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DISTURBANCE AND OUTAGE ROOT CAUSE ANALYSIS IN

DISTRIBUTION SYSTEM USING PHYSICS-AWARE

DATA-DRIVEN APPROACHES

Abstract

by Amir Gholami, Ph.D.
Washington State University

December 2022

Chair: Anurag K. Srivastava

Securing cyber-power distribution systems (DS) against malicious events is critical

with integration of distributed energy resources (DERs), supporting digital automa-

tion and increasing vulnerabilities. Situational awareness utilizing power data (e.g.,

data from distribution phasor measurement units (D-PMUs)) and cyber data (e.g.,

network packets data) is the key objective of this dissertation for enhanced real-time

monitoring and decision support.

To enable the reliable and resilient DS operation, this work aims to develop

an automated tool consisting of multiple modules including, a) data aggregation to

synchronize the resolution and time stamp of multiple metering sources throughout
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the DS, b) analyze data anomalies, c) state estimation, d) cyber-physical event detec-

tion and classification, and e) Outage Root Cause Analysis (ORCA). These modules

utilize range of theoretical approach including the Ensemble Extended Kalman Fil-

ter (EEKF), data fusion, data analytics, unsupervised machine learning, Hierarchical

Clustering and FP-Growth Rule Mining by exploiting the real-time measurements as

well as the system physics. Developed approaches have been validated using the IEEE

and OPAL-RT test systems as well as measurements from actual hardware sensors.
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CHAPTER 1. INTRODUCTION

1.1 Background and Motivation

The U.S. power grid is going through a massive transition from fossil-fuel based

to renewable energy based power systems. As of Jan 12, 2018, more than 94% of newly

integrated electrical energy capacity has been renewable energy based sources which

has cut down carbon emissions by 1% annually [1]. In 2020, renewable energy sources

constituted of 21% of all electricity generated in the U.S. Renewable sources and

surpassed both nuclear and coal based energy generation for the first time in record

[2]. Fig. 1.1 shows the prevalence of renewable in the U.S. power grid. The inclusion

of renewable is going to increase rapidly in the next few decades as proposed by the

80 × 30 U.S. Clean Energy Standard [3]. The US government aims to generate 80%

of the electricity from renewable and nuclear energy sources. To reach the proposed

goal, generation units between 60 GW and 80 GW of new clean energy sources need to

be integrated in the power grid. In this context, the power grid both in transmission

and distribution levels needs to be able to plan and withstand such aggressive clean

energy integration. A major part of renewable energy integration has happened in
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Figure 1.1: Annual electricity generation since 1950 in the US

distribution power systems in form of rooftop photovoltaic (PV) panels and battery

energy storage systems (BESS). It is thus essential to look into distribution power

system operation and reliability aspects due to massive penetration of renewable

energy sources.

Electrical power system operation problems are broadly classified into (a) plan-

ning problems and (b) control of operation problems. Planning problems deal with

problems that the grid may face in the next 10 and 20 years. Some examples of

planning problems are unit commitment (UC), expansion planning, hosting capacity

prediction etc. Control of operation problems deal with a smaller time scale problems

possibly the next 24 hours, next hour or next minute. Optimal power flow problem is

a control of operation problem which talks about how the power grid can be run op-
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timally while satisfying operational constraints. Traditionally, power system utilities

have used centralized schemes or local or a combination of the two schemes for opti-

mal power system operation in distribution power grids. Centralized control schemes

involve accumulation of measurement data in a centralized unit and thereby running

an optimization problem in the Advanced Distribution Management System (ADMS)

to generate optimal setpoints or commands for controllers in the distribution feeder.

Hence, centralized decision making is based on centralized computation and network-

wide measurements & communication among the physical controllers and the ADMS.

Local schemes, on the other hand, involve only local measurement, communication

and computation. Both centralized and local schemes are not suitable for optimal

operation of present-day distribution grids. The reasons are described below.

Distributed energy resources (DER) are renewable energy driven generation

units. Hence, power injections from DERs are intermittent and variable in nature.

Intermittency in power injections of DERs cause voltage transients and other power

quality issues in distribution power feeders. With fast-acting power electronic con-

verter interfaced DERs acting as control agents, the number of controllers in the

centralized optimization problem is significantly high. This makes centralized opti-

mization computationally-heavy which may not provide any feasible solution to the

distribution system operator (DSO) to tackle fast transients. Moreover, centralized

decision making involves network-wide measurements and communication which make
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them prone to single-point failures. Local solutions, on the other hand, though are

simple to implement do not give optimal solutions and hence do not provide network-

wide optimally. To avoid these disadvantages of centralized and local schemes, the

control architecture of distribution grids is transitioning to a more distributed archi-

tecture. Distributed architecture implies distributed sensing, distributed computation

and distributed decision making while having communication among neighbor con-

trollers.

1.2 Problem Statement

With the increasing penetration of distributed energy resources (DERs), the

diversification of load demand, and the intensification of random behaviors in distri-

bution network (such as the interaction between electric vehicles (EVs), distribution

grid as well as the characteristics of intermittent power generation, etc.), the opera-

tional complexity of the distribution network is also growing. These difficulties pose

new challenges for distribution system operators (DSOs) to comprehensively and ac-

curately perceive the state of the system in their area of responsibility. Situational

awareness in the power system, consisting of such components as automa-

tion, root cause analysis, and decision making, defines an exceptional ca-

pability for operations and self-improvements, in which deficiencies may
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cause distribution systems to fail to operate effectively under certain con-

ditions. The lack of SA has been identified as a cause of several recent significant

electrical disturbances worldwide. Therefore, improving SA is critical prior to estab-

lishing the system abilities to withstand and reduce the magnitude and duration of

disruptive events. It is a prerequisite and strategy for enhancing the grid resilience.

Improving SA can be achieved through sensor data acquiring, big data mining,

measuring data processing, and information exploring. Current state-of-the-art grid

data sources and monitoring approaches are typically stovepiped into repositories of

operational data (distribution phasor measurement unit (D-PMU) data, supervisory

control, and data acquisition (SCADA) data), customer or billing data (advanced

metering infrastructure (AMI) meter data), and third-party data (such as local news,

forecasting weather data). This segmentation limits the planning and analysis of

solar photovoltaic (PV) power generation in real-time operations, thereby reducing

the data values. In addition, data measured by sensors are usually not corrected for

gaps and errors or archived, which further limits their utility for SA. The primary

goal of my study is how to coordinate the segmented data, thrifty pre-processing,

thus reducing the data burden of power facilities and achieving a comprehensive

state of SA of the grid with high penetration of DER. The other goal of this study

is the application of power system information. When the power grid has enough

information infrastructure to support SA, how to made better use of it to improve
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the power grid resilience.

In order to enable the power grids to achieve a higher level of SA and improve

their resilience in the future, my Ph.D. work primarily focused on the research of power

system data analysis, the application of machine learning and artificial intelligence

in smart grids, PMU signal processing, and the control of distribution network. The

first half of my research was mainly concerned with the improving power system SA

that enhances the system monitoring and perception ability. In the next step, I will

focus on how to effectively use the comprehensive information and SA to control the

power grid under certain environments to improve the resilience of the power grid.

1.3 Objectives and Tasks

The main objectives and tasks of the this Ph.D. research work is determined

based on the detailed identified gaps in the existing literature. An integrated tool

consisting of data analytic and artificial intelligence advancements along with power

system expertise knowledge base has been targeted in this dissertation. Effort is

made towards establishment of a Distribution System-based architecture to process

the streaming and non-streaming data with the goal of enhancement of situational

awareness and easing the required post-event restoration processes.

The following bullet points summarize the specific objectives of this Ph.D. research
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work:

• Real-time perception of Distribution System operation by investigation of sensor

measurements as well as historical data

– Development of a mechanism for multi-sensor measurement accumulation

– Sensor resolution enhancement by Data-In-Data-Out measurement fusion

from multiple devices

– Data synchronization and denoising

– Detection of bad data followed by mitigation

– Development of State Estimation technique tailored for Distribution Sys-

tems with high noise levels and low observability with presence of bad

data

• Cyber-physical Event Investigation

– Detection of Events with broader classification

– Detailed labeling of event type with nuanced classification

– Accurate identification of the event location with respect to the neighbor-

ing sensors

• Outage Management System improvement by integration of automated outage

detection and root cause analysis tools



8

1.4 Dissertation Organization

The dissertation consists of five chapters. Chapter 2 presents the enhancement

of SA by development of various modules to accomplish the measurement preprocess-

ing and denoising in Distribution Systems (DS). In this chapter detailed novelties in

this Ph.D. research work are discussed under the title of Data Fusion and online and

offline data preprocessing techniques. The developments are validated using IEEE

standard system.

Chapter 3 is focused on disturbance analysis in DS by detection and classification of

anomalies. In this portion of the dissertation, the definition of anomaly is to target

bad data, noise, missing values, and any actual power system events. State Esti-

mation with proposed OF-WLS technique is elaborated in this chapter as well as

presentation of performance validation results.

Chapter 4 is aiming towards specification of multiple cyber-physical events and the

response of the DS towards each of the events. Data-driven and model-based tech-

niques are integrated in this chapter and variety of events have been introduced as

events of interest in this portion of the research.

The subject of outage management and root cause analysis is addressed in Chapter

5, targeting load outage events in case of scenarios with large-scale events with cas-

cading nature. A hierarchical clustering approach is introduced to identify a broader
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level of the outage root cause and in the next step, using the proposed data-mining

technique, nuanced outage root cause scenario is generated. Upon an occurrence of

an outage event, the developments in this chapter, would be beneficial for utilities to

be able to properly and rapidly follow the power restoration process,

Lastly, in chapter 6, a conclusion of the entire sections of this PhD work is

discussed and potential lines of research for future continuation of the under-the-

study area are proposed.
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CHAPTER 2. ENHANCE SITUATIONAL AWARENESS BY

DATA PREPROCESSING, DENOISING AND FUSION

2.1 Introduction

Distribution-level phasor measurement units (D-PMU) data are prone to dif-

ferent types of anomalies given complex data flow and processing infrastructure in

an active power distribution system with enhanced digital automation. It is essen-

tial to pre-process the data before being used by critical applications for situational

awareness and control. In this work, two approaches for detection of data anomalies

are introduced for offline (larger data processing window) and online (shorter data

processing window) applications. A smoothing wavelet denoising method is used to

remove high-frequency noises. An ensemble approach built upon the margin-based

maximum likelihood estimator (MB-MLE) method is developed to detect anomalies

in denoised data by integration of the results from different base detectors including

Hampel filter, Quartile detector and DBSCAN. The processed data with offline anal-

ysis is used to fit a model to the underlying dynamics of synchrophasor data using

Koopman Mode Analysis, which is subsequently employed for online denoising and
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bad data detection (BDD) using Kalman Filter (KF). The parameters of the KF are

adjusted adaptively based on similarity to the training data set for model fitting pur-

poses. Developed techniques have been validated for the modified IEEE test system

with multiple D-PMUs, modeled and simulated in real-time for different case scenar-

ios using the OPAL-RT Hardware-In-the-Loop (HIL) Simulator. Distribution grid is

transforming from a passive to an active distribution network with the integration

of Distributed Energy Resources (DERs) and the emergence of Microgrid concepts.

Monitoring and control becomes critical with increased number of components in

active distribution network using new sensors data such as distribution phasor mea-

surement units (D-PMUs). Synchrophasor data provides a wealth of information that

enables the grid operator to capture fast transient dynamic events. However, D-PMU

data needs to be pre-processed in order to denoise and detect and mitigate the bad

data before being fed to any other critical applications.

2.1.1 Related Works

Power system is a multi-layer distributed cyber-physical system. Synchrophasor

data Anomalies may originate in different cyber-physical system layers. Fig. 2.1

illustrates data flow of synchrophasor data in different layers of smart distibution grid.

Spatial-temporal correlated anomaly originated from physical layer and related to
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Figure 2.1: Synchrophasor data in different layers of power distribution system

physical events [1]. In sensor layer, field D-PMU data is captured with contamination

of Bad Data and noise from base sensors (voltage/current/GPS) [2]. Also, this data

needs to be sent over the communication network and it is prone to communication

delay, failure, and cyber attacks. Anomalies in sensor and communication layer,

are not usually temporal and spatial correlated. Available data in application layer

is contaminated with anomalies of previous layers and distinguishing between the

source of the anomaly is challenging. [3] Fig. 2.2 determines different types of events

that can originate anomaly in D-PMU data.

Mis-classification between Bad Data (BD) and spatial-temporal correlated events

can result in detection of actual events as bad data or noise. False-negatives and false-
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Figure 2.2: Possible Causes for D-PMU Data Anomalies

positives in detecting non-spatial-temporal BD, result in BD in measurements. BD

may misleads the event classification/localization and can impact control decision.

[4] Data pre-processing and measurement denoising is a significant step which needs

to be accomplished prior to investigation of any physical or cyber-induced events

throughout the system [5, 6]. A proper BDD technique is of enormous concern in

such Distribution System (DS) applications as State Estimation (SE) [7], fault clas-

sification [8], fault location identification [9], and situational awareness [10]. [11]

presents a comprehensive study on different ML-based approaches for distribution

level disturbance analysis with regard to efficacy examination and performance eval-
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uation of each technique. Assuming a normal distribution for load profiles, authors

of [12] propose a novel BDD approach based on the Weighted Least Squate (WLS)

method. Literature is mainly focusing on either BDD or denoising separately accom-

panied with detection of sensor faults in applications with renewable energies [13],

while in the current research work, the focus is on development of two tools for online

and offline BDD and denoising in an integrated manner. Preliminary work for phasor

measurement denoising in distribution system is report in [14], and further expanded

and comprehensively elaborated in this work with bad data detection.

Wavelet transform has been used widely for transient analysis in the power

system [15, 16] and is employed for signal smoothing in this work. The authors of the

current manuscript combine the results from a variety of base anomaly detectors such

as Hampel filter [17], Quartile technique, and DBSCAN using MB-MLE to accomplish

the BDD and mitigation. For online signal processing, the recursive Bayesian Kalman

filter (KF) has been used [18]. For the prediction step of KF, rather than using a

physical model, we utilize Koopman Mode Analysis (KMA) [19] for fitting the model

for prediction of behaviour of the system with a data-driven approach. Multiple KMA

applications in power system has been developed including but not limited to power

system stability and dynamic analysis [20], control and estimation [21], fault line

isolation [22], and cyber attack detection [23]. There has been other studies of voltage

stability-based analysis incorporating HVDC lines, including cyber and physical co-
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simulation in [24] which are also of high potential fits for KMA applications.

The focus of this work is to detect anomalies in D-PMU data and denoising of

the measurements based on the applications in offline and online manners. As far as

the offline applications are concerned, the computational time cost is relaxed and bad

data detection and denoising can be done with smoothing methods. MB-MLE is used

to integrate the base detector scores to detect the bad data. Different base anomaly

detectors are employed with various detection nature and tailored mathematics to

detect the anomalies and this diversity enhances the likelihood of isolating outliers.

The wavelet smoothing technique is employed to denoising the signal. For online

mode, the KF has been used to denoise the signal and detect the bad data based

on the residual analysis. Given the complexity of DS non-linear model extraction

with high resolution synchrophasor data, data-driven Koopman mode analysis has

been used to fit a model that describes the underlying dynamic interactions between

the D-PMU measurements through the prediction step of Kalman Filter (KF). Since

the training data set is not necessarily the most comprehensive inventory of events

with BD, the online evaluation of the performance of the fitted model is essential and

the parameters of the KF must be adjusted adaptively based on the credence of the

fitted model to rely more on measurement as necessary. This is done by observing the

deviation of the mean of the estimated state from measurements. Fig. 2.3 illustrates

the connection of proposed approaches in an integrated coherent manner.
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Figure 2.3: The scheme of proposed online and offline approaches for D-PMU non spatial

temporal anomaly detection

To summarize, the main contributions of this research can be enumerated as

follows:

1. Developed ensemble-based integration of multiple bad data detection (BDD)

techniques for processing larger time window of data

2. Development of an adaptive KF for online denoising and BDD with shorter time

window of data, tailored for closed-loop controls and time-sensitive applications

3. Developed algorithim for linearization of the DS model during dynamic tran-

sients using Koopman Mode Analysis (KMA), resulting in reduced BDD pro-

cessing time with high accuracy
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2.2 Offline Tool

2.2.1 Wavelet Filter

Wavelet transform is an extension of Fourier transform where frequency and

temporal analysis are performed simultaneously to capture signal frequency evolu-

tion over time. For that, wavelet transformation localizes features in the raw captured

measurements with different scales. The fundamental principle of wavelet transform

is the sparse representation of the temporal signal that means the signal can be pre-

sented in the limited large-magnitude coefficient and the small value wavelet coeffi-

cient are related to noise which can be removed without affecting the original signal of

interest. After setting the thresholds, the signal is reconstructed with inverse wavelet

transform. In this work, Wavelet transform is utilized for D-PMU signal denoising.

2.2.2 Hampel Filter (HF)

Hample filter evaluates data in a sliding window of 2n′ neighbor samples with

n′ in each side. The median absolute deviation (MAD) is computed as follows:

MAD =Median(|X̄ −Median(X)|) (2.1)
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where X̄ represents the window in which the central element is the sample of interest

x and Median(.) calculates the local median in the input array. MAD provides an

estimation of standard deviation on the window σ = 1.4826MAD.

If the difference between the sample and the median of the window, is bigger

than three times of the estimated standard deviation σ, It is considered an anomaly

as a convention for Hampel filter. For obtaining the margin of BD, the distance on

the sample from the median is computed as δx = x −Median(X). The logarithm

of dividing this value to three times of estimated standard deviation gives a metric

about the margin of the possibility of being an outlier. If this metric is positive, the

sample is considered an outlier and vice versa. In the case that metric is positive,

The bigger the metric, the more possibility to be an outlier from the Hampel filter

perspective. If the value is close to zero, the Hampel filter is mostly indecisive about

the sample. Hampel is prone to detect a false bad data anomaly in steady-state

since the standard deviation in the window is fairly small and a tiny deviation from

the median can be considered as a bad data anomaly. In that case, replacing with

median will not be harmful. However, since we are interested to detect anomalies

with different approaches and combine the results based on MB-MLE integration, we

define the small constant ϵh to reduce the chance of detecting outlier in steady-state.

Therefore margin bad data HF defines for each sample as
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MarginHF = log(
δx

3σ + ϵh
) (2.2)

2.2.3 Quartile-based Anomaly Detection (QB)

Another statistical approach for anomaly detection is quartile-based anomaly

detection. The advantage of this method is the fact that it does not have a normal

distribution assumption of the data. To implement, data is analyzed in small windows,

and the median and quarter of the window are computed. The sample is marked as

an anomaly if they are 1.5 times bigger than the upper quartile or if they are 1.5

times below the lower quartile. For obtaining the margin metric of being an outlier,

the distance of each sample from the median is computed (δxi) and divided by the

distance of the corresponding quartile from the median (δq). The logarithm of this

division gives insight into how likely the sample is an outlier.

Similar to Hampel filter, QB is also prone to identify false positives in steady-

state condition. By the same token, the constant ϵq is added to the denominator of

the fraction. Therefore, margin quartile method can be computed for each sample as

MarginQB = log(
δxi

δq + ϵq
) (2.3)



23

2.2.4 Density-based Spatial Clustering of Applications with Noise (DB-
SCAN)

DBSCAN has been deployed for determining outliers in finding the disturbances

using the outputs of an unsupervised model [25]. DBSCAN uses two tunable param-

eters including threshold ϵ and Minimum Number of Points (MinPts). The data

points within ϵ radius of cluster are merged into a single cluster, with the assumption

of MinPts data points required to form a cluster. The data points without clusters

are determined as outliers.

In this work, to find the margin-based value, the parameter threshold ϵ which

makes each measurement categorized as an outlier is calculated based using grid

search. Subsequently the parameter MarginDBSCAN = log ϵ
ϵ0

is found to determine

the margin of begin outlier with the DBSCAN method for each sample. The value of

ϵ0 can be estimated based on results from ground truth data.

2.2.5 Margin-Based Maximum Likelihood Estimator (MB-MLE)

Different calculated margins from base-detectors are combined together to make

a robust decision about the likelihood of being bad data anomaly for each sample as

follows:
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MLE = N (
∑
i∈B

ciMargini) (2.4)

where set B = {HF ,QB ,DBSCAN } shows the available based detectors and

ci is associate confidence factor which can be obtained based on historical data when

the ground truth is know or using majority voting to estimate the ground truth, when

the labels are not available. For the purpose of the current work, we assume ci = 1 for

all i ∈ B. Positive MLE indicates anomaly and vice versa and the biggest deviation

from zero, indicates more confidence of MB-MLE bad data anomaly detector.

2.3 Online Tool

Although the introduced offline tools in the previous section, can determine the

anomalies and reduce noise effect with smoothing techniques with good accuracy. The

implementation of those techniques is time-consuming and they might not be suitable

for the application when fast decision making is needed. Considering these facts, in

this section, we develop an online D-PMU pre-processing tool using Koopman Mode

Analysis (KMA) and adaptive Kalman Filter (KF) by adjusting the KF parameters

based on the confidence of the fitted model with online monitoring. This technique

uses both temporal and spatial correlations between synchrophasor measurement for

signal processing.
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2.3.1 Kalman Filter

KF is an optimal recursive bayesian estimator. If the assumptions of the KF

(Linear Dynamic, Gaussian process and measurement noise) is held, it surpasses any

other casual filter. It consists of two steps namely prediction and correction. In the

prediction step, the model of the system is used to predict the expected value and

uncertainty of the next step measurement.

x̂n|n−1 = Ax̂n−1|n−1 +Bun

Pn|n−1 = APn−1|n−1A
′ +Qn

(2.5)

Where A is the linear dynamic of the system, B is signature of the input, and

un is control input at time n.x̂n−1|n−1 and Pn−1|n−1 shows the prior believe on the

expected value and covariance of the estimated states. x̂n|n−1 and Pn|n−1 represents

those at time n based on prediction and Qn is process noise covariance.

In the correction step, the value of prediction is modified based on new obser-

vation, and the uncertainty of perdition reduces based on the characteristics of the

observation.
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Sn = CPn|n−1C
′ +Rn

Kn = Pn|n−1C
′Sk

−1

x̂n|n = x̂n|n−1 +Kn(yn − Cx̂n|n−1)

Pn|n = Pn|n−1(I −KnC)

(2.6)

Where C is signature of output. Rn is covariance of measurement noise and Sn

characterizes the uncertainty of measurement. Kn is Kalman gain, yn is measurement

at time n and x̂n|n and Pn|n shows the posterior believe on the expected value and

covariance of estimated states after observation.

In the proposed formulation, y is constructed by direct and indirect measure-

ments from different D-PMU contaminated with noise and bad data anomaly and x

indicates measurement without contamination and x̂ is estimation of x, B is equal to

zero and C equal to identity matrix with appropriate size therefore y has same size

as x. In the next subsection, we explain how to obtain linear dynamic model A and

adjust parameters Rn and Qn attentively.

2.3.2 Koopman Mode Analysis

Koopman Theory asserts that any underlying nonlinear system can be described

completely with infinite state space [19]. To find a finite approximation of the Koop-

man states, many data-driven mechanisms are suggested. In this work, we use Dy-
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namic Mode Decomposition (DMD) to this end. DMD is a data-driven approach

for fitting a linear dynamic to a set of measurements [26, 27]. Consider that the

matrix Zk′
1 = [z1, ..., zk′ ] represents a window of k′ snapshots consisting n measure-

ment at each snapshot where vector zi shows the ith snapshot. The matrix Zk′
1 is

constructed by stacking different D-PMU’s direct measurement data streams such

as voltage/current magnitude/angel, and frequency and indirect measurement data

stream including active/reactive power flow on each other. The notation Zq
p shows

a set of subsequent data where subscript p is the index of the starting snapshot and

superscript q is the index of the last snapshot in the window. In this work, the as-

sumption is that the sampling distance between every two successive snapshots is

constant and is shown with δ. Suppose there exist a linear dynamic A, mapping data

sample zi to data sample zi+1 for i = 1, · · · , k′ − 1 as

zi+1 = Azi (2.7)

In general, measurements are generated from a nonlinear underlying dynamic.

Using DMD, we attempt to find the best linear dynamic approximation that describes

the relationship between the measurements over the processing window. In other

words, we try to minimize the residual of the linear system defines as

r = Zk′

2 − AZk′−1
1 2 (2.8)
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Where .2 shows norm 2 of matrix. A naive approach to compute linear sys-

tem is A = Zk′
2 Z

k′−1+

1 where Zk′−1+

1 is Moore-Penrose pseudo-inverse of Zk′−1
1 . The

matrix inverse can be obtained via the LQ method. Nonetheless, Singular Value De-

composition (SVD) allows more robust numerical stability [28]. However, it is not

computationally efficient to calculate A directly because k′ might be large. There-

fore, the DMD algorithm finds eigen structure linear dynamic without computing it

directly. By employing SVD, following equation is obtained:

Zk′−1
1 = UΣV ∗ (2.9)

Regardless of the possible hug dimensions of A, in most cases, the underlying

dynamic of the window can be delineated with a few m dominant modes which are of

the notable portion of event energy. Using these modes, the equivalent linear dynamic

Ã is computed as follows

Ã = U∗
mZ

k′−1
2 V Σ−1 (2.10)

Where Um shows first m columns of U . Ã has same eigenvalues as A. By

eigenvalue decomposition of Ã we have ÃW = ΛW where diagonal matrix Λ contains

eigenvalues of A and Ã matrices. Columns ofW are eigen vectors of Ã. Eigen vectors

of A are computed as Ψ = V k′
2 V Σ−1W . The jth diagonal entity of Λ indicates

eigenvalue of jth mode shown by λj and corresponding eigen vector is jth column of
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matrix Ψ denoted by ψj.

To Compute energy amplitude of each mode, SVD of the data window is ob-

tained as Zk′
1 = U0Σ0V

∗
0 . The matrix Λt = exp([λ1,t, · · · , λm,t]

T ) indicates evolution of

each mode in the window where λi,t = λjT̄ and T̄ = [0, h, 2h, · · · , (k′ − 1)h]T . Subse-

quently, we calculate matrix Ξ1 = ΥTΥ⊙(ΛtΛ
T
t )

∗
where ⊙ denote Hadamard product

operator, superscript ∗ indicates Hermitian transpose operator and Υ = UT
0 Ψ. Fur-

ther, Ξ2 = Diag(ΛtV0Σ0Υ)∗ where the operator Diag(.) place the diagonal entries

of square input matrix into a vertical vector. Finally, m-length vector Ξ = Ξ−1
1 Ξ2 is

computed where absolute value of the jth element of Ξ is equal to σj which shows

energy amplitude jth mode of linear system.

For finding the linear system A, representing the dynamic behaviour of the

system, KMA is used by inputting a comprehensive set of historical data after pre-

processing with offline anomaly and denoising techniques that were introduced in

section 2. From each D-PMU direct measurements such as voltage/current mag-

nitude/angle and frequency and indirect measurements such as active and reactive

power flow in different phases are used to find the linear model. The reason for adding

indirect measurement is that it is proved that by adding more observant, the better

linear system can be fitted to describe the underlying dynamic of the system [26].

The fitted linear model, estimated by KMA, is further used for prediction in online

phase using KF, for denoising and bad data detection.
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2.3.3 Adaptive Adjustment of Kalman Filter Parameter

With the assumption of having Gaussian Noise, the mean of estimated value

and measurement value overtime must have the same values. This can be used as

an indicator that the fitted model A, does not describe the dynamic to the system

precisely. The deviation of mean in all estimated measurements from noisy measure-

ment over a is calculated as N [n] in each sample n. The average of that over that

in short interval on recent samples with length 5 is called N̄ . This metric is used to

check the credence of the fitted linear model. Using this parameter, the metric ρ is

defined as

ρ =
2σmax

exp {−σsteepN̄}+ 1
− σmax + 1 (2.11)

In the above function, ρ goes to 1 as when N is zero and it goes to σmax + 1 as

N goes to ∞. σsteep determines how fast this transition occurs. The process noise of

the KF is then updated attentively as Q = ρQbase. It needs to be clarified, that A is

computed offline and used in online pre-processing using KF. However, if ρ remains

bigger than a preset threshold for a long period of time (1 day), that means that power

grid topology or dynamic has been changed significantly and a new linear model A

required to be fitted to obtain good results with online tool.
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2.3.4 Online model update scheme

If the value of parameter N stays vastly out of range for a considerable amount

of time, it can be interpreted that the linear model A cannot describe the behavior of

the system anymore and it is essential to retrain the model. This will trigger offline

analysis automatically to compute a new linear dynamic A. For that, we compute the

parameter Ñ =
∑n

k=n−n0
N [k] where [n − n0, n] indicates the time window that we

accumulate the average deviation of mean in all estimated measurement from noisy

measurement over. n0 is chosen to have a time window that covers half and hour and

the model is retrained if the Ñ if bigger that the threshold γ.

2.4 Testbed and Validation

2.4.1 Testbed and Usecase Development

For the evaluation purposes of the developed algorithms in this work, IEEE

33-node test feeder is chosen to be modeled and simulated in Opal-RT hardware-in-

the-loop (HIL) simulator.

Fig. 2.4 shows the single-line diagram of the developed IEEE-33 node system

in OPAL-RT with extra modifications compared to the standard model. The HY-

PERSIM interfacing simulator is used for software aspect of the model development
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Figure 2.4: The modified IEEE 33-node system with D-PMU and DERs

with capabilities of DER integration and D-PMU simulation. The model is capable

of being executed in real-time with 50 µs timestep and with hardware D-PMUs added

to the loop of the simulation. The simulated Battery Energy Storage Systems (BESS)

and PV units are modeled to be operating under the grid-forming configuration with

maximum generation capability of 500kW each, making the distribution feeder to be

able to operate under a 100% renewable scenarios in an islanded operation. The mod-

ifications on the standard IEEE system include adding four BESS and PV combined

energy resources at four different loaded nodes of the feeder. The network has three

radial feeders with possible mesh interconnection among themselves. Simulation D-

PMUs are modeled and placed at generation nodes: {1, 14, 18, 22, 29, 33}.

Furthemore, load profiles are modeled to be connected at all the 33 buses with si-

nusoidal deviation of maximum 5% of the nominal value compared to the standard

IEEE system. The monitored instantaneous time domain signals captured from the
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Table 2.1: Stationary Operating Scenarios

Operating Scenario 1 All the renewables dispatching to

the maximum capacity

Operating Scenario 2 All the four BESS discharging

with 50% SOC

Operating Scenario 3 Zero renewable (loads being

supplied by the grid)

Operating Scenario 4 BESS number 3 located at bus 22

is 50% charging

OPAL-RT solver are sent to simulated D-PMUs for phasor estimations.

A series of load flow stationary scenarios as well as a comprehensive list of

practical dynamic events have been modeled and simulated and all the time-stamped

measurements are fed to the algorithms for efficacy investigations. The stationary

use case development is to have the system operate under the edge scenarios of either

all the power being supplied from the grid or the system maintains the load by its

own in an islanded operation. Table-2.1 shows a list of load flow operating scenarios,

under which case several dynamic events have been simulated.

A wide range of dynamic use case scenarios have been modeled, including
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breaker operations, load and capacitor bank switching, generations step up and down,

different types of short circuited bolted and shallow faults as well as islanding events.

The underlying idea behind the simulated anomalies is to cover a variety of events

with distinct frequency, voltage, and current response. Corresponding D-PMU out-

putted measurements have been collected and pre-processed, further on timestamped

measurements have been used for offline and online validations.

Additional emphasis is put towards three-phase to ground bolted fault, DER, and

False Data Injection (FDI) Cyber-attack event. Table.4.1 summarizes the real-time

simulated anomalies with more focus:

Table 2.2: Opal-RT simulated Dynamic Events

Event Type Location Total Number of Events

Bolted Fault all the 33 buses 297

DER Switching buses {14, 18, 22, 33} 36

FDI Cyber-attack buses {1, 14, 29} 27



35

2.4.2 Simulation and Validation Analysis

For introducing noise and bad data to synthesis data from the OPAL-RT, the

additive white Gaussian noise with the variance of 0.01× µi added to each measure-

ment i, where µi is the mean of that measurement. Non temporal-spatial anomaly

bad data is acted uniformly to the measurements with rate 0.001 and change the value

of the measurement to value µi+κi where random variable κi is chosen from interval

[−ηi,−0.5ηi] ∪ [0.5ηi, ηi] with uniform distribution where ηi = max(10σi, 0.2µi) and

σi and µi are standard deviation and mean of measurement i respectively.

Fig. 2.5 shows the performance of suggested offline wavelet smoothing and MB-

MLE BD anomaly detection and compensation technique on the contaminated data

with noise and BD anomaly. As can be seen, all of the bad data are detected and

eliminated from compensated data (at seconds 10.58, 41.73, 51.42), and also, the noise

level has been reduced. The proposed offline tool increases the signal to noise ratio

(SNR) 15.241 dB for D-PMU 1 voltage magnitude measurement phase a (Fig. 2.5).

Table 2.3 shows the performance of each base anomaly detector and their MB-MLE

assemble statistically in terms of the confusion matrix, recall, and precision. Recall

is defined as Recall = TP
TP+FN

and precision is defined as Precision = TP
TP+FP

. As

can be seen, the MB-MLE has improved both Recall and Precision compare to base

detectors.
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Table 2.3: Statistical comparison of different methods, Confusion matrix (True positive

(TP), False positive (FP), False negative (FN), True Negative (TN)), Recall,

and Precision

Method TP FP FN TN Recall Precision

HF 861 205 13 788713 0.9851 0.8077

QB 861 120 13 788798 0.9851 0.8777

DBSCAN 859 272 15 788646 0.9828 0.7595

MB-MLE 866 31 8 788887 0.9908 0.9654

Moreover, a comparative study is conducted for the performance evaluation on

different types of the events. Accuracy and Precision are used as evaluation metrics

and events are same as the ones in Table 4.1. For any particular event, two scenarios

are considered as:

• Scenario 1: D-PMU data without noise and bad data used as base case

• Scenario 2: Manipulated D-PMU data with added noise and bad data and

mitigation using the developed architecture

For all the event cases, noise and bad data processing performance in “Scenario

2” is compared with “Scenario 1”. Table. 2.4 summarizes the event-based perfor-

mance evaluation of the developed DPM-DBDM: Distribution Phasor Measurement
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Figure 2.5: The result of offline pre-processing for denoising and bad data compensation

using MB-MLE and wavelet analysis on D-PMU 1, voltage magnitude mea-

surement phase a

Denoising, Bad Data Detection, and Mitigation.

Table 2.4: Event-based Performance Evaluation of DPM-DBDM

Event Type Accuracy Precision

Bolted Fault 0.9872 0.9148

DER Switching 0.9733 0.8972

FDI Cyber-attack 0.9285 0.9005

For online analysis, the signal is processed with offline tools and a linear dynamic

is fitted to describe the linear dynamic. The linear dynamic is subsequently used to

reduce the noise of the system and compensate for bad data (at seconds 0.41, 8.45,

9.31, 17.29, 14.09, 46.1, and 57.41 ). Fig. 2.6 shows that the introduced system can

reduce the effect of noise and bad data significantly and SNR increases 9.78 dB for
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Figure 2.6: The result of online denoising and bad data compensation using adaptive

Kalman filter on D-PMU 2, voltage magnitude measurements, phase b

voltage measurement D-PMU 2 phase b (Fig. 2.6). Although with online KF, BD is

not replaced through interpolation as it happens in the offline tool, it yet reduces the

magnitude of BD anomaly significantly since it utilizes the KMA-based fitted model

for prediction and filter uncorrelated spatial and temporal jumps in the measurement.

When the dynamic behavior has not been seen in fitting the linear model A,

the process noise parameters of the system are adjusted adaptively to avoid relying

on non-precise parameters for prediction and rely more on the noisy measurement.

In Fig. 2.7 the performance of KF is shown when it is exposed to the dynamic

events that have not seen before after 30 seconds. In 2.7a no compensation has been

made for that and as can be seen, relying on an imprecise model leads to big bias.

However, in 2.7b the deviation in the mean of estimated value and measurements are

monitored and adjust the parameters of the KF. So after 30 seconds, we have a noisier

estimation, however, we reduce the bias from the real value. That is because we trust



39

(a) without adaptive scheme (b) with adaptive scheme

(c) parameter ρ

Figure 2.7: Online denoising with D-PMU with Kalman Filter, voltage angle of D-PMU

3 phase a. after 30 second unforeseen dynamic event in the system

less on the inexplicit model for prediction and rely more on the noisy measurement.

2.7c shows the ρ parameter where Q = 0.1ρI, R = I and I indicates the identity

matrix with appropriate dimension.

Although offline tool provides more precise denoising and BDD than online

KMA-based KF filter, it comes with the cost of having more expensive computational

time. For example, in our simulation using MATLAB software with Core i7 computer,

for processing 114 data stream for 60 seconds with the sample rate of 120 data points

per second, it takes 145.642 seconds for the offline tool to process the data. However,

the same process is done in 2.592 seconds using the online tool. Therefore, based
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on the application, the appropriate tool can be selected for pre-processing of phasor

measurements.

2.5 Summary

In this work, two novel approaches are proposed for denoising and bad data de-

tection in distribution Phasor Measurement Units (D-PMU) data for offline (longer

time window data processing) and online (shorter time window data processing) ap-

plications. Multiple base detectors of different types including Hampel filter, Quartile

detector and DBSCAN are developed and integrated using a margin-based maximum

likelihood estimator (MB-MLE). High-frequency noises are processed and removed

using a wavelet denoising method. Koopman Mode Analysis is used to fit a model

to the underlying dynamics based on an offline analysis and used for online denoising

and bad data detection using Kalman Filter (KF) with adaptively adjusted parame-

ters. Evaluation of performance using synthetic and realistic data generated by the

modified IEEE 33-bus test system with multiple D-PMUs, simulated in real-time us-

ing OPAL-RT confirms the practicality of the proposed scheme. For the next step,

the validation can be further elevated using a large distribution network with a de-

centralized approach to divide the network into local zones to test the scalability of

the proposed scheme. Also, online parameter adjustment of adaptive KF can be done
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using deep autoencoder and dynamic features to enhance the fast response of the

adjustment loop before deviation causes modification in the parameters.
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[19] I. Mezić, “Spectral properties of dynamical systems, model reduction and de-

compositions,” Nonlinear Dynamics, vol. 41, no. 1-3, pp. 309–325, 2005.

[20] Y. Susuki, I. Mezic, F. Raak, and T. Hikihara, “Applied koopman operator

theory for power systems technology,” Nonlinear Theory and Its Applications,

IEICE, vol. 7, no. 4, pp. 430–459, 2016.

[21] M. Netto, Robust Identification, Estimation, and Control of Electric Power Sys-

tems Using the Koopman Operator-Theoretic Framework. PhD thesis, Virginia

Tech, 2019.

[22] R. Dubey, S. R. Samantaray, B. K. Panigrahi, and V. G. Venkoparao, “Koop-

man analysis based wide-area back-up protection and faulted line identification

for series-compensated power network,” IEEE Systems Journal, vol. 12, no. 3,

pp. 2634–2644, 2016.

[23] S. P. Nandanoori, S. Kundu, S. Pal, K. Agarwal, and S. Choudhury, “Model-

agnostic algorithm for real-time attack identification in power grid using koop-

man modes,” arXiv preprint arXiv:2007.11717, 2020.



46

[24] A. Gholami, M. Mousavi, A. K. Srivastava, and A. Mehrizi-Sani, “Cyber-

physical vulnerability and security analysis of power grid with hvdc line,” in

2019 North American Power Symposium (NAPS), pp. 1–6, 2019.

[25] S. Pandey, S. Chanda, A. Srivastava, and R. Hovsapian, “Resiliency-driven

proactive distribution system reconfiguration with synchrophasor data,” IEEE

Transactions on Power Systems, 2020.

[26] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental

data,” Journal of fluid mechanics, vol. 656, pp. 5–28, 2010.
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CHAPTER 3. ENHANCE AWARENESS BY ANOMALY

DETECTION, CLASSIFICATION, AND STATE ESTIMATION

3.1 Introduction

This chapter of the research aims to describe the methods used to distinguish

anomalies from regular data using statistical, clustering and outlier factor based meth-

ods. Detailed investigation of DBSCAN, K-Means, Local Outlier Factor algorithm,

Feature Bagging algorithm, and Robust Random Cut Forests are performed with help

of real distribution scale system. It proposes the ensemble approach to leverage the

merits of individual method for achieving the highest detection accuracy in compar-

ison to solo method.Besides, research also discusses introduction of clustering based

classification to make clear distinction between identified event sets considering the

fundamental rules of the power system parameters. We analyzed data from multiple

Phasor Measurement Unit devices (PMUs) for this exercise that are extracted from

Bronzeville Community Microgrid consisting. This work draws higher level contri-

butions addressing the existing issues from different techniques, and also provide the

key advantages over one another.



48

A recent trend in distribution systems observed that high proliferation of the

large scale deployments of distributed energy resources at each voltage level and con-

sumer sectors across the globe. This resulted into the new era of distribution system

that left sign of unprecedented scenarios and events incomparable to historical data.

As a consequence, highly sophisticated and modern sensor technology penetrated

through industry for capturing the unmatched event signatures. This also led to

deployment of distribution phasor measurement unit (D-PMU) to liberate the times-

tamped phasor data for analyzing the dispersed event signatures and their relations,

which analogous to PMUs in transmission to prevent catastrophic failures[? ]. High

resolution data is inherited from D-PMU and made available for system operators

to extract useful information through data-driven techniques[? ]. Various techniques

have been reported in the literature to detect, localize and classify the significant

events in the distribution systems.

3.1.1 Problem Statement

The problem pertinent to accurate and reliable event detection techniques with-

out model or network information is still relevant to the industry and utilities, as ex-

isting methods mostly rely on the training data sets and its accuracies with respect to

real-time emulation of the same set of events in the lab. However, there is no guaran-
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tee of detection efficiencies since systems lose their behavior models in the process of

modeling. Moreover, Supervised and semi-supervised demands real data for achieving

the better performance and also need event labels further to prove their outstanding

performances in case of localization and classification. This is always challenging to

obtain from utilities. This chapter proposed the unsupervised methods to fill the

research gap by considering two different types of methods i.e. outlier factor and

clustering techniques. Uniqueness of this work is to propose the ensemble approach

to leverage the individual approach merits and meet high accuracy in detection that

drives reliability of classification.

3.2 Related Works

The advancement and deployment of Phasor Measurement Units(PMUs) across

the power system improves the situational awareness of the system. On one hand, they

can provide useful information regarding events, on the other hand the data packages

could be prone to interruption. So, researchers have proposed various approaches

especially statistical and machine learning based techniques for Anomaly detection

and classification. The authors of [? ] developed a Synchrophasor Anomaly Detec-

tion and Classification (SyADC) tool based on a hierarchical structure composed of

three unsupervised methods- isolation forest, Kmeans & LoOP. The Data Streams
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from multiple PMUs were fed to the isolation forest detector which conveys the gen-

erated scores to the other detectors to classify the incoming data as outlier, event,

PDC (Phasor Data Concentrator) error or normal data. Likewise, an unsupervised

clustering technique based on Principle Component Analysis (PCA) is introduced in

[? ] for power system event detection, classification and localization. Furthermore,

the work in [? ] incorporates unlabeled, partly labeled and completely labeled data

from µPMUs and proposes a Hidden Structure Semi-Supervised Machine Learning

(HS3M) Method to detect and classify events in power system. Besides, a super-

vised learning approach has been proposed in [? ] based on explicit labelling through

utility records and expert knowledge. In [? ], a matrix partitioning based online

algorithm has been built to identify not only the type but also the location of events

in distribution grid via change in admittance matrix that corresponds to topology

change. The authors of [? ] present a strategy of applying shape based Fisher-Rao

Registration Method (FRMM) to align multiple time signals that improves the fea-

ture selection process by clustering algorithm to better detect and classify events in

power system. While, the aforementioned research works mostly scrutinize the perfor-

mance of a particular approach on anomaly detection or classification, a consolidated

method unifying the performance of multiple statistical, clustering and LOF based

techniques and leveraging their advantages through an ensemble approach is yet to

be explored in the existing literature of power system application. Since the mea-
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surements from metering devices, sensors and PMUs go into different power system

application such as state estimation function which further impact significantly on

various decision making processes, it is imperative to accurately detect and classify

anomalies for an effective operation and control of power system. The authors of [?

] develops a distribution system state estimation method utilizing branch currents

measured through Advanced Metering Infrastructure (AMI). Research in [? ] pro-

poses a neural network based learning approach for state estimation. In addition to

that, some researchers have discussed the strategies and necessities of pseudo mea-

surements for efficient estimation of power system states [? ? ]. But the above-listed

works do not comment on the robustness of the state estimation function in case of

anomalies and outliers. Consequently, the current work first focuses on the ensemble

approach for improved efficiency of anomaly detection and classification followed by

enriching the performance of state estimation function resilient to anomalies.

3.2.1 Contributions

Contribution of the research includes

1. Development of Ensemble anomaly detection technique to capture the diverse

events through combination of clustering and scoring based methods with im-

proved robustness
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2. Proposal of an enhanced State Estimation methodology based on Weighted

Least Square (WLS) method with anomaly detection

3. Development of a modified event classification method is developed to categorize

real events with simulated utility data.

4. Streamlining all the modules to produce a single package.

3.3 Overall architecture of the Proposed solution

The architecture in Fig.3.1 depicts the actual way of implementation of all the

methods in sequential manner for each data processing window. This outlines the

real information exchange and also transmission of data from one block to another.

First, data will be passed to preprocessing stage where the filtering of bad data is

performed from raw-data and then send to dimensional reduction depending upon

requirement from each base detector.Filtered data is passed to four major base de-

tectors (i.e. DBSCAN, K-means, Net-LOF and RRCF as described in previous D1

and D2-D3 reports) for segregating the anomalous list and normal operational data.

Anomalous data is fed to base anomaly classification stage for sorting out the real

events and outliers.Thereafter, the true event list is given as input to the broader

level classification module to categorize the events according to their classes. The

aforementioned procedure will be repeated over definite time period of data cycles.
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There is always scope for making the entire process in parallel processing windows so

that interested data window will be checked computationally less intensive fashion.

Figure 3.1: Data flow diagram for the implementation

3.4 Methodology of anomaly detection and State Estimation
approaches

3.4.1 Clustering Methods

3.4.1.1 DBSCAN

Density-based Spatial clustering of applications with noise (DBSCAN) is a

density-based clustering algorithm that is used to group the close points and mark

the low density points far apart as anomalies [? ]. It has been deployed in D-PMU

anomaly detection scheme as to determine outliers in finding the disturbances from

the signal [? ]. DBSCAN has two hyper-parameters - epsilon optimal distance (ϵ) and

minimum number of points (minPts). If at least minPts points are within distance

ϵ of a point p, then p is assigned as the core point. For each point q in this space is

with lower density and cannot be directly reachable, then this data sample q will be
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marked as an outlier.

3.4.1.2 K-Means

K-Means Clustering anomaly detection is a signal processing-driven vector quan-

tization approach. In this method, the effort is needed towards partitioning the n

number of total observations into k number of clusters, with the condition of observa-

tions being assigned to the closest cluster based on the calculated mean distance. As

far as the scope of this project, ”Centroids” are defined as the observation, containing

the most impact of the anomaly, and the other observations are being compared to the

”Centroids” using Euclidean distances. With xi being every single observation and

Sj the corresponding cluster, K-means objective is to be formulated as the following

equation:

argmin
S

k∑
i=1

∑
x∈Si

∥x− µi∥
2 = argmin

S

k∑
i=1

|Si|VarSi (3.1)

Elbow Method: A primary requirement for the aforementioned clustering ap-

proach, is the pre-determined number of clusters, which in the case of this project,

might not be feasible to define. For this purpose, Elbow Method is used by plotting of

the variations of distances versus the number of clusters. This method, aims towards

finding the knee point of the curve, where the increase in the number of clusters,

does not improve in reducing cluster distance. The plotted distances, is based on the

following equation:
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K∑
k=1

∑
i∈Sk

p∑
j=1

(xij − x̄kj)2 (3.2)

3.4.2 Scoring Methods

3.4.2.1 Local Outlier Factor with Feature Bagging (Net LOF)

Local Outlier Factor is an unsupervised anomaly detection algorithm that is

based on the concept of “Local Density” of a point and it’s n neighbors [? ]. We

compare the density of a point with respect to the density of it’s neighbors. Regions

containing data points that are clustered together each have a higher local density

compared to regions that are sparsely populated. To detect anomalies, this algorithm

assumes that data points that have a high local density are more correct / normal

than those data points that have a lower local density.

We calculate Local Outlier Factor as follows:

1. Let the n-dist(p) for a data point ‘p’ be the distance of the data point to it’s

nth nearest neighbor. Let us denote the set of n neighbors for p as Sn(p).

2. We can now use the definition of n-dist(.) to calculate the “reachability dis-

tance”, denoted as r-dist(.) of a point ‘q’ from point ‘p’, as

r-distn(p, q) = max(dist(p, q), n-dist(q)) (3.3)

where dist(p, q) is any distance function, preferably euclidean distance.
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3. Using r-dist(.), we can now calculate the local reachable density of a data point

p with respect to it’s nearest n neighbors as:

lrdn(p) =

 1

|Sn(p)|
∑

q∈Sn(p)

r-distn(p, q)

−1

(3.4)

that is, the inverse of the mean of the reachability distance of the nearest n

points from the data point p.

4. Given Equation (3.4), we can now define the Local Outlier Factor for a data

point p as the average of the ratio of the local reachable distance of all the

nearest neighbors of p to the local reachable distance of the data point p. This

is calculated as

lofn(p) =
1

|Sn(p)|

[∑
q∈Sn(p)

lrdn(q)

lrdn(p)

]
(3.5)

If we use the LOF algorithm without making any changes to the dataset, we call the

approach single LOF

Feature Bagging is a feature selection algorithm used to reduce correlations

present between features of the dataset [? ]. Multiple data points can have similar

changes reflected across various features. This can cause errors in our unsupervised

algorithms. We randomly select a feature set that contain lesser number of features

than the original dataset. We use the following algorithm to select random features:

The new dataset with the random features can now be passed to an outlier

detection algorithm(LOF algorithm), and obtain an outlier vector. We run our
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Algorithm 1: Implemented Algorithm for Feature Bagging

Require: N ≥ 1

Ensure: D ≥ 2

D ← len(Dataset Features)

N ← random(D
2
, D)

i← 0

feature sub← [] while i < N do

f = random(0, D) if Dataset Features[f ] ̸∈ feature sub then

feature sub.append(Dataset Features[f ]) ;

i := i+ 1;

else

continue

return feature sub



58

feature bagging algorithm multiple times to obtain different random features, and a

unique outlier vector for each set of random features. The final result is an average

of all the outlier vectors. As this approach runs the LOF algorithm multiple times

over a unique selection of features, we call it ensemble LOF.

Net Local Oultier Factor (LOF) is a combination of single LOF and ensemble

LOF. Single LOF performs well in recognising unique outliers, such as large/immediate

changes in data, but it does not recognise patterned outliers well. Ensemble LOF can

detect patterned outliers, but the outlier scores for anomalous datapoints often occur

extremely close to the threshold and can be mislabled as normal scores. We can ob-

serve that single LOF and ensemble LOF compliment one another in calculating the

outlier scores. We combine the scores by multiplying the outlier vectors from single

and ensemble LOF together and finding it’s square root.

net lof =
√
single lof ∗ ensemble lof (3.6)

A normal data point will have scores below the threshold for single lof and ensemble

lof approaches. An anomalous data point shall have scores above the threshold for

single lof and ensemble lof approaches. If any of the two approaches result in an

incorrect output, we rely on the other approach to reduce the error.
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3.4.2.2 Robust Random Cut Forest

Robust Random Cut Forest[? ] is an ensemble algorithm that uses a collection of

independent Robust Random Cut Trees to structure data into tree graphs. Anomalies

are detected by comparing the changes the addition of a data point as a leaf/node

makes to the structure of the graph. This algorithm is designed used to detect outliers

in streaming data. It is designed to detect anomalies in streaming data [? ]. It works

well with high-dimensional data, and reduces the influence of irrelevant dimensions in

the dataset. The outlier scores are returned in various ranges. Therefore, to assist in

our detection the scores are then scaled using a min-max scaler. This is to provide a

form of uniformity. The scaled values for the array out outlier scores O are calculated

as:

Oscaled =
O −Omin

Omax −Omin

(3.7)

To assess whether outliers are indicated by the RRCF scores, we analyze the

distribution of the scores of the data points. If no anomalies are present in the data,

then the scores will have an even distribution across the data points. With an even

distribution of data points, we can assume that the difference between the mean of

the data points and the median of the data points will be extremely small. The

next check we perform is to compare the resulting RRCF scores against the line of

best fit for all the scores calculated. If anomalies are present in the dataset, their

scores will be abnormally higher than the scores of regular datapoints. If there are no
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anomalies present in the dataset, then the scores shall be spread out evenly, eventually

dropping down to a low value near the end of the timeframe. We can use this scoring

distribution to plot a line of best fit for all the calculated datapoints. A line of best

fit, when plotted against regular data will have a non-positive slope. If anomalies are

present, they will cause a large enough deviation for the line to have a positive slope.

We calculate the slope and intercept of the line of best fit by using least squares [? ].

We can thus check if any anomalies are present in the RRCF scores by checking the

difference between the mean and median and checking the slope of the line of best

fit. If the checks satisfy that anomalies are present, we can catagorize specific data

points as anomalous by checking how far the RRCF score is from the value of the line

of best fit at that index.

3.4.3 Weighted Least Square (WLS) Method

The goal of the State Estimation of distribution system in the current research

work is defined as high accuracy estimation of the system voltage magnitudes, tar-

geting the environments with high noise levels and presence of measurement outliers.

The outliers considered in this work are implemented in terms of missing measure-

ments or wrong phasor estimations. For the purpose of estimation of the voltage

magnitudes, Weighted Least Square (WLS) technique is adopted.
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Assuming a linear regression model, representing the system equations with Yi

and Xi defined as system variables for i = 1, . . . , n:

Yi = α0 + α1Xi + εi (3.8)

with εi ∼ N (0, σ2/wi), the parameters α0 and α1 are estimated using minimization

of the Ew function, with constant w1, . . . , wn, defined as below:

Ew (α0, α1) =
n∑

i=1

wi (yi − α0 − α1xi)
2 (3.9)

In this methodology, the considered weights are assumed to be inversely proportional

to the variances, consequently, higher weights are assigned to the point with low

variants and lower weights are assigned to higher variant points.

Furthermore, the final estimated values are given as:

α̂0 = ȳw − α̂1x̄w

α̂1 =

∑
wi (xi − x̄w) (yi − ȳw)∑

wi (xi − x̄w)2

(3.10)

where x̄w and ȳw are defined as the mean values with considered assigned weights.

x̄w =

∑
wixi∑
wi

ȳw =

∑
wiyi∑
wi

(3.11)

The aforementioned methodology for WLS in the current work is extracted in a

general matrix formulation with W , defined as a diagonal matrix with corresponding

weights, w1, . . . , wn, as diagonal elements. The exploitation of the Distribution Sys-

tem State Estimation (DSSE) technique is built upon the original WLS methodology
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and the comparative results with outliers and with filtered outliers are presented in

the results section of this chapter.

In order to increase the accuracy and robustness of the DSSE methodology,

an outlier compensation mechanism is embedded as part of the DSSE block for the

anomalous data point xt, following the below steps:

• xt labeled as anomalous data point

• xi and xj are to be labeled as the two previous adjacent normal data points

• x̃t=mean(xi, xi)

• replace xt with x̃t

3.5 Ensemble Technique and Event Classification

3.5.1 Ensemble Approach (EA)

Generation of the anomaly detection results by individual base detectors, is al-

ways prone to certain assumptions and limitations of the specific technique. In order

for the accuracy of the anomaly detection to be increased, Ensemble Approach (EA)

is proposed by integration of the detection results from separate detectors.

Detection of anomalies can be interpreted as identification of high noise levels, miss-
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ing or bad data, as well as actual physical power events. Specifics of each detection

technique, presented in this chapter, is tailored for the processing requirements, being

drawn by the used detection strategy as an independent anomaly detection scheme.

Initially, a primary scan of the D-PMU extracted data is being conducted by each of

the detectors separately, followed by score-conversion of the results. In the next step,

the anomaly scores are being normalized, aiming towards decreasing the dependency

of detection quality to hyperparameter tuning.

The proposed EA starts by acquisition of the vector of the anomaly scores with regard

to the simulation observations, requiring to be outputed by respective base detectors.

Primary challenge of this step is the nature of the detection process, used by each of

the anomaly scores, resulting in various ways of score generation process. A synchro-

nization step is needed towards normalization of the generated vectors by standalone

detectors, keeping the final score values in a coherent range for integration. Several

approaches are studied in a nuanced manner and applicability of the implementation

on real-field distribution dataset.

In the final step of detection, the scores are being integrated using MOA (Maximum

of Average) technique and the outputted results are to be used as detection criteria.

As part of the base detector development and performance evaluation process, it has

been observed by the research team that anomalous observations are remaining hid-

den in outlier function-based techniques, while clustering methods (i.e. DB-SCAN,
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and K-Means/Elbow) are efficiently performing. In the other scenarios, anomalous

data points are occurring in a window of data manner, hence generated clusters are

not capable of differentiating between a bad or missing data and actual feeder events.

Preliminary studies to highlight the strengths and shortcomings of the detectors have

been conducted and MOA is chosen as the most efficient way of outlier score integra-

tion, with respect to the developed base-detectors in the current research. As far as

the MOA ensemble integration of the scores are concerned, stand-alone base detectors

are being divided into two groups of 1) Clustering-based: including DB-SCAN and

K-Means, and 2) Outlier Score-based: including Net LOF and RRCF.

After finding the average score for each group of detectors, MOA accounts for the

resulted degree of anomalous, being interpreted as a normalized number between 0

and 1, corresponding to measurements at each timestamp.

3.5.2 Broader level event classification

After the bad data are filtered through the base anomaly classification, the

detected event data fragments are sent to broader-level event classification, and each

event is labeled according to the corresponding physical rule. The proposed broader

level classification is shown in Figure 3.2.

The developed algorithm executes feature extraction by DBSCAN, where it
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Figure 3.2: Broader-level classification architecture

detects the changes in V , I, P , or Q in those event data fragments. Then the

extracted signatures are used for physical rule based event classification, and those

events can be classified into following categories:

• Active power event: if a event signal has a significant change in active power

change, then it is assigned to P event category. E.g., increasing the power
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generation can lead P changes.

• Reactive power event: if a event signal has a significant change in reactive power

change, then it is assigned to Q event label. E.g., opening capacitor bank will

have a big change in Q.

• Complex power event: if a event signal has a significant change in both active

and reactive power change, then it consider as a complex event and will be

assigned with a PQ event label.

• Faults: fault classification is completed before the physical-rule based anomaly

classification. Faults are classified on the basis of collecting local and spatial

information. If an event can be detected by more than a specified number of

PMUS, it can be considered a fault.

In the given test D-PMU dataset, three-phase voltage magnitude and angles,

three-phase current magnitude and angles, frequency, and rate of change of frequency

are included. Based on those attributes, we calculated the active power injection and

reactive power injection. The processed data are then fed to DBSCAN for feature

extraction. Feature extraction is one prerequisite step for event classification that

obtain the main signatures from a piece of signal. The process of feature extraction

in this project is achieved by a fine-tuned DBSCAN. Recall that the hyperparameter

of DBSCAN are optimal epsilon distance ϵ and the minimum number of samples
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MinPtr.

3.6 Test systems and performance metric for evaluation

3.6.0.1 Bronzeville Community Microgrid

Commonwealth Edison (ComEd), a utility serving more than 4 million cus-

tomers in northern Illinois, is deploying Bronzeville Community Microgrid (BCM) on
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south side of Chicago. The BCM serves critical infrastructures, such as Chicago Po-

lice Department headquarters along with approximately 1,000 residences, businesses,

and institutions. The BCM integrates solar photovoltaics (PV), battery energy stor-

age system (BESS), a controllable generator, and a microgrid master controller to

connect/disconnect from ComEd’s grid and keep the local power flowing in the event

of interruption from the main grid. In this research, the D-PMU data from real-time

simulation of BCM at ComEd’s Grid Integration Technology (GrIT) lab facility are

utilized to test and validate the proposed method.

Figure 3.3 shows the schematic diagram of the BCM. It consists of two feeders

fed from the two substations via point of interconnection (POI) switches, POI-1 and

POI-2. The top feeder, SS-1, consists of loads, distribution automation (DA) devices,

a 4.8 MW gas generator, 500 kW/2 MWh battery storage system, and 750 kW solar

photovoltaic (PV) system. The lower feeder, SS-2, consists of loads and DA devices.

These two feeders can be interconnected via tie-switches (T1, T2 or T3) to transfer

load of one feeder to the other. Since all the distributed energy resources (DERs)

are located in the top feeder, SS-1 can island from rest of the system to form partial

island. In full island mode, the two sub-systems are interconnected and both POI

switches are opened to isolate the entire microgrid from utility supply.

As a part of initiative, ComEd has utilized synchrophasor technology to improve

its business operation. In BCM, 46 D-PMUs are strategically placed to stream time-
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stamped measurements from various nodes in the microgrid to the utility analytics

platform and storage. Broadly, these data have two types of main functions and

applications: real-time and offline applications. The real time D-PMU data deal with

time-sensitive functions, such as system event detection, protection and control, and

system monitoring, which typically require event-occurrence-to-application-outcome

latency of several milliseconds to a few seconds. Some of the offline applications

include post event analysis, load modeling, and load forecasting.

3.6.0.2 RTDS Test Bed Architecture

Figure 3.4 shows the test-bed architecture at ComEd’s lab facility. The power

circuit of the BCM and the D-PMUs are modeled and and implemented in RTDS.
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The GTNET card simulate the D-PMUs in RTDS model that stream real-time time-

stamped data to a phasor data concentrator (PDC) using C37.118.2 communication

protocol. The aggregated data in the PDC is then forwarded to anomaly detection

and event classification algorithm discussed in this chapter.

3.6.0.3 Test Cases

Several events are applied on the BCM RTDS model and the D-PMU data are

collected to test and validate the proposed algorithm. Followings are the details of

each test cases.

Test Case I: In this test, 23 events are applied at a regular interval of 45 seconds.

The events include connection and disconnection of the DERs, DER power changes,

load changes, switching of capacitor banks, and faults (LG, LL and LLLG) at several

nodes.

Test Case II: This test includes 23 events such as connection and disconnection

of the gas generator, load changes, switching of capacitor banks, faults (LL, LLG,

LLL, LLG and LLLG type), and switching of the POI and tie switches. The events

include changes in the circuit configuration, such as partial islanding, load transfer,

full islanding, blackout, and grid reconnection of the microgrid. The test events occur

at a regular interval of 45 seconds.

Test Case III: The events in Test Case III include faults (LG, LL, LLG, LLL,

LLLG type), capacitor switching, load changes, connection/disconnection of DERs,
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DER power changes, and operation of POI and tie switches for load transfer, partial

islanding, partial blackout, and grid reconnection. There are 23 events at a regular

interval of 45 seconds.

3.7 Results and Summary

3.7.1 Anomaly Detection

Based on the developed testbed and the corresponding usecases I to III, perfor-

mance evaluation of the developed detection and classification techniques have been

conducted. Two evaluation metrices reflecting “Accuracy” and “Precision” are eval-

uated using the four terms— a) True Positives (TP) are positive instances correctly

classified, b) False Positives (FP) are negative instances classified as positive, c) True

Negatives (TN) are negative instances correctly classified as non-positive, d) False

Negatives (FN) are positive instances classified as negative. A “recall” is the ratio of

TP to the sum of TP and FN and “Accuracy” is defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(3.12)

Table.3.1 presents the confusion matrix based on the anomaly detection per-

formance of all the stand-alone base detectors as well as the developed “Ensemble

Approach”.
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Table 3.1: Anomaly Detection Performance

Accuracy Precision

Testcase

1

DB-SCAN 0.7826 0.7826

K-Means 0.7635 0.7635

Net LOF 0.7462 0.5518

RRCF 0.7192 0.8111

Ensemble 0.9153 0.8942

Testcase

2

DB-SCAN 0.8261 0.8261

K-Means 0.7927 0.7927

Net LOF 0.7442 0.4710

RRCF 0.6950 0.3980

Ensemble 0.9484 0.9397

Testcase

3

DB-SCAN 0.7826 0.7826

K-Means 0.7462 0.7462

Net LOF 0.7465 0.5775

RRCF 0.7002 0.4687

Ensemble 0.9248 0.8925
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3.7.2 Distribution System State Estimation Results with Measure-
ment Outliers

In this section, the technical methodology and the developments that are pre-

sented in the previous sections of this chapter are deployed as a single DSSE tool that

is robust to outliers and noise. An outlier compensation methodology is also consid-

ered and the artificial noise and outliers are introduced to the D-PMU measurements

that are extracted from the Bronzeville Community Microgrid. Among the two main

feeders in the test system, substation one is considered as the main feeder and is used

for DSSE evaluation purposes.

Multiple outliers are introduced in a dynamic period of the system operation

for a single example bus and in the next step, with the presence of outliers, the

performance of WLS is evaluated in Fig.3.5. Furthermore, in this figure, the DSSE

results are provided for the case after the detection, filtering, and compensation of

the outliers, labeled as Outlier Filtered WLS (OF-WLS).

Figure 3.5: Performance comparison of the conventional WLS and OF-WLS
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3.7.3 Broader-level Classification Results

This procedure is to verify the usability of the proposed event classification algo-

rithm. The designed event classifier is validated through five different event datasets

provided by ComEd/ NuGrid. The DBSCAN-based feature extraction algorithm can

determine how many PMUs can detect the current processing event. According to

the estimated δ number of PMUs based on a set of ground truths, the classifier dis-

tinguished whether the event was a fault. In the test power system, δ was set to be

five by the hyperparameter estimation, i.e., if an anomaly is detected by more than

5 D-PMU in the given test system, then this event will be identified as a fault. The

average classification results for the simulated test cases are 82.2%. The developed

broader-level classification algorithm was validated using the given 5 test cases cre-

ated by the RTDS test bed introduced in Section 3.6.0.2. The results using accuracy

metrics with a total of 104 events are illustrated in Table 3.2.

For complex PQ events, including DER connection/reconnecting, DER power

changes, topology changes, and grid reconnection, the average classification accuracy

of the developed physics-driven broader-level event classifier provided 10% accuracy.

For P and Q events, the classifier stands the accuracy at 69.23% and 76.92%, respec-

tively. In addition, the classifier performed well in identifying the fault events, in

which the classification accuracy for the given 41 fault events was up to 100%. The
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Table 3.2: Classification results for each specific power distribution event.

Estimation Model # of Event Accuracy (%)

DER connection/reconnection 12 91.67

DER power changes 11 81.82

Switching capacitor banks 13 69.23

Load changes 13 76.92

Faults (LL, LLL, LG, LLG, LLLG) 41 100

Full/ Partial islanding 6 83.33

Partial blackout 2 100

Grid reconnection 6 83.33

results are evidence that exclusive events like active and reactive still produce the

variations in counterparts, given that the distribution system is neither pure reactive

nor resistive. Moreover, a few events are not appropriately classified or unclassified

entirely because of errors in determining the dominant PMUs and invisible variations.
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3.8 summary

In this research, an attempt has been made to examine the practicality of sta-

tistical and clustering based anomaly detectors against the real event datasets from

D-PMUs connected with simulated Bronzeville Community Microgrid (BCM) net-

work. A detailed step-wise algorithm is discussed and validated for various test case

scenarios to investigate true performance of considered methods. A performance

comparison is also carried out by utilizing the common validation metric to show-

case relative superiority of methods under different test cases. An extension of this

work will emphasize the ensemble approach to improve detection accuracy by tak-

ing advantage of strength in different methods. Furthermore, anomaly classification,

localization and root cause analysis is to be performed in future.
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CHAPTER 4. CYBER-PHYSICAL AWARENESS AND EVENT

CLASSIFICATION

4.1 Introduction

This chapter proposes a Real-time Anomaly Location and ClassificatiON (RAL-

CON) for power distribution systems to determine the type of anomaly (i.e., short-

circuit fault, cyber attack, DER switching) and its location simultaneously. RALCON

collects and aggregates measurement data from multiple sources that operate at dif-

ferent sampling rates, such as protection relays and D-PMUs. The output of the data

aggregation is then fed into a multi-task long-based short-term memory (LSTM) to

classify the type of the anomaly and the location in two separate tasks. The proposed

approach can be utilized in real-time operation in order to distinguish between nor-

mal operation and other anomalies. The RALCON is validated in a modified IEEE

33-bus test feeder benchmark, that integrates solar generation and energy storage.

The results show that RALCON can accurately locate and classify anomalies for sev-

eral operation conditions. Further experiments highlight the impact of aggregating

multiple sources of data in the accuracy of the results.



78

4.1.1 Background and Problem Description

Given the enhanced automation and ongoing penetration of inverter-based re-

sources to distribution system, further integration of advanced measurement devices

such as Distribution Phasor Measurement Units (D-PMUs) and protection relays are

required to increase the visibility of the distribution system status, properly capture

the real-time anomalies of the system [1], and enable distribution automation. Situa-

tional awareness utilizing data from sensors capturing physical system data and cyber

data provides an opportunity for real-time cyber-physical monitoring and subsequent

decision support. Time-synchronized high-resolution measurements can be exploited

for model validation, topology detection, state estimation, event analysis and other

applications [2, 3]. The expanding deployment of communication networks and digital

devices, however, has made power distribution systems vulnerable to cyber attacks

[4, 5] such as the coordinated cyber attack against the Ukrainian power grid [6], and

the cyber attack on the communication network at a large renewable energy operator

in Utah [7]. Hence, it is of crucial importance to take into account the cyber attack

as an individual type of anomaly in power distribution system alongside with the

others such as a natural fault. The distribution system measurements (i.e., D-PMUs

and protection relays) can be used for cyber-physical anomaly detection. However,

the variety of monitoring devices operating at different sampling rates introduce new
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challenges in the design of methodologies for the detection of anomalies.

4.1.2 Literature Review

Multiple studies have been conducted in distribution systems focusing on three

different tasks of anomaly detection, classification, and location [8, 9]. The majority

of the previously-established approaches concentrate on physics-based or data-driven

techniques [10]; however, given the complex evolving nature of the distribution system

induced by high penetration of Distributed Energy Resources (DERs), e.g., energy

storage (ES) and solar generation (SG) units, and integration of unconventional con-

trollable loads [11], the requirement for a practical tool, achieving high accuracy for

detection, classification, and location of anomalies in a coherent manner, still remains

open to research [12].

The precision and solutions offered by analysis of streaming D-PMU data facil-

itate operators to reveal short-time events that would otherwise be undetected [13].

The issue of anomaly analysis in the distribution system is addressed in [14] and an

algorithm is proposed combining binary KNN, multiclass SVM, and decision trees.

The drawback of this approach is that the algorithm fails to account for the spatial

location of buses in the system. This might result in the detection of events at the

wrong locations. A compensation theorem-based approach is presented in [15] for
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event detection and location. This approach considers the spatial location of buses

but ignores the temporal nature of the measurements obtained from the system. A

novel optimization algorithm is proposed in [16] to make a bridge between super-

vised, semi-supervised, and unsupervised learning approaches. The proposed event

detection approach in this chapter is validated on a real feeder with actual installed

D-PMUs. The Principle Component Analysis (PCA) technique, decision tree, and

combination of PCA and SVM with autoencoder are proposed in [17, 18, 19, 20] for

event classification, respectively. An approach is presented in [21] based on fast lo-

calized spectral filtering using the spatial location of buses. These methods consider

the spatial or temporal nature of the measurements but do not jointly exploit both

to achieve accurate event detection, location, and classification.

Considering a practical distribution system operating scenario, due to a low

number of D-PMU in-field installations, the total number of high-resolution incom-

ing measurements do not provide full observability of the system [22]. Hence, fur-

ther multi-source measurement integration is required before proceeding to detailed

anomaly investigations. Multiple data aggregation strategies have been established

in literature, centering around applications of “Bayesian Filtering” with focus on

“Kalman Filtering” [23][24] [25]. For the purpose of the multi-source data aggrega-

tion in this work, a non-linear assumption of the underlying system model is made,

aiming towards enhancement of the data aggregation accuracy with comparison to
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the similar works with linear model assumption [26], and a data-driven approach is

used for aggregation of incoming information from D-PMUs as well as Supervisory

Control and Data Acquisition (SCADA).

The technical literature mostly tackles fault and cyber attack detection problems

individually only using D-PMU data , and the few efforts that integrate fault and

attack classification do not accomplish the location task [27, 28, 29]. Furthermore,

little attention has been given to combining asynchronous sources of data such as

protection relays and D-PMUs, which are typically transmitted at different sampling

rates and require additional pre-processing efforts in order to utilize for anomaly

detection, location and classification. In addition, the majority of cyber-physical

anomaly detection methods in the literature focus on the problem in power generation

and transmission systems [30, 31, 32], and less attention has been given to developing a

comprehensive model integrating fault and attack, as well as DER event classification

and location in distribution systems. Finally, the proposed cyber-physical anomaly

detection and location approaches in distribution systems are post-failure and offline

approaches [10].
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4.1.3 Contributions

This research proposes the Real-time Anomaly Location and ClassificatiON

(RALCON) system to classify the type and location of different anomalies in dis-

tribution system. More specifically, the proposed RALCON system continuously

receives physical data that is being collected in the control centner, including the

protection relays and D-PMUs, to discern the presence of an anomaly in distribution

systems, and determine its type and location. The RALCON system is capable of

identifying and locating short-circuit faults, cyber attack on protection relays and

DER switching in distribution systems. At its core, the RALCON system includes

two significant modules, namely, data aggregation and multi-task learning-based long

short-term memory (MTL-LSTM). The data aggregation module is utilized to inte-

grate the asynchronous measurement from various measurement resources with dif-

ferent sampling rates (i.e., protection relays and D-PMUs) and generate uniform

high-resolution time-series data. The aggregated measurements with the enhanced

resolution are provided to the second module. The MTL-LSTM enables utilizing a

single machine learning structure for two individual tasks, the type and the location

of the anomaly in distribution system. Employing an LSTM recurrent neural net-

work in the core of the proposed RALCON also enables the advantage of real-time

anomaly classification and location, leading to a fast identification in distribution
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system. Utilizing LSTM over other artificial neural networks provides the advantage

of modeling a sequence of data (i.e. time series of measurements) while each data

of a time window can take the dynamic behaviour of the power distribution and low

range of anomaly disturbance into account. Additionally, specifying a layer for each

time step in LSTM reduces the number of the trainable weights helping to accelerate

the training procedure.

The rest of the chapter is organized as follows: Section 4.2 presents an overview

of the proposed RALCON system and defines the types of anomalies classified by the

model. The multi-source measurement aggregation module in the RALCON system

is presented in Section 4.3. The MTL-LSTM module in the RALCON system is

presented in Section 4.4. The proposed model is implemented on the IEEE 33-bus

test feeder in Section 4.5, which is utilized to locate and classify multiple types of

anomalies. In addition, Section 4.5 presents results of comparing the performance of

the proposed model for different scenarios of input data. Finally, Section Summary

concludes the chapter.

4.2 Overview of the Proposed Model

The architecture of the proposed RALCON is illustrated in Fig. 4.1. The pro-

posed RALCON is implemented in the utility control center to monitor the measure-
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ments data and identify the operation status in real-time. The RALCON receives the

current data from the field measurements, including protection relays and D-PMUs

installed throughout the entire distribution network. In addition, it receives limited

samples of historical data collected by the outage management system (OMS) from

relays and D-PMUs. Along with the transmission system standards, the communi-

cation between D-PMUs is assumed to be via IEEE c37.118 protocol. On the other

hand, for a sensible enhancement in the system observability, the installed protection

relays are assumed to be connected to the control room using DNP3 communica-

tion protocol. A variety of reporting rates have been considered, and 10 samples

per second are chosen to comply with the existing distribution feeder communica-

tion structure. The aforementioned assumptions on the incoming data aim towards

rational development of a data aggregation scheme, focusing on integration of the in-

coming data from high-resolution D-PMU (120 samples/sec) and low-resolution relay

(10 samples/sec) measurements. Using the present and limited samples of historical

data from D-PMUs and protection relays, the data aggregation module up-samples

the protection relay data to 120 samples/sec. The aggregated data is then fed into

the MTL-LSTM to determine the operation mode and the location of the anomaly

(if there is any). Operation mode is defined as the operation state of the distribution

system including, normal operation, short circuit fault, cyber attack, DER switching,

and intermediate mode. The inclusion of the normal operation mode enables the real-
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time application of the proposed model. The location of the anomaly is also classified

simultaneously to illustrate the predicted location of the anomaly to the operator.

The training process of the proposed RALCON is performed offline. Nevertheless, af-

ter training the model, it can be used in the real-time operation and the output of the

classification tasks can be visualized on the monitoring station to enhance situational

awareness and accelerate the anomaly identification process. The data aggregation

and MTL-LSTM modules are discussed in sections III, IV, respectively.

4.2.1 Input data

Let us consider a distribution system with a set of lines L = {1, ..., L}, a set

of measurement sensors S = {1, ..., S}, and a set of DERs, D = {1, ..., D}, where

L is the number of lines, S is the number of sensors including protection relays and

D-PMUs, and D is the number of DERs in the distribution system. The set of sensors

S consists of a subset of protection relays R = {1, ..., R}, and a subset of D-PMUs

U = {1, ..., U}, where R is the number of protection relays and U is the number of

D-PMUs.

The collected data consists of the measurement data from relays and D-PMUs,

which are continuously being received and stored in the OMS database. The RAL-

CON receives the data from the OMS historical system for a specific time window.
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The data employed by RALCON includes incoming measurements from both high-

resolution and low-resolution measurement devices, elaborated as follows:

4.2.1.1 D-PMU High-resolution Measurements

Three-phase voltage and current magnitudes and angles, frequency and rate of

change of the frequency (ROCOF) are transmitted to the control center with the rate

of 120 samples/sec.

4.2.1.2 Protection Relay Low-resolution Measurements

Three-phase voltage and current magnitudes and frequencies are transmitted to

the control center with the rate of 10 samples/sec.

Let us define Q(t) = [x1(t), ....,xs(t)....,xS(t)] ∈ R14×S as the measurement

matrix for a distribution system, where t denotes the time index; and xs(t) denotes

the sensor measurement vector defined as the following:

xs(t) = [Is,a(t), Is,b(t), Is,c(t), α
I
s,a(t), α

I
s,b(t), α

I
s,c(t),

Vs,a(t), Vs,b(t), Vs,c(t), α
V
s,a(t), α

V
s,b(t), α

V
s,c(t),

fs(t), rfs(t)]
T (4.1)

where Is,a(t), Is,b(t), Is,c(t), Vs,a(t), Vs,b(t), Vs,c(t) denote the current and voltage

magnitudes; αI
s,b(t), α

I
s,c(t), α

V
s,a(t), α

V
s,b(t), α

V
s,c(t) denote the current and voltage

angles for sensor s ∈ S at time t in three phases a, b, c, respectively; fs(t), rfs(t)

denote the frequency and ROCOF for sensor s at time t, respectively. All the arrays
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of vector in xs(t)(∀s ∈ R) considered to be 0 if the relay does not provide measurement

data at time sample t. Correspondingly, any features that are not being measured by

relays, i.e. angle values and ROCOF, considered to be 0.

4.2.2 Anomaly Classes in RALCON

The RALCON system identifies and locates multiple types of anomalies and

distinguishes between normal operation and an event in the distribution system. Two

different tasks are taken into account in RALCON; 1) Detection of the distribution

system operation mode 2) Identification of the location of an event. Five different

operation modes are taken into account in this research as the followings:

4.2.2.1 Normal Operation

The RALCON system includes the normal operation as one of the operation

modes in order to enable the real-time application of anomaly detection and location.

Since the distribution system is usually being operated without any anomaly, a label

is needed for the normal operation. Additionally, the location of this operation mode

is set to 0, highlighting a specific class for this operation mode in the anomaly location

task.
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4.2.2.2 Short-Circuit Fault

The RALCON system takes the short-circuit fault as the second operation

mode. Also, the location of short-circuit faults for each line is taken into account

as the labels of the location of the anomaly. Once a fault happens in line l ∈ L,

the protection relays and D-PMUs sense a short-circuit fault current, and the closest

relay sends a trip command to the associated breaker or recloser after a specific time

delay. The number of fault location classes equals the number of lines in distribution

system.

4.2.2.3 Cyber Attack Types

The proposed RALCON system takes cyber attacks into account as an anomaly

type where the adversary can bypass the network security and launch an attack di-

rectly on protection relays or in the communication layer [10]. The false-data injection

attack (FDIA) is assumed to happen on the protection relays trip command. This

kind of attack would directly cause an interruption in the distribution system. Every

protection relay in the distribution system, especially the ones in critical locations

on the system, can be the target of a cyber attack. Therefore, the number of cyber

attack location classes equals the number of protection relays in the network. FDIA

on D-PMUs are not considered here, as they would not trigger any trip command.
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4.2.2.4 DER Switching

The proposed RALCON system considers DER switching as an event type where

a DER gets connected/disconnected to the distribution system. Knowing about the

exact time of the DER switching can provide noteworthy information for the operator.

Every bus connected to a DER in distribution system is considered as a location for

a DER switching event. Therefore, the number of DER switching location classes

equals the number of buses with DER.

4.2.2.5 Intermediate Operation Mode

In addition to the above-mentioned operation modes, another mode is defined

as an intermediate mode in which a part of the MTL-LSTM samples belong to an

operation mode and the rest belong to another one. For instance, when a short-circuit

fault happens in the middle of a time window of MTL-LSTM, a part of the samples

belong to a normal operation and the others belong to a short-circuit fault. In order

to improve the performance of the proposed method and take the transition time

window into account, the intermediate mode is utilized.

The total number of classes for operation mode task in RALCON includes five

different labels as explained, i.e., Ko = 5. Additionally, the total number of classes

for the anomaly location in RALCON equals to: K l = max{L,R,D} + 1, where we

consider a label for no location in addition to the maximum number of location classes
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for different operation modes.

4.3 Multi-source Measurement Aggregation

The proposed RALCON framework begins with acquiring the available data in

the distribution system, i.e., relay measurements from SCADA and D-PMUs. The

aforementioned data are primarily being captured in streaming and non-streaming

manners with various reporting rates.

4.3.1 Inputs and Outputs of Measurement Aggregation Module

The formulation and the steps that are presented in this section, tackle the data

aggregation problem with an state estimation approach by creating the observation

model during the dynamic events. Prediction of the system state using the available

observations, accompanied by the assumption of the system state at time t+1 being

only dependent to the system state at time t, makes the estimation of the unknown

variables in relay measurements feasible. As a result, resolution improvement of the

measurements with incorporating phase angle estimations is achieved.

Fig. 4.2 presents an overview of the developed data aggregation scheme with

the corresponding required inputs and final generated outputs. The overall sensor

measurement aggregation technique, implemented in the current research work for
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the purpose of distribution system anomaly detection, classification and location,

is considered as the preliminary step to preprocess the data for further anomaly

investigations.
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Figure 4.2: Overview of the Data Aggregation scheme at time snapshot of t

4.3.2 Application of the Proposed “Data Aggregation Scheme” to Dis-
tribution System Measurements

Streaming data from D-PMUs are in high-resolution with measurements of volt-

age and current phasor values. However, the incoming relay data are originally ob-

tained using potential and current transformers, containing low-resolution informa-

tion on voltage and current magnitudes with missing phase angles. The goal of this

section is to develop an estimation strategy for the missing phase angle values, cap-

tured by relays. Moreover, aggregation of the Root Mean Square (RMS) values of

the measured voltage and current magnitudes by relays in a correlative manner with
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similar D-PMU measurements to synchronize the data-capturing resolution of all the

resources (i.e. 120 samples/sec). The assumption of the total number of incoming

high resolution measurements (captured by D-PMUs) is greater than the total num-

ber of the estimation variables needs to be maintained to assure high aggregation

accuracy.

The data aggregation strategy in this work is adopted through a combination of

multiple steps of estimation and re-estimation of unknown variables, by introducing

the concept of “Proximity Vector”, denoted by ps ∈ RS×1, for sensor s. The proximity

vector is constructed by the adjacency comparison between sensors based on the

electrical distances, aiming towards identification of the closest neighboring D-PMU

with respect to each relay device. Given a radial feeder configuration, calculation of

the electrical distances is interpreted as the summation of the line impedances between

a relay and all the installed D-PMUs. Consequently, the D-PMU with the least

upstream or downstream impedance is chosen as the adjacent D-PMU. Accordingly,

the proximity vector for sensor s is defined as: ps = [0, . . . , 1, . . . , 0]T1∗S with all the

elements except the element j equal to zero, implicating the adjacency of the sensor

s to D-PMU index j.

In the developed strategy, incoming measurements at any given timestamp are

considered as a vector of captured features by the corresponding sensor. For the
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purpose of the mathematical formulation of the aggregation approach, vector xs(t) is

considered as the feature vector for sensor s at t.

In conjunction with other parameter estimation approaches, two phases of pre-

diction and updating of the prediction is considered to be accomplished respectively.

Estimation variables are considered to be the relay unknown features, constructing

a vector of voltage and current phase angles as well as the missing RMS values for

voltage and current magnitude measurements and frequency. Assuming that the

measurement aggregation is performed for t− 1, the model of the implemented data

aggregation scheme in this work consists of the following steps for time step t:

1. Step One: Initialization

(a) Collection of all measurements from D-PMUs and relays in xs(t − 1) for

s = 1, . . . , S;

(b) Construction of Q(t− 1) using xs(t− 1).

2. Step Two: Estimation

Calculation of the estimations using the obtained measurements at time t:

x̂s(t) = Q(t− 1)ps(t− 1). (4.2)

3. Step Three: Update

This step is to conduct a comparison between the RMS values of the last avail-

able actual relay measurements for the relay s, with the estimated values from
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D-PMUs as followings:

ϵs =

∣∣∣∣ x̂s(t)− x̂s(t− 1)

x̂s(t− 1)

∣∣∣∣ , (4.3)

where ϵs denotes the estimation error for sensor s. The percentage error between

the values is calculated and compared with a preset threshold, denoted by εth.

The threshold parameter, needs to be properly tuned. This will serve as the

criteria for increasing the relay measurement resolution either by D-PMU based

estimations or repetition of previous relay estimation.

• εth ≥ ϵs: No Update is required, i.e. x̂s(t) = Q(t− 1)ps(t− 1)

• εth < ϵs: Update using the last estimation, i.e. x̂s(t) = x̂s(t− 1).

After updating the unknown measurements in all sensors, the estimated mea-

surement vector at time t is constructed as: x̂(t) = [x̂T
1 (t), ..., x̂

T
s (t), ..., x̂

T
S (t)] and is

fed into the MTL-LSTM. The overall algorithmic implementation of the data aggre-

gation scheme, as part of the proposed RALCON is presented in Algorithm.2.

4.4 The Structure of the Multi-task Learning-based LSTM

The proposed RALCON utilizes the concept of RNN and Multi-Task Learning

(MTL) simultaneously in the core of the MTL-LSTM module. The MTL-LSTM con-
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Algorithm 2: Data Aggregation Scheme

1 Input the obtained measurements by D-PMUs in U and Relays in R, at

t− 1;

2 Build the measurement matrix Q(t− 1) using the uploaded measurements;

3 for (s = 1 to S; s++):

4 if s ∈ U :

5 x̂s(t) = xs(t)

6 if s ∈ R :

7 Estimate the unknown measurements using the “Proximity Vector

(ps)”:

8 x̂s(t) = Q(t− 1)ps(t− 1)

9 ϵs = |[x̂s(t)− x̂s(t− 1)] /x̂s(t− 1)|

10 if ϵs > εth:

11 x̂s(t) = x̂s(t− 1)

12 x̂(t) = [x̂T
1 (t), ..., x̂

T
s (t), ..., x̂

T
S (t)]

13 Return x̂(t)
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sists of a LSTM layer representing the recurrent neural network structure. Further-

more, two parallel Fully Connected (FC) layers and two softmax layers are followed

by the LSTM to implement the operation mode and anomaly location tasks as shown

in Fig. 4.3.

In particular, MTL is a machine learning approach in which several learning

tasks are solved simultaneously by optimizing multiple loss functions at once. The

standard LSTM is modified in this research to meet the requirements for anomaly

classification and localization in distribution system. Rather than training an in-

dependent model for each task, a single model is implemented in MTL to optimize

the total loss function. MTL has gained extensive attention across different research

areas such as natural language processing, compute vision, recommendation systems

among the others [33]. MTL can be implemented with sharing partially similar neural

network. In the proposed MTL-LSTM, two tasks (e.g., operation mode and anomaly

location) share the LSTM layer as the main hidden layer enabling the time-series

input features. The output of the LSTM is then fed into two parallel FC layers as the

individual layers for each task. The layers of the proposed machine learning model

as well as the functions are elaborated in the following subsections.
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4.4.1 Long-Short Term Memory Layer

A recurrent neural network is a neural network that is specialized for processing

a sequence of input data x̂(1), ..., x̂(t), ..., x̂(τ) with the time step index t ranging from

1 to τ where τ indicates the time steps of the RNN. In contrast to traditional feed-

forward neural networks, RNNs have self-connected recurrent connections modeling

the temporal evolution. The output response h(t) of a recurrent hidden layer can be

formulated as follows:

h(t) = σh (Wx̂hx̂(t) +Whhh(t− 1) + bh) , (4.4)

where x̂(t) is the output of the data aggregation module as well as the input of the

classifier at time t; Wx̂h and Whh are mapping matrices from the current inputs x̂(t)

to the hidden layer h and the hidden layer to itself; bh denotes the bias vector; σh

denotes the activation function in the hidden layer h. The structure of the RNN

presented above has difficulty in learning long range dependencies due to vanishing

gradient effect hampering the learning of long data sequences. To overcome this

limitation, recurrent neural networks using LSTM have been designed to mitigate the

vanishing gradient problem and to learn the long-range contextual information of a
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temporal sequence. The LSTM transition equations are as the followings [34]:

i(t) = σ (Wix̂(t) +Uih(t− 1) +Vic(t− 1)) , (4.5)

f(t) = σ (Wf x̂(t) +Ufh(t− 1) +Vfc(t− 1)) , (4.6)

o(t− 1) = σ (Wox̂(t) +Uoh(t− 1) +Voc(t)) , (4.7)

c̃(t) = tanh (Wcx̂(t) +Uch(t− 1)) , (4.8)

c(t) = f i(t)⊙ c(t− 1) + i(t)⊙ c̃(t), (4.9)

h(t) = o(t)⊙ tanh(c(t)), (4.10)

where i(t) denotes input gate; f(t) denotes forget gate; o(t) denotes output gate;

c(t) denotes memory cell; h(t) denotes hidden state; σ denotes the logistic sigmoind

function and ⊙ denotes elementwise multiplication. The entries of the gating vectors

i(t), f(t) and o(t) are in [0, 1]. Intuitively, the forget gate controls the amount of

memory that is erased from each memory cell, the input gate controls how much each

unit is updated, and the output gate controls the exposure of the internal memory

state.

4.4.2 Multi-task Learning Layer

The final output vector of the LSTM layer is fed into two parallel FC layers to

train the corresponding weights for each task. The output of the FC layer for the
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Figure 4.3: Overview of the MTL-LSTM utilized for anomaly classification and location

operation mode task is given by:

zo1 = σ (h(τ)Θo
0 + bo

0) , (4.11)

zom+1 = σ (zomΘ
o
m + bo

m) , (4.12)

zoM = zoM−1Θ
o
M−1 + bo

M−1, (4.13)

where h(τ) ∈ RC is the output vector of last LSTM layer with C hidden features;

Θo
0 ∈ RC×C1 indicates the trainable weight matrix mapping C input features to the

output channels C1; bo
0 ∈ RC1 denotes the trainable bias for the first FC layer;

Θo
m ∈ RCm×Cm+1 ,bo

m ∈ RCm+1 denote the trainable weight and bias in layer m; σ(·)

denotes an activation function; zom ∈ RCm denotes the output of FC in layer m with

Cm number of channels; zoM ∈ RCM denotes the output of the FC with M layers and

CM hidden features for the operation mode task. The output of the FC layer for the



101

anomaly location task is given by:

zl1 = σ
(
h(τ)Θl

0 + bl
0

)
, (4.14)

zlm+1 = σ
(
zlmΘ

l
m + bl

m

)
, (4.15)

zlM = zlM−1Θ
l
M−1 + bl

M−1, (4.16)

where Θl
0 ∈ RC×C1 indicates the trainable weight matrix mapping C input

features to the output channels C1; b
l
0 ∈ RC1 denotes the trainable weight and bias

for the first FC layer; Θl
m ∈ RCm×Cm+1 ,bl

m ∈ RCm+1 denote the trainable weight and

bias in layer m; σ(·) denotes an activation function; zlm ∈ RCm denotes the output of

FC in layer t with Cm number of channels; zlM ∈ RCM denotes the output of the FC

with M layers and CM hidden features for the anomaly location task.

The softmax activation function is used to generate the probability for the

predicted label vector for each task in multi-task network which is given by:
ŷo = softmax(zoM)

ŷl = softmax(zlM)

, (4.17)

where ŷo, ŷl denote the prediction probability vector for operation mode and location,

respectively.
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4.4.3 Loss Function

One of the most common approaches to define the cost function in MTL is to

formulate the linear combination of individual cost functions as the following:

ϕ = λoL(ŷo,yo) + λlL(ŷl,yl), (4.18)

where λo, λl denote the weights for the tasks; L(ŷo,yo), L(ŷl,yl) denote the operation

mode and anomaly location losses; yo,yl denote the true labels, respectively.

Both of the above-mentioned tasks are multi-class classification tasks. In each

multi-class classification task, the parameters of the neural network are being trained

to minimize the cross-entropy loss of the predicted and true labels. The cross-entropy

loss is given by:

L(ŷ,y) = −
M∑

m=1

C∑
c=1

ym,c log(ŷm,c), (4.19)

where ym,c ∈ {0, 1}, ŷn,c ∈ [0, 1] are the target and predicted labels for mth sample

and cth class respectively; M denotes the number of training samples and C denotes

the class number.
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4.5 Case Study

4.5.1 Developed Real-time Testbed

The proposed RALCON model is implemented on multiple testbeds and the

results in this section are presented based on the simulation outcomes on IEEE 33-bus

test feeder. This system has 37 line sections, supplying a total load of 5084 kW and

2547 kVAr. The system is served by the upstream transmission network, as well as by

four Solar Generation (SG) units connected to buses 14, 18, 22, 33 through controllable

inverters with the rated active power of 250, 150, 150, 250 kW, respectively. Four ES

units with the same power ratings of 400 kW are coupled to the same buses. The

single line diagram with the base configuration of the system, including the location

of the circuit breakers, reclosers, protection relays, D-PMUs, and DERs, is shown in

Fig. 4.4, and the detailed system data is provided in [35]. Three relays control the

operation of circuit breakers and reclosers in the lines connecting buses 1−2, 13−14,

and 28 − 29. In addition, three D-PMUs monitor and stream the measurements in

the lines connecting buses 1 − 2, 17 − 18, and 32 − 33. The line connecting buses

1 − 2 is equipped with both D-PMU and protection relay since it corresponds to

the substation. As a consequence, for monitoring purposes we will not use the relay

data in this bus but instead the high-resolution data from D-PMUs, such that the

number of D-PMUs is U = 3 and the number of relays is R = 2 for the test system.
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In total, 5 sensors are fed into the “Data Aggregation” module. The developed

testbed is modeled in Hypersim, interfacing with OPAL-RT real-time Hardware-in-

the-loop (HIL) simulator. The testing environment is capable of executing real-time

simulations with a time-step of up to 50µs. Hardware D-PMUs have been added to

the loop of the simulation with high resolution data capturing. Additionally, relay

operation models are considered and transient events are sequentially scripted and

run respectively. A varying load profile is modeled to be connected to all the buses

and full control models are adopted for all the SG and ES. We consider normal

scenario alongside with different evens including, three-phase-to-ground short-circuit

bolted fault at the end of all lines (L = 32), DER switching on buses {14, 18, 22, 33}

(D = 4), as well as relay cyber-attacks on buses {1, 14, 29} (R = 3). Hence, the total

number of classes for the anomaly location equals to: K l = max{32, 3, 4}+1 = 33. All

the scenarios are simulated considering different load profile. Table 4.1 summarizes

number of samples generated in the simulation process.

4.5.2 Data aggregation performance

The aggregated measurements obtained from relays and D-PMUs with synchro-

nized sampling rates for all the modeled events have been evaluated with respect to

the D-PMU high resolution measurements. As far as the validation of the data aggre-
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Figure 4.4: IEEE 33-bus test feeder

Table 4.1: Opal-RT simulated Dynamic Events

Event Type Location Number of Anomalies

Short-circuit Fault end of all lines 297

FDIA Cyber-attack buses {1, 14, 29} 27

DER Switching buses {14, 18, 22, 33} 36

gation is concerned, two scenarios have been considered in the modified IEEE 33-bus

system:

• Scenario 1: D-PMU measurements at buses {14, 29} with no relay measure-

ments.

• Scenario 2: Relay measurements at buses {14, 29}, being aggregated with

other measurements using the proposed approach for synchronization of the
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sampling rates.

For all the developed usecases, Scenario 1 is considered as the base case and a

statistical comparison is conducted between the measurements in both scenarios.

Mean and standard deviation of the generated error is calculated for voltage and

current phasors and average values are shown in Table.4.2. Mean value of the error

between measurements is tuned to be below 1, reflecting a close estimation of the

actual values. In the case of standard deviation of the error measurements, aggregated

results have been performing close to D-PMU outputs in case of faults, while DER

events and cyber attacks have more deviations.

Table 4.2: Measurement Aggregation Comparative Performance

Performance Faults Cyber attacks DER Events

Avg Mean 0.71 0.94 0.79

Avg Std 9.88 14.93 12.51

Given the nature of the simulated FDIA events, a topology reconfiguration is

inevitable, resulting in more required tuning effort for εthreshold as well as recalculation

of the proximity vector after each attack. Furthermore, DER events are primary

considered as low-scale events in grid-connected mode, as the amount of the switched

active and reactive power by the event are less than 14% of the total system load. This,
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in turn, result in increase of the standard deviation of the aggregated measurements.

4.5.3 LSTM Dataset Generation

In order to evaluate the performance of the proposed MTL-LSTM, we need to

re-organize and label the samples for a fixed time step window. The MTL-LSTM

dataset generation is as follows: We select the samples of the simulation from time

t = 0 to t = τ for each operation mode and label the operation mode and the anomaly

location to generate a sample for the MTL-LSTM dataset. For the second sample

we shift t one time step ahead (i.e., t = 1 to t = τ + 1) and repeat the process. We

repeat the process for all the simulated scenarios. Table 4.3 illustrates the number of

generated samples for each operation mode for τ = 60.

Table 4.3: Number of samples for each operation mode for t = 60

Operation mode Number of samples

Normal Operation 4740

Short circuit Fault 27000

Cyber attack 2160

DER Switching 7200

Total 41100
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4.5.4 Hyper Parameter Selection

The hyper-parameters of MTL-LSTM in the proposed RALCON are selected

through 5-fold cross-validation. The cross-validated layer architecture includes LSTM

layers with 60 samples time window followed by a dropout regularization. Two parallel

FC layers, each with two hidden layers with ReLU activation function and dropout,

and an output layer with softmax activation for operation mode and anomaly location

are followed by the LSTM layers. The weight multiplier for each task is set as one

throughout the experiment.

Initially, the dimensionality of the LSTM layer output, as well as the FC hidden

layers, are set to 100 while the dropout is set to 0 for all the layers. The number

of 64 samples is considered to create a batch. Different optimizers such as Adam,

RMSprop, SGD were tested for various learning rates to find the best activation

function and optimizer. The best results for the initial structure obtained for the

RMSprop optimizer, which has 94.01% validation accuracy for the operation mode

and 96.01% validation accuracy for location classification (accuracy is defined as the

number of true predicted samples divided by the total number of samples).

Using these results, the other hyper-parameters are selected based on a trial

search, where a different number of layers, neurons and dropout probability for sce-

narios are tested to find the best MTL-LSTM structure. According to the results, the
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best number of hidden features for LSTM is 150, the number of neurons for operation

mode FC layer is 200, 100 and the number of neurons for the event location is 150,

100 and the dropout rate is 0.3.

4.5.5 RALCON Testing Result

The proposed MTL-LSTM is trained for 50 epochs using the obtained hyper-

parameter from the previous section, resulting in training and testing accuracy of

98.25%, 98.16% for operation mode task, and 96.98%, 96.68% for event location task,

respectively. The batches of samples are fed into the proposed MTL-LSTM. Selecting

the batch size is a vital decision since it has a substantial impact on the performance

of the model. Therefore, the proposed model is trained for different batch sizes in

order to investigate the impact of batch size on the performance of the proposed

MTL-LSTM.

The accuracy of the prediction for both training and test dataset for different

batch sizes is reported in Table 4.4. As can be seen, the RALCON performs fairly

robust against different batch sizes. However, the model with a batch size of 64

outperforms other scenarios with a prediction accuracy of 98.16% in operation mode

and 96.68% in location classification.

The confusion matrix for the operation mode task for the testing data is de-
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picted in Fig. 4.5, where the diagonal elements represent the percentage of accurate

prediction, while the off-diagonal elements are those that are mislabeled by the clas-

sifier. In Fig. 4.5, the majority of samples are predicted correctly in all of the events

aligning with the high accuracy of the proposed model in anomaly classification. The

misclassification has mostly occurred between intermediate and DER events, showing

that it is slightly more possible to misinterpret the intermediate and the DER event.

There are cases that RALCON classifies an intermediate mode as other operation

modes, where the signatures of the intermediate mode bear similarities to different

modes.

Normal 100.0%
Fault 99.83% 0.17%

Cyber Attack 100.0%
DER Sw. 97.65% 2.35%

Intermediate 0.45% 0.07% 0.13% 2.13% 97. 22%
Normal Fault

100% >97%
>2%

>98%
False Classification

Tr
ue

 C
la

ss

Cyber Attack  DER Sw.      Intermediate 
Predicted Class

True Classification
<2%

Figure 4.5: Confusion matrix for the proposed RALCON system
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Table 4.4: The accuracy of the RALCON for different batch-sizes

Dataset Task
Batch Size

16 32 64 96

Training Accuracy(%)
Operation mode 97.49 97.46 98.25 97.44

Anomaly location 96.63 93.56 96.98 94.42

Test Accuracy(%)
Operation mode 97.56 97.18 98.16 97.44

Anomaly location 95.31 93.50 96.68 95.97

4.5.6 The Impact of Time Steps on RALCON Performance

The number of consecutive samples required for the RALCON, namely time

steps, is another important hyper-parameter to select. In addition to the performance
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of the MTL-LSTM, the time steps gain more importance since it specifies the amount

of measurement that need to be stored on the storage system.

The performance of the proposed RALCON with different operation modes is

investigated here through the following five cases, which indicate different testing

datasets:

• Case I: The accuracy of the testing sample is evaluated for all the operation

modes.

• Case II: Only the normal operation samples are selected and the accuracy of

the samples is calculated.

• Case III: Only the short-circuit fault samples are selected and the accuracy is

calculated.

• Case IV: Only the cyber attack samples are selected and the accuracy is calcu-

lated.

• Case V: The DER switching samples are selected and the accuracy is calculated.

The performance of RALCON operation mode and location classification for

Cases I-V of different test datasets and time steps between 10 and 60 are summarized

in Fig. 4.6. In Fig. 4.6, the accuracy of all cases except with 60 time steps gain

the highest value for both operation mode and anomaly location tasks comparing the
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other time steps illustrating that selecting 60 time steps for the MTL-LSTM leads

to the best performance of the proposed approach. While Cases I-III experience

almost consistent performance for different time steps, Case IV and Case V are highly

dependant on the time step size. In Fig. 4.6, the accuracy of Case IV where only the

cyber attack samples are evaluated drops dramatically where the size of time step

increases from 10 to 50 and then recovers sharply with 60 time steps. In Fig. 4.6a,

the operation mode accuracy of Case V decreases slightly where the size of the time

step increases from 10 to 50 and then increases with 60 time steps. In Fig. 4.6b,

the location accuracy of Case V obtains the lowest value for all time steps comparing

the other cases. Nevertheless, selecting a higher value for the time step provides

better performance. The result shows that selecting 60 time steps for the proposed

model provides the best performance for operation mode and location classification

tasks illustrating that this number of time steps include the required samples for the

proposed MTL-LSTM for classification.

4.5.7 Impact of Input Data on RALCON

The impact of input data on the performance of the proposed RALCON is

investigated here through three different scenarios. Only the measurements from D-

PMUs are used to train the MTL-LSTM and the protection relay data is removed in
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Figure 4.6: The accuracy of the proposed RALCON for different time steps
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a scenario. In another scenario, only the protection relay data is used to train the

MTL-LSTM. The obtained results are compared with the previous section in which

both D-PMU and protection relay data are used to train the proposed network.

The performance of RALCON for different input data for both anomaly clas-

sification and location are summarized in Fig. 4.7. In Fig. 4.7, the RALCON with

all input data outperforms using only D-PMU and relay data in all cases in both

operation mode and anomaly location classification, illustrating the significance of

both data types. The RALCON experiences dramatic accuracy reduction for cases

IV, V where only the relay data is used, illustrating the importance of the D-PUM

data to classify and locate cyber attacks and DER switching. In Case III, obtaining

high accuracy with only protection relays data compared to the D-PMU data depicts

the significance of using protection relay data for fault classification and location

4.6 Summary

This research is a collaborative work with University of Utah under th DOE

SolarSTARTS project and proposes the RALCON system to classify and distinguish

between normal operation and several anomalies, including short-circuit fault, cyber

attack and DER switching and locate the anomaly in a real-time application. More

specifically, the proposed RALCON first integrates the measurement data from D-
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Figure 4.7: The accuracy of the proposed RALCON for different input data

PMU and protection relay devices with different sampling rates using an aggregation

strategy with existing data and then feeds the integrated data to a carefully-tuned

multi-task learning-based LSTM to classify and locate the potential anomaly in the
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distribution system. The proposed model can be integrated and utilized in real-time

monitoring to enhance situational awareness. The simulation results on the IEEE

33-bus test feeder demonstrate that the proposed model classifies the operation mode

of the distribution system and their location with high accuracy of more than 98%

and 96%, respectively. The implementation of RALCON on the IEEE 33-bus test

system illustrates that the normal operation and the cyber-attack samples are cor-

rectly classified. Correspondingly, the high percentage of the other operation modes

are correctly predicted in the test dataset. In addition, experiments conducted for

a different number of samples illustrate the importance of the time window on the

performance of the LSTM, especially on the cyber-attack and DER switching classi-

fication and location. Further, experiments conducted for different sets of input data

illustrate the importance of both D-PMU and protection relay data in the distribution

system to enhance the anomaly classification and location performance. Moreover,

the protection relay data has a remarkable impact on fault classification and loca-

tion, while the D-PMU data plays a critical role in cyber-attack and DER switching

classification and location.
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CHAPTER 5. OUTAGE EVENT IDENTIFICATION AND ROOT

CAUSE ANALYSIS

5.1 Introduction

Power outages have been an inevitable part of power delivery systems. In case of

large scale outages with conflicting information in the distribution network with dis-

tributed energy resources (DER), recognition of the root causes becomes increasingly

complex. Root cause detection is very important for routing the crew and for faster

restoration. Number of studies have been conducted on analysis of the outages, plan-

ning predictive actions, and improving the restoration process for minimizing the load

outages using various statistical and data processing. A comprehensive methodology

with the ability to find root causes in quick and efficient manner is still missing. This

work proposes an Outage Root Cause Analysis (ORCA) tool, with various internal

modules. The proposed ORCA utilizes the available data from diverse set of sensors

(Distribution Phasor Measurement Units, metering and relay) within the distribution

system (DS) to: a) aggregate using data fusion algorithm: an Ensemble Extended

Kalman Filter (EEKF) approach, b) classify events at broader level (fault, breaker



126

operation or cyber-attack with/without load outage) using hierarchical agglomera-

tive clustering in online and offline manners, and c) narrow down the outage root

cause to the possible nuanced identified causes (vegetation, animal, weather, wildfire,

protection, equipment failure, planned) using the available historical data and the

Frequent Pattern-Growth data mining approach. Simulation results demonstrate the

superiority of the proposed approach compared to the other existing key approaches

using two different test systems and multiple outage case scenarios.

Reliable and resilient operation of electric Distribution System (DS) requires

minimizing number of outages and outage duration. However, preventing all the

power delivery interruptions on a daily DS operation seems to be impossible, due

to several unpredictable physical and environmental factors. Unexpected events are

threats to the distribution system operation, causing disconnection of critical loads

as hospitals, and fire departments impacts resiliency. Maintaining the reliability and

the resiliency of the system is challenging, and it is critical to avoid prolonged outage

periods. The root cause of the outage can be variety of possibilities specially with

increasing edge devices and distributed energy resources (DERs), each of which are

accountable for a significant set of power disruptions that consumers encounter. As

long as the cause of the outage is not detected, the restoration process cannot be

implemented in an effective manner. Therefore, Root Cause Analysis (RCA) of the

load outages are critical for electric utilities to decrease the duration of the power
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interruptions.

Over the last several years with the increased accessibility to the recorded

power interruption information, recorded by utility companies, the amounts of re-

search works addressing the issue of outage management and RCA has exponentially

grown[1, 2, 3]. The conventional approach to extract a level of understanding from

the outage data used to be more around statistical strategies and derivation of the

system model, however, these approaches are mostly associated with huge compu-

tational costs, as it requires performing a range of mathematical analysis, therefore

making it time consuming and not appropriate for live applications. Furthermore,

exploiting highly sophisticated methods such as Cox and Logistic Regression are po-

tentially able to bring higher nuanced insight of the outages and the corresponding

possible root causes (RC’s), nevertheless, these methods are associated with certain

computational challenges in addition to remarkable quantities of running times as

well [4, 5, 6, 7, 8, 9].

The proposed Outage Root Cause Analysis (ORCA) in this work, consists of

different modules, aiming towards an efficient usage of the available data in DS, in

streaming and non-streaming manners, and identification of the outage events with

corresponding RC. The primary objective of the non-streaming module of the pro-

posed ORCA is to contribute towards detection of the large outages with conflicting

information, which majorly cannot be identified using conventional approaches. The
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structure of the proposed methodology is organized on a hierarchical manner start-

ing with accumulation of the data, followed by data processing and clustering, and

finally rule-based mining of the outage historical data, resulting in identification of

the detailed RCs. The contributions of the work are summarized in the following key

points:

• Developed algorithms to aggregate data from diverse set of distribution sensors

(e.g. Distribution Phasor Measurement Units (D-PMU), metering and relay)

and data fusion tailored for analyzing large scale outages using the Ensem-

ble Extended Kalman Filter (EEKF) assisted by Hankel Alternative View of

Koopman (KAVOK) approach [10]

• Developed outage event root cause broader level classification (fault, breaker

operation or cyber-attack with/without load outage) using a bottom-top hier-

archical clustering in offline and online manners

• Developed algorithms for extracting frequent patterns in outage data using un-

supervised frequent pattern-growth algorithm for detailed identification of the

outage root cause (vegetation, animal, weather, wildfire, protection, equipment

failure, planned and multiple sub-root causes) assisted by root cause hypothesis

generation and feature selection
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5.2 Related Work

The proposed ORCA addresses the issue of outage management with regard to

detection and root cause analysis. The scope defines under any DS circumstances,

leading to a load outage, both in direct and indirect manners. This work categorizes

the events of interests by the criteria of leading to a load outage, and further inves-

tigates the nuanced possible causes by processing the available historical data, which

is invoked by the results of the outage detection.

The related established works in the literates are primarily divided into load

flow identification, [11, 12], or data mining approaches[13, 14, 15, 16, 17]. Authors of

[18] narrow down the load outage causes to only fault and develops a rapid detection

technique to recognize the outaged line. Ahmed et al. develops a probabilistic ap-

proach, assuming various line outages happening at the same time [19]. The invention

of high resolution measurements, triggers the work on [20, 21, 22, 23, 24, 25, 26] to

find the optimal locations of sensors, which can provide sufficient help on finding the

outages. A conventional outage detection study has been completed in [27], using DS

load flow measurements. A detailed RC-based outage analysis in accomplished by the

authors of [28], aiming towards prediction and prevention of animal-related causes.

In a similar work, [29], concentrates the analysis on vegetation-related root causes,

that is continued by [30] in a data-driven manner. One of the early researches on us-
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ing data mining approaches for outage detection, has completed a nuanced study on

vegetation-related outages ,[31], with focus on tree-induced power interruptions. By

recent advancements in Machine learning (ML) technology, more attention has been

attracted to possible applications in DS outage management. Given the high tempo-

ral and spatial dependencies among the measurements in DS, authors of [32], develop

a cause and effect scheme to identify the outages; however, this work only considers

outages triggered by fault causes and do not include other events. [33] addresses the

issue of outages due to severe weather conditions and develops a ML-based predictive

model to prevent the power disruptions. In a more comprehensive study, an exten-

sive analysis of different ML techniques, including supervised, semi-supervised, and

unsupervised, approaches is done in [34], in which the authors bring domain-based

insights on potential benefits and drawbacks for each of the analyzed techniques with

respect to the application.

While the outage management studies have been conveyed for several years,

still a comprehensive methodology that takes use of the modern data mining and ML

advancements together as a single package is lacking. Fig.5.1 shows the framework

of the proposed ORCA, including the three stages of Data Fusion, Outage Detection

(Online and Offline), and identification of the detailed RC in a single integrated tool

that can be used in utility applications and has the capability of being implemented

over the data streams as well.
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Figure 5.1: Overview of the Proposed ORCA: Outage Root Cause Analysis for Distribution Sys-

tem

5.2.1 Input and Output Data

Considering a distribution system with a set of measurement sensors S =

{1, ..., S}, where S is the number of total sensors including protection relays and

D-PMUs. The aggregation of the measurements for the offline ORCA in the current

research work is based on the fusion of D-PMU data and protection relay data, while

the developed EEKF has the capability of data aggregation from multiple measure-

ment resources. In the offline mode the OMS historian data are to be triggered by

the system operator through a post-outage analysis. The set of sensors S in this

work consists of a subset of protection relays R = {1, ..., R}, and a subset of D-PMUs

U = {1, ..., U}, where R is the number of protection relays and U is the number of
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D-PMUs.

The collected data consists of the measurement data from relays and D-PMUs,

which are continuously being received and stored in the OMS database. The online

ORCA continuously receives and processes the streaming D-PMU data, while the

offline module receives the data from the OMS historical system for a specific time

window. The data employed by offline ORCA includes measurements from both

high-resolution and low-resolution measurement devices, elaborated as follows:

5.2.1.1 D-PMU Measurements

Three-phase voltage and current magnitudes and angles, frequency and rate of

change of the frequency (ROCOF) are transmitted to the control center with the rate

of 120 samples/sec.

5.2.1.2 Protection Relay Data

Three-phase voltage and current magnitudes and frequencies are transmitted to

the control center with the rate of 10 samples/sec.

Let us define Q(t) = [x1(t), ....,xs(t)....,xS(t)] ∈ R14×S as the measurement

matrix for a distribution system, where t denotes the time index; and xs(t) denotes
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the sensor measurement vector defined as the following:

xs(t) = [Is,a(t), Is,b(t), Is,c(t), α
I
s,a(t), α

I
s,b(t), α

I
s,c(t),

Vs,a(t), Vs,b(t), Vs,c(t), α
V
s,a(t), α

V
s,b(t), α

V
s,c(t),

fs(t), rfs(t)]
T (5.1)

where Is,a(t), Is,b(t), Is,c(t), Vs,a(t), Vs,b(t), Vs,c(t) denote the current and voltage

magnitudes; αI
s,b(t), α

I
s,c(t), α

V
s,a(t), α

V
s,b(t), α

V
s,c(t) denote the current and voltage

angles for sensor s ∈ S at time t in three phases a, b, c, respectively; fs(t), rfs(t)

denote the frequency and ROCOF for sensor s at time t, respectively. All the arrays

of vector in xs(t)(∀s ∈ R) considered to be 0 if the relay does not provide measurement

data at time sample t. Correspondingly, any features that are not being measured by

relays, i.e. angle values and ROCOF, considered to be 0.

5.3 Measurement Processing Module

In a real-world daily operation of a DS, an essential consideration of the system

status lies under an appropriate interpretation of the receiving measurements. With-

out a proper synchronization of data, acquired data-based knowledge might end up

with deficiencies, resulting in a flawed decision-making process. Hence, a significant

primary step is to process the incoming data from different measurement resources

with different sampling rates and develop an approach to effectively integrate, clean,
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and synchronize all the incoming information, based on which the proposed ORCA

applications can be studied and applied with higher levels of competency. In the

current research work, the developed data fusion approach to address this issue,

called Ensemble Extended Kalman Filter (EEKF), is schematically shown in Fig.

5.2. When dealing with imperfect raw data, data fusion can be deployed in order

Figure 5.2: The Developed EEKF Data Fusion Approach

to help increase the reliability and credibility of the information.Contrary to clas-

sical probabilistic data fusion techniques, deep learning, which automatically learns

from past experiences without explicitly programming, remarkably renovates fusion

techniques by providing the capability of predicting and computing. In spite of this,

no comprehensive study is available to show the application of the latest advances

in machine learning for data fusion with focus on Distribution System measurement

specifics. Therefore, as a part of the goals of the current research work, we have done

a comprehensive investigation on Machine Learning developments in the area of data

fusion and have tried applying the methods for distribution system data. In this sec-
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tion, we will first go through the architecture of the data fusions, tailored for DS data

and then will introduce the methodology that we have used for this purpose. Such

Probabilistic fusion methodologies as Bayesian fusion, evidential belief reasoning fu-

sion, and rough set-based fusion are examples of conventional data fusion approaches.

With the advancements in ML, an extensive formulation and costly solving process

of the data fusion problem in DS is not needed, and instead, ML allows the computer

system to find out the underlying structure of the data with supplied information

to target the discovering of the connection between the input available data points.

In the case of the DS data with multiple sensors being deployed and data coming

from different resources, the fusion techniques that is used is ”Data-In, Data-Out”

(DAI-DAO), which means the input data are considered to be the sensor raw data,

expecting the output of the fusion to be still with the same features and underlying

relations, while with higher resolutions and less noise levels.

The data fusion technique, proposed as part of the ORCA, is built upon the

conventional Kalman Filter (KF) approach with specific modifications to make it

customized for the DS system measurements. Furthermore, integration of the KF es-

timations, with forced system linearization, with the Extended Kalman Filter (EKF)

approach and finally the fusion results will be outputed. The proposed method is

called Ensemble Extended Kalman Filter (EEKF) and uses a multi-measurement data

fusion strategy to boost the precision as well as the integrity of the data by detection
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and removal of the noise levels, and synchronizing the data resolution from different

sensors. This methodology for the fusion of data, incorporates the information from

numerous sensing units with their corresponding streaming or non-streaming infor-

mation to attain an enhanced precision, which can be further used for such other

operating purposes as outage detection and root cause analysis. Considering the fi-

nal purpose of the fusion, which is to be applied in the control room, the current

work puts more focus on centralized type of data aggregation, while maintaining the

criteria for distributed applications as well. With the centralized approach, all the

raw information obtained from different sensors at various locations of the system

are to be sent out to a single integration unit to be merged; however, in the case

of the decentralized fusion, the filtering system procedure is regionally split between

neighbors that operate the fusion strategy in addition to a master center to aggregate

the regional estimates to generate an enhanced result for the entire system.

5.3.0.1 Original and Extended Kalman Filter

The two steps of prediction and correction are considered, for which a linear

approximation of the system model is calculated to predict the measurements as well

as the uncertainty.

With the DS being highly dynamic with continuous changes in the system sta-

tus and amount of load and generation as well as switches status, data manipulation

with noise and missing values is inevitable. Furthermore, sensor malfunctions lead-



137

ing to conflicting data exists in some cases as well. In a fuzzy environment multi-

measurement fusion using EKF is considering a range of diverse sensing units as

input elements, EKF suits a better fit to address the high non-linearity of the system,

compared to the original KF.

x̂n|n−1 = Lx̂n−1|n−1 + I ′un

Pn|n−1 = LPn−1|n−1L
′ + Cn

(5.2)

Where L is to represent the linear approximation of the system underlying

model, I ′ is considered to be a signature of input, and un is the control input at

time n.x̂n−1|n−1 and Pn−1|n−1 represents the prior prediction of the estimated value

and covariance of estimated states, and Cn is the covariance of the processed noise at

time n. [35]

Previous step is followed by an estimation correction step in which the value of

the prediction is modified based on the incoming observations.

In the proposed architecture, the inputs to the Kalman Filter (KF) and Ex-

tended Kalman Filter (EKF), are direct and indirect measurements from different

DS measurement resources, including D-PMUs, with possibilities of being contami-

nated with noise and bad data, as well as streaming and non-streaming measurements

from smart meters, fault indicators, etc. The detailed explanation of the correction

step and how to obtain A is elaborated in our previous publication [14], and we pre-
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vent repeating those information for better exploitation of information within the

current research work.

In order to tailor the method for systems with high levels of non-linearity, EKF

with an iterative estimation is adopted resulting in removal of the linearity constraint:

xk = f(xk−1, uk) + wk

zk = h(xk) + vk

(5.3)

With wk and vk defined as noise and u is the control vector. Therefore:

ŷk = zk − h(x̂k|k−1)

Sk = HkPk|k−1H
T
k +Rk

Kk = Pk|k−1H
T
k S

−1
K

x̂k|k = x̂k|k−1 +Kkŷk

Pk|k = (I −KkHk)Pk|k−1

(5.4)

Where ŷk and Sk are residual values of measurement and covariance and K, x̂,

and P are the gain, state and covariance estimated values, respectively.

5.3.1 Synchronization and Ensemble Approach

The generated data from EKF and KF needs to be synchronized for xs(t) using

Maximum Likelihood Estimator technique at any time snapshot of t, to synchronize
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the sampling rate and time stamp for both D-PMU and Relay measurements.

5.3.1.1 Maximum Likelihood Estimator (MLE)

The final step to generate the data fusion results in Ensemble Extended Kalman

Filter (EEKF) is to integrate the results of the two data fusion base detectors (i.e.

KF and EKF).

Given a set of X with random variables, X = (X1, X2, ..., XP ), interpreted as the non-

measured sensor features, with a probability distribution of f(X|θ), the likelihood

function and the MLE will get defined as follows:

L(θ|X) = f(X|θ)

θ̂(x) = argmaxL(θ|X)

(5.5)

Estimated values of X = (X1, X2, ..., XP ) are used to fill-up the zero elements of

Q(t) = [x1(t), ....,xs(t)....,xS(t)] ∈ R14×S, hence synchronous final EEKF generated

output data will be achieved. Fig. 5.3 demonstrates the integration and synchroniza-

tion of the input D-PMU and relay measurements as part of the developed EEKF.

5.4 Broader Level Outage Root Cause Classification

In this section, the effort is made towards creating an scheme for detection of the

load outage event in a hierarchical manner, by detection of a broader level event in DS
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Figure 5.3: Integration of input measurements at time snapshot of t

and then sub-categorizing the classified disturbances with the criteria of either or not

a load outage has occurred as a result of that event. The proposed outage detection

scheme is able to classify the Faults, Breaker Operations, and False Data Injection

(FDI) Cyber-attacks in the first step and then further analysis is done throughout the

second step to identify if any of the aforementioned cyber-physical events do result

in a load outage as well. The proposed framework includes Load Outage (LO) as

a separate event within another event and this will result in creation of an Outage

Detection dendrogram scheme as shown in Fig. 5.4.

Figure 5.4: Dendrogram of the Outage Detection and Broader Level Root Cause Classification
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5.4.1 Offline Phase

With the DS measurements being primarily unlabelled and dynamic nature of

the system, resulting in insufficient available ground truth for the occurring distur-

bances, an unsupervised clustering approach is exploited in this work. The proposed

outage detection approach is framing the clustering solution on a bottom-top fash-

ion. Hence, a hierarchical clustering strategy is used based upon an agglomerative

structure. An essential action in any type of clustering method is to calculate the

distances among data points, which will impact the level of resemblance within clus-

ters. Euclidean distances is chosen to be used as a distance metric in this work which

best suits the multi dimentionality nature of the measurements in DS. Assuming K

number of measuring points, agglomerative clustering starts with considering every

measurement as a single cluster and then after calculating the similarity between the

clusters, the two Ci and Cj clusters with the maximum similarity are to be combined

to create a bigger cluster. This cluster merging process continues until the defined

number of clusters are achieved. As far as the goals of this research work is concerned,

an ”Average Linkage” strategy is used to calculate the similarity between clusters.

Given the fact that the load outage might be included as a sub-event category of

any of the broader level events (i.e. Fault, Breaker Operation, and Cyber-attack),

the ”Average Linkage” technique considers all the distances among all pairs of the
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clusters and calculates the average distance to merge. Assuming α1, α2, ..., αn, and

β1, β2, ...βp are observations within clusters Ci and Cj, then the distance between the

two clusters is calculated as follows:

Dij =
1

np

n∑
x=1

p∑
y=1

D(αi, βj)
2 (5.6)

Where D(α, β) calculates the distances between the observation vectors.

5.4.1.1 Determining the Optimal Number of Clusters

The outputs of the EEKF consisting of the aggregated and cleaned measure-

ments are primarily unknown, in terms of the number and type of the events as well

as the labels. Therefore, a significant step in the proposed ORCA scheme is to find

the optimal number of clusters, covering all the events of interest in this work as

well as the LO sub-events. To that purpose, this work defines a window of clusters

with various clustering numbers based on which a Silhouette score is assigned and

the clustering results with the maximum score is chosen to be the final number of

clusters for the entire dataset. The final score is expected to be a value between −1

and 1. The closer the value is to 1 has the implication of a better clustering efficiency.

Efficiency of the two clusters is evaluated using the Silhouette score as follows:

Siscore =
σ − β

max(σ, β)
(5.7)

Where σ is the average distance between all the clusters and β is the average distance

between the points within the same cluster.
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As a rule of a clustering performance evaluation for the purpose of this work,

the further apart the clusters are and the smaller the size of the final clusters become,

a better clustering is conveyed.

5.4.2 Online Phase

This section expands the clustering method that was used for the offline phase

and the goal is to make it customized for streaming input data, and tailor the method-

ologies for any possible change on any of the previously-formed clusters. The incoming

data streams are being grouped in the window sets of 200 samples per window and

the mean value for all the features are being calculated within the window.Assuming

a dmax values as the maximum distance between variables in the current clusters,

the distances for the incoming variable αn is getting calculated from all the existing

variables, α1, α2, ..., αk, in the clusters. With the dn,max < dmax, no changes in the

previous clusters is needed and the new variable is to be added to the least distance

cluster. However, in case of the dn,max > dmax, a new cluster will be created including

αn. In this case, a new calculation of the distances, between clusters and within clus-

ters, needs to be done. Given the fact that this stage is processing the data streams

with minimum amount of storage usage, the calculation of the distances are required

to be done based on the stored data within the window size, as previous data are
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not available. In this step, aim is towards possible re-clustering of the time series

by finding the maximum distances to the new sets of clusters, for which, Hausdorff

distance calculation strategy is used to calculate the variable similarities in a rapid

manner using the following equations:

H(α, β) = max(h(α, β), h(β, α)) (5.8)

Where h is defined as:

h(α, β) = max(min(i− j))

h(β, α) = max(min(j − i))
(5.9)

In which case, i, and j are features of variables α, and β respectively.

5.5 Identification of the Detailed Outage Root Cause

In this section of ORCA, the results of the previous sections are to be used

to find the major category of the outage and classifying it under three categories of

Fault-induced, Breaker Operation-induced, and Cyber-attack-induced outages. For

further analysis of the detailed outage root cause, access to tabular historical data,

consisting different characteristics of the historical recorded outages is required. The

data can contain a variety of features including the outaged phases, season, month,

time of the day, temperature, weather conditions at the time of the outage, and etc.

For this section, these data are being processed using an unsupervised Association
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Rule Mining method. This analysis is programmed to be done in an offline manner

and is appended to the offline phase of the hierarchical clustering that was presented

in the previous section.

5.5.1 Outage Hypothesis Generation and Feature Selection

The broader level classification of the outage Root Cause (RC) can be primarily

narrowed down to a series of further accurate potential root causes. This step is to

create a scenario of possible detailed RC’s for each of the classifications that has

been accomplished in the previous sections, and can make the supply restoration and

outage recovery process to be faster and more feasible. Table. 5.1 presents a list of

hypothetical nuanced outage main causes and sub-causes that needs to be mapped

to any of the previously-detected broader level classifications in the next step:

The methodologies in this research work has the capability of processing a va-

riety of outage features, based on the availability. However, the most effective char-

acteristics of the outages and the proposed features are as follows:

• Outage Phase

• Month

• Time of the Day
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• Activated Devices

• Weather Condition

• Temperature

• OH or UG

• Wildlife Proximity

• Level of Plant Coverage

Table 5.1: Outage Root Cause Hypothesis
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Moreover, all the above features need to be cleaned and converted into categor-

ical meaningful values, based upon which, the data mining method can be applied.

5.5.2 Rule Mining Using Frequent Pattern-Growth (FP-Growth) Un-
supervised Learning

preparation of the outage historical data, with regard to the aforementioned

features mentioned in the previous section, paves the way towards the ORCA unsu-

pervised data mining with the goal of identification of the detailed outage root cause.

This section of the work gets use of an Association Rule Mining technique called

Frequent Pattern-Growth (FP-Growth). This is a tree-based data mining strategy

which, in ORCA, is tailored for the DS outage data with domain-based adjustments.

The proposed solution approach, redefines the problem of the RCA as an itemset

mining problem. While the goal remains on finding the most accurate model predict-

ing the outage root cause, the key step is narrowed down to find the frequent itemsets

in terms of associated rules between the measurements and mapping of the extracted

rules into known root causes. As far as the rule mining aspect of the proposed ORCA

is concerned, several base detectors, that have been vastly developed and used in

literature, are tested and evaluated for potential beneficial results in the scope of DS

Outage RCA.Considering such domain criterias as the level of availability of the data,

computational time, and memory usage, Table. 5.2 brings a comparison between the
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two mostly-used, methodologies in the area of rule mining. The itemset mining tech-

nique that is used in this work consist of two primary actions of first, creation of the

tree framework based on all the prepared items which is called FP-tree, and second,

to apply the FP-growth formula to mine the leaves of the tree and draw out all the

itemsets that are being correlated, defined by a certain threshold. The constructed

tree is created as a result of scanning all the database to make a decision on the items

that has the most frequency of occurrence, which is called Support,Sαi
, assuming α

being an item in the dataset. Furthermore, a secound round of scanning is done over

the all the items, 1, α2, ..., αn, and the tree is being constructed. The higher the value

of Sαi
, node αi will have a higher chance of being combined with other α’s in the

tree, which in turn, has the implication of αi,having a more chance of being in an

itemset with other items. In the context of root cause analysis the interpretation is

if αj is encountered, as a single feature of an outage, most likely αi is also the case,

which will help to add more corresponding features to a same variable, and in this

case outage root cause.

Furthermore, due to the hierarchical underlying nature of the proposed ORCA,

outage events are continuously being scanned in the EEKF output data. Bottom layer

of the hierarchy, consisting of the measurements at multiple locations, are considered

separate events, inherently embedding the capability of multiple outage detection at

the same time in ORCA.
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Table 5.2: FP-Growth vs Apriori

FP-Growth Apriori

Memory Usage Small
Large (stores all the

itemsets)

Candidate

Generation

Does not Exist

(tree structure)

Exist

Speed
Faster for large

datasets

Speed exponentially

decreases with data

size

Patterns Finding
Conditional trees

are being mined

Threshold on the

minimum support

Number of Scans Two
Several (depending

on the data size)
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Algorithm 3: Outage Data Mining Algorithm

1 Input: Outage Cleaned Data with Categorical Features α1,2,...,n ∈ O1,2,...,k;

2 find Sα for α1,2,...,n;

3 for (t = 1 to k;t++):

4 for (j = 1 to k and i = 1 to n ;j ++, i++):

5 find Max Sα1,2,...,n ∈ O1,2,...k;

6 List the Ascending order of α’s ∈ O’s;

7 if αi ∈ any other O:;

8 Sαi
++;

9 if αi < Smin;

10 remove αi ;

11 else ;

12 Ut ← αi;

13 Return U



151

5.6 Testbed and Validation

5.6.1 Test Systems

For the validation of different phases of the proposed ORCA, two separate

testcases have been considered and various scenarios are developed for each of the

testcases. Both cases are simulated in the OPAL-RT hardware-in-the-loop simulator

and actual harware D-PMU is added to the loop of the simulation, for the purpose

of the ”Online Phase” validation.

Hypersim, OPAL-RT interface, sample 24-node feeder test system, is considered

as the first testcase, and is modified by adding DERs and connection of D-PMUs.

The one-line diagram of the system is as shown in Fig. 5.5.

Figure 5.5: 1-line diagram of the testcase1

As the second test system, the IEEE 33-node modified feeder is developed as
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shown in Fig. 5.6.

Figure 5.6: 1-line diagram of the testcase2

Four operating scenarios are considered for the test systems as follows:

• Scenario 1: Fault and Breaker Operation Events

• Scenario 2: Fault and Cyber-attack Events

• Scenario 3: Cyber-attack and Breaker Operation Events

• Scenario 4: Fault, Breaker Operation, and Cyber-attack Events

5.6.2 Evaluation Results

For the validation purposes four terms are defined as— a) True Positives (TP)

are positive instances correctly classified, b) False Positives (FP) are negative in-

stances classified as positive, c) True Negatives (TN) are negative instances correctly
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classified as non-positive, d) False Negatives (FN) are positive instances classified as

negative. Therefore, the final performance of the detection is defined as follows:

RI =
TP + TN

TP + FP + TN + FN
(5.10)

Furthemore, Precision is defined as the ratio of TP to the sum of TP and FP.

A recall is defined as the ratio of TP to the sum of TP and FN. Average precision

metric is used to compare the performance of the proposed EEKF, with respect to the

conventional KF and EKF, as shown in Fig.5.8 . Moreover, various number of clusters

have been tested and the Silhouette score is calculated. The number of clusters that

achieves the highest score, will be selected for the next step. Fig.5.7 shows the scores

for a range of K = [2, 3, 4, 5, 6], and K = 3 is selected. This is for Scenario 1 of the

first test system and a similar procedure is done for all the other scenarios as well.

Figure 5.7: Choosing the Optimal Number of Clusters

To evaluate the detection performance, Rand Index (RI) is used. A total number

of n outage variables present in the set O, O = {o1, o2, ..., on}, including subsets of
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A = {A1, A2, ..., Ap}, and B = {B1, B2, ..., Bs}, with each Ai and Bj being a vector of

o’s. As a comparative metric to evaluate the performance of the proposed detection

to the existing methods, harmonic mean of precision and recall is used as F1score.

The results are summarized in the following Table 5.3.

Figure 5.8: Performance Comparison of the Proposed EEKF with EKF and KF

Table 5.3: Detection Evaluation Results

Scenario 1 of the test system 2 is considered for a comparison purposes and other

methods are used to see how the outage detection performance of ORCA, outweights

the other methods. Table 5.4 shows the comparative results, with respect to F1Score:
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Table 5.4: Comparison of ORCA vs Other Methods for Outage Detection

The next step of the evaluation of ORCA, is to examine the performance of the

data mining section for a identification of the outage Detailed Root Cause (DRC).

In this section we have used artificial data and have converted all the features to

categorical values with labels. The final outage table consists of the values for each of

the converted features, based on which, the mining method is implemented. Table 5.5

shows the results of the data mining on the artificial data, as well as the associated

feature labels. In this table, the metric Confidence is defined as the ratio of the total

number of a certain DRC associating with specified features over the total number

of outages by DRC. In this table features are mentioned with their associated labels,

for instance DA means Device Activated, and other features are chosen in a way to

be self explanatory.
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Table 5.5: ORCA: Mining of the Nuanced Outage Root Cause

5.7 Summary

In this work, set of algorithms have been developed as a sub-modules for ORCA:

Outage Root Cause Analysis in DER-rich Electric Distribution System. Variety of

outages in Electric Distribution Systems (EDS) are analyzed including large-scale

load interruptions for the root causes. ORCA is developed using data-driven and

physics-based approaches, containing various modules on data fusion, outage detec-

tion, broader level root cause classification, and identification of the nuanced outage

root cause. Ensemble Extended Kalman Filter (EEKF) is used to aggregate and

fuse data from diverse set of distribution sensors. Hierarchical clustering is used

for broader level classification of root causes and an unsupervised frequent pattern-

growth algorithm is developed assisted by hypothesis generation and feature selection

for detailed outage root cause identification. The detection stage is tailored for offline
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and online applications and has the capability of detecting outages using streaming

D-PMU data. The developed algorithm is validated using test systems in OPAL-

RT real-time simulator, as well as synthetic but realistic data for evaluation of the

different developed modules. Results demonstrate relative advantage of the devel-

oped approach compared to state-of-the-art approaches. Future work will include

validation with utility data and implementation.
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CHAPTER 6. CONCLUSIONS, CONTRIBUTIONS, AND

FUTURE WORK

Considering the massive data availability from sensor deployment within the

distribution system, computational techniques need to extract information from dis-

tribution phasor measurement units and smart meters. Number of ML techniques

have been discussed in literature for abnormal operation detection, anomaly classifi-

cation, and anomaly localization. This research provides an overview on commonly-

used machine learning techniques with a comparative performance analysis. It can

be seen from the literature that supervised learning has been more frequently used,

specifically ANN for event detection and classification. Also, K-Nearest Neighbor has

seemed to be more attractive for the localization purposes. More detailed analysis

are needed for the feature selection and classifications for superior performance.

Contributions: The following points summarize the contributions of each de-

veloped modules in this work:

• Enhancement of the real-time situational awareness in distribution system through

measurement data analytics and integration with applications

• Development of multiple novel architectures for multi-sensor measurement data-
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in-data-out fusion and sensor resolution enhancement with introducing EEKF

• Data synchronization and denoising with various statistical and clustering-based

techniques

• Detection of bad data followed by mitigation, with an enhanced State Estima-

tion using Weighted Least Square (WLS) method tailored for system with high

noise and low observability

• Cyber-physical DS Event analysis for automated real-time detection of events

with broader level and detailed level of classification with high accuracy

• Incorporation of D-PMU spatio temporal dependencies through hybrid Ensem-

ble method with location identification

• A novel ORCA scheme to comprehensively identify, locate, and root cause of

load outages within the distribution network

• a novel rule-mining technique based on the frequent pattern growth, tailored

for outage historical log data with capability of industrial implementation

Research Challenges: Open challenges spans a wide range of domain-nature

complexities as well as technique-based limitations. Apart from the large-scale nature

of the power system streaming measurements, the highly dynamic behavior of the

system makes the anomaly classification and localization a very challenging task.
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Furthermore, high requirement on huge labeled dataset of event libraries, need for

online training and forecasting, non-stationary operation of the system with presence

of concept drift, and massive spatio-temporal dependency of measurements are among

the domain challenges which are to be well-recognized and mitigated to come up with

an efficient solution approach. Below points summarizes the existing challenges either

in the solution approach or inherit-in technical power system challenges:

• huge amount of required training dataset, while limited available labeled domain

data

• non-stationary operation causing the event signatures to be dynamically chang-

ing over the course of a daily operation

• interlinked nature of system components and high system measurements corre-

lation

• non-linear system behavior with high computational complexity and real-time

requirements

• requirement of human intervention for tuning purposes based on the system

operating conditions

• setting threshold in ML technique for detection while considering concept drift

in anomaly definition over dynamic system operation
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Future Research Needs: Anomaly Detection, Classification, and Localiza-

tion (AD-C-L) as well as root cause analysis is still in fancy and offers challenges and

research opportunities for ML/ Data Science researchers. Although there is a wide

range of distribution system anomalies that are likely to happen in a daily opera-

tion of the system, resulting in different system dynamic behavior, in the context of

the anomaly analysis, application in the literature are mainly limited to fault events

and power quality events, and the deficiency on analysis of the large-scale uPMU

data streams in an online time frame, still remains to be an open area of research

work. The future researches in the area of distribution system anomaly detection,

classification, and localization includes, but not gets limited to, the following points:

• library inclusion of real-field huge supervised labeled datasets

• integration of domain knowledge with ML approach in terms of a physics-based

analysis

• automation of the anomaly detection, classification, and localization with a

single-step approach for time-sensitive applications

• performance evaluation using online real-field measurements or Hardware-in-

the-loop with actual uPMUs to account for the noises and phasor estimator

specifics

• differentiating anomalies caused by cyber event, physical events, human cause
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events, sensor data and asset deterioration is a real challenge, specially given

data coming from biggest man-made dynamic machine infrastructure ever.
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