be used for the verification of PN

model and help users easier understand the underlying model. The PN is automatically

generated from the table created in step 9 in section 3.3.3.4 which consists of three

columns, the “place_before_node”, “name_primary” and “place_after_node”. The 1st

and 3rd columns correspond to the PN places, whereas the 2nd column holds data for

the transitions of a PN model. Each row of this table shows the sequence of two places

and the transition that is found in-between them. Hence, the data stored in the

“primary_name” column follows the data stored in the “place_before_node” column

and is followed by the data stored in the “place_after_node” column.

The graphical tool selected to represent the structural information of PN models is the

Graph Visualisation (Graphviz), which is an open source graph drawing package

developed at American Telephone & Telegraph (AT&T) Labs and firstly released

under a Massachusetts Institute of Technology (MIT) license in 1991. This software

can take descriptions of graphs in a simple text language, named DOT, and generate

undirected or directed graphs. DOT, a description language used for graphs

construction, is composed of nodes and edges and allows the hierarchical

representation of complex networks and systems. DOT language provides a wide

variety of attributes for the nodes such as node shape, colour, size, etc., the edges such

as several styles of the arrowheads at the head/tail of an edge, edge stroke colour and

others, and the graphs such as graph font family, font size, etc. It also provides

79

various node shapes including boxes, circles, points, diamonds, etc. and arrowhead

types such as normal (an edge with an arc at the end), dot (an edge with a solid circle

at the end), odot (an edge with a hollow circle at the end) and others. Therefore, all

these features provided by the DOT are able to graphically represent the PN elements

including places, transitions, arcs (normal and inhibitors) and tokens. For this reason,

the Graphviz software using the DOT language was found suitable for the PN model

graphical representation, and hence it has been taken forward.

For the automated graphical representation of the PN model, the following steps have

been applied:

1. The MySQL database has been accessed in Java using SQL statements and all

the data stored in the ‘final_table’, created in step 9 in section 3.4.3, is selected

using the corresponding SQL query.

2. The System.out.println() Java statement is used to display messages to the

console window in Eclipse software. The steps taken for this part of the code

are shown in the flowchart in Figure 3.9. Following the code introduced in

step 2.i, the word ‘strict’ is used before the word ‘digraph’ to avoid the

construction of multiple edges between the same pairs of elements.

Figure 3.9 Flowchart for Step 2 for the Automated Graphical Representation of a PN Model

80

Similarly, the size of the drawing is defined at 40 mm. Additionally, in this

step, the PN transitions attributes such as the font colour and font size of the

labels used for the transitions, as well as the size (width and height), shape and

colour of the transitions are introduced. The ‘margin=0’ used in this statement

shows that no space left around the graph.

3. Once the code, found in Appendix D, part A, runs in Eclipse, an output is

obtained in the Console window in Eclipse. This output has the form of a DOT

file, which can then be imported in the Graphviz software and the

corresponding PN model visualised.

The methodology steps explained in this section for the automated graphical

representation of a PN model have been applied to the simple example introduced in

this chapter. The output file, written in DOT, which has been obtained in the Console

window in Eclipse after running the code explained above, is imported in the

Graphviz software and the PN model in Figure 3.10 is generated. This PN is identical

with the PN model created manually in Figure 3.5, demonstrating the models

correlation.

Figure 3.10 Automated Layout of the Petri Net Model for the Simple Example

81

3.6 Summary
The novel methodology, proposed in this chapter for the automated PN model

generation, applying a Java database (MySQL) algorithm, contributes to knowledge

through the combination of the following:

 Java database algorithm: the method applied integrates the UML/SysML

AD (used as input) from system modeling tools and Java database

programming where an algorithm is generated for the PN model automation.

 Fully automated PN model generation capability: the proposed algorithm

retrieves without user intervention the topology information from the

graphical diagram, i.e. the UML/SysML AD, of the system description and

generates the mathematical and graphical representations of the corresponding

PN model.

 Generic domain applicability: the proposed methodology does not target

specific domains; hence it provides a wide applicability spectrum. This will be

further demonstrated in subsequent chapters.

 Software independence: The outputs of the proposed methodology, i.e.

matrices and PN model, are readily understandable by the user without being

based upon the syntax of any industrial software. (Software dependent

applications are considered these that generate outputs in XML format that

have to be imported to tools to produce either a matrix or a net, which can be

meaningful to users.)

In the following chapter, the proposed methodology discussed in this chapter is

demonstrated by its applicability to an end of life manufacturing process.

82

CHAPTER 4

4 Application of the Automated Petri Net Model

Generation Methodology to a Recycling IT

Asset Process

4.1 Introduction
In this chapter, the methodology introduced in Chapter 3 for the automated generation

of a PN model is applied to a recycling IT asset process to demonstrate its

applicability and functionality. A description of the process, with the help of the AD

developed for the recycling IT asset process, is initially introduced. The AD provided

for this process includes all the basic AD elements, and hence it can be used to check

the correctness of the developed algorithm introduced in Chapter 3. The mathematical

and graphical representations of the PN model for the IT asset recycling process have

been manually developed in order to be later compared with those generated

automatically to demonstrate their correlation.

4.2 Process Description
An end of life manufacturing process (EOL) is used as an example to illustrate the

study. The EOL manufacturing process considered is a recycling IT asset process that

focuses on the repair of electronic devices, primarily mobiles phones. Once a mobile

device enters the process line, it can end up in one of two states, either refurbished or

scrapped. Decisions and actions along the potential paths in the process include seven

different possible activities as described below:

 Asset Track (AT): Asset information is introduced into the traceability system.

The characteristics of each product such as model device, battery and memory

capacity, screen size, etc., are recorded.

 Visual Inspection (VI): The physical condition of each asset is assessed. If the

repair or refurbishment of the device is economically viable, it is forwarded to

83

the Functional Test activity. Otherwise, the device is forwarded to Strip and

Scrap.

 Functional Test (FT): The functionality of each product is investigated by

conducting the following tests/activities: charger check, battery test, LCD

screen check, and ringing test, vibration, microphone and speaker test.

 Data Erasure (DE): Data is erased securely by using specific licensed software.

 Cleaning and De-Labelling (CD): Refurbished products are cleaned properly.

Labels are removed and replaced only if considered necessary.

 Repair (R): A product is repaired if its repair is economically viable.

 Strip and Scrap (SS): Failed assets are checked for any useful parts that can be

salvaged and recycled to be used in other devices and are then sent for secure

destruction.

In the case of a scrapped device, there are two options for it. It can be used either at a

unit level, meaning price sought per tonne for scrap, or at a component level, meaning

components are extracted from the device and used within this process for future

repairs or sold for spares. All activities listed can handle only one device at a time

except for Data Erasure that can accept 100 devices simultaneously. Each activity has

a time to completion associated with it, which can vary for different devices and

product types.

Additionally, activities can have pass and fail probabilities. In practise, most of the

activities are carried out at the same physical location, i.e. on the computer. The repair

activity (R) however, takes place away from the main refurbishment process but in the

same factory, and is not performed until there is a batch, requiring repair. For that

reason, there is a delay between preceding activity ending and Repair (R) starting.

An AD of the process that includes all the possible paths of the recycling IT process is

illustrated in Figure 4.1. This diagram, that includes all the AD basic elements, has

been developed using an open source and most used Java Integrated Development

Environment (IDE), Eclipse software, version 4.5 Mars. Eclipse also provides syntax

checking, helping users out with writing correct code as well as several extensions,

plugins and tools, and hence it has been considered appropriate. The AD in Figure 4.1

consists of nodes and control flow edges. There is an initial node (‘pin’) which

corresponds to the start of the process i.e. where a mobile device enters the system and

84

an activity final node (‘pout’) when the process is completed for a device. There are

seven opaque action nodes (‘Asset_Track’, ‘Visual_Inspection’, etc.), that correspond

to the activities carried out through the process, a merge node (‘M’) used when the

output of two activities have a common source node and four decision nodes (‘D_VI’,

‘D_FT’, etc.), used when one activity has two target nodes.

Figure 4.1 UML AD of the Recycling IT Asset Process

It can be seen from the diagram that the control flow edges, which have unique names

(i.e. ‘ATp’, ‘VIp’, ‘VIf’, etc.), are used to create links between the nodes showing the

main routes through the AD. Table 4.1 explains the abbreviations used in Figure 4.1.

Table 4.1 Abbreviations and Full Names of Nodes and Edges from UML AD

4.3 Manual Development of the Petri Net Model for the

Recycling IT Asset Process
From the diagram, shown in Figure 4.1 a PN has been developed manually in order to

provide information on what the desired outcome of the automation process will be.

85

Using the transformation rules defined in Chapter 3, in Table 3.1, the PN model is

presented in Figure 4.2. The PN model consists of 12 transitions and 17 places. The

edges that appear without a name in the AD in Figure 4.1 as for the edge that connects

‘Visual_Inspection’ to ‘D_VI’, they have been transformed into PN places, named

place_1 – place_4, as seen in the PN model in Figure 4.2. The transformation rules

used for the PN development in Figure 4.2, from the AD in Figure 4.1 are: (i) the AD

edges, initial nodes with the outgoing edges and final activity nodes with the incoming

edges are transformed into PN places; and (ii) the AD opaque action nodes, decision

nodes and merge nodes are transformed into PN transitions.

Figure 4.2 PN Model developed for the UML AD for the Recycling IT Asset Process

Additionally, the mathematical representation (transpose of the incidence matrix and

initial marking matrix) of the PN in Figure 4.2 is manually developed in order to be

compared to the outputs of the algorithm, which is later applied for the automated PN

model generation taking as input the AD shown in Figure 4.1. Therefore, the

transpose of the incidence matrix of the PN in Figure 4.2 is developed as shown in

matrix 4.1.

86

This matrix defines the movement of tokens through the net, showing the connectivity

between the places and the transitions of the PN in Figure 4.2 and hence the sequence

of edges and nodes in Figure 4.1. For example, the first row of the matrix describes

the movement of one token from place ‘pin’ to place ‘ATp’ through transition

‘Asset_Track’. The transpose of the incidence matrix consists of 12 columns (PN

transitions) and 17 rows (PN places). Finally, the matrix representing the initial

marking of the net shown in Figure 4.2 is developed, as illustrated in matrix 4.2. The

number of tokens has been assumed to be one, which means one phone in process at

one time, and hence matrix 4.2 shows that place ‘pin’ contains one token, i.e. one

device. Later in this thesis, the existence of multiple tokens/products in the net has

been discussed for the initial marking generation.

𝑀𝑀0 =

𝐴𝐴𝐴𝐴𝐴𝐴
𝐶𝐶𝐶𝐶𝐶𝐶
𝐷𝐷𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷𝐷𝐷
𝐹𝐹𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹𝐹𝐹
𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_1
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_2
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_3
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_4
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅
𝑆𝑆𝑆𝑆𝑆𝑆
𝑉𝑉𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉𝑉𝑉 ⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.2)

4.4 Automated Mathematical Representation of the Petri Net

Model for the Recycling IT Asset Process

4.4.1 Input – System Modelling

The AD in Figure 4.1 is validated, using the ‘Validate model’ option available in the

Eclipse software and then the XMI format of the diagram can be automatically loaded

into the MySQL database for further manipulation. The XMI file for the AD in Figure

4.1 can be found in Appendix E. This file consists of XMI nodes such as the ‘pin’,

‘Asset_Track’, ‘D_VI’, ‘Visual_Inspection’, etc. and XMI edges such as the ‘ATp’,

‘VIp’, ‘VIf’, etc. The XMI file obtained from the AD for the recycling IT asset

process in Figure 4.1 consists of 16 elements, 17 are edges, and 14 are nodes. The 14

87

nodes found in the XMI document include, an initial node, an activity final node,

seven opaque action nodes, four decision nodes, and a merge node.

4.4.2 Algorithm – Java Database Programming – Transpose of the

Petri Net Incidence Matrix
The code, introduced in Chapter 3, section 3.4.3 (found in Appendix B) for the

automated generation of the mathematical representation of a PN model, has been

applied to generate the transpose of the PN incidence matrix for the recycling IT asset

process. This code initially creates a connection between Java programming language

and MySQL database via JDBC API and SQL statements are created to build and

submit SQL queries. After executing these SQL queries, the mathematical PN model

representation of the recycling IT asset process is retrieved from the MySQL database

and presented in Java. The steps that the SQL code applies for the automated PN

model generation of the recycling IT asset process are as follows:

1. The XMI file, named Activity_Diagram_S2S.uml, provided as input from the

first step of the methodology (system modelling), is loaded into the MySQL

database. Two tables, named ‘node_xmi’ and ‘edge_place_xmi’, are created as

follows:

a. Retrieve data for AD nodes: A part of the ‘node_xmi’ table for three

elements from the AD shown in Figure 4.1 is presented in Table 4.2.

The corresponding part of the XMI file from which the values, stored

in this table, are retrieved, is illustrated in Figure 4.3.

Figure 4.3 Part of XMI File retrieved from the AD for Table 4.2 Generation

Table 4.2 MySQL ‘node_xmi’ Table Extract

b. Retrieve data for AD edges: A part of the ‘edge_place_xmi’ table for

three elements from the AD shown in Figure 4.1 is presented in Table

88

4.3. The corresponding part of the XMI file from which the values,

stored in this table, are retrieved, is illustrated in Figure 4.4.

Figure 4.4 Part of XMI File retrieved from the AD for Table 4.3 Generation

Table 4.3 MySQL ‘edge_place_xmi’ Table Extract

Steps 2 – 5 target the separation of multiple values that exist in the “incoming” and

“outgoing” columns of the ‘node_xmi’ table (created in step 1.a) in order to enable

data manipulation for the automated generation of the mathematical representation of

PN model. Steps 2 – 5 are applied as follows:

2. Separate multiple “outgoing” values: The SQL code retrieves and separates

the outgoing values from “outgoing” column found in the ‘node_xmi’ table.

This new data obtained after the outgoing values separation is stored in a new

table, named ‘union_1’, part of which is presented in Table 4.4 for two

elements from the AD in Figure 4.1. Therefore, for instance the first two rows

of Table 4.4 correspond to the third row of the ‘node_xmi’ table, shown in

Table 4.2, which has two outgoing values, i.e. _0ZeSILJTEeaTirlhAX5dxQ

_lLpAkLJUEeaTirlhAX5dxQ.

Table 4.4 MySQL ‘union_1’ Table Extract

3. Separate multiple “incoming” values: Similarly, the code retrieves from the

“incoming” column of the ‘node_xmi’ table (step 1.a) the rows that contain

multiple values, such as the merge node, named ‘M’ that has two incoming

edges, the ‘CDp’ and ‘SSp’, as seen from the AD in Figure 4.1. These values

are then separated and stored in different rows in a new table, named

‘union_2’.

89

4. Store single “incoming” and “outgoing” values: The ‘unique-activities’

table is generated storing the records from the ‘node_xmi’ table from step 1.a

that have only one incoming and one outgoing record in their corresponding

columns. According to the AD in Figure 4.1, the values of the ‘Asset_Track’,

‘Data_Erasure’, ‘Functional_Test’, ‘Repair’ and ‘Cleaning_De_Labelling’

nodes are stored in this table.

5. Create a table in which single values are stored in each cell: The tables

created in steps 2, 3 and 4 are unified in a new table, named ‘union_node’, part

of which for the ‘D_FT’ (Decision Functional Test) node of the AD (Figure

4.1) is presented in Table 4.5

Table 4.5 MySQL ‘union_node’ Table Extract

Steps 6 – 9 result in the development of a table that shows the sequence of the nodes

and edges contained in the AD shown in Figure 4.1 for the recycling IT asset process.

The sequence of these AD elements can then be used to identify the sequence of PN

places and transitions, i.e. the connectivity between PN elements, which is the

mathematical representation of the PN for the IT process. Steps 6 – 9 are applied as

follows:

6. Identify the sequence between the AD opaque/decision/merge nodes and

their preceding and following edges: The ‘union_node_table1’, part of which

is presented in Table 4.6 for the ‘D_FT’ of the AD in Figure 4.1, is created

retrieving the opaque action/decision/merge nodes from the ‘union_node’ table

created in step 5. The names of the AD edges placed before and after of the

‘D_FT’ node are correspondingly stored in the “place_before_node” and

“place_after_node” columns. As can be seen from Table 4.6, the ‘D_FT’ node

follows edge ‘place_2’ (“place_before_node” column) whereas it is followed

by edges ‘FTp’ and ‘FTf’ (“place_after_node” column).

Table 4.6 MySQL ‘union_node_table1’ Table Extract

90

7. Identify the sequence between the AD initial nodes and their following

edges: A table named ‘union_node_table2’ is created retrieving the initial

node named ‘pin’ from the ‘union_node’ table created in step 5 for the AD in

Figure 4.1. The name of the node placed after the initial node ‘pin’ in the AD

is then retrieved and stored in the “name_primary” column of

‘union_node_table2’ as presented in the 1st row of Table 4.7.

8. Identify the sequence between the AD final nodes and their preceding

edges: Similarly, as for the initial node, the final node of the AD in Figure 4.2,

named ‘pout’, is stored in the ‘union_node_table2’ (created in step 7). The

name of the node placed before the final node ‘pout’ is then retrieved and

stored in the “name_primary” column of ‘union_node_table2’ as presented in

the 2nd row of Table 4.7.

Table 4.7 MySQL ‘union_node_table2’ Table

9. Identify the sequence of nodes and edges in an AD: The ‘final_table’,

shown in Table 4.8, is created unifying the data from the “place_before_node”,

“name_primary” and “place_after_node” columns from the tables created in

steps 6, 7 and 8.
Table 4.8 MySQL ‘final_table’ Table

Steps 10 – 12 result in the development of the mathematical representation of PN the

model of the recycling IT asset process, retrieving the information from the table

created in step 9.

10. Create a matrix that shows how a token is removed from each of its pre-

places, when an enabled transition fires (shows the connection from PN

91

places to PN transitions): A ‘negative’ matrix with the ‘-1’ and ‘0’ values is

created, using the 1st and 2nd columns from Table 4.8. Part of this matrix is

presented in Table 4.9 for some of the elements included in the AD in Figure

4.1. For example, if the ‘Asset Track’ is in the same row as the ‘pin’ in the

‘final’ table (Table 4.8), then the SQL code adds in the corresponding cell of

the matrix (Table 4.9) the value ‘-1’, otherwise ‘0’ is inserted, as seen in the 1st

row of Table 4.9.
Table 4.9 MySQL ‘Negative’ Table Extract

11. Create a matrix that shows how a token is inserted to each of its PN post-

places, when an enabled transition fires (shows the connection from PN

transitions to PN places): Similar to step 10, a second matrix with the ‘1’ and

‘0’ values is generated using the 2nd and 3rd columns from the ‘final_table’

created in step 9. For example, if the ‘Visual Inspection’ is in the same row

with the ‘VIp’/ ‘VIf’ in the ‘final’ table (Table 4.8), then the SQL code adds in

the corresponding cell of the matrix the value ‘1’, otherwise ‘0’ is inserted.

12. Mathematical form of PN model: In this final step, the transpose of the

incidence matrix of the PN model developed for the recycling IT asset process

is created as shown in Figure 4.10.

Table 4.10 Transpose of the PN Incidence Matrix

This matrix is obtained by combining the matrices developed in steps 11 and

12. Thus, the negative and positive matrices are unified and the sum of each

92

row is found. The first row of Table 4.10, presents the transitions of the matrix,

whereas the first column consists of the places. The transpose of the incidence

matrix in Table 4.10 consists of 17 rows (PN places) and 12 columns (PN

transitions).

The two matrices, the one developed manually in equation 4.1 and the other generated

automatically in Table 4.10 for the recycling IT asset process, are examined. The

number and contents of the 1st column and the 1st row between these two matrices are

the same, whereas the values (‘-1’, ‘0’, ‘1’) placed in these two matrices are found in

the same cells. Thus, the two matrices are found identical, proving the PN model

validation. Therefore, since this representation is created from the system information,

the automated generation of the PN for the recycling IT asset process has been

successful.

4.4.3 Algorithm – Java Database Programming – Petri Net Initial

Marking Matrix

After obtaining the transpose of the incidence matrix of the PN model for the

recycling IT asset process, in section 4.4.2, the initial marking matrix of this net is

developed, using the SQL code introduced in Chapter 3, section 3.4.4, completing the

mathematical form of the PN for this process. Thus, the step undertaken for the

generation of the initial marking matrix for the recycling IT asset process is:

Initial marking of a PN model: The ‘initial_marking’ table, presented in

Table 4.11, is created. The records in the “activity” column retrieved from the

first column of the matrix in Table 4.10 corresponding to the PN places,

whereas the value ‘1’ in the “process_number_of_devices” column it is shown

that the ‘pin’ place holds one token, i.e. one device.

Table 4.11 MySQL ‘initial_maeking’ Table

93

The matrix of the initial marking in Table 4.11 is identical with the matrix of the

initial marking in matrix 4.2 developed manually for the recycling IT asset process,

proving the model validation.

4.5 Automated Graphical Representation of the Petri Net

Model for the Recycling IT Asset Process
For the graphical representation of the PN model for the recycling IT asset process,

the steps introduced in Chapter 3, section 3.4.1 have been followed. The ‘final_table’

created in step 9 (Table 4.8) during the automated generation of the mathematical

representation of the PN for the IT process is used as input for this graphical

representation. Hence, all the data from the ‘final_table’, illustrated in Table 4.8, is

selected and the code introduced in section 3.4.1 (Appendix D, part A) is executed.

The output obtained in the Console window in Eclipse is a DOT file found in

Appendix D, Part B. This output DOT file is imported into the Graphviz software and

the PN model for the recycling IT asset process is obtained as presented in Figure 4.5.

Figure 4.5 PN Model for the Recycling IT Asset Process

94

This PN model consists of 12 transitions and 17 places. The 12 transitions exist in the

PN are equal to the sum of the seven opaque action nodes, the four decision node and

the one merge node that was presented in the AD in Figure 4.1. The PN model in

Figure 4.5, generated automatically for the IT asset process, is identical with the PN

model created manually in Figure 4.2, proving the model validation.

4.6 Summary
This chapter has demonstrated the automated PN model capability to a real-life

industrial process. The examined process is an extension in complexity of the simple

process examined in Chapter 3, which now includes a greater number of activities

and, by extension, more paths and all the fundamental elements of the AD. The

mathematical and graphical representations of the PN model for the recycling IT asset

process have been obtained both manually and automatically and it has been shown

after comparison that they correlate. The correctness of the automation end model is

further explored by a formal verification and validation of the method, viewed in the

next chapter.

Additionally, the PN for the recycling process discussed in this chapter will be

simulated in Chapter 5 to: (i) assess the process’ performance by predicting the

average execution time of the various paths of which the recycling process consists;

and (ii) identify possible deficiencies that exist in the process by predicting the

average time for each PN transition, the most common visited places in each path and

the paths resulted most in failure. The timed and probabilistic data, needed for the

simulation and correspond to the timed and probabilistic PN transitions, will be

retrieved from an Excel file where the information is stored, whereas the transpose of

the incidence matrix and the initial marking developed for the recycling IT asset

process will be retrieved from the MySQL Workbench.

95

CHAPTER 5

5 Verification & Validation of Petri Net Model

5.1 Introduction
In this chapter, the verification and validation of the Petri Net model are examined.

Verification, related to building the model correctly, confirms that a model works

properly, whereas validation, related to building the correct model, confirms that a

model is the accurate representation of the real system (Banks et al., 1987; Balci,

1998; Balci 2004; Law, 2005). Therefore, the correctness of the algorithm developed

for the PN automation procedure is checked by: (i) verifying that the PN model

obtained performs the correct function; and (ii) validating the PN model obtained

accurately represents the system architecture. If these two requirements are satisfied,

the developed algorithm for the PN automation procedure is verified and validated. A

review and evaluation of the most commonly used PN verification and validation

methods is conducted in order to select the most appropriate methods. This is then

demonstrated via evaluation of the recycling IT asset process considered in Chapter 4.

Three main verification methods, i.e. methods related to PN behavioural and structural

properties (static verification), methods related to PN dynamic behaviour (dynamic

verification) and those in which two or more PN models are compared together and

equivalent relations are identified between them (bi-simulation), have been identified.

Similarly, for model validation, three main methods, i.e. expert intuition, real system

measurements and theoretical analysis, have been identified. The layout of this

chapter is illustrated in Figure 5.1.

Figure 5.1 Illustration of the Structure of Chapter 5

96

5.2 Petri Net Model Verification Methods
The objectives of model verification are to check correctness, completeness and

consistency of the developed model ensuring that the physical system, i.e. PN model,

works properly, performing the required functions as specified. These characteristics

can be checked through:

 Static verification which checks behavioural and structural properties of PNs

via:

o Reachability graph analysis that relies on the initial state of PN

models, examining their behavioural properties; and

o Place/Transition invariants method that relies on the topology of PN

models, examining their structural properties.

For a complete static verification, both behavioural and structural properties

should be checked.

 Dynamic verification which checks the correct execution of model paths via

simulation analysis examining the PN model logic.

 Comparing PN models via bi-simulation methods.

In this section, an overview of static, dynamic and bi-simulation PN model

verification methods is carried out.

5.2.1 Static Verification Methods
Petri Net models can be analysed statically checking their behavioural and structural

properties by either applying the reachability graph and the place/transition

invariants method respectively.

The behavioural properties of PNs are dependent on the initial marking M0 (Li &

Zhou, 2009) and listed below:

 Reachability or deadlock-free indicates that each reachable marking enables a

transition. A marking M΄ is reachable from a marking M in a Petri Net N, if

there is a firing sequence σ from M΄ to M.

 Behavioural liveness defines that each transition is enabled by at least one

reachable marking and the transition can fire at least once.

97

 Behavioural boundedness shows that the number of tokens in each place does

not exceed a finite number n from any marking reachable from the initial

marking (M0).

 Safeness is related to the bounded memory capacity. A PN is safe if it is 1-

bounded, i.e. if the places always contain at most one token.

 Reversibility (home marking) shows that the initial marking is reachable from

all possible reachable markings.

 Persistence defines that for any two enabled transitions, the firing of one

transition will not disable the other.

The types of behavioural properties, which should be checked for the verification of a

PN model, are defined according to the sub-class to which the examined PN belongs

(Murata, 1989) hence not all properties need to be satisfied to be behaviourally

verified.

The reachability graph is used to check the PN behavioural properties that serve as

measures of effectiveness of the PN (Aalst, 1998). A reachability graph, an acyclic

graph, indicates all possible future markings at some point in a PN model. It consists

of nodes, which represent the possible system states, and arcs, which represent the

possible state change. The graph starts from the initial marking and each possible

reachable marking is listed and then connected with directed arcs, which are labelled

with the corresponding transition needed to reach the marking.

A simple example of a reachability graph and its behavioural properties is presented in

Figure 5.2 (Aalst, 2011). The PN, presented on the left side of the figure, consists of

seven places (p1 – p7) and 6 transitions (t1 – t6). Places p1, p4 and p7 are marked

with one token each. The corresponding reachability graph has been created and

presented on the right side of Figure 5.2. The graph has five reachable states, defined

in the bracketed terms in Figure 5.2. It starts with the initial marking of the PN, placed

in the centre of the graph, and then according to the enabled transition the marking

changes respectively. For instance, the initial marking (1, 0, 0, 1, 0, 0, 1) shows that

places p1, p4 and p7 have one token each, whereas places p3, p4 and p5 are empty.

Once t1 fires, the marking changes from (1, 0, 0, 1, 0, 0, 1) to (0, 1, 0, 1, 0, 0, 0), as

can be seen in Figure 5.2, indicating that places p1 and p7 move one token each to

place p2, whereas no further token movement is observed through the places.

98

Figure 5.2 Reachability Graph Example (Aalst, 2011)

The remaining markings have been created following the same concept. Once the

reachability graph has been developed, the behavioural PN properties are checked for

model verification. Hence, according to Figure 5.2, the reachability graph is deadlock-

free, and, by extension, reachable, because each reachable marking enables at least

one transition to fire. For instance, the initial marking, presented as (1, 0, 0, 1, 0, 0, 1)

in Figure 5.2, enables the transitions t1 and t4. The graph is also live since it is

possible to fire any transition, by progressing through a firing sequence. For instance,

the initial marking (1, 0, 0, 1, 0, 0, 1) enables a firing sequence containing all the

transitions. Additionally, the PN is 1-bounded, because the number of tokens included

in each place does not exceed the finite number one for any marking reachable from

the initial marking. Since the PN is 1-bounded, it is also safe. Finally, the graph is

reversible since the initial/home marking can be reached from any reachable marking

following the arcs presented in the reachability graph.

Although the reachability graph is the most common used method for the verification

of PN behavioural properties, it lacks applicability due to its state-space explosion

problem once applied to large and complex PN systems.

The structural PN model properties that depend on the incidence matrix (Proth & Xie.,

1996; Cassandras & Lafortune, 2008) are listed below:

 A PN is characterised structurally bounded if it is (behaviourally) bounded for

any initial marking M0. A PN, which is structurally bounded, is also

behaviourally bounded, but the reciprocal is not true.

99

 A PN N is structurally live if there exists an initial marking M0 such that the

net is live. A PN, which is behaviourally live, is also structurally live, but the

reciprocal is not true.

 A PN is conservative if there is at least one set of places with all the places

equal to zero.

 A PN is repetitive if there exists an initial marking M0 and a firing sequence σ from

M0 back to M0 such that every transition fires infinitely often in σ.

 A PN is consistent if there exists an initial marking M0 and a firing sequence σ

from M0 back to M0 such that every transition fires at least once in σ.

The place/transition invariants method can be used to check the PN structural

properties, which depend on the topological structure of PN models, applying linear

algebraic techniques (Colom & Silva, 1991; Desel & Reisig, 1998; Recalde et al.,

1998). There are two kinds of invariants: the P-invariants, related to places, which are

the sets of places for which the sum of tokens remains unchanged for every marking;

and the T-invariants, related to transitions, which are the sets of transitions for which

the PN marking remains unchanged after firing each transition. Similar to the

behavioural properties, the types of structural properties that should be verified each

time are selected according to the sub-class to which the corresponding PN belongs.

Large PNs can lead to infinite invariants, rendering it impossible to solve the

equations by hand. Therefore, software that applies linear algebraic techniques can be

used to obtain all the possible solutions of the equations (Colom & Silva, 1991; Desel

& Reisig, 1998; Recalde et al., 1998).

5.2.2 Dynamic Verification Method
Petri Net models can also be verified dynamically, analysing the logic and behaviour

of systems. Dynamic verification is performed via model simulation in order to check

that system paths have been executed properly, detecting any possible undesirable

behaviour and incorrect or omitted logic. However, this method lacks the ability to

check if PNs satisfy a desired set of properties, as static verification does, and cannot

guarantee that all possible simulation paths of the system have been covered (Mhairi,

2009). Therefore, although model simulation can verify the logic of Petri Net

elements, it is not an exhaustive means of proving model correctness (Obaidat &

Boudriga, 2010).

100

5.2.3 Comparison of PN Models (Bi-simulation) for Verification

Another method, identified for PN model verification, is PN model comparison via bi-

simulation equivalence, which can be used to verify whether two models have

equivalent behaviours. Hence, two PNs are characterised bi-similar if one can

simulate the other and vice-versa (Jančar et al., 1999). According to Girault and Valk

(2003), two nets are considered bi-similar if and only if a correspondence between

their markings can be identified such that in corresponding markings every firing

transition in one net can be matched by a similar firing transition in the other net,

leading to corresponding markings.

5.3 Verification of Automated Petri Net Development
The PN automation procedure introduced in Chapter 3 is verified via evaluation of the

PN model generated for the recycling IT asset process introduced in Chapter 4.

According to the review conducted in this chapter for the verification methods of a PN

model, static analysis has been found to be the most suitable method, with the others

having deficiencies. The dynamic verification via simulation was determined to be

unsuitable, since it cannot ensure the execution of all paths of the model. Although the

bisimulation method can be used for verifying the PN automation procedure,

comparing the two PN models developed in Chapter 4, i.e. the one developed

manually for the process in section 4.3 and the other generated automatically in

section 4.5, it is not applied in this work, since it can be an error-prone and time

consuming method, especially when it is applied to complex and large PNs, since it is

manually conducted.

The PN model, developed for the recycling IT asset process, belongs to a special class

of PNs, workflow-nets. A PN is called a workflow-net (WF-net) if and only if it

satisfies the criteria defined by Aalst (1998):

1. The PN model has two places, a source place, denoted as ‘i’, and a sink place,

denoted as ‘o’, that correspond to the beginning and the termination of the net

respectively.

2. The PN is strongly connected, this means that if a transition ‘t*’ is added to the

PN, then this transition connects the source place ‘i’ with the sink ‘o’.

101

If a third criterion is met, in additional to the two aforementioned requirements, then

the WF-net can be structurally verified, i.e. based on the nets structure (Aalst, 1998).

The third criterion is:

3. Once WF-net execution is terminated, there is at least one token in place ‘o’

(sink place) and all the other places are empty.

According to Aalst (1998), besides structural analysis, WF-nets can be verified based

on their behavioural properties, if they satisfy the soundness property for which three

requirements are identified as follows:

 For every state ‘M’ (marking) reachable from place ‘i’ (initial marking, M0),

there exists a firing sequence leading from state ‘M’ to place ‘o’ (final

marking).

 Place ‘o’ is the only state reachable from place ‘i’ with at least one token in sink place

‘o’.

 Absence of dead transitions, i.e. transitions that can never become enabled,

from the initial state ‘i’. Therefore, it should be possible to execute an arbitrary

transition by following the appropriate path through the net.

Aalst has proven that a WF-net PN = (P, T, F) is sound if and only if the model is

behaviourally live and bounded. Where: P is a set of places; T is a set of transition (P

∩ T =∅); F is a set of arcs (F ⊆ (P x T) ∪ (T x P)).

Therefore in this work, Hierarchical Petri net Simulator (HiPS), a tool able to design

and analyse hierarchical and timed PN models, has been used for checking the

correctness of the PN automation procedure by statically verifying the PN developed

for the WF-net developed for the recycling IT asset process. This verification is

carried out by checking its structural and behavioural properties, using HiPS. This

open source tool has been selected because it provides a simple user-interface, an

interactive and user-friendly environment and a clear function of each icon including

those used both for PN model construction (places, transitions, arcs and token) and for

the analysis of the developed PN (structural and behavioural properties and

simulation).

102

The PN model for the recycling IT asset process, generated automatically in Chapter

4, has initially been transformed to a HiPS representation, as illustrated in Figure 5.3.

The places of this net are numbered in red, whereas the transitions are labelled in

green, as seen in Figure 5.3. Table 5.1 explains the abbreviations of places and

transitions included in the PN model illustrated in Figure 5.3. The structural and

behavioural properties of this WF-net are then verified.

Table 5.1 Abbreviations and Full Names of Places and Transitions incluced in the PN in Figure 5.3

Figure 5.3 Petri Net developed in HiPS for the Recycling IT Asset Process

The user visually verifies the structural properties of the WF-net, illustrated in

Figure 5.3, as follows:

103

1. The net has an initial source place, named ‘pin’, and a final sink place, named

‘pout’.

2. Each transition has a unique name and all places are on a path from ‘pin’

(source) place to ‘pout’ (sink) place.

3. The process execution initiates with the ‘pin’ (source) place, being marked

with at least one token and no other place are marked, whereas the process

terminates with the ‘pout’ (sink) place, being marked with at least one token,

while all the other places are empty.

Hence, regarding the structural properties of the WF-net developed for the recycling

IT asset process, the net is successfully verified since it has been demonstrated that it

satisfies all three of the criteria defined from Aalst (1998).

In addition to the aforementioned verification of the structural properties, the WF-net

developed for the recycling IT asset process is also checked for its structural

boundedness. Therefore, using the ‘Reachability/Coverability Analyze (Auto)’ HiPS

option, the WF-net is verified as structurally bounded, as seen on the left side in

Figure 5.4. This property is satisfied since for every initial marking, M0, there exists a

finite number, n, such that all markings have at most this n number of tokens in all

places.

The behavioural properties of the WF-net created for the recycling IT asset process

are checked by the HiPS tool using the software options: 1) ‘Bounded’, which checks

if the PN is behaviourally bounded; and 2) ‘FC/AC Liveness/Safeness Checker’,

which checks if the PN is live, safe and marked. The behavioural properties of the

WF-net, illustrated in Figure 5.3, are verified as follows:

1. HiPS, as seen on the right side in Figure 5.4, which shows that the model is 1-

bounded, i.e. the number of tokens in each place does not exceed the one in

number for any marking reachable from the initial marking, M0, check the

model’s boundedness property.

2. The model’s liveness and safeness properties are checked in HiPS, as seen in

Figure 5.5, which shows that the net satisfies both behavioural properties. The

WF-net in Figure 5.3 is live since it is possible to fire any transition by

progressing through some further firing sequence. Additionally, the PN is safe,

104

because all its places are 1-bounded, as shown on the right side of Figure 5.4.

Two additional characteristics are seen in Figure 5.5, the net is characterised as

a free-choice net because it keeps places that have more than one output

transition apart from transitions with more than one input place and it is a

marked graph since there exists at least one token. The final characteristic

identified is that since the liveness property is satisfied, the WF-net can also

guarantee deadlock-free operation.

Hence, regarding the behavioural properties of the WF-net developed for the

recycling IT asset process, the net is successfully verified since it has been

demonstrated to be behaviourally live and bounded, and hence sound, which

guarantees the net’s verification according to Aalst (1998).

Therefore, according to the analysis, conducted in HiPS, the correctness,

completeness and consistency of the WF-net constructed for the recycling IT asset

process and, by extension, of the automation PN procedure, have been proven, by

successfully verifying the structural and behavioural properties of the model.

Figure 5.4 Structurally and Behaviourally Bounded Check in HiPS for the Recycling IT asset Process

Figure 5.5 Behavioural Liveness and Safeness Properties Check in HiPS for the Recycling IT asset Process

105

5.4 Petri Net Model Validation Methods
The objective of validation is twofold: (i) to check the system’s behaviour, using a

realistic representation of the actual system, which would be able to reproduce the

system’s behaviour and satisfy the analysis objectives; and (ii) to analyse the system’s

performance, detect the system’s limitations and draw conclusions that enable

decision-making and potentially system optimisation. In this section, an overview of

model validation methods is carried out. The following model validation methods can

be applied either individually or in combinations.

5.4.1 Expert Intuition Validation Method
People, such as system designers or service engineers, who have a detailed knowledge

of the real system for which the PN is created, rather than knowledge of PN

modelling, apply this method (Al-Aomar et al., 2015). The expert intuition method

lacks formal methods for model validation (Robinson, 1997). Experts carefully check

the graphical representation and behaviour of the PN to extract system information,

ensuring that the PN model represents accurately the underlying real-world system.

The method is mainly applied to simple models since there is high risk of model

misinterpretation and it can also become time consuming when applied to complex

systems (Hillston, 2017).

5.4.2 Real System Measurements Validation Method

This method, applied in cases when the internal structure of the system including data

and behaviour of elements and paths is known, is used to ensure that the parts of the

computer model, which simulate the behaviour of conceptual models, correspond

accurately to the elements and logic of the underlying real-world system (Sargent,

1992). In this method, the conceptual model is the Petri Net model. Real system

measurements, also named white-box validation, can check a wide spectrum of model

aspects such as timings (activity or repair times), control logic or control of flows

(routing), distributions, etc. (Robinson, 1997). In this method, the PNs correctness can

be proved by conducting visual checks and inspections of the output results. For the

visual checks, the graphical representation of the PN model as well as its behaviour

can be traced and animated, playing the ‘token game’ in which the user can observe

the marking changes once transitions fire and corresponding tokens move through the

net. In addition, for the inspection of the output results, computer code, developed

106

following the paths of the PN model, can simulate the various scenarios of the model,

extracting output results for these paths. Therefore, these output values can be

compared to the corresponding values of the real system and the percentage error

between these values can be found. Although the real system measurements method is

the most reliable model validation approach since it checks the model correctness

using a high level of detail comparing it to real data, it is not always applicable, either

due to the lack of output data for the real system or due to high costs of measurements

(Hillston, 2017).

5.4.3 Theoretical Results/Analysis Method

Theoretical results/analysis or black box methods are mainly applied in cases when

the internal structure of the system is unknown. This method examines a more abstract

representation of the system reproducing the systems behaviour with a low level of

detail and via simulation analysis can check the correctness of model output results

compared either to historical/expected values of the system or to other models

(Robinson, 1997; Hillston, 2017). Comparing outputs from simulation models with

those historical/expected values from the real system, the consistency between the PN

model simulation and the theoretical (historical/expected) data is checked. The

confidence in the results can be improved once multiple model replications, i.e.

simulation runs, are executed (Robinson, 1994). Additionally, comparison of the real-

world system with other models can be carried out using mathematical models, such

as spreadsheet analysis and queuing networks, providing an approximation of output

results of the real system that can be compared with the results gained from the PN

model simulation. This method is fraught with considerable risk, since both the

mathematical models and PN model may be invalid, leading to inaccurate results

(Hillston, 2017).

5.5 Validation of Automated Petri Net Development
Following the review, conducted for the PN validation methods, the real system

measurements approach has been selected due to its ability to:

1. Check visually the system’s behaviour playing the token game.

107

2. Check the PN model’s quality by obtaining numerical results and comparing

these numerical results with those observed in the real world process

(numerical simulation).

3. Conduct system performance analysis to detect limitations or

incorrect/omitted logic existing in the model.

The last two points require the introduction of data to the timed and probabilistic

transitions included in the PN model, in order for numerical results to be obtained.

The data used is explained in detail in section 5.5.2.

The expert intuition and theoretical analysis validation methods have been considered

inappropriate for this study due to the absence of system design experts and due to the

possession of adequate data and information on the internal structure of the recycling

IT asset process, enabling a more thorough investigation.

5.5.1 Petri Net Model Simulation Algorithm

In this section, a summary of the algorithmic steps followed for the simulation of the

PN model generated for the recycling IT asset process, is described. The simulation

algorithmic steps are presented in Figure 5.6.

The inputs required for the PN model simulation are: (i) the mathematical

representation of the PN model obtained from the automated generation of PN model

in Chapter 4; and (ii) data for the timed and pass/fail probabilistic transitions including

in the PN. Thus, the algorithm developed in MATLAB, initially retrieves the

transpose of the incidence matrix and the initial marking developed for the recycling

IT asset process from the MySQL Workbench and secondly reads the timed and

probabilistic data stored in Excel.

For the visual check of the system behaviour, both the PN mathematical

representation and the pass/fail probabilistic data are required. The PN mathematical

representation is necessary to show the movement of tokens/devices in the net using

equation 2.2, which indicates the sequence of places and transitions, whereas the

pass/fail probabilistic data is required to show the probability of completing an

activity. An algorithm is developed which: (i) traces the movement of the token

through the net, applying the token game, and (ii) validates the PN behaviour with the

108

expected movement of the device through the process. The algorithm developed,

found in Appendix F, is discussed in detail in section 5.5.3.

Figure 5.6 Flowchart for the Simulation Steps followed for the Recycling IT Asset Process

A second algorithm is developed to obtain numerical results in order to conduct: (i)

numerical simulation (compare the obtained results with values provided by

industry); and (ii) analysis of the system’s performance. For the simulation, the

timed transitions are divided into two categories, the activity and interval transitions,

for which data is provided by industry. The activity transitions correspond to the

actual time needed for an activity, such as Asset Track or Visual Inspection, to be

completed and the interval transitions correspond to delays between activities. For the

probabilistic transitions, random numbers are generated and compared with the given

pass/fail probabilities. If the random number is lower than or equal to the pass

probability of an activity then the device is assumed to pass, otherwise the device

109

fails. Activity and interval times, following a continuous uniform distribution, are then

estimated. The algorithm developed for the numerical simulation of the PN model is

found in Appendix F, part B. The PN model evaluation is completed by comparing

calculated results obtained using the input data, such as average time of each path,

with the corresponding simulation results.

Finally, for system’s performance analysis, the second algorithm has been used to

obtain more results regarding system’s performance, such as the average time each

path requires to be completed, the most common visited places in each path, as well as

the paths resulting in the most failures and the nodes most involved in the route to

failure. The additional part of the second algorithm developed for the performance

analysis of the PN model, is found in Appendix F, part C. The simulation results can

also enable the identification of possible limitations and the provision of

recommendations to improve system’s performance.

The application of the simulation algorithmic steps described in this section to the

recycling IT asset process is described in detail in sections 5.5.3 and 5.5.4.

5.5.2 Process Input Data

The data used for the simulation comes from 2113 mobile phones processed over 323

hours. The timed and probabilistic data is shown in Tables 5.2, 5.3 and 5.4. Table 5.2

shows the pass (second column) and fail (third column) probabilities for each PN

probabilistic transition included in the PN. The probabilistic transitions correspond to

the PN transitions labelled as ‘D_x’, such as ‘D_VI’ (Decision_Visual_Inspection),

‘D_R’ (Decision_Repair), etc., as seen in Table 5.2.

Table 5.2 Probabilities for the PN developed for the Recycling IT Asset Process

Transition Name Pass Probability Fail Probability

D_VI 0.688 0.312
D_FT 0.733 0.267
D_DE 0.88 0.12
D_R 0.294 0.706

Tables 5.3 and 5.4 show the timed data for activity and interval times respectively.

Table 5.3 presents the minimum and maximum times needed to complete each

activity.

110

Table 5.3 Activity Times for the PN developed for the Recycling IT Asset Process PN

Transition Name Activity Time (seconds)
min_time max_time

Asset_Track 107 148
Visual_Inspection 5 10
Functional_Test 60 180
Data_Erasure 30 40
Repair 240 900
Strip_Scrap/Cleaning_De_Labelling 30 60

Table 5.4 shows the minimum and maximum interval times required for a device to

move from one activity to another. The interval pass and fail times shown Table 5.4

are used according to pass and fail paths that a device can take following the

probabilistic transitions explained in Table 5.2.

Table 5.4 Interval Times for PN developed for the Recycling IT Asset Process

Transition Name
Interval Time (seconds)

Pass Time Fail Time
min_time max_time min_time max_time

Asset_Track 30 120 0 0
Visual_Inspection 300 1800 300 3600
Functional_Test 1800 7200 7200 8640
Data_Erasure 1800 10800 1800 10800
Repair 1800 28800 1800 28800

The data in these tables is explained with the help of an example for the Visual

Inspection activity. The part of the PN, which corresponds to this activity including

the ‘D_VI’ (Decision_Visual_Inspection) and ‘Visual_Inspection’ transitions, is

presented in Figure 5.7. According to Figure 5.7, the first transition of this net,

presented as ‘Visual_Inspection’, is found in the second row of Table 5.3 and shows

the time needed for the Visual Inspection to be completed. The same transition is also

appeared in the second row of Table 5.4 showing the time required for a device to be

transferred to the next activity, once the Visual Inspection has been completed. The

‘pass’ and ‘fail’ terms found in this table correspond to the successful and

unsuccessful completion of the Visual Inspection respectively. Hence, the minimum

and maximum pass times (second and third columns of Table 5.4) are used if the

Visual Inspection is successfully completed, whereas once the Visual Inspection fails,

the minimum and maximum fail times (fourth and fifth columns) are considered.

111

Figure 5.7 PN Model Extract from the Recycling IT Asset Process

Therefore, the ‘Visual_Inspection’ transition contains two times, one for the activity

to be completed and one for the device to pass to the next activity. Finally, the

probabilistic transition of the PN in Figure 5.7, presented as ‘D_VI’ can be found in

the first row of Table 5.2 for the pass and fail probabilities respectively.

5.5.3 Petri Net Model Visual Check

The algorithm, developed for the PN visual check is based on equation 5.1:

Mr = M0 + AT . Tr (5.1)

The algorithm uses the following matrices:

 M0: the initial marking for the IT asset process, which is retrieved from the

MySQL database.

 AT: the transpose of the incidence matrix for the IT asset process, which is also

retrieved from the MySQL database.

 Tr: transition matrices are created in Excel for each transition included in the

net and then retrieved from the algorithm.

The algorithm, found in Appendix F, part A, applies the following steps:

1. Generate random numbers from zero to one.

2. Load into Matlab the Excel tables with the probabilistic data shown in Table

5.2.

3. Load into Matlab the initial marking (M0) and the transpose of the incidence

matrix (AT) developed in the MySQL database.

4. Develop the necessary transition matrices (Tr in equation 5.1) for each PN

transition.

112

5. Follow the PN paths and compare the random numbers, developed in step 1,

against the pass/fail probabilities given data in Table 5.2, using ‘if’ conditions.

6. Apply equation 5.1 and examine the marking generated.

The methodology followed for visually checking the PN model developed for the

recycling IT asset process is explained for the first three transitions presented in

Figure 5.8, i.e. for the ‘Asset_Track’, ‘Visual_Inspection’ and ‘D_VI’. The path used

for this example corresponds to the route where the device passes successfully the

visual inspection, functional test and data erasure activities.

Figure 5.8 PN Model Extract from the Recycling IT Asset Process

Therefore, the initial marking, M0, in equation 5.2 represents the marking of the first

five places i.e. ‘pin’, ‘ATp’, ‘place_1’, ‘VIp’ and ‘VIf’, of the PN created for the

recycling IT asset process, as illustrated in Figure 5.8. This matrix shows that only the

‘pin’ place holds one token, whereas all the other places are empty.

𝑀𝑀0 =

⎣
⎢
⎢
⎢
⎢
⎡

1
0
0
0
0
…⎦
⎥
⎥
⎥
⎥
⎤

 (5.2)

Similarly, the transpose of the incidence matrix, AT, in equation 5.3 corresponds to the

underlying transitions and places (the places and transitions are presented on the left

and above the matrix, correspondingly), showing how a token moves from one place

to another, once a transition fires.

113

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐷𝐷_𝑉𝑉𝑉𝑉 …

 𝐴𝐴𝑇𝑇 =

𝑝𝑝𝑝𝑝𝑝𝑝
𝐴𝐴𝐴𝐴𝐴𝐴

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_1
𝑉𝑉𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉𝑉𝑉
… ⎣

⎢
⎢
⎢
⎢
⎡

−1 0 0 …
 1 −1 0 …
 0 1 −1 …
 0 0 1 …
 0 0 0 …
 … … … … ⎦

⎥
⎥
⎥
⎥
⎤

 (5.3)

Additionally, for each transition the matrices in equations 5.4, 5.5 and 5.6 are created.

For instance, TD_VI in equation 5.6 is the transition matrix for transition ‘D_VI’

(Decision Visual Inspection).

𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �

1
0
0
…

� (5.4) 𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = �

0
1
0
…

� (5.5) 𝑇𝑇𝐷𝐷_𝑉𝑉𝑉𝑉 = �

0
0
1
…

� (5.6)

When it is applied in equation 5.1, the transition named ‘D_VI’ fires and a token

should be moved from ‘place_1’ and added to place ‘VIp’ (Visual Inspection pass),

indicating that the device has passed the visual inspection.

Besides the initial marking, the transpose of the incidence matrix and the transition

matrices, the data in Table 5.2 for the probabilistic transitions, i.e. ‘D_VI’, ‘D_FT’,

‘D_DE’, ‘D_R’, has been used as inputs for the execution of the algorithm. Hence, for

the probabilistic transitions, random probabilities uniformly distributed in the interval

(0, 1), are generated. In the next stage, the algorithm runs for the six paths identified

in the recycling IT asset process applying steps 5 and 6 in the algorithm. The marking

matrices, generated after the firing of transitions ‘Asset_Track’, ‘Visual_Inspection’

and ‘D_VI’, are shown in equations 5.7, 5.8 and 5.9, respectively.

𝑀𝑀𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =

⎣
⎢
⎢
⎢
⎢
⎡

0
1
0
0
0
…⎦
⎥
⎥
⎥
⎥
⎤

 (5.7) 𝑀𝑀𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =

⎣
⎢
⎢
⎢
⎢
⎡

0
0
1
0
0
…⎦
⎥
⎥
⎥
⎥
⎤

 (5.8) 𝑀𝑀𝐷𝐷_𝑉𝑉𝑉𝑉 =

⎣
⎢
⎢
⎢
⎢
⎡

0
0
0
1
0
…⎦
⎥
⎥
⎥
⎥
⎤

 (5.9)

Therefore, for instance, the ‘Visual_Inspection’ marking, in equation 5.8, shows that a

token is held in ‘place_1’, shown in Figure 5.8, which agrees with the expected

matrix, since once ‘Visual_Inspection’ fires, it moves one token from place ‘ATp’ to

‘place_1’. Subsequently, in the ‘D_VI’ marking, in equation 5.9, the token is moved

to the ‘VIp’ place, since the device passes. The flow traced in the PN model also

114

agreed with the UML/SysML Activity Diagram for the IT asset process when the

device successfully completes the Asset Track activity.

Executing the algorithm, developed for the visual check of all the paths of the PN

model, and using the necessary matrices in conjunction with the probability paths, it

has been found that the net follows the expected behaviour, according to the flow of

the Activity Diagram for the recycling IT asset process. Hence, this method has

validated the algorithm developed for the PN model generation by visually checking

the graphical representation of PN model in Figure 5.8, referring to the Activity

Diagram from which the model has been developed. The correctness of the algorithm

through the token game, which enables the graphical visualisation of the behaviour of

the PN, has been proven since no errors such as unintended behaviour regarding the

flow of items/information in the system have been identified.

5.5.4 Petri Net Model Numerical Simulation and Performance

Analysis

In this section, the validation of the algorithm developed for the automated PN model

generation is carried out via simulation of the sub-PNs developed for the recycling IT

asset process, described in Chapter 4. For the model’s execution, timing and

probabilities have been introduced in the timed and probabilistic transitions of the

models respectively and the six paths, identified in the recycling IT asset process

using the transpose of the incidence matrix, obtained automatically, and the PN,

generated automatically, have been simulated in order to obtain numerical results.

These simulation results can be compared with the analytical results, obtained from

the given data. This comparison of the results can judge the quality of the PN model,

leading to a better understanding of the recycling IT asset process and additionally

providing deeper insights into the behaviour of the real system.

Therefore, as it can be seen from the flowchart in Figure 5.6, the algorithm for the

numerical simulation generates random probabilities, for the probabilistic transitions.

Similarly, random numbers for activity transitions, shown in Table 5.3, using equation

5.10 and for interval activity transitions, listed in Table 5.4, using equation 5.11, are

estimated. The times obtained from equations 5.10 and 5.11 are the times in the

current activity and interval activity respectively, whereas the time obtained from

equation 5.12 is the sum of activity (service) time and interval (waiting) time.

115

𝑡𝑡_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = min _𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + (max _𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − min _𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡).𝑥𝑥 (5.10)

𝑡𝑡_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =

min _𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + (max _𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − min _𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓).𝑥𝑥 (5.11)

𝑡𝑡_𝑠𝑠𝑠𝑠𝑗𝑗𝑜𝑜𝑜𝑜𝑟𝑟𝑛𝑛 = t_activity + 𝑡𝑡_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (5.12)

Where: min_time and max_time are obtained from Table 5.3 for each activity,

min_time_pass/fail and max_time_pass/fail are obtained from Table 5.4 for each

interval time for pass and fail respectively; and x returns a uniformly distributed

random number in the interval (0, 1).

The PN model is transformed into a Stochastic PN (SPN) since time t obtained

applying equations 5.10 and 5.11 is a random variable. The sojourn time in the current

state, found by applying equation 5.12 can be computationally modelled using any

cumulated distribution function, such as exponential, related to the time of occurrence

of the corresponding event. This indicates that the developed model follows the SPN

concept where the delays are randomly chosen by sampling distributions associated

with transitions. Hence, the SPN that adds flexibility and a wider range of

applicability is considered.

The algorithm for the numerical simulation was run for random numbers of

simulations, between 0 and 2500, in order to find the optimum simulation number.

The results obtained for these simulations during the calculation of the average time

needed for path 1 (see Table 5.5) of the recycling IT asset process to be completed,

have been plotted in Figure 5.9.

Figure 5.9 Simulation Results for the 1st Path of the Recycling IT Asset Process for 2500 Simulations

116

According to this figure, very small variations were observed in the simulation results

after 1000 runs and hence, in order to save time, the number of simulations has been

defined at 1000. Additionally, the simulation results obtained during the calculation of

the completion times of the other five paths of the recycling IT asset process are in a

good agreement with the results obtained for the first path. Therefore, the algorithm

runs 1000 simulations for the six paths identified in the recycling IT asset process.

Following the paths of the PN model and using the pass/fail probabilities and the

random (activity and interval) times, the average time for each path has been

estimated and the simulation results are presented in Table 5.5. The analytical results

for the average time of each path, identified in the model, have also been manually

calculated, using the given timed data from Tables 5.3 and 5.4, and presented in Table

5.5.
Table 5.5 Average Completion Time for Each Path of the Recycling IT Asset Process

Path
ID Path Activity

Analytical
Results
Average Path
Time (secs)

Simulation
Results
Average Path
Time(secs)

%
error

1 A-B-C-D-E-F-G-H-I 12260 12239 0.17129
2 A-B-C-D-E-F-G-L-I 12260 12234 0.21207

3
A-B-C-D-E-J-K-B-C-D-
E-F-G-H-I 37167.5 36589 1.55647

4
A-B-C-D-E-J-K-B-C-D-
E-F-G-L-I 37167.5 36590 1.55378

5 A-B-C-D-E-J-K-L-I 25208.25 25447 0.94711
6 A-B-C-L-I 2205 2239.1 1.54649

The letters in the path activity column are retrieved from Figure 5.3. Subsequently, the

simulation and analytical results are compared and the error is estimated, as shown in

Table 5.5 The error in all the paths is found to be low, i.e. less than 1.6%, confirming

that the simulation results agree with these obtained from the analytical results that

correspond to the real recycling IT asset process. According to the low error found,

the validity of the PN model as being a realistic graphical representation of the IT

asset process can be confirmed

117

5.5.5 Performance Analysis Results and Discussion

Some additional results in order to examine the IT process’s performance have been

obtained. The algorithm, found in Appendix F, part C, uses the data given for the

recycling IT asset process in section 5.5.2.

As well as the estimation of average time needed for each path to be executed, the

average activity and pass/fail interval times have been simulated and the results are

presented in Table 5.6 and 5.7 respectively. From the results in Tables 5.6 and 5.7, it

can be seen that, in general, the activity times are a lot less than the pass/fail interval

times between activities, and hence these times between activities cause long delays in

the recycling IT asset process. From these two tables, it is seen that the transitions

related to the Repair, i.e. ‘Repair’ in Table 5.6 and ‘Repair’ in Table 5.8, take the

longest time to be completed. The average interval time has been calculated to be 4

hours and 15 minutes (15310.043 seconds), as seen from Table 5.7. This happens

because the repair activity takes place in a different location from the rest of the

activities and extra time is required for the transportation of the devices.

Table 5.6 Average Time for each Activity Timed Transition of the Recycling IT Asset Process PN

Transition Name Activity Time (seconds)

Average Time
Asset_Track 127.381
Visual_Inspection 7.485
Functional_Test 119.682
Data_Erasure 35.037
Repair 568.589
Strip_Scrap 44.842
Cleaning_De_Labelling 44.908

Table 5.7 Average Time for each the Interval Timed Transition of the Recycling IT Asset Process PN

Transition Name
Interval Time (seconds)

Average Pass
Time Average Fail Time

Asset_Track 75.335 0
Visual_Inspection 1050.836 1952.051
Functional_Test 4504.242 7927.789
Data_Erasure 6229.501 6229.501
Repair 15310.043 15310.043

118

The numbers of visits to the places of the PN for each path have been found and are

presented in Table 5.8. Numbers, retrieved from Figure 5.3, presents the places

involved in each path in the second column of Table 5.8 and in the third column each

number corresponds to the number of visits to the places as they were described in the

second column. It can be seen that some of the most common visited places apart

from the ‘pin’, ‘ATp’, ‘place_1’ and ‘pout’ which are always visited, are the ‘VIp’,

‘place_2’, ‘FTp’ and ‘FTf’ and ‘place_4’. The number of times each path is taken can

also be found in the fourth column of Table 5.8. Therefore, the most visited path is the

first, whereas the least visited path is the fourth that was visited only three times in a

1000 simulation. From the table it can be seen that the sixth path where the Visual

Inspection fails, results most often in failure, i.e. Strip and Scrap. The second path

fails because the Data Erasure activity fails, whereas the fifth path fails due to the

Repair activity failure. According to Table 5.5, it can be seen that the fifth path is less

efficient than the second, since it takes a lot longer to be completed. However,

according to Table 5.8, the fifth path has been taken 129 times during the simulation,

whereas the second path only 60.

Table 5.8 Number of Visits to Places of the Recycling IT asset Process PN

Path
ID Path Places Number of Visits to Path Places

No. of path
executions

1
1-2-3-4-6-7-12-13-15-
17

1000 - 1000 - 1000 - 688 - 688 - 504 -
504 - 443 - 443 – 443 443

2
1-2-3-4-6-7-12-14-16-
17

1000 - 1000 - 1000 - 688 - 688 - 504 -
504 - 60 - 60 – 60 60

3
1-2-3-4-6-8-9-10-3-4-
6-7-12-13-15-17

1000 - 1000 - 1000 - 688 - 688 - 183 -
183 - 54 - 54 - 37 - 37 - 27 - 27 - 23 -
23 – 23 23

4
1-2-3-4-6-8-9-10-3-4-
6-7-12-14-16-17

1000 - 1000 - 1000 - 688 - 688 - 183 -
183 - 54 - 54 - 37 - 37 - 27 - 27 - 3 - 3
– 3 3

5
1-2-3-4-6-8-9-11-16-
17

1000 - 1000 - 1000 - 688 - 688 - 183 -
183 - 129 - 129 – 129 129

6 1-2-3-5-16-17 1000 - 1000 - 1000 - 312 - 312 - 312 312

To conclude the simulation findings, the results have shown that:

 The third and fourth paths are the longest due to the Repair stage, which is the

most time consuming stage in both paths. According to this finding, a limiting

factor of the process is the long time that the Repair action needs to be

119

completed due to the device transportation to a different location. The

recycling IT asset process performance could be improved if all the activities

are located at the same place in order to decrease: (i) the interval time between

the ‘Functional_Test’ and ‘Repair’ activities; and (ii) the manpower required.

 The pass/fail average interval times, shown in Table 5.7, last longer than the

average activity times illustrated in Table 5.6, causing long delays in the

process paths. The process performance could be improved by: (i) increasing

the ability of the activities to accept multiple devices simultaneously as the

Data Erasure does; and (ii) locating the activities at the same place.

 According to Table 5.8, the most commonly resulting action is the Strip and

Scrap, since the sum of the executed paths that result in Strip and Scrap, i.e.

paths with ID 2, 4, 5 and 6, is larger than the sum of the executed paths that

result in Cleaning and De_Labelling, i.e. paths with ID 1 and 3. Hence, it is

most possible for a device to end up in the Strip and Scrap stage due to the

product’s parts failure, than to be refurbished in Cleaning and De_Labelling

action.

5.6 Summary
The verification and validation of the PN automation procedure via evaluation of the

recycling IT asset process, reviewed in Chapter 4, has been discussed in this chapter.

The PN obtained by the procedure for the recycling IT asset process has been

successfully verified, by checking its structural and behavioural properties such as

boundedness, liveness. Additionally, once timing and probabilistic data was

introduced into the corresponding PN transitions, the automated PN generation

procedure was validated via the PN’s simulation. Initially, the simulation algorithm

visually checked the movement of tokens through the PN paths, validating that the

paths followed the same route as the paths existing in the UML/SysML Activity

Diagram provided for the recycling IT asset process. The algorithm has also been

validated by comparing data from the IT process, with simulation results, which were

estimated by following the various PN paths, proving that the PN is a realistic

representation of the recycling IT asset process. Finally, an algorithm executed to

investigate the process performance identified possible deficiencies that exist in the IT

process. Therefore, the algorithm used for the automated PN model generation is

120

correct, complete and develops PN models with accuracy satisfying its intended

purpose.

At present, the applicability to one process has been shown, however further generic

capability of the method is to be explored. The developed methodology cannot

provide valid matrices for any UML/SysML Activity Diagram, since only certain AD

attributes such as opaque action, decision, merge, initial, final activity, etc., have been

considered. Thus, in the next chapters, this algorithm is extended to a generic

methodology that provides transformation rules for mapping all the AD elements into

PNs, for any potential AD provided by industry.

121

CHAPTER 6

6 Advanced Generic Methodology for the

Automated Generation of a Petri Net Model

6.1 Introduction
In this chapter, the methodology steps undertaken for the automation of a PN model in

Chapter 3 are extended to cover the transformation of any possible AD element into

the corresponding PN structure. The non-reviewed AD elements in Chapter 2 are

initially introduced and then the methodology steps, i.e. input-system modelling and

algorithm-Java database programming, are investigated. During this investigation,

it was observed from the XMI files obtained from ADs containing the newly

introduced elements that some of these elements are presented as nested within other

elements. It was also observed that once XMI files with nested elements are loaded to

the MySQL database, they result in the creation of tables with inadequate data, which,

consequently, leads to the generation of inaccurate PNs. Therefore, to overcome this

shortcoming and enable the complete data retrieval, some straightforward

transformation of XMI files, using Extensible Stylesheet Language Transformation

(XSLT) documents, is considered.

Thus, the automated modelling is extended with the system modelling step taking as

input the outputs of the XMI model transformation and the algorithm-Java database

programming step is modified, providing transformations rules for any AD element.

Following this advanced generic methodology, the mathematical representation of a

PN model is automatically generated and demonstrated with the help of a simple

example. The layout of this chapter is illustrated in Figure 6.1.

122

Figure 6.1 Illustration of the Structure of Chapter 6

6.2 Introduction of UML/SysML AD Additional Elements

Notation
The purpose of this section is to present the UML/SysML AD elements that have not

been examined in Chapter 2 in order to ensure that the methodology developed here

works for all AD’s developed. The less commonly used AD elements are investigated,

explaining their notations with the help of tables, (Tables 6.1 – 6.5).

Table 6.1 includes the object nodes used in Activity Diagrams to describe the

information flowing between activities, i.e. object flows. An object node represents

something that stores one or more values that pass from one action to another.

An expansion region node represents a nested area that includes actions. This object

node has an input expansion node that holds the input values received from other

actions and an output expansion node that holds the output values, which an action

produces, shown in the second and third rows of Table 6.1 correspondingly. The

activity parameter node is used to accept input to/provide output from an activity

respectively. The central buffer node combines data received from various sources,

whereas the data store node is used to update existing data by permanently storing the

information tokens that enter this node. The last three object nodes in Table 6.1, input

pin, output pin and value pin, are used to define input and output parameters that are

introduced and produced to and from an activity.

123

Table 6.1 Notation and Description of Activity Diagram Object Nodes

Table 6.2 lists the actions used in Activity Diagrams to describe a single step in an

activity.
Table 6.2 Notation and Description of Activity Diagram Actions (Nodes)

Name Symbol

Expansion Region

There are three modes, i.e. parallel (independent
interactions), iterative (interactions occur in order of the
elements) and stream (a stream of values flows into a
single execution) in which this node can be executed.

Input Expansion
Node Represents a collection of input values.

Output Expansion
Node Represents a collection of output values.

Activity Parameter
Node

Accepts inputs to an activity or provides outputs from an
activity. This object node is displayed on the border of
an activity node.

Central Buffer
Node

Accepts tokens from upstream object nodes and passes
them along to downstream object nodes. This object
node is not connected directly to actions (pin nodes are
needed).

Data Store Node
Represents a central buffer node that includes non-
transient information. This node is notated as object node
using the keyword <<datastore>>.

Input Pin Receives values from other actions through object flow
edges.

Output Pin
Delivers values to other actions through object flows
edges.

Value Pin
An input pin node that provides a value to the action to
which it is attached.

Nodes
Notation Description

<<parallel>>

<<centralBuffer>>

<<datastore>>

Name Symbol

Call Behaviour
Action

Represents a behaviour directly, rather than an operation
that invokes the behaviour. This can avoid redundant
definitions of activities.

Send Signal Action Represents that a signal is sent to a receiving activity.

Accept Event
Action Represents that an event is received and hence accepted.

Nodes
Notation Description

target

124

The call behaviour action node helps to define behaviour from different ADs,

referencing (calling) an activity. Once a send signal action node is executed, a signal

is created and sent to the target node, whereas an accept event action node is executed

when a specified condition, defined by the user, is met and hence an event occurs.

Table 6.3 lists another type of AD elements, named structured activity node, used to

create logical groups of activity nodes and edges. These nodes and edges belong only

to the structured activity node, meaning they are not shared with other structured

activities. This node may contain a group of subordinate nodes, i.e. a set of nodes that

create an independent Activity Group. Four structured activity node types, including

simple, conditional, loop and sequence, have been identified in ADs. The description

of each of these four structured activity nodes is included in Table 6.3.

Table 6.3 Notation and Description of Activity Diagram Structured Activity Elements (Nodes)

Table 6.4 describes the nodes presented as notes in an AD.

Table 6.4 Notation and Description of Activity Diagram Notes (Nodes)

Name Symbol

Simple Structured
Activity Node Represents an ordered arrangement of the activity nodes.

Conditional Node Represents an arrangement of actions and activities
where choice determines which activities are performed.

Loop Node Represents a repetitive sequence of actions and activities
that are included in the object.

Sequence Node Represents a sequential arrangement of the activity
nodes.

Nodes

Notation Description

<<structured>>

<<loop node>>

<<sequence>>

<<conditional>>

Name Symbol

Constraint

Is a condition/restriction in natural language text/machine
readable language that declares some of the semantics of a
node. Precondition constraints specify what must be fulfilled
when the behaviour is invoked. Postcondition constraints
specify what is fulfilled after the execution of the behaviour is
complete, once its precondition was fulfilled before its
invocation. Constraints are attached to action nodes.

Comment Enables the attachment of remarks to nodes.

Nodes
Notation

Description

<<constraint>>
{}

125

These nodes, including constraints and comments, do not carry any semantic force,

i.e. do not contain information relevant to PN model transformation, but may contain

information that is useful to a modeller. More details about these nodes can be found

in the description column of Table 6.4.

Finally, Table 6.5 shows some of the AD edges, including exception handlers, object

flows and links. An exception handler edge is used to show the exception node, i.e.

the node in which the edge ends up, may occur during the execution of a process,

interrupting its normal execution. Another edge used in ADs is the object flow that

represents the flow of objects/data from one node to another. Finally, a link edge can

be used in ADs to make a comment. However, links do not carry any semantic force,

but may contain information useful to a modeller.

Table 6.5 Notation and Description of Activity Diagram Edges

Therefore, the elements available to be used in an AD have been reviewed and their

XMI structure is examined in the following sections, in order to be appropriately

transformed into corresponding PN elements.

6.3 Input – System Modelling

6.3.1 Introduction
In this section, for the input-system modelling step, the format of XMI files obtained

from ADs that include the newly introduced additional AD elements reviewed in

Name Symbol

Exception Handler

Connects either two nodes or an Interruptible Activity Region
and an activity. If the outgoing edge of a node is an exception
handler, then this node is executed only if the handler satisfies an
uncaught exception. An Interruptible Activity Region is an
activity group of nodes in which once a token leaves this region,
all tokens and behaviours in this region are terminated.

Object Flow Connects two elements, with object/data passing through it.

Link Connects action nodes with comment nodes/constraint nodes.

Edges

Notation
Description

126

section 6.2, as well as their behaviour once they are loaded to the MySQL database,

are extensively investigated. Thus, it is noticed that some of these AD additional

elements, once they are expressed in XMI format, are expressed as nested within other

elements and also when these XMI files are loaded to the MySQL database for further

data manipulation, they result in creating tables with missing data, inhibiting the

complete PN model generation. Therefore, in the following subsections, it is shown,

with the help of simple examples, that XMI files with nested elements cannot directly

be loaded to the database, as followed in the methodology in Chapter 3.

To overcome this limitation and generate complete PNs, the XMI model

transformation concept using XSLT documents is introduced in the following

sections. For this model transformation, two XSLT documents are developed and

applied to the XMI file (source), obtained from a given AD, transforming this file into

two target files, an XMI and an XML. These two target files are then ready to be

loaded to the MySQL database for further data manipulation. The target XMI file is

used to retrieve nested AD elements such as input/output value nodes, expansion

regions, exception handlers, etc. The root AD elements such as the opaque

action/decision/accept event action nodes and the control/object flow edges are

retrieved from the target XML file. The XMI model transformation, carried out using

XSLT documents, is computationally performed in Java and demonstrated with the

help of an example.

6.3.2 UML/SysML AD: Review of XMI Nested Elements

 In this section, the AD elements identified presenting as nested within others in XMI

format are initially discussed and then the structures of these XMI nested elements are

investigated using simple examples. During the investigation of these nested

structures, the source XMI files are loaded to the MySQL database, checking if the

tables created contain all the necessary data from which the PN model is to be

generated. An element is called nested if another element exists within this element

and each element’s start tag (<) has a corresponding end tag (/>) before another

element’s start tag begins.

The AD elements found presented as nested in XMI format, are listed as follows:

 Nodes:

127

o Expansion region; input expansion; output expansion; and input/output

(value) pin, as shown in Table 6.1.

o Send signal action; and accept event action, as shown in Table 6.2.

 Edge:

o Exception handler, as shown in Table 6.5.

Three simple examples from previous work of ADs using nested elements, presented

in Figures 6.2, 6.4 and 6.6, are introduced in this section. Each example uses different

elements of the above list. Hence, in the first example the expansion region, input and

output expansion nodes and input and output pin nodes are investigated. In the second

example the behaviour of the send signal and accept event action nodes are studied,

whereas in the third example, the exception handler edge is considered. The names of

the AD symbols, used in these examples, are written in red. Additionally, the elements

of each example are numbered in black. The structure of each XMI document,

obtained from these examples, is initially examined and then loaded into the MySQL

database. The data stored in the MySQL database is reviewed and compared to that

should have been stored in the database according to the information included in the

initial XMI.

The first example of an AD considered, taken from Fowler, 2004, is illustrated in

Figure 6.2 and models the different stages taken for publishing a newsletter.

Figure 6.2 AD Example (Fowler, 2004)

The diagram in Figure 6.2 consists of four opaque action nodes (‘Choose_Topics’ (1),

‘Write_Article’ (4), ‘Review_Article’ (7) and ‘Publish_Newsletter’ (9)), an expansion

region (3) with an input expansion node (2) and an output expansion node (8), as well

as two pin nodes: an input (6) and an output (5). The expansion region (3) is used to

show that actions included in this area occur once for each item in a collection, i.e.

128

input expansion node (2). All the connectors used in this diagram are control flow

edges.

In this first example, a list of topics, presented by the input expansion node (2) in the

AD, is created by the ‘Choose_Topics’ node. Each topic of this list corresponds to an

input token to the ‘Write_Article’ node. Once each article is written and reviewed, it

is added to the output list, presented by the output expansion node (8) in the AD.

When the number of output tokens equals the number of input tokens, then the

expansion region creates a single token, which is sent to the ‘Publish_Newsletter’

node (9). In this example, the articles are written and reviewed simultaneously, since

the keyword used in the expansion region is <<parallel>>, as shown in Figure 6.2.

The XMI document corresponding to the diagram in Figure 6.2 is found in Appendix

G, part A. A part of this XMI file for the elements contained in the expansion region

(3) is shown in Figure 6.3. From this figure, it can be seen that the two opaque action

nodes (4 and 7) related to the expansion region structured node are presented as XMI

nested elements, shown by the <structuredNode…/> element, starting in line 1.

Additionally, the input pin node (6) which is attached to the ‘Review_Article’ node

and the output pin node (5) attached to the ‘Write_Article’ node are also shown as

XMI nested elements in their corresponding opaque action nodes.

Figure 6.3 XMI Extract for the AD in Figure 6.2

The AD example in Figure 6.2, is loaded into the MySQL database and following step

1.a from the methodology, proposed in Chapter 3, section 3.4.3, the ‘node_xmi’ table

is created retrieving values from the XMI file. The part of the ‘node_xmi’ table

129

corresponding to the section of XMI file shown in Figure 6.3, is presented in Table

6.6. According to the data stored in Table 6.6, the “xmi:type” value shown as

"uml:LiteralInteger" in the first row of the table is retrieved from the upperBound

element (line 9 in Figure 6.3) which is nested in the ‘Write_Article’ node (4).

Similarly, the “xmi:id” value in the first row of Table 6.6 is retrieved, i.e.

xmi:id="_HWpdcF2gEeeC05B8er0jow", from the upperBound element. As is the

“outgoing” value, i.e. "_M1-z8F2gEeeC05B8er0jow" in the first row of Table 6.6.

Table 6.6 MySQL ‘node_xmi’ Table for XMI in Figure 6.3

Hence, the values of the “xmi:type” and “xmi:id” attributes of the ‘Write_Article’ (4)

node, i.e. xmi:type="uml:OpaqueAction" and xmi:id="_gbxocF2YEeeC05B8er0jow",

given in line 5 in Figure 6.3 are missing. These two values should be in line 2 in Table

6.6. This is also true for the values of the “xmi:type” and “xmi:id” attributes of the

outputValue (5) nested element, i.e. xmi:type="uml:OutputPin" and

xmi:id="_HWo2YF2gEeeC05B8er0jow", given in line 7 in Figure 6.3. This missing

data results in the algorithm not identifying the sequence of nodes and edges that exist

in the AD, leading to the generation of inaccurate PN models.

The second example of an AD, taken from the literature (MSDN Microsoft, 2017)

and presented in Figure 6.4, describes the steps required to complete an order. This

diagram consists of two opaque action nodes (‘Create_Order’ (1) and ‘Close_Order’

(11)) and one send signal action (‘Send_Invoice’ (5)) followed by an accept event

signal (‘Receive_Payment’ (7)). Additionally, two input pin nodes (4 and 10) and two

output pin nodes (2 and 8) are used in this AD, as shown in Figure 6.4. One control

flow edge, numbered by 6, connects the send and event signal action nodes, whereas

the other two connectors, i.e. (3) and (9), used in the diagram are object flow edges.

Guard and weight conditions have been defined for the object flow edges (3 and 9) as

illustrated in Figure 6.4. A guard condition, shown in square brackets, evaluates to

true for every token that is offered to pass along the edge. A weight condition, shown

in curly brackets, defines the number of tokens that can flow along that connector. In

this example, the number of tokens has been defined to be one. In the AD in Figure

6.4, once the order is ready a signal/message is sent to the send signal action node and

130

then the invoice for the order is sent to the accept event action that waits for the

signal/message in order to receive the payment. Once the process of the payment is

complete, the order closes.

Figure 6.4 AD Example (MSDN Microsoft, 2017)

The XMI document corresponds to the diagram in Figure 6.4 is found in Appendix G,

part A. A part of this XMI document for the ‘Create_Order’ (1) opaque action node

and the ‘Send_Invoice’ (5) send signal action node and their nested elements is shown

in Figure 6.5. From the XMI in Figure 6.5, it is seen that the element created for the

‘Create_Order’ (1) node, given in the first line in Figure 6.5, has a nested output value

element for the ‘OutputPin’ (2) node, presented in the third line in Figure 6.5.

Figure 6.5 XMI Extract for the AD in Figure 6.4

Additionally, the XMI element created for the ‘Send_Invoice’ (5) node, given in line 6

in Figure 6.5, has a nested target element, in line 9, which corresponds to the input pin

node, numbered by 4, in the AD. This input pin node appears as being attached to the

‘Send_Invoice’ (5) node in Figure 6.4. It is also seen that the input pin node (4) has

two nested lower and upper value XMI elements in lines 11 and 13 respectively.

131

Using the methodology developed in Chapter 3, the XMI file for the second AD

example in Figure 6.4 is loaded into the MySQL database. For the part of the XMI file

presented in Figure 6.5, the ‘node_xmi’ table is created and shown in Table 6.7. From

this table, it is seen that in the case of nested XMI elements in the example

considered, the SQL code retrieves and stores in the ‘node_xmi’ table the values of

the attributes that belong to the nested XMI elements, instead of retrieving the values

of the attributes belonging to the node XMI elements.

Table 6.7 MySQL ‘node_xmi’ Table for the XMI in Figure 6.4

This is the same as was seen in the first example presented in this section. For

example, in the first row of Table 6.7, it is seen the value stored in the “xmi:id”

column, i.e. _r6HugF2tEeeC05B8er0jow, corresponds to the “xmi:id value of the

nested outputValue element (2), found in line 3 in Figure 6.5, instead of the “xmi:id”

value of the node element (1), i.e. _NBPV0F2tEeeC05B8er0jow, found in line 1 in

Figure 6.5. Therefore, the “xmi:id” value of the node element is missing and the

identification of the sequence of nodes and edges for an accurate PN model to be

generated is not possible.

The third example of an AD (Sparx Systems, 2018) in Figure 6.6 models the

procedure once a user cancels their account. This diagram consists of two opaque

action nodes (‘User_Cancels’ (1) and ‘Account_Cancelled’ (4)) and one input (value)

pin node (‘InputPin1’ node (3)). An exception handler edge (2) is used to connect the

‘User_Cancels’ node (1) with the ‘InputPin1’ node (3) which is attached to the

‘Account_Cancelled’ node (4), as shown in Figure 6.6. In Figure 6.6, a part of a

process is presented, showing that if the user cancels the process the account will be

cancelled and potentially the process could terminate.

Figure 6.6 AD Example (Sparx Systems, 2018)

132

The XMI file corresponds to the diagram presented in Figure 6.6 is found in Appendix

G, part A. A part of this XMI file for the two opaque action nodes (1 and 4) is shown

in Figure 6.7. From the XMI document in Figure 6.7, it can be seen that the XMI

element created for the ‘User_Cancels’ (1) node illustrated in line 1, has a nested

handler element, shown in line 3 that corresponds to the exception handler edge (2) in

Figure 6.6. Although the exception handler symbol belongs to the edges of ADs, it is

shown as a nested element to the node from which it starts, i.e. ‘User_Cancels’ (1)

node in Figure 6.6.

Figure 6.7 XMI Extract for the AD in Figure 6.6

Besides the “xmi:type” and “xmi:id”, the exception handler edge introduces the

following attributes:

 “exceptionInput” The value of this attribute is the “xmi:id” value of the node

in which the exception handler edge ends up. For the example in Figure 6.6,

the “exceptionInput” value is taken from the “xmi:id” attribute of the

‘InputPin1’ (3) element.

 “exceptionType” The value of this attribute is a unique value given from the

software package.

 “handlerBody” The value of this attribute is the “xmi:id” value of the node in

which the inputValue element, mentioned in the “exceptionInput” attribute is

nested to. For the example in Figure 6.6, the “handlerBody” value is taken

from the “xmi:id” attribute of the ‘Account_Cancelled’ (4) node.

Additionally, according to Figure 6.7, the second XMI node in line 8 created for the

‘Account_Cancelled’ (8) node, as shown in Figure 6.6, has a nested inputValue

element given in line 10 in Figure 6.7. This element corresponds to the ‘InputPin1’ (3)

node, shown attached to the ‘Account_Cancelled’ (4) node in Figure 6.6.

133

The XMI file, obtained for the AD in Figure 6.6, is loaded into the MySQL database

and for the part of the XMI file presented in Figure 6.7 the ‘node_xmi’ table is created

as shown in Table 6.8.
Table 6.8 MySQL ‘node_xmi’ Table for XMI in Figure 6.7

From this table, it is seen that, as for the previous two examples, in case of nested

XMI elements the SQL code retrieves and stores in the ‘node_xmi’ table the values of

the attributes that belong to the nested elements, instead of retrieving the values of the

attributes belong to the node elements. Hence, the “xmi:id” values of the nodes are not

retrieved, preventing the accurate PN model generation.

According to the XMI documents review, it can be concluded that the XMI root and

nested elements include necessary information for the sequence of elements included

in ADs and, by extension, for the generation of PN models. From the examples

reviewed, it is also concluded that XMI node elements cannot be properly loaded into

MySQL once nested elements also exist in the XMI documents. Consequently, the

algorithm developed earlier creates tables with missing information and generates

incomplete models since vital information for the sequence of elements is missing.

Therefore, the manipulation of the structure of XMI documents is necessary in order

to allow the retrieval of the XMI attributes values for each AD element. This

manipulation is performed by transforming the XMI document obtained from an AD

into two documents, an XMI with different structure from the initial and an XML.

These two files enable the complete retrieval of all the values of the AD elements,

once loaded into the MySQL database

In the following two sections, the XMI model transformation using XSLT documents

is explained in detail using examples to illustrate the concept.

6.3.3 The Need of XMI Model Transformation using XSLT
The XMI model transformation that follows specific rules defined in XSLT files is

necessary for the complete retrieval of data included in ADs (input-system modelling

step). For the proposed methodology, the XMI model transformation concept, carried

out in Java, refers to the process where an XMI file (source model), obtained from the

Activity Diagram, is transformed into two XMI/XML files (target models). Two

134

XSLT files have been developed in order to obtain one XMI with the elements that are

nested to the nodes of the initial XMI file and one XML with the nodes and edges

included in the initial XMI file. The two XSLT documents provide the rules so that all

the necessary information that exists in the initial XMI file is properly structured into

two output files (XMI and XML). The structure of these two output files is formed so

that all the necessary information for the sequence of AD elements is properly loaded

into the MySQL database enabling the automated generation of PN models, without

missing any data.

It is noted that XMI is a specific application of XML, meaning that XMI documents

can only be used for XMI purposes, whereas XML documents can be used for all

XML applications, including XMI. In other words, all XMI files are XML, but not all

XML files are XMI. Additionally, the XSLT that belongs to the XML family is used

to perform XML transformations allowing the user to specify the desired structure and

content of the output file. XSLT documents can reorder XML elements, add new

elements and decide which elements should be displayed or omitted. The XSL

transformation process is based on specific template rules defined by the user.

In the two following subsections, the model transformation of the XMI file obtained

form an AD to two models, in XMI and XML format respectively, using XSLT files,

is described.

6.3.3.1 First XMI Model Transformation using XSLT

For the first XMI model transformation, the rules of the developed XSLT file are

applied to the XMI root nodes and edges and the elements presented as nested within

the XMI nodes (XMI file obtained from the input AD). The structure of the XSLT

document used for the first XMI model transformation starts with a template that

contains processing instructions and commands for the XMI nodes and edges that

match the specified XPath, a query language for selecting nodes from an XMI/XML

document, expression. In this model transformation, the template defined in the XSLT

file matches any child element of the XMI root packaged Element and then selects all

the attributes of these elements as well as any existing immediate children of these

elements. The packaged Element is used in XMI to group all the elements included in

the AD, providing a hierarchical organisation of elements such as nodes, edges, etc.

135

The first XSLT document including explanatory comment is found in Appendix G,

part B.

The XSLT, discussed in this section, generates an XMI file (with different structure

from the initial XMI file) from which the elements found as nested within XMI nodes

can be properly loaded to the MySQL database. This new developed XMI file consists

of the root edges (<edge…/>) and nodes (<node…/>) from the initial XMI file, as

well as the elements appeared as nested within XMI nodes (in the initial XMI file)

such as <inputValue…/>, omitting any further nested elements, such as

<upperBound…/>. Although the developed XMI file contains the data for edges and

nodes, these elements cannot always ensure their proper loading to the MySQL

database since in the case of a node holds a nested element, only the values of the

nested element are loaded to database tables, omitting the values of the root element

(node).

The attributes of the XMI elements, such as “xmi:type”, “xmi:id”, etc., and their

corresponding values which are required to be retrieved, during the first XMI model

transformation, to enable the automated PN model generation, are identified. For each

element presented as nested within an XMI node, the attributes that need to be loaded

to the MySQL database from the developed XMI file, are:

 For the inputValue nested elements in the XMI file created from an input pin

node in an AD and for the target nested elements, attached to accept event

action nodes, the retrieved attributes required are: “xmi:type”; “xmi:id”;

“name” (if available); and “incoming”.

 For the outputValue nested elements created from an output pin node in an AD

and for the result nested elements, attached to send signal action nodes, the

retrieved attributes required are as above including the “outgoing”.

 For the handler nested elements, created from the handler exception edges in

an AD, the retrieved attributes required are: “xmi:type”; “xmi:id”;

“exceptionInput”; and “handlerBody”.

The first XMI transformation was carried out in Java using the javax.xml.transform

package. This package defines the generic APIs for processing transformation

instructions and performs a transformation from source to result. For this first XMI

model transformation, the target XML file (new_xmi_file.xml) is generated by taking

136

as source file the XMI file (Activity_Diagram.uml), obtained from AD, and applying

the first XSLT file (xmi2xmi.xsl), presented in this section. The Java code, used for

this transformation, including explanatory comments is presented in Appendix G, part

C.

The developed XMI document, generated from the application of the XSLT discussed

in this section, includes all the XMI nodes and edges, except for the upperBound

elements as well as the “name” values from the inputValue and outputValue elements,

as they are presented in an AD. None of the attributes of upperBound element is

necessary for the generation of the mathematical representation of PN and hence, they

are not retrieved to the XMI file generated from the model transformation. Similarly,

the text values of the “name” attributes from the XMI inputValue and outputValue

elements are also omitted to be retrieved into the developed XMI file. This is done so

that later SQL code to be able to load to the MySQL database the “name” values from

the root nodes (rather than the “name” values of the inputValue and outputValue

elements) that are necessary to achieve the sequence of nodes and edges. Therefore,

this transformation generates an XMI file from which the elements presented as

nested within the XMI nodes such as inputValue, outputValue, handler, etc. will be

retrieved in the MySQL database for the automated generation of PN.

6.3.3.2 Second XMI Model Transformation using XSLT

For the second XMI model transformation, the rules of the second XSLT file are only

applied to the XMI root nodes and edges (XMI file obtained from the input AD).

Applying this second XSLT, an XML file is generated that contains the attribute

values of all the XMI root nodes and edges. These attribute values can then be

properly loaded into the MySQL database.

The structure of this second XSLT file starts with a template that matches any child

element of the XMI root element such as packagedElement, nodes, edges, etc. and

then selects all the attributes and the corresponding values of these child elements.

Then two templates are introduced for the edges and nodes respectively. Each

template selects the attributes and the corresponding values of the edge/node element

and transforms the attributes to elements. The attributes for each root element that

need to be loaded to the MySQL database from this developed XML file, are:

137

 For the nodes that exist in an AD, the retrieved attributes required are:

“xmi:type”; “xmi:id”; “name” (if available); “incoming” (if available); and

“outgoing” (if available).

 For the edges that exist in an AD, the retrieved attributes required are:

“xmi:type”; “xmi:id”; “name” (if available); “target” (if available); and

“source” (if available).

The node/edge attributes in the XML file are followed by the corresponding values

according to the initial XMI document. The second XSLT document including

explanatory comment is found in Appendix G, part B

As the first XMI model transformation, the second transformation, discussed in this

section, is performed in Java using again the javax.xml.transform package, takes as

input the XMI file of the AD (Activity_Diagram.uml) and applying the XSLT file

discussed in this section (xmi2xml.xsl), it develops the target XML document

(new_xml_file.xml). The Java code, used for this transformation found in Appendix

G, part C, applies the same steps as followed by the Java code described in section

6.3.3.1 for the first XML transformation.

The XML file developed from the second XMI model transformation includes all the

data for the nodes and edges as presented in an AD that would be used in the next step

of the methodology for the automated generation of PN.

6.3.4 Application of the XMI Model Transformations to a Simple AD

Example

In this section, the XMI model transformation concept, reviewed in section 6.3.3, is

explained explicitly with the help of the AD presented in Figure 6.4 for a simple

process. In the first XMI model transformation, the first XSLT document discussed in

section 6.3.3.1 is applied to the initial XMI file obtained from the AD in Figure 6.4

and the XMI file found in Appendix G, part D is generated. This new XMI file

includes the root XMI nodes and edges, as well as the elements appeared as nested

within nodes in the initial XMI file. Part of the XMI file, developed for the AD in

Figure 6.4, for the input pin (10) node that is nested to the ‘Close_Order’ node is

illustrated in Figure 6.8. The text next to Figure 6.8 shows how the text values of the

attributes of the inputValue node are related to the AD (Figure 6.4). The first XMI file

138

developed in this section for the AD shown in Figure 6.4 consists of four elements

(including outputValue, inputValue, result and target) presented as nested within other

nodes in the initial XMI file.

Figure 6.8 Part of the XMI File developed form the 1st XMI Model Transformation

The number of nested elements of this XMI file is the same with those found in the

XMI document obtained from the AD example in Figure 6.4.

Additionally, in the second XMI model transformation, the second XSLT document

discussed in section 6.3.3.2 is applied to the initial XMI file obtained from the AD in

Figure 6.4 and the XML file found in Appendix G, part D is generated. Applying the

second XSLT document, each child node/edge element from the source XMI file is

transformed into a root node/edge element. The attributes of a node/edge child

element (“incoming”, “name”, etc.) are then transformed into sub-elements (incoming,

name, etc.) of the root node/edge element. Then, the two templates explained in

section 6.3.3.2 are applied to the XMI nodes and edges. The first template is applied

to the XMI nodes asking for the “xmi:type”, “xmi:id”, “incoming”, “name” and

“outgoing” attributes and their corresponding values, whereas the second template is

applied to the XMI edges asking for the “xmi:type”, “xmi:id”, “id”, “name”, “target”

and “source” attributes and their corresponding values. The developed XML file

contains the values of the edges and nodes attributes as presented in the initial XMI

file. These XML values will later be loaded to the MySQL database for the

mathematical PN generation.

Part of the XML file, developed for the AD in Figure 6.4, for the ‘Receive_Payment’

node and the first edge, labelled by 3 in the AD, included in the XML file, is

presented Figure 6.9. The text next to Figure 6.9 shows how the XML elements are

related to the AD (Figure 6.4). The XML file developed in this section for the AD in

Figure 6.4 consists of seven elements from which three are edges and four are nodes.

139

The size of this XML file is the same as the initial XMI file obtained from the AD in

Figure 6.4.

Figure 6.9 Part of the XML File developed form the 2nd XMI Model Transformation

Having completed the two XMI model transformations, the two output files, in XMI

and XML formats respectively, used as inputs in the system modelling step, are then

ready to be loaded to the MySQL database to be further manipulated and organised in

such a way that the mathematical form of PN models can be generated (algorithm-

Java database programming step).

6.4 Generic Algorithm – Java Database Programming

6.4.1 Transformation Rules
In this section, the transformation rules for the AD additional elements introduced in

section 6.2 are identified. In order to help with the identification of these

transformation rules, the PNs, for the ADs shown in Figures 6.2, 6.4 and 6.6, have

been manually developed and presented in Figures 6.10, 6.11 and 6.12

correspondingly. The PNs in Figures 6.10 and 6.11 consist of four transitions and

three places, whereas the model shown in Figure 6.12 contains two transitions and one

place.

Figure 6.10 PN Model developed for the AD in Figure 6.2

Figure 6.11 PN Model developed for the AD in Figure 6.4

140

Figure 6.12 PN Model developed for the AD in Figure 6.6

Five additional AD examples and their corresponding manually developed PNs have

also been studied in this section, as seen in Figures 6.13 – 6.17. The ADs illustrated in

these figures contain elements that have been introduced in section 6.2, but have not

been considered in the three AD examples reviewed in Figures 6.2, 6.4 and 6.6.

Hence, in order to define a complete set of relationships between the AD and PN

elements, the following examples are investigated.

The AD in Figure 6.13 consists of three opaque action nodes, presented as

‘Assemble_Car’, ‘Sell_Cars’ and ‘Refresh_Company_Cars’ respectively, and a

central buffer node, shown as ‘Car’ in the diagram. The AD also contains three pin

nodes (two inputs and one output) attached to the opaque action nodes, indicated as

‘Car’. In this AD the central buffer node, ‘Car’, has been placed between the

manufacturing plants (‘Assemble_Cars’) and the dealers (‘Sell_Cars’ and

‘Refresh_Company_Cars’) in order to arrange deliveries, or sorting of the

manufactured cars. The new elements in this example are the central buffer node and

the pin nodes. The corresponding PN model developed for this AD, illustrated on the

right side of Figure 6.13, consists of three transitions and a place.

Figure 6.13 AD (Central Buffer Node) and Corresponding PN Model (Pilone & Pitman, 2005)

The AD in Figure 6.14 contains two opaque action nodes, presented as ‘Make_Sale’

and ‘Ship_Item’, and a data store node, shown as ‘Customer_Database’. In this AD,

once a sale is made, information regarding this sale is stored in the customer database,

before the sold item is shipped. The corresponding PN model developed for this AD,

shown on the right side of Figure 6.14, consists of two transitions and a place.

Figure 6.14 AD (Data Store Node) and Corresponding PN Model (Pilone & Pitman, 2005)

141

The AD in Figure 6.15 consists of an initial node, two opaque action nodes

(‘Visit_Page’ and ‘Login’), a decision node (‘Decision’) and a call behaviour action

node (‘Register’). This AD shows that once a customer visits the page, they can login

if they have an account (registered), or they can be registered creating a new account.

The call behaviour action node, which belongs to the additional AD elements, shows

that an external activity that includes a sequence of actions is called. Thus, the

‘Register’ call behaviour action node shown in the AD in Figure 6.15 is externalising

into another AD. The PN model developed for this AD, viewed on the right side of

Figure 6.15, consists of four transitions and four places.

Figure 6.15 AD (Call Behaviour Action) and Corresponding PN Model (Söding, 2009)

The AD example in Figure 6.16 has been considered to show the use of incoming

(‘Wood’) and outgoing (‘Ream’) activity parameter nodes, which belong to the

additional AD elements. Besides the parameter nodes, three opaque action nodes

(‘Create_Pulp’, ‘Press_Paper’ and ‘Package_Reams’) are contained in this diagram.

The incoming parameter node (‘Wood’) shows that wood is fed into a paper

production procedure, whereas the outgoing parameter (‘Ream’) shows that paper is

finally produced. The corresponding PN model, manually developed for this AD as

shown on the right side of Figure 6.16, consists of three transitions and four places.

Figure 6.16 AD (Activity Parameter Node) and Corresponding PN Model (Pilone & Pitman, 2005)

142

Finally, the AD in Figure 6.17 is considered to show the application of a structured

activity node. The structured node, included in the additional AD elements, can be

simple, as in Figure 6.17, or conditional/looped/sequential. According to each case,

the nodes included within the structured activity node express different behaviours.

Considering Figure 6.17, the AD consists of three opaque action nodes

(‘Check_Order’, ‘Fill_Order’ and ‘Close_Order’) which are contained into the

structured activity node, an exception handler edge (‘NoFillReason’), included in the

additional AD elements, and an input pin followed by an opaque action node

(‘Notify_Buyer’). This diagram examines a process order in which, according to the

sequence of the three actions, presented within the structured activity node, the order

closes only if it is checked and filled. If the second action of the structured node, i.e.

‘Fill_Order’, is not performed, then the ‘NoFillReason’ exception is trapped by the

structured node and the buyer is notified that something is wrong with the order. The

manually developed PN model for this AD is illustrated on the right side of Figure

6.17, consisting of four transitions and three places.

Figure 6.17 AD (Structured Activity Node) and Corresponding PN Model (Bock, 2005)

From the comparison of the manually developed PNs and the given ADs for the

examples shown in this section, the relationships between the AD and PN notation

and symbols are shown in Table 6.9. According to the first row of Table 6.9, the input

and output expansion nodes are mapped into PN places, whereas the expansion region

into a PN transition. Once the expansion region contains other nodes, these are

transformed into PN transitions and the PN transformation of the expansion region is

omitted. As can be seen, the activity parameter, central buffer and data store nodes as

well as the AD edges, including exception handlers and object flows, are transformed

into PN places. Additionally, the structure of an opaque action node with two pin

nodes, an input and an output, as well the call behaviour nodes are mapped into PN

transitions. Finally, the send signal action with one input pin node attached, the accept

event action and the structured activity nodes are also transformed into PN transitions.

Therefore, these are the mapping rules followed in the Java database programming

step in the next section.

143

Table 6.9 Relationships between the AD and PN Notation and Symbols

6.4.2 Algorithm – Java Database Programming – Transpose of the

Petri Net Incidence Matrix
The SQL code proposed in Chapter 3 for the automated generation of the

mathematical form of a PN model, needs to be extended to allow the transformation of

the additional AD elements, discussed in section 6.2, and hence to provide a generic

applicability. The extended SQL code, explained in this section, is used to retrieve,

manipulate and store the data of the two input files (XMI and XML), obtained from

the XMI model transformation using as source file the XMI from a UML/SysML AD.

These two input files are loaded to the MySQL database using SQL statements. The

purpose of each step, used in this extended (generic) SQL code, is introduced in the

flowchart illustrated in Figure 6.18. Comparing the flowcharts in Figures 3.6 and 6.18,

it can be seen, this new generic code follows the same concept as the code proposed in

Chapter 3, with some amendments and newly introduced steps for the transformation

of the AD additional elements. The numbering of the steps that have been modified or

these that are newly introduced is presented in the flowchart in red.

144

In this flowchart, these 15 steps can be categorised as follows:

 Retrieve data (steps 1.a and 1.b): In this first step, two tables are created, one

for the XMI attributes of the AD exception handlers, results, targets and the

XML elements of the AD nodes (step 1.a) and one for the XML elements of

the AD (step 1.b). For the first table, the data for the exception handlers,

results and targets is retrieved from the XMI file obtained from the first XMI

model transformation. For the same table, the data for the nodes, including

opaque action, decision, merge, fork, join, initial, final activity, final flow,

central buffer, data store, activity parameter and call behaviour nodes, is

retrieved from the XML file obtained from the second XMI model

transformation. Finally, for the second table, the data for the edges including

control and object flows is also retrieved from the XML file.

 Separate multiple edges (steps 2 – 5): These four steps are identical with the

corresponding steps proposed in the code in Chapter 3.

 Find the sequence between AD elements (steps 6 – 12): The values stored in

the “xmi:type” column of the table created in step 5 are scanned and for each

different type identified a table is created. The code creates seven tables: (i)

one for the opaque action, decision, merge, fork, join, accept event, send signal

and call behaviour action nodes (step 6); (ii) one for the initial nodes (step 7);

(iii) one for the activity final and final flow nodes (step 8); and (iv) four

additional for the exception handlers, activity parameters, central buffers and

data stores (step 9). The names of the incoming and outgoing edges to and

from the nodes stored in the table created in step 6 are identified with the help

of the table created in step 1.b and they are stored in this table (created in step

6). Additionally, the names of the nodes placed before and after the AD

elements stored in the tables created in steps 7 – 9 are also identified with the

help of the tables created in steps 1.b and 5 and stored in these tables

(developed in steps 7 – 9). Steps 7 and 8 are identical to the corresponding

steps proposed in the code in Chapter 3 for the AD initial and final nodes. In

steps 10 and 11, two new tables are created, one for the object nodes such as

input/output/value pin nodes, and one for the expansion elements, including

expansion regions and input/output expansion nodes. These two newly

introduced tables retrieve the value attributes from the XMI file (step 1.a),

145

used as input in this code. The nodes/edges found in the AD before and after

these examined elements are tracked using the data stored in the tables created

in steps 1.b and 5, and replaced in the tables created in steps 10 and 11. Hence,

each row of the tables created in these steps 6 – 11 includes the name of a

node, the name of the element that exists before this node (if available) and the

name of the element that exists after this node (if available). Finally, the tables

obtained from these six steps are unified, creating a new table in step 12.

Figure 6.18 Flowchart for the steps followed for the Generic Automated Generation of the Mathematical

Representation of a PN Model

146

 Matrix generation (steps 13 - 14): Two tables in the form of matrices are

created, retrieving the connectivity information from the table developed in

step 12, as proposed for the similar set of steps in Chapter 3. The matrix

created in step 13 shows connections of AD edges/initial/final (activity and

flow)/exception handler/central buffer/data store/activity parameter nodes (PN

places) to AD opaque action/decision/merge/join/fork/send signal/accept

event/call behaviour action nodes (PN transitions). Similarly, the matrix

generated in step 14 shows connections of AD opaque

action/decision/merge/join/fork/send signal/accept event/call behaviour action

nodes (PN transitions) to AD edges/initial /activity final/final flow/exception

handler/central buffer/data store/activity parameter nodes (PN places).

 Mathematical representation of a PN model (step 15): In this final step, the

PN is generated by combining the two matrices developed in steps 13 and 14

respectively, as also proposed in the code in Chapter 3.

The SQL code followed for the automated PN generation, found in Appendix H, is

thoroughly explained and discussed in the next chapter with the help of two real-life

scenarios.

6.4.3 Algorithm – Java Database Programming – Petri Net Initial

Marking Matrix
For the complete generation of the PN’s mathematical form, the initial marking matrix

is also required. The automated generation of the initial marking has already been

discussed in Chapter 3, assuming that only one item exists in a system/process.

However, in this section, the algorithm for the initial marking generation is extended

allowing any number of items to be considered. The extended SQL code for the initial

marking generation takes as input an Excel file with two columns. In the first column,

the names of the AD nodes are stored and in the second column the number of items

each AD node contains before the system/process execution, are stored.

The procedure followed for the PN initial marking generation, which is an extension

of the step outlined in Chapter 3 for the initial marking generation, for generic cases,

is outlined below:

147

1. Generate the initial marking of a PN model. In this step, a table named

‘initial_marking_final’ is created consisting of the places of PN models (stored

in the “activity” column) and the number of tokens (stored in the

“process_number_of_devices” column), as explained in Chapter 3. Once the

structure of the table is created, this extended SQL code identifies in the

“initial_marking” column of a given Excel file, the rows that contain numbers

equal to/greater than one. For these rows, the data stored in the “activity”

column of this file is retrieved, and then the AD elements found before this

retrieved data are tracked, using the first column of the matrix, created in step

15. Finally, for these tracked elements, the corresponding values found in the

‘initial_marking’ column of the Excel table are stored in the

“process_number_of_devices” in the ‘initial_marking’, whereas in all the other

rows of this column value ‘0’ is inserted.

The code developed for the automated generation of the PN initial marking matrix can

be found in Appendix I.

6.5 Summary
The generic novel methodology, proposed in this chapter for the automated PN model

generation, applying a Java database (MySQL) algorithm, extends the methodology

proposed in Chapter 3 and contributes to knowledge through the combination of the

following:

 Java database algorthm, as explained in Chapter 3.

 Fully automated PN model generation capability: as explained in Chapter 3.

 Generic domain applicability: as explained in Chapter 3.

 Software independence: as explained in Chapter 3.

 Generic applicability and scalability: The extended methodology for the

automated PN model generation provides rules for the transformation of any

AD element to the corresponding PN structure, broadening the range of

applications.

In the following chapter, to further explore the automated PN model capability, the

proposed generic methodology is demonstrated by its applicability to two industrial

148

cases, a system and a process. Additionally, according to the methodology followed in

Chapter 5 for the verification and validation of PN models, the correctness of the

generic advanced algorithm for the PN automation procedure discussed in this chapter

is also checked.

149

CHAPTER 7

7 Application of the Generic Automated Petri

Net Model Generation Methodology to Real-

Life Scenarios

7.1 Introduction
In this chapter, the generic methodology discussed in Chapter 6 for the automated

generation of a PN model is applied to two real-life scenarios, a production system

and an online shopping process, to demonstrate its applicability and functionality to

both systems and processes. A description of each scenario, with the help of the

corresponding AD, retrieved from the literature, is initially introduced. The AD

provided for the production system includes all the basic AD elements discussed in

Chapter 3, whereas the online shopping process includes, in addition to the basic

elements, the additional AD elements, introduced in Chapters 6. Besides the AD

elements, these two scenarios consider features widely associated with complexity,

such as control loops, a large number of components/activities and dependent

(concurrent/parallel) events, and hence they have been selected to check the

correctness and the functionality of the algorithm introduced in Chapter 6. The

mathematical and graphical representations of the PN models for these two scenarios

are automatically generated and then the correctness of the automation end models is

explored by verifying and validating the method.

7.2 Production System

7.2.1 Process Description

A production system, taken from the literature (Villani et al., 2007), is used as an

example to illustrate the applicability of research to systems. The production system

shown in Figure 7.1 produces two products (P1 and P2). These two products are

created from the mixing of a common base (B) with one of the two colouring

150

additives (C1 and C2). Thus, product P1 is produced by mixing B with C1, whereas,

product P2 is produced by mixing B with C2, as seen in Figure 7.1.

Figure 7.1 Production System (Villani et al., 2007)

The production system, examined in this section, consists of the system components

and the controlled objects (controlled by the supervisory team). The system

components are:

 Three tanks, T1 (Base - B), T2 (Additive C1) and T3 (Additive C2), which

provide the ingredients into the mixers.

 Eight valves, VT2-1 and VT2-2 for T2, VT3-1 and VT3-2 for T3, VM1-1 and

VM1-2 for mixer M1 and VM2-1 and VM2-2 for mixer M2, which can open,

close and inform for a flow interruption.

 Two mixers, M1 and M2, in which the ingredients are mixing. M1 and M2 can

start mixing, stop mixing, start emptying, and stop mixing and start emptying.

 Two local controllers, CM1 and CM2, which can be used to begin a batch,

inform the end of batch or inform the end of additive loading, by

opening/closing the system valves.

Controllers and mixers interact during the filling and emptying activities. The valve

that controls the admission of the base from the tank 1 (T1) to a mixer as well as the

output valve that controls the admission of the additive tank (T2 or T3) to a mixer are

open and closed by the supervisory system.

In addition to the system components, the controlled objects in the production system

are:

151

 Four valve interfaces, VT2-1, VT2-2, VT3-1 and VT3-2, which are controlled

(opened/closed) by the supervisory team.

 Two additional interfaces, CM1 and CM2, which are used to begin a batch,

inform the end of batch or inform the end of additive loading.

 Receipt P1, associated with the production receipt of products, is used to either

begin or inform the end of production P1.

 Production Order_1 asks receipt P1 to make a batch of P1.

The UML AD for the production system that describes how to make a batch of P1 is

taken from Villani et al., 2007 and illustrated in Figure 7.2.

Figure 7.2 UML AD for the Production System (Villani et al., 2007)

152

In order to produce a batch of P1, the mixer, M1 or M2, is filled with base and

additive by opening the corresponding valves. Once the mixer is filled, the base and

additive are mixed for a certain time and then the mixer is emptied.

The UML AD for the production system has been selected due to the large number of

components it is consisted of, including twenty opaque action nodes, one decision,

two merge, three join and four fork nodes, as well as an initial, a final activity and a

final flow node. Additionally, in this diagram, there exist two control loops as well as

dependent events showing either parallel division, indicated by AD fork nodes that

split an incoming flow into multiple concurrent activities, or synchronisation,

indicated by AD join nodes in which the flow can proceed only after all incoming

flows have reached the join point. Finally, the multiple control nodes presented in

series in the AD, such as at the beginning of the diagram where the decision node,

‘D1’, is placed in between two merge nodes, as well as the three outgoing arcs

produced from ‘D1’, can add complexity in the automation PN process, since

structures like these may result in omitting information regarding the sequence of AD

elements.

7.2.2 Automated Mathematical Representation of the Petri Net Model

for the Production System

7.2.2.1 Input – System Modelling

The AD in Figure 7.2 is initially validated, using the ‘Validate model’ option available

in the Eclipse software and then the two model transformations, discussed in Chapter

6, are applied, to the XMI file obtained from the examined AD. Having completed the

two XMI model transformations, two output files, in XMI and XML formats

respectively, are generated. These two files are used as inputs to the next step

(algorithm-Java database programming step) where they are loaded into the MySQL

database to be further manipulated and organised in the mathematical form needed for

the PN models. The XMI file obtained from the AD in Figure 7.2 can be found in

Appendix J, part A. This initial XMI file consists of XMI nodes such as ‘pin’,

‘Termination_production_P1’, ‘CM1_opens_VM1-1’, ‘CMI_detects_M1_empty’, etc.

and XMI edges such as ‘Emptying_M1’, ‘Filling_with_additive’, ‘Filling_with_base’,

etc. The XMI file obtained consists of 70 elements, 37 are edges, and 33 are nodes.

153

7.2.2.2 Algorithm – Java Database Programming – Transpose of the

Petri Net Incidence Matrix
The generic code, introduced in Chapter 6, section 6.4.2 (found in Appendix H) for

the automated generation of the mathematical representation of a PN model, has been

applied to generate the transpose of the PN incidence matrix for the production

system.

The steps that the SQL code applies for the automated PN model generation of the

production system are as follows:

1. As discussed in section 7.2.2.1, the XMI and XML files generated from the

model transformation of XMI, obtained from the AD in Figure 7.2, are

provided as inputs to the methodology and loaded into the MySQL database.

Two tables, named ‘final_node_xmi_xml’ and ‘edge_place_xmi’, are created

as follows:

a. Retrieve data for AD exception handlers, results, targets and

nodes: The ‘final_node_xmi_xml’ table is created consisting of 33

rows that correspond to the number of nodes found in the AD.

b. Retrieve data for AD edges: As for the ‘node_xmi_xml’ table, the

‘edge_place_xmi’ table is created consisting of 37 rows that

correspond to the number of edges found in the AD.

In order to enable data manipulation, the multiple values that may exist in the

“incoming” and “outgoing” columns of the ‘final_node_xmi_xml’ table (created in

step 1.a) are separated in the following four steps (steps 2 – 5) as follows:

2. Separate multiple “outgoing” values: A table named ‘union_1’ is created

separating any multiple values stored in the “outgoing” column of

‘final_node_xmi_xml’ table, such as for the decision nodes exist.

3. Separate multiple “incoming” values: A table named ‘union_2’ is created

separating any multiple values stored in the “incoming” column of

‘final_node_xmi_xml’ table, such as for the merge nodes.

4. Store single “incoming” and “outgoing” values: A table named

‘unique_activities’ is created retrieving from the ‘final_node_xmi_xml’ the

154

rows that store in the “incoming” and “outgoing” columns singe values, such

as for the opaque action nodes.

5. Create a table in which single values are stored in each cell: A table named

‘union-node’ is created by unifying the results obtained from steps 2 – 4 for

the AD shown in Figure 7.2. A part of this table is presented in Table 7.1 for

six elements. Each row of this table includes the “xmi:type” and “name” of

each node as well as the “xmi:id” values of the incoming and outgoing edges

related to the examined node.

Table 7.1 MySQL ‘union_node’ Table Extract

The following seven steps (steps 6 – 12) generate a table that shows the sequence of

the AD elements. The sequence of these AD elements can then be used to identify the

sequence of PN places and transitions resulting in mathematical and graphical

representations of the PN for the production system. Steps 6 – 12 are applied as

follows:

6. Identify the sequence between the AD opaque/decision/merge/

fork/join/accept event/send signal/call behaviour action nodes and their

preceding and following edges: In this step, a table, named ‘main_table’, is

created retrieving the rows from the ‘union_node’ table (from step 5) that store

values for the opaque action, decision, merge, fork and join nodes. The names

of the edges found before and after of each node are also identified.

7. Identify the sequence between the AD initial nodes and their following

nodes: In this step, a table, named ‘initial_node_table’, is created for the initial

node. The name of the node placed after the initial node is then retrieved and

stored in the “name_primary” column of ‘initial_node_table’ as presented in

Table 7.2.
Table 7.2 MySQL ‘initial_node_table’

155

8. Identify the sequence between the AD final nodes and their preceding

nodes: Similarly, as for the initial node, the final nodes are stored in a new

table name ‘final_node_table’. The names of the nodes placed before the final

activity/final flow nodes are then retrieved and stored in the “name_primary”

column of ‘final_node_table’ as presented in Table 7.3.

Table 7.3 MySQL ‘final_node_table’

For the following three steps (steps 9 – 11), no tables are created, since the program

automatically recognises that elements such as data stores, input values, expansion

regions, etc. are not included in the AD. Hence, omitting these three steps, the

program generates a table in step 12.

9. Identify the sequence between the AD exception handler edges/activity

parameters/data stores/central buffers, and their preceding and following

nodes.

10. Identify the sequence between the AD nodes to which input/output/value

pin nodes are attached, and their preceding and following edges.

11. Identify the sequence between the nodes and edges that are included in

expansion regions in the AD.

12. Identify the sequence of AD elements: The ‘final_table’, part of which is

viewed in Table 7.4, is created unifying the data from the

“place_before_node”, “name_primary” and “place_after_node” columns from

the tables created in steps 6, 7 and 8.

Table 7.4 MySQL ‘final_table’ Extract

Steps 13 – 15 result in the development of the mathematical representation of the PN

for the model of the production system, retrieving the information from the table

created in step 12.

156

13. Create a matrix that shows how a token is removed from each of its pre-

places, when an enabled transition fires (shows the connection from PN

places to PN transitions): A ‘negative’ matrix with the ‘-1’ and ‘0’ values is

created, using the 1st and 2nd columns from Table 7.4.

14. Create a matrix that shows how a token is inserted to each of its PN post-

places, when an enabled transition fires (shows the connection from PN

transitions to PN places): A ‘positive’ matrix with the ‘1’ and ‘0’ values is

created, using the 2nd and 3rd columns from Table 7.4.

15. Generate the mathematical form of the PN model: In this step, the matrix

that shows the mathematical representation of the Petri net for the AD in

Figure 7.2 in the form of the transpose of the incidence matrix is created. A

part of this matrix is shown in Table 7.5. This matrix, found in Appendix K,

part A, is generated by the combination of the matrices obtained in steps 13

and 14. The matrix for the AD in Figure 7.2 for the production system consists

of 37 rows, i.e. places, and 30 columns, i.e. transitions.

Table 7.5 MySQL ‘Transpose_of_the_PN_Incidence Matrix’ Extract

7.2.2.3 Algorithm – Java Database Programming – Petri Net Initial

Marking Matrix
After obtaining the transpose of the incidence matrix of the PN model for the

production system, the initial marking matrix of this net is developed, using the SQL

code introduced in Chapter 6, completing the mathematical form of the PN for this

system. Thus, the step undertaken for the generation of the initial marking matrix for

the production system is:

157

1. Initial marking of a PN model: The ‘initial_marking’ table created for the

production system, part of which is shown in Table 7.6, can be found in

Appendix K, part B, Table K.1. The records in the “activity” column retrieved

from the first column of the transpose of the incidence matrix corresponding to

the PN places, whereas the value ‘1’ in the “process_number_of_devices”

column it is shown that ‘place_1’ holds one token, i.e. a batch.

Table 7.6 MySQL ‘initial_marking’ Extract

The matrix of the initial marking automatically developed for the production system

examined in this section consists of 37 rows (37 PN places).

7.2.3 Automated Graphical Representation of the Petri Net Model for

the Production System
For the graphical representation of the PN model for the production system, the steps

introduced in Chapter 3 have been applied. The ‘final_table’ created in step 12 during

the automated generation of the mathematical representation of the PN for the system

is used as input for this graphical representation. Hence, all the data from the

‘final_table’, part of which is illustrated in Table 7.4, is selected and the code

introduced in section 3.4.1 (Appendix D, part A) is executed. The output obtained in

the Console window in Eclipse is a DOT file, which is imported into the Graphviz

software and the PN model for the production system examined in this section is

obtained. The PN model generated for the production system can be viewed in Figure

7.3. The PN model obtained for the production systems consists of 30 transitions and

37 places. The 30 transitions that exist in the PN are equal to the sum of the twenty

opaque action nodes, the one decision, two merge, three join and four fork nodes that

was presented in the production system AD.

The process has successfully yielded a PN from the AD automatically, and hence

shown applicability to systems and also increased scalability with more components

than in previous ADs. Further scalability will be tested with an online shopping

process, viewed in the next section. Formal verification and validation of the method

158

to check the correctness of the automation end model are also investigated in the

following sections.

Figure 7.3 PN Model Automatically developed for the Production System

159

7.3 Online Shopping Process

7.3.1 Process Description

An online shopping process taken from the literature (Banas, 2012) is used as an

example in this section to illustrate the applicability of this developed automated

modelling capability study to complex processes. Advancements with this example

are a larger number of activities and more AD elements. The process investigates

online purchases of monitors and computers and the corresponding UML AD is

illustrated in Figure 7.4.

Figure 7.4 UML AD for the Online Shopping Process (Banas, 2012)

In the process, once customers complete product selection, the personal details

checking begins. New customers are asked to create a new account, whereas

registered customers are asked to log in to their existing accounts. The customers then

enter their user name and password and the process can proceed to either the user data

verification for old customers or the assignment of user data for new customers. In the

case of existing customers, the company’s system is looking for the user’s profile in

its database (datastore node) and the customer’s data is verified. In the case of new

customers, the username and password are assigned, and (i) if user’s data is

authorized, the account is created; (ii) if not the account is rejected. In both cases the

system is updated (using the call behaviour node) creating and saving the customer’s

160

profile in the system. If more account information is required and the customer

decides not to provide it, the account is cancelled and the process is terminated as seen

by the final activity node in the AD in Figure 7.4. If the customer is able to provide

further information the account verification is completed over the phone. The

customers verify their email, password, and phone number and three possible

outcomes have been identified for the online shopping process:

1. Customers cannot proceed due to inadequate information and hence the

process is terminated with the flow final node as seen in Figure 7.4. The

execution of this node indicates that a use case is finished but the whole

process might be continued.

2. Customers complain to the corresponding department. The process in this case

is also terminated with the activity final node seen in the AD which indicates

that all flows of the process terminate, once this node is executed.

3. The account information is approved and the order is received. The product

availability is checked and in case: (i) the product is out of stock the company

contacts the suppliers and the process ends; (ii) there is product availability the

customer credit card details are verified and once the verification is received

the quality test of each product is conducted. An AD decision node is used to

direct the products to the right test action since different tests are required for

monitors and computers. Once the quality test is completed, the products are

collected and sent for shipment, terminating the process. The central buffer

node, used at this point in the AD in Figure 7.4, manages object flows of

various incoming and outgoing edges for monitors and computers.

The online shopping process consists of 24 opaque action nodes, a call behaviour

action node, an accept event and a send signal action node, six decision, five merge,

one join and two fork nodes. Additionally, it contains a datastore, a central buffer, an

initial, a final flow and a final activity node. An exception handler edge and an

expansion region with one input and one output expansion node are also used in the

AD. Finally, in this diagram, input and output value/pin nodes can be found. The

reason for the selection of this diagram is the variety of the AD elements that it

includes.

161

7.3.2 Automated Mathematical Representation of the Petri Net Model

for the Online Shopping Process

7.3.2.1 Input – System Modelling

Using the ‘Validate model’ option available in the Eclipse software the AD in Figure

7.4 is validated and then by applying the two model transformations, discussed in

Chapter 6, to the XMI file obtained from the examined AD, two output files, in XMI

and XML formats respectively, are generated. These two files are used as inputs to the

algorithm-Java database programming step where they are loaded to the MySQL

database for further manipulation to result in the development of the mathematical

form of PN model. The XMI file obtained can be found in Appendix J, part B. This

initial XMI file consists of XMI nodes such as the ‘Assign_User_Data’,

‘Create_Account’, ‘Update_System’, etc. and XMI edges such as the ‘Authorised’,

‘Not_Authorised’, ‘Order_Items’, etc. The XMI file obtained from the AD for the

production process consists of 105 elements, 56 are edges, and 49 are nodes. The 49

nodes found in the XMI document include, 24 opaque action nodes, a call behaviour

action node, an accept event and a send signal action node, six decision, five merge,

one join and two fork nodes. Additionally, it contains a datastore, a central buffer, an

initial, a final flow and a final activity node, as well as an expansion region with two

expansion nodes, an input and an output.

7.3.2.2 Algorithm – Java Database Programming – Transpose of the

Petri Net Incidence Matrix

The extended advanced code, discussed in Chapter 6 (found in Appendix H) for the

automated generation of the mathematical representation of a PN model, has been

followed to generate the transpose of the PN incidence matrix for the online shopping

process. The mathematical representation of a PN model is generated by applying the

following steps:

1. The XMI and XML files acquired from the model transformations of the XMI

file obtained from the AD in Figure 7.4 are provided as inputs to the

methodology. These two files, discussed in section 7.3.2.1, and loaded into the

MySQL database and the ‘final_node_xmi_xml’ and ‘edge_place_xmi’ tables,

are created as follows:

162

a. Retrieve data for AD exception handlers, results, targets and

nodes: The ‘final_node_xmi_xml’ table is created consisting of 49

rows that correspond to the number of nodes found in the AD.

b. Retrieve data for AD edges: As for the ‘final_node_xmi_xml’ table,

the ‘edge_place_xmi’ table is also created consisting of 56 rows that

correspond to the number of edges included in the AD.

Steps 2 – 5 target the separation of multiple values that exist in the “incoming” and

“outgoing” columns of the ‘final_node_xmi_xml’ table (created in step 1.a) in order to

enable data manipulation for the automated generation of the mathematical

representation of PN model as follows:

2. Separate multiple “outgoing” values: Table named ‘union_1’ is created for

the AD separating the multiple values stored in the “outgoing” column of the

‘final_node_xmi_xml’ table.

3. Separate multiple “incoming” values: Table named ‘union_2’ is created for

the AD separating the multiple values stored in the “incoming” column of the

‘final_node_xmi_xml’ table.

4. Store single “incoming” and “outgoing” values: A table named

‘unique_activities’ is created from the rows of the ‘final_node_xmi_xml’ table

that present single incoming and outgoing values.

5. Create a table in which single values are stored in each cell: In this step, a

table named ‘union_node’ is created for the AD, part of which is viewed in

Table 7.7 for seven elements. This table is created by unifying the tables in

steps 2, 3 and 4. According to the two first rows of this table, it can be seen

that node ‘fork_7’ should be represented in the AD with one incoming and two

outgoing edges, which can be verified by the diagram.

Table 7.7 MySQL ‘union_node’ Table Extract

163

The next seven steps (steps 6 – 12) result in the generation of a table that shows the

sequence of AD elements. This set of seven steps enhances the capability of the SQL

code to track the sequence of AD elements, both fundamental as discussed in Chapter

3 and additional as introduced in Chapter 6. The final table obtained in step 12 is used

as the basis for the identification of the sequence of PN places and transitions enabling

the development of the mathematical and graphical representations of the PN for the

online shopping process. Steps 6 - 12 are explained in detail, as follows:

6. Identify the sequence between the AD opaque/decision/merge/

fork/join/accept event/send signal/call behaviour action nodes and their

preceding and following edges: A table named ‘main_table’ is generated

retrieving the rows from the ‘union_node’ table (from step 5) where their

“xmi:type” is equal to uml:OpaqueAction` or `uml:DecisionNode` or

`uml:MergeNode’ or ‘uml:ForkNode’ or ‘uml:JoinNode’ or

‘uml:AcceptEventAction’ or’ uml:SendSignalAction’ or

‘uml:CallBehaviorAction’. Therefore, for the online shopping example the

‘main_table’ is created storing data for 24 opaque action nodes, one call

behaviour action node, one accept event and one send signal action node, six

decision, five merge, one join and two fork nodes as viewed in the AD. The

names of the edges found before and after of each of these nodes are also

retrieved from the ‘edge_place_xmi’ table (step 1.b).

7. Identify the sequence between the AD initial nodes and their following

nodes: For the initial AD node, a table, named ‘initial_node_table’, is created.

The name of the node that follows the initial node in the diagram, i.e.

‘Ask_to_Create_for_New_Users’, is retrieved and stored in the

“name_primary” column of ‘initial_node_table’ as presented in Table 7.8.

Table 7.8 MySQL ‘initial_node_table’

8. Identify the sequence between the AD final nodes and their preceding

nodes: For the final activity and the final flow nodes of the AD, a table, named

‘final_node_table’, is created. The names of the nodes shown before the final

activity and the final flow nodes are retrieved and stored in the

“name_primary” column, as viewed in Table 7.9.

164

Table 7.9 MySQL ‘final_node_table’

9. Identify the sequence between the AD exception handler edges/activity

parameters/data stores/central buffers, and their preceding and following

nodes: In this step, three tables called ‘exception_handler’,

‘datastore_table_a_b’ and ‘central_buffer_table_a_b’ are created for the AD

exception handler edge, data store node and central buffer node respectively as

seen in Tables 7.10, 7.11 and 7.12. For each case, the table created stores to

the “place_before_node” and “place_after_node” columns records from the

“name” column of the ‘union_node’ table (from step 5) where the “xmi:type”

is equal to

‘uml:ExceptionHandler’/‘uml:DataStoreNode’/‘uml:CentralBufferNode’.

Each table is then updated storing to the “name_primary” column the records

from the “name” column of the ‘union_node’ table where the

“outgoing”/“incoming” value of the examined node is equal to the value stored

in the “incoming”/“outgoing” column of the same table (step 5).

Table 7.10 MySQL ‘exception_handler’ Table

Table 7.11 MySQL ‘datastore_table_a_b’ Table

Table 7.12 MySQL ‘central_buffer_table-a_b’ Table

10. Identify the sequence between the AD nodes to which input/output/value

pin nodes are attached, and their preceding and following edges: In this

step, the code initially identifies the rows in the table created in step 1.a where

the “xmi:type_nested” is equal to

‘uml:InputPin’/‘uml:OutputPin’/‘uml:ValuePin’ and creating a new table,

namesd ‘in_outputValue_final’, stores in the “name_primary” column the

name values found in the table created in step 1.a which store

165

input/output/value pin nodes. The code then stores in the “place_before_node”

and “place_after_node” columns the names of the edges represented as

incoming to the input/value pin nodes and outgoing from the output/value pin

nodes of the examined node. The values for the first and third columns from

the table created in step 1.b. For the online shopping AD, part of the

‘in_outputValue_final’ table, shown in Table 7.13, is created.

Table 7.13 MySQL ‘in_outputValue_final’ Table

11. Identify the sequence between the nodes and edges that are included in

expansion regions in the AD: In this step, the ‘expansionNode_final’ table is

generated tracking the rows in the table created in step 1.a where the

“xmi:type_nested” is equal to ‘uml:ExpansionRegion’. Then the “name”

values of these rows are stored in the “name_primary” column of table

‘in_outputValue_final’. Finally, the code retrieves from the table created in

step 1.b the names of the edges placed before and after of the examined nodes

and stores these names in the “place_before_node” and “place_after_node”

columns respectively. The ‘expansionNode_final’ table shown in Table 7.14

for the AD in Figure 7.4 is created. The values found in the first and third

columns of this table correspond to the incoming edge to the input expansion

node and to the outgoing edge from the output expansion node respectively.

Table 7.14 MySQL ‘expansionNode_final’ Extract Table

12. Identify the sequence of AD elements: In this step, the tables obtained from

steps 6 – 11 are unified and the ‘final_table’, part of which is presented in

Table 7.15, is created. The ‘pin_5’ value found in the “place_before_node”

column in the second row of this table corresponds to the AD initial node.

Table 7.15 MySQL ‘final_table’ Extract

166

The next three steps (steps 13 – 15) describe the generation of the mathematical

representation of the PN for the model of the online shopping process, acquiring the

data from the ‘final_table’, created in step 12.

13. Create a matrix that shows how a token is removed from each of its pre-

places, when an enabled transition fires (shows the connection from PN

places to PN transitions): A matrix with rows the values from the 1st column

of the table developed in step 12 and columns the values from the 2nd column

of the same table is created. Once records from the 1st and 2nd columns of the

‘final_table’ are in the same row, then the value ‘-1’ should be put in the

corresponding matrix cell otherwise a ‘0’ is inserted.

14. Create a matrix that shows how a token is inserted to each of its PN post-

places, when an enabled transition fires (shows the connection from PN

transitions to PN places): A similar matrix with rows the values from the 3rd

column of the table developed in step 12 and columns the values from the 2nd

column of the same table is created. Once records from the 2nd and 3rd columns

of the ‘final_table’ are in the same row, then the value ‘1’ should be put in the

corresponding matrix cell otherwise a ‘0’ is inserted.

15. Generate the mathematical form of the PN model: The mathematical

representation of the Petri net for the online shopping AD in the form of the

transpose of the incidence matrix is created by unifying the two matrices

generated in steps 13 and 14. This matrix, and part of which is shown in Table

7.16 can be found in Appendix K, part C. The matrix created in this step

consists of 49 rows, i.e. places and 41 columns, i.e. transitions.

Table 7.16 MySQL ‘Transpose_of_the_PN_Incidence Matrix’ Extract

167

7.3.2.3 Algorithm – Java Database Programming – Petri Net Initial

Marking Matrix
The initial marking matrix for the online shopping process is obtained applying the

SQL code discussed in Chapter 6 for the automated generation of the initial marking

matrix of the PN as follows:

1. Initial marking of a PN model: The ‘initial_marking’ table for the online

shopping process, part of which is viewed in Table 7.17, is created. The value

‘1’ in the “process_number_of_devices” column it is shown that ‘pin_5’ holds

one token, i.e. a customer. The matrix of the initial marking consisting of 49

rows, i.e. 49 places, can be found in Appendix K, part D, Table K.2.

Table 7.17 MySQL ‘initial_marking’ Extract

7.3.3 Automated Graphical Representation of the Petri Net Model for

the Online Shopping Process

For the graphical representation of the PN model for the online shopping process, the

steps introduced in Chapter 3 for the automated PN graphical representation have

been applied, retrieving the data form the ‘final_table’ created in step 12 (Table 7.15)

during the automated generation of the mathematical representation of the PN for the

process. A DOT file is generated executing the code introduced in section 3.4.1

(Appendix D, part A) and then importing this DOT file into the Graphviz software the

PN model for the online shopping process is obtained as presented in Figure 7.5.

The PN model obtained consists of 41 transitions and 49 places. The 41 transitions

exist in the PN are equal to the sum of the 24 opaque action nodes, the one call

behaviour action node, the one accept event action node, the one send signal action

node, and the six decision, five merge, one join and two fork control nodes that was

presented in the AD in Figure 7.4.

168

Figure 7.5 PN Model Automatically developed for the Online Shopping Process

169

A PN model has been successfully produced from the AD automatically, and thus

increased process scalability has been proven with more AD elements than in the

previous ADs considered, since the transformation of the additional AD elements to

corresponding PN structures has been achieved. The correctness of the PN model is

further explored by a formal verification and validation of the method, seen in the

following section.

7.4 Verification and Validation of Real-Life Scenarios
The correctness of the extended (generic) algorithm proposed in Chapter 6 for the PN

automation procedure is checked, as discussed in Chapter 5, by: (i) verifying that the

PN model obtained performs the correct function; and (ii) validating the PN model

obtained accurately represents the system/process architecture. This is demonstrated

via evaluation of the two PN models automatically generated for the two real-life

scenarios considered in this chapter.

The verification of the two PN models, obtained for the production system and the

online shopping process respectively, is carried out by checking both the structural

and behavioural properties of these models, using HiPS, as demonstrated in Chapter 5.

Both examined models belong to a special class of PNs, workflow-nets, satisfying the

two criteria defined by Aalst (1998), as explained in Chapter 5, section 5.3. Besides

these two criteria, a third criterion, also investigated in the same section regarding the

nets structure is met, and hence the two WF-nets are structurally verified. In addition

to the structural analysis, the two WF-nets are behaviourally verified since they satisfy

the soundness property, i.e. the two models are behaviourally live and bounded, as

also discussed in Chapter 5. Figures L.1 – L.4, in Appendix L, show the verification

analysis conducted using HIPS for the two PN models.

The validation of the two PN models, obtained for the production system and the

online shopping process, is carried out by applying the real system measurements

approach, by visually checking the behaviour of the given system and process, playing

the token game, as demonstrated in Chapter 5, section 5.4.2. For each example,

random pass/fail probabilities are considered for each PN transition and random

numbers from zero to one are generated. The PN paths are then followed comparing

the random numbers, against the pass/fail probabilities using ‘if’ conditions and

170

equation 5.1 is applied. In this equation, the initial marking and transpose of the

incidence matrix have been automatically generated in the previous sections in this

chapter, whereas the transition matrices required are manually developed. Therefore, a

simulation algorithm was developed that visually checks the removal/addition of

tokens from/to places through the PN paths, validating that the paths followed the

same route as the paths existing in the Activity Diagrams provided for the production

system and online shopping process, respectively.

7.5 Summary
This chapter demonstrated the automated PN model capability to two real-life

scenarios, a production system and an online shopping process. The examined

scenarios are extensions in complexity of the simple process examined in Chapter 6,

and include a greater number of components/activities and, by extension, more paths,

as well as control loops and all the fundamental and additional elements of the AD.

The mathematical and graphical representations of the PN models for both real-life

scenarios were obtained automatically. Finally, a formal verification and validation of

the method was also investigated proving the correctness of the automation end

models.

171

CHAPTER 8

8 Conclusions and Future Work

8.1 Introduction
The research presented in this thesis provides a powerful methodology for the

automated generation of PNs for large systems and processes including those with

control loops and dependent events. The proposed methodology accepts as input a

UML/SysML AD, as used in industry, with the topology system/process

representation. This chapter outlines the conclusions of this research, proving that all

the research objectives established in Chapter 1 have been addressed. Contributions to

knowledge are then presented. The thesis concludes with recommendations for future

work.

8.2 Conclusions
Following the research conducted in this thesis, the key conclusions drawn related to

the research objectives are:

1. Identify the most suitable UML or SysML diagram: The UML/SysML Activity

Diagram was identified as the most suitable diagram from which the topology

information of a system or process can be retrieved and used as a starting point

for the automated PN model generation. This diagram can (i) capture the

behavioural aspects of system components and process activities which are

required for reliability modelling; (ii) be applicable to a wide spectrum of

disciplines such as aerospace, engineering, telecommunications, etc.; (iii)

model complex industrial systems and processes, maximising future

applicability; and (iv) ease the communication between different business

stakeholders by providing a notation understandable by all business users.

2. Perform a detailed literature review of Petri Net model: Petri Nets are a

versatile tool suitable for complex system and process modelling and analysis.

The graphic perspective of this model can be used both as an aided design tool

and with the help of marking to obtain information for the behaviour of a

172

given system/process. A PN can also be expressed by means of mathematical

equations and used to describe the system/process behaviour.

3. Review the automated model generation methods: According to the literature

findings, FTs and PNs have received the most attention in the automated

construction of reliability models. The main limitations identified during the

literature review (literature gaps) carried out for the automated generation of

CCDs, RBDs, Markov Chains, FTs and PNs are the: (i) degree of automation

(limited capability for full automation); (ii) non-generic domain applicability;

(iii) difficulty in handling and efficiently modelling systems with many

components or complex characteristics such as control loops and dependent

events; and (iv) software dependency.

4. Develop a methodology for the automated Petri Net model generation: A

novel methodology that automatically generates PN models is introduced. The

proposed methodology can handle most of the limitations identified in the

current methods reviewed for the automated construction of reliability models,

except for the generic domain applicability of the method to systems and

processes (ii from point 3). The methodology is applicable only to processes

that consist of the most commonly used AD elements and include loops and

dependencies. The developed methodology uses as a starting point the

UML/SysML AD and applying a Java Database (MySQL) algorithm, it

generates the mathematical and graphical representations of a PN model.

5. Validate and verify the Petri Net model: Verification and validation of the PN

model to check that it performs the correct function and accurate

representation of the system architecture respectively have been conducted,

proving the correctness and completeness of the Java Database algorithm

developed for the PN automation procedure.

6. Extend the proposed methodology providing scalability: Additional

transformation rules to cover the full range of UML/SysML AD nodes have

been introduced to the Java Database algorithm. The extended methodology

has proven scalability through its application to real-life industrial systems and

processes with loops and dependencies that consist of any possible AD

element. Hence, all the limitations discussed in point 3 have been addressed.

173

To summarise, according to the conclusions, the research objectives have been

achieved, and hence the aim of this thesis has been successfully accomplished.

8.3 Contributions to Knowledge
This thesis has contributed to knowledge in the area of automated reliability model

generation in the following ways:

 Full automated PN model generation: direct transformation of an industrial

description diagram, i.e. the UML/SysML AD, of a system/process to the

corresponding Petri Net model.

 Generic applicability: the proposed methodology can handle and efficiently

model both systems and processes without targeting specific domains,

providing potential applicability to a wide spectrum of cases.

 Modelling of advanced structural characteristics of systems and processes:

capability of the proposed methodology to model real-life industrial scenarios

with control loops and dependent events, overcoming the weakness of

reviewed methods that cannot.

 Software independence: the proposed methodology is considered as software

independent since the output mathematical and graphical representations of the

PN model, are in a usable format, without further manipulation to different

software being required.

8.4 Recommendations for Future Work
Following the research outcome in this thesis, potential future work (or research

challenges) that can be carried out in various areas is outlined in this section.

8.4.1 Automated sub-PNs Construction followed by Simulation

Analysis
As discussed in Chapter 5 for the recycling IT asset process, the overall PN model,

automatically generated from the application of the Java Database algorithm in

Chapter 4, can be expanded with the help of sub-PNs, by generating one net for each

transition included in the overall PN. These sub-PNs provide a more comprehensive

understanding of the IT asset process by showing how the data provided can be

174

represented using a PN model. This expansion of the model that provides an extra

layer of model granularity can be carried out in various ways according to the data

available. For the recycling IT asset process, for which probabilistic and timed data

was given, the Java Database algorithm has been extended and the corresponding sub-

PNs have been obtained automatically. The code added produces a final PN that

consists of the sub-nets developed for the transitions of the overall PN, considering

both probabilistic and timed data. In order to provide a generic applicability,

additional cases should be investigated. Thus, further work can be carried out to

extend the methodology to automatically identify the type of given data, i.e. (i) only

probabilistic data; (ii) only timed data; or (iii) both probabilistic and timed data, to

produce the corresponding final PN.

Further to this extension, the proposed algorithm can be enhanced to support the

automated simulation analysis of the final PN models by recognising different PN

formats. Three cases need to be considered based on the data available, as discussed

earlier. Hence, the software added for the simulation should be able to recognise the

type of the final PN model automatically generated and conduct the corresponding

simulation each time. The automated simulation will aid the methodology to validate

the PN models without user’s intervention and also to acquire results that can help

decision-making with the view to the increase system’s or process’ reliability and

performance.

8.4.2 Automated Reliability Analysis

The software could be expanded to automatically return the overall system/process

unreliability, which can be useful to identify system limitations and, by extension, to

enhance system’s performance. This could be accomplished by developing an

algorithm that would accept as inputs the failure data of system’s

components/process’ activities as well as the relationships between them in order to

calculate the system/process unreliability. For the identification of system’s

components/process’ activities relationships, the Java Database algorithm, introduced

in this research study, could be enhanced with rules that would allow automatic

identification of the connectivity between components/activities such as connection in

series or parallel. For example, the AD nodes placed after a fork node could be

175

considered as parallel events, whereas two or more AD nodes connected end-to-end,

forming a single path could be considered as serial events.

8.4.3 Additional PN Model Features

The strength of this method could be enhanced by considering additional PN features

such as inhibitor arcs to restrict the process to only one token, i.e. item/device, at the

same time. This addition would increase the applicability range of the proposed

method to real-life industrial queuing systems/processes. This could be accomplished

by extending the algorithm developed for the graphical representation of the PNs to

automatically add inhibitors where needed according to the timed data provided.

Additionally, the code could be extended to automatically generate and simulate PNs

with multiple initial markings, i.e. multiple tokens residing in one/or more places.

Finally, alternative types of PNs such as Coloured PNs could be considered to be

automatically generated, by introducing new construction rules such as allowing

tokens to have a data value attached to them. All these features that add complexity to

the PN model behaviour could increase the flexibility and popularity of the proposed

method.

8.4.4 Investigation of Inputs

Another line of future investigation could include the adjustment of the proposed

methodology and expansion of the software to accept as input multiple

systems/processes that interact with each other. This extension can be beneficial since

these types of multiple interacting systems/processes are commonly met in industry.

This could be accomplished by allowing the user to enter multiple topology diagrams,

i.e. UML/SysML ADs, into the algorithm, and then generate a sub-PN model for each

UML/SysML AD and then link them together by generating an overall PN. Additional

extension of this work could be if the software accepts alternative UML/SysML

diagrams such as the BDD and IBD. This could be accomplished by: (i) examining the

structure of the XMI files obtained from the new diagrams to decide if XMI model

transformations are necessary to be conducted; (ii) introducing new transformation

rules for the elements employed in these new diagrams; and (iii) defining rules to

determine how the data retrieved from each diagram can be used for the PN

construction. This last extension of the software to accept alternative diagrams would

be beneficial in increasing the methodology’s applicability.

176

8.4.5 Representation of PN results into the UML/SysML AD

An animated Graphical User Interface (GUI), readily understandable by users, could

be built to represent the results of calculations made on the low level model (PN) into

the high level model (UML/SysML). This extension would facilitate the users to

understand how the results obtained from the simulation analysis are related to the

UML/SysML AD and, by extension, to identify limitations and make possible

recommendations to enhance the reliability and performance of examined systems and

processes. Additionally, the design and implementation of a GUI to the proposed

methodology for the automated PN model construction could potentially lead to an

increase in popularity of the methodology since it would not require the users to have

knowledge of PN formalisms.

177

178

Bibliography

AADL (2004). Society of Automotive Engineers (SAE) Avionics Systems Division

(ASD) AS-2c Subcommittee. (2004). Avionics Architecture Description Language

Standards. Draft v0.99.

Adachi, M., Papadopoulos, Y., Sharvia, S., Parker, D. and Tohdo, T. (2011). An

approach to optimisation of fault tolerant architectures using HIP-HOPS. Software

Practice and Experience, 41(11): 1303-1327.

Agarwal, B. (2013). Transformation of UML Activity Diagrams into Petri Nets for

Verification Purposes. International Journal of Engineering and Computer Science,

2(3): 798-805.

Al-Aomar, R., Ülgen, O.M. and Williams, E.J. (2015). Process simulation using

witness. Wiley, Hoboken.

Alhroob, A., Dahal, K. and Hossain, A. (2010). Transforming UML sequence diagram

to High Level Petri Net. 2nd International Conference on Software Technology and

Engineering (ICSTE), USA, (1): 260-264.

André, É., Benmoussa, M.M., and Choppy, C. (2014). Translating UML state

machines to coloured Petri Nets using Acceleo: A report. ESSS. EPTCS.

Andreadakis, S.K. and Levis, A.H. (1988). Synthesis of distributed command and

control for the outer air battle. Proceedings of the 1988 Symposium on C2 Research,

SAIC, McLean, VA.

Andrews, J. D. and Ridley, I. M. (2001). Reliability of Sequential Systems Using the

Cause-Consequence Method. Proceedings of the Institution of Mechanical Engineers,

Part E: Journal of Process Mechanical Engineering, 215(3): 207-220.

Andrews, J.D. and Henry, J.J. (1997). A computerized fault tree construction

methodology. Proceedings of the Institution of Mechanical Engineers, Part E:

Journal of Process Mechanical Engineering, 211(3): 171-183.

179

Andrews, J.D. and Moss, B. (2002). Reliability and Risk Assessment. (2nd edition).

Wiley-Blackwell.

Balci, O. (1998). Verification, Validation, and Testing. Banks, J. (ed.) The Handbook

of Simulation, ch. 10, John Wiley & Sons, Chichester.

Balci, O. (2004). Quality Assessment, Verification, and Validation of Modelling and

Simulation Applications. Proceedings of the 2004 Winter Simulation Conference,

122-129.

Banas, D. (2012). UML 2.0 ACTIVITY DIAGRAMS. Available via:

http://www.newthinktank.com

Banks, J., Gerstein, S. and Searles, S.P. (1987). Validation, and Verification of

Complex Simulations: A Survey. Proceedings of the Conference on Methodology and

Validation, 13-18.

Bao, N.Q. (2010). A proposal for a method to translate BPMN model into UML

activity diagram. Vietnamese-German University – BIS.

 Bock. C. (2005). UML 2 Activity and Action Models Part 6: Structures Activities.

Journal of Object Technology, 4(4): 43-66.

Boiteau, M., Dutuit, Y., Rauzy, A. and Signoret, J.-P. (2006). The data-flow language

in use: modelling of production availability of a multi-state system. Reliability

Engineering and System Safety, 91(7): 747-755.

Bouissou, M. (2006). A Generalised of Dynamic Fault Trees through Boolean logic

Driven Markov Processes (BDMP). ESREL, IEEE Computer Society, 2(1): 708-717.

Brameret P.-A., Rauzy, A. and Roussel, J.-M. (2015). Automated generation of partial

Markov chain from high level descriptions. Reliability Engineering and System Safety,

139: 179-187.

Cardoso, A.J.S (2002). Quality of Service and Semantic Composition of Workflows.

(Doctoral dissertation, University of Georgia).

Cassandras, C.G. and Lafortune, S. (2008). Introduction to Discrete Event Systems.

(2nd edition). New York: Springer.

http://www.newthinktank.com/

180

Chew, S.P. (2010). Systems Reliability Modelling for Phased Missions with

Maintenance Free Operating Periods. Ph.D. thesis, Loughborough University.

Chew, S.P., Dunnett, S.J. and Andrews, J.D. (2008). Phased mission modelling of

systems with maintenance-free operating periods using simulated petri nets.

Reliability Engineering and System Safety, 91, 980-994.

Codd, E.F. (1970). A Relational Model of Data for Large Shared Data Banks.

Communications of the ACM, 15(3): 162-166.

Colom, J.M. and Silva, M. (1991). Convex geometry and semiflows in P/T nets. A

comparative study of algorithms for computation of minimal p-semiflows. Lecture

Notes in Computer Science. Advances in Petri Nets 1990, 483: 79-112. Springer-

Verlag, Berlin.

Connolly, T.M. and Begg, C.E. (2005). Database systems: A practical approach to

design, implementation, and management. (4. [rev.] ed.), Harlow: Addison-Wesley.

DB-Engines (2018). https://www.db-engines.com

de Niz, D. (2007). Diagrams and Languages for Model-Based Software Engineering

of Embedded Systems: UML and AADL. Software Engineering Institute, Carnegie

Mellon University.

De Saqui-Sannes, P. and Hugues, P. (2012). Combining SysML and AADL for the

design, validation and implementation of critical systems. ERTSS 2012 (Embedded

Real Time Software and Systems), France.

Delligatti, L. (2013). SysML Distilled: A Brief Guide to the Systems Modelling

Language. Addison-Wesley.

Desel, J. and Reisig, W. (1998). Place/Transition Petri Nets. Reisig, W. and

Rozenberg, G. (eds.) APN 1998. LNCS, 1491: 122-173. Berlin: Springer.

Dugan, J.B., Sullivan, K.J. and Coppit, D. (2000). Developing a Low-Cost, High-

Quality Software for Dynamic Fault-Tree Analysis. IEEE Transactions on Reliability,

49(1):49-59.

Eclipse. (2015). Available via http://www.eclipse.org/

https://www.db-engines.com/
http://www.eclipse.org/

181

Evensen, K.D. and Weiss, K.A. (2010). A comparison and evaluation of real-time

software systems modelling languages. Aerospace Conference, Georgia, Atlanta.

Feiler, P.H, Gluch, D., Hudak, J. and Lewis, B. (2004). Embedded Systems

Architecture Analysis Using SAE AADL. Carnegie Mellon Software Engineering

Institute. Carnegie Mellon Institute CMU/SEI-2004-TN-005.

Feiler, P.H. and Lewis, B. (2004). The SAE AADL Standard: An Architecture

Analysis & Design Language for Embedded Real-Time Systems. IFIP World

Computer Congress 2004 – Proceedings of the Workshop on Architecture Description

Languages, Toulouse, France.

Feiler, P.H., Glunch, D.P. and Hudak, J.J. (2006). The Architecture Analysis of

Design Language (AADL): An Introduction. Carnegie Mellon Software Engineering

Institute. Carnegie Mellon Institute CMU/SEI-2006-TN-011.

Fleming, K.N. and Kalinowski, A.M. (1983). An Extension of the Beta Factor Method

for Systems with High Levels of Redundancy. PLG-0289. Newport Beach, CA: PLG.

Fowler, M. (2004). UML Distilled Third edition: A Brief Guide to the Standard Object

Modelling Language. Addison-Wesley Pearson Education.

Friedenthal, S., Moore, A. and Steiner R. (2011). A Practical Guide to SysML: The

Systems Modelling Language. 2nd ed. Morgan Kaufmann, Burlington.

Fruchterman, T.M.J. and Reingold, E.M. (1991). Graph Drawing by Force-directed

Placement. Software-Practice and Experience, 21(11):1129-1164.

Girault, C. and Valk, R. (2003). Petri Nets for Systems Engineering: A Guide to

Modelling, Verification, and Applications. Springer-Verlag, Berlin.

Glavic, M. (2006). Agents and Multi-Agent Systems: A Short Introduction for Power

Engineers. Technical report, University of Liege Electrical Engineering and Computer

Science Department.

Gulati, R. (1996). A modular approach to static and dynamic fault tree analysis.

Master’s Thesis. University of Virginia, Department of Electrical Engineering.

182

Gulati, R. and Dugan, J. B. (1997). A modular approach for analysing static and

dynamic fault trees. Proceedings of the Annual Reliability and Maintainability

Symposium, USA, (1):57-63.

Hause, M. C. (2006). The Systems Modeling Language – SysML. INCOSE EuSEC

Symposium, Edinburgh.

Heller, S. (1997). Introduction to C++. Academic Press. USA.

Hillston, J. (2017). Performance Modelling – Lecture 16: Model Validation and

Verification. School of Informatics, The University of Scotland. Available via:

https://pdfs.semanticsscholar.org/presentation/5482/9f2231bff0c2ad6b2c8dbce4bee15

1469839.pdf

HiPS – Hierarchical petri net simulator. (2017). Shinshu University. Available via:

http://sourceforge.net/projects/hops-tools/.

Jančar, P., Esparza, J. and Moller, F (1999). Petri Nets and Regular Processes. Journal

of Computer and System Sciences, 59(3): 476-503.

Jensen, K. (1990). A High-level Language for System Design and Analysis. G.

Rozenberg (ed.).

Jensen, K. (1991). Coloured Petri Nets: a High-Level Language for System Design

and Analysis. Advances in Petri Nets 1990, Rozenberg, G. (ed.), Lecture Notes in

Computer Science, (483):342-416. Springer-Verlag, Berlin.

Johansson, L., Cronquist, B. and Kjellin, H. (2007). Visualisation as a tool in action

case research. 6th European Conference on Research Methods in Business and

Management, Lisbon, Portugal.

Joshi, A., Vestal, S. and Binns, P. (2007). Automatic Generation of Static Fault Trees

form AADL Models. Proceedings of the IEEE/IFIP Conference on Dependable

Systems and Networks’ Workshop on Dependable Systems, Edinburgh, UK.

Kapos, G.D., Dalakas, V, Nikolaidou, M. and Anagnostopoulos, D. (2014). An

integrated framework for automated simulation of SysML using DEVS. Transactions

of the Society for Modeling and Simulation International, 90(6): 717-744.

https://pdfs.semanticsscholar.org/presentation/5482/9f2231bff0c2ad6b2c8dbce4bee151469839.pdf
https://pdfs.semanticsscholar.org/presentation/5482/9f2231bff0c2ad6b2c8dbce4bee151469839.pdf
http://sourceforge.net/projects/hops-tools/

183

Karban, R., Weilkiens, T., Hauber, R., Zamparelli, M., Diekmann, R. and Hein, A.,

M. (2011). Cookbook for MBSE with SysML. MBSE initiative – SE2 challenge team.

Katayama, T., Zhao, Z., Kita, Y., Yamaba, H. and Okazaki, N. (2014). Proposal of a

Method to Build Markov Chain Models from UML Diagrams for Communication

Delay Testing in Distributed Systems. Journal of Robotics, Networking and Artificial

Life, 1(2): 120-124.

Khabbazi, M.R., Hasan, M.K., Sulaiman, R. and Shapi΄i A. (2013). Business Process

Modelling in Production Logistics: Complementary Use of BPMN and UML. Middle-

East Journal of Scientific Research, 15(4):516-529.

Landeghem R.V. and Bobeanu C.-V. (2002). Formal modelling of supply chain: an

incremental approach using Petri Nets. Proceedings of 14th SCS Europe BVBA.

Dresden, Germany.

Lanus, M., Yin. L. and Trivedi, K.S. (2003). Hierarchical composition and

aggregation of state-based availability and performability models. IEEE Transactions

on Reliability, 52(1): 44-52.

Lapp, S. A. and Powers, G. J. (1977). Computer-aided Synthesis of Fault Trees. IEEE

Transactions on Reliability, 26(1):2-13.

Law, A. (2005). How to Build Valid and Credible Simulation Models. Proceeding of

the 2005 Winter Simulation Conference.

Li, Z.W. and Zhou, M.C. (2009). Deadlock resolution in automated manufacturing

systems: A novel Petri net approach. Springer-Verlag, London.

Liu, X., Ren, Y., Wang, Z., and Liu, L. (2013). Modelling method of SysML-based

reliability block diagram. Proceeding 2013 International Conference on Mechatronic

Sciences, Electrical Engineering and Computer (MEC): 206-209.

Majdara, A. and Wakabayashi, T. (2010). Automated fault tree construction for a

sample chemical plant. Journal of Risk and Reliability, 224(3): 207-216.

Mandrioli, D., Morzenti, A., Pezze, M., San Pietro, P. and Silva, S. (1996). A Petri

Net and logic approach to the specification and verification of real time systems.

184

Formal Methods for Real Time Computing (C. Heitmeyer and D. Mandrioli, eds.).

New York: Wiley.

Marsan, M.A. (1990). Stochastic Petri Nets: An Elementary Introduction. Rozenberg,

G. (de.) Advances in Petri Nets 1989, LNCS, 424, 1-29. Springer-Verlag, Berlin.

MathWorks. (2018). Available via http://www.mathworks.com/

Mhairi, S.K. (2009) The Impact of Petri Nets in System-of-Systems Engineering.

Durham theses, Durham University. Available via Durham E-Theses Online

http://etheses.dur.ac.uk/212

Mheni F., Nguyen, N. and Choley, J.Y. (2014). Automatic fault tree generation from

SysML system models. IEEE/ASME International Conference on Advanced

Intelligent Mechatronics (AIM), 715-720.

Microsoft (2015). http://www/microsoft.com

Mosleh, A., Fleming, K.N., Parry, G.W., Paula, H.M., Worledge, D.H. and Rasmuson,

D.M. (1988). Procedures for Treating Common Cause Failures in Safety and

Reliability Studies. NUREG/CR-4780 (EPRI NP-5613), PLG-0547, 1.

MSDN Microsoft. (2017). http://msdn.microsoft.com

Mura, I. and Bondavalli, A. (2001). Markov Regenerative Stochastic Petri Nets to

Model and Evaluate the Dependability of Phased Missions. IEEE Transactions on

Computers, 50(1):1337-1351.

Murata, T. (1989). Petri Nets: Properties, Analysis and Applications. Proceedings of

the IEEE, 77(4): 541-580.

MySQL Workbench. (2018). Available via http://www.mysql.com

Obaidat, M.S. and Boudriga, N.A. (2010). Fundamentals of performance of computer

and telecommunications systems. John Wiley & Sons, Hoboken, New Jersey.

Object Management Group (OMG). (2005). OMG Unified Modeling Language (OMG

UML): Infrastructure, Version 2.0. Available via www.omg.org

http://www.mathworks.com/
http://etheses.dur.ac.uk/212
http://www/microsoft.com
http://msdn.microsoft.com/
http://www.mysql.com/
http://www.omg.org/

185

Object Management Group (OMG). (2015). OMG Unified Modeling Language (OMG

UML), Version 2.5. https://www.omg.org/spec/UML/2.5/About-UML/

Papadopoulos, Y. and Maruhn, M. (2001). Model-based Synthesis of Fault Trees from

Matlab-Simulink models. International Conference on Dependable Systems and

Networks (DSN 2001), (1): 77-82.

Papadopoulos, Y., McDermid, J.A. and Heiner, G. (2001). Analysis and synthesis of

the behaviour of complex programmable electronic systems in conditions of failure.

Reliability Engineering and System Safety, 71(3): 229-247.

Papadopoulos, Y. and Grante, C. (2005). Evolving car designs using model-based

automated safety analysis and optimisation technique. The Journal of Systems and

Software, 76(1): 77-89.

Petri, C.A. (1962). Kommunikation with Automaten. English Translation, 1966:

Communication with Automata, Technical Report RADC-TR-65-377, Rome Air Dev.

Centre, New York.

Pilone, D. and Pitman, N. (2005). UML2.0 in a Nutshell. (In a Nutshell (O’Reilly)).

O’Reilly Media.

Point, G. and Rauzy, A. (1999). AltaRica: Contraint automata as a description

language. Journal Europèen des Systèmes Automatisès, 33(8-9):1033-1052.

PostgreSQL. (2018). http://www.postgresql.org

Prosvirnova, T. and Rauzy, A. (2013). AltaRica 3.0 project: compile Guarded

Transition Systems into Fault Trees. European Safety, Reliability and Reliability

Conference, ESREL 2013, 1121- 1128.

Proth, J.-M. and Xie, X. (1996). Petri nets: a tool for design and management of

manufacturing systems. John Wiley & Sons.

Rauzy, A. (2002). Mode automata and their compilation into fault trees. Reliability

Engineering and System Safety, 78: 1-12.

Raychaudhuri, S. (2008). Introduction to Monte Carlo Simulation. Proceedings of the

40th Conference on Winter Simulation. Miami, New York, 91-100.

https://www.omg.org/spec/UML/2.5/About-UML/
http://www.postgresql.org/

186

Recalde, L., Teruel, E. and Silva, M. (1998). On linear algebraic techniques for

liveness analysis of P/T systems. Journal of Circuits, Systems and Computers, 8(1):

223-265.

Reza, H. and Chatterjee, A. (2014). Mapping AADL to Petri Net Tool-Sets Using

PNML Framework. Journal of Software Engineering and Application, 7: 920-933.

Richardeau, F. and Pham, T.T.L. (2013). ‘Reliability Calculation of Multilevel

Converters: Theory and Applications.’ IEEE Transactions on Industrial Electronics,

60(10): 4225-4233.

Riggs, S. and Krosing, H. (2010). PostgreSQL 9 Administration Cookbook: Solve

real-world PostgreSQL problems with over 100 simple, yet incredibly effective

recipes. Birmingham: Packt Publishing Ltd. ISBN 978-1-849510-28-8.

Robidoux, R., Xu, H., Xing, L., & Zhou, M. (2009). Automated Modelling of

Dynamic Reliability Block Diagrams Using Coloured Petri Nets. IEEE Transactions

on Systems, Man, and Cybernetics – Part A: Systems and Humans, 40(2): 337-351.

Robinson, S. (1994). Successful Simulation: A Practical Approach to Simulation

Projects. Maidenhead, UK: McGraw-Hill.

Robinson, S. (1997). Simulation model verification and validation: Increasing the

user’s confidence. Proceeding of the Winter Simulation Conference, 53-59.

Salem, S.L., Apostolakis, G.E. and Okrent, D. (1977). A new methodology for the

computer-aided construction of fault trees. Annals of Nuclear Energy, 4(9-10): 417-

433.

Salem, S.L., Wu, J.S. and Apostolakis, G.E. (1979). Decision Table Development and

Application to the Construction of Fault Trees, Nuclear Technology, 42: 51-64.

Sargent, R.G. (1992). Validation and Verification of Simulation Models. Proceedings

of 1992 Winter Simulation Conference, Arlington, Virginia, USA, 104-114.

Schneeweiss, W.G. (1999). Petri nets for reliability modelling: in the fields of

engineering safety and dependability. LiLoLe Verlag GmbH, Hagen, Germany.

187

Söding. R. (2009). A Brief Introduction into UML 2. Available via:

http://www.metagear.de

SPARX Systems. (2018). Available via: http://www.sparxsystems.com

Stockwell, K.S. and Dunnett, S.J. (2013). Automatic construction of a reliability

model for a phased mission system. Proceedings of the 20th Advances in Risk and

Reliability Technology Symposium, 192-204.

Taibi, M., Ioualalen M. and Abdmeziem, R. (2013). An Automatic Petri-net Generator

for Modelling Multi-agent Systems. Proceedings of the 8th International Conference

on Software Engineering Advances, 128-133.

Tangkawarow I.R.H.T. and Waworuntu, J. (2016). A Comparative of business process

modelling techniques. IOP Conference Series: Materials Science and Engineering,

128(1): 1-16.

Tsai, L.S. and Chang, Y. (1995). Timing Constraint Petri Nets and Their Application

to Schedulability Analysis of Real-Time System Specifications. IEEE Transactions on

Software Engineering, 21(1): 32-49.

 Valaityte, A., Dunnett, S.J. and Andrews, J.D. (2010). Development of an algorithm

for automated cause-consequence diagram construction. International Journal of

Reliability and Safety, 4(1): 46-68.

van der Aalst, W.M.P. (1998). The Application of Petri nets to Workflow

Managements. Journal of Circuits Systems and Computers, 8(1): 21-66.

van der Aalst, W.M.P. (1999). Formalization and Verification of Event-driven Process

Chains. Information and Software Technology, 41(10): 639-650.

van der Aalst, W.M.P. (2011). Alpha Algorithm: Limitations. Process Mining:

Discovery, Conformance and Enhancement of Business Processes. Springer-Verlag,

Berlin.

van der Aalst, W.M.P. (2011). Analysis of Process Models: Introduction, state space

analysis and simulation in CPN Tools. [Power Point Presentation] Available via:

cpntools.org/wp-content/uploads/2018/01/analysis.pdf (Accessed: 07 June 2017).

http://www.metagear.de/
http://www.sparxsystems.com/

188

van der Aalst, W.M.P., Weijters, A.J.M.M. and Măruşter, L. (2004). Workflow

mining: Discovering process models from event logs. IEEE Transactions on

Knowledge and Data Engineering, 16(9): 1128-1142.

van Landeghem, R. and Bobeanu, C.-V. (2002). Formal modelling of supply chain:

An incremental approach using Petri nets. 14th European Simulations Symposium and

Exhibition.

Venkatesh, K., Zhou, M. and Claudill, R., J. (1994). Comparing Ladder Logic

Diagrams and Petri Nets for Sequence Controller Design Through a Discrete

Manufacturing System. IEEE Transactions on Industrial Electronics, 41(6): 611-619.

Villani, E., Miyagi, P.E. and Valette, R. (2007). Modelling and Analysis of Hybrid

Supervisory Systems: A Petri Net Approach. Advances in Industrial Control, Springer-

Verlag, London.

Villemeur, A. (1992). Reliability, Availability, Maintainability and Safety Assessment,

Vol.1: Methods and Techniques. Wiley, New York.

Volovoi, V. V. (2004). Modeling of system reliability Petri Nets with aging tokens.

Reliability Engineering and System Safety, 84(2): 149-161.

Volovoi, V.V. (2013). Abridged Petri Nets. ArXiv, arXiv: 1312.2865.

Vyzaite, G., Dunnett, S.J. and Andrews, J.D. (2005). Cause-consequence analysis of

non-repairable phased missions. Reliability Engineering & System Safety, 91(4):398-

406.

Walker, M. and Papadopoulos, Y. (2009). Qualitative temporal analysis: towards a

full implementation of the fault tree handbook. Control Engineering Practise, 71(10):

1115-1125.

Wang, J. (2006). Petri nets dynamic event-driven system modelling. Paul Fishwick

(eds), Handbook of Dynamic System Modeling, 1-17. CRC Press.

Wang, P. (2017). Civil Aircraft Electrical Power System Safety Assessment: Issues

and Practices. Civil Aviation University of China, Tianjin, China, 270-276.

189

Xie, G, Xue, D. and Xi, S. (1993). Tree-Expert: A tree based expert system for fault

tree construction. Reliability Engineering and System Safety, 40(1): 295-309.

Zhao, C., Bhushan, M. and Venkatasubramanian, V. (2005). PHASUITE: An

automated HAZOP analysis tool for chemical processes: Part I. Knowledge

Engineering Framework. Process Safety and Environmental Protection, 83(B6): 509-

532.

Zhou, M.C. and DiCesare, F. (1989). Adaptive design of Petri Net controllers for error

recovery in automated manufacturing systems. IEEE Transactions on Systems, Man,

and Cybernetics, 19(5): 963-973.

Zille, V., Bérenguer, C., Grall, A. and Despujols, A. (2010). Simulation of maintained

multicomponent systems for dependability assessment. In Faulin, Javier and Juan,

Angel A. and Martorell, Sebastian and Ramirez-Marquez, J.E. (eds), Simulation

Methods for Reliability and Availability of Complex Systems, Springer Series in

Reliability Engineering, 12(1): 253-272. London: Springer London.

190

Appendix A - Simple Process Example (XMI File)
Appendix A includes the XMI file for the simple process shown in Chapter 3.

<?xml version="1.0" encoding="UTF-8"?>

<uml:Model xmi:version="20131001"

xmlns:xmi="http://www.omg.org/spec/XMI/20131001"

xmlns:uml="http://www.eclipse.org/UML 2/5.0.0/UML"

xmi:id="_vGtecNaPEeeXUKMyPHN3Zw" name="RootElement">

 <packagedElement xmi:type="uml:Activity" xmi:id="_vIoKANaPEeeXUKMyPHN3Zw"

name="Activity1" node="_xBDrQNaPEeeXUKMyPHN3Zw _yMFT8NaPEeeXUKMyPHN3Zw

_0KiksNaPEeeXUKMyPHN3Zw _2ctboNaPEeeXUKMyPHN3Zw _XoMwINaQEee33Op70iFb5A

_YsEn8NaQEee33Op70iFb5A _aBN18NaQEee33Op70iFb5A _b33OgNaQEee33Op70iFb5A">

 <edge xmi:type="uml:ControlFlow" xmi:id="_f-3gINaQEee33Op70iFb5A"

target="_0KiksNaPEeeXUKMyPHN3Zw" source="_xBDrQNaPEeeXUKMyPHN3Zw"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="_gyJXMNaQEee33Op70iFb5A"

target="_b33OgNaQEee33Op70iFb5A" source="_0KiksNaPEeeXUKMyPHN3Zw"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="_hjulINaQEee33Op70iFb5A"

name="action_1_pass" target="_2ctboNaPEeeXUKMyPHN3Zw"

source="_b33OgNaQEee33Op70iFb5A"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="_iV_IgNaQEee33Op70iFb5A"

name="action_1_fail" target="_XoMwINaQEee33Op70iFb5A"

source="_b33OgNaQEee33Op70iFb5A"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="_jNf_UNaQEee33Op70iFb5A"

target="_aBN18NaQEee33Op70iFb5A" source="_2ctboNaPEeeXUKMyPHN3Zw"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="_j433kNaQEee33Op70iFb5A"

target="_aBN18NaQEee33Op70iFb5A" source="_XoMwINaQEee33Op70iFb5A"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="_klTfwNaQEee33Op70iFb5A"

target="_YsEn8NaQEee33Op70iFb5A" source="_aBN18NaQEee33Op70iFb5A"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="_lRWGYNaQEee33Op70iFb5A"

target="_yMFT8NaPEeeXUKMyPHN3Zw" source="_YsEn8NaQEee33Op70iFb5A"/>

 <node xmi:type="uml:InitialNode" xmi:id="_xBDrQNaPEeeXUKMyPHN3Zw"

name="pin" outgoing="_f-3gINaQEee33Op70iFb5A"/>

 <node xmi:type="uml:ActivityFinalNode" xmi:id="_yMFT8NaPEeeXUKMyPHN3Zw"

name="pout" incoming="_lRWGYNaQEee33Op70iFb5A"/>

 <node xmi:type="uml:OpaqueAction" xmi:id="_0KiksNaPEeeXUKMyPHN3Zw"

name="Action_1" incoming="_f-3gINaQEee33Op70iFb5A"

outgoing="_gyJXMNaQEee33Op70iFb5A"/>

 <node xmi:type="uml:OpaqueAction" xmi:id="_2ctboNaPEeeXUKMyPHN3Zw"

name="Action_2" incoming="_hjulINaQEee33Op70iFb5A"

191

outgoing="_jNf_UNaQEee33Op70iFb5A"/>

 <node xmi:type="uml:OpaqueAction" xmi:id="_XoMwINaQEee33Op70iFb5A"

name="Action_3" incoming="_iV_IgNaQEee33Op70iFb5A"

outgoing="_j433kNaQEee33Op70iFb5A"/>

 <node xmi:type="uml:OpaqueAction" xmi:id="_YsEn8NaQEee33Op70iFb5A"

name="Action_4" incoming="_klTfwNaQEee33Op70iFb5A"

outgoing="_lRWGYNaQEee33Op70iFb5A"/>

 <node xmi:type="uml:MergeNode" xmi:id="_aBN18NaQEee33Op70iFb5A"

name="Merge_1" incoming="_jNf_UNaQEee33Op70iFb5A _j433kNaQEee33Op70iFb5A"

outgoing="_klTfwNaQEee33Op70iFb5A"/>

 <node xmi:type="uml:DecisionNode" xmi:id="_b33OgNaQEee33Op70iFb5A"

name="Decision_1" incoming="_gyJXMNaQEee33Op70iFb5A"

outgoing="_hjulINaQEee33Op70iFb5A _iV_IgNaQEee33Op70iFb5A"/>

 </packagedElement>

</uml:Model>

192

Appendix B – SQL Code [AT]
Appendix B shows the SQL code developed for the automated generation of the

transpose of the PN incidence matrix [AT], discussed in Chapter 3.

package data;
import java.sql.*;

public class incidence_matrix_s2s{
 static String t1;
 // JDBC driver name and database URL
 static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
 static final String DB_URL = "jdbc:mysql://127.0.0.1:3306/sql";
 // Database credentials
 static final String USER = "root";
 static final String PASS = "Xristina23";

 public static void main(String[] args) throws SQLException {
 Connection con = null;
 Statement stmt = null;
 PreparedStatement pst = null;
 ResultSet rs = null;

 try {
 con = DriverManager.getConnection(DB_URL, USER, PASS);
String code1 ="drop table if exists edge_xmi;"
 + "CREATE TABLE edge_xmi (id int NOT NULL AUTO_INCREMENT
PRIMARY KEY,`xmi:type` VARCHAR(200) NULL,`xmi:id` VARCHAR(200) NULL,
`name` VARCHAR(200) NULL, `source` varchar(200)null, `target` VARCHAR(200)
NULL) ;";
String code2 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/Activity_Diagram_S2S.uml' INTO TABLE
edge_xmi ROWS IDENTIFIED BY '<edge>' ; "
 + "update edge_xmi as t1 inner join edge_xmi as t2 on
(t1.`name`=t2.`name`) and t1.`xmi:id` <> t2.`xmi:id` set t1.name='place_'
;"
 + "drop table if exists place_name ;"
 + "CREATE TABLE place_name as SELECT id, `xmi:type`, `xmi:id`,
CONCAT(name,'', id) AS name, source, target FROM edge_xmi where
edge_xmi.name='place_' ;"
 + "drop table if exists edge_place_xmi ;"
 + "CREATE TABLE edge_place_xmi SELECT * FROM place_name UNION
SELECT * FROM edge_xmi ;"
 + "ALTER IGNORE TABLE `edge_place_xmi` ADD UNIQUE (id,
`xmi:id`) ;"
 + "drop table if exists node_xmi ;"
 + "CREATE TABLE node_xmi (id int NOT NULL AUTO_INCREMENT
PRIMARY KEY, `xmi:type` VARCHAR(200) NULL, `xmi:id` VARCHAR(200) NULL,
name VARCHAR(200) NULL, incoming VARCHAR(200) NULL, outgoing
varchar(200)null);";

String code3 = " LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/Activity_Diagram_S2S.uml' INTO TABLE
node_xmi ROWS IDENTIFIED BY '<node>'; ";
String code4 = "drop table if exists double_nodes_outgoing ;"
 + "create table double_nodes_outgoing as select * from node_xmi
where outgoing like '%_% _%' ;"

193

 + "drop table if exists numbers ;"
 + "create table numbers (n int not null) ;"
 + "insert into numbers (n) values (1), (2), (3), (4), (5), (6),
(7), (8), (9),(10), (11), (12), (13), (14), (15) ;"
 + "drop table if exists double_separate_nodes ;"
 + "create table double_separate_nodes as select
double_nodes_outgoing.id, `xmi:type`, `xmi:id`, `name`, incoming,
SUBSTRING_INDEX(SUBSTRING_INDEX(double_nodes_outgoing.outgoing, '_',
numbers.n), '_', -1) outgoing from numbers inner join double_nodes_outgoing
on CHAR_LENGTH(double_nodes_outgoing.outgoing)-
CHAR_LENGTH(REPLACE(double_nodes_outgoing.outgoing, '_', ''))>=numbers.n-1
order by id, n,`xmi:type`, `xmi:id`, `name`, incoming, outgoing ;"
 + "DELETE FROM double_separate_nodes WHERE outgoing = '' ;"
 + "update double_separate_nodes set outgoing = concat('_',
outgoing) ;"
 + "alter table `double_separate_nodes` change column outgoing
outgoing varchar(255) after `id` ;"
 + "drop table if exists lessthan17 ;"
 + "create table lessthan17 (id int NOT NULL AUTO_INCREMENT
PRIMARY KEY) as SELECT `outgoing`, `xmi:type`, `xmi:id`, `name`, incoming
FROM double_separate_nodes WHERE LENGTH(outgoing) < 22 ;"
 + "drop table if exists merge_shorter_than22 ;"
 + "create table merge_shorter_than22 (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY) as SELECT GROUP_CONCAT(outgoing SEPARATOR ''),
`xmi:type`, `xmi:id`, `name`, incoming FROM lessthan17 GROUP BY name ;"
 + "ALTER TABLE `merge_shorter_than22` CHANGE COLUMN
`GROUP_CONCAT(outgoing SEPARATOR '')` `outgoing` VARCHAR(255) NOT NULL ;"
 + "drop table if exists union_1 ;"
 + "create table union_1 select * from merge_shorter_than22
union all select * from double_separate_nodes ;"
 + "DELETE FROM union_1 where LENGTH(outgoing) < 21 ;"
 + "drop table if exists double_nodes_incoming ;"
 + "create table double_nodes_incoming as select * from node_xmi
where incoming like '%_% _%' ;"
 + "drop table if exists double_separate_nodes ;"
 + "create table double_separate_nodes as select
double_nodes_incoming.id, `xmi:type`, `xmi:id`, `name`, outgoing,
SUBSTRING_INDEX(SUBSTRING_INDEX(double_nodes_incoming.incoming, '_',
numbers.n), '_', -1) incoming from numbers inner join double_nodes_incoming
on CHAR_LENGTH(double_nodes_incoming.incoming)-
CHAR_LENGTH(REPLACE(double_nodes_incoming.incoming, '_', ''))>=numbers.n-1
order by id, n,`xmi:type`, `xmi:id`, `name`, incoming, outgoing ;"
 + "DELETE FROM double_separate_nodes WHERE incoming = '' ;"
 + "update double_separate_nodes set incoming = concat('_',
incoming) ;"
 + "alter table `double_separate_nodes` change column incoming
incoming varchar(255) after `id` ;"
 + "drop table if exists lessthan17 ;"
 + "create table lessthan17 (id int NOT NULL AUTO_INCREMENT
PRIMARY KEY) SELECT `outgoing`,`xmi:type`, `xmi:id`, `name`, incoming FROM
double_separate_nodes WHERE LENGTH(incoming) < 22; "
 + "drop table if exists merge_shorter_than22 ;"
 + "create table merge_shorter_than22 (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY) as SELECT GROUP_CONCAT(incoming SEPARATOR ''),
`xmi:type`, `xmi:id`, `name`, outgoing FROM lessthan17 GROUP BY name ;"
 + "ALTER TABLE `merge_shorter_than22` CHANGE COLUMN
`GROUP_CONCAT(incoming SEPARATOR '')` `incoming` VARCHAR(255) NOT NULL ;"
 + "drop table if exists union_2a ;"
 + "create table union_2a select * from merge_shorter_than22

194

union all select * from double_separate_nodes ;"
 + "drop table if exists union_2 ;"
 + "create table union_2 as select id, `outgoing`, `xmi:type`,
`xmi:id`, `name`, incoming from union_2a ;"
 + "DELETE FROM union_2 where LENGTH(incoming) < 21 ;"
 + "drop table if exists unique_activities ;"
 + "create table unique_activities as select id, outgoing,
`xmi:type`, `xmi:id`, `name`, incoming from node_xmi ;"
 + "DELETE FROM unique_activities where incoming like '%_% _%'
;"
 + "DELETE FROM unique_activities where outgoing like '%_% _%'
;"
 + "drop table if exists union_node ;"
 + "create table union_node select * from union_1 union select *
from union_2 union select * from unique_activities ;"
 + "alter table union_node drop column id ;"
 + "alter table union_node add column id int NOT NULL
AUTO_INCREMENT PRIMARY KEY FIRST ;"
 + "drop table if exists union_node_table1 ;"
 + "CREATE TABLE union_node_table1 (`place_before_node`
VARCHAR(200) NULL, `place_after_node` VARCHAR(200) NULL) as SELECT id,
`xmi:type`, `xmi:id`, `name`, incoming, outgoing FROM union_node where
(union_node.`xmi:type`='uml:OpaqueAction') or
(union_node.`xmi:type`='uml:MergeNode') or
(union_node.`xmi:type`='uml:DecisionNode');"
 + "ALTER TABLE union_node_table1 CHANGE COLUMN `xmi:id`
`xmi:id_primary` VARCHAR(255) NULL; "
 + "ALTER TABLE union_node_table1 CHANGE COLUMN `name`
`name_primary` VARCHAR(255) NULL ;"
 + "drop table if exists union_node_node ;"
 + "CREATE TABLE union_node_node AS SELECT m.*, u2.`xmi:id`,
u2.`name` FROM union_node_table1 m INNER JOIN edge_place_xmi u2 ON
(m.`incoming`= u2.`xmi:id`) or (m.`outgoing`= u2.`xmi:id`) ;"
 + "UPDATE union_node_table1 t1 INNER JOIN union_node_node t2 ON
t1.outgoing = t2.`xmi:id` SET t1.place_after_node = t2.name ;"
 + "UPDATE union_node_table1 t1 INNER JOIN union_node_node t2 ON
t1.incoming = t2.`xmi:id` SET t1.place_before_node = t2.name ;"
 + "delete from union_node_table1 WHERE (place_before_node is
null) and (place_after_node is null) ; "
 + "drop table if exists final_table ;"
 + "CREATE TABLE final_table SELECT `place_before_node`,
`name_primary`, `place_after_node` FROM union_node_table1;"
 + "drop table if exists initial_final_table ;"
 + "CREATE TABLE initial_final_table (`transition_before_node`
VARCHAR(200) NULL, `transition_after_node` VARCHAR(200) NULL) as SELECT id,
`xmi:type`, `xmi:id`, `name` FROM union_node where
(union_node.`xmi:type`='uml:ActivityFinalNode') or
(union_node.`xmi:type`='uml:FlowFinalNode') or
(union_node.`xmi:type`='uml:InitialNode');"
 + "ALTER TABLE initial_final_table CHANGE COLUMN `xmi:id`
`xmi:id_primary` VARCHAR(255) NULL ; "
 + "drop table if exists final_node;"
 + "CREATE TABLE final_node AS SELECT m.*, u1.target, u1.source
FROM initial_final_table m INNER JOIN edge_place_xmi u1 ON
(m.`xmi:id_primary`= u1.target);"
 + "ALTER TABLE `final_node` ADD COLUMN `xmi:id` VARCHAR(255)
NOT NULL ;"

195

 + "ALTER TABLE `final_node` DROP COLUMN `transition_after_node`
;"
 + "UPDATE final_node t1 INNER JOIN edge_place_xmi t2 ON
t1.target = t2.target SET t1.`xmi:id` = t2.`xmi:id` ;"
 + "UPDATE final_node INNER JOIN union_node ON final_node.source
= union_node.`xmi:id` SET final_node.transition_before_node =
union_node.name ;"
 + "drop table if exists final_node_table ;"
 + "create table final_node_table as select
`transition_before_node`,`name` from final_node ;"
 + "ALTER TABLE final_node_table CHANGE COLUMN `name`
`place_after_node` VARCHAR(255) NULL ;"
 + "ALTER TABLE final_node_table CHANGE COLUMN
`transition_before_node` `name_primary` VARCHAR(255) NULL ;"
 + "ALTER TABLE final_node_table ADD COLUMN `place_before_node`
VARCHAR(255) NULL FIRST;"
 + "drop table if exists initial_node ;"
 + "CREATE TABLE initial_node AS SELECT m.*, u2.target,
u2.source FROM initial_final_table m INNER JOIN edge_place_xmi u2 ON
(m.`xmi:id_primary`= u2.source) ;"
 + "ALTER TABLE `initial_node` ADD COLUMN `xmi:id` VARCHAR(255)
NOT NULL ;"
 + "UPDATE initial_node t1 INNER JOIN edge_place_xmi t2 ON
t1.source = t2.source SET t1.`xmi:id` = t2.`xmi:id` ;"
 + "ALTER TABLE `initial_node` DROP COLUMN
`transition_before_node` ;"
 + "UPDATE initial_node INNER JOIN union_node ON
initial_node.target = union_node.`xmi:id` SET
initial_node.transition_after_node = union_node.name ;"
 + "drop table if exists initial_node_table; "
 + "create table initial_node_table as select `name`,
`transition_after_node` from initial_node ;"
 + "ALTER TABLE initial_node_table CHANGE COLUMN `name`
`place_before_node` VARCHAR(255) NULL ;"
 + "ALTER TABLE initial_node_table CHANGE COLUMN
`transition_after_node` `name_primary` VARCHAR(255) NULL ;"
 + "ALTER TABLE initial_node_table ADD COLUMN `place_after_node`
VARCHAR(255) NULL ;"
 + "update final_table as t1 inner join final_node_table as t2
on (t1.`name_primary`=t2.`name_primary`) set
t1.place_after_node=t2.place_after_node;"
 + "update final_table as t1 inner join initial_node_table as t2
on (t1.`name_primary`=t2.`name_primary`) set
t1.place_before_node=t2.place_before_node;"
 + "drop table if exists null_after ;"
 + "CREATE TABLE null_after as SELECT * FROM final_table where
place_after_node is null and name_primary in (select name_primary from
final_table GROUP BY name_primary HAVING COUNT(*)>1) ;"
 + "UPDATE null_after na, final_table mt SET na.place_after_node
= mt.place_after_node WHERE na.name_primary = mt.name_primary and
mt.place_after_node is not null and mt.place_before_node is null ;"
 + "drop table if exists null_before ;"
 + "CREATE TABLE null_before as SELECT * FROM final_table where
place_before_node is null and name_primary in (select name_primary from
final_table GROUP BY name_primary HAVING COUNT(*)>1) ;"
 + "UPDATE null_before na, final_table mt SET
na.place_before_node = mt.place_before_node WHERE na.name_primary =
mt.name_primary and mt.place_before_node is not null and
mt.place_after_node is null ;"

196

 + "drop table if exists final_table ;"

 + "CREATE TABLE final_table select * from null_after union
select * from null_before union select * from final_table ; "
 + "DELETE n1 FROM final_table n1 JOIN final_table n2 ON
n1.name_primary = n2.name_primary AND n1.place_before_node =
n2.place_before_node and n1.place_after_node is null ;"
 + "DELETE n1 FROM final_table n1 JOIN final_table n2 ON
n1.place_after_node = n2.place_after_node AND n1.place_before_node is null
AND n1.name_primary = n2.name_primary ;"
 + "alter table final_table add column id int AUTO_INCREMENT
primary key;"
 + "drop table negative_records;"
 + "create table negative_records (id int not null
AUTO_INCREMENT PRIMARY KEY) as select distinct place_before_node,
name_primary from final_table;"
 + "drop table positive_records;"
 + "create table positive_records (id int not null
AUTO_INCREMENT PRIMARY KEY) as select distinct name_primary,
place_after_node from final_table;";

 pst = con.prepareStatement(code1);
boolean isResult1 = pst.execute();
 pst = con.prepareStatement(code2);
boolean isResult2 = pst.execute();
 pst = con.prepareStatement(code3);
boolean isResult3 = pst.execute();
 pst = con.prepareStatement(code4);
boolean isResult4 = pst.execute();

 String code111 = "drop table if exists negative;"
 + "SET group_concat_max_len=15000;"
 + "SELECT CONCAT('create table
negative as SELECT place_before_node,', GROUP_CONCAT(sums), 'FROM
negative_records GROUP BY id') FROM (SELECT distinct CONCAT('(case when
negative_records.name_primary = ''', name_primary, ''' then -1 else 0
end) as `', name_primary, '`')sums FROM negative_records GROUP BY id) s
INTO @sql;"
 + "PREPARE stmt FROM @sql;
"
 + "EXECUTE stmt; "
 + "DEALLOCATE PREPARE
stmt";
 pst = con.prepareStatement(code111); boolean
isResult111 = pst.execute();

 String code222 = "drop
table if exists positive;"
 + "SELECT CONCAT('create
table positive as SELECT place_after_node,', GROUP_CONCAT(sums), 'FROM
positive_records GROUP BY id') FROM (SELECT distinct CONCAT('(case when
positive_records.name_primary = ''', name_primary, ''' then 1 else 0 end)
as `', name_primary, '`')sums FROM positive_records GROUP BY id) s INTO
@sql;"
 + "PREPARE
stmt FROM @sql;"
 + "EXECUTE
stmt;"

197

 + "DEALLOCATE
PREPARE stmt;"
 + "drop table if exists overall;"
 + "create
table overall SELECT * FROM positive UNION SELECT * FROM negative;"
 + "drop table
if exists schema_table; "
 + "create
table schema_table as select * from overall;"
 + "drop table
if exists column_table; "
 + "create
table column_table (primary_id int NOT NULL AUTO_INCREMENT PRIMARY KEY) as
select column_name from information_schema.columns where
table_name='overall';"
 + "DELETE
FROM column_table where primary_id=1;"
 + "drop table
if exists matrix_pass_fail;"
 + "drop table
if exists incidence_matrix_single_device;"
 + "drop table
if exists table_union1";
 pst =
con.prepareStatement(code222); boolean isResult222 =
pst.execute();

 String code334 = "set session
sql_mode = 'NO_ENGINE_SUBSTITUTION';"
 + "DROP PROCEDURE IF
EXISTS `Te`;"
 + "SET group_concat_max_len= 150000;";
 code334 += "CREATE PROCEDURE `Te`()";
 code334 += "BEGIN ";
 code334 += "create table
matrix_pass_fail (column_name varchar(150000)) ";
 code334 += " SELECT
@query7:=GROUP_CONCAT(CONCAT('sum(`',column_name,'`)`',column_name,'`')) "
 + "AS column_name from
column_table order by CHAR_LENGTH(column_name); ";
 code334 += "PREPARE stmt FROM
@query7; ";
 code334 += "EXECUTE stmt;";
 code334 += "DEALLOCATE PREPARE
stmt;";
 code334 += "END ";

 pst.execute(code334); boolean
isResult334 = pst.execute();

 String query1
= "Call Te();";

 pst = con.prepareStatement(query1);
boolean isResultA = pst.execute();

 }
 catch(SQLException e){}
 try{ if (rs != null) rs.close();

198

 if (pst != null) pst.close();
 if (con != null) con.close();}
 catch(Exception e){}

 try{
 con

=DriverManager.getConnection("jdbc:mysql://127.0.0.1:3306/sql",
"root","Xristina23");

 pst =con.prepareStatement("select * from
matrix_pass_fail");
 rs= pst.executeQuery();

 while (rs.next())
 t1=(("create table table_union1 as select place_after_node,")
+ rs.getString("column_name")+ (" ") +("from overall group by
place_after_node;"));
 System.out.println(t1);
 }
 catch(SQLException e){} try{ if (rs != null) rs.close(); if
(pst != null) pst.close();
 if (con != null) con.close();}catch(Exception e){}
 try{
 //STEP 2: Register JDBC driver
 Class.forName("com.mysql.jdbc.Driver");
 //STEP 3: Open a connection
 System.out.println("Connecting to a selected
database...");
 con = DriverManager.getConnection(DB_URL, USER, PASS);
 System.out.println("Connected database
successfully...");
 //STEP 4: Execute a query
 System.out.println("Creating table in given
database...");
 stmt = con.createStatement();
 String sql1 = t1;
 stmt.executeUpdate(sql1);

 System.out.println("Created table in given
database...");
 }catch(SQLException se){
 //Handle errors for JDBC
 se.printStackTrace();
 }catch(Exception e){
 //Handle errors for Class.forName
 e.printStackTrace();
 }finally{
 //finally block used to close resources
 try{
 if(stmt!=null)
 con.close();
 }catch(SQLException se){
 }// do nothing
 try{
 if(con!=null)
 con.close();
 }catch(SQLException se){
 se.printStackTrace();

199

 }//end finally try
 }//end try
 try {
 con = DriverManager.getConnection(DB_URL, USER, PASS);
 String t2=("create table
incidence_matrix_single_device as select * from table_union1 GROUP by
place_after_node asc;");

 String query = "select * from
incidence_matrix_single_device;";
 pst = con.prepareStatement(t2); boolean
isResultt2 = pst.execute();
 pst = con.prepareStatement(query); boolean
isResult = pst.execute();
 do {
 rs = pst.getResultSet();
 ResultSetMetaData rsmd = rs.getMetaData();
 int columnsNumber = rsmd.getColumnCount();
 int col = rsmd.getColumnCount();
 for (int i = 1; i <= col; i++){
 String col_name = rsmd.getColumnName(i);
 System.out.print(col_name + " ");
 }
 System.out.println("
");
 // Iterate through the data in the result set and
display it.
 while (rs.next()) {
 //Print one row
 for(int i = 1 ; i <= columnsNumber; i++){
 System.out.print(rs.getString(i) + "
"); //Print one element of a row
 }
 System.out.println();
 }
 isResult = pst.getMoreResults();
 }
 while (isResult);
 }
 finally {
 if (rs != null) {
 rs.close(); }
 if (pst != null) {
 pst.close();}
 if (con != null) {
 con.close();
 }
 }
 System.out.println("Goodbye!");
 }
 }//end main
 //end JDBCExample

200

Appendix C – SQL Code [M0]
Appendix C presents the SQL code developed for the automated generation of the PN

initial marking matrix [M0], discussed in Chapter 3.

package step1_initial_marking;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
public class initial_marking {
 public static void main(String[] args) throws SQLException {
 Connection con = null;
 PreparedStatement pst = null;
 ResultSet rs=null;
 String cs =
"jdbc:mysql://localhost:3306/sql?allowMultiQueries=true";
 String user = "root";
 String password = "Xristina23";
 try {
 con = DriverManager.getConnection(cs, user, password);
 String code1 = "SET SQL_SAFE_UPDATES=0;"
 + "drop table if exists initial_marking;"
 + "create table initial_marking (primary_id int not null
auto_increment primary key, activity varchar(250),
process_number_of_devices int);"
 + "insert into initial_marking (activity) select
place_after_node from incidence_matrix_single_device;"
 + "drop table if exists m0_marking;"
 + "create table m0_marking (primary_id int not null
auto_increment primary key) SELECT IFNULL(process_number_of_devices, 0)
FROM initial_marking;"
 + "ALTER TABLE `m0_marking` CHANGE COLUMN
`IFNULL(process_number_of_devices, 0)` `process_number_of_devices` int;"
 + "alter table initial_marking drop column
process_number_of_devices;"
 + "drop table if exists initial_marking_final;"
 + "CREATE TABLE initial_marking_final AS (SELECT
initial_marking.*, m0_marking.process_number_of_devices FROM
initial_marking INNER JOIN m0_marking ON initial_marking.primary_id =
m0_marking.primary_id);"
 + "UPDATE initial_marking_final SET
initial_marking_final.process_number_of_devices = "
 + "REPLACE(initial_marking_final.process_number_of_devices,
'0', '1') "
 + " where initial_marking_final.activity like 'pin%';" ;

 pst = con.prepareStatement(code1);
 boolean isResult1 = pst.execute();

 String query = "select * from initial_marking_final;";
 pst = con.prepareStatement(query);
 boolean isResult = pst.execute();
 do {
 rs = pst.getResultSet();

201

 ResultSetMetaData rsmd = rs.getMetaData();
 int columnsNumber = rsmd.getColumnCount();
 int col = rsmd.getColumnCount();
 for (int i = 1; i <= col; i++){
 String col_name = rsmd.getColumnName(i);
 System.out.print(col_name + " ");
 }
 System.out.println(" ");
 // Iterate through the data in the result set and display
it.
 while (rs.next()) {
 //Print one row
 for(int i = 1 ; i <= columnsNumber; i++){
 System.out.print(rs.getString(i) + " ");
//Print one element of a row
 }
 System.out.println();
 }
 isResult = pst.getMoreResults();
 }
 while (isResult);
 } finally {
 if (rs != null) {
 rs.close();
 }
 if (pst != null) {
 pst.close();
 }
 if (con != null) {
 con.close();
 }

 }
 }
 }

202

Appendix D – Graphical Representation of PN Model

Part A – SQL Code for the Automated PN Generation

Appendix D, part A includes the SQL code created for the automated generation of

the graphical representation of PNs, discussed in Chapter 3.

package step1_overall_visualisation_PN;
import java.io.InputStream;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.ArrayList;
import java.sql.PreparedStatement;
public class Visualisation_PN_Overall {
 public static void main (String[] args) {
 Connection conn = null;
 PreparedStatement statement = null;
 ResultSet rs = null;
 try{

conn=DriverManager.getConnection("jdbc:mysql://localhost:3306/sql?verifySer
verCertificate=false&useSSL=true", "root","Xristina23");
 //PreparedStatement statement
=conn.prepareStatement("select Input,Output from input_output");
 statement =conn.prepareStatement("select * from
final_table");
 rs= statement.executeQuery();

 System.out.println("strict digraph OverallPetriNet{ size=\"40\"
;node [margin=0 fontcolor=black fontsize=17 width=0.6 height=1.2 shape=box
color=blue];");
 while (rs.next())
 System.out.println(('"') + rs.getString("name_primary") + ('"')
+(";"));
 }
 catch(SQLException e){}
 try{
 if (rs != null)
 rs.close();
 if (statement != null)
 statement.close();
 if (conn != null)
 conn.close();
 }catch(Exception e){}

 try{

conn=DriverManager.getConnection("jdbc:mysql://localhost:3306/sql?verifySer
verCertificate=false&useSSL=true", "root","Xristina23");

 statement =conn.prepareStatement("select *
from final_table");
 rs= statement.executeQuery();

203

 System.out.println("node [margin=0
fontcolor=black fontsize=17 width=0.3 shape=circle color=blue];");

 while (rs.next())
 System.out.println(('"') +
rs.getString("place_before_node") + ('"') + (";")+ ('"') +
rs.getString("place_after_node")+ ('"') + (";"));
 }
 catch(SQLException e){}
 try{
 if (rs != null)
 rs.close();
 if (statement != null)
 statement.close();
 if (conn != null)
 conn.close();
 }catch(Exception e){}

 try{

 conn=DriverManager.getConnection("jdbc:mysql://localhost:3306/sql?ver
ifyServerCertificate=false&useSSL=true", "root","Xristina23");
 statement
=conn.prepareStatement("select * from final_table");
 rs= statement.executeQuery();
 System.out.println("edge [color=Blue,
style=normal] ");
 while (rs.next())
 System.out.println(('"')
+rs.getString("name_primary") + ('"') +(" -> ") + ('"') +
rs.getString("place_after_node")+ ('"') + (";"));
 }
 catch(SQLException e){}
 try{
 if (rs != null)
 rs.close();
 if (statement != null)
 statement.close();
 if (conn != null)
 conn.close();
 }catch(Exception e){}

 try{

conn=DriverManager.getConnection("jdbc:mysql://localhost:3306/sql?verifySer
verCertificate=false&useSSL=true", "root","Xristina23");
 statement
=conn.prepareStatement("select * from final_table");
 rs= statement.executeQuery();

 while (rs.next())
 System.out.println(('"') +
rs.getString("place_before_node") + ('"') + (" -> ") + ('"') +
rs.getString("name_primary")+ ('"') + (";"));
 }

 catch(SQLException e){}
 try{

204

 if (rs != null)
 rs.close();
 if (statement != null)
 statement.close();
 if (conn != null)
 conn.close();
 }catch(Exception e){}
 System.out.println(
"overlap=false label=\"Automatic Layout of the Overall Petri Net Model for
the handler_case\" fontsize=13; } ");

 }
}

Part B – DOT File for the PN Model Generation (GraphViz Input)

Appendix D, part B covers the DOT file obtained from the execution of the SQL code

shown in Appendix D, part A, for the recycling IT asset process, discussed in Chapter

4.

strict digraph OverallPetriNet{ size="20"; node [margin=0 fontcolor=black
fontsize=27 width=0.6 height=1.2 shape=box color=blue];
 "Visual_Inspection"; "Visual_Inspection"; "D_VI"; "D_VI"; "D_FT"; "D_FT";
"D_DE"; "D_DE"; "D_R"; "D_R"; "Strip_Scrap"; "Strip_Scrap"; "Strip_Scrap"; "M";
"M"; "Asset_Track"; "Functional_Test"; "Data_Erasure"; "Repair";
"Cleaning_De_Labelling";
 node [margin=0 fontcolor=black fontsize=27 width=0.3 shape=circle color=blue];
"ATp";"place_1"; "Rp";"place_1"; "place_1";"VIp"; "place_1";"VIf";
"place_2";"FTp"; "place_2";"FTf"; "place_3";"DEp"; "place_3";"DEf";
"place_4";"Rf"; "place_4";"Rp"; "VIf"; "SSp"; "DEf"; "SSp"; "Rf"; "SSp"; "SSp";
"pout"; "CDp"; "pout"; "pin"; "ATp"; "VIp";"place_2"; "FTp";"place_3";
"FTf";"place_4"; "DEp"; "CDp";
edge [color=Blue, style=normal]
 "ATp" -> "Visual_Inspection"; "Rp" -> "Visual_Inspection"; "place_1" ->
"D_VI";"place_1" -> "D_VI"; "place_2" -> "D_FT";"place_2" -> "D_FT"; "place_3" -
> "D_DE";"place_3" -> "D_DE"; "place_4" -> "D_R";"place_4" -> "D_R"; "VIf" ->
"Strip_Scrap"; "DEf" -> "Strip_Scrap"; "Rf" -> "Strip_Scrap"; "SSp" -> "M"; "CDp" -
> "M"; "pin" -> "Asset_Track"; "VIp" -> "Functional_Test"; "FTp" ->
"Data_Erasure"; "FTf" -> "Repair"; "DEp" -> "Cleaning_De_Labelling";
 "Visual_Inspection" -> "place_1"; "Visual_Inspection" -> "place_1"; "D_VI" ->
"VIp"; "D_VI" -> "VIf"; "D_FT" -> "FTp"; "D_FT" -> "FTf"; "D_DE" -> "DEp";
"D_DE" -> "DEf"; "D_R" -> "Rf"; "D_R" -> "Rp"; "Strip_Scrap" -> "SSp";
"Strip_Scrap" -> "SSp"; "Strip_Scrap" -> "SSp"; "M" -> "pout"; "M" -> "pout";
"Asset_Track" -> "ATp"; "Functional_Test" -> "place_2"; "Data_Erasure" ->
"place_3"; "Repair" -> "place_4"; "Cleaning_De_Labelling" -> "CDp"; }

205

Appendix E – Recycling IT Asset Process Example (XMI File)
Appendix E includes the XMI file for the recycling IT asset process shown in Chapter

4.

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="20131001"
xmlns:xmi="http://www.omg.org/spec/XMI/20131001"
xmlns:uml="http://www.eclipse.org/UML 2/5.0.0/UML"
xmi:id="_BUZs8LJTEeaTirlhAX5dxQ" name="RootElement">
 <packagedElement xmi:type="uml:Activity" xmi:id="_BxHeILJTEeaTirlhAX5dxQ"
name="Activity1" node="_Ftmh0LJTEeaTirlhAX5dxQ _InKv8LJTEeaTirlhAX5dxQ
_MAZVkLJTEeaTirlhAX5dxQ _M-adALJTEeaTirlhAX5dxQ _NahxQLJTEeaTirlhAX5dxQ
_OIQZ8LJTEeaTirlhAX5dxQ _PslTcLJTEeaTirlhAX5dxQ _QDcUQLJTEeaTirlhAX5dxQ
_ex_zYLJTEeaTirlhAX5dxQ _iwxWELJTEeaTirlhAX5dxQ _jxsAgLJTEeaTirlhAX5dxQ
_ksMg8LJTEeaTirlhAX5dxQ _ltzH4LJTEeaTirlhAX5dxQ _9vls8LJTEeaTirlhAX5dxQ">
 <edge xmi:type="uml:ControlFlow" xmi:id="_pWiwMLJTEeaTirlhAX5dxQ"
target="_InKv8LJTEeaTirlhAX5dxQ" source="_Ftmh0LJTEeaTirlhAX5dxQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_0ZeSILJTEeaTirlhAX5dxQ"
name="ATp" target="_MAZVkLJTEeaTirlhAX5dxQ"
source="_InKv8LJTEeaTirlhAX5dxQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_Ao6DcLJUEeaTirlhAX5dxQ"
name="place_1" target="_iwxWELJTEeaTirlhAX5dxQ"
source="_MAZVkLJTEeaTirlhAX5dxQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_FrRKELJUEeaTirlhAX5dxQ"
name="VIp" target="_M-adALJTEeaTirlhAX5dxQ"
source="_iwxWELJTEeaTirlhAX5dxQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_JXp8QLJUEeaTirlhAX5dxQ"
name="VIf" target="_OIQZ8LJTEeaTirlhAX5dxQ"
source="_iwxWELJTEeaTirlhAX5dxQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_NbtAgLJUEeaTirlhAX5dxQ"
name="place_2" target="_jxsAgLJTEeaTirlhAX5dxQ" source="_M-
adALJTEeaTirlhAX5dxQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_N9kXcLJUEeaTirlhAX5dxQ"
name="FTp" target="_NahxQLJTEeaTirlhAX5dxQ"
source="_jxsAgLJTEeaTirlhAX5dxQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_QEscALJUEeaTirlhAX5dxQ"
name="FTf" target="_PslTcLJTEeaTirlhAX5dxQ"
source="_jxsAgLJTEeaTirlhAX5dxQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_XK0xMLJUEeaTirlhAX5dxQ"
name="place_3" target="_ksMg8LJTEeaTirlhAX5dxQ"
source="_NahxQLJTEeaTirlhAX5dxQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_Ysk30LJUEeaTirlhAX5dxQ"
name="DEp" target="_QDcUQLJTEeaTirlhAX5dxQ"
source="_ksMg8LJTEeaTirlhAX5dxQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_d8He0LJUEeaTirlhAX5dxQ"
name="DEf" target="_OIQZ8LJTEeaTirlhAX5dxQ"
source="_ksMg8LJTEeaTirlhAX5dxQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_h5c3ELJUEeaTirlhAX5dxQ"
name="place_4" target="_ltzH4LJTEeaTirlhAX5dxQ"
source="_PslTcLJTEeaTirlhAX5dxQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_jOjo0LJUEeaTirlhAX5dxQ"
name="Rf" target="_OIQZ8LJTEeaTirlhAX5dxQ"
source="_ltzH4LJTEeaTirlhAX5dxQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_lLpAkLJUEeaTirlhAX5dxQ"
name="Rp" target="_MAZVkLJTEeaTirlhAX5dxQ"
source="_ltzH4LJTEeaTirlhAX5dxQ"/>

206

 <edge xmi:type="uml:ControlFlow" xmi:id="_pJgkULJUEeaTirlhAX5dxQ"
name="SSp" target="_9vls8LJTEeaTirlhAX5dxQ"
source="_OIQZ8LJTEeaTirlhAX5dxQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_vA0V8LJUEeaTirlhAX5dxQ"
name="CDp" target="_9vls8LJTEeaTirlhAX5dxQ"
source="_QDcUQLJTEeaTirlhAX5dxQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_1tIc8LJUEeaTirlhAX5dxQ"
target="_ex_zYLJTEeaTirlhAX5dxQ" source="_9vls8LJTEeaTirlhAX5dxQ"/>
 <edge xmi:type="uml:ObjectFlow" xmi:id="_XOBqQLJtEeevDqMum9V7CA"
target="_iwxWELJTEeaTirlhAX5dxQ" source="_MAZVkLJTEeaTirlhAX5dxQ">
 <guard xmi:type="uml:LiteralBoolean" xmi:id="_XP7HsLJtEeevDqMum9V7CA"
value="true"/>
 <weight xmi:type="uml:LiteralInteger"
xmi:id="_XP7uwLJtEeevDqMum9V7CA" value="1"/>
 </edge>
 <node xmi:type="uml:InitialNode" xmi:id="_Ftmh0LJTEeaTirlhAX5dxQ"
name="pin" outgoing="_pWiwMLJTEeaTirlhAX5dxQ"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_InKv8LJTEeaTirlhAX5dxQ"
name="Asset_Track" incoming="_pWiwMLJTEeaTirlhAX5dxQ"
outgoing="_0ZeSILJTEeaTirlhAX5dxQ"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_MAZVkLJTEeaTirlhAX5dxQ"
name="Visual_Inspection" incoming="_0ZeSILJTEeaTirlhAX5dxQ
_lLpAkLJUEeaTirlhAX5dxQ" outgoing="_Ao6DcLJUEeaTirlhAX5dxQ
_XOBqQLJtEeevDqMum9V7CA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_M-adALJTEeaTirlhAX5dxQ"
name="Functional_Test" incoming="_FrRKELJUEeaTirlhAX5dxQ"
outgoing="_NbtAgLJUEeaTirlhAX5dxQ"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_NahxQLJTEeaTirlhAX5dxQ"
name="Data-Erasure" incoming="_N9kXcLJUEeaTirlhAX5dxQ"
outgoing="_XK0xMLJUEeaTirlhAX5dxQ"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_OIQZ8LJTEeaTirlhAX5dxQ"
name="Strip_Scrap" incoming="_JXp8QLJUEeaTirlhAX5dxQ
_d8He0LJUEeaTirlhAX5dxQ _jOjo0LJUEeaTirlhAX5dxQ"
outgoing="_pJgkULJUEeaTirlhAX5dxQ"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_PslTcLJTEeaTirlhAX5dxQ"
name="Repair" incoming="_QEscALJUEeaTirlhAX5dxQ"
outgoing="_h5c3ELJUEeaTirlhAX5dxQ"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_QDcUQLJTEeaTirlhAX5dxQ"
name="Cleaning_De_Labelling" incoming="_Ysk30LJUEeaTirlhAX5dxQ"
outgoing="_vA0V8LJUEeaTirlhAX5dxQ"/>
 <node xmi:type="uml:ActivityFinalNode" xmi:id="_ex_zYLJTEeaTirlhAX5dxQ"
name="pout" incoming="_1tIc8LJUEeaTirlhAX5dxQ"/>
 <node xmi:type="uml:DecisionNode" xmi:id="_iwxWELJTEeaTirlhAX5dxQ"
name="D_VI" incoming="_Ao6DcLJUEeaTirlhAX5dxQ _XOBqQLJtEeevDqMum9V7CA"
outgoing="_FrRKELJUEeaTirlhAX5dxQ _JXp8QLJUEeaTirlhAX5dxQ"/>
 <node xmi:type="uml:DecisionNode" xmi:id="_jxsAgLJTEeaTirlhAX5dxQ"
name="D_FT" incoming="_NbtAgLJUEeaTirlhAX5dxQ"
outgoing="_N9kXcLJUEeaTirlhAX5dxQ _QEscALJUEeaTirlhAX5dxQ"/>
 <node xmi:type="uml:DecisionNode" xmi:id="_ksMg8LJTEeaTirlhAX5dxQ"
name="D_DE" incoming="_XK0xMLJUEeaTirlhAX5dxQ"
outgoing="_Ysk30LJUEeaTirlhAX5dxQ _d8He0LJUEeaTirlhAX5dxQ"/>
 <node xmi:type="uml:DecisionNode" xmi:id="_ltzH4LJTEeaTirlhAX5dxQ"
name="D_R" incoming="_h5c3ELJUEeaTirlhAX5dxQ"
outgoing="_jOjo0LJUEeaTirlhAX5dxQ _lLpAkLJUEeaTirlhAX5dxQ"/>
 <node xmi:type="uml:MergeNode" xmi:id="_9vls8LJTEeaTirlhAX5dxQ"
name="M" incoming="_pJgkULJUEeaTirlhAX5dxQ _vA0V8LJUEeaTirlhAX5dxQ"
outgoing="_1tIc8LJUEeaTirlhAX5dxQ"/>
 </packagedElement>
</uml:Model>

207

Appendix F

Part A – Validation – PN Visual Check (Token Game)

This section covers the MATLAB code for the visual check of the PN model

generated for recycling IT asset process, as discussed in Chapter 5.

n=1000;
x=rand(n,1);
 % path1 - [AT VI(pass) FT(pass) DE(pass) CD M]

 if x(1,:)<=prob(1,1) % Asset_Track (pass)
 if x(1,:)<=prob(3,1) % D_VI (pass)
 if x(1,:)<=prob(5,1) % D_FT (pass)
 if x(1,:)<=prob(9,1) % D_DE (pass)
 if x(1,:)<=prob(11,1) % Cleaning_De_Labelling
(pass)
 if x(1,:)<=prob(12,1) % M (pass)
 Mn=M0+(M_AT_CD*T_AT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_CD*T_VI)
 Mnew=Mn;
 Mn=Mnew+(M_AT_CD*T_D_VI);
 Mnew=Mn;
 Mn=Mnew+(M_AT_CD*T_FT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_CD*T_D_FT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_CD*T_DE);
 Mnew=Mn;
 Mn=Mnew+(M_AT_CD*T_D_DE);
 Mnew=Mn;
 Mn=Mnew+(M_AT_CD*T_CD);
 Mnew=Mn;
 Mn=Mnew+(M_AT_CD*T_M);
 Mnew=Mn
 end
 end
 end
 end
 end
 end

 % path2 - [AT VI(pass) FT(pass) DE(fail) SS M]
 if x(1,:)<=prob(1,1) % Asset_Track (pass)
 if x(1,:)<=prob(3,1) % D_VI (pass)
 if x(1,:)<=prob(5,1) % D_FT (pass)
 if x(1,:)>prob(9,1) % D_DE (fail)
 if x(1,:)<=prob(10,1) % Strip_Scrap (pass)
 if x(1,:)<=prob(12,1) % M (pass)
 Mn=M0+(M_AT_SS*T_AT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_SS*T_VI);
 Mnew=Mn;
 Mn=Mnew+(M_AT_SS*T_D_VI);
 Mnew=Mn;
 Mn=Mnew+(M_AT_SS*T_FT);

208

 Mnew=Mn;

 Mn=Mnew+(M_AT_SS*T_D_FT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_SS*T_DE);
 Mnew=Mn;
 Mn=Mnew+(M_AT_SS*T_D_DE);
 Mnew=Mn;
 Mn=Mnew+(M_AT_SS*T_SS);
 Mnew=Mn;
 Mn=Mnew+(M_AT_SS*T_M);
 Mnew=Mn;
 end
 end
 end
 end
 end
 end

 % path3 - [AT VI(fail SS M]
 if x(1,:)<=prob(1,1) % Asset_Track (pass)
 if x(1,:)>prob(3,1) % D_VI (fail)
 if x(1,:)<=prob(10,1) % Strip_Scrap (pass)
 if x(1,:)<=prob(12,1) % M (pass)
 Mn=M0+(M_AT_VIf_SS*T_AT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_VIf_SS*T_VI);
 Mnew=Mn;
 Mn=Mnew+(M_AT_VIf_SS*T_D_VI);
 Mnew=Mn;
 Mn=Mnew+(M_AT_VIf_SS*T_SS);
 Mnew=Mn;
 Mn=Mnew+(M_AT_VIf_SS*T_M);
 Mnew=Mn;
 end
 end
 end
 end

 % path4 - [AT VI(pass) FT(fail) R(fail) SS M]
 if x(1,:)<=prob(1,1) % Asset_Track (pass)
 if x(1,:)<=prob(3,1) % D_VI (pass)
 if x(1,:)>prob(5,1) % D_FT (fail)
 if x(1,:)>prob(7,1) % D_R (fail)
 if x(1,:)<=prob(10,1) % Strip_Scrap (pass)
 if x(1,:)<=prob(12,1) % M (pass)
 Mn=M0+(M_AT_Rf_SS*T_AT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rf_SS*T_VI);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rf_SS*T_D_VI);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rf_SS*T_FT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rf_SS*T_D_FT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rf_SS*T_R);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rf_SS*T_D_R);

209

 Mnew=Mn;

 Mn=Mnew+(M_AT_Rf_SS*T_SS);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rf_SS*T_M);
 Mnew=Mn;
 end
 end
 end
 end
 end
 end

 % path5 - [AT VI(pass) FT(fail) R(pass) VI(pass) FT(pass) DE(pass)
CD M]
 if x(1,:)<=prob(1,1) % Asset_Track (pass)
 if x(1,:)<=prob(3,1) % D_VI (pass)
 if x(1,:)>prob(5,1) % D_FT (fail)
 if x(1,:)<=prob(7,1) % D_R (pass)
 Mn=M0+(M_AT_Rp_CD*T_AT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_CD*T_VI);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_CD*T_D_VI);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_CD*T_FT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_CD*T_D_FT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_CD*T_R);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_CD*T_D_R);
 Mnew=Mn;
 if x(1,:)<=prob(3,1) % D_VI (pass)
 if x(1,:)<=prob(5,1) % D_FT (pass)
 if x(1,:)<=prob(9,1) % D_DE (pass)
 if x(1,:)<=prob(11,1) %
Cleaning_De_Labelling (pass)
 if x(1,:)<=prob(12,1) % M
(pass)
 Mn=Mnew+(M_AT_Rp_CD2*T_VI);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_CD2*T_D_VI)
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_CD2*T_FT)
 Mnew=Mn;

Mn=Mnew+(M_AT_Rp_CD2*T_D_FT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_CD2*T_DE);
 Mnew=Mn;

Mn=Mnew+(M_AT_Rp_CD2*T_D_DE);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_CD2*T_CD);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_CD2*T_M);
 Mnew=Mn;
 end
 end

210

 end
 end
 end
 end
 end
 end
 end

% path6 - [AT VI(pass) FT(fail) R(pass) VI(pass) FT(pass) DE(fail) SS
M]
 if x(1,:)<=prob(1,1) % Asset_Track (pass)
 if x(1,:)<=prob(3,1) % D_VI (pass)
 if x(1,:)>prob(5,1) % D_FT (fail)
 if x(1,:)<=prob(7,1) % D_R (pass)
 Mn=M0+(M_AT_Rp_SS*T_AT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_SS*T_VI);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_SS*T_D_VI);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_SS*T_FT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_SS*T_D_FT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_SS*T_R);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_SS*T_D_R);
 Mnew=Mn;
 if x(1,:)<=prob(3,1) % D_VI (pass)
 if x(1,:)<=prob(5,1) % D_FT (pass)
 if x(1,:)>prob(9,1) % D_DE (fail)
 if x(1,:)<=prob(10,1) % Strip_Scrap
(pass)
 if x(1,:)<=prob(12,1) % M
(pass)
 Mn=Mnew+(M_AT_Rp_SS2*T_VI);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_SS2*T_D_VI);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_SS2*T_FT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_SS2*T_D_FT);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_SS2*T_DE);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_SS2*T_D_DE);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_SS2*T_SS);
 Mnew=Mn;
 Mn=Mnew+(M_AT_Rp_SS2*T_M);
 Mnew=Mn;
 end
 end
 end
 end
 end
 end
 end
 end
 end

211

Part B – Validation – PN Model Numerical Simulation

This section covers the MATLAB code for the numerical simulation of the PN model

generated for recycling IT asset process, as discussed in Chapter 5.

n=1000;
x=rand(n,1); % generate random n numbers
y=rand(n,1);
z=rand(n,1);
a=rand(n,1);
b=rand(n,1);
% real_activity_time %
% create Asset Track time based on MATLAB table data
activity_difference=max_time-min_time;

c_activity_dif=double(activity_difference);
c_AT=x*(c_activity_dif(1,1));

c_activity=double(min_time);
t_Asset_Track=c_AT+(c_activity(1,1));
% estimate the average time for the Asset Track activity
avg_t_AT= mean(t_Asset_Track);

% create Visual Inspection time based on MATLAB table data
c_VI=x*(c_activity_dif(2,1));
t_Visual_Inspection=c_VI+(c_activity(2,1));
% estimate the average time for the Visual_Inspection activity
avg_t_VI= mean(t_Visual_Inspection);

% create Functional Test time based on MATLAB table data
c_FT=x*(c_activity_dif(4,1));
t_Functional_Test=c_FT + (c_activity(4,1));
% estimate the average time for the FT activity
avg_t_FT= mean(t_Functional_Test);

% create Data Erasure time based on MATLAB table data
c_DE=x*(c_activity_dif(8,1));
t_Data_Erasure =c_DE+(c_activity(8,1));
% estimate the average time for the DE activity
avg_t_DE= mean(t_Data_Erasure);

% create Repair time based on MATLAB table data
c_R=x*(c_activity_dif(6,1));
t_Repair=c_R+(c_activity(6,1));
% estimate the average time for the R activity
avg_t_R= mean(t_Repair);

% create Cleaning Delabelling time based on MATLAB table data
c_CD=x*(c_activity_dif(11,1));
t_Cleaning_Delabelling=c_CD+(c_activity(11,1));
% estimate the average time for the CD activity
avg_t_CD= mean(t_Cleaning_Delabelling);

% create Strip & Scrap time based on MATLAB table data
c_SS=x*(c_activity_dif(10,1));
t_Strip_Scrap=c_SS+(c_activity(10,1));
% estimate the average time for the SS activity

212

avg_t_SS= mean(t_Strip_Scrap);

% interval_activity_time %
interval_difference_pass=max_interval_pass-min_interval_pass;
interval_difference_fail=max_interval_fail-min_interval_fail;
c_interval_dif_pass=double(interval_difference_pass);
c_interval_dif_fail=double(interval_difference_fail);

c_interval_pass=double(min_interval_pass);
c_interval_fail=double(min_interval_fail);

% create Asset Track time based on MATLAB table data
c_interval_AT=x*(c_interval_dif_pass(1,1));
t_interval_Asset_Track=c_interval_AT+(c_interval_pass(1,1));
% estimate the average time for the AT interval
avg_int_AT= mean(t_interval_Asset_Track);

% create D_VI pass time based on MATLAB table data
c_interval_VI_pass=x*(c_interval_dif_pass(3,1));
t_interval_Visual_Inspection_pass=c_interval_VI_pass+(c_interval_pass
(3,1));
% estimate the average time for the D_VI interval
avg_int_VI_pass= mean(t_interval_Visual_Inspection_pass);

% create D_VI fail time based on MATLAB table data
c_interval_VI_fail=x*(c_interval_dif_fail(3,1));
t_interval_Visual_Inspection_fail=c_interval_VI_fail+(c_interval_fail
(3,1));
% estimate the average time for the D_VI interval
avg_int_VI_fail= mean(t_interval_Visual_Inspection_fail);

% create D_FT pass time based on MATLAB table data
c_interval_FT_pass=x*(c_interval_dif_pass(5,1));
t_interval_Functional_Test_pass=c_interval_FT_pass +
(c_interval_pass(5,1));
% estimate the average time for the D_FT interval
avg_int_FT_pass= mean(t_interval_Functional_Test_pass);

% create D_FT fail time based on MATLAB table data
c_interval_FT_fail=x*(c_interval_dif_fail(5,1));
t_interval_Functional_Test_fail=c_interval_FT_fail +
(c_interval_fail(5,1));
% estimate the average time for the D_FT interval
avg_int_FT_fail= mean(t_interval_Functional_Test_fail);

% create D_DE pass and fail time based on MATLAB table data
c_interval_DE_pass=x*(c_interval_dif_pass(9,1));
t_interval_Data_Erasure =c_interval_DE_pass+(c_interval_pass(9,1));
% estimate the average time for the D_DE interval
avg_int_DE= mean(t_interval_Data_Erasure);

% create D_R time based on MATLAB table data
c_interval_R_pass=x*(c_interval_dif_pass(7,1));
t_interval_Repair=c_interval_R_pass+(c_interval_pass(7,1));
% estimate the average time for the D_R interval
avg_int_R= mean(t_interval_Repair);

%%%
Pass_Probability=double(Pass_Probability);

213

% retrieve pass prrobabilities from excel file
if x(1,:)<=Pass_Probability(3,1) % VI pass
 Total_Asset_Track1= avg_t_AT + avg_int_AT;
 Total_Visual_Inspection_p1= avg_t_VI + avg_int_VI_pass;
 path1_VI=n*Pass_Probability(3,1);

 if y(1,:)<=Pass_Probability(5,1) % D_FT pass
 Total_Functional_Test_p1= avg_t_FT + avg_int_FT_pass;
 path_FT_p=path1_VI*Pass_Probability(5,1);

 if z(1,:)<=Pass_Probability(9,1) % D_DE pass
 Total_Data_Erasure1= avg_t_DE + avg_int_DE;
 avg_t_CD1= mean(t_Cleaning_Delabelling);
 path1_DEp=path_FT_p*Pass_Probability(9,1);

 elseif z(1,:)>Pass_Probability(9,1) % D_DE fail
 Total_Data_Erasure_f2= avg_t_DE + avg_int_DE;
 avg_t_SS2= mean(t_Strip_Scrap);
 path2_DEf=path_FT_p*(1-Pass_Probability(9,1));
 end

 elseif y(1,:)>Pass_Probability(5,1) % D_FT fail
 Total_Functional_Test_f3= avg_t_FT + avg_int_FT_fail;
 path4_FT= path1_VI*(1-Pass_Probability(5,1));

 if a(1,:)<=Pass_Probability(7,1) % D_R pass
 if b(1,:)<=Pass_Probability(9,1) % D_DE pass
 Total_Repair3= avg_t_R + avg_int_R;
 Total_Visual_Inspection_p3= avg_t_VI + avg_int_VI_pass;
 Total_Functional_Test_p3= avg_t_FT + avg_int_FT_pass;
 Total_Data_Erasure3= avg_t_DE + avg_int_DE;
 avg_t_CD3= mean(t_Cleaning_Delabelling);

 path4_R=path4_FT*(Pass_Probability(7,1));
 path4_VI=path4_R*(Pass_Probability(3,1));
 path4_FTp= path4_VI*(Pass_Probability(5,1))
 path4_DE=path4_FTp*(Pass_Probability(9,1));

 elseif b(1,:)>Pass_Probability(9,1) % D_DE fail
 Total_Repair4= avg_t_R + avg_int_R;
 Total_Visual_Inspection_p4= avg_t_VI + avg_int_VI_pass;
 Total_Functional_Test_p4= avg_t_FT + avg_int_FT_pass;
 Total_Data_Erasure4= avg_t_DE + avg_int_DE;
 avg_t_SS4= mean(t_Strip_Scrap);
 path5_DE=path4_FTp*(1-Pass_Probability(9,1));
 end
 elseif a(1,:)>Pass_Probability(7,1) % D_R fail
 Total_Repair5= avg_t_R + avg_int_R;
 avg_t_SS5= mean(t_Strip_Scrap);
 path5_R=path4_FT*(1-Pass_Probability(7,1));
 end
 end

elseif x(1,:)>Pass_Probability(3,1) %D_VI fail
 Total_Visual_Inspection_f6= avg_t_VI + avg_int_VI_fail;
 avg_t_SS6= mean(t_Strip_Scrap);
 path6_VI=n*(1-Pass_Probability(3,1));
end

214

Part C – Validation – PN Model Performance Analysis

This section presents the MATLAB code for the performance analysis of the PN

model generated for recycling IT asset process, as discussed in Chapter 5. From this

code, results for the average time of each transition and the number of visits to PN

places can be obtained.

% time needed for each path to be completed
% path1 - [AT VI(pass) FT(pass) DE(pass) CD M]
t_path1=(Total_Asset_Track1+Total_Visual_Inspection_p1+Total_Function
al_Test_p1+Total_Data_Erasure1+avg_t_CD1)
% % path2 - [AT VI(pass) FT(pass) DE(fail) SS M]

t_path2=(Total_Asset_Track1+Total_Visual_Inspection_p1+Total_Function
al_Test_p1+Total_Data_Erasure_f2+avg_t_SS2)
 % path3 - [AT VI(pass) FT(fail) R(pass) VI(pass) FT(pass) DE(pass)
CD M]
t_path3=(Total_Asset_Track1+Total_Visual_Inspection_p1+Total_Function
al_Test_f3+Total_Repair3+Total_Visual_Inspection_p3+Total_Functional_
Test_p3+Total_Data_Erasure3+avg_t_CD3)
% path4 - [AT VI(pass) FT(fail) R(pass) VI(pass) FT(pass) DE(fail) SS
M]
t_path4=(Total_Asset_Track1+Total_Visual_Inspection_p1+Total_Function
al_Test_f3+Total_Repair3+Total_Visual_Inspection_p3+Total_Functional_
Test_p3+Total_Data_Erasure3+avg_t_SS4)
% path5 - [AT VI(pass) FT(fail) R(fail) SS M]
t_path5=(Total_Asset_Track1+Total_Visual_Inspection_p1+Total_Function
al_Test_f3+Total_Repair5+avg_t_SS5)
% path6 - [AT VI(fail SS M]
t_path6=(Total_Asset_Track1+Total_Visual_Inspection_f6+avg_t_SS6)

% number of visits in PN places based on paths identified
% path1 - [AT VI(pass) FT(pass) DE(pass) CD M]
 device_path1=floor (path1_DEp)
% path2 - [AT VI(pass) FT(pass) DE(fail) SS M]
device_path2=floor (path2_DEf)
% path3 - [AT VI(pass) FT(fail) R(pass) VI(pass) FT(pass) DE(pass) CD
M]
device_path3=floor(path4_DE)
% path4 - [AT VI(pass) FT(fail) R(pass) VI(pass) FT(pass) DE(fail) SS
M]
device_path4=floor (path5_DE)
% path5 - [AT VI(pass) FT(fail) R(fail) SS M]
device_path5=floor(path5_R)
% path6 - [AT VI(fail SS M]
device_path6=floor (path6_VI)

215

Appendix G

Part A – AD Examples in Chapter 6 (XMI Files)

Appendix G, part A covers the XMI files obtained from the three AD examples

discussed in Chapter 6, shown in Figures 6.2, 6.4 and 6.6 respectively.

XMI file obtained from the first AD example in Figure 6.2

<?xml version="1.0" encoding="UTF-8"?>

<uml:Model xmi:version="20131001"

xmlns:xmi="http://www.omg.org/spec/XMI/20131001"

xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"

xmi:id="_dPhH0F2YEeeC05B8er0jow" name="RootElement">

 <packagedElement xmi:type="uml:Activity" xmi:id="_dPqRwF2YEeeC05B8er0jow"

name="1st_example" node="_gC3ZMF2YEeeC05B8er0jow

_jM0MsF2YEeeC05B8er0jow _rC9pkF2YEeeC05B8er0jow"

group="_jM0MsF2YEeeC05B8er0jow">

 <edge xmi:type="uml:ControlFlow" xmi:id="_M1-z8F2gEeeC05B8er0jow"

target="_KB7X8F2gEeeC05B8er0jow" source="_HWo2YF2gEeeC05B8er0jow"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="___VcMF2gEeeC05B8er0jow"

target="_gbxocF2YEeeC05B8er0jow" source="_pH_KoF2YEeeC05B8er0jow"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="_fU6K4OBZEeeIaM4coD475g"

target="_qNgoQF2YEeeC05B8er0jow" source="_oW66EF2YEeeC05B8er0jow"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="_1z6PcODFEeemJ8jkM3-fqg"

target="_pH_KoF2YEeeC05B8er0jow" source="_gC3ZMF2YEeeC05B8er0jow"/>

 <edge xmi:type="uml:ControlFlow" xmi:id="_2mgxEODFEeemJ8jkM3-fqg"

target="_rC9pkF2YEeeC05B8er0jow" source="_qNgoQF2YEeeC05B8er0jow"/>

 <structuredNode xmi:type="uml:ExpansionRegion"

xmi:id="_jM0MsF2YEeeC05B8er0jow" name="ExpansionRegion2" mode="parallel"

outputElement="_qNgoQF2YEeeC05B8er0jow"

inputElement="_pH_KoF2YEeeC05B8er0jow">

 <node xmi:type="uml:OpaqueAction" xmi:id="_gbxocF2YEeeC05B8er0jow"

name="Write_Article" incoming="___VcMF2gEeeC05B8er0jow">

216

 <outputValue xmi:type="uml:OutputPin"

xmi:id="_HWo2YF2gEeeC05B8er0jow" outgoing="_M1-z8F2gEeeC05B8er0jow"

isControlType="true">

 <upperBound xmi:type="uml:LiteralInteger"

xmi:id="_HWpdcF2gEeeC05B8er0jow" value="1"/>

 </outputValue>

 </node>

 <node xmi:type="uml:OpaqueAction" xmi:id="_oW66EF2YEeeC05B8er0jow"

name="Review_Article" outgoing="_fU6K4OBZEeeIaM4coD475g">

 <inputValue xmi:type="uml:InputPin" xmi:id="_KB7X8F2gEeeC05B8er0jow"

name="" incoming="_M1-z8F2gEeeC05B8er0jow" isControlType="true">

 <upperBound xmi:type="uml:LiteralInteger"

xmi:id="_KB7_AF2gEeeC05B8er0jow" value="1"/>

 </inputValue>

 </node>

 <node xmi:type="uml:ExpansionNode" xmi:id="_pH_KoF2YEeeC05B8er0jow"

name="List_of_Topics" incoming="_1z6PcODFEeemJ8jkM3-fqg"

outgoing="___VcMF2gEeeC05B8er0jow" isControlType="true"

regionAsInput="_jM0MsF2YEeeC05B8er0jow">

 <upperBound xmi:type="uml:LiteralInteger"

xmi:id="_pH_xsF2YEeeC05B8er0jow" value="1"/>

 </node>

 <node xmi:type="uml:ExpansionNode" xmi:id="_qNgoQF2YEeeC05B8er0jow"

name="List_Box_Pin" incoming="_fU6K4OBZEeeIaM4coD475g"

outgoing="_2mgxEODFEeemJ8jkM3-fqg" type="_dPqRwF2YEeeC05B8er0jow"

isControlType="true" regionAsOutput="_jM0MsF2YEeeC05B8er0jow">

 <upperBound xmi:type="uml:LiteralInteger"

xmi:id="_qNhPUF2YEeeC05B8er0jow" value="1"/>

 </node>

 </structuredNode>

 <node xmi:type="uml:OpaqueAction" xmi:id="_gC3ZMF2YEeeC05B8er0jow"

name="Choose_Topics" outgoing="_1z6PcODFEeemJ8jkM3-fqg"/>

217

 <node xmi:type="uml:OpaqueAction" xmi:id="_rC9pkF2YEeeC05B8er0jow"

name="Publish_Newsletter" incoming="_2mgxEODFEeemJ8jkM3-fqg"/>

 </packagedElement>

</uml:Model>

XMI file obtained from the second AD example in Figure 6.4

<?xml version="1.0" encoding="UTF-8"?>

<uml:Model xmi:version="20131001"

xmlns:xmi="http://www.omg.org/spec/XMI/20131001"

xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"

xmi:id="_MJToQF2tEeeC05B8er0jow" name="RootElement">

 <packagedElement xmi:type="uml:Activity" xmi:id="_MJVdcF2tEeeC05B8er0jow"

name="2nd_example" node="_NBPV0F2tEeeC05B8er0jow

_NVix4F2tEeeC05B8er0jow _Si61sF2tEeeC05B8er0jow

_XXc7sF2tEeeC05B8er0jow">

 <edge xmi:type="uml:ControlFlow" xmi:id="_mSSjUF2tEeeC05B8er0jow"

target="_Si61sF2tEeeC05B8er0jow" source="_XXc7sF2tEeeC05B8er0jow"/>

 <edge xmi:type="uml:ObjectFlow" xmi:id="_4BTiwF2tEeeC05B8er0jow"

target="_c2xrIF2tEeeC05B8er0jow" source="_r6HugF2tEeeC05B8er0jow">

 <guard xmi:type="uml:LiteralBoolean" xmi:id="_4Beh4F2tEeeC05B8er0jow"

value="true"/>

 <weight xmi:type="uml:LiteralInteger" xmi:id="_4Beh4V2tEeeC05B8er0jow"

value="1"/>

 </edge>

 <edge xmi:type="uml:ObjectFlow" xmi:id="_5CXXIF2tEeeC05B8er0jow"

target="_xJt_4F2tEeeC05B8er0jow" source="_uaxtYF2tEeeC05B8er0jow">

 <guard xmi:type="uml:LiteralBoolean" xmi:id="_5CpD8F2tEeeC05B8er0jow"

value="true"/>

 <weight xmi:type="uml:LiteralInteger" xmi:id="_5CpD8V2tEeeC05B8er0jow"

value="1"/>

 </edge>

 <node xmi:type="uml:OpaqueAction" xmi:id="_NBPV0F2tEeeC05B8er0jow"

name="Create_Order">

218

 <outputValue xmi:type="uml:OutputPin" xmi:id="_r6HugF2tEeeC05B8er0jow"

name="" outgoing="_4BTiwF2tEeeC05B8er0jow"/>

 </node>

 <node xmi:type="uml:OpaqueAction" xmi:id="_NVix4F2tEeeC05B8er0jow"

name="Close_Order">

 <inputValue xmi:type="uml:InputPin" xmi:id="_xJt_4F2tEeeC05B8er0jow"

name="" incoming="_5CXXIF2tEeeC05B8er0jow">

 <upperBound xmi:type="uml:LiteralInteger"

xmi:id="_xJum8F2tEeeC05B8er0jow" value="1"/>

 </inputValue>

 </node>

 <node xmi:type="uml:AcceptEventAction" xmi:id="_Si61sF2tEeeC05B8er0jow"

name="Receive_Payment" incoming="_mSSjUF2tEeeC05B8er0jow">

 <result xmi:type="uml:OutputPin" xmi:id="_uaxtYF2tEeeC05B8er0jow"

name="" outgoing="_5CXXIF2tEeeC05B8er0jow">

 <upperBound xmi:type="uml:LiteralInteger"

xmi:id="_uayUcF2tEeeC05B8er0jow" value="1"/>

 </result>

 <trigger xmi:type="uml:Trigger" xmi:id="_k_Y7kF2uEeeC05B8er0jow"/>

 </node>

 <node xmi:type="uml:SendSignalAction" xmi:id="_XXc7sF2tEeeC05B8er0jow"

name="Send_Invoice" outgoing="_mSSjUF2tEeeC05B8er0jow"

signal="_auo58F2tEeeC05B8er0jow">

 <target xmi:type="uml:InputPin" xmi:id="_c2xrIF2tEeeC05B8er0jow"

incoming="_4BTiwF2tEeeC05B8er0jow" type="_auo58F2tEeeC05B8er0jow">

 <lowerValue xmi:type="uml:LiteralInteger"

xmi:id="_c2xrIV2tEeeC05B8er0jow" value="1"/>

 <upperValue xmi:type="uml:LiteralUnlimitedNatural"

xmi:id="_c2xrIl2tEeeC05B8er0jow" value="1"/>

 </target>

 </node>

 </packagedElement>

219

 <packagedElement xmi:type="uml:Signal" xmi:id="_auo58F2tEeeC05B8er0jow"

name="Verify_CC_Funds"/>

</uml:Model>

XMI file obtained from the third AD example in Figure 6.6

<?xml version="1.0" encoding="UTF-8"?>

<uml:Model xmi:version="20131001"

xmlns:xmi="http://www.omg.org/spec/XMI/20131001"

xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"

xmi:id="_MV_aYF2iEeeC05B8er0jow" name="RootElement">

 <packagedElement xmi:type="uml:Activity"

xmi:id="_MWBPkF2iEeeC05B8er0jow" name="3rd_example"

node="_p4tRYF2iEeeC05B8er0jow _sw3xUF2iEeeC05B8er0jow">

 <node xmi:type="uml:OpaqueAction" xmi:id="_p4tRYF2iEeeC05B8er0jow"

name="User_Cancels">

 <handler xmi:type="uml:ExceptionHandler"

xmi:id="_wcswkF2nEeeC05B8er0jow"

exceptionInput="_uQxEgF2nEeeC05B8er0jow"

exceptionType="_MWBPkF2iEeeC05B8er0jow"

handlerBody="_sw3xUF2iEeeC05B8er0jow"/>

 </node>

 <node xmi:type="uml:OpaqueAction" xmi:id="_sw3xUF2iEeeC05B8er0jow"

name="Account_Cancelled">

 <inputValue xmi:type="uml:InputPin" xmi:id="_uQxEgF2nEeeC05B8er0jow"

name="InputPin1">

 <upperBound xmi:type="uml:LiteralInteger"

xmi:id="_uQxrkF2nEeeC05B8er0jow" value="1"/>

 </inputValue>

 </node>

 </packagedElement>

</uml:Model>

220

Part B –XSLT Files

This section includes the XSLT files which are applied to XMI files and generate an

XMI and an XML file, as discussed in Chapter 6.

First XSLT document used for the first XMI transformation

<!--The root element of a style sheet. The root element declare the XSLT namespace

to get access to the XSLT elements and attributes-->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!--Specifies the format for the result document, i.e. xml format-->

<!--"yes" indicates that the output should be indented according to its hierarchic

structure-->

<xsl:output method="xml" indent="yes"/>

<!--A template contains processing instructions and commands for nodes in the input

document that match the specified XPath expression.

@* | node() is a match pattern composed of three single patterns / matches a root

node, @* matches any attribute node and node() as a pattern matches any node other

than an attribute node and root node-->

<xsl:template match="@* | node()">

<!--Copy creates a duplicate of the current node being processed.-->

 <xsl:copy>

<!--Applies template rules based on a given XPath selection criteria. If no template is

found the built in templates are used. Select chooses all attributes and immediate

children of the context node-->

 <xsl:apply-templates select="@* | node()"/>

 </xsl:copy>

</xsl:template>

<!--this template removes from the target XML document any upperBound node

element-->

<xsl:template match="upperBound"/>

<!--this template removes from the target XML document the name attribute from any

existing inputValue and outputValue node-->

<xsl:template match="inputValue/@name"/>

221

<xsl:template match="outputValue/@name"/>

</xsl:stylesheet>

Second XSLT document used for the second XMI transformation

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes" />

<!--Template to match any child element of the XMI root element such as

packagedElement, node, edge, etc.-->

<xsl:template match="@* | node()">

<!-- Creates a copy of the child element-->

<xsl:copy>

<!--Apply template: selects all the attributes of the context elements-->

<xsl:apply-templates select="@* | node()" />

</xsl:copy>

</xsl:template>

<!--Template to match the XMI edge elements-->

<xsl:template match="edge">

<!--Creates a copy of the edge element-->

<xsl:copy>

<!--Apply template: selects all the attributes of the context node, i.e. edge, and

transforms the attributes to elements-->

<xsl:apply-templates select="@*" mode="to-element" />

</xsl:copy>

</xsl:template>

<!--Template to match the XMI node elements-->

<xsl:template match="node">

<!--Creates a copy of the node element-->

<xsl:copy>

<!--Apply template: selects all the attributes of the context node, i.e. node, and

transforms the attributes to elements-->

<xsl:apply-templates select="@*" mode="to-element" />

</xsl:copy>

222

</xsl:template>

<!--XMI attributes with their values are transformed into XML child elements -->

<!--Template to match the edge and node elements of the 2 templates above-->

<!--The name of the mode is used to match up with the apply-templates mode

attribute.-->

<xsl:template match="@*" mode="to-element">

<!--Transforms each attribute, exists in an edge/node element, to an element in the

result document. Name corresponds to the element is created.-->

<xsl:element name="{name()}">

<!--Used to pull the data values (context) from the element selected in the last row.-->

<xsl:value-of select="." />

</xsl:element>

</xsl:template>

</xsl:stylesheet>

Part C – Java Code for the XMI Transformations

Part C covers the two files of Java code developed for the two XMI model

transformations as explained in Chapter 6.

Java code for the first XMI transformation

package data;

//This package defines the generic (application programming interfaces) APIs for

processing transformation instructions, and performing a transformation from source

to result.

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerException;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.stream.StreamResult;

import javax.xml.transform.stream.StreamSource;

public class Main2 {

 public void simpleMessage2() {

223

//A TransformerFactory instance can be used to create Transformer and Templates

objects. The system property that determines which Factory implementation to create

is named "javax.xml.transform.TransformerFactory".

//This property names a concrete subclass of the TransformerFactory abstract class.

 TransformerFactory factory = TransformerFactory.newInstance();

// XSLT file that defines the rules for the XML transformation

 StreamSource xslStream = new StreamSource("xmi2xmi.xsl");

//input model (XMI file from Activity Diagram)

 StreamSource in = new StreamSource("Activity_Diagram.uml");

// output model (XML file)

 StreamResult out = new StreamResult("new_xmi_file.xml");

 try{

//An instance of this abstract class can transform a source tree into a result tree. An

instance of this class can be obtained with the TransformerFactory.newTransformer

method. This instance may then be used to process XML from a variety of sources

and write the transformation output to a variety of sinks.

 Transformer transformer = factory.newTransformer(xslStream);

//Transform the XML Source (in) to a Result (out)

 transformer.transform(in, out);

//This class specifies an exceptional condition that occurred during the transformation

process.

 } catch (TransformerException e){

//Print the trace of methods from where the error originated. This will trace all nested

exception objects, as well as this object.

 e.printStackTrace();

 }

 }

}

Java code for the second XMI transformation

package data;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerException;

224

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.stream.StreamResult;

import javax.xml.transform.stream.StreamSource;

public class Main {

 public void simpleMessage() {

 TransformerFactory factory = TransformerFactory.newInstance() ;

// XSLT file that defines the rules for the XML transformation

 StreamSource xslStream = new StreamSource("xmi2xml.xsl");

//input model (XMI file from Activity Diagram)

 StreamSource in = new StreamSource("Activity_Diagram.uml");

// output model (XML file)

 StreamResult out = new StreamResult("new_xml_file.xml");

 try{

 Transformer transformer = factory.newTransformer(xslStream);

 transformer.transform(in, out);

 } catch (TransformerException e){

 e.printStackTrace();

 }

 }

}

Part D – Outputs from XMI Model Tranformation of AD in Figure 6.4

In this section, the two XMI and XML files generated after the two model

transformations of the XMI file obtained from the AD in Figure 6.4 are shown.

XMI File obtained from the first XMI transformation for the AD in

Figure 6.4

<?xml version="1.0" encoding="UTF-8"?><uml:Model

xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"

xmlns:xmi="http://www.omg.org/spec/XMI/20131001" xmi:version="20131001"

xmi:id="_MJToQF2tEeeC05B8er0jow" name="RootElement">

 <packagedElement xmi:type="uml:Activity" xmi:id="_MJVdcF2tEeeC05B8er0jow"

name="2nd_example" node="_NBPV0F2tEeeC05B8er0jow _NVix4F2tEeeC05B8er0jow

_Si61sF2tEeeC05B8er0jow _XXc7sF2tEeeC05B8er0jow">

225

 <edge xmi:type="uml:ControlFlow" xmi:id="_mSSjUF2tEeeC05B8er0jow"

target="_Si61sF2tEeeC05B8er0jow" source="_XXc7sF2tEeeC05B8er0jow"/>

 <edge xmi:type="uml:ObjectFlow" xmi:id="_4BTiwF2tEeeC05B8er0jow"

target="_c2xrIF2tEeeC05B8er0jow" source="_r6HugF2tEeeC05B8er0jow">

 <guard xmi:type="uml:LiteralBoolean" xmi:id="_4Beh4F2tEeeC05B8er0jow"

value="true"/>

 <weight xmi:type="uml:LiteralInteger"

xmi:id="_4Beh4V2tEeeC05B8er0jow" value="1"/>

 </edge>

 <edge xmi:type="uml:ObjectFlow" xmi:id="_5CXXIF2tEeeC05B8er0jow"

target="_xJt_4F2tEeeC05B8er0jow" source="_uaxtYF2tEeeC05B8er0jow">

 <guard xmi:type="uml:LiteralBoolean" xmi:id="_5CpD8F2tEeeC05B8er0jow"

value="true"/>

 <weight xmi:type="uml:LiteralInteger"

xmi:id="_5CpD8V2tEeeC05B8er0jow" value="1"/>

 </edge>

 <node xmi:type="uml:OpaqueAction" xmi:id="_NBPV0F2tEeeC05B8er0jow"

name="Create_Order">

 <outputValue xmi:type="uml:OutputPin"

xmi:id="_r6HugF2tEeeC05B8er0jow" outgoing="_4BTiwF2tEeeC05B8er0jow"/>

 </node>

 <node xmi:type="uml:OpaqueAction" xmi:id="_NVix4F2tEeeC05B8er0jow"

name="Close_Order">

 <inputValue xmi:type="uml:InputPin" xmi:id="_xJt_4F2tEeeC05B8er0jow"

incoming="_5CXXIF2tEeeC05B8er0jow">

 </inputValue>

 </node>

 <node xmi:type="uml:AcceptEventAction" xmi:id="_Si61sF2tEeeC05B8er0jow"

name="Receive_Payment" incoming="_mSSjUF2tEeeC05B8er0jow">

 <result xmi:type="uml:OutputPin" xmi:id="_uaxtYF2tEeeC05B8er0jow"

name="" outgoing="_5CXXIF2tEeeC05B8er0jow">

 </result>

 <trigger xmi:type="uml:Trigger" xmi:id="_k_Y7kF2uEeeC05B8er0jow"/>

 </node>

 <node xmi:type="uml:SendSignalAction" xmi:id="_XXc7sF2tEeeC05B8er0jow"

name="Send_Invoice" outgoing="_mSSjUF2tEeeC05B8er0jow"

signal="_auo58F2tEeeC05B8er0jow">

 <target xmi:type="uml:InputPin" xmi:id="_c2xrIF2tEeeC05B8er0jow"

incoming="_4BTiwF2tEeeC05B8er0jow" type="_auo58F2tEeeC05B8er0jow">

226

 <lowerValue xmi:type="uml:LiteralInteger"

xmi:id="_c2xrIV2tEeeC05B8er0jow" value="1"/>

 <upperValue xmi:type="uml:LiteralUnlimitedNatural"

xmi:id="_c2xrIl2tEeeC05B8er0jow" value="1"/>

 </target>

 </node>

 </packagedElement>

 <packagedElement xmi:type="uml:Signal" xmi:id="_auo58F2tEeeC05B8er0jow"

name="Verify_CC_Funds"/>

</uml:Model>

XML file obtained from the second XMI transformation for the AD

in Figure 6.4

<?xml version="1.0" encoding="UTF-8"?><uml:Model

xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"

xmlns:xmi="http://www.omg.org/spec/XMI/20131001" xmi:version="20131001"

xmi:id="_MJToQF2tEeeC05B8er0jow" name="RootElement">

 <packagedElement xmi:type="uml:Activity" xmi:id="_MJVdcF2tEeeC05B8er0jow"

name="2nd_example" node="_NBPV0F2tEeeC05B8er0jow _NVix4F2tEeeC05B8er0jow

_Si61sF2tEeeC05B8er0jow _XXc7sF2tEeeC05B8er0jow">

 <edge>

<xmi:type>uml:ControlFlow</xmi:type>

<xmi:id>_mSSjUF2tEeeC05B8er0jow</xmi:id>

<target>_Si61sF2tEeeC05B8er0jow</target>

<source>_XXc7sF2tEeeC05B8er0jow</source>

</edge>

 <edge>

<xmi:type>uml:ObjectFlow</xmi:type>

<xmi:id>_4BTiwF2tEeeC05B8er0jow</xmi:id>

<target>_c2xrIF2tEeeC05B8er0jow</target>

<source>_r6HugF2tEeeC05B8er0jow</source>

</edge>

 <edge>

<xmi:type>uml:ObjectFlow</xmi:type>

<xmi:id>_5CXXIF2tEeeC05B8er0jow</xmi:id>

<target>_xJt_4F2tEeeC05B8er0jow</target>

<source>_uaxtYF2tEeeC05B8er0jow</source>

</edge>

 <node>

227

<xmi:type>uml:OpaqueAction</xmi:type>

<xmi:id>_NBPV0F2tEeeC05B8er0jow</xmi:id>

<name>Create_Order</name>

</node>

 <node>

<xmi:type>uml:OpaqueAction</xmi:type>

<xmi:id>_NVix4F2tEeeC05B8er0jow</xmi:id>

<name>Close_Order</name>

</node>

 <node>

<xmi:type>uml:AcceptEventAction</xmi:type>

<xmi:id>_Si61sF2tEeeC05B8er0jow</xmi:id>

<name>Receive_Payment</name>

<incoming>_mSSjUF2tEeeC05B8er0jow</incoming>

</node>

 <node>

<xmi:type>uml:SendSignalAction</xmi:type>

<xmi:id>_XXc7sF2tEeeC05B8er0jow</xmi:id>

<name>Send_Invoice</name>

<outgoing>_mSSjUF2tEeeC05B8er0jow</outgoing>

<signal>_auo58F2tEeeC05B8er0jow</signal>

</node>

 </packagedElement>

 <packagedElement xmi:type="uml:Signal" xmi:id="_auo58F2tEeeC05B8er0jow"

name="Verify_CC_Funds"/>

</uml:Model>

228

Appendix H – Advanced Generic SQL Code [AT]
Appendix H shows the advanced generic SQL code developed for the automated

generation of the transpose of the PN incidence matrix [AT], discussed in Chapter 6.

package data;
import java.sql.*;

public class multiple_execution_of_classes{
 static String t0;
 static String t1;
 static String t2;
 static String t3;
 // JDBC driver name and database URL
 static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
 static final String DB_URL = "jdbc:mysql://127.0.0.1:3306/sql";
 // Database credentials
 static final String USER = "root";
 static final String PASS = "Xristina23";

 @SuppressWarnings({ "unused", "resource" })
 public static void main(String[] args) throws SQLException {

 Main MainObject = new Main();
 MainObject.simpleMessage();
 Main2 Main2Object = new Main2();
 Main2Object.simpleMessage2();

 Statement stmt = null;
 PreparedStatement pst = null;
 String cs =
"jdbc:mysql://localhost:3306/sql?allowMultiQueries=true";
 Connection conn1 = null;
 ResultSet rs = null;

 try {
 conn1 = DriverManager.getConnection(cs, USER, PASS);
 String code1 = "drop table if exists edge_xmi;"
 + " CREATE TABLE edge_xmi (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY,`xmi:type` VARCHAR(200) NULL,`xmi:id`
VARCHAR(200) NULL, `name` VARCHAR(200) NULL, `source` varchar(200)null,
`target` VARCHAR(200) NULL);";
 String code2 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xml_file.xml' INTO TABLE edge_xmi
ROWS IDENTIFIED BY '<edge>'; "
 + "update edge_xmi as t1 inner join edge_xmi as t2
on (t1.`name`=t2.`name`) and t1.`xmi:id` <> t2.`xmi:id` set
t1.name='place_';"
 + "update edge_xmi as t1 inner join
edge_xmi as t2 on (t1.`name`=t2.`name`) and t1.`xmi:id` <> t2.`xmi:id` set
t1.name='place_';"
 + "drop table if exists place_name;"
 + "CREATE TABLE place_name as SELECT id,
`xmi:type`, `xmi:id`, CONCAT(name,'', id) AS name, source, target FROM
edge_xmi where edge_xmi.name='place_';" +"drop table if exists
edge_place_xmi;"

229

 +"CREATE TABLE edge_place_xmi SELECT *
FROM place_name UNION SELECT * FROM edge_xmi;"
 + "ALTER IGNORE TABLE `edge_place_xmi` ADD
UNIQUE (id, `xmi:id`);"
 + "drop table if exists
in_outputValue_xmi;"
 + "CREATE TABLE in_outputValue_xmi (id int
NOT NULL AUTO_INCREMENT PRIMARY KEY,`xmi:type` VARCHAR(200) NULL,`xmi:id`
VARCHAR(200) NULL, name VARCHAR(200) NULL,incoming VARCHAR(200) NULL,
outgoing varchar(200)null);";
 String code3 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xmi_file.xml' INTO TABLE
in_outputValue_xmi ROWS IDENTIFIED BY '<inputValue>';";
 String code4 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xmi_file.xml' INTO TABLE
in_outputValue_xmi ROWS IDENTIFIED BY '<outputValue>';"
 + "UPDATE in_outputValue_xmi t1 INNER JOIN
edge_place_xmi t2 ON t1.incoming = t2.`xmi:id` SET t1.incoming = t2.name;";
 String code5 = "UPDATE in_outputValue_xmi t1 INNER JOIN
edge_place_xmi t2 ON t1.outgoing = t2.`xmi:id` SET t1.outgoing = t2.name;"
 + "ALTER TABLE in_outputValue_xmi
CHANGE incoming place_before_node varchar(200) null;"
 + "ALTER TABLE in_outputValue_xmi
CHANGE outgoing place_after_node varchar(200) null;"
 + "ALTER TABLE in_outputValue_xmi
CHANGE `name` name_primary varchar(200) null;"
 + "DELETE FROM in_outputValue_xmi
WHERE place_after_node is null and place_before_node is null;"
 + "UPDATE in_outputValue_xmi t,
(SELECT DISTINCT place_before_node, name_primary, place_after_node FROM
in_outputValue_xmi) t1 SET t.place_after_node = t1.place_after_node WHERE
t.name_primary = t1.name_primary;"
 + "DELETE FROM in_outputValue_xmi
WHERE place_after_node is null or place_before_node is null;"
 + "drop table if exists
in_outputValue_final;"
 + "CREATE TABLE in_outputValue_final
(place_before_node VARCHAR(200) NULL, name_primary VARCHAR(200) NULL,
place_after_node varchar(200)null) as select place_before_node,
name_primary, place_after_node from in_outputValue_xmi;";
 String code5a = "drop table if exists node_xmi_send_accept;"
 + "create table node_xmi_send_accept as select *
from node_xmi where `element_type_nested`='target' or
`element_type_nested`='result';UPDATE node_xmi_send_accept t1 INNER JOIN
edge_place_xmi t2 ON t1.incoming_nested =t2.`xmi:id` SET t1.incoming_nested
= t2.name;UPDATE node_xmi_send_accept t1 INNER JOIN edge_place_xmi t2 ON
t1.outgoing_nested = t2.`xmi:id` SET t1.outgoing_nested = t2.name;"
 + "ALTER TABLE node_xmi_send_accept CHANGE
incoming_nested place_before_node varchar(200) null;"
 + "ALTER TABLE node_xmi_send_accept CHANGE
outgoing_nested place_after_node varchar(200) null;"
 + "ALTER TABLE node_xmi_send_accept CHANGE `name`
name_primary varchar(200) null;"
 + "drop table if exists send_accept_final;"
 + "CREATE TABLE send_accept_final
(place_before_node VARCHAR(200) NULL, name_primary VARCHAR(200) NULL,
place_after_node varchar(200)null) as select place_before_node,
name_primary, place_after_node from node_xmi_send_accept;"
 + "drop table if exists expansionNode_xmi;"

230

 + "CREATE TABLE expansionNode_xmi (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY,`xmi:type` VARCHAR(200) NULL,`xmi:id`
VARCHAR(200) NULL, name VARCHAR(200) NULL, incoming VARCHAR(200) NULL,
outgoing varchar(200)null, inputElement VARCHAR(200) NULL, outputElement
varchar(200)null, regionAsInput varchar(200) null);";

 String code5b = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xmi_file.xml' INTO TABLE
expansionNode_xmi ROWS IDENTIFIED BY '<node>';"
 + "DELETE from expansionNode_xmi where
inputElement is null and outputElement is null;";
 String code5c = "DELETE from expansionNode_xmi
where incoming is null and outgoing is null;"
 + "UPDATE expansionNode_xmi t1 INNER
JOIN edge_place_xmi t2 ON t1.inputElement = t2.`source` SET t1.inputElement
= t2.name;"
 + "UPDATE expansionNode_xmi t1 INNER
JOIN edge_place_xmi t2 ON t1.outputElement = t2.`target` SET
t1.outputElement = t2.name;"
 + "UPDATE expansionNode_xmi t1 INNER
JOIN edge_place_xmi t2 ON t1.incoming = t2.`xmi:id` SET t1.incoming =
t2.name;"
 + "UPDATE expansionNode_xmi t1 INNER
JOIN edge_place_xmi t2 ON t1.outgoing = t2.`xmi:id` SET t1.outgoing =
t2.name;"
 + "drop table if exists
expansionNode_xmi_for_delete;"
 + "create table
expansionNode_xmi_for_delete as select * from expansionNode_xmi where
`xmi:type`='uml:OpaqueAction';"
 + "UPDATE expansionNode_xmi t, (SELECT
DISTINCT * FROM expansionNode_xmi) t1 SET t.incoming = t1.incoming WHERE
t.inputElement = t1.outgoing and t.outgoing = t1.outputElement and
t.`xmi:type`='uml:OpaqueAction';"
 + "UPDATE expansionNode_xmi t, (SELECT
DISTINCT * FROM expansionNode_xmi) t1 SET t.outgoing = t1.outgoing WHERE
t.outputElement = t1.incoming and t1.`xmi:type`='uml:ExpansionNode' and
t.`xmi:type`='uml:OpaqueAction';"
 + "ALTER TABLE expansionNode_xmi
CHANGE incoming place_before_node varchar(200) null;"
 + "ALTER TABLE expansionNode_xmi
CHANGE outgoing place_after_node varchar(200) null;"
 + "ALTER TABLE expansionNode_xmi
CHANGE `name` name_primary varchar(200) null;"
 + "drop table if exists
expansionNode_final;"
 + "CREATE TABLE expansionNode_final
(place_before_node VARCHAR(200) NULL, name_primary VARCHAR(200) NULL,
place_after_node varchar(200)null) as select place_before_node,
name_primary, place_after_node from expansionNode_xmi where
`xmi:type`='uml:OpaqueAction';";

 String code6 = "drop table if exists exceptionHandler_xmi;"
 +"CREATE TABLE exceptionHandler_xmi (id
int NOT NULL AUTO_INCREMENT PRIMARY KEY, `xmi:type` VARCHAR(200)
NULL,`xmi:id` VARCHAR(200) NULL, name VARCHAR(200) NULL, incoming
VARCHAR(200) NULL,outgoing varchar(200)null,`signal`
varchar(200)null,`element_type_nested` varchar(200)null);";

231

 String code7 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xmi_file.xml' INTO TABLE
exceptionHandler_xmi ROWS IDENTIFIED BY '<handler>';"
 +"UPDATE exceptionHandler_xmi SET
`element_type_nested` = 'handler';";
 String code8 = "drop table if exists result_xmi;"
 +"CREATE TABLE result_xmi (id int NOT
NULL AUTO_INCREMENT PRIMARY KEY, `xmi:type` VARCHAR(200) NULL,`xmi:id`
VARCHAR(200) NULL, name VARCHAR(200) NULL, incoming VARCHAR(200)
NULL,outgoing varchar(200)null,`signal`
varchar(200)null,`element_type_nested` varchar(200)null);";
 String code9 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xmi_file.xml' INTO TABLE result_xmi
ROWS IDENTIFIED BY '<result>';"
 +"UPDATE result_xmi SET
`element_type_nested` = 'result';";
 String code10 = "drop table if exists target_xmi;"
 +"CREATE TABLE target_xmi (id int NOT
NULL AUTO_INCREMENT PRIMARY KEY, `xmi:type` VARCHAR(200) NULL,`xmi:id`
VARCHAR(200) NULL, name VARCHAR(200) NULL, incoming VARCHAR(200)
NULL,outgoing varchar(200)null,`signal`
varchar(200)null,`element_type_nested` varchar(200)null);";
 String code11 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xmi_file.xml' INTO TABLE target_xmi
ROWS IDENTIFIED BY '<target>';"
 +"UPDATE target_xmi SET
`element_type_nested` = 'target';";
 String code12 = "drop table if exists node_xmi;"
 + "CREATE TABLE node_xmi SELECT * FROM
exceptionHandler_xmi UNION SELECT * FROM target_xmi UNION SELECT * FROM
result_xmi;";
 String code13 = "drop table if exists node_xmi;"
 + "CREATE TABLE node_xmi SELECT * FROM
exceptionHandler_xmi UNION SELECT * FROM target_xmi UNION SELECT * FROM
result_xmi;"
 + "ALTER TABLE `node_xmi` CHANGE COLUMN `xmi:id`
`xmi:id_nested` VARCHAR(255) NULL; ALTER TABLE `node_xmi` CHANGE COLUMN
`xmi:type` `xmi:type_nested` VARCHAR(255) NULL; ALTER TABLE `node_xmi`
CHANGE COLUMN `incoming` `incoming_nested` VARCHAR(255) NULL;"
 + "ALTER TABLE `node_xmi` CHANGE COLUMN `outgoing`
`outgoing_nested` VARCHAR(255) NULL; ALTER TABLE `node_xmi` CHANGE COLUMN
`signal` `signal_nested` VARCHAR(255) NULL;"
 + "ALTER TABLE `node_xmi` DROP COLUMN`id`; ALTER
TABLE `node_xmi` ADD id INT PRIMARY KEY AUTO_INCREMENT first;";
 String code14 = "update node_xmi as t1 inner join node_xmi
as t2 on (t1.`name`=t2.`name`) and t1.`xmi:id_nested` <> t2.`xmi:id_nested`
set t1.name='transition_';"
 + "drop table if exists transition_name;"
 + "CREATE TABLE transition_name as SELECT id,
`xmi:type_nested`, `xmi:id_nested`, CONCAT(name,'', id) AS name,
incoming_nested, outgoing_nested, signal_nested, element_type_nested FROM
node_xmi where node_xmi.name='transition_';"
 + "drop table if exists node_transition_xmi;"
 + "CREATE TABLE node_transition_xmi SELECT * FROM
transition_name UNION SELECT * FROM node_xmi;"
 +"ALTER IGNORE TABLE `node_transition_xmi` ADD
UNIQUE (id, `xmi:id_nested`);";
 String code15 = "drop table if exists node_xml;"

232

 +"CREATE TABLE node_xml (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY, `xmi:type` VARCHAR(200) NULL, `xmi:type_nested`
VARCHAR(200) NULL, `xmi:id` VARCHAR(200) NULL, `xmi:id_nested`
VARCHAR(200) NULL, name VARCHAR(200) NULL, incoming VARCHAR(200) NULL,
outgoing varchar(200)null, `signal` varchar(200)null,`element_type`
varchar(200)null,`element_type_nested` varchar(200)null);";
 String code16 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xmi_file.xml' INTO TABLE node_xml
ROWS IDENTIFIED BY '<node>';";
 String code17 = "UPDATE node_xml SET `element_type_nested` =
'node';"
 +"update node_xml as t1 inner join node_xml as
t2 on (t1.`name`=t2.`name`) and t1.`xmi:id` <> t2.`xmi:id` set
t1.name='transition1_';"
 + "drop table if exists transition1_name;"
 + "CREATE TABLE transition1_name as SELECT id,
`xmi:type`, `xmi:type_nested`, `xmi:id`, `xmi:id_nested`, CONCAT(name,'',
id) AS name, incoming, outgoing, `signal`, `element_type`,
`element_type_nested` FROM node_xml where node_xml.name='transition1_';"
 + "drop table if exists node_transition_xml;"
 + "CREATE TABLE node_transition_xml SELECT * FROM
transition1_name UNION SELECT * FROM node_xml;"
 + "ALTER IGNORE TABLE `node_transition_xml` ADD
UNIQUE (id, `xmi:id`);"
 + "drop table if exists node_xmi_xml;"
 + "create table node_xmi_xml as SELECT c1.id,
c1.`xmi:type`, c2.`xmi:type_nested`, c1.`xmi:id`, c2.`xmi:id_nested`,
c1.name, c1.incoming, c1.outgoing, c1.signal, c1.`element_type`,
c2.`element_type_nested` FROM node_transition_xml c1 INNER JOIN node_xmi c2
ON c1.name = c2.name or c2.incoming_nested = c1.incoming or
c2.outgoing_nested = c1.outgoing ORDER BY c1.id;"
 + "UPDATE node_xmi_xml T SET T.incoming =(SELECT
incoming_nested FROM node_xmi A WHERE A.name = T.name or A.incoming_nested
= T.incoming);"
 + "UPDATE node_xmi_xml T SET T.outgoing =(SELECT
outgoing_nested FROM node_xmi A WHERE A.name = T.name or A.outgoing_nested
= T.outgoing);"
 + "UPDATE node_xmi_xml T SET T.signal =(SELECT
signal_nested FROM node_xmi A WHERE A.name = T.name);"
 + "drop table if exists final_node_xmi_xml; "
 + "CREATE TABLE final_node_xmi_xml SELECT * FROM
node_xmi_xml UNION SELECT * FROM node_transition_xml;"
 + "ALTER IGNORE TABLE `final_node_xmi_xml` ADD
UNIQUE (id); "
 + "ALTER TABLE final_node_xmi_xml DROP COLUMN
`signal`;"
 + "update `final_node_xmi_xml` set `name`= replace
(`name`, 'transition1','decision') where `xmi:type`like
'uml:DecisionNode';"
 + "update `final_node_xmi_xml` set `name`= replace
(`name`, 'transition1','merge') where `xmi:type`like 'uml:MergeNode';"
 + "update `final_node_xmi_xml` set `name`= replace
(`name`, 'transition1','fork') where `xmi:type`like 'uml:ForkNode';"
 + "update `final_node_xmi_xml` set `name`= replace
(`name`, 'transition1','join') where `xmi:type`like 'uml:JoinNode';"
 + "update `final_node_xmi_xml` set `name`= replace
(`name`, 'transition1','pin') where `xmi:type`like 'uml:InitialNode';"

233

 + "update `final_node_xmi_xml` set `name`= replace
(`name`, 'transition1','flow_pout') where `xmi:type`like
'uml:FlowFinalNode';"
 + "update `final_node_xmi_xml` set `name`= replace
(`name`, 'transition1','pout') where `xmi:type`like
'uml:ActivityFinalNode';"
 + "update `final_node_xmi_xml` set `name`= replace
(`name`, 'transition1','parameter_node') where `xmi:type`like
'uml:ActivityParameterNode';"
 + "update `final_node_xmi_xml` set `name`= replace
(`name`, 'transition1','buffer_node') where `xmi:type`like
'uml:CentralBufferNode';"
 + "update `final_node_xmi_xml` set `name`= replace
(`name`, 'transition1','datastore_node') where `xmi:type`like
'uml:DataStoreNode';"
 + "UPDATE final_node_xmi_xml SET incoming =
REPLACE(incoming, '_', '');"
 + "UPDATE final_node_xmi_xml SET incoming =
REPLACE(incoming, ' ', '_');"
 + "UPDATE final_node_xmi_xml SET outgoing =
REPLACE(outgoing, '_', '');"
 + "UPDATE final_node_xmi_xml SET outgoing =
REPLACE(outgoing, ' ', '_');";

 String code18 = "drop table if exists double_nodes_outgoing
;"
 + "create table double_nodes_outgoing as select *
from final_node_xmi_xml where outgoing like '%_% _%' ;"
 + "drop table if exists double_nodes_outgoing ;"
 + "create table double_nodes_outgoing as select *
from final_node_xmi_xml where outgoing like '%_%_%' ; "
 + "drop table if exists numbers ;"
 + "create table numbers (n int not null) ;"
 + "insert into numbers (n) values (1), (2), (3),
(4), (5), (6), (7), (8), (9),(10), (11), (12), (13), (14), (15) ;"
 + "drop table if exists double_separate_nodes ;"
 + "create table double_separate_nodes as select
double_nodes_outgoing.id, `xmi:type`, `xmi:type_nested`, `xmi:id`,
`xmi:id_nested`, `name`, incoming, `element_type`, `element_type_nested`,
SUBSTRING_INDEX(SUBSTRING_INDEX(double_nodes_outgoing.outgoing, '_',
numbers.n), '_', -1) outgoing from numbers inner join double_nodes_outgoing
on CHAR_LENGTH(double_nodes_outgoing.outgoing)-
CHAR_LENGTH(REPLACE(double_nodes_outgoing.outgoing, '_', ''))>=numbers.n-1
order by id, n,`xmi:type`, `xmi:type_nested`, `xmi:id`, `xmi:id_nested`,
`name`, incoming, outgoing,`element_type`, `element_type_nested`;"
 + "DELETE FROM double_separate_nodes WHERE outgoing
= '' ;"
 + "update double_separate_nodes set outgoing =
concat('_', outgoing) ;"
 + "alter table `double_separate_nodes` change
column outgoing outgoing varchar(255) after `id` ;"
 + "drop table if exists lessthan17 ;"
 + "create table lessthan17 (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY) as SELECT `outgoing`, `xmi:type`,
`xmi:type_nested`, `xmi:id`, `xmi:id_nested`, `name`, incoming,
`element_type`, `element_type_nested` FROM double_separate_nodes WHERE
LENGTH(outgoing) < 22;"
 + "drop table if exists greaterthan11 ;"

234

 + "create table greaterthan11 (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY) as SELECT `outgoing`, `xmi:type`,
`xmi:type_nested`, `xmi:id`, `xmi:id_nested`, `name`, incoming,
`element_type`, `element_type_nested` FROM lessthan17 WHERE
LENGTH(outgoing) >11 ;"
 + "DELETE FROM lessthan17 where LENGTH(outgoing) >
11 ;"
 + "alter table `lessthan17` drop column id ;"
 + "alter table `lessthan17` add column id int NOT
NULL AUTO_INCREMENT PRIMARY KEY first;"
 + "drop table if exists merge_1_table;"
 + "create table merge_1_table select * from
greaterthan11 union all select * from lessthan17; "
 + "drop table if exists merge_shorter_than22; "
 + "create table merge_shorter_than22 (id int NOT
NULL AUTO_INCREMENT PRIMARY KEY) as SELECT GROUP_CONCAT(outgoing SEPARATOR
''), `xmi:type`, `xmi:type_nested`, `xmi:id`, `xmi:id_nested`, `name`,
incoming, `element_type`, `element_type_nested` FROM lessthan17 GROUP BY
name;"
 + "ALTER TABLE `merge_shorter_than22` CHANGE COLUMN
`GROUP_CONCAT(outgoing SEPARATOR '')` `outgoing` VARCHAR(255) NOT NULL "
 + "drop table if exists union_1 ;"
 + "create table union_1 select * from
merge_shorter_than22 union all select * from double_separate_nodes ;"
 + "DELETE FROM union_1 where LENGTH(outgoing) < 21
;"
 + "drop table if exists double_nodes_incoming ;"
 + "create table double_nodes_incoming as
select * from final_node_xmi_xml where incoming like '%_% _%' ; "
 + "drop table if exists
double_separate_nodes ;"
 + "create table double_separate_nodes as
select double_nodes_incoming.id, `xmi:type`, `xmi:type_nested`, `xmi:id`,
`xmi:id_nested`, `name`, outgoing, `element_type`, `element_type_nested`,
SUBSTRING_INDEX(SUBSTRING_INDEX(double_nodes_incoming.incoming, '_',
numbers.n), '_', -1) incoming from numbers inner join double_nodes_incoming
on CHAR_LENGTH(double_nodes_incoming.incoming)-
CHAR_LENGTH(REPLACE(double_nodes_incoming.incoming, '_', ''))>=numbers.n-1
order by id, n,`xmi:type`, `xmi:type_nested`, `xmi:id`, `xmi:id_nested`,
`name`, incoming, outgoing,`element_type`,`element_type_nested`;"
 + "DELETE FROM double_separate_nodes WHERE
incoming = '';"
 + "update double_separate_nodes set incoming
= concat('_', incoming) ;"
 + "alter table `double_separate_nodes`
change column incoming incoming varchar(255) after `id` ;"
 + "drop table if exists lessthan17 ;"
 + "create table lessthan17 (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY) SELECT `outgoing`,`xmi:type`,
`xmi:type_nested`, `xmi:id`, `xmi:id_nested`, `name`, incoming,
`element_type`, `element_type_nested`FROM double_separate_nodes WHERE
LENGTH(incoming) < 22;"
 + "drop table if exists greaterthan11 ;"
 + "create table greaterthan11 (id int NOT
NULL AUTO_INCREMENT PRIMARY KEY) as SELECT `outgoing`, `xmi:type`,
`xmi:type_nested`, `xmi:id`, `xmi:id_nested`, `name`, incoming,
`element_type`, `element_type_nested` FROM lessthan17 WHERE
LENGTH(incoming) >11 ;"

235

 + "DELETE FROM lessthan17 where
LENGTH(incoming) > 11 ;"
 + "alter table `lessthan17` drop column id
;"
 + "alter table `lessthan17` add column id
int NOT NULL AUTO_INCREMENT PRIMARY KEY first;"
 + "drop table if exists merge_1_table;"
 + "create table merge_1_table select * from
greaterthan11 union all select * from lessthan17;"
 + "drop table if exists
merge_shorter_than22; "+ "create table merge_shorter_than22 (id int NOT
NULL AUTO_INCREMENT PRIMARY KEY) as SELECT GROUP_CONCAT(incoming SEPARATOR
''), `xmi:type`, `xmi:type_nested`, `xmi:id`, `xmi:id_nested`, `name`,
outgoing, `element_type`, `element_type_nested` FROM lessthan17 GROUP BY
name;"
 + "ALTER TABLE `merge_shorter_than22` CHANGE
COLUMN `GROUP_CONCAT(incoming SEPARATOR '')` `incoming` VARCHAR(255) NOT
NULL ; "
 + "drop table if exists union_2a ;"
 + "create table union_2a select * from
merge_shorter_than22 union all select * from double_separate_nodes ;"
 + "drop table if exists union_2 ;"
 + "create table union_2 as select id,
`outgoing`, `xmi:type`, `xmi:type_nested`, `xmi:id`, `xmi:id_nested`,
`name`, incoming, `element_type`, `element_type_nested` from union_2a ; "
 + "DELETE FROM union_2 where
LENGTH(incoming) < 21 ; ";

 String code19b= "drop table if exists unique_activities;"
 + "UPDATE final_node_xmi_xml SET incoming = Concat('_',
incoming); "
 + "UPDATE final_node_xmi_xml SET outgoing = Concat('_',
outgoing); "
 + "create table unique_activities as select id, outgoing,
`xmi:type`, `xmi:type_nested`, `xmi:id`, `xmi:id_nested`, `name`, incoming,
`element_type`, `element_type_nested` from final_node_xmi_xml ;"
 + "DELETE FROM unique_activities where LENGTH(incoming) >
22 ; "
 + "DELETE FROM unique_activities where LENGTH(outgoing) >
22 ; "
 + "UPDATE edge_place_xmi SET `xmi:id` = REPLACE(`xmi:id`,
'_', '') ; "
 + "UPDATE edge_place_xmi SET `xmi:id` = Concat('_',
`xmi:id`) ; "
 + "UPDATE edge_place_xmi SET `source` = REPLACE(`source`,
'_', '') ; "
 + "UPDATE edge_place_xmi SET `source` = Concat('_',
`source`) ; "
 + "UPDATE edge_place_xmi SET target = REPLACE(`target`,
'_', '') ; "
 + "UPDATE edge_place_xmi SET `target` = Concat('_',
`target`) ; "
 + "drop table if exists union_node;"
 + "UPDATE union_1 SET `incoming` = Concat('_',
`incoming`) ; "
 + "UPDATE union_2 SET `outgoing` = Concat('_',
`outgoing`) ; "
 + "create table union_node select * from union_1 union
select * from union_2 union select * from unique_activities;"

236

 + "alter table union_node drop column id; "
 + "alter table union_node add column id int NOT NULL
AUTO_INCREMENT PRIMARY KEY FIRST; "
 + "drop table if exists handler_xmi;"
 + "CREATE TABLE handler_xmi (id int NOT NULL
AUTO_INCREMENT PRIMARY KEY, `xmi:type` VARCHAR(200) NULL, `xmi:id`
VARCHAR(200) NULL, name VARCHAR(200) NULL, incoming VARCHAR(200) NULL,
outgoing varchar(200)null, `exceptionInput` varchar(200)null,
`exceptionType` varchar(200)null, `handlerBody` varchar(200)null);";

 String code19 = "LOAD XML LOCAL INFILE
'c:/users/CHRISTINA/workspace/data/new_xmi_file.xml' INTO TABLE handler_xmi
ROWS IDENTIFIED BY '<handler>';"
 + "UPDATE handler_xmi SET `name`=CONCAT_WS('_', `name`,
'handler');" ;

 String code20 = "drop table if exists handler_node_table;"
 + "CREATE TABLE handler_node_table
(`transition_before_node` VARCHAR(200) NULL, `transition_after_node`
VARCHAR(200) NULL) as SELECT * FROM handler_xmi where
(handler_xmi.`xmi:type`='uml:ExceptionHandler'); "
 + "ALTER TABLE handler_node_table CHANGE COLUMN `xmi:id`
`xmi:id_primary` VARCHAR(255) NULL; "
 + "ALTER TABLE handler_node_table CHANGE COLUMN `name`
`name_primary` VARCHAR(255) NULL;"
 + "UPDATE handler_node_table t1 INNER JOIN
handler_node_node t2 ON t1.incoming = t2.`incoming` SET
t1.transition_before_node = t2.name;"
 + "drop table if exists handler_node_node; "
 + "drop table if exists handler_node_node; "
 + "CREATE TABLE handler_node_node AS SELECT m.*,
u2.`xmi:id`, u2.`name` FROM handler_node_table m INNER JOIN union_node u2
ON (m.`exceptionInput`= u2.`xmi:id`) or (m.`incoming`= u2.`incoming`);"
 + "UPDATE handler_node_table t1 INNER JOIN
handler_node_node t2 ON t1.`exceptionInput` = t2.`xmi:id` SET
t1.transition_after_node = t2.name; "
 + "UPDATE handler_node_table t1 INNER JOIN edge_place_xmi
t2 ON t1.incoming = t2.`xmi:id` SET t1.incoming = t2.name;"
 + "UPDATE handler_node_table t1 INNER JOIN union_node t2
ON t1.transition_after_node = t2.`name` SET t1.outgoing = t2.outgoing;"
 + "UPDATE handler_node_table t1 INNER JOIN edge_place_xmi
t2 ON t1.outgoing = t2.`xmi:id` SET t1.outgoing = t2.name;"
 + "drop table if exists handler_node_table_b; "
 + "create table handler_node_table_b as select
`transition_before_node`,`name_primary` from handler_node_table; "
 + "ALTER TABLE handler_node_table_b CHANGE COLUMN
`name_primary` `place_after_node` VARCHAR(255) NULL; "
 + "ALTER TABLE handler_node_table_b CHANGE COLUMN
`transition_before_node` `name_primary` VARCHAR(255) NULL; "
 + "ALTER TABLE handler_node_table_b ADD COLUMN
`place_before_node` VARCHAR(255) NULL FIRST;"
 + "drop table if exists handler_node_table_a; "
 + "create table handler_node_table_a as select
`name_primary`, `transition_after_node` from handler_node_table; "
 + "ALTER TABLE handler_node_table_a CHANGE COLUMN
`name_primary` `place_before_node` VARCHAR(255) NULL;"
 + "ALTER TABLE handler_node_table_a CHANGE COLUMN
`transition_after_node` `name_primary` VARCHAR(255) NULL; "

237

 + "ALTER TABLE handler_node_table_a ADD COLUMN
`place_after_node` VARCHAR(255) NULL;"
 + "drop table if exists handler_node_table_a_b;"
 + "create table handler_node_table_a_b select * from
handler_node_table_b union all select * from handler_node_table_a;"
 + "UPDATE handler_node_table_a_b t1 INNER JOIN
handler_node_table t2 ON t1.name_primary = t2.transition_before_node SET
t1.place_before_node = t2.incoming;"
 + "UPDATE handler_node_table_a_b t1 INNER JOIN
handler_node_table t2 ON t1.name_primary = t2.transition_after_node SET
t1.place_after_node = t2.outgoing;"
 + "drop table if exists initial_final_table;"
 + "CREATE TABLE initial_final_table
(`transition_before_node` VARCHAR(200) NULL, `transition_after_node`
VARCHAR(200) NULL) as SELECT id, `xmi:type`, `xmi:id`, `name` FROM
union_node where (union_node.`xmi:type`='uml:ActivityFinalNode') or
(union_node.`xmi:type`='uml:FlowFinalNode') or
(union_node.`xmi:type`='uml:InitialNode');"
 + "ALTER TABLE initial_final_table CHANGE COLUMN `xmi:id`
`xmi:id_primary` VARCHAR(255) NULL;"
 + "drop table if exists final_node;"
 + "CREATE TABLE final_node AS SELECT m.*, u1.target,
u1.source FROM initial_final_table m INNER JOIN edge_place_xmi u1 ON
(m.`xmi:id_primary`= u1.target); "
 + "ALTER TABLE `final_node` ADD COLUMN `xmi:id`
VARCHAR(255) NOT NULL;"
 + "ALTER TABLE `final_node` DROP COLUMN
`transition_after_node`;"
 + "UPDATE final_node t1 INNER JOIN edge_place_xmi t2 ON
t1.target = t2.target SET t1.`xmi:id` = t2.`xmi:id`; "
 + "UPDATE final_node INNER JOIN union_node ON
final_node.source = union_node.`xmi:id` SET
final_node.transition_before_node = union_node.name;"
 + "drop table if exists final_node_table; "
 + "create table final_node_table as select
`transition_before_node`,`name` from final_node; "
 + "ALTER TABLE final_node_table CHANGE COLUMN `name`
`place_after_node` VARCHAR(255) NULL;"
 + "ALTER TABLE final_node_table CHANGE COLUMN
`transition_before_node` `name_primary` VARCHAR(255) NULL;"
 + "ALTER TABLE final_node_table ADD COLUMN
`place_before_node` VARCHAR(255) NULL FIRST;"
 + "drop table if exists initial_node;"
 + "CREATE TABLE initial_node AS SELECT m.*, u2.target,
u2.source FROM initial_final_table m INNER JOIN edge_place_xmi u2 ON
(m.`xmi:id_primary`= u2.source); "
 + "ALTER TABLE `initial_node` ADD COLUMN `xmi:id`
VARCHAR(255) NOT NULL;"
 + "UPDATE initial_node t1 INNER JOIN edge_place_xmi t2 ON
t1.source = t2.source SET t1.`xmi:id` = t2.`xmi:id`;"
 + "ALTER TABLE `initial_node` DROP COLUMN
`transition_before_node`;"
 + "UPDATE initial_node INNER JOIN union_node ON
initial_node.target = union_node.`xmi:id` SET
initial_node.transition_after_node = union_node.name;"
 + "drop table if exists initial_node_table; create table
initial_node_table as select `name`, `transition_after_node` from
initial_node; "

238

 + "ALTER TABLE initial_node_table CHANGE COLUMN `name`
`place_before_node` VARCHAR(255) NULL; "
 + "ALTER TABLE initial_node_table CHANGE COLUMN
`transition_after_node` `name_primary` VARCHAR(255) NULL; "
 + "ALTER TABLE initial_node_table ADD COLUMN
`place_after_node` VARCHAR(255) NULL;"
 + "delete from edge_place_xmi WHERE `target` in (SELECT
DISTINCT `target` FROM `final_node`); "
 + "delete from edge_place_xmi WHERE `target` in (SELECT
DISTINCT `target` FROM `initial_node`);";

 String code21 = "drop table if exists activity_parameter_table; "
 + "CREATE TABLE activity_parameter_table
(`transition_after_node` VARCHAR(200) NULL) as SELECT id, `xmi:type`,
`xmi:id`, `name`, outgoing FROM union_node where
(union_node.`xmi:type`='uml:ActivityParameterNode');"
 + "ALTER TABLE activity_parameter_table CHANGE COLUMN
`xmi:id` `xmi:id_primary` VARCHAR(255) NULL;"
 + "drop table if exists parameter_node; "
 + "CREATE TABLE parameter_node AS SELECT m.*, u2.target,
u2.source FROM activity_parameter_table m INNER JOIN edge_place_xmi u2 ON
(m.`xmi:id_primary`= u2.source); ALTER TABLE `parameter_node` ADD COLUMN
`xmi:id` VARCHAR(255) NOT NULL; UPDATE parameter_node t1 INNER JOIN
edge_place_xmi t2 ON t1.source = t2.source SET t1.`xmi:id` = t2.`xmi:id`; "
 + "drop table if exists par_node; "
 + "CREATE TABLE par_node AS SELECT * FROM union_node
where `xmi:type`='uml:ActivityParameterNode';"
 + "drop table if exists par_union_node; "
 + "CREATE TABLE par_union_node AS SELECT c.* FROM
union_node c inner join par_node a on c.incoming=a.outgoing;"
 + "drop table if exists par_union_union; "
 + "CREATE TABLE par_union_union SELECT * FROM par_node
union select * from par_union_node; "
 + "UPDATE activity_parameter_table t1 INNER JOIN
par_union_union t2 ON t1.outgoing = t2.incoming SET
t1.transition_after_node = t2.name;"
 + "delete from edge_place_xmi WHERE `target` in (SELECT
DISTINCT `target` FROM `parameter_node`); "
 + "drop table if exists activity_parameter_table_a; "
 + "create table activity_parameter_table_a as select
`name`, `transition_after_node` from activity_parameter_table; "
 + "ALTER TABLE activity_parameter_table_a CHANGE COLUMN
`name` `place_before_node` VARCHAR(255) NULL; "
 + "ALTER TABLE activity_parameter_table_a CHANGE COLUMN
`transition_after_node` `name_primary` VARCHAR(255) NULL;"
 + "ALTER TABLE activity_parameter_table_a ADD COLUMN
`place_after_node` VARCHAR(255) NULL; "
 + "drop table if exists activity_parameter_table1; "
 + "CREATE TABLE activity_parameter_table1
(`transition_before_node` VARCHAR(200) NULL) as SELECT id, `xmi:type`,
`xmi:id`, `name`, incoming FROM union_node where
(union_node.`xmi:type`='uml:ActivityParameterNode'); "
 + "ALTER TABLE activity_parameter_table1 CHANGE COLUMN
`xmi:id` `xmi:id_primary` VARCHAR(255) NULL;"
 + "drop table if exists parameter_node1;"
 + "CREATE TABLE parameter_node1 AS SELECT m.*,
u2.target, u2.source FROM activity_parameter_table1 m INNER JOIN
edge_place_xmi u2 ON (m.`xmi:id_primary`= u2.target);"

239

 + "ALTER TABLE `parameter_node1` ADD COLUMN `xmi:id`
VARCHAR(255) NOT NULL;"
 + "UPDATE parameter_node1 t1 INNER JOIN edge_place_xmi t2
ON t1.target = t2.target SET t1.`xmi:id` = t2.`xmi:id`;"
 + "drop table if exists par_node1;"
 + "CREATE TABLE par_node1 AS SELECT * FROM union_node
where `xmi:type`='uml:ActivityParameterNode';"
 + "drop table if exists par_union_node1;"
 + "CREATE TABLE par_union_node1 AS SELECT c.* FROM
union_node c inner join par_node a on c.outgoing=a.incoming;"
 + "drop table if exists par_union_union1; "
 + "CREATE TABLE par_union_union1 SELECT * FROM par_node1
union select * from par_union_node1;"
 + "UPDATE activity_parameter_table1 t1 INNER JOIN
par_union_union1 t2 ON t1.incoming = t2.outgoing SET
t1.transition_before_node = t2.name;"
 + "delete from edge_place_xmi WHERE `source` in (SELECT
DISTINCT `source` FROM `parameter_node`);"
 + "drop table if exists activity_parameter_table1_b; "
 + "create table activity_parameter_table1_b as select
`transition_before_node`,`name` from activity_parameter_table1; "
 + "ALTER TABLE activity_parameter_table1_b CHANGE COLUMN
`name` `place_after_node` VARCHAR(255) NULL; "
 + "ALTER TABLE activity_parameter_table1_b CHANGE COLUMN
`transition_before_node` `name_primary` VARCHAR(255) NULL; "
 + "ALTER TABLE activity_parameter_table1_b ADD COLUMN
`place_before_node` VARCHAR(255) NULL FIRST;"
 + "drop table if exists activity_parameter_table_a_b; "
 + "create table activity_parameter_table_a_b select *
from activity_parameter_table1_b union all select * from
activity_parameter_table_a;"

 + "drop table if exists datastore_table; "
 + "CREATE TABLE datastore_table
(`transition_before_node` VARCHAR(200) NULL, `transition_after_node`
VARCHAR(200) NULL) as SELECT id, `xmi:type`, `xmi:id`, `name`, incoming,
outgoing FROM union_node where
(union_node.`xmi:type`='uml:DataStoreNode');"
 + "ALTER TABLE datastore_table CHANGE COLUMN `xmi:id`
`xmi:id_primary` VARCHAR(255) NULL;"
 + "drop table if exists datastore_node; CREATE TABLE
datastore_node AS SELECT m.*, u2.target, u2.source FROM datastore_table m
INNER JOIN edge_place_xmi u2 ON (m.`xmi:id_primary`= u2.source);"
 + "ALTER TABLE `datastore_node` ADD COLUMN `xmi:id`
VARCHAR(255) NOT NULL;"
 + "UPDATE datastore_node t1 INNER JOIN edge_place_xmi t2
ON t1.source = t2.source SET t1.`xmi:id` = t2.`xmi:id`;"
 + "drop table if exists data_node; CREATE TABLE data_node
AS SELECT * FROM union_node where `xmi:type`='uml:DataStoreNode';"
 + "drop table if exists data_union_node; "
 + "CREATE TABLE data_union_node AS SELECT c.* FROM
union_node c inner join data_node a on c.incoming=a.outgoing;"
 + "drop table if exists data_union_union; "
 + "CREATE TABLE data_union_union SELECT * FROM data_node
union select * from data_union_node;"
 + "UPDATE datastore_table t1 INNER JOIN data_union_union
t2 ON t1.outgoing = t2.incoming SET t1.transition_after_node = t2.name;"
 + "delete from edge_place_xmi WHERE `target` in (SELECT
DISTINCT `target` FROM `datastore_node`);"

240

 + "drop table if exists datastore_node1; "
 + "CREATE TABLE datastore_node1 AS SELECT m.*,
u2.target, u2.source FROM datastore_table m INNER JOIN edge_place_xmi u2
ON (m.`xmi:id_primary`= u2.source); "
 + "ALTER TABLE `datastore_node1` ADD COLUMN `xmi:id`
VARCHAR(255) NOT NULL; "
 + "UPDATE datastore_node1 t1 INNER JOIN edge_place_xmi t2
ON t1.target = t2.target SET t1.`xmi:id` = t2.`xmi:id`; "
 + "drop table if exists data_union_node1; "
 + "CREATE TABLE data_union_node1 AS SELECT c.* FROM
union_node c inner join data_node a on c.outgoing=a.incoming;"
 + "drop table if exists data_union_union1; "
 + "CREATE TABLE data_union_union1 SELECT * FROM data_node
union select * from data_union_node1;"
 + "UPDATE datastore_table t1 INNER JOIN data_union_union1
t2 ON t1.incoming = t2.outgoing SET t1.transition_before_node = t2.name;"
 + "delete from edge_place_xmi WHERE `source` in (SELECT
DISTINCT `source` FROM `datastore_node1`);"
 + "drop table if exists datastore_table_b; "
 + "create table datastore_table_b as select
`transition_before_node`,`name` from datastore_table; "
 + "ALTER TABLE datastore_table_b CHANGE COLUMN `name`
`place_after_node` VARCHAR(255) NULL; "
 + "ALTER TABLE datastore_table_b CHANGE COLUMN
`transition_before_node` `name_primary` VARCHAR(255) NULL; "
 + "ALTER TABLE datastore_table_b ADD COLUMN
`place_before_node` VARCHAR(255) NULL FIRST;"
 + "drop table if exists datastore_table_a;"
 + "create table datastore_table_a as select `name`,
`transition_after_node` from datastore_table; "
 + "ALTER TABLE datastore_table_a CHANGE COLUMN `name`
`place_before_node` VARCHAR(255) NULL;"
 + "ALTER TABLE datastore_table_a CHANGE COLUMN
`transition_after_node` `name_primary` VARCHAR(255) NULL;"
 + "ALTER TABLE datastore_table_a ADD COLUMN
`place_after_node` VARCHAR(255) NULL;"
 + "drop table if exists datastore_table_a_b;"
 + "create table datastore_table_a_b select * from
datastore_table_b union all select * from datastore_table_a;"

 + "drop table if exists central_buffer_table; "
 + "CREATE TABLE central_buffer_table
(`transition_before_node` VARCHAR(200) NULL, `transition_after_node`
VARCHAR(200) NULL) as SELECT id, `xmi:type`, `xmi:id`, `name`, incoming,
outgoing FROM union_node where
(union_node.`xmi:type`='uml:CentralBufferNode');"
 + "ALTER TABLE central_buffer_table CHANGE COLUMN
`xmi:id` `xmi:id_primary` VARCHAR(255) NULL;"
 + "drop table if exists central_buffer_node;"
 + "CREATE TABLE central_buffer_node AS SELECT m.*,
u2.target, u2.source FROM central_buffer_table m INNER JOIN edge_place_xmi
u2 ON (m.`xmi:id_primary`= u2.source);"
 + "ALTER TABLE `central_buffer_node` ADD COLUMN `xmi:id`
VARCHAR(255) NOT NULL;"
 + "UPDATE central_buffer_node t1 INNER JOIN
edge_place_xmi t2 ON t1.source = t2.source SET t1.`xmi:id` = t2.`xmi:id`;"
 + "drop table if exists buffer_node; "
 + "CREATE TABLE buffer_node AS SELECT * FROM union_node
where `xmi:type`='uml:CentralBufferNode';"

241

 + "drop table if exists buffer_union_node; "
 + "CREATE TABLE buffer_union_node AS SELECT c.* FROM
union_node c inner join buffer_node a on c.incoming=a.outgoing;"
 + "drop table if exists buffer_union_union; CREATE TABLE
buffer_union_union SELECT * FROM buffer_node union select * from
buffer_union_node;"
 + "UPDATE central_buffer_table t1 INNER JOIN
buffer_union_union t2 ON t1.outgoing = t2.incoming SET
t1.transition_after_node = t2.name;"
 + "delete from edge_place_xmi WHERE `target` in (SELECT
DISTINCT `target` FROM `central_buffer_node`);"
 + "drop table if exists central_buffer_node1;"
 + "CREATE TABLE central_buffer_node1 AS SELECT m.*,
u2.target, u2.source FROM central_buffer_table m INNER JOIN edge_place_xmi
u2 ON (m.`xmi:id_primary`= u2.target); "
 + "ALTER TABLE `central_buffer_node1` ADD COLUMN `xmi:id`
VARCHAR(255) NOT NULL; UPDATE central_buffer_node1 t1 INNER JOIN
edge_place_xmi t2 ON t1.target = t2.target SET t1.`xmi:id` = t2.`xmi:id`;"
 + "drop table if exists buffer_union_node1;"
 + "CREATE TABLE buffer_union_node1 AS SELECT c.* FROM
union_node c inner join buffer_node a on c.outgoing=a.incoming;"
 + "drop table if exists buffer_union_union1;"
 + "CREATE TABLE buffer_union_union1 SELECT * FROM
buffer_node union select * from buffer_union_node1;"
 + "UPDATE central_buffer_table t1 INNER JOIN
buffer_union_union1 t2 ON t1.incoming = t2.outgoing SET
t1.transition_before_node = t2.name;"
 + "delete from edge_place_xmi WHERE `source` in (SELECT
DISTINCT `source` FROM `central_buffer_node1`);"
 + "drop table if exists central_buffer_table_b;"
 + "create table central_buffer_table_b as select
`transition_before_node`,`name` from central_buffer_table; "
 + "ALTER TABLE central_buffer_table_b CHANGE COLUMN
`name` `place_after_node` VARCHAR(255) NULL; "
 + "ALTER TABLE central_buffer_table_b CHANGE COLUMN
`transition_before_node` `name_primary` VARCHAR(255) NULL; "
 + "ALTER TABLE central_buffer_table_b ADD COLUMN
`place_before_node` VARCHAR(255) NULL FIRST;"
 + "drop table if exists central_buffer_table_a;"
 + "create table central_buffer_table_a as select `name`,
`transition_after_node` from central_buffer_table; "
 + "ALTER TABLE central_buffer_table_a CHANGE COLUMN
`name` `place_before_node` VARCHAR(255) NULL;"
 + "ALTER TABLE central_buffer_table_a CHANGE COLUMN
`transition_after_node` `name_primary` VARCHAR(255) NULL;"
 + "ALTER TABLE central_buffer_table_a ADD COLUMN
`place_after_node` VARCHAR(255) NULL;"
 + "drop table if exists central_buffer_table_a_b; "
 + "create table central_buffer_table_a_b select * from
central_buffer_table_b union all select * from central_buffer_table_a;";

 String code22a = "drop table if exists
union_node_table; "
 + "CREATE TABLE union_node_table (`place_before_node`
VARCHAR(200) NULL, `place_after_node` VARCHAR(200) NULL) as SELECT id,
`xmi:type`, `xmi:id`, `name`, incoming, outgoing FROM union_node where
(union_node.`xmi:type`='uml:OpaqueAction') or
(union_node.`xmi:type`='uml:MergeNode') or
(union_node.`xmi:type`='uml:DecisionNode') or

242

(union_node.`xmi:type`='uml:ForkNode') or
(union_node.`xmi:type`='uml:JoinNode') or
(union_node.`xmi:type`='uml:AcceptEventAction') or
(union_node.`xmi:type`='uml:SendSignalAction') or
(union_node.`xmi:type`='uml:CallBehaviorAction');"
 + "ALTER TABLE union_node_table CHANGE COLUMN `xmi:id`
`xmi:id_primary` VARCHAR(255) NULL; "
 + "ALTER TABLE union_node_table CHANGE COLUMN `name`
`name_primary` VARCHAR(255) NULL;"
 + "drop table if exists union_node_node;"
 + "CREATE TABLE union_node_node AS SELECT m.*,
u2.`xmi:id`, u2.`name` FROM union_node_table m INNER JOIN edge_place_xmi
u2 ON (m.`incoming`= u2.`xmi:id`) or (m.`outgoing`= u2.`xmi:id`);"
 + "UPDATE union_node_table t1 INNER JOIN union_node_node
t2 ON t1.outgoing = t2.`xmi:id` SET t1.place_after_node = t2.name;"
 + "UPDATE union_node_table t1 INNER JOIN union_node_node
t2 ON t1.incoming = t2.`xmi:id` SET t1.place_before_node = t2.name;"
 + "delete from union_node_table WHERE (place_before_node
is null) and (place_after_node is null);"
 + "delete from edge_place_xmi WHERE `xmi:id` in (SELECT
DISTINCT `xmi:id` FROM `union_node_node`);"
 + "drop table if exists main_table;"
 + "CREATE TABLE main_table SELECT `place_before_node`,
`name_primary`, `place_after_node` FROM union_node_table union all select *
from initial_node_table union all select * from final_node_table union all
select * from handler_node_table_a_b union all select * from
activity_parameter_table_a_b union all select * from
central_buffer_table_a_b union all select * from datastore_table_a_b;"
 + "drop table if exists null_after;"
 + "CREATE TABLE null_after as SELECT * FROM main_table
where place_after_node is null and name_primary in (select name_primary
from main_table GROUP BY name_primary HAVING COUNT(*)>1);"
 + "drop table if exists null_before;"
 + "CREATE TABLE null_before as SELECT * FROM main_table
where place_before_node is null and name_primary in (select name_primary
from main_table GROUP BY name_primary HAVING COUNT(*)>1);"
 + "UPDATE null_after na, main_table mt SET
na.place_after_node = mt.place_after_node WHERE na.name_primary =
mt.name_primary and mt.place_after_node is not null and
mt.place_before_node is null;"
 + "UPDATE null_before na, main_table mt SET
na.place_before_node = mt.place_before_node WHERE na.name_primary =
mt.name_primary and mt.place_before_node is not null and
mt.place_after_node is null;"
 + "DELETE n1 FROM main_table n1 JOIN main_table n2 ON
n1.name_primary is null AND n1.place_before_node is null;"
 + "DELETE n1 FROM main_table n1 JOIN main_table n2 ON
n1.name_primary is null AND n1.place_after_node is null;"
 + "drop table if exists final_table;"
 + "CREATE TABLE final_table select * from null_after
union select * from null_before union select * from main_table;"
 + "drop table if exists finale_table;"
 + "create table finale_table as select * from
final_table;"
 + "DELETE n1 FROM finale_table n1 JOIN finale_table n2
ON n1.name_primary = n2.name_primary AND n1.place_before_node =
n2.place_before_node and n1.place_after_node is null;"

243

 + "DELETE n1 FROM finale_table n1 JOIN finale_table n2
ON n1.place_after_node = n2.place_after_node AND n1.place_before_node is
null AND n1.name_primary = n2.name_primary;"
 + "ALTER IGNORE TABLE `final_table` ADD UNIQUE
(place_before_node, place_after_node);"
 + "ALTER IGNORE TABLE `final_table` ADD UNIQUE
(place_after_node, name_primary);"
 + "ALTER IGNORE TABLE `final_table` ADD UNIQUE
(place_before_node, name_primary);"
 + "DELETE FROM final_table where place_after_node is not
null and place_before_node is not null;"

 + "drop table if exists place_tr_place1;"
 + "CREATE TABLE place_tr_place1 select * from
finale_table union all select * from final_table union all select * from
in_outputValue_final union all select * from expansionNode_final union all
select * from send_accept_final;"
 + "DELETE FROM place_tr_place1 where place_after_node is
null and place_before_node is null;"
 + "DELETE FROM place_tr_place1 where place_after_node is
null and name_primary is null; "
 + "DELETE FROM place_tr_place1 where name_primary is null
and place_before_node is null;"
 + "update place_tr_place1 as t1 inner join
place_tr_place1 as t2 on t1.name_primary = t2.name_primary and
t1.place_after_node<> t2.place_after_node and t2.place_before_node is null
and t1.place_after_node like'place_%' set t1.place_after_node =
t2.place_after_node;"
 //+ "DELETE n1 FROM place_tr_place1 n1 JOIN
place_tr_place1 n2 ON n1.name_primary = n2.name_primary AND
n1.place_after_node = n2.place_after_node and n1.place_before_node is
null;"
 + "update place_tr_place1 as t1 inner join
place_tr_place1 as t2 on t1.name_primary = t2.name_primary and
t1.place_before_node<> t2.place_before_node and t2.place_after_node is null
and t1.place_after_node like'place_%' set t1.place_before_node =
t2.place_before_node;"
 //+ "DELETE n1 FROM place_tr_place1 n1 JOIN
place_tr_place1 n2 ON n1.name_primary = n2.name_primary AND
n1.place_before_node = n2.place_before_node and n1.place_after_node is
null;"
 + "alter table place_tr_place1 add column id int
AUTO_INCREMENT primary key;"
 + "drop table if exists check_pan;"
 + "create table check_pan as select * FROM
place_tr_place1 p1 WHERE NOT EXISTS (SELECT place_before_node FROM
place_tr_place1 p2 WHERE p1.place_after_node = p2.place_before_node);"
 + "DELETE from check_pan where place_after_node like
'flow_pout%' or place_after_node like 'pout_%';"
 + "drop table if exists check_pbn;"
 + "create table check_pbn as select * FROM
place_tr_place1 p1 WHERE NOT EXISTS (SELECT place_before_node FROM
place_tr_place1 p2 WHERE p1.place_before_node = p2.place_after_node);"
 + "DELETE from check_pbn where place_before_node like
'pin%';"
 + "drop table if exists check_pan_pbn;"
 + "create table check_pan_pbn select * FROM check_pan
union select * from check_pbn; "

244

 + "DELETE n1 FROM place_tr_place1 n1 INNER JOIN
check_pan_pbn n2 ON n1.id = n2.id;"
 + "DELETE n1 FROM check_pan_pbn n1 INNER JOIN
expansionNode_xmi_for_delete n2 ON n1.place_before_node = n2.incoming and
n1.place_after_node = n2.outgoing and n1.name_primary = n2.name; "
 //+ "UPDATE check_pan_pbn SET place_after_node =
REPLACE(place_after_node, 'place', 'pout');"
 + "drop table if exists place_tr_place;"
 + "create table place_tr_place select * from
place_tr_place1 union all select * from check_pan_pbn;"
 + "UPDATE place_tr_place SET place_before_node
='initial_node_x' WHERE `place_before_node` is null; "
 + "UPDATE place_tr_place SET place_after_node
='final_node_x' WHERE `place_after_node` is null;"
 + "alter table place_tr_place drop column id;"
 + "alter table place_tr_place add column id int
AUTO_INCREMENT primary key;"
 + "UPDATE place_tr_place SET place_after_node = NULL
WHERE place_after_node like 'pout_%';"
 + "UPDATE place_tr_place SET place_after_node = 'pout'
WHERE place_after_node is null;"
 + "drop table negative_records;"
 + "create table negative_records (id int not null
AUTO_INCREMENT PRIMARY KEY) as select distinct place_before_node,
name_primary from place_tr_place;"
 + "drop table positive_records;"
 + "create table positive_records (id int not null
AUTO_INCREMENT PRIMARY KEY) as select distinct name_primary,
place_after_node from place_tr_place;";

 pst = conn1.prepareStatement(code1);
boolean isResult1 = pst.execute();
 pst = conn1.prepareStatement(code2);
boolean isResult2 = pst.execute();
 pst = conn1.prepareStatement(code3);
boolean isResult3 = pst.execute();
 pst = conn1.prepareStatement(code4);
boolean isResult4 = pst.execute();
 pst = conn1.prepareStatement(code5);
boolean isResult5 = pst.execute();
 pst = conn1.prepareStatement(code5a);
boolean isResult5a = pst.execute();
 pst = conn1.prepareStatement(code5b);
boolean isResult5b = pst.execute();
 pst = conn1.prepareStatement(code5c);
boolean isResult5c = pst.execute();
 pst = conn1.prepareStatement(code6);
boolean isResult6 = pst.execute();
 pst = conn1.prepareStatement(code7);
boolean isResult7 = pst.execute();
 pst = conn1.prepareStatement(code8);
boolean isResult8 = pst.execute();
 pst = conn1.prepareStatement(code9);
boolean isResult9 = pst.execute();
 pst = conn1.prepareStatement(code10);
boolean isResult10 = pst.execute();
 pst = conn1.prepareStatement(code11);
boolean isResult11 = pst.execute();

245

 pst = conn1.prepareStatement(code12);
boolean isResult12 = pst.execute();
 pst = conn1.prepareStatement(code13);
boolean isResult13 = pst.execute();
 pst = conn1.prepareStatement(code14);
boolean isResult14 = pst.execute();
 pst = conn1.prepareStatement(code15);
boolean isResult15 = pst.execute();
 pst = conn1.prepareStatement(code16);
boolean isResult16 = pst.execute();
 pst = conn1.prepareStatement(code17);
boolean isResult17 = pst.execute();
 pst = conn1.prepareStatement(code18);
boolean isResult18 = pst.execute();
 pst = conn1.prepareStatement(code19b);
boolean isResult19b = pst.execute();
 pst = conn1.prepareStatement(code19);
boolean isResult19 = pst.execute();
pst = conn1.prepareStatement(code20); boolean isResult20 =
pst.execute();
pst = conn1.prepareStatement(code21); boolean isResult21 =
pst.execute();
pst = conn1.prepareStatement(code22a); boolean isResult22a
= pst.execute();

String code111 = "drop table if exists negative;"
 + "SET group_concat_max_len=15000;"
 + "SELECT CONCAT('create table negative as
SELECT place_before_node,', GROUP_CONCAT(sums), 'FROM negative_records
GROUP BY id') FROM (SELECT distinct CONCAT('(case when
negative_records.name_primary = ''', name_primary, ''' then -1 else 0
end) as `', name_primary, '`')sums FROM negative_records GROUP BY id) s
INTO @sql;"
 + "PREPARE stmt FROM @sql; "
 + "EXECUTE stmt; "
 + "DEALLOCATE PREPARE stmt";
pst = conn1.prepareStatement(code111); boolean isResult111
= pst.execute();

 String code222 = "drop table if
exists positive;"
 + "SELECT CONCAT('create table
positive as SELECT place_after_node,', GROUP_CONCAT(sums), 'FROM
positive_records GROUP BY id') FROM (SELECT distinct CONCAT('(case when
positive_records.name_primary = ''', name_primary, ''' then 1 else 0 end)
as `', name_primary, '`')sums FROM positive_records GROUP BY id) s INTO
@sql;"
 + "PREPARE stmt FROM
@sql;"
 + "EXECUTE stmt;"
 + "DEALLOCATE
PREPARE stmt;"
 + "drop table if
exists overall;"
 + "create table
overall SELECT * FROM positive UNION SELECT * FROM negative;"
 + "drop table if
exists schema_table; "

246

 + "create table
schema_table as select * from overall;"
 + "drop table if
exists column_table; "
 + "create table
column_table (primary_id int NOT NULL AUTO_INCREMENT PRIMARY KEY) as select
column_name from information_schema.columns where table_name='overall';"
 + "DELETE FROM
column_table where primary_id=1;"
 + "drop table if
exists matrix_pass_fail;"
 + "drop table if
exists incidence_matrix_single_device;"
 + "drop table if
exists table_union1";
 pst = conn1.prepareStatement(code222);
boolean isResult222 = pst.execute();

 String code334 = "set session sql_mode =
'NO_ENGINE_SUBSTITUTION';"
 + "DROP PROCEDURE IF EXISTS
`Te`;" + "SET group_concat_max_len= 150000;";
 code334 += "CREATE PROCEDURE `Te`() ";
 code334 += "BEGIN ";
code334 += "create table matrix_pass_fail (column_name varchar(150000)) ";
 code334 += " SELECT
@query7:=GROUP_CONCAT(CONCAT('sum(`',column_name,'`)`',column_name,'`')) "
 + "AS column_name from
column_table order by CHAR_LENGTH(column_name); ";
 code334 += "PREPARE stmt FROM @query7; ";
 code334 += "EXECUTE stmt;";
 code334 += "DEALLOCATE PREPARE stmt;";
 code334 += "END ";

 pst.execute(code334);
 pst.close();

 String query1 =
"Call Te();";

 pst = conn1.prepareStatement(query1);
boolean isResultA = pst.execute();

 }
 catch(SQLException e){} try{ if (rs != null) rs.close(); if
(pst != null) pst.close();
 if (conn1 != null) conn1.close();}catch(Exception e){}

 try{
 conn1

=DriverManager.getConnection("jdbc:mysql://127.0.0.1:3306/sql",
"root","Xristina23");

 pst =conn1.prepareStatement("select * from
matrix_pass_fail");
 rs= pst.executeQuery();

 while (rs.next())

247

 t1=(("create table table_union1 as select place_after_node,") +
rs.getString("column_name")+ (" ") +("from overall group by
place_after_node;"));
 System.out.println(t1);
 }
 catch(SQLException e){} try{ if (rs != null) rs.close(); if (pst
!= null) pst.close();
 if (conn1 != null) conn1.close();}catch(Exception e){}
 try{
 //STEP 2: Register JDBC driver
 Class.forName("com.mysql.jdbc.Driver");
 //STEP 3: Open a connection
 System.out.println("Connecting to a selected database...");
 conn1 = DriverManager.getConnection(DB_URL, USER, PASS);
 System.out.println("Connected database successfully...");
 //STEP 4: Execute a query
 System.out.println("Creating table in given database...");
 stmt = conn1.createStatement();
 String sql1 = t1;
 stmt.executeUpdate(sql1);

 System.out.println("Created table in given database...");
 }catch(SQLException se){
 //Handle errors for JDBC

 se.printStackTrace();
 }catch(Exception e){
 //Handle errors for Class.forName
 e.printStackTrace();
 }finally{
 //finally block used to close resources
 try{
 if(stmt!=null)
 conn1.close();
 }catch(SQLException se){
 }// do nothing
 try{
 if(conn1!=null)
 conn1.close();
 }catch(SQLException se){
 se.printStackTrace();
 }//end finally try
 }//end try
 try {
 conn1 = DriverManager.getConnection(cs, USER, PASS);
 String t3=("create table incidence_matrix_single_device
as select * from table_union1 GROUP by place_after_node asc;");

 String query = "select * from
incidence_matrix_single_device;";
 pst = conn1.prepareStatement(t3); boolean
isResultt3 = pst.execute();
 pst = conn1.prepareStatement(query); boolean
isResult = pst.execute();
 do {
 rs = pst.getResultSet();
 ResultSetMetaData rsmd = rs.getMetaData();

248

 int columnsNumber = rsmd.getColumnCount();
 int col = rsmd.getColumnCount();
 for (int i = 1; i <= col; i++){
 String col_name = rsmd.getColumnName(i);
 System.out.print(col_name + " ");
 }
 System.out.println(" ");
 // Iterate through the data in the result set and
display it.
 while (rs.next()) {
 //Print one row
 for(int i = 1 ; i <= columnsNumber; i++){
 System.out.print(rs.getString(i) + "
"); //Print one element of a row
 }
 System.out.println();
 }
 isResult = pst.getMoreResults();
 } while (isResult); } finally {
 if (rs != null) {
 rs.close(); }
 if (pst != null) {
 pst.close();}
 if (conn1 != null) {
 conn1.close();
 }
 }
 System.out.println("Goodbye!"); }
 }//end main
 //end JDBCExample

249

Appendix I – Advanced Generic SQL Code [M0]
Appendix I presents the advanced generic SQL code developed for the automated

generation of the PN initial marking matrix [M0], discussed in Chapter 6.

package step1_initial_marking;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
public class initial_marking {
 public static void main(String[] args) throws SQLException {
 Connection con = null;
 PreparedStatement pst = null;
 ResultSet rs=null;
 String cs =
"jdbc:mysql://localhost:3306/sql?allowMultiQueries=true";
 String user = "root";
 String password = "Xristina23";
 try {
 con = DriverManager.getConnection(cs, user, password);
 String code1 = "SET SQL_SAFE_UPDATES=0;"
 + "drop table if exists initial_marking;"
 + "create table initial_marking (primary_id int not null
auto_increment primary key, activity varchar(250),
process_number_of_devices int);"
 + "insert into initial_marking (activity) select
place_after_node from incidence_matrix_single_device;"
 + "drop table if exists m0_marking;"
 + "create table m0_marking (primary_id int not null
auto_increment primary key) SELECT IFNULL(process_number_of_devices, 0)
FROM initial_marking;"
 + "ALTER TABLE `m0_marking` CHANGE COLUMN
`IFNULL(process_number_of_devices, 0)` `process_number_of_devices` int;"
 + "alter table initial_marking drop column
process_number_of_devices;"
 + "drop table if exists initial_marking_final;"
 + "CREATE TABLE initial_marking_final AS (SELECT
initial_marking.*, m0_marking.process_number_of_devices FROM
initial_marking INNER JOIN m0_marking ON initial_marking.primary_id =
m0_marking.primary_id);"
 + "UPDATE initial_marking_final SET
initial_marking_final.process_number_of_devices = "
 + "REPLACE(initial_marking_final.process_number_of_devices,
'0', '1') "
 + " where initial_marking_final.activity like 'pin%' or
initial_marking_final.activity like 'initial_place%' or
initial_marking_final.activity like 'initial_node_x%';"

 + "drop table if exists find_initial_node;"
 + "create table find_initial_node as select * from
place_tr_place;"
 + " DELETE n1 FROM find_initial_node n1 JOIN
find_initial_node n2 ON n1.place_before_node = n2.place_after_node;"

250

 + "ALTER TABLE find_initial_node DROP column name_primary,
drop place_after_node, drop id;"
 + " ALTER TABLE find_initial_node ADD COLUMN `primary_id`
int NOT NULL AUTO_INCREMENT PRIMARY KEY; "
 + "ALTER TABLE find_initial_node ADD COLUMN
`process_number_of_devices` INT;"
 + "ALTER TABLE find_initial_node CHANGE place_before_node
activity char(250);"
 + "UPDATE find_initial_node SET process_number_of_devices =
1 WHERE process_number_of_devices IS NULL;"
 + "ALTER TABLE find_initial_node MODIFY activity
varchar(250) AFTER primary_id;"
 + "drop table if exists initial_marking_final_1; "
 + "create table initial_marking_final_1 select * from
find_initial_node UNION select * from initial_marking_final;"
 + "DELETE n1 FROM initial_marking_final_1 n1 JOIN
find_initial_node n2 ON n1.activity=n2.activity AND
n1.process_number_of_devices=0;"
 + "ALTER TABLE initial_marking_final_1 DROP column
primary_id;"
 + "drop table if exists process_device_number;"
 + "CREATE TABLE process_device_number (number_of_devices
int, activity varchar(50), min_time int, max_time int, probability_pass
double, probability_fail double, min_interval_pass int, max_interval_pass
int, min_interval_fail int, max_interval_fail int, initial_marking int);";
 String code2 = "LOAD DATA LOCAL INFILE
'E:/online_shopping/excel_data_number_of_devices.csv' INTO TABLE
process_device_number FIELDS TERMINATED BY ';' LINES TERMINATED BY '\r\n'
(number_of_devices, activity, min_time, max_time, probability_pass,
probability_fail, min_interval_pass, max_interval_pass, min_interval_fail,
max_interval_fail, initial_marking);";
 String code3 = "ALTER TABLE process_device_number ADD primary_id
int NOT NULL AUTO_INCREMENT PRIMARY KEY ;"
 + "DELETE FROM process_device_number where primary_id=1;"
 + "drop table if exists initial_marking_table;"
 + "create table initial_marking_table (primary_id int NOT
NULL AUTO_INCREMENT PRIMARY KEY) as select initial_marking from
process_device_number;";
String code4 = "UPDATE initial_marking_final, initial_marking_table SET
initial_marking_final.process_number_of_devices =
REPLACE(initial_marking_final.process_number_of_devices,'1',
initial_marking_table.initial_marking) where
initial_marking_table.primary_id='1';"
+"ALTER IGNORE TABLE initial_marking_final_1 ADD UNIQUE (activity,
process_number_of_devices);";

 pst = con.prepareStatement(code1); boolean isResult1 =
pst.execute();
 pst = con.prepareStatement(code2); boolean isResul2t =
pst.execute();
 pst = con.prepareStatement(code3); boolean isResult3 =
pst.execute();
 pst = con.prepareStatement(code4); boolean isResult4 =
pst.execute();

 String query = "select * from initial_marking_final;";
 pst = con.prepareStatement(query);
 boolean isResult = pst.execute();
 do {

251

 rs = pst.getResultSet();
 ResultSetMetaData rsmd = rs.getMetaData();
 int columnsNumber = rsmd.getColumnCount();
 int col = rsmd.getColumnCount();
 for (int i = 1; i <= col; i++){
 String col_name = rsmd.getColumnName(i);
 System.out.print(col_name + " ");
 }
 System.out.println(" ");
 // Iterate through the data in the result set and display
it.
 while (rs.next()) {
 //Print one row
 for(int i = 1 ; i <= columnsNumber; i++){
 System.out.print(rs.getString(i) + " ");
//Print one element of a row
 }
 System.out.println();
 }
 isResult = pst.getMoreResults();
 }
 while (isResult);
 } finally {
 if (rs != null) {
 rs.close();
 }
 if (pst != null) {
 pst.close();
 }
 if (con != null) {
 con.close();
 }

 }
 }
 }

252

Appendix J
Appendix J covers the XMI files for the two AD examples shown in Chapter 7.

Part A- Production System Example (XMI File)
XMI obtained from the AD for the Production System, shown in Figure 7.2.

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="20131001"
xmlns:xmi="http://www.omg.org/spec/XMI/20131001"
xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"
xmi:id="__mtawCH2Eeilppsn_eFPfg" name="RootElement">
 <packagedElement xmi:type="uml:Activity" xmi:id="__tTyACH2Eeilppsn_eFPfg"
name="Activity1" node="_tcQnECH3Eeilppsn_eFPfg _vGJWACH3Eeilppsn_eFPfg
_25ogcCH3Eeilppsn_eFPfg _95hqwCH3Eeilppsn_eFPfg _FaRfYCH4Eeilppsn_eFPfg
_So3AkCH4Eeilppsn_eFPfg _bRFaoCH4Eeilppsn_eFPfg _cdQS0CH4Eeilppsn_eFPfg
_tXuP4CH4Eeilppsn_eFPfg _-95cYCH4Eeilppsn_eFPfg _F39rgCH5Eeilppsn_eFPfg
_G82P8CH5Eeilppsn_eFPfg _JucN0CH5Eeilppsn_eFPfg _Qy02kCH5Eeilppsn_eFPfg
_WQZ5kCH5Eeilppsn_eFPfg _YwFBACH5Eeilppsn_eFPfg _tP9lkCH5Eeilppsn_eFPfg
_ufdekCH5Eeilppsn_eFPfg _yrbvwCH5Eeilppsn_eFPfg _AL2n0CH6Eeilppsn_eFPfg
_C619oCH6Eeilppsn_eFPfg _GpmuYCH6Eeilppsn_eFPfg _JrgZICH6Eeilppsn_eFPfg
_ND_X4CH6Eeilppsn_eFPfg _T4TkUCH6Eeilppsn_eFPfg _VvAnQCH6Eeilppsn_eFPfg
_WuXygCH6Eeilppsn_eFPfg _fZyqgCH6Eeilppsn_eFPfg _gUwd8CH6Eeilppsn_eFPfg
_7YpCYCH3Eeilppsn_eFPfg _Gr_9QCIJEeilppsn_eFPfg _ZOymMCINEeilppsn_eFPfg
_sqt-UCJYEeimD_iX8lXVAA">
 <edge xmi:type="uml:ControlFlow" xmi:id="_uzeU0CH7Eeilppsn_eFPfg"
target="_vGJWACH3Eeilppsn_eFPfg" source="_tcQnECH3Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_wBAe8CH7Eeilppsn_eFPfg"
target="_25ogcCH3Eeilppsn_eFPfg" source="_vGJWACH3Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_xTTNQCH7Eeilppsn_eFPfg"
target="_25ogcCH3Eeilppsn_eFPfg" source="_95hqwCH3Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_ymKjUCH7Eeilppsn_eFPfg"
target="_7YpCYCH3Eeilppsn_eFPfg" source="_25ogcCH3Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_zYyTECH7Eeilppsn_eFPfg"
target="_95hqwCH3Eeilppsn_eFPfg" source="_7YpCYCH3Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_0guLgCH7Eeilppsn_eFPfg"
target="_Gr_9QCIJEeilppsn_eFPfg" source="_7YpCYCH3Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_8-XtQCH7Eeilppsn_eFPfg"
target="_bRFaoCH4Eeilppsn_eFPfg" source="_So3AkCH4Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_9stZ8CH7Eeilppsn_eFPfg"
target="_cdQS0CH4Eeilppsn_eFPfg" source="_bRFaoCH4Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_-UqKwCH7Eeilppsn_eFPfg"
target="_tXuP4CH4Eeilppsn_eFPfg" source="_bRFaoCH4Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_CEhHsCH8Eeilppsn_eFPfg"
target="_-95cYCH4Eeilppsn_eFPfg" source="_cdQS0CH4Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_IQ-p8CH8Eeilppsn_eFPfg"
target="_F39rgCH5Eeilppsn_eFPfg" source="_tXuP4CH4Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_JC52ICH8Eeilppsn_eFPfg"
target="_G82P8CH5Eeilppsn_eFPfg" source="_F39rgCH5Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_J3yPsCH8Eeilppsn_eFPfg"
target="_JucN0CH5Eeilppsn_eFPfg" source="_F39rgCH5Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_MT_zcCH8Eeilppsn_eFPfg"
name="Filling_with_base" target="_Qy02kCH5Eeilppsn_eFPfg"
source="_G82P8CH5Eeilppsn_eFPfg"/>

253

 <edge xmi:type="uml:ControlFlow" xmi:id="_PdIuoCH8Eeilppsn_eFPfg"
name="Filling_with_additive" target="_WQZ5kCH5Eeilppsn_eFPfg"
source="_JucN0CH5Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_SUxDECH8Eeilppsn_eFPfg"
target="_YwFBACH5Eeilppsn_eFPfg" source="_WQZ5kCH5Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_TCtHICH8Eeilppsn_eFPfg"
target="_tP9lkCH5Eeilppsn_eFPfg" source="_YwFBACH5Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_UpSDYCH8Eeilppsn_eFPfg"
target="_ufdekCH5Eeilppsn_eFPfg" source="_tP9lkCH5Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_VWThcCH8Eeilppsn_eFPfg"
target="_ufdekCH5Eeilppsn_eFPfg" source="_Qy02kCH5Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_WBvEECH8Eeilppsn_eFPfg"
target="_yrbvwCH5Eeilppsn_eFPfg" source="_tP9lkCH5Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_mS6zkCH8Eeilppsn_eFPfg"
target="_AL2n0CH6Eeilppsn_eFPfg" source="_ufdekCH5Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_nHlKsCH8Eeilppsn_eFPfg"
name="Mixing_in_M1" target="_C619oCH6Eeilppsn_eFPfg"
source="_AL2n0CH6Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_rRdxMCH8Eeilppsn_eFPfg"
name="Emptying_M1" target="_GpmuYCH6Eeilppsn_eFPfg"
source="_C619oCH6Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_u3F0ECH8Eeilppsn_eFPfg"
target="_JrgZICH6Eeilppsn_eFPfg" source="_GpmuYCH6Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_zKXAECH8Eeilppsn_eFPfg"
target="_T4TkUCH6Eeilppsn_eFPfg" source="_JrgZICH6Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_0eAZQCH8Eeilppsn_eFPfg"
target="_ND_X4CH6Eeilppsn_eFPfg" source="_T4TkUCH6Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_BExFcCH9Eeilppsn_eFPfg"
target="_VvAnQCH6Eeilppsn_eFPfg" source="_yrbvwCH5Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_CTKyQCH9Eeilppsn_eFPfg"
target="_WuXygCH6Eeilppsn_eFPfg" source="_VvAnQCH6Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_IwmIsCH9Eeilppsn_eFPfg"
target="_fZyqgCH6Eeilppsn_eFPfg" source="_WuXygCH6Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_Jf768CH9Eeilppsn_eFPfg"
target="_gUwd8CH6Eeilppsn_eFPfg" source="_fZyqgCH6Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_Ms1UwCH9Eeilppsn_eFPfg"
target="_T4TkUCH6Eeilppsn_eFPfg" source="_fZyqgCH6Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_WrgkYCH9Eeilppsn_eFPfg"
target="_sqt-UCJYEeimD_iX8lXVAA" source="_ND_X4CH6Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_zHTPkCH9Eeilppsn_eFPfg"
name="Valve_open" target="_VvAnQCH6Eeilppsn_eFPfg" source="_-
95cYCH4Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_l_fkcCIAEeilppsn_eFPfg"
target="_sqt-UCJYEeimD_iX8lXVAA" source="_7YpCYCH3Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_LS8TMCIJEeilppsn_eFPfg"
target="_FaRfYCH4Eeilppsn_eFPfg" source="_Gr_9QCIJEeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_az7YACINEeilppsn_eFPfg"
target="_ZOymMCINEeilppsn_eFPfg" source="_gUwd8CH6Eeilppsn_eFPfg"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_2mHQcCJYEeimD_iX8lXVAA"
target="_So3AkCH4Eeilppsn_eFPfg" source="_sqt-UCJYEeimD_iX8lXVAA"/>
 <node xmi:type="uml:InitialNode" xmi:id="_tcQnECH3Eeilppsn_eFPfg"
name="" outgoing="_uzeU0CH7Eeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_vGJWACH3Eeilppsn_eFPfg"
name="Production_Order_1_asks_Receipt_P1_to_produce_P1"
incoming="_uzeU0CH7Eeilppsn_eFPfg" outgoing="_wBAe8CH7Eeilppsn_eFPfg"/>
 <node xmi:type="uml:MergeNode" xmi:id="_25ogcCH3Eeilppsn_eFPfg"
name="M1" incoming="_wBAe8CH7Eeilppsn_eFPfg _xTTNQCH7Eeilppsn_eFPfg"
outgoing="_ymKjUCH7Eeilppsn_eFPfg"/>

254

 <node xmi:type="uml:DecisionNode" xmi:id="_7YpCYCH3Eeilppsn_eFPfg"
name="D1" incoming="_ymKjUCH7Eeilppsn_eFPfg"
outgoing="_zYyTECH7Eeilppsn_eFPfg _0guLgCH7Eeilppsn_eFPfg
_l_fkcCIAEeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_95hqwCH3Eeilppsn_eFPfg"
name="Production_of_a_batch_of_P1_in_M2(similar_to_M1)"
incoming="_zYyTECH7Eeilppsn_eFPfg" outgoing="_xTTNQCH7Eeilppsn_eFPfg"/>
 <node xmi:type="uml:ActivityFinalNode" xmi:id="_FaRfYCH4Eeilppsn_eFPfg"
incoming="_LS8TMCIJEeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_So3AkCH4Eeilppsn_eFPfg"
name="Receipt_P1_requests_M1_to_Interface_CM1"
incoming="_2mHQcCJYEeimD_iX8lXVAA" outgoing="_8-XtQCH7Eeilppsn_eFPfg"/>
 <node xmi:type="uml:ForkNode" xmi:id="_bRFaoCH4Eeilppsn_eFPfg" name=""
incoming="_8-XtQCH7Eeilppsn_eFPfg" outgoing="_9stZ8CH7Eeilppsn_eFPfg _-
UqKwCH7Eeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_cdQS0CH4Eeilppsn_eFPfg"
name="Receipt_P1_asks_Interface_VT2--1_to_open_VT2-1"
incoming="_9stZ8CH7Eeilppsn_eFPfg" outgoing="_CEhHsCH8Eeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_tXuP4CH4Eeilppsn_eFPfg"
name="Interface_CM1_requests_M1_to_controller_CM1" incoming="_-
UqKwCH7Eeilppsn_eFPfg" outgoing="_IQ-p8CH8Eeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_-95cYCH4Eeilppsn_eFPfg"
name="Interface_VT2-1_opens_VT2-1" incoming="_CEhHsCH8Eeilppsn_eFPfg"
outgoing="_zHTPkCH9Eeilppsn_eFPfg"/>
 <node xmi:type="uml:ForkNode" xmi:id="_F39rgCH5Eeilppsn_eFPfg" name=""
incoming="_IQ-p8CH8Eeilppsn_eFPfg" outgoing="_JC52ICH8Eeilppsn_eFPfg
_J3yPsCH8Eeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_G82P8CH5Eeilppsn_eFPfg"
name="CM1_opens_VM1-1" incoming="_JC52ICH8Eeilppsn_eFPfg"
outgoing="_MT_zcCH8Eeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_JucN0CH5Eeilppsn_eFPfg"
name="CM1_opens_VM1-2" incoming="_J3yPsCH8Eeilppsn_eFPfg"
outgoing="_PdIuoCH8Eeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_Qy02kCH5Eeilppsn_eFPfg"
name="CM1_closes_VM1-1" incoming="_MT_zcCH8Eeilppsn_eFPfg"
outgoing="_VWThcCH8Eeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_WQZ5kCH5Eeilppsn_eFPfg"
name="CM1_closes_VM1-2" incoming="_PdIuoCH8Eeilppsn_eFPfg"
outgoing="_SUxDECH8Eeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_YwFBACH5Eeilppsn_eFPfg"
name="CM1_informs_end_of_additive_loading_to_Interface_CM1"
incoming="_SUxDECH8Eeilppsn_eFPfg" outgoing="_TCtHICH8Eeilppsn_eFPfg"/>
 <node xmi:type="uml:ForkNode" xmi:id="_tP9lkCH5Eeilppsn_eFPfg" name=""
incoming="_TCtHICH8Eeilppsn_eFPfg" outgoing="_UpSDYCH8Eeilppsn_eFPfg
_WBvEECH8Eeilppsn_eFPfg"/>
 <node xmi:type="uml:JoinNode" xmi:id="_ufdekCH5Eeilppsn_eFPfg"
incoming="_UpSDYCH8Eeilppsn_eFPfg _VWThcCH8Eeilppsn_eFPfg"
outgoing="_mS6zkCH8Eeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_yrbvwCH5Eeilppsn_eFPfg"
name="Interface_CM1_informs_end_of_additive_loading_to_Receipt_P1"
incoming="_WBvEECH8Eeilppsn_eFPfg" outgoing="_BExFcCH9Eeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_AL2n0CH6Eeilppsn_eFPfg"
name="CM1_starts_mixing_in_M1" incoming="_mS6zkCH8Eeilppsn_eFPfg"
outgoing="_nHlKsCH8Eeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_C619oCH6Eeilppsn_eFPfg"
name="CM1_stops_mixing_and_starts_emptying_M1"
incoming="_nHlKsCH8Eeilppsn_eFPfg" outgoing="_rRdxMCH8Eeilppsn_eFPfg"/>

255

 <node xmi:type="uml:OpaqueAction" xmi:id="_GpmuYCH6Eeilppsn_eFPfg"
name="CM1_detects_M1_empty" incoming="_rRdxMCH8Eeilppsn_eFPfg"
outgoing="_u3F0ECH8Eeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_JrgZICH6Eeilppsn_eFPfg"
name="CM1_informs_end_of_batch_to_Interface_CM1"
incoming="_u3F0ECH8Eeilppsn_eFPfg" outgoing="_zKXAECH8Eeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_ND_X4CH6Eeilppsn_eFPfg"
name="Interface_CM1_informs_end_of_batch_to_Receipt_P1"
incoming="_0eAZQCH8Eeilppsn_eFPfg" outgoing="_WrgkYCH9Eeilppsn_eFPfg"/>
 <node xmi:type="uml:JoinNode" xmi:id="_T4TkUCH6Eeilppsn_eFPfg" name=""
incoming="_zKXAECH8Eeilppsn_eFPfg _Ms1UwCH9Eeilppsn_eFPfg"
outgoing="_0eAZQCH8Eeilppsn_eFPfg"/>
 <node xmi:type="uml:JoinNode" xmi:id="_VvAnQCH6Eeilppsn_eFPfg" name=""
incoming="_BExFcCH9Eeilppsn_eFPfg _zHTPkCH9Eeilppsn_eFPfg"
outgoing="_CTKyQCH9Eeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_WuXygCH6Eeilppsn_eFPfg"
name="Receipt_P1_requests_Interface_VT2--1_to_close_VT2-1"
incoming="_CTKyQCH9Eeilppsn_eFPfg" outgoing="_IwmIsCH9Eeilppsn_eFPfg"/>
 <node xmi:type="uml:ForkNode" xmi:id="_fZyqgCH6Eeilppsn_eFPfg" name=""
incoming="_IwmIsCH9Eeilppsn_eFPfg" outgoing="_Jf768CH9Eeilppsn_eFPfg
_Ms1UwCH9Eeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_gUwd8CH6Eeilppsn_eFPfg"
name="Interface_VT2_closes_VT2" incoming="_Jf768CH9Eeilppsn_eFPfg"
outgoing="_az7YACINEeilppsn_eFPfg"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_Gr_9QCIJEeilppsn_eFPfg"
name="Terminate_production_P1" incoming="_0guLgCH7Eeilppsn_eFPfg"
outgoing="_LS8TMCIJEeilppsn_eFPfg"/>
 <node xmi:type="uml:FlowFinalNode" xmi:id="_ZOymMCINEeilppsn_eFPfg"
name="" incoming="_az7YACINEeilppsn_eFPfg"/>
 <node xmi:type="uml:MergeNode" xmi:id="_sqt-UCJYEeimD_iX8lXVAA"
incoming="_l_fkcCIAEeilppsn_eFPfg _WrgkYCH9Eeilppsn_eFPfg"
outgoing="_2mHQcCJYEeimD_iX8lXVAA"/>
 </packagedElement>
</uml:Model>

Part B – Online Shopping Process (XMI File)

XMI obtained from the AD for the online shopping process, illustrated in Figure 7.4.

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="20131001"
xmlns:xmi="http://www.omg.org/spec/XMI/20131001"
xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"
xmi:id="__QzS0JR1EeebXObshy6vlA" name="RootElement">
 <packagedElement xmi:type="uml:Activity" xmi:id="__h8GIJR1EeebXObshy6vlA"
name="Activity1" node="_M-oUwJR2EeebXObshy6vlA _ZigFAJR2EeebXObshy6vlA
_izGGoJR2EeebXObshy6vlA _kVjX4JR2EeebXObshy6vlA _mIulsJR2EeebXObshy6vlA
_ogUvMJR2EeebXObshy6vlA _qBiqUJR2EeebXObshy6vlA _uPNkoJR2EeebXObshy6vlA
_xFJ3AJR2EeebXObshy6vlA _5F6BYJR2EeebXObshy6vlA _BYaDEJR3EeebXObshy6vlA
_QZxwgJR3EeebXObshy6vlA _Rr-_QJR3EeebXObshy6vlA _Xq6b0JR3EeebXObshy6vlA
_edbRcJR3EeebXObshy6vlA __WTroJR6EeebXObshy6vlA _NbgrwJR7EeebXObshy6vlA
_aYOZ0JR7EeebXObshy6vlA _ifxIsJR7EeebXObshy6vlA _j6mvAJR7EeebXObshy6vlA
_lNZMkJR7EeebXObshy6vlA _pyfIYJR7EeebXObshy6vlA _AIObUJR8EeebXObshy6vlA
_NomQEJR8EeebXObshy6vlA _004CUJR8EeebXObshy6vlA _7TENwJR8EeebXObshy6vlA
_8nxW4JR8EeebXObshy6vlA _PHurEJR9EeebXObshy6vlA _rq_3QJR9EeebXObshy6vlA _-
VKQUJR9EeebXObshy6vlA _PT9TwJR-EeebXObshy6vlA _aCiWUJR-EeebXObshy6vlA

256

_0kXPMJR-EeebXObshy6vlA _DZXUkJR_EeebXObshy6vlA _DquxYJR_EeebXObshy6vlA
_ESTHsJR_EeebXObshy6vlA _YXy2UJR_EeebXObshy6vlA _JOhUoJSAEeebXObshy6vlA
_5kI0gJSBEeebXObshy6vlA _BpfyEJSCEeebXObshy6vlA _DOQwcJSCEeebXObshy6vlA
_D1IjMJSCEeebXObshy6vlA _OxpUEJSCEeebXObshy6vlA _UJ2u4JSCEeebXObshy6vlA
_7TV_kJknEeeOIORO-VyZIA _S0_E8JkoEeeOIORO-VyZIA _gEelEJkoEeeOIORO-VyZIA
_zb-c4JunEeeMJso6T-JfIQ _ZLMygJ7uEeel-svp6Z91RQ _lcXMsJ7vEeel-svp6Z91RQ"
group="_YXy2UJR_EeebXObshy6vlA">
 <ownedBehavior xmi:type="uml:Activity" xmi:id="_e76kQJR3EeebXObshy6vlA"
name="Activity1">
 <nestedClassifier xmi:type="uml:Signal" xmi:id="_VyjEcJuoEeeMJso6T-
JfIQ"/>
 <nestedClassifier xmi:type="uml:Signal" xmi:id="_uaqpsJuoEeeMJso6T-
JfIQ" name="Verify_CC_Funds"/>
 </ownedBehavior>
 <edge xmi:type="uml:ControlFlow" xmi:id="_vk2scJR3EeebXObshy6vlA"
target="_ZigFAJR2EeebXObshy6vlA" source="_M-oUwJR2EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_wxh68JR3EeebXObshy6vlA"
target="_gEelEJkoEeeOIORO-VyZIA" source="_ZigFAJR2EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_xoAP8JR3EeebXObshy6vlA"
target="_kVjX4JR2EeebXObshy6vlA" source="_izGGoJR2EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_y2k74JR3EeebXObshy6vlA"
target="_mIulsJR2EeebXObshy6vlA" source="_izGGoJR2EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_zrTkcJR3EeebXObshy6vlA"
target="_ogUvMJR2EeebXObshy6vlA" source="_kVjX4JR2EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_0qqvsJR3EeebXObshy6vlA"
target="_ogUvMJR2EeebXObshy6vlA" source="_mIulsJR2EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_1s9TIJR3EeebXObshy6vlA"
target="_uPNkoJR2EeebXObshy6vlA" source="_lcXMsJ7vEeel-svp6Z91RQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_7tsGgJR3EeebXObshy6vlA"
target="_BYaDEJR3EeebXObshy6vlA" source="_5F6BYJR2EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_EnCFwJR4EeebXObshy6vlA"
name="Authorised" target="_QZxwgJR3EeebXObshy6vlA"
source="_BYaDEJR3EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_Gi3gUJR4EeebXObshy6vlA"
name="Not_Authorised" target="_Rr-_QJR3EeebXObshy6vlA"
source="_BYaDEJR3EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_Ltr_YJR4EeebXObshy6vlA"
target="_Xq6b0JR3EeebXObshy6vlA" source="_QZxwgJR3EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_M-guEJR4EeebXObshy6vlA"
target="_Xq6b0JR3EeebXObshy6vlA" source="_Rr-_QJR3EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_N5JKUJR4EeebXObshy6vlA"
target="_edbRcJR3EeebXObshy6vlA" source="_Xq6b0JR3EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_QEZZkJR7EeebXObshy6vlA"
name="Acount_Information_(pending)" target="__WTroJR6EeebXObshy6vlA"
source="_ZLMygJ7uEeel-svp6Z91RQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_VcBlkJR7EeebXObshy6vlA"
target="_NbgrwJR7EeebXObshy6vlA" source="__WTroJR6EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_cAnT8JR7EeebXObshy6vlA"
name="Verify_Account_by_Phone" target="_aYOZ0JR7EeebXObshy6vlA"
source="__WTroJR6EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_q54OQJR7EeebXObshy6vlA"
target="_ifxIsJR7EeebXObshy6vlA" source="_aYOZ0JR7EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_rrpCYJR7EeebXObshy6vlA"
target="_j6mvAJR7EeebXObshy6vlA" source="_aYOZ0JR7EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_sorSYJR7EeebXObshy6vlA"
target="_lNZMkJR7EeebXObshy6vlA" source="_aYOZ0JR7EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_tVswcJR7EeebXObshy6vlA"
target="_pyfIYJR7EeebXObshy6vlA" source="_ifxIsJR7EeebXObshy6vlA"/>

257

 <edge xmi:type="uml:ControlFlow" xmi:id="_uU3HYJR7EeebXObshy6vlA"
target="_pyfIYJR7EeebXObshy6vlA" source="_j6mvAJR7EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_vH6U8JR7EeebXObshy6vlA"
target="_pyfIYJR7EeebXObshy6vlA" source="_lNZMkJR7EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_Ozc5oJR8EeebXObshy6vlA"
target="_NomQEJR8EeebXObshy6vlA" source="_AIObUJR8EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="__uP_oJR8EeebXObshy6vlA"
target="_004CUJR8EeebXObshy6vlA" source="_pyfIYJR7EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_BV4EwJR9EeebXObshy6vlA"
name="Request_More_Information" target="_7TENwJR8EeebXObshy6vlA"
source="_004CUJR8EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_JTy9kJR9EeebXObshy6vlA"
target="_8nxW4JR8EeebXObshy6vlA" source="_004CUJR8EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_xAm0kJR-EeebXObshy6vlA"
target="_-VKQUJR9EeebXObshy6vlA" source="_rq_3QJR9EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_3PXc4JR-EeebXObshy6vlA"
target="_0kXPMJR-EeebXObshy6vlA" source="_-VKQUJR9EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_q2F9oJR_EeebXObshy6vlA"
target="_c_FxkJR_EeebXObshy6vlA" source="_aPQHMJR_EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_rrKkcJR_EeebXObshy6vlA"
target="_baUzMJR_EeebXObshy6vlA" source="_c_FxkJR_EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_S8Dw8JSAEeebXObshy6vlA"
target="_JOhUoJSAEeebXObshy6vlA" source="_8nxW4JR8EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_UJILkJSBEeebXObshy6vlA"
target="_NomQEJR8EeebXObshy6vlA" source="_JOhUoJSAEeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_ZxRDUJSCEeebXObshy6vlA"
target="_BpfyEJSCEeebXObshy6vlA" source="_wJ6D0JSDEeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_btyaYJSCEeebXObshy6vlA"
name="Monitor" target="_JdkyYJSCEeebXObshy6vlA"
source="_BpfyEJSCEeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_fP6dUJSCEeebXObshy6vlA"
name="Computer" target="_IswZcJSCEeebXObshy6vlA"
source="_BpfyEJSCEeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_2ciU8JSCEeebXObshy6vlA"
target="_7TV_kJknEeeOIORO-VyZIA" source="_K_IrwJSCEeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="__U0kQJSCEeebXObshy6vlA"
target="_UJ2u4JSCEeebXObshy6vlA" source="_OxpUEJSCEeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_Uwro4JSDEeebXObshy6vlA"
target="_NomQEJR8EeebXObshy6vlA" source="_UJ2u4JSCEeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_9x2pYJknEeeOIORO-VyZIA"
target="_OxpUEJSCEeebXObshy6vlA" source="_7TV_kJknEeeOIORO-VyZIA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_bDae8JkoEeeOIORO-VyZIA"
target="_S0_E8JkoEeeOIORO-VyZIA" source="_M-oUwJR2EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_hj1fAJkoEeeOIORO-VyZIA"
target="_gEelEJkoEeeOIORO-VyZIA" source="_S0_E8JkoEeeOIORO-VyZIA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_7aWKAJkoEeeOIORO-VyZIA"
target="_izGGoJR2EeebXObshy6vlA" source="_gEelEJkoEeeOIORO-VyZIA"/>
 <edge xmi:type="uml:ObjectFlow" xmi:id="_34ePoJuiEeeMJso6T-JfIQ"
target="_vSm7IJukEeeMJso6T-JfIQ" source="_Ti85MJR9EeebXObshy6vlA">
 <guard xmi:type="uml:LiteralBoolean" xmi:id="_35aq0JuiEeeMJso6T-JfIQ"
value="true"/>
 <weight xmi:type="uml:LiteralInteger" xmi:id="_35aq0ZuiEeeMJso6T-
JfIQ" value="1"/>
 </edge>
 <edge xmi:type="uml:ControlFlow" xmi:id="_k1_AsJujEeeMJso6T-JfIQ"
target="_aCiWUJR-EeebXObshy6vlA" source="_PT9TwJR-EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_FIbNUJukEeeMJso6T-JfIQ"
target="_7TV_kJknEeeOIORO-VyZIA" source="_MM4RQJSCEeebXObshy6vlA"/>

258

 <edge xmi:type="uml:ControlFlow" xmi:id="_pzIasJukEeeMJso6T-JfIQ"
target="_PHurEJR9EeebXObshy6vlA" source="_004CUJR8EeebXObshy6vlA"/>
 <edge xmi:type="uml:ObjectFlow" xmi:id="_TTcPoJumEeeMJso6T-JfIQ"
name="Order_Items" target="_9mQmIJSBEeebXObshy6vlA"
source="_KtnewJulEeeMJso6T-JfIQ">
 <guard xmi:type="uml:LiteralBoolean" xmi:id="_TUQvAJumEeeMJso6T-JfIQ"
value="true"/>
 <weight xmi:type="uml:LiteralInteger" xmi:id="_TUQvAZumEeeMJso6T-
JfIQ" value="1"/>
 </edge>
 <edge xmi:type="uml:ControlFlow" xmi:id="_b_bdcJuoEeeMJso6T-JfIQ"
target="_wEoRIJuoEeeMJso6T-JfIQ" source="_-VKQUJR9EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_DAIegJ7uEeel-svp6Z91RQ"
target="_5F6BYJR2EeebXObshy6vlA" source="_lcXMsJ7vEeel-svp6Z91RQ"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_LId3kJ7uEeel-svp6Z91RQ"
target="_xFJ3AJR2EeebXObshy6vlA" source="_uPNkoJR2EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_L8ShMJ7uEeel-svp6Z91RQ"
target="_qBiqUJR2EeebXObshy6vlA" source="_xFJ3AJR2EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_aoYiMJ7uEeel-svp6Z91RQ"
target="_ZLMygJ7uEeel-svp6Z91RQ" source="_qBiqUJR2EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_g0YxcJ7uEeel-svp6Z91RQ"
target="_ZLMygJ7uEeel-svp6Z91RQ" source="_edbRcJR3EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_nhGroJ7vEeel-svp6Z91RQ"
target="_lcXMsJ7vEeel-svp6Z91RQ" source="_ogUvMJR2EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_kq7BwKg8Eeez4cgOfIXL4g"
target="_NomQEJR8EeebXObshy6vlA" source="_baUzMJR_EeebXObshy6vlA"/>
 <edge xmi:type="uml:ControlFlow" xmi:id="_lyGsQKg8Eeez4cgOfIXL4g"
target="_aPQHMJR_EeebXObshy6vlA" source="_0kXPMJR-EeebXObshy6vlA"/>
 <structuredNode xmi:type="uml:ExpansionRegion"
xmi:id="_YXy2UJR_EeebXObshy6vlA" name="ExpansionRegion1" mustIsolate="true"
mode="parallel" outputElement="_baUzMJR_EeebXObshy6vlA"
inputElement="_aPQHMJR_EeebXObshy6vlA">
 <node xmi:type="uml:ExpansionNode" xmi:id="_aPQHMJR_EeebXObshy6vlA"
name="ExpansionNode1" incoming="_lyGsQKg8Eeez4cgOfIXL4g"
outgoing="_q2F9oJR_EeebXObshy6vlA" isControlType="true"
regionAsInput="_YXy2UJR_EeebXObshy6vlA"
regionAsOutput="_afnHoKkpEeeSpPj0NkcV_Q">
 <upperBound xmi:type="uml:LiteralInteger"
xmi:id="_aPRVUJR_EeebXObshy6vlA" value="1"/>
 </node>
 <node xmi:type="uml:ExpansionNode" xmi:id="_baUzMJR_EeebXObshy6vlA"
name="ExpansionNode2" incoming="_rrKkcJR_EeebXObshy6vlA"
outgoing="_kq7BwKg8Eeez4cgOfIXL4g" isControlType="true"
regionAsOutput="_YXy2UJR_EeebXObshy6vlA">
 <upperBound xmi:type="uml:LiteralInteger"
xmi:id="_baVaQJR_EeebXObshy6vlA" value="1"/>
 </node>
 <node xmi:type="uml:OpaqueAction" xmi:id="_c_FxkJR_EeebXObshy6vlA"
name="Contact_Suppliers" incoming="_q2F9oJR_EeebXObshy6vlA"
outgoing="_rrKkcJR_EeebXObshy6vlA"/>
 <node xmi:type="uml:ExpansionRegion" xmi:id="_afnHoKkpEeeSpPj0NkcV_Q"
outputElement="_aPQHMJR_EeebXObshy6vlA"/>
 </structuredNode>
 <node xmi:type="uml:InitialNode" xmi:id="_M-oUwJR2EeebXObshy6vlA"
outgoing="_vk2scJR3EeebXObshy6vlA _bDae8JkoEeeOIORO-VyZIA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_ZigFAJR2EeebXObshy6vlA"
name="Ask_to_Create_Account_for_New_Users"
incoming="_vk2scJR3EeebXObshy6vlA" outgoing="_wxh68JR3EeebXObshy6vlA"/>

259

 <node xmi:type="uml:ForkNode" xmi:id="_izGGoJR2EeebXObshy6vlA"
incoming="_7aWKAJkoEeeOIORO-VyZIA" outgoing="_xoAP8JR3EeebXObshy6vlA
_y2k74JR3EeebXObshy6vlA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_kVjX4JR2EeebXObshy6vlA"
name="Enter_User_Name" incoming="_xoAP8JR3EeebXObshy6vlA"
outgoing="_zrTkcJR3EeebXObshy6vlA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_mIulsJR2EeebXObshy6vlA"
name="Enter_Password" incoming="_y2k74JR3EeebXObshy6vlA"
outgoing="_0qqvsJR3EeebXObshy6vlA"/>
 <node xmi:type="uml:JoinNode" xmi:id="_ogUvMJR2EeebXObshy6vlA" name=""
incoming="_zrTkcJR3EeebXObshy6vlA _0qqvsJR3EeebXObshy6vlA"
outgoing="_nhGroJ7vEeel-svp6Z91RQ"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_qBiqUJR2EeebXObshy6vlA"
name="Verify_User_Data" incoming="_L8ShMJ7uEeel-svp6Z91RQ"
outgoing="_aoYiMJ7uEeel-svp6Z91RQ"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_uPNkoJR2EeebXObshy6vlA"
name="Find_User_Data" incoming="_1s9TIJR3EeebXObshy6vlA"
outgoing="_LId3kJ7uEeel-svp6Z91RQ"/>
 <node xmi:type="uml:DataStoreNode" xmi:id="_xFJ3AJR2EeebXObshy6vlA"
name="User_Profile" incoming="_LId3kJ7uEeel-svp6Z91RQ"
outgoing="_L8ShMJ7uEeel-svp6Z91RQ" isControlType="true">
 <upperBound xmi:type="uml:LiteralInteger"
xmi:id="_xFYggJR2EeebXObshy6vlA" value="1"/>
 </node>
 <node xmi:type="uml:OpaqueAction" xmi:id="_5F6BYJR2EeebXObshy6vlA"
name="Assign_User_Data" incoming="_DAIegJ7uEeel-svp6Z91RQ"
outgoing="_7tsGgJR3EeebXObshy6vlA"/>
 <node xmi:type="uml:DecisionNode" xmi:id="_BYaDEJR3EeebXObshy6vlA"
name="" incoming="_7tsGgJR3EeebXObshy6vlA"
outgoing="_EnCFwJR4EeebXObshy6vlA _Gi3gUJR4EeebXObshy6vlA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_QZxwgJR3EeebXObshy6vlA"
name="Create_Account" incoming="_EnCFwJR4EeebXObshy6vlA"
outgoing="_Ltr_YJR4EeebXObshy6vlA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_Rr-_QJR3EeebXObshy6vlA"
name="Reject_Account" incoming="_Gi3gUJR4EeebXObshy6vlA" outgoing="_M-
guEJR4EeebXObshy6vlA"/>
 <node xmi:type="uml:MergeNode" xmi:id="_Xq6b0JR3EeebXObshy6vlA" name=""
incoming="_Ltr_YJR4EeebXObshy6vlA _M-guEJR4EeebXObshy6vlA"
outgoing="_N5JKUJR4EeebXObshy6vlA"/>
 <node xmi:type="uml:CallBehaviorAction"
xmi:id="_edbRcJR3EeebXObshy6vlA" name="Update_System"
incoming="_N5JKUJR4EeebXObshy6vlA" outgoing="_g0YxcJ7uEeel-svp6Z91RQ"
behavior="_e76kQJR3EeebXObshy6vlA"/>
 <node xmi:type="uml:DecisionNode" xmi:id="__WTroJR6EeebXObshy6vlA"
incoming="_QEZZkJR7EeebXObshy6vlA" outgoing="_VcBlkJR7EeebXObshy6vlA
_cAnT8JR7EeebXObshy6vlA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_NbgrwJR7EeebXObshy6vlA"
name="User_Cancels" incoming="_VcBlkJR7EeebXObshy6vlA">
 <handler xmi:type="uml:ExceptionHandler"
xmi:id="_HmlDQJR8EeebXObshy6vlA" exceptionInput="_DuU_UJR8EeebXObshy6vlA"
exceptionType="__h8GIJR1EeebXObshy6vlA"
handlerBody="_AIObUJR8EeebXObshy6vlA"/>
 </node>
 <node xmi:type="uml:ForkNode" xmi:id="_aYOZ0JR7EeebXObshy6vlA" name=""
incoming="_cAnT8JR7EeebXObshy6vlA" outgoing="_q54OQJR7EeebXObshy6vlA
_rrpCYJR7EeebXObshy6vlA _sorSYJR7EeebXObshy6vlA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_ifxIsJR7EeebXObshy6vlA"
name="Verify_Email" incoming="_q54OQJR7EeebXObshy6vlA"
outgoing="_tVswcJR7EeebXObshy6vlA"/>

260

 <node xmi:type="uml:OpaqueAction" xmi:id="_j6mvAJR7EeebXObshy6vlA"
name="Verify_Password" incoming="_rrpCYJR7EeebXObshy6vlA"
outgoing="_uU3HYJR7EeebXObshy6vlA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_lNZMkJR7EeebXObshy6vlA"
name="Verify_Phone_Number" incoming="_sorSYJR7EeebXObshy6vlA"
outgoing="_vH6U8JR7EeebXObshy6vlA"/>
 <node xmi:type="uml:MergeNode" xmi:id="_pyfIYJR7EeebXObshy6vlA" name=""
incoming="_tVswcJR7EeebXObshy6vlA _uU3HYJR7EeebXObshy6vlA
_vH6U8JR7EeebXObshy6vlA" outgoing="__uP_oJR8EeebXObshy6vlA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_AIObUJR8EeebXObshy6vlA"
name="Account_Cancelled" outgoing="_Ozc5oJR8EeebXObshy6vlA">
 <inputValue xmi:type="uml:InputPin" xmi:id="_DuU_UJR8EeebXObshy6vlA"
name="InputPin">
 <upperBound xmi:type="uml:LiteralInteger"
xmi:id="_DuVmYJR8EeebXObshy6vlA" value="1"/>
 </inputValue>
 </node>
 <node xmi:type="uml:ActivityFinalNode" xmi:id="_NomQEJR8EeebXObshy6vlA"
name="" incoming="_Ozc5oJR8EeebXObshy6vlA _UJILkJSBEeebXObshy6vlA
_Uwro4JSDEeebXObshy6vlA _kq7BwKg8Eeez4cgOfIXL4g"/>
 <node xmi:type="uml:DecisionNode" xmi:id="_004CUJR8EeebXObshy6vlA"
name="" incoming="__uP_oJR8EeebXObshy6vlA"
outgoing="_BV4EwJR9EeebXObshy6vlA _JTy9kJR9EeebXObshy6vlA
_pzIasJukEeeMJso6T-JfIQ"/>
 <node xmi:type="uml:FlowFinalNode" xmi:id="_7TENwJR8EeebXObshy6vlA"
name="" incoming="_BV4EwJR9EeebXObshy6vlA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_8nxW4JR8EeebXObshy6vlA"
name="Customer_Complains" incoming="_JTy9kJR9EeebXObshy6vlA"
outgoing="_S8Dw8JSAEeebXObshy6vlA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_PHurEJR9EeebXObshy6vlA"
name="Account_information_Approved" incoming="_pzIasJukEeeMJso6T-JfIQ">
 <outputValue xmi:type="uml:OutputPin"
xmi:id="_Ti85MJR9EeebXObshy6vlA" name="" outgoing="_34ePoJuiEeeMJso6T-
JfIQ">
 <upperBound xmi:type="uml:LiteralInteger"
xmi:id="_Ti85MZR9EeebXObshy6vlA" value="1"/>
 </outputValue>
 </node>
 <node xmi:type="uml:OpaqueAction" xmi:id="_rq_3QJR9EeebXObshy6vlA"
name="Receive_Order" outgoing="_xAm0kJR-EeebXObshy6vlA">
 <inputValue xmi:type="uml:InputPin" xmi:id="_vSm7IJukEeeMJso6T-JfIQ"
name="" incoming="_34ePoJuiEeeMJso6T-JfIQ">
 <upperBound xmi:type="uml:LiteralInteger"
xmi:id="_vSoJQJukEeeMJso6T-JfIQ" value="1"/>
 </inputValue>
 </node>
 <node xmi:type="uml:DecisionNode" xmi:id="_-VKQUJR9EeebXObshy6vlA"
name="" incoming="_xAm0kJR-EeebXObshy6vlA" outgoing="_3PXc4JR-
EeebXObshy6vlA _b_bdcJuoEeeMJso6T-JfIQ"/>
 <node xmi:type="uml:SendSignalAction" xmi:id="_PT9TwJR-EeebXObshy6vlA"
name="Verify_CC_Funds" outgoing="_k1_AsJujEeeMJso6T-JfIQ"
signal="_uaqpsJuoEeeMJso6T-JfIQ">
 <target xmi:type="uml:InputPin" xmi:id="_wEoRIJuoEeeMJso6T-JfIQ"
incoming="_b_bdcJuoEeeMJso6T-JfIQ" type="_Pl28EJR-EeebXObshy6vlA"
isControlType="true">
 <lowerValue xmi:type="uml:LiteralInteger"
xmi:id="_wEoRIZuoEeeMJso6T-JfIQ" value="1"/>
 <upperValue xmi:type="uml:LiteralUnlimitedNatural"
xmi:id="_wEoRIpuoEeeMJso6T-JfIQ" value="1"/>

261

 </target>
 </node>
 <node xmi:type="uml:AcceptEventAction" xmi:id="_aCiWUJR-EeebXObshy6vlA"
name="Received_Verification" incoming="_k1_AsJujEeeMJso6T-JfIQ">
 <result xmi:type="uml:OutputPin" xmi:id="_KtnewJulEeeMJso6T-JfIQ"
name="" outgoing="_TTcPoJumEeeMJso6T-JfIQ" isControlType="true">
 <upperBound xmi:type="uml:LiteralInteger"
xmi:id="_KtoF0JulEeeMJso6T-JfIQ" value="1"/>
 </result>
 <trigger xmi:type="uml:Trigger" xmi:id="_4LTycJuqEeeMJso6T-JfIQ"
name="Trigger"/>
 </node>
 <node xmi:type="uml:OpaqueAction" xmi:id="_0kXPMJR-EeebXObshy6vlA"
name="Out_of_Stock_Items" incoming="_3PXc4JR-EeebXObshy6vlA"
outgoing="_lyGsQKg8Eeez4cgOfIXL4g"/>
 <node xmi:type="uml:CallBehaviorAction"
xmi:id="_DZXUkJR_EeebXObshy6vlA" name="CallBehaviorAction1"
behavior="__h8GIJR1EeebXObshy6vlA"/>
 <node xmi:type="uml:CallBehaviorAction"
xmi:id="_DquxYJR_EeebXObshy6vlA" name="CallBehaviorAction2"
behavior="__h8GIJR1EeebXObshy6vlA"/>
 <node xmi:type="uml:CallBehaviorAction"
xmi:id="_ESTHsJR_EeebXObshy6vlA" name="CallBehaviorAction3"
behavior="__h8GIJR1EeebXObshy6vlA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_JOhUoJSAEeebXObshy6vlA"
name="Customer_Complaint_Handled_(complaint_dept.)"
incoming="_S8Dw8JSAEeebXObshy6vlA" outgoing="_UJILkJSBEeebXObshy6vlA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_5kI0gJSBEeebXObshy6vlA"
name="Get_Products">
 <inputValue xmi:type="uml:InputPin" xmi:id="_9mQmIJSBEeebXObshy6vlA"
name="" incoming="_TTcPoJumEeeMJso6T-JfIQ" isControlType="true">
 <upperBound xmi:type="uml:LiteralInteger"
xmi:id="_9mQmIZSBEeebXObshy6vlA" value="1"/>
 </inputValue>
 <outputValue xmi:type="uml:OutputPin"
xmi:id="_wJ6D0JSDEeebXObshy6vlA" outgoing="_ZxRDUJSCEeebXObshy6vlA"
isControlType="true">
 <upperBound xmi:type="uml:LiteralInteger"
xmi:id="_wJ6q4JSDEeebXObshy6vlA" value="1"/>
 </outputValue>
 </node>
 <node xmi:type="uml:DecisionNode" xmi:id="_BpfyEJSCEeebXObshy6vlA"
name="" incoming="_ZxRDUJSCEeebXObshy6vlA"
outgoing="_btyaYJSCEeebXObshy6vlA _fP6dUJSCEeebXObshy6vlA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_DOQwcJSCEeebXObshy6vlA"
name="Test_Computer">
 <inputValue xmi:type="uml:InputPin" xmi:id="_IswZcJSCEeebXObshy6vlA"
incoming="_fP6dUJSCEeebXObshy6vlA" isControlType="true">
 <upperBound xmi:type="uml:LiteralInteger"
xmi:id="_IswZcZSCEeebXObshy6vlA" value="1"/>
 </inputValue>
 <outputValue xmi:type="uml:OutputPin"
xmi:id="_K_IrwJSCEeebXObshy6vlA" outgoing="_2ciU8JSCEeebXObshy6vlA"
isControlType="true">
 <upperBound xmi:type="uml:LiteralInteger"
xmi:id="_K_JS0JSCEeebXObshy6vlA" value="1"/>
 </outputValue>
 </node>

262

 <node xmi:type="uml:OpaqueAction" xmi:id="_D1IjMJSCEeebXObshy6vlA"
name="Test_Monitor">
 <inputValue xmi:type="uml:InputPin" xmi:id="_JdkyYJSCEeebXObshy6vlA"
incoming="_btyaYJSCEeebXObshy6vlA" isControlType="true">
 <upperBound xmi:type="uml:LiteralInteger"
xmi:id="_JdlZcJSCEeebXObshy6vlA" value="1"/>
 </inputValue>
 <outputValue xmi:type="uml:OutputPin"
xmi:id="_MM4RQJSCEeebXObshy6vlA" outgoing="_FIbNUJukEeeMJso6T-JfIQ"
isControlType="true">
 <upperBound xmi:type="uml:LiteralInteger"
xmi:id="_MM4RQZSCEeebXObshy6vlA" value="1"/>
 </outputValue>
 </node>
 <node xmi:type="uml:CentralBufferNode" xmi:id="_OxpUEJSCEeebXObshy6vlA"
name="Product" incoming="_9x2pYJknEeeOIORO-VyZIA"
outgoing="__U0kQJSCEeebXObshy6vlA" isControlType="true">
 <upperBound xmi:type="uml:LiteralInteger"
xmi:id="_Oxp7IJSCEeebXObshy6vlA" value="1"/>
 </node>
 <node xmi:type="uml:OpaqueAction" xmi:id="_UJ2u4JSCEeebXObshy6vlA"
name="Send_Order_for_Shipment" incoming="__U0kQJSCEeebXObshy6vlA"
outgoing="_Uwro4JSDEeebXObshy6vlA"/>
 <node xmi:type="uml:MergeNode" xmi:id="_7TV_kJknEeeOIORO-VyZIA" name=""
incoming="_2ciU8JSCEeebXObshy6vlA _FIbNUJukEeeMJso6T-JfIQ"
outgoing="_9x2pYJknEeeOIORO-VyZIA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_S0_E8JkoEeeOIORO-VyZIA"
name="Ask_to Login_for_Registered_Users" incoming="_bDae8JkoEeeOIORO-VyZIA"
outgoing="_hj1fAJkoEeeOIORO-VyZIA"/>
 <node xmi:type="uml:MergeNode" xmi:id="_gEelEJkoEeeOIORO-VyZIA" name=""
incoming="_wxh68JR3EeebXObshy6vlA _hj1fAJkoEeeOIORO-VyZIA"
outgoing="_7aWKAJkoEeeOIORO-VyZIA"/>
 <node xmi:type="uml:OpaqueAction" xmi:id="_zb-c4JunEeeMJso6T-JfIQ"
name="">
 <outputValue xmi:type="uml:OutputPin" xmi:id="_46hwQJunEeeMJso6T-
JfIQ" name="">
 <upperBound xmi:type="uml:LiteralInteger"
xmi:id="_46iXUJunEeeMJso6T-JfIQ" value="1"/>
 </outputValue>
 </node>
 <node xmi:type="uml:MergeNode" xmi:id="_ZLMygJ7uEeel-svp6Z91RQ"
incoming="_aoYiMJ7uEeel-svp6Z91RQ _g0YxcJ7uEeel-svp6Z91RQ"
outgoing="_QEZZkJR7EeebXObshy6vlA"/>
 <node xmi:type="uml:DecisionNode" xmi:id="_lcXMsJ7vEeel-svp6Z91RQ"
name="" incoming="_nhGroJ7vEeel-svp6Z91RQ" outgoing="_DAIegJ7uEeel-
svp6Z91RQ _1s9TIJR3EeebXObshy6vlA"/>
 </packagedElement>
 <packagedElement xmi:type="uml:Signal" xmi:id="_Pl28EJR-EeebXObshy6vlA"
name="Signal1"/>
</uml:Model>

263

Appendix K – PN Mathematical Forms of the Production System

and Online Shopping Process

Part A

This section includes the file retrieved from the transpose of the incidence matrix

automatically generated for the production system as discussed in Chapter 7.

place_after_node,D1,Production_of_a_batch_of_P1_in_M2(similar_to_M1),Receipt_
P1_requests_M1_to_Interface_CM1,fork_8,Receipt_P1_asks_Interface_VT2--
1_to_open_VT2-1,Interface_CM1_requests_M1_to_controller_CM1,Interface_VT2-
1_opens_VT2-1,fork_12,CM1_opens_VM1-1,CM1_opens_VM1-
2,CM1_closes_VM1-1,CM1_closes_VM1-
2,CM1_informs_end_of_additive_loading_to_Interface_CM1,fork_18,Interface_CM1
_informs_end_of_additive_loading_to_Receipt_P1,CM1_starts_mixing_in_M1,CM1
_stops_mixing_and_starts_emptying_M1,CM1_detects_M1_empty,CM1_informs_en
d_of_batch_to_Interface_CM1,Interface_CM1_informs_end_of_batch_to_Receipt_P1
,Receipt_P1_requests_Interface_VT2--1_to_close_VT2-
1,fork_29,M1,join_19,join_26,join_27,merge_33,Interface_VT2_closes_VT2,Termin
ate_production_P1,Production_Order_1_asks_Receipt_P1_to_produce_P1
Emptying_M1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0
Filling_with_additive,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Filling_with_base,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Mixing_in_M1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0
place_1,0,-1
place_10,0,0,0,0,1,0,-1,0
place_11,0,0,0,0,0,1,0,-1,0
place_12,0,0,0,0,0,0,0,1,-1,0
place_13,0,0,0,0,0,0,0,1,0,-1,0
place_16,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
place_17,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
place_18,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0
place_19,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0
place_2,0,-1,0,0,0,0,0,0,0
place_20,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
place_21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0
place_24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0
place_25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0
place_26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0
place_27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0
place_28,0,-1,0,0,0,0,1,0,0,0,0
place_29,0,1,-1,0,0,0,0,0,0,0,0
place_3,0,1,0,-1,0,0,0,0,0,0,0

264

place_30,1,0,0,0,0,0,-1,0,0
place_31,0,1,0,0,-1,0,0,0,0,0
place_32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0
place_34,1,0,-1,0,0,0
place_37,0,0,-1,0,1,0,0,0
place_4,-1,0,1,0,0,0,0,0,0,0
place_5,1,-1,0
place_6,1,0,-1,0
place_7,0,0,1,-1,0
place_8,0,0,0,1,-1,0
place_9,0,0,0,1,0,-1,0
pout,0,1,1,1,1,1,1,1,1
Valve_open,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0

Part B

This section presents the initial marking table automatically generated for the

production system as discussed in Chapter 7.

Table K.1 MySQL ‘intial_marking’ Table for the Production System

265

Part C

This section includes the file retrieved from the transpose of the incidence matrix

automatically generated for the online shopping process as discussed in Chapter 7.

place_after_node,decision_29,Customer_Complaint_Handled_(complaint_dept.),merg
e_48,Ask_to_Create_Account_for_New_Users,Send_Order_for_Shipment,Verify_Us
er_Data,fork_7,Enter_User_Name,Enter_Password,Find_User_Data,Assign_User_Da
ta,decision_15,Create_Account,Reject_Account,Update_System,decision_20,fork_22,
Verify_Email,Verify_Password,Verify_Phone_Number,Customer_Complains,decisio
n_34,Verify_CC_Funds,Received_Verification,Out_of_Stock_Items,decision_43,deci
sion_53,join_10,merge_18,merge_26,merge_50,merge_52,Receive_Order,Get_Produ
cts,Test_Computer,Test_Monitor,Account_information_Approved,User_Cancels,Cont
act_Suppliers,Account_Cancelled,"Ask_to Login_for_Registered_Users"
Acount_Information_(pending),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0
Authorised,0,0,0,0,0,0,0,0,0,0,0,1,-
1,0
Computer,0,1,0,0,0,0,0,0,0,0,-
1,0,0,0,0,0,0
flow_pout_30,1,0,
0,0,0
Monitor,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0
Not_Authorised,0,0,0,0,0,0,0,0,0,0,0,1,0,-
1,0
Order_Items,0,1,0,0,0,0,0,0,0,0,0,-
1,0,0,0,0,0,0,0
pin_5,0,0,0,-1,0
place_11,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0
place_12,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0
place_13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
place_15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0
place_17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0
place_18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0
place_19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0
place_2,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0
place_20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0
place_21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0
place_22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0
place_24,-1,0,1,0,0,0,0,0,0,0,0,0,0,0
place_26,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0
place_27,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0
place_28,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
place_3,0,0,0,0,0,0,1,-1,0

266

place_31,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0
place_33,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
place_36,0,0,-1,0,1,0,0,0,0,0,0
place_4,0,0,0,0,0,0,1,0,-1,0
place_41,0,-1,0,0,0,0,0,0,0,0,0,1
place_42,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0
place_43,0,-1,0,0,0,1,0,0,0,0
place_44,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
place_45,0,0,-1,0,1,0,0,0,0,0
place_46,1,0,-1,0,0,0,0
place_48,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
place_49,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
place_5,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0
place_52,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0
place_53,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0
place_54,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
place_55,0,1,0,0
place_56,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0
place_6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0
place_7,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
place_8,0,0,0,0,0,0,0,0,0,0,1,-1,0
pout,0,1,0,0,1,0,1,0
Product,0,0,1,0,-1,0
User_Profile,0,0,0,0,0,-
1,0,0,0,1,0
Verify_Account_by_Phone,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-
1,0

267

Part D

This section presents the initial marking table automatically generated for the online

shopping process as discussed in Chapter 7.

Table K.2 MySQL ‘intial_marking’ Table for the Online Shopping Process

268

Appendix L – Verification of the Production System and Online

Shopping Process
Appendix L includes figures obtained from HIPS proving that the production system

and online shopping process, discussed in Chapter 7, are (i) structurally and

behaviourally bounded as can be seen in Figures L.1 and L.3 respectively; and (ii)

behaviourally live and safe as can be seen in Figures L.2 and L.4 respectively.

Figure L.1 Structurally and Behaviourally Bounded Check in HiPS for the Production System

Figure L.2 Behavioural Liveness and Safeness Properties Check in HiPS for the Production System

Figure L.3 Structurally and Behaviourally Bounded Check in HiPS for the Online Shopping Process

Figure L.4 Behavioural Liveness and Safeness Properties Check in HiPS for the Online Shopping Process

	Methodology for automated Petri Net model generation to support Reliability Modelling
	by
	Contents
	List of Figures
	List of Tables
	CHAPTER 1
	1.1 Introduction to Reliability Modelling
	1.1.1 Analytical Reliability Modelling Methods
	1.1.1.1 Fault Tree
	1.1.1.2 Cause-Consequence Diagram
	1.1.1.3 Reliability Block Diagram
	1.1.1.4 Markov Method
	1.1.1.5 Petri Net

	1.1.2 Simulation Modelling Methods
	1.1.3 Reliability Modelling, Implementation and Deficiencies

	1.2 Introduction to Automated Reliability Model Generation
	1.3 Industrial Representation of Systems
	1.3.1 Introduction to System Modelling Tools
	1.3.2 Summary of System Modelling Tools

	1.4 Research Scope and Delimitations
	1.5 Aim and Objectives
	1.6 Thesis Layout
	CHAPTER 2
	2.1 Introduction
	2.2 Industrial System Representation
	2.2.1 Systems Modelling Languages Review: UML and SysML
	2.2.1.1 UML/SysML Activity Diagram

	2.3 Petri Net Modelling Review
	2.4 Methods for Automation of Reliability Models
	2.4.1 Introduction
	2.4.2 Overview of Methods for Automated Reliability Modelling (not including PN)
	2.4.2.1 Automated generation of the Fault Tree Model
	2.4.2.2 Automated generation of other Reliability Models
	2.4.2.3 Summary of Methods

	2.5 Automated Generation of the Petri Net Model
	2.5.1 Review of Methods for Automated Petri Net Modelling (Process-based Approaches)
	2.5.2 Review of Methods for Automated Petri Net Modelling (System-based Approaches)
	2.5.3 Summary of Methods for Automated Petri Net Modelling

	2.6 Review and Research Motivations
	CHAPTER 3
	3.1 Introduction
	3.2 Overview of Developed Methodology
	3.3 Input – System Modelling
	3.4 Algorithm – Java Database Programming
	3.4.1 Transformation Rules
	3.4.2 Database Introduction
	3.4.2.1 Relational Database Management Systems Products Review

	3.4.3 Algorithm – Java Database Programming – Transpose of the Petri Net Incidence Matrix
	3.4.4 Algorithm – Java Database Programming – Petri Net Initial Marking Matrix

	3.5 Automated Graphical Representation of a Petri Net Model
	3.6 Summary
	CHAPTER 4
	4.1 Introduction
	4.2 Process Description
	4.3 Manual Development of the Petri Net Model for the Recycling IT Asset Process
	4.4 Automated Mathematical Representation of the Petri Net Model for the Recycling IT Asset Process
	4.4.1 Input – System Modelling
	4.4.2 Algorithm – Java Database Programming – Transpose of the Petri Net Incidence Matrix
	4.4.3 Algorithm – Java Database Programming – Petri Net Initial Marking Matrix

	4.5 Automated Graphical Representation of the Petri Net Model for the Recycling IT Asset Process
	4.6 Summary
	CHAPTER 5
	5.1 Introduction
	5.2 Petri Net Model Verification Methods
	5.2.1 Static Verification Methods
	5.2.2 Dynamic Verification Method
	5.2.3 Comparison of PN Models (Bi-simulation) for Verification

	5.3 Verification of Automated Petri Net Development
	5.4 Petri Net Model Validation Methods
	5.4.1 Expert Intuition Validation Method
	5.4.2 Real System Measurements Validation Method
	5.4.3 Theoretical Results/Analysis Method

	5.5 Validation of Automated Petri Net Development
	5.5.1 Petri Net Model Simulation Algorithm
	5.5.2 Process Input Data
	5.5.3 Petri Net Model Visual Check
	5.5.4 Petri Net Model Numerical Simulation and Performance Analysis
	5.5.5 Performance Analysis Results and Discussion

	5.6 Summary
	CHAPTER 6
	6.1 Introduction
	6.2 Introduction of UML/SysML AD Additional Elements Notation
	6.3 Input – System Modelling
	6.3.1 Introduction
	6.3.2 UML/SysML AD: Review of XMI Nested Elements
	6.3.3 The Need of XMI Model Transformation using XSLT
	6.3.3.1 First XMI Model Transformation using XSLT
	6.3.3.2 Second XMI Model Transformation using XSLT

	6.3.4 Application of the XMI Model Transformations to a Simple AD Example

	6.4 Generic Algorithm – Java Database Programming
	6.4.1 Transformation Rules
	6.4.2 Algorithm – Java Database Programming – Transpose of the Petri Net Incidence Matrix
	6.4.3 Algorithm – Java Database Programming – Petri Net Initial Marking Matrix

	6.5 Summary
	CHAPTER 7
	7.1 Introduction
	7.2 Production System
	7.2.1 Process Description
	7.2.2 Automated Mathematical Representation of the Petri Net Model for the Production System
	7.2.2.1 Input – System Modelling
	7.2.2.2 Algorithm – Java Database Programming – Transpose of the Petri Net Incidence Matrix
	7.2.2.3 Algorithm – Java Database Programming – Petri Net Initial Marking Matrix
	7.2.3 Automated Graphical Representation of the Petri Net Model for the Production System

	7.3 Online Shopping Process
	7.3.1 Process Description
	7.3.2 Automated Mathematical Representation of the Petri Net Model for the Online Shopping Process
	7.3.2.1 Input – System Modelling
	7.3.2.2 Algorithm – Java Database Programming – Transpose of the Petri Net Incidence Matrix
	7.3.2.3 Algorithm – Java Database Programming – Petri Net Initial Marking Matrix
	7.3.3 Automated Graphical Representation of the Petri Net Model for the Online Shopping Process

	7.4 Verification and Validation of Real-Life Scenarios
	7.5 Summary
	CHAPTER 8
	8.1 Introduction
	8.2 Conclusions
	8.3 Contributions to Knowledge
	8.4 Recommendations for Future Work
	8.4.1 Automated sub-PNs Construction followed by Simulation Analysis
	8.4.2 Automated Reliability Analysis
	8.4.3 Additional PN Model Features
	8.4.4 Investigation of Inputs
	8.4.5 Representation of PN results into the UML/SysML AD

	Bibliography
	Appendix A - Simple Process Example (XMI File)
	Appendix A includes the XMI file for the simple process shown in Chapter 3.
	Appendix B – SQL Code [AT]
	Appendix B shows the SQL code developed for the automated generation of the transpose of the PN incidence matrix [AT], discussed in Chapter 3.
	Appendix C – SQL Code [M0]
	Appendix C presents the SQL code developed for the automated generation of the PN initial marking matrix [M0], discussed in Chapter 3.
	Appendix D – Graphical Representation of PN Model
	Part A – SQL Code for the Automated PN Generation
	Part B – DOT File for the PN Model Generation (GraphViz Input)

	Appendix E – Recycling IT Asset Process Example (XMI File)
	Appendix E includes the XMI file for the recycling IT asset process shown in Chapter 4.
	Appendix F
	Part A – Validation – PN Visual Check (Token Game)

	This section covers the MATLAB code for the visual check of the PN model generated for recycling IT asset process, as discussed in Chapter 5.
	Part B – Validation – PN Model Numerical Simulation

	This section covers the MATLAB code for the numerical simulation of the PN model generated for recycling IT asset process, as discussed in Chapter 5.
	Part C – Validation – PN Model Performance Analysis

	This section presents the MATLAB code for the performance analysis of the PN model generated for recycling IT asset process, as discussed in Chapter 5. From this code, results for the average time of each transition and the number of visits to PN plac...
	Appendix G
	Part A – AD Examples in Chapter 6 (XMI Files)

	Appendix G, part A covers the XMI files obtained from the three AD examples discussed in Chapter 6, shown in Figures 6.2, 6.4 and 6.6 respectively.
	Part B –XSLT Files

	This section includes the XSLT files which are applied to XMI files and generate an XMI and an XML file, as discussed in Chapter 6.
	Part C – Java Code for the XMI Transformations

	Part C covers the two files of Java code developed for the two XMI model transformations as explained in Chapter 6.
	Part D – Outputs from XMI Model Tranformation of AD in Figure 6.4

	Appendix H – Advanced Generic SQL Code [AT]
	Appendix I – Advanced Generic SQL Code [M0]
	Appendix I presents the advanced generic SQL code developed for the automated generation of the PN initial marking matrix [M0], discussed in Chapter 6.
	Appendix J
	Part A- Production System Example (XMI File)
	Part B – Online Shopping Process (XMI File)

	Appendix K – PN Mathematical Forms of the Production System and Online Shopping Process
	Part A
	Part B
	Part C
	Part D

	Appendix L – Verification of the Production System and Online Shopping Process

