
UNIVERSITY OF OSLO
Department of Informatics

TTSS’11—5th Intl.
Workshop on
Harnessing
Theories for Tool
Support in
Software

Research Report No.
409

Marcel Kyas, Sun
Meng, and Volker
Stolz

ISBN 82-7368-371-0
ISSN 0806-30360806

September 2011

TTSS’11—5th International Workshop on Harnessing

Theories for Tool Support in Software

Marcel Kyas, Sun Meng, and Volker Stolz

This volume contains the proceedings of the 5th International Workshop on Harnessing The-
ories for Tool Support in Software (TTSS), held on 13. September 2011 at the University of
Oslo, Norway. The aim of the workshop is to bring together practitioners and researchers from
academia, industry and government to present and discuss ideas about:

• How to deal with the complexity of software projects by multi-view modeling and separation
of concerns about the design of functionality, interaction, concurrency, scheduling, and non-
functional requirements, and

• How to ensure correctness and dependability of software by integrating formal methods
and tools for modeling, design, verification and validation into design and development
processes and environments.

• Case studies and experience reports about harnessing static analysis tools such as model
checking, theorem proving, testing, as well as runtime monitoring.

Topics of interest include, but are not limited to, the following areas:

• Models, calculi, and tool support for component-based and object-oriented software;

• Mathematical frameworks, methods and tools for model-driven development;

• Models, calculi, and tool support for integrating different scheduling, interaction and con-
currency models in highly adaptable systems

The workshop was initiated under the auspices of Prof. Jifeng He (ECNU, China) and Dr.
Zhiming Liu (UNU-IIST, Macao). Additionally, Patrick Cousot (ENS, France), Mathai Joseph
(TATA, India), Bertrand Meyer (ETH Zurich, Switzerland), and Jim Woodcock (U. York, UK)
kindly agreed to lend their advice.

For this edition of the workshop, just like last year, eight papers out of eleven submissions
were selected for presentation by the Program Committee. Two of those submissions are in
the special session on Overcoming Challenges of Security and Dependability organised by Marcel
Kyas, Volker Roth, and Katinka Wolter from FU Berlin, Germany (see separate preface). We
gratefully acknowledge the contribution of the members of the Program Committee and of their
delegate reviewers, listed below. In addition to the regular submission, we are happy to present
an invited talk by Dr. Ralf Huuck from NICTA, Australia.

The Program Chairs also thank Violet Pun and the organizers of the 8th International Sym-
posium on Formal Aspects of Component Software (FACS 2011), Peter Ølveczky, and Lucian
Bentea for their help in preparing the workshop.

1

3

Program Committee

Farhad Arbab CWI and Leiden University, The Netherlands
Christel Baier Technical University of Dresden, Germany
Luis Barbosa Universidade do Minho, Portugal
Manfred Broy TU München, Germany
Michael Butler University of Southampton, UK
Dave Clarke K.U.Leuven, Belgium
Erik De Vink Technische Universiteit Eindhoven, The Netherlands
Ralf Huuck NICTA, Australia
Einar Broch Johnsen University of Oslo, Norway
Joost-Pieter Katoen RWTH Aachen, Germany
Peter Gorm Larsen Aarhus School of Engineering, Denmark
Martin Leucker Uni Lübeck, Germany
Xuandong Li Nanjing University, China
Laurent Mounier VERIMAG, France
Jun Pang University of Luxembourg, Luxembourg
Shengchao Qin School of Computing, Teesside University, UK
Anders Ravn Aalborg University, Denmark
Abhik Roychoudhury National University of Singapore
Wuwei Shen Western Michigan University, USA
Volker Stolz (co-chair) United Nations University (UNU-IIST), Macao S.A.R.

& University of Oslo, Norway
Meng Sun (co-chair) Peking University, China
Jaco Van De Pol University of Twente, The Netherlands
Jim Woodcock University of York, UK
Jian Zhang Institute of Software, Chinese Academy of Sciences, China

Volker Stolz is supported by the ARV grant of the Macao Science and Technology Development Fund.

Additional Reviewers

Joao F. Ferreira, Mario Gleirscher, Daniel Thoma, and Hongli Yang.

4

Workshop on Overcoming Challenges of Security and

Dependability

Marcel Kyas, Volker Roth, and Katinka Wolter
Department of Computer Science, Freie Universität Berlin, Germany
{marcel.kyas,volker.roth,katinka.wolter}@fu-berlin.de

The following two contributions were submitted to the Workshop on Overcoming Challenges of
Security and Dependability (WOCSD), to be held in August 2011. The aim of the workshop is to bring
together practitioners and researchers from academia, industry and government to present and discuss
about possible synergy between the research areas of formal methods, quantitative methods and security.
The major questions of interest were:

• How to decrease software complexity and specification complexity to increase resilience and se-
curity?

• How to ensure correctness, safety, dependability and security of computer systems?

• How to certify software for todays heterogeneous computer platforms?

We have received three submissions of which we accepted two for presentation. But two presentations do
not make a workshop. We have thus decided to cancel WOCSD as an individual workshop and organise
a session at TTSS instead. The organising committee of WOCSD is grateful to the organisers of TTSS
for providing us with the opportunity of our own session. We also thank to our presenters who were
flexible and willing to present their work one month later.

Marcel Kyas
Volker Roth

Katinka Wolter
Berlin, September 1, 2011

Program Committee

• Allesandro Aldini, University of Bologna, Italy

• Marcel Kyas, Freie Universität Berlin, Germany

• Mohammad Reza Mousavi, Technical University of Eindhoven, The Netherlands

• Dusko Pavlovic, Royal Holloway University of London, UK

• Volker Roth, Freie Universität Berlin, Germany

• Nigel Thomas, New Castle University, UK

• Katinka Wolter, Freie Universität Berlin, Germany

• Stephen Wolthusen, Royal Holloway University of London, UK
and Gjøvik University College, Norway

5

Table of Contents

Real World Model Checking of Millions of Lines of C/C++ Code 7
Ralf Huuck .

Towards Certifiable Software for Medical Devices: The Pacemaker Case Study
Revisited 8
Michaela Huhn and Sara Bessling .

Admissible adversaries in PRISM for probabilistic security analysis 15
Alain-Freddy Kiraga and John Mullins .

Monadic Scripting in F# for Computer Games 35
Giuseppe Maggiore, Michele Bugliesi and Renzo Orsini

Tool Supported Analysis of Web Services Protocols 50
Abinoam P. Marques Jr., Anders Ravn, Jiri Srba and Saleem Vighio

A Formal Approach to Data Validation Constraints in MDE 65
Alessandro Rossini, Adrian Rutle, Khalid Mughal, Yngve Lamo and Uwe Wolter . . .

Towards rigorous analysis of Open Source Software 77
Luis Barbosa, Pedro Henriques and Alejandro Sanchez

Stochastic Reo: a Case Study 90
Young-Joo Moon, Farhad Arbab, Alexandra Silva, Chretien Verhoef and Andries Stam

A Calculus for a New Component Model in Highly Distributed Environments 106
Antoine Beugnard and Ali Hassan .

6

Real World Model Checking of
Millions of Lines of C/C++ Code

Ralf Huuck
NICTA, Australia

ralf.huuck@nicta.com.au

Abstract Model checking has a long stigmatized history of being slow and not scalable to large real
life systems. In this talk we report on our experiences of using model checking at the core of our
C/C++ source code analysis tool Goanna. We present our underlying abstractions, refinement models
and auxiliary techniques to obtain a solution that is fast, scalable, and sufficiently precise. Moreover, we
report on our experience from routinely uncovering security vulnerabilities and mission critical bugs in
real life systems, and the challenges in moving our Goanna software from an academic project to widely
used commercial product.

Bio Dr. Ralf Huuck is a senior researcher with NICTA, Australia’s national center of excellence for
computer science research, a senior lecturer with the Univeristy of New South Wales, Sydney, and the
CTO and co-Founder of Red Lizard Software, an enterprise delivering software source code analysis
solutions. Ralf obtained his PhD in formal methods from the University of Kiel, Germany, and was
holding visiting appointments in France, Hong Kong, Australia and Japan.

7

c� M. Huhn & S. Bessling
This work is licensed under the
Creative Commons Attribution License.

Towards Certifiable Software for Medical Devices: The
Pacemaker Case Study Revisited

Michaela Huhn Sara Bessling
Department of Informatics, Clausthal University of Technology

38678 Clausthal-Zellerfeld, Germany
email{Michaela.Huhn|Sara.Bessling}@tu-clausthal.de

Design and verification of pacemaker software - as an instance of a highly dependable medical device
- has been investigated in numerous works tackling various safety requirements with different formal
methods. However, in order to certify a product, a conclusive argument has to be provided that
seamless and concerted safety activities starting from the hazard analysis towards the verification of
the derived safety requirements yield a dependable product.

We present an approach towards the development of certifiable medical device software using
SCADE Suite for the pacemaker case study. For safety analysis we use Deductive Cause Consequence

Analysis (DCCA) as an enhanced, systematic technique to identify potential hazards and verify the
derived the safety requirements. Formal verification is split into a part done in the SCADE Suite and
the real-time behavior which is proven using UPPAAL.

1 Introduction

Within the prospering markets for health care, the area of medical devices is thriving as well. Numerous
new application areas, e.g. for living assistance or home-based medical support, have been developed
based on the emerging possibilities of software-controlled devices. Dependability was an issue for med-
ical devices always, but only 2006 a safety standard, i.e. IEC 62304 [7] that regulates the software life
cycles activities for medical devices, was agreed on. IEC 62304 names quality goals as well as core pro-
cesses and development activities that are well-suited for dependable software. But in difference to other
domains like IEC 61508 [2], the standard’s recommendations are not underpinned by concrete techniques
that are considered appropriate for a certain software integrity level. Thus a commonly agreed or at least
scientifically justified line of methods for safety development of medical devices is still missing.

We demonstrate a model-based, formally founded approach to the development of safety-critical
software on the case of a cardiac pacemaker. Our approach, as we present it here, provides coordinated
hazard analysis, model-based design with automated code generation and formal verification by model
checking. We use DCCA [9] as a systematic and formal method to identify hazards and derive safety
requirements. These are modeled as observer nodes and reused for verification later on. We decided
for SCADE Suite by Esterel Technologies [4] as development framework, since SCADE Suite has been
formally qualified as an adequate tool for developing software for safety-critical systems compliant to
safety standards (see [4]). Tool qualification is a key argument in a safety case that has to be provided
for certification, because in the safety case appropriateness of methods has to be proven.

In a first attempt the design was done fully in SCADE, but efficiency arguments from both, design
and verification, turned the decision towards an external handling of timers and events. Consequently,
we have to verify the real-time behavior separately from the control logic. For this we extend the time
abstraction we proposed in [3] for a case study on a railway level crossing modeled in SCADE as well.

8

Towards Certifiable Software for Medical Devices

The contribution of this paper is twofold: (1) The combined verification of the safety requirements
using SCADE Design Verifier and UPPAAL is of interest in itself. (2) We give a showcase for a con-
certed line of methods for safety development on which a safety argument can be built as backbone for
certification.

2 Background

2.1 The SCADE Tool Suite

The acronym SCADE stands for Safety-Critical Application Development Environment. The main ob-
jectives of the SCADE Suite are (1) to support systematic, model-based development of correct software
based on formal methods and (2) to cover the whole development process [4]. The language Scade

underlying the tool is data-flow oriented. Its formal semantics is based on a synchronous model of
computation, i.e. cyclic execution of the model.

The SCADE Suite is an integrated development environment that covers many development activi-
ties of a typical process for safety-critical software: modeling, formal verification using the SAT-based
SCADE Design Verifier [1], certified automatic code generation producing readable and traceable C-
code, requirements tracing down to model elements and code, simulation and testing on the code level
and coverage metrics for the test cases with the Model Test Coverage module.

2.2 Deductive Cause Consequence Analysis

A major goal in safety analysis is to determine how faults modes at the component level causally relate
to system hazards. Among the various formally founded techniques proposed for this task we have
selected Deductive Cause Consequence Analysis (DCCA) by Ortmeier et al. [9, 5], because DCCA
does not only formalize techniques like FTA (Fault Tree Analysis) and an FMEA (Failure Mode and

Effect Analysis) [6], which are well-established and recommended by the standards. In addition, the
identified fault modes and hazards can be reused in safety assurance to formally verify that sufficient
measures have been taken to prevent the identified hazards. In DCCA, components faults are mod-
eled as simple fault automata that extend the normal behavior of the component. Hazards are specified

Figure 1: Sinus rhythm of a hu-
man heart (sane adult), source:
Wikipedia

as observer nodes that read signals from the control logic and eval-
uate them according to the negation of the hazard predicate. Then
the verification process can be performed in order to iteratively de-
termine the so-called minimal critical sets, i.e. subsets of faults that
may lead to the hazard - in case that they occur in a certain order
(for details and formalization see [5, 3]).

2.3 Related Work

Since PACEMAKER Formal Methods Challenge was set up by
publishing Boston Scientific’s Specification of an industrially pro-
duced pacemaker [10], pacemakers were investigated intensively
within the formal methods community. For brevity, we only refer
to two of them: Jee, Lee, and Sokolsky worked on assurance cases
of the pacemaker software [8]. The authors focused on the basic
VVI mode of a pacemaker, and employed UPPAAL for both, design and verification. Moreover, they

9

M. Huhn & S. Bessling

implemented their own code generation from UPPAAL to C-code to generate an executable from their
UPPAAL model. In [11] the authors used timed CSP to verify some of the timing constraints for different
pacemaker modes. However, only the specification level is considered in this work.

3 The Pacemaker

3.1 The Human Heart

From a bio-mechanical point of view, the human heart is the pump of the circulatory system. It consists of
two atria and two ventricles. The contraction of the heart is initiated at the so-called sinoatrial node (SA

node), an area of self-excitable cells within the right atrium known as P wave. The electrical impulses
spread through the atria and ventricles with a dedicated timing characteristics (see the electrocardiogram

(EKG) and shown in Figure 1), thereby causing the contraction of the chambers.
Normally, the SA node generates electrical impulses with a frequency of 60-100 beats per minute. A

too low or sporadically missing pulse generation is called bradycardia. In order to support the natural
pulse generation notably for bradycardia, artificial cardiac pacemakers are implanted nowadays. Artifi-
cial pacemakers have to respect the timing characteristics of the sinus rhythms as it is critical. First and
foremost, pulses must not be generated within the refractory intervals after depolarization, as this may
cause life-threatening cardiac fibrillation.

3.2 Informal Specification of a Pacemaker

In this paper we mainly describe a modern, atrium-controlled DDD pacemaker [10], although we ana-
lyzed a whole family of pacemakers. Beginning with the least complex A00/V00 and D00 pacemakers
which stimulate the heart periodically with a fixed time interval, over AAI/VVI pacemakers which sense
the chamber’s signals and stimulate one of the chamber only when a signal is missing, till the most
complex pacemaker DDD monitoring and stimulating both chambers.

DDD means dual pacing, dual sensing, and dual response mode, see the NBG code for details of
the configuration. A DDD pacemaker senses both right chambers and can also stimulate them both, but
only if no natural pulses are detected. The DDD pacemaker basically uses two timers to monitor time
intervals: The base interval is the period between two subsequent P waves, natural or artificial, of the
atrium. The AV interval is the time between a stimulation of the atrium and the consecutive ventricle
pulse, the QRS complex. If the base interval expires without sensing a natural P wave in the atrium,
an artificial impulse is generated in the atrium. Then the ventricle is monitored and only in case of no
natural pace within the AV interval, an artificial ventricle pulse is generated. Both timers are reset in
case an appropriate natural impulse is sensed. In addition, the base interval is reset if a ventricular extra-
systole occurs. Then the base interval is restarted without starting the AV interval timer again. In case
the SA node generates a natural pace, the AV interval is adapted (so-called AV hysteresis) in the next
base period. For now, we consider the base interval and thereby the pace frequency to be fixed.

4 The Safety Process

As prescribed in the safety standards [7, 2], the system development is complemented by a safety analysis
that identifies hazards and traces them back to potential failures. From the identified hazards system
safety requirements are derived to eliminate failures or mitigate their effects. In consistency with the

10

Towards Certifiable Software for Medical Devices

architectural decomposition of the system into components, the safety requirements are split into sub-
requirements that are assigned to individual components. The safety analysis and the decomposition of
components and safety requirements are iterated until basic components are derived that can be realized
and for which evidence can be provided that they fulfill their safety requirements.

4.1 Safety Analysis

Figure 2: Principal architecture of a cardiac pacemaker

The principal architecture of a pacemaker is
depicted in Figure 2. In the safety analysis
we concentrate on those hazards and the in-
duced safety requirements that refer to the
functional level of the software control of
the pacemaker whereas the mechanics, the
electrics, and the deployment are analyzed
no further. We performed an FTA and an FMEA [6] and formalized it according to the DCCA approach
[5]. The resulting safety requirements for the functional level of the software control are as follows:

Timed Interrupt: As a pacemaker is limited by its battery and its replacement requires an operation,
energy consumption of all components has to be kept as low as possible. Refractory periods: Within the
refractory periods after the atrium (ARP) and ventricle pace (VRP), detection and impulse generation
have to pause in that chamber in order to guarantee that neither an artificial pulse is sensed nor distur-
bances after depolarization are misinterpreted. Time intervals BI, AVI + AVH: The timing constraints
as the base interval, the AV interval with the AV hysteresis and their sequencing are respected within
specified tolerances. Pacing: An artificial atrium pace is triggered if the base interval expires without
sensing a natural P wave. An artificial ventricle impulse is generated if the AV timer has been started and
expires without sensing a natural pace there. If detection is active it suspends the impulse generation for
that chamber and vice versa.

4.2 Safety Design

When using SCADE suite, the C-code generated from the SCADE design model is embedded into a
wrapper that is usually periodically executed. Thereby it is ensured that the model reacts synchronously.
Within each execution cycle all input signals are read and all output signals are written.

Figure 3: Event han-
dling

For the pacemaker, the control logic should be executed only if a control state
or one of the output signals is about to change. In those cycles in which both
refractory periods overlap and the software control only waits for the ARP timer
to expire, model execution may pause in order to save energy. Thus in order
to meet the efficiency request Timed interrupt we decided to handle timers and
events (from the detection unit) outside the SCADE model and call the inner part
of the control modeled in SCADE only to react on timeouts and event occurrences.
As a consequence the verification task has to be decomposed: Since the real-time
behavior know is realized by both, the SCADE model and the wrapper, it can be
proven correct only partially on the SCADE level. The overall reactivity has to
be verified separately. For this task we will employ UPPAAL [12], a model checker based on timed
automata that is capable to deal with real-time constraints. The safety requirements referring to the inner
control logic are proven using SCADE Design Verifier. The inner control is modeled as a state machine
on the top level (see Figure 4).

11

M. Huhn & S. Bessling

In the first glance, the alternative, namely doing the control fully within SCADE seems to have the
advantage of a simple and seamless design and verification methodology. However, a pure SCADE
solution suffers not only from inefficient execution but verifying the timing behavior with SCADE Design
Verifier is seriously affected by complexity problems: In a pure SCADE model, the system clock is
referred as an external signal that has to be compared with the timeout value (integer) in each execution
cycle. From the design perspective this corresponds to polling. When the state space is explored for
verification, all intermediate states are traversed which corresponds to successively increasing the timer
cycle by cycle. SCADE Design Verifier provides SAT-based model checking performed on the transition
graph representing the formal semantics of the design model. The SAT-Solver is enhanced by a number
of built-in abstraction techniques, in particular integer linear arithmetics [1]. We had expected that to be
an effective tool, in particular for handling the comparisons with timing constants. However, it was not
able to cope with this way modeling the timers.

We have shown in [3] that time abstraction is very promising in order to cope with this kind of state
explosion caused by a real-time clock.

4.3 Safety Assurance

4.3.1 Verifying the Timing Constraints

Figure 4: DDD pacemaker: Inner control logic

The timer and event handling can be modeled in
UPPAAL in a straightforward manner: Each rel-
evant interval is monitored by a clock, events like
the sensing or stimulating a pace are modeled as
communication and the statuses of these timers
are represented in variables. The possible statuses
of a timer are inactive, init, active, and timeout,
and they can be considered as the input signals for
the control logic modeled in SCADE. The sim-
plest way to complete the UPPAAL model is to
construct a timed automata for the inner control
logic as well by using the model transformation
we proposed in [3]. The real-time constraints are
expressed using the UPPAAL query language.
At this level the real-time constraints are speci-
fied stating that within certain real-valued inter-
vals certain timer statuses are set, or certain events
must or must not occur. E.g. whenever a ventricle
pace has been sensed or stimulated the timer mon-
itoring the ventricle refractory period is set active
for a time constant VRP.

4.3.2 Verifying the Control Logic

We verified several safety requirements referring to the control logic that we derived in the safety analy-
sis. During the verification process the SCADE Design Verifier tries to find an input configuration which
changes the output of the proof obligation from true to false. If the output stays true for each possible in-
put configuration, the output is considered as valid. First pausing of the detection and impulse generation

12

Towards Certifiable Software for Medical Devices

Natural
pace

Natural
pace
atrium

Refractory
period

No VES Hysteresis One pace

VVI x (0 s) x (0 s) x (3 s)
AAI x (0 s) x (0 s) x (3 s)
DDD x (1 s) x (0 s) x (0 s) x (1 s) x (0 s) x (1 s)

Table 1: The correlation of constraints and pacemaker modes, the runtime is shown in brackets

during refractory periods is verified. For this we argue that it shall always be true that while a timer for
a refractory period is running, neither the sensor is active nor a stimulation is triggered. We verified the
pacing requirement for each chamber separately. Moreover, the pacing requirement is divided into two
parts: The first sub-requirement concerns the case of a natural pace, the second one the artificial stimu-
lation. For the first part we argue similar to the previous constraint that it is not possible that the statuses
of the timers allow pace sensing and a pace is sensed as well as a stimulation takes place. We call the
constraints (natural pace BI) for the base interval and natural pace AVI for the AV interval. Furthermore
we have a constraint called refractory period in which we verify that during the refractory periods no
sensing or stimulation takes place. For the second part we argue that if no natural pace is sensed during
the corresponding base or AV interval, exactly one artificial pace takes place. This constraint is called one

pace. To verify this requirement we created an operator in which the natural and artificial paces during
one interval are counted. For the timing constraint AVH we verified that after sensing a natural ventricle
pace the next AV interval will be prolonged. This is done by saving the ventricle pace and waiting for
the beginning of the AV interval. At that point we control the length of the AV interval. Furthermore
we verified the correct handling of a ventricular extrasystole (VES). This constraint is called VES. In
the corresponding proof operator we determined that it shall not be possible that a VES and an atrial
pace (natural or artificial) take place together in one base interval. For this we memorize in an operator
the paces that occurred within an base interval. As result we received for all six proof obligations to be
valid. The runtimes for each verification are shown in table 1. Due to the particular characteristics of
the different pacemaker variants, not every constraint is required and consequently guaranteed for every
pacemaker. In table 1 we oppose the constraints for the AAI/VVI pacemaker with the ones for the DDD
pacemaker.

If we fully integrated the timers into the pacemaker logic, the verification process did not terminate
within a reasonable time of two days. We set this boundary out of our experience with the SCADE
Design Verifier in combination with the model complexity. If we wait longer for results we experienced
no results at all because of memory overflow or buffer overflow. This negative result also justifies the
architectural design as depicted in Figure 3.

5 Conclusion

We sketched how to systematically develop a safety-critical embedded system using formal methods. We
employed the SCADE suite for modeling and code generation for the inner control logic, as SCADE is
qualified to the most relevant safety standards like IEC 61508 and RCTA DO 178-B. Timers and events
were handled in an outer control loop. This decomposition was motivated by an efficiency requirement.
For verification purposes it can be understood as a time abstraction which turned out to be a useful
also for proving the real-time behavior correct. The approach presented here extends the ideas of time

13

M. Huhn & S. Bessling

abstraction we presented in [3]. In that work, pure SCADE models were embedded into a standard cyclic
wrapper and the time abstraction was performed on the SCADE model. Here timers and simple event
handling are transferred to the wrapper on which is an abstraction to UPPAAL is applied.

In the full version of this paper, the safety constraints referring to real-time behavior as well as to the
control logic will be detailed. Moreover, an alternative proof strategy based on assume-guarantee style
will be explored.

References
[1] Parosh Aziz Abdulla, Johann Deneux, Gunnar Stålmarck, Herman Ågren & Ove Åkerlund (2004): Designing

Safe, Reliable Systems Using Scade. In Tiziana Margaria & Bernhard Steffen, editors: ISoLA, LNCS 4313,
Springer, pp. 115–129. Available at http://dx.doi.org/10.1007/11925040_8.

[2] Intern. Electrotechnical Commission (2010): IEC 61508-3:2010: Functional safety of electri-

cal/electronic/programmable electronic safety-related systems Part 3: Software requirements.
[3] Ilays Daskaya, Michaela Huhn & Stefan Milius (2011): Formal Safety Analysis in Industrial Practice. In

Gwenn Salaün & Bernhard Schätz, editors: 16th Intern. Workshop on Formal Methods for Industrial Critical
Systems (FMICS), LNCS 6959, Springer, pp. 68–84.

[4] Esterel Technologies (2009): SCADE Suite KCG 6.1: Safety Case Report of KCG 6.1.2.
[5] Matthias Güdemann, Frank Ortmeier & Wolfgang Reif (2007): Using deductive cause-consequence analy-

sis (DCCA) with SCADE. In: Proc. 26th Intern. Conference on Computer Safety, Reliability and Security
(SAFECOMP), Lecture Notes Comput. Sci. 4680, Springer, pp. 465–478.

[6] International Electrotechnical Commission (2006): IEC 60812: Analysis Techniques for System Reliability.
[7] International Electrotechnical Commission (2006): IEC62304: Medical device software - Software life-cycle

processes.
[8] Eunkyoung Jee, Insup Lee & Oleg Sokolsky (2010): Assurance Cases in Model-Driven Development of the

Pacemaker Software. In Tiziana Margaria & Bernhard Steffen, editors: 4th Intern. Symposium On Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA), LNCS 6416, Springer, pp. 343–356.

[9] Frank Ortmeier, Wolfgang Reif & Gerhard Schellhorn (2006): Deductive Cause Consequence Analysis

(DCCA). In: Proc. IFAC World Congress, Elsevier, Amsterdam.
[10] Boston Scientific (2007): PACEMAKER System Specification.
[11] Luu A. Tuan, Man C. Zheng & Quan T. Tho (2010): Modeling and Verification of Safety Critical Systems: A

Case Study on Pacemaker. In: 4th Conf. on Secure Software Integration and Reliability Improvement, IEEE,
pp. 23–32.

[12] (2009): UPPAAL 4.0: Small Tutorial. http://www.it.uu.se/research/group/darts/uppaal/
small_tutorial.pdf. November 16, 2009.

14

TTSS 2011 Preliminary Version

Admissible adversaries in PRISM
for probabilistic security analysis

Alain-Freddy Kiraga and John Mullins 1,2

Dept. of Comp. & Soft. Eng.

École Polytechnique de Montréal

Campus of the Université de Montréal

Montreal (Quebec), Canada

Abstract

In order to resolve the non-determinism when dealing with systems exhibiting both
probabilistic and non-deterministic behavior, a device called scheduler has been in-
troduced. In the context of security analysis, systems are assumed to run in a hostile
environment also it is quite natural to consider the scheduler to be under control
of the adversary. However if not constrained, schedulers gives the adversary an
unreasonably strong power as they can reveal secret information even for obviously
secure systems. In this paper, we propose an automata theoretic model for limiting
this power by defining two levels of scheduling. A cooperative scheduler resolves
probabilistically (internal) non-determinism over observationally equivalent actions
specified my mean of an equivalence relation on protocol’s action set while a adver-
sarial or admissible scheduler resolves the (external) remaining non-determinism.
We then present efficient implementation techniques for embedding the model into
the PRISM model checker by using the symbolic approach based on MTBDDs.

Key words: Security analysis; Markov Decision Processes.

1 Introduction

Formalisms that combine both probabilistic and nondeterministic behavior are
very convenient for modeling probabilistic security systems like security pro-
tocols and particularly those for anonymity and fair exchange as they usually
use randomization to meet their security requirements. Many such formalisms
have been proposed in automata theory [18] and in process algebra [1]. See
also [19] for comparative overviews.

1 Author partially supported by the NSERC of Canada under discovery grant No.13321-
2011.
2 Email: john.mullins@polymtl.ca

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

15

A.-F. Kiraga and J. Mullins

While it’s customary to use schedulers for resolving non-determinism in
probabilistic systems, scheduling process must be carefully designed in or-
der to reflect as accurately as possible the intruder’s capabilities to control
the communication network without controlling the internal reactions of the
system.

In this paper we propose an automata theoretic approach to the problem
of hiding the outcome of internal random choices and investigate whether this
method can be implemented and used in a probabilistic model checker like
PRISM. Currently, PRISM considers all schedulers when verifying a specifica-
tion without the possibility to restrict to a subset of them. In order to realize
that, the first issue is to formulate the method in the context of Markov De-
cision Processes, the formalism used for modeling in PRISM, and verify the
soundness of the method. The next issue is to implement efficiently the method
by using the symbolic implementation techniques used in PRISM and based
on manipulations of MTBDD encodings. Both issues are carefully addressed
and proposed solutions are detailed.
Related works. Many works have proposed different methods for calibrating
schedulers in order to restrict power of adversaries during the analysis of secu-
rity systems. The most closely related to ours are [5,10,16,6,12,11]. In [5], the
approach is presented in the context of probabilistic I/O automata and is also
based on a bi-level scheduling process where the set of actions is partitioned
in tasks. The order of execution of tasks is static and performed by a so-called
task scheduler. The remaining non-determinism within a task is resolved by
a second scheduler modeling the standard deterministic adversarial scheduler.
This approach is somewhat orthogonal to ours as in our approach we impose
the static resolution of non-determinism within a task by an arbitrary prob-
abilistic internal scheduler while the task scheduling is deterministic. In [10],
a class of probabilistic schedulers, called admissible schedulers, is defined in
the context of probabilistic automata. An admissible scheduler assigns, in
the current state, a probability distribution on the possible non-deterministic
next transitions. Unlike our scheduler, it is history-dependent since it defines
equiprobable paths and it is not stochastic, and might therefore halt execution
at any time. Roughly speaking, an admissible scheduler schedules in the same
way any trace equivalent paths leading to bisimilar states. In [16], the authors
use an extension of the CCS process algebra with finite replication and prob-
abilistic polynomial-time terms (functions) denoting cryptographic primitives
to better take into account the analysis of cryptographic protocols. In order
to constrain schedulers, priority is always given to internal actions over exter-
nal communications and non-determinism between internal actions is resolved
uniformly. By contrast, our approach allows any probabilistic resolution of in-
ternal non-determinism. Moreover this approach avoids the problem of extra
power but can also weaken the scheduler. In [12], it is proposed a variant of
[16] intended to reflect in a more accurate way the intruder’s real power. In the
process algebraic approach proposed in [6], the control on the scheduler can be

2

16

A.-F. Kiraga and J. Mullins

specified by terms and hence, may be seen as dual to our semantic approach.
It is provided a way to specify the deterministic choice that should be invis-
ible to the adversary rather then a restriction to the class of unconstrained
schedulers. Note that we achieve the same goal for more general schedulers
with our observation classes of actions. In [11], it is considered several classes
of distributed schedulers. Distributed schedulers were proposed in order to
avoid considering unrealistic power of unconstrained schedulers. In this set-
ting, roughly speaking, there is a local scheduler for each component hence,
the resolution of non-determinism is distributed among the different compo-
nents. It is proved that randomization adds no extra power to distributed
schedulers that is, the subclass of schedulers that are both history-based and
Dirac are sufficient to reach supremum probabilities of any measurable set.
However non-state-based schedulers are required to reach supremum proba-
bilities in distributed systems. It is also proved that for the class of strongly
distributed schedulers that constrains the non-determinism concerning the or-
der in which components execute, as it is the case in [5,12] and in this work,
randomized and non-state-based are required to reach supremum probabilities.
Recall that for the class of unconstrained schedulers, as the one considered in
PRISM, schedulers that are both state-based and Dirac are sufficient to reach
these suprema.

Contributions of the paper. The contributions of the paper are the follow-
ing: A Markov decision process based security model embedding the model of
the system together with the model of a system-dependent calibrated prob-
abilistic adversary which generalizes [5,12] to arbitrary probabilistic internal
schedulers; An efficient implementation of the security model using the sym-
bolic approach into the PRISM model checker which, to our knowledge, en-
hances PRISM as the first automated tool for analyzing probabilistic security
systems;

Content of the paper. In next section we briefly recall basic notions re-
lated to discrete-time Markov chains and Markov decision processes and their
encoding using binary decision diagrams and multi-terminal binary decision
diagrams. In Section 3, we define in the context of the Markov decision pro-
cesses, a security model taking in account together a description of the system
and what should be considered as observation equivalent to any adversary.
The model is then proved to be sound in this context. The generalization
of a bi-level scheduling process first proposed in [5,12] for uniform internal
schedulers, leads to the definition of a class of admissible system’s adversaries.
In Section 4, symbolic implementation techniques for embedding the security
model into the model checker PRISM are presented, namely, the MTBDD-
based algorithms requested for constructing and manipulating the security
MDP from the general MDP model currently processed by PRISM. Section 5
concludes the paper.

3

17

A.-F. Kiraga and J. Mullins

2 Preliminaries

In this section we recall basic definitions for discrete-time Markov chain,
Markov decision process [2] and their representation using symbolic approaches
[4,9].

2.1 Discrete-time Markov chains and Markov decision processes

Probability measure. Given a set X, a σ-field over X is a set F ⊆ 2X

that includes X and closed under complement and countable union. We call
measurable space the pair (X,F) where X is a set and F is a σ-field over X. A
measurable space (X,F) is discrete if F= 2X . A discrete probability measure,
called also probability distribution, over a discrete measurable space (X, 2X) is
a function µ : 2X → [0, 1] such that µ(X) = 1 and µ(∪iXi) =

�
i
µ(Xi) where

{Xi} is a countable family of pairwise disjoint subsets of X. We denote by
Disc(X) the set of all discrete probability distributions over the set X. We
denote by

�
n

i=1 piµi the convex sum of measures µi. It can easily be shown
that the convex sum of measures is a probability measure. The Dirac measure

on µi, denoted δ(µi), is the convex sum
�

n

i=1 piµi with pj = 0 if j �= i. The
uniform measure on µ1, µ2, . . . , µn, denoted U({µi : 1 ≤ i ≤ n}) is the convex
sum

�
n

i=1 piµi with pi = 1
n

for 1 ≤ i ≤ n.

Probabilistic models. We briefly summarize here the models we use for an-
alyzing probabilistic protocols. Let AP be a fixed finite set of atomic proposi-
tions and Act a fixed finite set of actions defined on the system. A discrete-time

Markov chain (DTMC for short) is a tuple M = (S, sinit, ∆, L, Act) where S

is a finite set of states, sinit a initial state, ∆ : S → Act×Disc(S) a transition
function and L : S → 2AP a function which assigns to each state s ∈ S the set
L(s) of atomic propositions valid in state s. DTMC is the simplest model sup-
porting only probabilistic behavior. The transition function ∆ can be more
conveniently represented as a pair of functions from S to Act and Disc(S)
respectively. Also, by abuse of notation we will refer to ∆ as the distribution
component of this pair while ∆Act will refer to the action component.

A run in M is a sequence of transitions written as: ρ = s0
a1
−→ s1

a2
−→

s2 · · ·
an
−→ sn. For such a run, fst(ρ) (resp. lst(ρ)) denotes s0 (resp. sn).

We will also write ρ · ρ� for the run obtained by concatenating runs ρ and
ρ� whenever lst(ρ) = fst(ρ�). The set of finite runs starting in state s is
denoted by Runs(M) and Run(M) denotes the set of finite runs starting
from an initial state. The trace of a run ρ = s0

a1
−→ s1 · · ·

an
−→ sn is the word

tr(ρ) = a1 · · · an ∈ Act∗. The set of traces of runs in Run(M) is noted Tr(M).
Markov decision process (MDP for short) extends DTMC model by al-

lowing both probabilistic and non-deterministic behavior. A MDP is a tu-
ple C = (S, sinit, ∆, L, Act) where AP , Act, S, sinit and L are defined as in
DTMC and a transition function ∆ : S × Act → Disc(S). MDP allows
non-deterministic choice between distinct actions enabled in a state, each one

4

18

A.-F. Kiraga and J. Mullins

associated with a probability distribution. Runs and traces in C, Runs(C),
Run(C)and Tr(C) are defined like in DTMC.

A scheduler selects probabilistically a transition among the ones available
in C and it can base its decision on the history of runs. Given an MDP
C = (S, sinit, ∆, L, Act), a scheduler on C is a function ξ : Run(C) → Disc(Act)
such that ξ(ρ)(a) ≥ 0 implies that ∆(lst(ρ), a) is defined. We denote by Cξ,
the DTMC generated by ξ scheduling C and by Sched(C), the set of schedulers
of C.

2.2 Decision diagrams

Binary decision diagrams (BDDs) [4] are data structures representing boolean
functions f : Bn → B that are defined on ordered boolean variables x1 <

x2 < . . . < xn. A BDD representation for f is an acyclic rooted directed
graph resulting from a folding of the binary decision tree obtained by using
repeatedly the Shannon expansion of f for variable xi, f = (¬xi∧ f|xi=0)∨ (xi∧

f|xi=1), for i = 1 to n, such that f|xi=c is the function f where all instances xi

are evaluated to value c. More formally, given a set V ar = {x1, x2, . . . , xn}

of boolean variables and an ordering relation < over V ar, a BDD is a tuple
(V, VI, VT, var, val, v0) where V is a set of vertices, VI ⊆ V is the set of non-
terminal vertices (each vertex v ∈ VI has an argument index(v) representing
the index of the variable and two children Then(v), Else(v) ∈ V), VT ⊆ V is
the set of terminal vertices, var : VI → V ar (with var(v) < var(w) for each
non-terminal vertex v and its non-terminal child w), val : VT → B and v0 is
the root.

Multi-terminal binary decision diagrams (MTBDDs) [9] are the extension
of BDDs by allowing terminals to be labeled with numeric values from an
arbitrary set D (e.g. [0, 1]). More formally, given V ar = {x1, x2, . . . , xn} a set
of boolean variables and D a domain of numeric values, MTBDDs are repre-
sentations of the functions f : Bn → D. Reduction rules and variables ordering
defined on BDDs are also used. Specifically, MTBDDs are very convenient for
representing sparse matrices in a more compact manner and can be used for
representing efficiently transition functions of very large systems.

We summarize here some useful operations for our algorithms. These op-
erations are implemented in the CUDD package [20] or in PRISM [15]. For the
following, we assume (MT)BDDs M, M1 and M2 defined on boolean variables
x1, x2, . . . , xn.

• Const(c) where c ∈ R, creates a new MTBDD with the constant value c.

• Abstract(op, (x1, x2, . . . , xm), M) where op is a binary operator over the reals
or the boolean, returns the (MT)BDD resulting of abstracting x1, x2, . . . , xm

from M by applying op over all possible values taken by x1, x2, . . . , xm.

• Apply(op, M1, M2) where op is a binary operator over the reals or the boole-
an, returns the (MT)BDD representing the function f1 op f2 such that f1 and
f2 are respectively encoded by M1 and M2.

5

19

A.-F. Kiraga and J. Mullins

• GreaterThan(M, c) where c ∈ R, returns the BDD where terminals greater
than c in the MTBDD M are set to 1 and remaining terminals to 0.

• MatrixMultiply(M1, M2, varsZ) where varsZ is the set of summation boo-
lean variables, returns the MTBDD representing the matrix product of ma-
trices encoded by M1 and M2.

• SetMatrixElement(M, rV ars, cV ars, line, column, c) where M is encoded
on row variables set rV ars and column variables set cV ars, inserts the value
c ∈ R in M at the position indexed by integer values line and column.

• GetMatrixElement(M, rV ars, cV ars, line, column) where M is encoded on
row variables set rV ars and column variables set cV ars, returns the value
from the position indexed by integer values line and column.

We refer to [17] for detailed Information concerning the methods used in
PRISM tool [15] to represent probabilistic systems in memory but by sake
of completeness, we summarize in Appendix the very basics restricted to the
notions useful for the presentation of the algorithms in Sect. 4.

3 Admissible adversaries

In this section, we define what is a class of adversaries admissible by a given
probabilistic internal scheduler by means of a bi-level scheduling process which
extends to Markov Decision Processes the scheduling process proposed in [12]
in the framework of process algebra extended with cryptographic primitives.
In order to do this, we first define a variant of a MDP called security MDP. It
is a MDP together with an (static) observation relation over actions specifying
the observable of MDP’s actions from an adversary point of view.

Definition 3.1 A security MDP is a pair S = (C,O) where C is an MDP and
O, an equivalence relation over Act called observation relation. An equivalence
class o of O is called an O-observable. The set of observables is denoted ObsO.

We now define a (static) internal scheduler for a security MDP as a sched-
uler resolving internal non-determinism on the base of any probabilistic static
policy depending only on the subsets of observationally equivalent actions
available at anytime.

Definition 3.2 Let S = (C,O) be a security MDP. A (static) internal sched-

uler for S is a function ξint : TaskO → Disc(Act) where TaskO =
�

o∈ObsO
2o

is called the set of tasks for ξint. We denote by Schedint(S) the set of all
internal schedulers for S.

We are now ready to define the MDP as observed by an adversary after
the enforcement of the obfuscation policy by the internal scheduler.

Definition 3.3 Given a security MDP S = (C,O) with MDP C defined
as (S, sinit, ∆, L, Act), the ξint-observable MDP is the MDP Cξint defined as

6

20

A.-F. Kiraga and J. Mullins

(S, sinit, ∆ξint , L,ObsO) where

∆ξint(s, o) =
�

α∈o∩Actin(s)

ξint(o ∩ Actin(s))(α) ·∆(s, α)

with Actin(s) = {α ∈ Act : ∆(s, α) is defined}.

The following Proposition states that Cξint is well-defined, that is, ∆ξint(s, o)
is in Disc(S) and hence, is obtained from C by resolving all internal non-
determinism inside each class of observables available in a given state by fol-
lowing the strategy of ξint.

Proposition 3.4 Cξint is well-defined.

Proof This follows from the definition of ξint and also from the fact that
Disc(S) is closed under the convex sum and the observation that o∩Actin(s)
specifies exactly the set of transitions of C available in s and observed as o.✷

It follows from Prop. 3.4 that the only remaining non-determinism is ex-
ternal:

Corollary 3.5 For every state s ∈ S and observable o ∈ O, at most one

action α ∈ o is enabled in s.

We then call scheduler admissible for ξint, any scheduler resolving the re-
maining (external) non-determinism in the system as observed by the adver-
sary.

Definition 3.6 Let a security MDP S = (C,O) and an internal scheduler for
S. An admissible scheduler of S for ξint is a scheduler of Cξint .

Hence, we get that, given an admissible scheduler ξadm of S for ξint, Cξintξadm

is generated by a scheduler for C, in the usual sense. That is, ξadm is a special
case of a scheduler for the underlying MDP C.

Proposition 3.7 Let S = (C,O) be a security MDP. For each internal sched-

uler ξint ∈ Schedint(S) and admissible scheduler ξadm ∈ Sched(Cξint) of S for

ξint there is a scheduler ξ ∈ Sched(C) such that Cξintξadm
is Cξ.

Proof The function ξ : Run(C) → D(Act) defined as

ξ(ρ)(α) = ξint([α]O ∩ Act(lst(ρ))(α) · ξadm(ρ)([α]O)

is this scheduler. Indeed, suppose that ξ(ρ)(α) > 0 then we have that
ξint([α]O ∩ Act(lst(ρ))(α) > 0 and also that ξadm(ρ)([α]O) > 0 hence, [α]O ∈

Act(lst(ρ)) since ξadm is a scheduler and α ∈ Act(lst(ρ)). ✷

The design of the internal scheduler is highly dependent on the modeled
security system and, as it is shown in the following example, probabilistic
internal schedulers are needed to achieve the minimum information leakage.

7

21

A.-F. Kiraga and J. Mullins

Consider the security MDP S given in Fig. 1 where O = {o1, o2} with
o1 = {a, b} and o2 = {c}modeling a system sending a’s or b’s until a successfull
transmision. A success occurs in 75% of the cases for a and 25% of the cases for
b. At each step, the probability of success for a is three times the probability
of success for b. It is easily seen that any internal scheduler of S has the form
ξp(o1) = pµa + (1− p)µb for 0 ≤ p ≤ 1 where µa and µb denote ∆(sinit, a) and
∆(sinit, b) respectively, for the transition function ∆ depicted in Fig. 1. Also
(internally) scheduling a with a probability three times less than b makes the
event a is transmitted successfully given o2 is observed equiprobable with the
event b is transmitted successfully given o2 is observed. Hence, ξ 1

4
is required

in order to preserve the secrets a and b face to an observer able to infer from
statistics on a and b.

a, 3
4

a, 1
4

b, 3
4

b, 1
4

cc

Figure 1. Security MDP

This discussion can be summarized in the following proposition:

Proposition 3.8 There exist a security MDP S = (C,O) with C defined as

(S, sinit, ∆, L, Act) and a probabilistic scheduler ξrnd ∈ Shedint(S) such that for

any deterministic scheduler ξ ∈ Shedint(S), Cξ leaks more information than

Cξrnd
.

However, as we will illustrate in Sec B, the case with ξint defined as ξint(t) =
U(t) for any t ∈ TaskO is pretty well suited for the large class of security
MDP modeling security systems whose the only secret actions are outcomes of
random experiences (e.g. rolling a dice, generating a nonce or tossing a coin) it
needs to perform in order to achieve its security goal and then proceeds on the
base of the outcome 3 . An adversary trying to control such a system in order
to get the secret information which should appear undistinguishable to the
environment, is required to never be able to perform better then a random
guess among all the possible outcomes. Also, this leads to an admissible
scheduler that gives the adversary full control of its own actions but does not
allow to control internal actions of the security system. Moreover, the defense

3 Note that the security MDP depicted in Fig. 1 does not model such a system and that
in this case, scheduling a and b uniformly would not preserve the secrecy of a and b.

8

22

A.-F. Kiraga and J. Mullins

strategy required here is static as any occurrence of any outcome anytime along
the system execution should be obfuscated. In the next section we implement
this scheduler.

4 Algorithms and implementation

This section describes the implementation of the method for constructing the
security MDP in the model checker PRISM. Fig.2 represents the PRISM archi-
tecture extended with the module performing the construction of our security
model from the general MDP model as described in Section 3. Both the mod-
ule and its source code can be downloaded from [14]. Basically, the model

System

description

Properties

specification

Modules

parser

PCTL/ CSL

parsers

Model Checking

engines

Model

MTBDDs generation

Security MDP

construction process

Encapsulation in appropriate

object representing the

model

Equivalence classes

description

Results

(states / probabilities)

Figure 2. Security MDP construction process in PRISM architecture

checker PRISM parses the system description provided by users and gener-
ates different MTBDDs representing the system (transition function, rewards,
reachable states, etc.). These data structures are then encapsulated into the
object model depending on the type of the model (probabilistic for DTMC
model, non-deterministic for MDP model and stochastic for CTMC model
which is outside the scope of this paper). Then, by mean of one out of three
engines (MTBDD engine, Sparse engine or Hybrid engine), model checking
can be performed on the object model and the PCTL [13] or CSL property
specification (depending on the type of the model). Results are finally re-
turned as set of states or probabilities.

We have chosen to integrate the building of the ξint-observable MDP after
the MTBDDs generation process has taken place and before their encapsu-
lation in the appropriate model for two reasons. First, we want to integrate
it as an option we can enable or disable from user interfaces. If enabled, the
method constructs new MTBDDs representing the ξint-observable MDP ac-

9

23

A.-F. Kiraga and J. Mullins

cording to the set ObsO of observables described in a file loaded by PRISM
tool. The second reason is to preserve the same object model structure as
used originally in PRISM in order to re-use the built-in PRISM algorithms for
model checking the resulting ξint-observable MDP model.

4.1 Merging directives algorithm

In this section we describe the algorithm used to construct an MTBDD en-
coding information identifying for each state s and observable o the set of
distributions {∆(s, a) : a ∈ o} corresponding to the actions O-observable by o

in s. This data structure is very useful to the algorithm shown in Section 4.2
which performs the combination in order to compute the relative probability
distributions on observables in the ξint-observable MDP model. Fig. 3 shows
the algorithm for constructing this data structure.

The algorithm takes as in input the MTBDD Mf∆ encoding the distribu-
tion component function f∆ of the MDP C, the vector (Mfα)

α∈Act
of BDDs

representing the family {fα : Bn ×Bnd → B}α∈Act and the set ObsO generated
by the observational relation O.

GenerateMerg(Mf∆,(Mfα)α∈Act,ObsO)

Begin

result=Const(0)
bddStates=Abstact(∨,colVars,Abstract(∨,GreaterThan(Mf∆,0),ndetVars));
bddClasses=Abstract(∨,rowVars,Abstract(∨,GreaterThan(Mf∆,0),colVars));
For i= 0 . . nbStates−1
state=Traverse(i,bddStates)

For j= 0 . . nbClasses−1
class=Traverse(j,bddClasses)

actLabels(j)=SearchAction((Mfα)α∈Act,state,class);

endFor;

tmp=MergingArr(actLabels,ObsO)

For j= 0 . . nbClasses−1
result=SetMatrixElement(result,rVars,cVars,i,j,tmp(j));

endFor;

endFor;

return result;

End.

Figure 3. Algorithm encoding merging directives in the MTBDD

After creating and initializing the MTBDD result, the algorithm com-
putes the BDD representing all reachable states and the BDD representing the
transition classes (i.e locations for actions enabled in each state) by perform-
ing abstraction of row and column boolean variables on the BDD’s version
of Mf∆ . The BDD encoding the reachable states is then traversed to com-
pute the values of PRISM variables representing the state. The Traverse

10

24

A.-F. Kiraga and J. Mullins

procedure, at each iteration, traverses the BDD from the root to a non-
zero terminal and returns a list of values representing the state. For each
state, the BDD encoding the transition classes is then traversed to com-
pute the integer value representing each transition class. The PRISM values
representing the state are combined with each value of the transition class
to compute the corresponding action label from (Mfα)

α∈Act
. The computed

string is stored in the vector actLabels. While some transition classes in
the states are dummy as the maximum of locations could be not attained
in some states, we need to deal with such cases. In our algorithm, we use
a special one-character string ��∗�� for dummy transition classes in the vec-
tor actLabels. When all action labels for transition classes in the state have
been assigned, the function MergingArr allocates to each transition class
of the MDP C the number indicating the transition class of the correspond-
ing observable in the ξint-observable MDP (i.e. the transition classes labeled
with actions having the same O-observable are assigned to the same num-
ber). For special cases of dummy transition classes we use the integer value
�� − 1��. After assigning such a number to each transition class, one next deals
with the encoding of the vector obtained from MergingArr function in the
MTBDD result. The list of row boolean variables rV ars and column boolean
variables cV ars are computed from the number of states nbStates and the
maximum number of transition classes nbClasses in the state of the MDP
model (i.e. rV ars = {x�1, x

�

2, . . . , x
�

n
} and cV ars = {y�1, y

�

2, . . . , y
�

m
} such that

n = �log2(nbStates)� and m = �log2(nbClasses)�). After performing this
encoding process for each reachable state, the computation of probability dis-
tributions on observables can take place.

4.2 Probability distributions on observables in the security MDP

Internal non-determinism in the security MDP needs to be resolved before
evaluating probabilistic properties of the model according to admissible sched-
ulers. The algorithm presented in Fig. 4 performs this uniformly and returns
the MTBDD Mf∆ξint

encoding the distribution component function f∆ξint
of

the ξint-observable MDP model Cξint .
The algorithm takes as in input the MTBDD Mf∆ encoding the distribution

component function f∆ of the MDP C, boolean variables used in Mf∆ (row,
column and non-deterministic) and the MTBDD Mdir encoding the merging
directives as explained in Section 4.1. First, the algorithm decomposes Mf∆

along non-deterministic boolean variables ndetV ars = {z1, z2, . . . , znd}. The
aim of the procedure DecomposeRec is to build a vector of MTBDDs, each
rooted by a node v such that var(v) = x1. Intuitively each cell of the vector
arr stores distributions corresponding to a given transition class in the MDP
model.

As illustrated in Fig. 5, the procedure DecomposeRec splits the MTBDD
M in two sub-MTBDDs M1 and M2, each relating to a transition class. The

11

25

A.-F. Kiraga and J. Mullins

CombinationTrans(Mf∆,rowVars,colVars,ndetVars,Mdir)

Begin

DecomposeRec(Mf∆,ndetVars,arr);

For i= 0 . . nbNewCl−1 newArr(i)=Const(0);
bddStates=Abstact(∨,colVars,Abstract(∨,GreaterThan(Mf∆,0),ndetVars));
For i= 0 . . nbStates−1
state=Traverse(i,bddStates)

selecL=SetMatrixTabElement(Const(0),rowVars,varsZ,state,state,1);
For j= 0 . . nbClasses−1
val=GetMatrixElement(Mdir,rVars,cVars,i,j);

if(val�= −1)
tmp=MatrixMultiply(selecL,arr(j),varsZ);

newArr(val)=Apply(+,tmp,newArr(val));

endif;

endFor;

endFor;

For j= 0 . . nbNewCl−1
tmp=Abstract(+,newArr(j),tmp);

newArr(j)=Apply(÷,newArr(j),tmp);

endFor;

result=Const(0);
For j= 0 . . nbNewCl−1
tmp=GenerateMTBDDClass(j,newNdetVars);

tmp=Apply(×,tmp,newArr(i));

result=Apply(+,result,tmp);

endFor;

return result;

End.

Figure 4. Algorithm performing the computation of the MTBDD Mf∆ξint
.

integer value encoding each transition class corresponds to the evaluation of
the path from the root labeled with z1 to the node x1 of the sub-MTBDD. For
readability, we have omitted the paths leading to zero-terminals on the Fig. 5.

Before computing the distributions on observables, one needs to create a
vector whose components are distributions corresponding to new transition
classes of Cξint . The length of the vector newArr is specified as the maximum
number nbNewCl of new transition classes possible in the ξint-observable MDP
model. For each state, we need to extract and encapsulate in the same transi-
tion class all distributions associated with actions from the sameO-observable.
The extraction is done by the MatrixMutliply operation and the encapsula-
tion by the Apply Plus operation. The SetMatrixTabElement operation used
to encode the MTBDD selecL built for extracting distributions differs slightly
from the SetMatrixElement operation presented in Section 2.2 as it uses as
row and column indices two vectors of integers. After grouping distributions of

12

26

A.-F. Kiraga and J. Mullins

x1

y1 y1

x2 x2 x2

y2 y2y2 y2

13
4

1
3

1
4

x1

y1

x2 x2

y2y2 y2

13
4

1
3

z1

x1 x1

y1 y1

x2 x2 x2

y2 y2y2 y2

13
4

1
3

1
4

=⇒

(a) M (c) M2(b) M1

Figure 5. Decomposition of the MTBDD M into MTBDD M1 and M2 by transition
class

equivalent transitions in the classes numbered by the values extracted from the
merging directives MTBDD, these distributions are normalized by distributing
1
k

to k probability distributions gathered in the same transition class. At this
stage, all distributions on the observables in the ξint-observable MDP model
had been correctly computed and stored by transition class in the vector of
MTBDDs newArray. It remains to build a new MTBDD Mf∆ξint

encoding
the new distribution component function f∆ξint

of the ξint-observable MDP
model Cξint by assembling MTBDDs stored in vector newArray on new non-
deterministic boolean variables newNdetV ars = {z1, z2, . . . , znd�} such that
nd� = �log2(nbNewCl)�. The assembling process generates for each transition
class the MTBDD representing its encoding number and then performs Ap-

ply Times and Apply Plus operations to encode the newly computed distribu-
tions in the MTBDD result representing the distribution component function
f∆ξint

of the ξint-observable MDP.
The remaining non-determinism in the ξint-observable MDP model is re-

solved during the security analysis by admissible schedulers which are consid-
ered under control of the adversary and which are nothing more than standard
schedulers of the ξint-observable MDP model. In the next section, we present
and compare results obtained by applying our method to the dining cryp-
tographers protocol. Finally, we have validated the extended implementation
of the model checker by analyzing the Dining Cryptographers Protocol for
anonymity. This case study can be found in Appendix B.

5 Conclusion and Future Work

In this paper, we have introduced a method for calibrating the power of sched-
ulers by defining two levels of schedulers in the context of MDPs . We have
also proved the soundness of the method in this context. The method has been
implemented in PRISM using the symbolic techniques based on MTBDD, en-
hancing so PRISM with the possibility to restrict to a subclass of probabilistic
schedulers, namely the class of admissible schedulers.

13

27

A.-F. Kiraga and J. Mullins

Future work. As future work, we plan to investigate the ability of the
class of admissible schedulers to reach the minimum probability of information
leakage and the separation in the expressive power of internal scheduler classes
obtained by defining more general observation schemes then the static ones
used here. In order to improve performances of the implementation and avoid
the multiple combinations performed during the translation of modules in
the MTBDDs inherent to our semantic approach, we plan to investigate a
syntactic approach in order to define a subclass of admissible schedulers.

Acknowledgements. We wish to thank David Parker for helping and guiding
our first steps into the architecture of the model checker PRISM.

References

[1] Andova, S., “Probabilistic process algebra,” Ph.D. thesis, Technische
Universiteit Eindhoven (2002).

[2] Baier, C., “On the Algorithmic Verification of Probabilistic Systems,”
Habilitation, Universität Mannheim (1998).

[3] Bhargava, M. and C. Palamidessi, Probabilistic anonymity, in: M. Abadi and
L. de Alfaro, editors, CONCUR, Lecture Notes in Computer Science 3653
(2005), pp. 171–185.

[4] Bryant, R. E., Graph-based algorithms for boolean function manipulation, IEEE
Trans. Comput. 35 (1986), pp. 677–691.
URL http://portal.acm.org/citation.cfm?id=6432.6433

[5] Canetti, R. and al., Task-structured probabilistic i/o automata, in: In

Proceedings of the 8th International Workshop on Discrete Event Systems

(WODES), 2006, pp. 207–214.

[6] Chatzikokolakis, K. and C. Palamidessi, Making random choices invisible to the

scheduler, Inf. Comput. 208 (2010), pp. 694–715.
URL http://dx.doi.org/10.1016/j.ic.2009.06.006

[7] Chaum, D., The dining cryptographers problem: unconditional sender and

recipient untraceability, J. Cryptol. 1 (1988), pp. 65–75.
URL http://portal.acm.org/citation.cfm?id=54235.54239

[8] Dolev, D. and A. C.-C. Yao, On the security of public key protocols, IEEE
Transactions on Information Theory 29 (1983), pp. 198–207.

[9] Fujita, M. and al., Multi-terminal binary decision diagrams: An efficient data

structure for matrix representation, Formal Methods in System Design 10
(1997), pp. 149–169.

[10] Garcia, F. D., P. van Rossum and A. Sokolova, Probabilistic anonymity and

admissible schedulers, CoRR abs/0706.1019 (2007).

14

28

A.-F. Kiraga and J. Mullins

[11] Giro, S. and P. R. D’Argenio, On the expressive power of schedulers in

distributed probabilistic systems, Electr. Notes Theor. Comput. Sci. 253 (2009),
pp. 45–71.

[12] Hamadou, S. and J. Mullins, Calibrating the power of schedulers for probabilistic

polynomial-time calculus, Journal of Computer Security 18 (2010), pp. 265–316.

[13] Hansson, H. and B. Jonsson, A logic for reasoning about time and reliability,
Formal Asp. Comput. 6 (1994), pp. 512–535.

[14] Kiraga, A.-F., A prism security module (2010).
URL http://www.crac.polymtl.ca/psm

[15] Kwiatkowska, M., G. Norman and D. Parker, Prism: Probabilistic symbolic

model checker, in: T. Field and al., editors, Computer Performance Evaluation

/ TOOLS, Lecture Notes in Computer Science 2324 (2002), pp. 200–204.

[16] Mitchell, J., A. Ramanathan, A. Scedrov and V. Teague, A probabilistic

polynomial-time process calculus for the analysis of cryptographic protocols,
Theoretical Computer Science 353 (2006), pp. 118–164.

[17] Parker, D., “Implementation of Symbolic Model Checking for Probabilistic
Systems,” Ph.D. thesis, University of Birmingham (2002).

[18] Segala, R., “Modeling and verification of randomized distributed real-time
systems,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA (1995), not available from Univ. Microfilms Int.

[19] Sokolova, A. and E. P. D. Vink, Probabilistic automata: System types, parallel

composition and comparison, in: In Validation of Stochastic Systems: A Guide

to Current Research (2004), pp. 1–43.

[20] Somenzi, F., Cudd: Colorado university decision diagram package, release 2.42,
Technical report, University of Colorado at Boulder (2009).
URL http://vlsi.colorado.edu/fabio/CUDD/

15

29

A.-F. Kiraga and J. Mullins

A Encoding DTMCs and MDPs using (MT)BDDs

The distribution component of the transition function in DTMC is represented
as a function f∆ : Bn×Bn → [0, 1] defined on a set {x1, x2, . . . , xn, y1, y2, . . . , yn}

of boolean variables. Row (resp. column) variables in the set rowV ars =
{x1, x2, . . . , xn} (resp. colV ars = {y1, y2, . . . , yn}) encode outgoing (resp. in-
going) states for transitions. The number of boolean variables used for each
state depends on the variables used in the PRISM model. The number of
boolean variables necessary for encoding a variable is determined by the car-
dinality of its value domain and then the state is encoded using the union
of boolean variables corresponding to all PRISM variables in the model. For
DTMC models, PRISM use the interleaved variable ordering between row and
column variables, such as x1 < y1 < x2 < y2 < · · · < xn < yn. The action
component of the transition function in DTMC is represented as a family
{fα : Bn → B}α∈Act on boolean variables set {x1, x2, . . . , xn}, using variable
ordering x1 < x2 < · · · < xn. For each action α ∈ Act, fα encodes the set
∆−1

Act
(α).

Extra encoding is also needed for taking non-determinism in account.
Rows (resp. column) variables rowV ars = {x1, x2, . . . , xn} (resp. colV ars =
{y1, y2, . . . , yn}) encode outgoing (resp. ingoing) states as in DTMC. The non-
determinism is encoded with boolean variables ndetV ars = {z1, z2, . . . , znd}

where 2nd is the maximum number of probability distributions from a state
of the model aiming to provide locations to multiple actions enabled in a
state. The transition function may then be seen as a function of the form
S×{0, 1, . . . , 2nd−1}→ Act×Disc(S) and then also be represented as a pair
of functions coping respectively with the distribution associated with transi-
tions and the actions labeling transitions. The distribution component may
be represented as a function f∆: Bn × Bnd × Bn → [0, 1] on boolean variable
set {x1, . . . , xn, z1, . . . , znd, y1, . . . , yn}. For the MDPs, the variable ordering
orders non-deterministic variables first followed by row variables and column
boolean variables interleaved as in DTMC. The action component may be
represented as a family {fα : Bn × Bnd → B}α∈Act on boolean variables set
{x1, x2, . . . , xn, z1, z2, . . . , znd} with the variable ordering z1 < · · · < znd <

x1 < · · · < xn. For each action α ∈ Act, fα encodes the set ∆−1
Act

(α).

B Case Study and Results Analysis

The Dining Cryptographers Problem [7] is described as follows. Three cryp-
tographers have a dinner. They agree that the bill has to be paid by either
one of them or by their organization (master) and that the master will decide
who pays. The master will also have to inform everyone secretly whether he
has to pay or not. The cryptographers would like to find out whether the bill
is paid by the master or by one of them. However, in the latter case, they
wish to keep anonymous the identity of the payer. The solution of the problem

16

30

A.-F. Kiraga and J. Mullins

is described in [7] as follows: each cryptographer tosses a fair coin which is
visible to himself and his right neighbor. Each one checks the two adjacent
coins and, if he is not the payer, announces agree if they are the same and
disagree if they are not. However, the payer announces the opposite. It has
been proved that the number of disagree is even if the master is paying the
bill.

Modeling DCP. We model this protocol in PRISM language as a MDP.
We set first the number N of cryptographers in the model to 3. The global
variable payId : [0 . . N] models the identity of the payer. The value i > 0
indicates cryptographeri, for i ∈ {1, 2, 3}, as the payer and 0, as the master.
The module cryptographeri makes use of four PRISM variables: The vari-
able outi : [0 . . 2] indicates the outcome of the flipping coin, values 0, 1 and
2 indicating respectively not yet flipped, head and tail ; The values 0 and 1 of
the variable announcei : [0 . . 1] stand respectively for disagree and agree; To
state the order in which cryptographers broadcast, we use the variable orderi
: [0 . . 3]; The last variable oki : [0 . . 1] is used to indicate the end of the ac-
tions performed by the cryptographeri. The flipping action is specified by
the following command:

[xi] outi=0→ 1/2:(outi’=1) + 1/2:(outi’=2);

The string xi stands for the action labeling the transitions generated by the
command. After the coin is flipped, the announcement depends on whether he
is paying or not. We consider here a non-deterministic master. There are four
cases. In each case the announcement position is chosen non-deterministically
by considering the positions already occupied by other cryptographers in the
model. We have done such to prevent the case where more than one cryp-
tographer broadcast the announcement in the same position. The following
commands concern the case where the two coins have the same outcomes and
cryptographeri is not the payer.

[a1i] oki=0 & outi>0 & out(i+1)mod 3>0 & outi=out(i+1)mod 3 & (payId!=i) &
(order(i+1)mod 3!=1) & (order(i+2)mod 3!=1)→(oki’=1) & (announcei’=1) &(orderi’=1);

[a2i] oki=0 & outi>0 & out(i+1)mod 3>0 & outi=out(i+1)mod 3 & (payId!=i) &
(order(i+1)mod 3!=2) & (order(i+2)mod 3!=2)→(oki’=1) & (announcei’=1) &(orderi’=2);

[a3i] oki=0 & outi>0 & out(i+1)mod 3>0 & outi=out(i+1)mod 3 & (payId!=i) &
(order(i+1)mod 3!=3) & (order(i+2)mod 3!=3)→(oki’=1) & (announcei’=1) &(orderi’=3);

The case where the two coins show different outcomes and cryptographeri is
not the payer is resumed by these commands:

[b1i] oki=0 & outi>0 & out(i+1)mod 3>0 & outi!=out(i+1)mod 3 & (payId!=i) &
(order(i+1)mod 3!=1) & (order(i+2)mod 3!=1)→(oki’=1) & (announcei’=0) &(orderi’=1);

[b2i] oki=0 & outi>0 & out(i+1)mod 3>0 & outi!=out(i+1)mod 3 & (payId!=i) &
(order(i+1)mod 3!=2) & (order(i+2)mod 3!=2)→(oki’=1) & (announcei’=0) &(orderi’=2);

[b3i] oki=0 & outi>0 & out(i+1)mod 3>0 & outi!=out(i+1)mod 3 & (payId!=i) &
(order(i+1)mod 3!=3) & (order(i+2)mod 3!=3)→(oki’=1) & (announcei’=0) &orderi’=3);

17

31

A.-F. Kiraga and J. Mullins

The third and forth cases concern the situations where the cryptographeri is
paying. In each case, three commands describe the behavior of the cryptogra-
pher as seen above. We use action labels c1i, c2i, c3i for coins exhibiting the
same outcomes and d1i, d2i, d3i otherwise. The last command in the module
cryptographeri is used to synchronize for termination [end] oki=1→ true.

Modeling the adversary. The adversarial model we consider here corre-
sponds to the Dolev-Yao model [8]. In this model, the scheduling process is
controlled by the adversary who controls all the communication network and
hence, the schedulers. If no constraint is imposed to the schedulers then, as
showed in [10,3], the adversary can break the anonymity by forcing the payer
if any to make his announcement in the last position (more generally in pre-
determined position). The role of the observation relation O is to avoid this.
The relation O defined on the set

Act = {xi, a1i, a2i, a3i, b1i, b2i, b3i, c1i, c2i, c3i, d1i, d2i, d3i, fin},

for i ∈ {1, 2, 3} specifies that any choice of a position of announcement for
a given cryptographer should be indistinguishable. We have then 16 O-
observables for a model of three cryptographers:

o1 = {x1}, o2 = {x2}, o3 = {x3}, o4 = {end}, o5 = {a11, a21, a31},

o6 = {b11, b21, b31}, o7 = {c11, c21, c31}, o8 = {d11, d21, d31},

o9 = {a12, a22, a32}, o10 = {b12, b22, b32}, o11 = {c12, c22, c32},

o12 = {d12, d22, d32}, o13 = {a13, a23, a33}, o14 = {b13, b23, b33},

o15 = {c13, c23, c33}, o16 = {d13, d23, d33}

Table B.1
MDP model C and ξint-observable MDP Cξint model for 3–6 cryptographers

Crypto State Transitions Choices Time(sec.)

MDP C MDP Cξint

3 1, 884(4) 4, 200 3, 948 2, 316 5

4 33, 365(5) 96, 120 91, 420 45, 100 3.324× 102

5 667, 098(6) 2, 391, 540 2, 290, 350 990, 030 1.634× 104

6 14, 853, 279(7) 64, 276, 716 61, 859, 406 28, 453, 239 1.402× 105

The PRISM model and the adversarial model can be generalized to an arbi-
trary number N > 3 of cryptographers by using the same principles as in the
three cryptographers protocol.

MDP vs ξint-observable MDP. Tab. B.1 represents for a given number of
cryptographers, the number of states (the numbers in parentheses stand for

18

32

A.-F. Kiraga and J. Mullins

initial states), the number of transitions, the number of choices respectively
for MDP model and ξint-observable MDP model and the time in seconds used
by PRISM to build the ξint-observable MDP model. The ξint-observable MDP

Table B.2
Boolean variables used for encoding the functions f∆ and f∆ξint

Crypto Line variables Column variables non-deterministic variables

MDP C MDP Cξint

3 20 20 15 6

4 31 31 20 7

5 38 38 25 7

6 45 45 30 8

model have less choices than the MDP model since some distributions in the
MDP model have been combined. We remark also that the construction time
of the ξint-observable MDP model increases as the number of cryptographers
in the model do since in this case, the number of states and transition classes
also increase. The boolean variables used in the MDP and ξint-observable
MDP models are shown in Tab. B.2. We observe that the number of non-
deterministic variables decreases in the ξint-observable MDP model. This de-
creasing is due to the diminution of transition classes caused by the combina-
tion of distributions on actions in the same O-observable and by the elimina-
tion of the useless non-deterministic variables in the resulted ξint-observable
MDP model. By assuming 20 bytes for each MTBDD node [20], Fig. B.1 shows
the memory size in Megabytes occupied by the MTBDD encoding the distri-
bution component functions f∆ and f∆ξint

and the merging directives. For any
given number of cryptographers, the size of the MTBDD encoding the func-
tion f∆ξint

decreases as the non-determinism decreases (as the MTBDD nodes
relating to these non-deterministic boolean variables disappears) (Tab. B.2).
Furthermore, the merging directives MTBDD Mdir occupies more space than
MTBDDs encoding distribution component functions f∆ and f∆ξint

because
more cryptographers in the model means that they generate more states and
transition classes and then more terminal nodes which reduce in turn possi-
bilities of application of the reduction rules.

Schedulers vs admissible schedulers. We have also investigated how the
unlimited power of the schedulers can bias the analysis of a proved secure
protocol as the Dining Cryptographers Protocol. For three cryptographers
protocol, the probability that a payer makes his announcement in the last
position is formulated as follows:

Pmax=? [true U (ok1=1 & ok2=1 & ok3=1) & ((payId=1 & order1=3) |
(payId=2 & order2=3) | (payId=3 & order3=3)){"init"}{max}]

The probability computed with PRISM for 3–6 cryptographers protocol de-

19

33

A.-F. Kiraga and J. Mullins

 0

 6

 12

 18

 24

 30

 3 4 5 6

M
e

m
o

ry
 s

iz
e

 (
M

b
yt

e
)

Number of cryptographers

MDP distribution component
Security MDP distribution component

Merging directives

Figure B.1. Memory size occupied by Mf∆ , Mf∆ξint
and Mdir for 3–6 cryptographers

pends on the considered set of schedulers. By considering all schedulers, the
maximum probability is always 1 for any given number of cryptographers.
Intuitively, this means that the adversary can always force a payer, if any,
to announce in the last position and then compromise the anonymity of the
protocol. This flaw is general for any position chosen by the adversary. But
assuming only admissible schedulers, the payer can not announce in the last
position with a probability exceeding 1

n
(in n cryptographers protocol) and

then the anonymity is preserved.

20

34

TTSS 2011

Monadic Scripting in F# for Computer Games

G. Maggiore, M. Bugliesi, R. Orsini

Università Ca’ Foscari Venezia

DAIS - Computer Science

{maggiore,bugliesi,orsini}@dais.unive.it

Abstract

Scripting in video games is a complex challenge as it needs to allow a game designer (usually not a
developer) to interact with an extremely complex piece of software: a game engine. Game engines
handle AI, physics, rendering, networking and various other functions; scripting languages usually
act as the main interface to drive the entities managed by the game engine without exposing too
much of the complexity of the engine.
A good scripting language must be very user-friendly because most of its users will not be devel-
opers; it must support transparent continuation mechanisms to ease the most common tasks faced
when writing scripts and it must be easy to integrate in an existing game engine. Also, since games
are very performance sensitive, the faster the scripting system the better.
In this paper we present a monadic framework that elegantly solves these problems and compare
it with the most commonly used systems.

Keywords: games, monadic programming, state management, scripting

1 Introduction

Games are the next frontier in entertainment. Game sales in 2010 have reached
10 billion dollars, making games the absolutely preferred means of entertain-
ment of our time. As more and more developers focus on building games, we
believe that a contribution can be made to this field with a study of game
engine architectures and languages for making games.

The core of a game is its engine. A game engine [12] is a fairly complex piece
of software: it encompasses most of the aspects of computer game develop-
ment, touching areas such as computer graphics, AI, algorithms, networking,
and so on. Game engines are difficult to maintain and long to compile. Game
designers need a simpler access venue to build the game logic of a game, and
for this reason game engines are made scriptable, so that their functionality

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

35

Maggiore, Bugliesi, Orsini

!"#$%&$'
()*%)+'

,-'()*%)+'

-)./0'1+2%&+$'

''''''''''''''''1%$&3+0+'
'''''''''''''''4%5/6789)'
''''''''''''''()*%)+'

'

:+);+3%)*<'
,/;%9'
()*%)+'

=95.%6+3' 1707'>7)7*+5+)0'?7#+3'

@75+'()*%)+'

@75+'=9)0+)0' 4&3%.0$' 4&3%.0$'1707' A-'(6+5+)0$' >9;+6$'7);''
B+C0/3+$' 49/);$'

!3
9*
37
5
5
+3
'

1+
$%
*)
+3
'

93
'>

9;
+6
+3
'

4&3%.0$'D>'

Fig. 1. Data-driven game architecture

related to gameplay can be programmed without direct access to its source
and with a simpler language.

A general architecture of scriptable game engines (we report here Figure
2 from [23]) can be seen in Figure 1.

As we can see the discrete simulation engine joins together the pro-
cessing of the game state performed by the AI engine, the physics engine, user
input and various scripts. The discrete simulation engine is responsible
for maintaining an updated state and it is usually written in a language such
as C or C++. C# is also emerging as the language of choice for implementing
portions of the game engine (see [7]) and for implementing entire independent
games ([9] and [11] are widely adopted game frameworks based on C#).

The scripting solutions that games use nowadays are based on either sim-
ple, in-house built languages [10] or ready-made scripting languages: among
those we find Lua and Python ([5,13]), together with C# which sits somewhere
in between a proper scripting language and a game development language.

The main contribution of this work is an improvement over existing script-
ing languages, most notably LUA (the current state of the art). We use
F# in combination with a monadic domain specific language [22] to create
a statically typed scripting language that is as succint as LUA but which is,
thanks to type safety, more robust. Also, encoding coroutines (one of the ma-
jor characteristics of scripting languages for games) with monads offers greater
flexibility over LUA’s approach of wiring coroutines inside the virtual machine
itself; this flexibility makes it possible to tailor our scripting system precisely
around the requirements of the game, without knowledge about the (complex)
internals of a virtual machine. Finally, the runtime overhead of our system
is so little that our scripts run faster than LUA’s and at least as fast as C#
scripts.

Section 2 describes current approaches to scripting and explains the metrics
we will use to compare our system with these approaches. Section 3 details
the core runtime of our monadic scripting language, while Section 4 develops
a library of useful combinators that are built around the core and support a
powerful set of customized behaviors: this library of combinators represents

2

36

Maggiore, Bugliesi, Orsini

our scripting language. Section 5 illustrates an actual example of how we have
used our DSL in the development of a game. Section 6 presents our results
and Section 7 concludes the presentation.

2 Scripting in Games

The most important function of scripts is that of modeling the behaviors of
characters and other in-game objects; in the remainder of the paper we will
focus on this specific aspect. As an example, consider a script that describes
the behavior of a prince in an RPG game:
prince:

princess = find_nearest_princess ()

walk_to(princess)

save(princess)

take_to_castle(princess)

Depending on the size of the game world, there may be up to thousands
of scripts running at any time. This means that each script must be inter-
ruptible, that is at each discrete step of the simulation engine each script
must perform a finite number of transitions transition and then suspend it-
self; failing to do so would slow down the simulation steps, and the resulting
framerate of the game would decrease, thereby reducing the player immer-
sion. For this reason simple scripts are sometimes coded as a state machine
(SM). As behaviors grow more complex, the code for an SM becomes difficult
to maintain. Also, the designers who write these scripts think in terms of
(nested) sequences of character actions and not in terms of SMs. For this
reason scripting languages make heavy use of coroutines as a mechanism to
build state machines implicitly instead of coding them explicitly as seen in
the snippet above [6,10,14]. Coroutines are generalization of subroutines that
allow multiple entry points for suspending and resuming execution at certain
locations. With coroutines the code for a SM is written “linearly” one state-
ment after another, but thanks to the suspension mechanism each action may
suspend itself (often called “yield”) many times before completing. The result-
ing code will look more like the pseudo-code for prince, where the current
state of the state machine is stored implicitly in the current continuation.

We can state the list of requirements that a good scripting system should
have:
• support for coroutines
• ease of programming
• speed (games require very fast execution)
• extensibility of the coroutine framework (to better adapt it to the game

engine)

3

37

Maggiore, Bugliesi, Orsini

2.1 Coroutines in action

In the remainder of this section we analyze coroutines in action in Lua. We
will also briefly discuss how coroutines are emulated in Python and C# with
generators. We will implement the pseudo-code taken from the prince sample
seen above. For a more detailed discussion of the mechanisms of coroutines in
Lua, Python and C# see [18,15,2].

Lua coroutines are based on the three functions coroutine.yield,

coroutine.resume and coroutine.create which respectively pause execu-
tion of a coroutine, resume execution of a paused coroutine and create a corou-
tine from a function.
function walk_to(self ,target)

return coroutine.create(

function ()

while(dist(self ,target) > self.reach) do

self.Velocity = towards(self , target)

coroutine.yield ()

end

end)

end

...

function prince(self)

return coroutine.create(

function ()

princess = bind_co(find_nearest_princess(self))

bind_co(walk_to(self , princess))

bind_co(save(self , princess))

bind_co(take_to_castle(self , princess))

end)

end

Notice that to invoke a coroutine we need to explicitly bind it with the
bind_co function, which resumes a coroutine until it yields for the last time,
when it returns the resulting value:
function bind_co(c)

local s,r,r_old = true ,nil ,nil

while(s) do

r_old = r

s,r = coroutine.resume(c)

coroutine.yield ()

end

return r_old

end

A similar mechanism to implement coroutines in Python makes use of
generators.

A generator is a special routine that returns a sequence of values. However,
instead of building an array containing all the values and returning them
all at once, a generator yields the values one at a time; yielding effectively
suspends the execution of the generator until the next element of the sequence
is requested by the caller. Python generators may appear as a way to return

4

38

Maggiore, Bugliesi, Orsini

lazy sequences but they are powerful enough to implement coroutines. We
can adopt the convention that a coroutine is actually a generator which yields
a sequence of null (None) values until it is ready to return; the returned value
will be yielded last.
def walk_to(self ,target):

while(dist(self ,target) > self.Reach):

self.Velocity = towards(self ,target)

yield

...

def prince(self):

for princess in find_nearest_princess(self):

yield

for x in walk_to(self ,princess):

yield

for x in save(self ,princess):

yield

for x in take_to_castle(self ,princess):

yield

As in Python, C# supports generators. Since C# is statically typed,
we need to assign a type to our coroutines. We have two alternatives; a
coroutine that returns nothing (void) has type IEnumerable, that is it returns
a sequence of Objects that are all null (a similar strategy is used by Unity,
even though with unsafe casts [6]) and we can type a coroutine that returns a
value of type T as IEnumerable<T?>, where T? is either null or an instance
of T.

We omit the C# sample for brevity, and also because of its similarity
with Python. Moreover, when compared with LUA generators to implement
coroutines are quite cumbersome in a scripting language and indeed LUA is
by far more used in games.

In the remainder of the paper we will present a different approach to corou-
tines, namely building a meta-programming abstraction (called monad) to im-
plement coroutines in F#. We will discuss how our approach produces code
which is faster and shorter than similar implementations in Lua, Python and
C#. We will also discuss how our approach is very customizable, thanks to
the fact that coroutines are not wired into the language runtime but rather
we have defined them with our monad. Also, thanks to type inference the
resulting scripts require no typing annotations. Finally (see Section 6 for the
details), our system offers a good runtime performance and is type safe; this
makes it suitable for large and complex scripts.

3 The Script Monad

Monads can be used for many purposes [17,20,19,21,1,16]. Indeed, monads
allow us to overload the bind operator, in order to define exactly what happens
when we bind an expression to a name.

5

39

Maggiore, Bugliesi, Orsini

Monads in F# enjoy syntactic sugar that simplifies their use. Monadic
operators are inserted with the specialized keywords let! for bind and return

for return.
For our present purposes, one extremely relevant use we can make of mon-

ads is as the basis of coroutines for our scripting system.
The script monad is not the actual scripting language. Rather, it is the

runtime framework that we use to transparently support coroutines. In Section
4 we will see how we can define a library of functions which can be seen as
additional keywords and operators for the resulting scripting language.

The monad we define, at every bind will suspend itself and return its
continuation as a lambda. This is one possible, very simple implementation
of coroutines which does not feature an explicit yield operator. The monad
type is Script:
type Script <’a,’s> = ’s -> Step <’a,’s>

and Step <’a,’s> = Done of ’a

| Next of Script <’a,’s>

Notice that the signature is very similar to that of the regular state monad,
but rather than returning a result of type α it returns either Done of α or the
continuation Next of Script<α, σ>. The continuation stores, in its closure,
the current state of a suspended script.

Returning a result in this monad is simple: we just wrap it in the Done
constructor since obtaining this value requires no actual computation steps.
Binding together two statements is more complex. We try executing the first
statement; if the result is Done x, then we return Next(k x), that is we perform
the binding and we will continue with the rest of the program with the result
of the first statement plugged in it. If the result is Next p’, then we cannot
yet invoke k. This means that we have to bind p’ to k, so that at the next
execution step we will continue the execution of p from where it stopped.
type ScriptBuilder () =

member this.Bind(p:Script <’a,’s>,

k:’a->Script <’b,’s>)

: Script <’b,’s> =

fun s ->

match p s with

| Done x -> Next(k x)

| Next p’ -> Next(this.Bind(p’,k))

member this.Return(x:’a) : Script <’a,’s>

= fun s -> Done x

let script = ScriptBuilder ()

Integrating our monadic runtime for scripts in a game engine loop is simple.
We define a game script as an instance of the Script datatype where the state
(the σ type variable) is instantiated to some type GameState which defines the
current state of the game. The main loop will now carry around the current

6

40

Maggiore, Bugliesi, Orsini

computation of the game script:
let rec update (script_step:Script <Unit ,GameState >)

(game_state:GameState) =

let script_step ’ =

match script_step game_state with

| Done() -> fun _ -> Done()

| Next k -> k

let game_state ’ =

(** compute new state **)
in update script_step ’ game_state ’

The update function executes a step of the script. If the script has finished,
then we create an identity script that will be called indefinitely or we could
return that the game is finished and some recap screen must be shown. When
an iteration of the update loop is completed, then we call update with the
next state of the script as its parameter.

This integration with the main loop can be easily translated to C# and
then integrated with the rest of the game engine.

Auxiliary Functions
Existing functions are, of course, not defined in terms of our monad. Often

though, we will wish to apply some existing function directly to our scripts
rather than bind them to some variables, apply the function to those variables
and finally returning the result. For example, consider the case where we have
two scripts s1:Script<bool> and s2:Script<bool> and we wish to compute
the logical and of their result; currently we would have to write:
script{

let! x = s1

let! y = s2

return x && y

}

whereas we would prefer to be able to simply write:
s1 &&. s2

for some appropriate operator (&&.). For this reason we define the lifting
functions, very useful functions that lift an operation from the domain of values
to the domain of monads; the general shape of the n-ary lifting functions is:
let lift_n (f : ’a1 -> a2 -> ... -> ’an -> ’b) :

(Script <’a1> -> Script <’a2 > -> ... -> Script <’an> ->

Script <’b>) =

fun s1 -> s2 -> ... -> sn ->

script{

let! x1 = s1

let! x2 = s2

...

let! xn = sn

return f x1 x2 ... xn

}

7

41

Maggiore, Bugliesi, Orsini

Unfortunately it is very difficult to define lift_n for an arbitrary n, so we
will define lift_i for various values of i. As an example application we can
define binary operators for scripts:
let not_ (s:Script <bool >) : Script <bool > =

lift_1 not s

let and_ (s1:Script <bool >) (s2:Script <bool >) : Script <bool > =

lift_2 (&&) s1 s2

let or_ (s1:Script <bool >) (s2:Script <bool >) : Script <bool > =

lift_2 (||) s1 s2

Also, we can define a useful ignore_ function that discards the result of a
script when we do not need it:
let ignore_ (s:Script <’a>) : Script <Unit > =

lift1_ (fun x -> ()) s

In general any n-ary function that is not capable of manipulating scripts
can be lifted to the domain of scripts with lift_n

4 A Library of Reusable Scripts

Here, and throughout we use the standard F# convention that, inside a
monad, missing else branches correspond to else branches with return ()

as the body. Similarly, we use the infix application operator |>, writing x |>

f as an equivalent for (f x).
The main advantage of using monads rather than hardcoded mechanisms

is flexibility. On one hand we can modify the definition of our monad in order
to accomodate for different functionalities, such as referential transparency,
multi-threading, etc. On the other hand we have an explicit representation
of coroutines (values of type Script) with which we can easily build libraries
that functionally manipulate coroutines in powerful ways. In this section we
study one such general purpose library based on the script monad. This li-
brary is being used in the development of a commercial strategy game, and
as such its usefulness has been put to the test in a practical application (the
game is released as open source, and can be found at [4]). It is important
to realize that even though what follows is a very general library of combi-
nators (in particular the Calculus of Coroutines presented below) there are
many alternative libraries that may better suit a specific kind of games; the
monadic system described in Section 3 can be used as the basis for any of
those alternative libraries.

A Calculus of Coroutines
The basic combinators we define are a simple calculus of coroutines; this

means that with these operators we take one or more coroutines and we return

8

42

Maggiore, Bugliesi, Orsini

name syntax operation

parallel s1 ∧ s2 executes two scripts in parallel and returns
both results

concurrent s1 ∨ s2 executes two scripts concurrently and returns
the result of the first to terminate

guard s1 ⇒ s2 executes and returns the result of a script
only when another script evaluates to true

repeat ↑ s keeps executing a script over and over

atomic ↓ s forces a script to run in a single tick of the
discrete simulation engine

Table 1
Calculus of Coroutines

another coroutine which can be plugged as a parameter for another one of this
operators. The basic building blocks of these operators are instances of the
script monad and are listed in Table 1.

We show here the implementation of these combinators with our monadic
system:
let rec parallel_ (s1:Script <’a>) (s2:Script <’b>) : Script <’a * ’b> =

fun s ->

match s1 s,s2 s with

| Return x, Return y -> Return (x,y)

| Continue k1, Continue k2 -> parallel_ k1 k2

| Continue k1, Return y -> parallel_ k1 (fun s -> Return y)

| Return x, Continue k2 -> parallel_ (fun s -> Return x) k2

let rec concurrent (s1:Script <’a>) (s2:Script <’b>)

: Script <Either <’a,’b>> =

fun s ->

match s1 s,s2 s with

| Return x, _ -> Return(Left x)

| _, Return y -> Return(Right y)

| Continue k1, Continue k2 -> concurrent_ k1 k2

let rec guard_ (c:Script <bool >) (s:Script <’a>) : Script <’a> =

script{

let! x = c

if x then

let! res = s

return s

else

let! res = guard_ c s

return res

}

let rec repeat_ (s:Script <Unit >) : Script <Unit > =

script{

do! s

do! repeat_ s

}

let rec atomic_ (p:Script <’a>) : Script <’a> =

9

43

Maggiore, Bugliesi, Orsini

fun s ->

match p s with

| Return x -> Return x

| Continue k -> atomic_ k s

Game Patterns
Thanks to our general combinators we can define a small set of recurring

game patterns; by instantiating these game patterns one can build the final
game scripts with great ease. The first game pattern is the most general, and
for this reason it is called game_pattern. This pattern initializes the game
in a single tick, then performs a game logic (while the game is not over) and
finally it performs the ending operation before returning some result:
let game_pattern (init:Script <’a>)

(game_over:’a -> Script <’bool >)

(logic:’a -> Script <Unit >)

(ending:’a -> Script <’c>) : Script <’c> =

script{

let! x = init |> atomic_

let! (Left y) = concurrent_ (guard_ (victory x)

(ending x |> atomic_))

(logic x |> repeat_)

return y

}

A simplified, recurring variation of this game pattern simply does nothing
until the game is over:
let wait_game_over (game_over:Script <bool >) : Script <Unit > =

let null_script = script{ return () }

game_pattern null_script

(fun () -> game_over)

(fun () -> null_script)

(fun () -> null_script)

Writing a script with our system will consist of instantiating one game
pattern with specialized scripts as its parameters; these scripts will alternate
accesses to the specific state of the game with invocations of combinators from
the calculus seen above. In the next session we will see an example of this.

5 An Actual Script

We are now ready to discuss an actual script coming from a strategy game.
In this game, the players compete to conquer a series of systems by sending
fleets to reinforce their systems or to conquer the opponent’s.

The basic game mode returns the winning player; as long as there is more
than one player standing, the script waits. This script computes the union of
the set of active fleet owners with the set of system owners:
let alive_players_set =

script{

10

44

Maggiore, Bugliesi, Orsini

let! fs = get_fleets

let fleet_owners =

fs |> Seq.map (fun f -> f.Owner)

|> Set.ofSeq

let! ss = get_systems

let system_owners =

ss |> Seq.map (fun s -> s.Owner)

|> Set.ofSeq

return fleet_owners + system_owners

}

let game_over =

script{

let! alive_players = alive_players_set

let num_alive_players = alive_players |> Seq.length

return num_alive_players = 1

}

The main task of our script is to wait until the set of active players has
exactly one element; when this happens, that player is returned as the winner:
let basic_game_mode = wait_game_over game_over

An interesting alternative coding style could be built by lifting a series of
useful operators and redefining alive_players_set and game_over in a very
concise form; let us assume that all operators and functions that end with _

or . in the following snippet have been lifted appropriately, for example:
let (=.) = lift_2 (=)

let (+.) = lift_2 (+)

...

This way, we can write:
let alive_players_set =

(get_fleets |> Seq.map_ (fun f -> f.Owner) |> Set.ofSeq_) (+.)

(get_systems |> Seq.map_ (fun s -> s.Owner) |> Set.ofSeq_)

let game_over =

(alive_players_set |> Seq.length_) =. (script{ return 1 })

5.1 Other scripts

Variations of the game are soccer (one system acts as the ball which can be
moved around), capture the flag, siege and others.

The siege game mode features a central system which must be conquered
and held to obtain bonuses. Holding this system for sixty seconds gives a
bonus to its owner, while losing the central system resets its bonuses.

The siege mode is an instance of the most general game pattern:
let wait dt =

script{

let! t0 = time

do! guard

script{

let! t = time

return t - t0 > dt

11

45

Maggiore, Bugliesi, Orsini

}

script{ return () }

}

let init : Script <System > = get_system "Center"

let logic (center:System) =

script{

let previous_owner = center.Owner

do! concurrent_

script{

do! wait 60.0f

center.AddBonus ()

}

(guard (script{ return center.Owner <> previous_owner })

(script{

center.ResetBonus ()

return () }))

|> ignore_

}

let siege_game_mode =

game_pattern init (fun center -> game_over)

logic (fun _ -> script{ return () })

We omit a detailed discussion of the other variations for reasons of space;
the important thing to realize is that all of these variations have been imple-
mented with the same simplicity of the scripts above, by instancing one game
pattern with appropriate scripts which are built with a mix of combinators
interspersed with accesses to the game state.

6 Benchmarks

We will focus our comparison mostly on LUA, since it is the most widely
adopted scripting language, it fully supports coroutines and is considered the
current state of the art. We will include some benchmarking data on Python
and C# for completeness, but their poor support for coroutines makes them
unsuitable for large scale use as scripting languages.

LUA and F# offer roughly the same ease of programming, given that:
• scripts are approximately as long and as complex
• there are no explicit types, thanks to dynamic typing in LUA and type

inference in F#
It is important to notice that, since F# is a statically type language, it

offers a relevant feature that LUA does not have: safety. This means that
more errors will be catched at compile time and correct reuse of modules is
made easier.

To measure speed, we have run three benchmarks on a Core 2 Duo 1.86
GHz CPU with 4 GBs of RAM. The tests are two examples of scripts com-
puting large Fibonacci numbers concurrently plus a syntetic game where each
script animates a ship moving in a level and then dying. The tests have been
made with Windows 7 Ultimate 64 bits. Lua is version 5.1, Python is version

12

46

Maggiore, Bugliesi, Orsini

3.2 and .Net is version 4.0. The lines of code of each script are listed in Table
2, while the number of yields per seconds (higher is better) are listed in Table
3. We have measured the number of yields per second in order to assess the
relative cost of the yielding architecture; more yields per second implies more
scripts per second which in turn implies more scripted game entities and thus
a more complex and compelling gameplay.

Language Fibonacci Many Fibonacci Ships

F# 21 21 35

Python 24 29 48

Lua 30 39 52

C# 51 58 59
Table 2

Lines of code

Language Fibonacci Many Fibonacci Ships

F# 7.6 5.8 4.0

C# 7.1 4.2 4.1

Lua 1.5 1.4 0.8

Python 1.1 1.1 0.9
Table 3

Speed test in millions of yields per seconds

It is quite clear that F# offers the best mix of performance and simplicity.
Also, it must be noticed that Python and Lua suffer a noticeable performance
hit when accessing the state, presumably due to lots of dynamic lookups; this
problem can only become more accentuated in actual games, since they have
large and complex states that scripts manipulate heavily.

An additional note must be given about architectural convenience. For
games where the discrete simulation engine is written in C# (either be-
cause the entire game is written in C# or because the game is written in C++
while only the game logic is in C#) then using a language such as F# can give
a further productivity and runtime performance boost because scripts would
be able to share the game logic type definitions given in C#, thereby removing
the need for binding tools such as SWIG or the DLR [8,3] (or many others)
that enable interfacing C++ or C# with Lua or Python. See Figure 2 for a
representation.

13

47

Maggiore, Bugliesi, Orsini

!!!!!!!!!!!!!!!!!!"#$%&'('!
!!!!!!!!!!!!!!!!!)#*+,-./0!
!!!!!!!!!!!!!!!!!102#0'!

!

3/*4#,'&!

)%($!
35
36

6!
)%

.0
2!

,-
02
+-

2'
!

)%($!78!

"#$%&'('!
)#*+,-./0!
102#0'!

!

)%($!

39
!

:9
!

Fig. 2. Native vs managed discrete simulation engine

7 Conclusions

Scripts are an important and pervasive aspect of computer games. Scripts
simplify the interaction with computer game engines to the point that a de-
signer or an end-user can easily customize gameplay. Scripting languages must
support coroutines because these are a very recurring pattern when creating
gameplay modules. Scripts should be fast at runtime because games need
to run at interactive framerates. Finally, the scripting runtime should be as
modular and as programmable as possible to facilitate its integration in an
existing game engine.

In this paper we have shown how to use meta-programming facilities (in
particular monads) in the functional language F# to enhance in terms of
speed, safety and extensibility the existing scripting systems which are based
on Lua, the current state of the art. We have also shown how having a typed
representation of coroutines promotes building powerful libraries of combina-
tors that abstract many common patterns found in scripts.

References

[1] C# async and await (reference). http://msdn.microsoft.com/en-us/vstudio/async.aspx.

[2] C# yield (reference). http://msdn.microsoft.com/en-us/library/9k7k7cf0(v=vs.80).aspx.

[3] Entertainment software association. http://www.theesa.com.

[4] Galaxy wars game. http://vsteam2010.codeplex.com/.

[5] Games using lua as a scripting language. http://en.wikipedia.org/wiki/Category:Lua-
scripted_video_games.

[6] Scripting in unity. http://unity3d.com/support/
documentation/ScriptReference/index.Coroutines_26_Yield.html.

[7] Sims 3 and second life built with mono. http://en.wikipedia.org/wiki/Mono_(software)
#Software_developed_with_Mono.

[8] Swig (simplified wrapper and interface generator). http://www.swig.org/.

14

48

Maggiore, Bugliesi, Orsini

[9] Unity and mono. http://unity3d.com/support/
documentation/Manual/HOWTO-MonoDevelop.html.

[10] Unrealscript documentation. http://unreal.epicgames.com/UnrealScript.htm.

[11] Xna 4 documentation. http://msdn.microsoft.com/en-us/library/bb200104.aspx.

[12] Lars Bishop, Dave Eberly, Turner Whitted, Mark Finch, and Michael Shantz. Designing a pc
game engine. IEEE Comput. Graph. Appl., 18:46–53, January 1998.

[13] Bruce Dawson. Game scripting in python. http:// www.gamasutra.com/features/
20020821/dawson_ pfv.htm, 2002. Game Developers Conference Proceedings.

[14] L. H. de Figueiredo, W. Celes, and R. Ierusalimschy. Programming advanced control
mechanisms with lua coroutines. In Game Programming Gems 6, pages 357–369, 2006.

[15] Ana L. de Moura, Noemi Rodriguez, and Roberto Ierusalimschy. Coroutines in Lua. Journal

of Universal Computer Science, 10(7):910–925, July 2004.

[16] Erik Meijer, Brian Beckman, and Gavin Bierman. Linq: reconciling object, relations and xml
in the .net framework. In Proceedings of the 2006 ACM SIGMOD international conference on

Management of data, SIGMOD ’06, pages 706–706, New York, NY, USA, 2006. ACM.

[17] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93:55–92,
1989.

[18] Guido Van Rossum and Phillip Eby J. Pep 342 - coroutines via enhanced generators.
http://www.python.org/dev/peps/pep-0342/, 2010.

[19] Philip Wadler. Comprehending monads. In Mathematical Structures in Computer Science,
pages 61–78, 1992.

[20] Philip Wadler. How to declare an imperative. ACM Comput. Surv., 29(3):240–263, 1997.

[21] Philip Wadler and Peter Thiemann. The marriage of effects and monads, 1998.

[22] Keith Wansbrough, Keith Wansbrough, John Hamer, and John Hamer. A modular monadic
action semantics. In In Conference on Domain-Specific Languages, pages 157–170, 1997.

[23] Walker White, Alan Demers, Christoph Koch, Johannes Gehrke, and Rajmohan Rajagopalan.
Scaling games to epic proportions. In Proceedings of the 2007 ACM SIGMOD international

conference on Management of data, SIGMOD ’07, pages 31–42, New York, NY, USA, 2007.
ACM.

15

49

TTSS 2011

Tool Supported Analysis of
Web Services Protocols

Abinoam P. Marques Jr.1

Brazilian Health Informatics Society
Natal-RN, Brazil

Anders P. Ravn2 Jǐŕı Srba2,3 Saleem Vighio2,4

Department of Computer Science, Aalborg University
Aalborg, Denmark

Abstract

We describe an abstract protocol model suitable for modelling of web services and other protocols
communicating via unreliable, asynchronous communication channels. The model is supported
by a tool chain where the first step translates tables with state/transition protocol descriptions,
often used e.g. in the design of web services protocols, into an intermediate XML format. We
further translate this format into a network of communicating state machines directly suitable
for verification in the model checking tool UPPAAL. We introduce two types of communication
media abstractions in order to ensure the finiteness of the protocol state-spaces while still being
able to verify interesting protocol properties. The translations for different kinds of communication
media have been implemented and successfully tested, among others, on agreement protocols from
WS-Business Activity.

Keywords: Service Oriented Computing, Communication Channels, Model Checking, Verification

1 Introduction

Service oriented computing is gaining in popularity, mainly because the Inter-
net offers a widespread, cheap and efficient infrastructure. Thus there is an

1 Email: abinoam@gmail.com
2 Email: {apr,srba,vighio}@cs.aau.dk
3 The author is partially supported by Ministry of Education of Czech Republic, MSM

0021622419.
4 The author is supported by Quaid-e-Awam University of Engineering, Science, and Tech-

nology, Nawabshah, Pakistan, and partially by the Nordunet3 project COSoDIS.

50

Marques et. al.

incentive to develop applications as clients that dynamically and flexibly con-
nect to available services over the net using for instance the Web Services (WS)
protocols. For simple client-server applications this may work without many
considerations of error-handling, as errors can be often handled just as excep-
tions in standard sequential programs. However, when several services, possi-
bly from different organizations, are involved, more sophisticated coordination
protocols need to be employed in order to implement distributed transactions
supporting roll-back or other compensation mechanisms. Therefore the OMG
body (www.omg.org) has put much effort into developing protocol standards
to handle these issues. They include protocols for atomic transactions [13],
coordination [15] and for general web services business activities [14].

Protocols are distributed algorithms and that makes them hard to anal-
yse as they contain several local-state machines that evolve independently
and communicate through message exchanges. A further difficulty is asyn-
chronous, perhaps even unreliable communication media. In the standards,
protocols are often described by a combination of state/transition tables for
the individual state machines, global communication graphs, and concise En-
glish text. This is useful for understanding the intent and purpose of a protocol
but may be insufficient for in-depth analysis of the possible behaviours un-
der different communication assumptions. Here formal notations like process
algebras, temporal logics and automata-based formalisms are often used [7].
We discuss possible protocol formalizations in Section 2.

We have recently worked on analysing protocols using model checking tech-
niques. The first result was an analysis of the atomic transaction protocol [17],
heavily inspired by its corresponding TLA encoding [8]. Among other points,
this work demonstrated that message exchange through asynchronous media is
hard to model via handshake synchronization between automata. We used the
experience in a more detailed study of the BAwCC coordination protocol [18]
and found a fault in the protocol design [19].

During this work we have seen that it is far from simple to prepare the
analysis; many hours are spent on understanding the protocol and on encod-
ing state/transition tables, messages and communication media into a format
accepted by a model checking tool. In particular the encoding part is a tedious
and error-prone process, when done manually. For instance, the encoding of
the BAwCC protocol into the model checker UPPAAL [21] presented in [18]
ends up with 800 lines of C-code and it took at least one person month to do
the encoding and check it thoroughly to remove translation bugs. This process
can to a large extent be automated, and the main contributions of this paper
are a tool chain and abstraction techniques, presented in Section 3, that were
developed for that purpose. The components of the tool chain are detailed in
Section 4.

As a further contribution, the tool chain is used to analyse the Subser-

2

51

Marques et. al.

vice Termination and Alternating Bit Protocols, the first one being used as a
running example. More importantly, we have applied the tool chain to some
recently studied web services protocols as well as to the BAwPC protocol [14]
that has not been previously verified. The automatic approach showed a large
degree of flexibility and the verification results are summarized in Section 5.
We observe that it is now a matter of hours to conduct an experiment with a
proposed protocol. It should also be feasible for protocol developers to use our
tool without any deep knowledge of the particular model checker we employ
in our tool chain. This perspective and future work are discussed in Section 6.

Related Work. Reachability analysis is a well-known technique for the
analysis of small communication protocols (see e.g. [22,1]). An approach most
related to our work was presented in [12]. Here the authors perform a static
analysis of three-way handshake connection establishment protocol and the
alternating bit protocol via dataflow static analysis using the tool FLAVERS.
They model a communication medium as a finite state automaton but con-
sider only limited notions of lossiness, media of fixed sizes and do not suggest
any abstraction techniques. In our model checking approach, we are able to
argue about correctness also for unbounded communication channels and pro-
vide an automatic encoding of the communication medium in a more compact
way. Even though the verification problems for unbounded communication
buffers are in general undecidable [4], partial decidability results exist for
lossy communication channels [6], however with nonprimitive recursive com-
plexity [20] which puts them among the hardest decidable problems. In our
approach we provide a practical solution that allows to analyze complex proto-
cols like the ones from WS-Business activity in a matter of seconds. Recently
Lohmann [9] surveys possible communication models and divides them into (i)
ordered/unordered, (ii) bounded/unbounded and (iii) single/multiple buffer
communication. For bounded media different nonblocking sending strategies
are discussed as well. In our paper we focus both on ordered and unordered as
well as single and multiple buffer communication strategies, but our main goal
is to argue about the behaviour of protocols with unbounded communication
via the use of model checking techniques that however allow us to verify only
bounded media. Moreover we consider unreliable communication policies.

2 Protocol Modelling

Web services protocols are usually described by means of state/transition ta-
bles (see e.g. [14]) that specify the behaviours of the protocol roles on inbound

events (received messages) and on outbound events (sent messages). A small
example of such a table describing a Subservice Termination Protocol (STP)
is presented in Figure 1. The protocol contains three roles A, B and C, all
of them are initially in their Active states. Once the role A executes the out-

3

52

Marques et. al.

ROLE A

MESSAGES \STATES Active AwaitingB Ended

OUTBOUND exitB goto Active

INBOUND preparingB goto AwaitingB goto AwaitingB goto Invalid

INBOUND exitedB goto Ended goto Ended

ROLE B

MESSAGES \STATES Active AwaitingC Ended

OUTBOUND preparingB goto AwaitingC

OUTBOUND exitC goto AwaitingC

OUTBOUND exitedB goto Ended

INBOUND exitB send preparingB

goto AwaitingC

INBOUND exitedC send exitedB

goto Ended

ROLE C

MESSAGES \STATES Active Ended

OUTBOUND exitedC goto Ended

INBOUND exitC send exitedC

goto Ended

Fig. 1. State/Transition Table of Subservice Termination Protocol (STP)

bound event exitB, it waits on confirmation from B that it is preparing for
termination and once B is exited, it will reach the Ended state. Similarly,
the role B waits for the exitedC event from role C before it can terminate.
Moreover, once the role A receives the message exitedB from B and enters
its Ended state, the arrival of the message preparingB will lead to an Invalid

state as the messages arrived in a wrong order. The protocol moreover com-
pensates for the possibility of messages being lost by repeatedly retransmitting
all outbound events.

2.1 Abstract Protocol Model

As our aim is to provide a tool supported analysis of web services protocols like
the STP example, we need to formalize the notion of a protocol. We shall use
an automata-based approach as it is convenient for our purposes, but as a part
of our tool chain we provide a front end that accepts state/transition tables
created in a spreadsheet application and translates them into our automata
model, essentially a conventional Mealy machine.

Definition 2.1 An abstract protocol model is a pair (Msgs ,Roles) whereMsgs

is a finite set of messages with � ∈ Msgs being the empty message and Roles

is a finite set of roles such that for every role A ∈ Roles we have its description
DA = (SA,−→A) where SA is a finite set of states and −→A⊆ SA ×Msgs ×
Msgs × SA is the set of the transitions of the role A.

Whenever (s,m,m�, s�) ∈−→A we shall write s
m,m�
−→A s� or simply s

m,m�
−→ s�

if the role A is clear from the context. The meaning is that the role A in its
current state s is ready to receive a message m and after that it sends the
message m� and changes its state to s�. The messages m and m� can be empty,

4

53

Marques et. al.

Role A:

Active AwaitingB Ended

Invalid
�,exitB

preparingB ,� exitedB ,�

preparingB ,�

preparingB ,�

exitedB ,�

Role B:

Active AwaitingC Ended

exitB ,preparingB

�,exitC

exitedC ,exitedB

�,preparingB

�,exitedB

Role C:

Active Ended

exitC ,exitedC

�,exitedC

Fig. 2. Formal Specification of the STP Protocol

meaning that the transition can happen either without receiving any message
or without sending any message. If both m and m� are empty, this represents
an internal transition.

A formal automata-based model of the STP protocol is depicted in Fig-
ure 2. One can easily verify that this abstract protocol model describes the
same behaviour as the state/transition tables in Figure 1.

2.2 Communication Policy

In order to define the semantics of the abstract protocol model, we need to
discuss the communication policies. We shall discuss asynchronous commu-

nication policies with different reliability requirements on the communication
medium. We consider e.g. FIFO (First In First Out) communication chan-
nels representing a perfect order-preserving communication or, as the other
extreme, unreliable (lossy and duplicating) communication policy where mes-
sages can be reordered. We can abstract the possible medium implementation
by its interface.

Definition 2.2 A communication medium is a data structure Medium pro-
viding the following three operations:

• send : Medium ×Msgs → Medium,

• available : Medium ×Msgs → {true, false}, and
• receive : Medium ×Msgs → Medium.

Given a current medium med ∈ Medium and a message m ∈ Msgs , the op-
eration med .send(m) updates the communication medium with the message
m that was sent by one of the roles, med .available(m) answers whether the
message m is available for receiving (without modifying the medium) and fi-
nally med .receive(m) receives the message m and updates the communication

5

54

Marques et. al.

medium accordingly. The empty message � is always available and sending or
receiving the message � has no effect on the medium.

FIFO

BAG
STUTT-FIFO

(unreliable FIFO)

SET

(unreliable BAG)

We provide a few examples of possible
medium implementations for some of the clas-
sical communication policies. For the per-
fect FIFO policy, we model the medium
as a queue. The operation send(m) sim-
ply enqueues m at the end of the queue,
available(m) checks whether m is at the head
of the queue and receive(m) removes the mes-
sage m from the front of the queue. Similarly
for order-preserving but lossy and duplicating policy (called STUTT-FIFO
for stuttering FIFO), the call send(m) adds the message m at the end of the
queue only if it is not already present there (if the last sent message wasm then
sending m does not change the queue). When a message m is received then an
arbitrary number of messages before m can be dequeued (lossiness) but the
message itself stays in the queue (duplication). As another example, a perfect
medium, which can however reorder messages, can be modelled as a multiset
(we call it BAG). Mathematically, the medium can be represented as a func-
tion f from the set of messages Msgs to nonnegative integers. The operation
send(m) is then implemented as f(m) := f(m)+ 1, available(m) is simply re-
turning f(m) > 0 and receive(m) is equivalent to f(m) := f(m)− 1. Finally,
an unreliable medium with reordering can be represented as a set SET of mes-
sages that have been already sent. Now send(m) means SET := SET ∪ {m},
availability is checking the presence of the message in SET and receive does
not modify SET, this models duplication of messages.

2.3 Semantics of Abstract Protocol Model

Let us assume a given communication policy. The semantics of an abstract
protocol model (Msgs ,Roles) where Roles = {A1, A2, . . . , An} is given as
transition system with states (configurations) of the form (s1, s2, . . . , sn,med)
where si ∈ SAi for all i, 1 ≤ i ≤ n, are the current states of all roles and med ∈
Medium represents the current content of the communication medium. The
transitions are defined by (s1, . . . , si, . . . , sn,med) ⇒ (s1, . . . , s�i, . . . , sn,med

�)

whenever si
m,m�
−→Ai s

�
i is a transition of the role Ai such that med .available(m)

is true and med
� = (med .receive(m)).send(m�). By ⇒∗ we denote the reflexive

and transitive closure of ⇒.
Consider now our running example from Figure 2. Clearly, with FIFO pol-

icy the communication medium this protocol is unbounded due to the possibil-
ity of unbounded message retransmission. Also STUTT-FIFO is unbounded
due to e.g. the alternating resubmission of the messages exitedB and exitedC

6

55

Marques et. al.

in the ended states. Due to the resubmission of messages also BAG makes the
medium of our example protocol unbounded. On the other hand, for SET the
state-space remains finite and we can construct it algorithmically.

2.4 Analysis of Abstract Protocol Models

In the analysis of protocols we are interested in state reachability problems.
State Reachability Problem: given a target state s of a role Ai and the
initial configuration of the protocol c0 = (s0

1
, s0

2
, . . . , s0n,med

0)) where med
0

contains no messages, we ask whether there is a reachable protocol configu-
ration c = (s1, . . . , si−1, s, si+1, . . . , sn,med) such that c0 ⇒∗ c for some states
s1, . . . , si−1, si+1, . . . , sn and some medium configuration med .

The state reachability problem can provide safety guarantees about the
protocol behaviour. Considering our example from Figure 2 with the SET
communication policy, it is possible for role A to reach an invalid state. This
can be interpreted as an error in the protocol design as the protocol is not
immune to reordering of messages. On the other hand, we may want to verify
that for order-preserving communication policies, the protocol is safe (does
not enter any invalid state). However, this is impossible to do in a fully auto-
matic way as the model with FIFO communication has a full Turing power [4]
and the corresponding transition system cannot be enumerated as it has in
general infinitely many reachable configurations. There are similar problems
with infinite state-spaces for the media STUTT-FIFO and BAG. For BAG
the state reachability problem can be shown equivalent to the EXPSPACE-
complete coverability problem on Petri nets (see e.g. [5]). In this paper we
shall suggest different techniques that will allow us to efficiently answer the
state reachability problem on a practically interesting set of protocol models.

Returning to the hierarchy of communication media, it is easy to see that
if we show that a state is not reachable under the SET policy, it will not
be reachable in any other policy below it. On the other hand, if a state is
reachable in FIFO communication, then it will be reachable (with exactly the
same trace) also in any communication policy above it.

We shall conclude this section with the discussion of some instances of the
state reachability problem relevant for the verification of WS protocols. We
assume that all roles contain at least three states called Active,Ended , Invalid
representing the state where each role starts, where it ends (both successfully
or with a failure) and finally a state representing inconsistency in the protocol
design. Such states are often present in the standard specification documents
for web services like WS-BA [14]. The following questions will be of interest.

• Boundedness: We ask whether starting with all roles in their Active states
and the empty medium with a given (finite) capacity, is it the case that for
all executions the medium does not exceed its capacity?

7

56

Marques et. al.

• Correctness: We ask whether starting with all roles in their Active states
and the empty communication medium, do all roles avoid entering their
Invalid states in all possible executions?

• Termination: We ask whether starting with all roles in their Active states
and the empty communication medium, is there an execution where all roles
reach their Ended states?

• Deadlock-Freeness: We ask whether starting with all roles in their Active
states and the empty medium, is there a possible continuation from any
reachable configuration but the one where all roles are in their Ended states?

The aim is to design protocols that are correct (cannot reach invalid states),
can terminate and have no deadlocks. We call such protocols safe. As already
discussed, most protocols that communicate over FIFO-like channels are not
bounded. In the next section we discuss possible approaches that will allow us
to prove that the protocol in question is safe even for an unbounded medium.

3 Abstractions of Communication Media

Let us consider a situation where a given protocol is sensitive to the order of
message arrivals (and hence cannot be proved safe with the SET medium), but
at the same time we wish to automatically establish its safety with respect to
order-preserving communication policies like FIFO or STUTT-FIFO. We shall
now suggest two abstraction strategies to tackle the problem that FIFO and
STUTT-FIFO channels are in general unbounded. Both strategies provide
an over-approximation of the communication medium, meaning that if the
protocol is proved correct under the abstracted communication policy, it will
be correct also under FIFO and STUTT-FIFO.

The main reason for introducing the abstractions is to guarantee that the
state-space of the corresponding transition system becomes bounded and auto-
matic analysis can be performed. As the problem is in general undecidable [4]
and model checking of protocols communicating over FIFO channels is hence
impossible, the proposed abstractions are not universal. On some protocols,
the abstractions may not guarantee boundedness of the medium. On others
the abstractions may be too coarse and thus they may not allow us to verify
safety of the protocol, even though it is actually safe for the perfect FIFO
communication. Nevertheless, as we demonstrate in our case studies provided
in Section 5, the proposed abstractions are sufficient to establish safety of
several well-known WS protocols.

3.1 Multiple Channel Optimization

Under the perfect FIFO or STUTT-FIFO communication policy, one can think
of each sent message as being time-stamped. The property of the medium is

8

57

Marques et. al.

that it delivers the messages in the order in which they were time-stamped.
In other words, the global order of messages is preserved and the medium can
be seen as one universal FIFO or STUTT-FIFO channel.

In our first abstraction, called multiple channel optimization, we will relax
the global order-preserving requirement and introduce several independent
communication channels such that only messages sent via the same channel
preserve their relative ordering, but two different channel do not synchronize
in any way. We may possibly create a separate channel for each message which
would in result give us either a communication policy equivalent to BAG (when
applied to FIFO) or SET (when applied to STUTT-FIFO). This will clearly
not help us with the automatic analysis as we apply the abstractions only to
protocols that are not correct under the BAG or SET communication policies.
Hence we instead introduce a more refined multiple channel optimization.

The idea is that for each message m that appears in the proto-
col description, we will compute the function recipients(m) which con-
tains all roles that can possibly receive the message m. On our
running STP protocol example from Figure 2 we get the following:
recipients(exitB) = {B}, recipients(preparingB) = {A}, recipients(exitC) =
{C}, recipients(exitedB) = {A}, recipients(exitedC) = {B}. In the STP pro-
tocol each message has exactly one recipient, hence the sets are singletons.
In general scenarios that include broadcast or multi-party communication, a
message can have several recipients.

Formally, for a given protocol (Msgs ,Roles) where each role A ∈ Roles has
its description (SA,−→A) we define for each m ∈ Msgs � {�} its recipients:
recipients(m) = {A ∈ Roles | (s,m,m�, s�) ∈−→A, s, s� ∈ SA, m� ∈ Msgs}.
Let channels = {recipients(m) | m ∈ Msgs} serve as names of newly intro-
duced communication channels. Now every time a messagem is sent, it arrives
to the channel recipients(m) and whenever a role checks the availability of a
message, it does so on the channel recipients(m). As a result, messages that
arrive to the same channel preserve their relative order but messages in two
different channels are unordered.

The multiple channel optimization process described above can be run in a
fully automatic way (as implemented in our tool) and it has proved particularly
useful to verify protocols like Business Agreement with Coordinator Comple-
tion protocol from the WS-Business Activity coordination framework [14].

3.2 Unordered Messages

We shall now discuss another abstraction technique, motivated by the fact that
the multiple channel optimization may not be sufficient to achieve bounded-
ness of the communication medium as it can be seen e.g. in our STP protocol
from Figure 2. The reason here is that the role B can receive the messages

9

58

Marques et. al.

exitB and exitedC and both these messages can be repeatedly retransmitted in
an arbitrary order, causing the unboundedness of the FIFO and STUTT-FIFO
medium, even with multiple channel optimization.

Nevertheless, the protocol is still correct (as also formally verified in Sec-
tion 5) in the sense that there are no invalid states reachable as long as mes-
sages cannot be reordered. In order to show this, we may notice that for
example the ordering of the message exitB relative to the other messages does
not seem to be relevant. We will mark it (using the symbol * in our tool im-
plementation) as a message where it is not necessary to preserve its ordering.
Formally, this means that we introduce an additional communication channel
behaving as a SET medium such that all marked messages are sent/received
to/from this channel. If all messages get marked then we get the SET com-
munication medium. As showed later, marking the single message exitB is
sufficient to prove the boundedness of the medium, while at the same time
allowing us to prove that no invalid states can be reached.

One issue with this abstraction is the selection of messages for marking,
as it is up to the designer of the protocol to mark unordered messages. In
principle one may automate the process by exploring all combinations of
marked/unmarked messages, however, for larger protocols this may not be
computationally feasible due to exponentially many such combinations. The
development of possible heuristics so that the markings of messages that are
more likely to work (provide a bounded medium but still avoid the reachability
of invalid states) are enumerated first is left for future research.

4 Automatic Analysis and Tool Support

We shall now outline a solution to the state reachability problem for com-
munication protocols. The answer to this problem is provided by automatic
translation of the state/transition tables into an intermediate XML format (de-
noted as part (i) in Figure 3), followed by a translation to networks of timed
automata suitable for a direct verification in the model checker UPPAAL [3,21]
(denoted as part (ii) in Figure 3).

As the reader can see, we created an intermediate XML representation
of the state tables. The main motivation is that the translation (i) from
state/transition tables to its XML representation can be replaced by another
front end allowing us for example to describe a protocol with some domain-
specific language and to translate it automatically into the XML format. This
provides a better modularity of our proposed tool chain. The translation
(i) is to a large extent a syntactic reformulation of the tables with added
explicit definitions of states and messages that allow us to check for typos
in the state/transition tables. This has proved useful during the creation of
state/tables of nontrivial size in our applications.

10

59

Marques et. al.

a) State/Transition Table

Role A View

Inbound
Events States

. . . s . . .

.

.

.

.

.

.

.

.

. . . .

m . . . send m� . . .

goto s�

.

.

.

.

.

.

.

.

. . . .

b) XML Protocol Specification

<role name="A">
...
<rule id="rule_s_m">
<pre>
<current_state> s </current_state>
<received_message> m </received_message>

</pre>
<post>
<send_message> m’ </send_message>
<next_state> s’ </next_state>

</post>
</rule>

...
</role>

c) Network of UPPAAL Concurrent Automata

(int stA, int[1,capacity] bag and bool overflow are global variables)

\\ Transition guard for inbound event m in state s
bool guard_s_m() { return (stA == s && med.available(m) }

\\ Transition action for inbound event m in state s
void action_s_m() { med.receive(m); stA == s’; med.send(m’) }

A

guard s m()

action s m()

Available Message for BAG Receive Message for BAG Send Message for BAG

bool available(Msgs m) bool receive(Msgs m) void send(Msgs m)

{ return (bag[m]>0) } { bag[m]-- } { if (bag[m] < capacity)

bag[m]++;

else overflow:= true }UPPAAL Queries:

Boundedness: A[] !overflow
Correctness: A[] (stA1 != A1 Invalid && ... && stAn != An Invalid) || overflow
Termination: E<> (stA1 == A1 Ended && ... && stAn == An Ended) && !overflow
Deadlock-Free: A[] !deadlock || (stA1 == A1 Ended && ... && stAn == An Ended && !overflow)

(i)

(ii)

Fig. 3. Process of Automatic Analysis of WS-Protocols with the Medium BAG

In the second part of the translation, the XML description is further en-
coded into networks of communicating finite automata in the UPPAAL [21]
style. UPPAAL is a tool for modelling, simulation and verification of networks
of finite automata communicating via handshake and via shared variables. It
allows the user to include a restricted C-like syntax for describing guards
and updates of transitions and one of the main UPPAAL features is also the
explicit treatment of timing information by using real-valued clocks. In the
present paper we do not exploit the timing aspects but this will be considered
in our future work. We refer the reader to [3] for a detailed introduction into
UPPAAL modelling language.

In part (ii) of our translation each pre tag is converted into a transition
guard (written as a function in C-like syntax accepted by UPPAAL) and each
post tag is translated to an action (again represented in C-like syntax) that is
performed should the transition be executed. The transition forms a loop for
every rule of the given role as the data is stored in global variables. The states
and message names are declared as global constants and global variables keep
track of the states of each role (variable stA for role A in our example) as well
as of the current content of the communication medium. In our example we

11

60

Marques et. al.

chose to demonstrate the obvious implementation of the communication policy
BAG. Note that we assume a given capacity of the bag data structure (limited
by the constant capacity). Should the protocol require more messages in
transit, the global flag overflow is set to true. As UPPAAL allows a large
set of C-constructs in its syntax, the more advanced media like FIFO and
STUTT-FIFO (including the abstractions) are implemented in the expected
way as in any other imperative programming language. The details can be
found in our publicly available tool chain.

Finally, in Figure 3, we describe how our protocol related questions of
boundedness, correctness, termination and deadlock-freeness are formulated
in the UPPAAL query language (assuming the role names A1, A2, ..., An).
The queries are formulated in a subset of CTL logic used in UPPAAL (for
more info see [3]). Intuitively, the path quantification A[] stands for “for all
reachable configurations holds that” and E<> stands for “there is a reachable
configuration such that”.

Tool Details

Translations (i) and (ii) from Figure 3 are implemented in the open source
tool csv2uppaal available at [11]. The input state/transition tables are cre-
ated in standard spreadsheet editors like OpenOffice and saved as csv files
(textual representation of the tables). The csv files are then parsed using an
awk script that generates the intermediate protocol description in the XML
format with elements representing the messages, roles and their states and
transition rules with pre and post conditions. The final part of the tool-chain
is written in Ruby and generates files directly readable by UPPAAL (con-
current automata descriptions and a query file). Finally, in command line
mode, the tool calls the UPPAAL verification engine to verify the properties
of boundedness, correctness, termination and deadlock-freeness. For Mac OS
we provide additionally also a graphical user interface. The outcome of the
verification is the statistics with details about the protocol, medium, roles and
messages, the verification results and possibly execution traces if relevant for
the verified properties. The traces are printed in a human readable form. The
use of the tool chain requires no expertise with the model checker UPPAAL
and is accessible to WS protocol designers without any particular training
in formal verification. On the other hand the advanced users may open the
generated files in the UPPAAL GUI, experiment with simulating the protocol
and ask more advanced queries that are protocol specific. For example in our
running STP protocol from Figure 2 we verified an additional property saying
that role A can enter the state Ended only after the roles B and C already
reached their Ended states. This query is formulated as

A[] (stA!=A Ended || (stB==B Ended && stC==C Ended))

12

61

Marques et. al.

BAwCC BAwPC

Buffer Type Properties Org. Enh. Org. Enh. STP ABP

Boundedness no no no no no no

BAG Correctness NO NO NO yes NO NO

Boundedness YES YES YES YES YES YES

SET Correctness NO NO NO YES NO NO

Boundedness no no no no no no

FIFO Correctness yes? yes yes? yes yes yes

Boundedness no no no no no no

STUTT-FIFO Correctness NO yes NO yes yes yes

multiple channel Boundedness no YES no YES no YES

STUTT-FIFO Correctness NO YES NO YES yes YES

multiple channel Boundedness YES YES YES YES YES YES

reorder STUTT-FIFO Correctness NO YES NO YES YES YES

Fig. 4. Summary of Verification Results (Org. means original, Enh. means enhanced)

and UPPAAL confirms that it holds.

5 Applications

In order to investigate the applicability of our proposed framework, we carried
out experiments on case studies ranging from well-known academic examples
like Alternating Bit Protocol (ABP) [2,10] and Subservice Termination Proto-
col (STP) described in this paper, to larger-size protocols from WS-Business
Activity specification [14], namely Business Agreement with Coordination
Completion (BAwCC) and Business Agreement with Participant Completion
(BAwPC).

State/transition tables were described in OpenOffice as spreadsheets and
then automatically verified using our csv2uppaal tool. The verification re-
sults are presented in Figure 4. As all considered protocols were deadlock-free
and terminating (apart from ABP where termination is not desirable), we list
only the answers for boundedness of the medium and correctness of the pro-
tocols (absence of invalid states). The answers “YES” and “NO” in capital
letters mean that the tool returned a conclusive answer on the instances in
question. The answer “yes” stands for the fact that even though the tool
on this concrete medium was not bounded, we were able to conclude the an-
swer using our abstraction techniques (in bold font are marked the prominent
positive results that imply correctness for all other less-abstract media). Fi-
nally, the answer “no” on boundedness stands for the fact that for any chosen

13

62

Marques et. al.

medium capacity (where the verification terminated within a reasonable time
limit) the answer was negative. As boundedness is an undecidable problem,
a more precise answer cannot be obtained automatically in general. However,
a manual examination of error traces revealed that for all our instances the
medium was really unbounded.

The ABP was proved correct for order-preserving communication media
by considering the STUTT-FIFO with multiple channel abstraction. For un-
ordered asynchronous communication the protocol is (as expected) not correct.
Similarly the STP was proved correct for all order-preserving communica-
tions by marking the message exitB as unordered and using multiple channel
STUTT-FIFO communication.

Both in BAwCC and BAwPC protocols we discovered an error for all con-
sidered communication media except for perfect FIFO, where the correctness
seems to be valid, though we were not able to prove it in automatic way, hence
the answers “yes?”. Example of a trace leading to an invalid state has been
communicated to the OASIS body. The main reason for the problems is a
confusion on retransmission of messages in the ended states. We suggested
fixes to the protocols and designed enhanced versions of both protocols. The
enhanced BAwPC protocol now turned out to be correct for the most general
SET communication (and hence also for any less abstract one) while the en-
hanced version of BAwCC still contains traces leading to invalid states. The
issue here is more subtle and it has been announced on the OASIS discus-
sion forum [16] and a correction is currently under development. Using our
automatic analysis we were able to identify that the issue is connected with
reordering of messages and not with the lossiness of the medium (the protocol
is incorrect even for BAG).

6 Conclusion

We presented an automatic, tool-supported framework for modelling and ana-
lysis of communication protocols with a particular focus on web services proto-
cols. A particular strength of our solution is the possibility to choose different
models of communication media and various abstractions in order to prove
protocol correctness. The approach was successfully tested on e.g. protocols
from WS-BA, where in one case we confirmed the presence of a fundamental
problem in the protocol design and in the other one we suggested an improve-
ment in the specification sufficient to automatically validate its correctness.

Our tool chain is modular as the state/transition tables are first trans-
lated to an intermediate XML format that is further translated to UPPAAL
automata. In the future work we plan to provide different front ends that will
accept other popular formats for describing protocols, including parameteri-
zation, simple data structures, and timing aspects.

14

63

Marques et. al.

References

[1] Barghouti, N., N. Nounou and Y. Yemini, An integrated protocol development environment, in:
Protocol Specification Testing and Verification VI (1987), pp. 63–69.

[2] Bartlett, K. A., R. A. Scantlebury and P. T. Wilkinson, A note on reliable full-duplex
transmission over half-duplex links, Commun. ACM 12 (1969), pp. 260–261.

[3] Behrmann, G., A. David and K. Larsen, A tutorial on UPPAAL, in: Proc. of SFM-RT’04,
number 3185 in LNCS (2004), pp. 200–236.

[4] Brand, D. and P. Zafiropulo, On communicating finite-state machines, J. ACM 30 (1983),
pp. 323–342.

[5] Esparza, J., Decidability and complexity of Petri net problems — An introduction, in: W. Reisig
and G. Rozenberg, editors, Lectures on Petri Nets I: Basic Models, LNCS 1491, Springer Berlin
/ Heidelberg, 1998 pp. 374–428.

[6] Finkel, A., Decidability of the termination problem for completely specified protocols,
Distributed Computation 7 (1994), pp. 129–135.

[7] Holzmann, G., “Design and Validation of Computer Protocols,” Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1991.

[8] Johnson, J., D. E. Langworthy, L. Lamport and F. H. Vogt, Formal specification of a web
services protocol, Journal of Logic and Algebraic Programming 70 (2007), pp. 34–52.

[9] Lohmann, N., Communication models for services, in: Proc. of ZEUS’10, CEUR Workshop
Proceedings 563 (2010), pp. 9–16.

[10] Lynch, W. C., Computer systems: Reliable full-duplex file transmission over half-duplex
telephone line, Commun. ACM 11 (1968), pp. 407–410.

[11] Marques, A., A. Ravn, J. Srba and S. Vighio, The tool csv2uppaal, available at http://www.
cs.aau.dk/~srba/csv2uppaal.zip.

[12] Naumovich, G., L. Clarke and L. Osterweil, Verification of communication protocols using data
flow analysis, SIGSOFT Softw. Eng. Notes 21 (1996), pp. 93–105.

[13] Newcomer, E. and I. R. (chairs), Web services atomic transaction version 1.2 (2009), http:
//docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html.

[14] Newcomer, E. and I. R. (chairs), Web services business activity version 1.2 (2009), http:
//docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os/wstx-wsba-1.2-spec-os.html.

[15] Newcomer, E. and I. R. (chairs), Web services coordination version 1.2 (2009), http://docs.
oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os/wstx-wscoor-1.2-spec-os.html.

[16] OASIS, Discussion forum, report on error trace in BAwCC (2011), http://markmail.org/
message/xgnyonkihfif5vz2.

[17] Ravn, A., J. Srba and S. Vighio, A formal analysis of the web services atomic transaction
protocol with UPPAAL, in: Proc. of ISOLA’10), LNCS 6416 (2010), pp. 579–593.

[18] Ravn, A., J. Srba and S. Vighio, Modelling and verification of web services business activity
protocol, in: P. Abdulla and K. Leino, editors, Proc. of TACAS’11, LNCS 6605 (2011), pp.
357–371.

[19] Robinson, I., Answer in WS-BA discussion forum, July 14th, 2010 (2010), http://markmail.
org/message/wriewgkboaaxw66z.

[20] Schnoebelen, P., Verifying lossy channel systems has nonprimitive recursive complexity,
Information Processing Letters 83 (2002), pp. 251–261.

[21] UPPAAL, http://www.uppaal.com.

[22] Vuong, S. T., D. D. Hui and D. D. Cowan, Valira — a tool for protocol validation via reachability
analysis, in: Protocol Specification, Testing and Verification VI (1987), pp. 35–41.

15

64

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

A Formal Approach to Data Validation Constraints
in MDE

Alessandro Rossini, Khalid A. Mughal, Uwe Wolter
Department of Informatics
University of Bergen
Bergen, Norway

Adrian Rutle, Yngve Lamo
Department of Computer Engineering

Bergen University College
Bergen, Norway

Abstract

Software security encompasses the measures taken to ensure confidentiality, integrity and availability in soft-
ware systems. In present-day software development, security is often an afterthought rather than part of the
software development life-cycle. In order to reveal potential security flaws before a software system is actually
implemented, security aspects should be taken into account starting from the early phases of the development.
With model-driven engineering (MDE) gaining momentum in both academia and industry, an interesting chal-
lenge is the specification of security constraints within software models. In this paper we focus on data valida-
tion – the process of ensuring that a system operates on correct and meaningful data – in the context of MDE.
Our contribution is a formal approach to the specification of data validation constraints which involve multiple
structural properties. In addition, constraints specified at model level are mapped to Java annotations which are
then transformed to executable tests by an existing data validation framework.

Keywords: data validation; model-driven engineering; category theory; Diagram Predicate Framework; SHIP
Validator

1 Introduction

Software systems are nowadays widespread in all walks of society. Violating the
confidentiality, integrity and availability of these systems can therefore lead to a
negative impact on the economy and health. Software security aims at ensuring
that these properties are not compromised. In present-day software development,
security is often neglected because of lack of skills and budget, and time-to-market

c©2011 Published by Elsevier Science B. V.

65

Rossini et al.

constraints. Typically, security concerns are considered far too late when the sys-
tem is already nearing deployment. This is clearly insufficient since security as-
pects should be taken into account starting from the early phases of the develop-
ment [8,11] in order to reveal potential security flaws before a software system is
actually implemented.

Model-driven engineering (MDE) is a branch of software engineering which
aims at improving productivity, quality, and cost-effectiveness of software by shift-
ing the paradigm from code-centric to model-centric. MDE promotes models and
modelling languages as the main artefacts of the development process and model
transformation as the primary technique to generate (parts of) software systems
out of models. Models enable developers to reason at a higher level of abstraction
while model transformation alleviates developers from repetitive and error-prone
tasks such as coding.

In this regard, an interesting challenge is the specification of security constraints
within models. In this paper we focus on data validation – the process of ensuring
that a system operates on correct and meaningful data – in the context of MDE.
The lack of proper data validation is listed as the most prevalent cause of software
vulnerabilities by the OWASP [14].

In the state-of-the-art of MDE, models are typically specified by means of mod-
elling languages such as the Unified Modeling Language (UML) [13]. These mod-
elling languages are diagrammatic and allow for the specification of constraints on
single structural properties, e.g., a data validation constraint on a single input field.
However, the specification of complex constraints on multiple structural properties,
e.g., data validation constraint on multiple input fields, requires textual constraint
languages such as the Object Constraint Language (OCL) [12].

It is the authors’ experience that a completely diagrammatic approach to the
specification of data validation constraints in MDE would be desirable [17]. The
contribution of this paper is a formal approach to the specification of data valida-
tion constraints which can involve multiple, interdependent structural properties.
The underpinning of the proposed approach is the Diagram Predicate Framework
(DPF) [15,16,17,18] which provides a formalisation of (meta)modelling and model
transformation based category theory [1] and graph transformation [5]. The paper
also shows how data validation constraints specified at model level are mapped to
Java annotations. These annotations are in turn transformed to executable tests at
run-time by the SHIP Validator [7,10], a Java based framework which enables the
validation of multiple interdependent properties of Java objects.

The remainder of the paper is structured as follows. Section 2 presents DPF.
Section 3 introduces the formal approach to data validation by means of a running
example. In Section 4, the current research in security within MDE is summarised.
Finally, in Section 5, some concluding remarks and ideas for future work are out-
lined.

2

66

Rossini et al.

2 Diagram Predicate Framework

Before introducing DPF, the terminology adopted in this paper is clarified. The
term model has different meanings in different contexts. In software engineering,
a model denotes “an abstraction of a (real or language-based) system allowing pre-
dictions or inferences to be made” [9]. Models in software engineering are typically
diagrammatic.

The term diagram has also different meanings in different contexts. In software
engineering, a diagram denotes a structure which is based on graphs, i.e., a col-
lection of nodes together with a collection of arrows between nodes. Graphs are
a well-known and well-understood means to represent structural and behavioural
properties of a software system [5], e.g., Entity-Relationship (ER) diagrams and
UML diagrams [13].

Since graph-based structures are often visualised in a natural way, the terms di-
agrammatic and visual and are often treated as synonyms. In this paper, however,
visualisation and diagrammatic syntax are clearly distinguished; i.e., this work fo-
cuses on syntax and semantics of diagrammatic models independent of their visu-
alisation.

In DPF, a model is represented by a specification S. A specification S =
(S, CS : Σ) consists of an underlying graph S together with a set of atomic con-
straints CS which are specified by a signature Σ. A signature Σ = (ΠΣ ,αΣ)
consists of a collection of predicates π ∈ ΠΣ , each having an arity (or shape graph)
αΣ(π), a proposed visualisation and a semantic interpretation. An atomic con-
straint (π, δ) consists of a predicate π ∈ ΠΣ together with a graph homomorphism
δ : αΣ(π) → S from the arity of the predicate to the underlying graph of the
specification.

Definition 2.1 [Signature] A signature Σ = (ΠΣ,αΣ) consists of a collection of
predicate symbols ΠΣ and a map αΣ which assigns a graph to each predicate sym-
bol π ∈ ΠΣ . αΣ(π) is called the arity of the predicate symbol π.

Definition 2.2 [Atomic constraint] Given a signature Σ = (ΠΣ ,αΣ), an atomic
constraint (π, δ) on a graph S consists of a predicate symbol π ∈ ΠΣ and a graph
homomorphism δ : αΣ(π) → S.

Definition 2.3 [Specification] Given a signature Σ = (ΠΣ,αΣ), a specification
S = (S, CS:Σ) consists of a graph S and a set CS of atomic constraints (π, δ) on
S with π ∈ ΠΣ .

The semantics of nodes and arrows of the underlying graph of a specification
has to be chosen in a way which is appropriate for the corresponding modelling
environment [17]. In object-oriented structural modelling, each object may be re-
lated to a set of other objects. Hence, it is appropriate to interpret nodes as sets and
arrows X f−→ Y as multi-valued functions f : X → ℘(Y). The powerset ℘(Y) of

3

67

Rossini et al.

Y is the set of all subsets of Y , i.e., ℘(Y) = {A | A ⊆ Y }. Moreover, the compo-
sition of two multi-valued functions f : X → ℘(Y), g : Y → ℘(Z) is defined by
(f ; g)(x) :=

⋃
{g(y) | y ∈ f(x)}.

Example 2.4 [Signature and specification] Let us consider an information system
for the management of students and universities. The information system has the
following requirements:
(i) A student studies at one to four universities.
(ii) A university educates none to many students.
Table 1 shows a signature Σ = (ΠΣ,αΣ) which is suitable for object-oriented

structural modelling.
Table 1

A signature Σ = (ΠΣ , αΣ)

π αΣ(π) Proposed vis. Semantic interpretation

[mult(m, n)] 1 a 2 X f
[m..n] Y ∀x ∈ X : m ≤ |f(x)| ≤ n,

with 0 ≤ m ≤ n and n ≥ 1

[injective] 1 a 2 X f
[inj] Y ∀x, x′ ∈ X : f(x) = f(x′)

implies x = x′

[surjective] 1 a 2 X f
[surj] Y ∀y ∈ Y ∃x ∈ X : y ∈ f(x)

[inverse] 1
a

2
b

X
f

Y
g

[inv] ∀x ∈ X , ∀y ∈ Y : y ∈
f(x) iff x ∈ g(y)

S

Figure 1. A specification S = (S, CS:Σ) and its underlying graph S

Fig. 1(a) shows a specification S = (S, CS : Σ) which is compliant with the
requirements above. Fig. 1(b) shows the underlying graph S of S, i.e., the graph
ofS without any atomic constraints.

In S, the nodes Student and University are interpreted as sets Student and
University, and the arrows sUnivs and uStuds are interpreted as multi-valued
functions sUnivs : Student → ℘(University) and uStuds : University →
℘(Student), respectively.

4

68

Rossini et al.

Based on the requirement i, the function sUnivs has cardinality between one
and four. This is enforced by the atomic constraint ([mult(1, 4)], δ1) on the
arrow sUnivs. Moreover, the function uStuds is surjective. This is enforced by
the atomic constraint ([surjective], δ3) on the arrow uStuds. Finally, the
functions sUnivs and uStuds are inverse of each other, i.e., ∀s ∈ Student and
∀u ∈ University : s ∈ uStuds(u) iff u ∈ sUnivs(s). This is enforced by the
atomic constraint ([inverse], δ2) on sUnivs and uStuds. The graph homomor-
phisms δ1, δ2 and δ3 are defined as follows (see Table 2):

δ1(1) = Student, δ1(2) = University, δ1(a) = sUnivs

δ2(1) = Student, δ2(2) = University, δ2(a) = sUnivs, δ2(b) = uStuds

δ3(1) = University, δ3(2) = Student, δ3(a) = uStuds

Table 2
The atomic constraints (π, δ) ∈ CS and their graph homomorphisms

(π, δ) αΣ(π) δ(αΣ(π))

([mult(1, 4)], δ1) 1
a

2 Student sUnivs University

([inverse], δ2) 1

a

2
b

Student
sUnivs

University
uStuds

([surjective], δ3) 1
a

2 University uStuds Student

Remark 2.5 [Predicate symbols] Some of the predicate symbols inΣ (see Table 1)
refer to single predicates, e.g., [surjective], while some others refer to a fam-
ily of predicates, e.g., [mult(m, n)]. In the case of [mult(m, n)], the pred-
icate is parametrised by the (non-negative) integers m and n, which represent the
lower and upper bounds, respectively, of the cardinality of the function which is
constrained by this predicate.

The semantics of predicates of the signature Σ (see Table 1) is described using
the mathematical language of set theory. In an implementation, the semantics of
a predicate is typically given by the code of a corresponding validator where both
the mathematical and the validator semantics should coincide. However, it is not
necessary to choose between the above mentioned possibilities; it is sufficient to
know that any of these possibilities defines valid instances of predicates.

Definition 2.6 [Semantics of predicates] Given a signature Σ = (ΠΣ,αΣ), a se-
mantic interpretation [[..]]Σ of Σ consists of a mapping that assigns to each predicate
symbol π ∈ ΠΣ a set [[π]]Σ of graph homomorphisms ι : O → αΣ(π), called valid
instances of π, where O may vary over all graphs. [[π]]Σ is assumed to be closed
under isomorphisms.

The semantics of a specification is defined in the so-called fibred way [4,20];
i.e., the semantics of a specification is given by the set of its instances. An instance

5

69

Rossini et al.

(I, ι) of a specification S consists of a graph I together with a graph homomor-
phism ι : I → S which satisfies the set of atomic constraints CS .

To check that an atomic constraint is satisfied in a given instance of a spec-
ification S, it is enough to inspect only the part of S which is affected by the
atomic constraint. This kind of restriction to a subpart is obtained by the pullback
construction [1], which can be regarded as a generalisation of the inverse image
construction.

Definition 2.7 [Instance of specification] Given a specification S = (S, CS : Σ),
an instance (I, ι) ofS consists of a graph I and a graph homomorphism ι : I → S
such that for each atomic constraint (π, δ) ∈ CS we have ι∗ ∈ [[π]]Σ, where the
graph homomorphism ι∗ : O∗ → αΣ(π) is given by the following pullback:

αΣ(π) δ S

O∗

P.B.

δ∗

ι∗

I

ι

3 Data Validation

A running example based on [7,10] is adopted to show how the formal approach
to (meta)modelling can be applied to the problem of data validation. Note that the
example is kept intentionally simple, retaining only the details which are relevant
for the discussion.

Example 3.1 [International money transfers] Let us consider international money
transfers. IBAN (International Bank Account Number) is the standard for identify-
ing bank accounts internationally. Some countries have not adopted this standard
and, for money transfer to these countries, a special clearing code is needed in
combination with the plain account number. BIC (Bank Identifier Code) is the
standard for identifying banks globally. Therefore, a form for international money
transfers should contain (at least) the input fields bic, iban, account and clearing-
Code. Moreover, supposing that the currency is Euro, the form should also contain
the input fields amountEuros and amountCents. In addition, the transfer system
should satisfy the following requirements:
(i) The BIC code of the beneficiary’s bank is required.
(ii) Either the IBAN or both clearing code and account number are required.
(iii) The amount to transfer must be between 0.01 and 100000.00 Euros.
Table 3 shows a signature Φ = (ΠΦ,αΦ) which contains predicates used to

specify data validation constraints.
Note that in the semantic interpretation of the [cross-range] predicate we

denote lexicographical order by ≤.

6

70

Rossini et al.

Table 3
The data validation signature Φ

π αΦ(π) Proposed vis. Semantic interpretation

[required] 1
a

2 X •
f Y ∀x ∈ X : f(x) defined

[exactly-one-
null]

1
a

b

2

3

X f

g
[eon]

Y

Z

∀x ∈ X : (f(x) defined and
g(x) undefined) or (f(x) unde-
fined and g(x) defined)

[all-or-none-
null]

1
a

b

2

3

X f

g
[aonn]

Y

Z

∀x ∈ X : (f(x) defined and
g(x) defined) or (f(x) unde-
fined and g(x) undefined)

[cross-range-
((m1, n1), (m2, n2))]

1

a

b

2 X

f

g

[m1.n1−m2.n2] Int ∀x ∈ X : (m1, n1) ≤
(f(x), g(x)) ≤ (m2, n2)

[range(m, n)] 1
a

2 X f
[m−n] Int ∀x ∈ X : m ≤ f(x) ≤ n

P

Figure 2. The specification P = (P, CP:Φ) and its underlying graph P

Fig. 2(a) shows a specification P = (P, CP : Φ) which is compliant with the
requirements above. The form is represented by the node Payment while the input
fields are represented by the arrows bic, iban, account, clearingCode, amoun-
tEuros and amountCents. Fig. 2(b) presents the underlying graph P of P, i.e.,
the graph of P without any atomic constraints.

In P, the requirement i is enforced by the atomic constraint ([required],

δ1) on the arrow bic, i.e., δ1 : (1 a−→ 2))→ (Payment bic−→ String). This atomic con-
straint ensures that the user provides a value in the input field bic. Moreover, the re-
quirement ii is enforced inP by two atomic constraints: ([exactly-one-null],

7

71

Rossini et al.

δ2) on the arrows iban and account together with ([all-or-none-null], δ3)
on the arrows account and clearingCode. These atomic constraints ensure that
a user provides values in either the input field iban or both the input fields ac-
count and clearingCode. Furthermore, the requirement iii is enforced in P by
the atomic constraint ([cross-range((0, 1), (100000, 0))], δ4) on the arrows
amountEuros and amountCents. This atomic constraint ensures that the user
provides values in the input fields amountEuros and amountCents which sum
up to a value within the range 0.01 to 100000.00. In addition, the atomic constraint
([range(0, 99)], δ5) on the arrow amountCents ensures that a user provides a
value in the input field amountCents within the range 0 to 99.

Fig. 3(b) shows a valid instance I of the specification P = (P, CP: Φ). Fig. 3
also shows the mappings of the graph homomorphism ι : I → P as dashed, grey
arrows.

I

Figure 3. The specification P = (P, CP:Φ) and a possible instance I

As mentioned, in an implementation, the semantics of a predicate is typically
given by the code of a corresponding validator where both the mathematical and
the validator semantics should coincide. In this paper, we have chosen to base
the implementation of each predicate on the SHIP Validator [7,10]. The XMI se-
rialisation (see Listing 1) of the specification P = (P, CP : Φ) specifying the
form in Example 3.1 can be transformed to a Java class (see Listing 2) tagged
by Java annotations compatible with the SHIP Validator. For each atomic con-
straint (π, δ) ∈ CP a corresponding Java annotation is attached to the getter meth-
ods of the Java class. Note that an atomic constraint on a single arrow, e.g.,
([required], δ1) on the arrow bic, translates to a single Java annotation, e.g.,
@Required on the method getBic(). Likewise, an atomic constraint on multi-
ple arrows, e.g., ([exactly-one-null], δ2) on the arrows iban and account,
translates to multiple Java annotations, e.g., @ExactlyOneNull on the methods
getIban() and getAccount(). The interested reader can download a proof-
of-concept implementation of a code generator from [2].

8

72

Rossini et al.

Listing 1: XMI serialisation of the specificationP = (P, CP:Φ)
1 <?xml version="1.0" encoding="ASCII"?>
2 <no.hib.dpf.metamodel:Specification
3 xmlns:no.hib.dpf.metamodel="http://no.hib.dpf.metamodel"
4 id="9090a2ec-0e36-4fcc-8f04-3a0226f0a938" name="P">
5
6 <node id="525d2a64-66e1-42f8-aec9-9f186379a77b" name="Payment"/>
7 <node id="d3ae4964-d091-41d7-9127-09856b3ce316" name="String"/>
8 <node id="0cac0671-a7e0-4d99-8216-14d24f186375" name="Integer"/>
9

10 <arrow id="b5a45cda-3ee0-42a0-a568-81f9e92d7e25" name="bic" source="//@node.0"
target="//@node.1"/>

11 <arrow id="ad030229-b66c-40b5-8f7f-59f1a25e24a8" name="iban" source="//@node.0"
target="//@node.1"/>

12 <arrow id="1d54b8c6-a51b-4858-ade9-0a66522b80eb" name="account" source="//@node
.0" target="//@node.1"/>

13 <arrow id="2c4b8f89-dc27-44e6-bdb4-a0e298c26f85" name="clearingCode" source="//
@node.0" target="//@node.1"/>

14 <arrow id="07a4001b-4c8e-461f-a845-4ac985b0c36d" name="amountEuros" source="//
@node.0" target="//@node.2"/>

15 <arrow id="7559cb35-863a-49dd-a2b3-3e9e893c1356" name="amountCents" source="//
@node.0" target="//@node.2"/>

16
17 <constraints id="33003eb9-d287-4bd8-9a28-ccf6d3ea9ee0" type="[required]">
18 <arrow source="//@arrow.0" />
19 </constraints>
20
21 <constraints id="33003eb6-7987-4558-ba28-aaf693349ee0" type="[not-required]">
22 <arrow source="//@arrow.1" />
23 <arrow source="//@arrow.2" />
24 <arrow source="//@arrow.3" />
25 <arrow source="//@arrow.4" />
26 <arrow source="//@arrow.5" />
27 </constraints>
28
29 <constraints id="e0661dc3-0620-44e6-af54-07bf14875c16" type="[exactly-one-null]">
30 <arrow source="//@arrow.1" />
31 <arrow source="//@arrow.2" />
32 </constraints>
33
34 <constraints id="1160e483-b701-4c23-9641-7e73909de528" type="[all-or-none-null]">
35 <arrow source="//@arrow.2" />
36 <arrow source="//@arrow.3" />
37 </constraints>
38
39 <constraints id="e1f2bab1-b58c-4273-97bb-d0cdd14abe45" type="[cross-range]">
40 <param name="m1" value="0" />
41 <param name="n1" value="01" />
42 <param name="m2" value="10000" />
43 <param name="n2" value="00" />
44 <arrow source="//@arrow.4" />
45 <arrow source="//@arrow.5" />
46 </constraints>
47
48 <constraints id="9132c6e8-7af9-4fc6-8b67-afac0471b13b" type="[range]">
49 <param name="min" value="0" />
50 <param name="max" value="99" />
51 <arrow source="//@arrow.5" />
52 </constraints>
53
54 </no.hib.dpf.metamodel:Specification>

9

73

Rossini et al.

Listing 2: Java class generated by transformation
1 public class Payment {
2
3 private String bic;
4 private String iban;
5 private String account;
6 private String clearingCode;
7
8 private int amountEuros;
9 private int amountCents;

10
11 @Required
12 public String getBic() {
13 return bic;
14 }
15
16 @ExactlyOneNull
17 @NotRequired
18 public String getIban() {
19 return iban;
20 }
21
22 @ExactlyOneNull
23 @AllOrNoneNull
24 @NotRequired
25 public String getAccount() {
26 return account;
27 }
28
29 @AllOrNoneNull
30 @NotRequired
31 public String getClearingCode() {
32 return clearingCode;
33 }
34
35 @IntRange(min=0,max=100000)
36 @CrossRange
37 public int getAmountEuros(){
38 return this.amountEuros;
39 }
40
41 @IntRange(min=0,max=99)
42 @CrossRange
43 public int getAmountCents(){
44 return this.amountCents;
45 }
46
47 }

These Java annotations are in turn transformed into executable tests by the SHIP
Validator. The interested reader can consult [7,10] for details about the implemen-
tation and execution of these tests. Note that the idea of using annotations to hide
the actual validation code and, at the same time, tag the properties to be tested, al-
low the constraints to be easily integrated into existing code. Besides, the validation
aspects of the system remain well separated from the application aspects. This sep-
aration of concerns facilitates the transformation of the diagrammatic constraints
into actual existing working code.

10

74

Rossini et al.

4 Related Work

In [6], an approach to integrate input validation constraints into UML diagrams
using OCL is presented. In particular, this approach targets four different UML
diagrams, i.e., use case diagram, class diagram, sequence diagram and activity di-
agram. This solution enables the specification of input validation constraints on
behavioural models while our approach targets structural models only. However, it
adopts a textual constraint language such as OCL while our approach is completely
diagrammatic.

In [8], the author illustrates an approach to enrich UML models with security
requirements such as secrecy, integrity and authenticity. The approach exploits
UML extension mechanisms such as keywords, tags and constraints. In particular,
keywords are used together with tags to specify security requirements on the sys-
tem, while constraints give criteria to determine if these requirements are satisfied
by the UML model. However, keywords and tags can be attached only to single
model elements, thus these mechanism are not sufficient to express data valida-
tion constraints involving multiple structural properties at the model level. On the
contrary, data validation constraints involving multiple structural properties can be
expressed in our approach in a diagrammatic fashion.

5 Conclusion and Future Work

In this paper, we have illustrated some of the key aspects of data validation in
MDE. We have adopted DPF to define an approach to the specification of data
validation constraints in models. Moreover, we have shown how these constraints
can be mapped to Java annotations which are transformed to executable tests. The
diagrammatic and formal nature of the proposed approach constitutes the main con-
tribution and novelty of this work.

In a future work, we will introduce a reasoning system for the analysis of pred-
icate dependencies and a logic for this analysis. This extension will enable users
of the proposed approach to detect possible inconsistencies between data valida-
tion constraints. Moreover, we will integrate the code generator, which transforms
the constraints at model level to Java annotations, in the DPF Editor [3], a dia-
grammatic (meta)modelling tool based on DPF and Eclipse Modeling Framework
(EMF) [19].

Acknowledgement

The authors would like to thank Øyvind Bech and Dag Viggo Lokøen for the proof-
of-concept implementation of the code generator, and Federico Mancini for the
support with the SHIP Validator.

11

75

Rossini et al.

References
[1] Barr, M. and C. Wells, “Category Theory for Computing Science (2nd Edition),” Prentice Hall

International Ltd., Hertfordshire, UK, 1995.

[2] Bech, Ø. and D. V. Lokøen, “DPF to SHIP Validator Proof-of-Concept Transformation Engine,”
http://dpf.hib.no/code/transformation/dpf_to_shipvalidator.py.

[3] Bergen University College and University of Bergen, “Diagram Predicate Framework (DPF) Web Site,”
http://dpf.hib.no/.

[4] Diskin, Z. and U. Wolter, A Diagrammatic Logic for Object-Oriented Visual Modeling, in: Proceedings
of ACCAT 2007: 2nd Workshop on Applied and Computational Category Theory, Electronic Notes in
Theoretical Computer Science 203/6 (2008), pp. 19–41.

[5] Ehrig, H., K. Ehrig, U. Prange and G. Taentzer, “Fundamentals of Algebraic Graph Transformation,”
Springer, 2006.

[6] Hayati, P., N. Jafari, S. M. Rezaei, S. Sarencheh and V. Potdar, Modeling Input Validation in UML, in:
Proceedings of ASWEC 2008: 19th Australian Software Engineering Conference (2008), pp. 663–672.

[7] Hovland, D., F. Mancini and K. Mughal, The SHIP Validator: An Annotation-Based Content-Validation
Framework for Java Applications, Technical Report 389, Department of Informatics, University of
Bergen, Norway (2009).

[8] Jürjens, J., “Secure Systems Development with UML,” Springer, 2005.

[9] Kühne, T.,Matters of (Meta-)Modeling, Software and System Modeling 5 (2006), pp. 369–385.

[10] Mancini, F., D. Hovland and K. Mughal, Investigating the Limitations of Java Annotations for Input
Validation, in: Proceedings of ARES 2010: 4th International Workshop on Secure Software Engineering
(2010).

[11] McGraw, G., “Software Security: Building Security in,” Addison-Wesley, 2006.

[12] Object Management Group, “Object Constraint Language Specification,” (2010),
http://www.omg.org/spec/OCL/2.2/.

[13] Object Management Group, “Unified Modeling Language Specification,” (2010),
http://www.omg.org/spec/UML/2.3/.

[14] OWASP, “Top Ten Project,” http://www.owasp.org.

[15] Rossini, A., A. Rutle, Y. Lamo and U. Wolter, A Formalisation of the Copy-Modify-Merge Approach to
Version Control in MDE, Journal of Logic and Algebraic Programming 79 (2010), pp. 636–658.

[16] Rutle, A., “Diagram Predicate Framework: A Formal Approach to MDE,” Ph.D. thesis, Department of
Informatics, University of Bergen, Norway (2010).

[17] Rutle, A., A. Rossini, Y. Lamo and U. Wolter, A Diagrammatic Formalisation of MOF-Based Modelling
Languages, in: M. Oriol and B. Meyer, editors, Proceedings of TOOLS 2009: 47th International
Conference on Objects, Components, Models and Patterns, Lecture Notes in Business Information
Processing 33 (2009), pp. 37–56.

[18] Rutle, A., A. Rossini, Y. Lamo and U.Wolter, A Formal Approach to the Specification and Transformation
of Constraints in MDE, Journal of Logic and Algebraic Programming (To appear).

[19] Steinberg, D., F. Budinsky, M. Paternostro and E. Merks, “EMF: Eclipse Modeling Framework 2.0 (2nd

Edition),” Addison-Wesley Professional, 2008.

[20] Wolter, U. and Z. Diskin, From Indexed to Fibred Semantics – The Generalized Sketch File, Technical
Report 361, Department of Informatics, University of Bergen, Norway (2007).

12

76

Towards rigorous analysis of

Open Source Software

Luis S. Barbosa 1

Departamento de Informática (HASLab)
Universidade do Minho

Braga, Portugal

Pedro R. Henriques 2

Departamento de Informática (CCTC)
Universidade do Minho

Braga, Portugal

Alejandro Sanchez 3

Departamento de Informática
Universidad Nacional de San Luis

San Luis, Argentina

Abstract

This paper discusses the (often hidden) potential of Open Source Software devel-
opment to resort to, benefit from and cross-fertilize formal engineering methods,
whose role is indisputable in the production of trustworthy software components.
A strategy addressing the incorporation of formal verification methods in the Open
Source Software lifecycle, in a somewhat less conventional way — that of assisting
the re-engineering process of running code — is proposed.

Key words: Open Source Software, formal methods, program
analysis.

1 Introduction

The impact of Open Source Software on the way software applications and
software-based services are currently developed, distributed and deployed, is

1 Email: lsb@di.uminho.pt
2 Email: pedrorangelhenriques@gmail.com
3 Email: asanchez@unsl.edu.ar

c�2011 Published by Elsevier Science B. V.

77

Barbosa, Henriques & Sanchez

indisputable. Usually acknowledged key benefits include rapid code turnover,
extensive testing, supported maintenance and low development costs. Linux
distributions, Apache and MYSQL, serve as paradigmatic examples of its
success and resilience.

Open Source Software is being increasingly adopted by industry, also for
mission and safety-critical applications. In general, experience has shown that
many open source software products are reliable and have achieved adequate
functionality and scalability. For example, an extensive study carried on a
few years ago showed that an active, mature open source initiative may have
fewer defects than similar commercial projects 4 . Similarly, reference [Aea02]
reports on a study of 100 open source applications concluding that structural
code quality was higher than expected and comparable with commercially
developed software.

This does not mean that Open Source Software is immune to the sort
of correctness problems and vulnerabilities affecting software in general.
Software development de facto standards are still pre-scienctific in their lack
of sound mathematical foundations to provide an effective basis to predict
and certify programs behaviour. Open source communities are no exception,
even if failure is definitely not advertised:

We tend not to hear very much about the failures. Only successful
projects attract attention, and there are so many free software
projects in total that even though only a small percentage succeed,
the result is still a lot of visible projects. We also don’t hear
about the failures because failure is not an event. There is no
single moment when a project ceases to be viable; people just
sort of drift away and stop working on it. There is not even a
clear definition of when a project is expired. Is it when it hasn’t
been actively worked on for six months? When its user base stops
growing, without having exceeded the developer base? What if
the developers of one project abandon it because they realized
they were duplicating the work of another–and what if they join
that other project, then expand it to include much of their earlier
effort? Did the first project end, or just change homes? Because
of such complexities, it’s impossible to put a precise number on
the failure rate. But anecdotal evidence from over a decade in
open source, some casting around on SourceForge.net, and a little
Googling all point to the same conclusion: the rate is extremely
high, probably on the order of 90 to 95%.

K. Fogel, in [Fog05]

4 The study, How open source and commercial software compare: A quantitative analysis of
TCP/IP implementations in commercial software and in the Linux kernel, 2003, is available
from www.reasoning.com/downloads/opensource.html.

2

78

Barbosa, Henriques & Sanchez

Certifying software with respect to precise specifications of their behaviour
and/or given levels of performance and security, constitutes the overall agenda
of the so-called formal methods. Qualifier formal stresses that such a certi-
fication is not a matter of opinion (i.e., a legal argument), but has a similar
status to that of a mathematical proof, in the sense that precise mathematical
techniques are used either to build and compose the software, or to guide a
systematic verification procedure. Formal methods in Software Engineering is
no longer an esoteric issue, but essential to obtaining the highest degrees of
assurance required by trustworthy systems. And industry is becoming more
and more aware of this fact. On the other hand, the maturity of current tools
to support formal development, analysis and verification is now much more
adequate for industrial use than it has been in the past, when it was extremely
hard for non-specialists to use such methods.

Open Source Software, however, by the very nature of its open and un-
conventional development model, in which coding and debugging efforts are
shared among a distributed, heterogeneous community, with decentralized
control mechanisms, makes software quality assessment, let alone full certi-
fication, particularly hard to achieve. On the other hand code is exposed,
freely available, often complemented with heavy volumes of informal docu-
mentation (in the form of source code comments, wiki notes, forum threads,
...), offering an enormous potential for verification and analysis.

The certification problem for Open Source Software raises specific chal-
lenges and opportunities, both from the technical/methodological and the
managerial points of view (see, e.g., [DAI09] for an extensive review on the
security dimension). Not by chance the discussion on how formal development
methods can be brought to Open Source Software practice, has been the focus
of a series of workshops promoted by the United Nations University, with the
acronym OpenCert since 2007 (see opencert.iist.unu.edu/ and [BCS10] for
the latest proceedings).

This paper aims at contributing to this debate: to what extent, and in
which ways, may research in formal methods and accompanying tools become
meaningful and usable for open source development and certification? There
is certainly no single answer. In the sequel we argue for a lightweight , ‘back-
ward’ approach: rather than insisting on the effective introduction of formal
methods in the development process, we suggest the dissemination of rigor-
ous program understanding and analysis techniques suitably integrated in an
open infrastructure where open source code can be registered and analyzed in
a number of different ways.

Paper outline.

Section 2 discusses the dichotomy Formal Methods vs Open Source Soft-
ware, pointing out which characteristics of Open Source Software one may

3

79

Barbosa, Henriques & Sanchez

build on to introduce such methods without disturbing its peculiar, but suc-
cessful development cycle. Then, section 3 describes our proposal of a certifi-
cation infrastructure for Open Source Software. Sections 4 and 5 make such
a proposal more concrete through a brief summary of two tools developed
within the authors’ research team to be part of the envisaged infrastructure.
Finally, section 6 concludes and gives some pointers for future research.

2 Quality, Formal Methods and Open Source Software

A standard approach to reduce risks in using an artifact is to establish an
independent certification process. However, no certification standards exists
that could be used to assess or classify the quality of Open Source Software.
Such, a standard would certainly have to include the maturity of the devel-
opment process, but open source reality has long been ignored in academia
and its study largely reduced to a social phenomenon. Empirical studies exist
(see e.g. [Aea02,MFH02,MHP05]) but are still insufficient. Moreover, they
tend to focus on the context of software production, i.e, on the factors that
determine the development conditions and, thus, are expected to influence its
final quality, rather than on the product itself. Technical, or product oriented
quality, on the other hand, deals with factors directly influencing maintain-
ability, reliability and portability, which are extremely relevant for industry
integrating Open Source Software in their own solutions.

That is precisely the focus of formal or rigorous engineering methods. De-
spite the complex, decentralized nature of Open Source Software development
process, it is possible to identify a number of its characteristics which, in our
opinion, favor a fruitful interaction with such methods. Our claim is that
any proposal for incorporating this sort of methods in Open Source Software
development should build on the following:

• High code modularity, leading to and stimulating separate development,
without a need to change or understand the core system, or interfere with
each developer’s progress. This not only reduces the risk of propagating
defects, but is also the key for a successful introduction of tight control
cycles based on rigorous methods, which are, in their majority, composi-
tional. A popular study of the Linux kernel development [LC03] concluded
that modularity let multiple developers work on the same solution, often in
competition, increasing the probability of timely, high-quality solutions.

• Rapid release cycles which keep code reviewers and developers interested
and motivated, quickly resulting in systematic and high quality extensions.
This also makes possible similarly rapid verification or analysis cycles and
the suitable feedback of their results into the development process.

• Independent and active code review, typically lead by people outside the
project team. A publicly visible bug and issue tracking tool is used by nearly
all big open source projects. Users post bugs and enhancement requests.

4

80

Barbosa, Henriques & Sanchez

Each such post becomes, in effect, a tiny public mailing list focused solely
on that issue. The introduction of formal analysis methods, simply adds to
this already present critic ability.

• Large, sustainable communities to develop, test and debug code effectively.
An investigation of open source projects evolution cited in [Abe07] found
that a large base of voluntary contributing members was one of the most
important success factors. Rigorous analysis methods, timely applied, help
the coevolution of a product and its community, and reinforce positive feed-
back as well as the reward- and-recognition culture which facilitates internal
cohesion.

• Traceable pedigree. Unlike closed software, where the identity of the real
supplier is often hidden, the lineage of an open source product can easily
be traced: it is easier to determine exactly who did what, and who has
modification rights. This provides a sound basis on top of which composition
mismatches and errors detected during analysis can be traced to their origins
and easily corrected.

• Tool-mediated communication is extensively used. Actually, a ubiquitous
trait of open source development is that tool mediation is the norm. This
enables leaders to shift the burden of policy enforcement from people to
tools, which support authentication, regulation of commit privileges, au-
dit and notification. Again, the introduction of analysis and vertification,
corrective steps in the development cycle can easily benefit from this tool-
mediated communication.

• Last but not the least, and contrary to a widespread belief, Open Source
Software development, being distributed and multi-centered is far from be-
ing anarchic. Typically, composition, configuration, and information flow
in and out of the project’s server is somehow (but effectively) controlled.
Project initiators and main contributors often exercise tight control over
the engineering practices, not by limiting the developers behavior in their
own personal space, but by limiting the kinds of transactions developers can
make upon the persistent project state on the server. This may provide the
needed infrastructure for enforcing quality checks based on formal technics.

If formal methods offer a valuable contribution to assess and promote Open
Source Software reliability, an almost reverse claim can also be made: the
relevance of Open Source Software for the formal methods community cannot
be underestimated. Actually, open source licenses, allowing others to study,
use, improve, and release new versions, are an essential ingredient to promote
and disseminate tools supporting formal development methods — a first-class
vehicle for making continued research possible. Sadly, many such tools have
completely disappeared because they were not released under open source
licenses. The absence of an open source license for ESC/Java, for example,
created a difficult situation for many people and companies depending on this
popular tool, once Compaq/HP decided to abandon its maintenance.

5

81

Barbosa, Henriques & Sanchez

A key benefit of using Open Source Software is that the code can be com-
piled freely. As technology advances fast, the ability to recompile the source
code becomes more and more important. Although a general remark, this
applies indeed to support tools for formal methods: Open Source Software
remains the key. Similar remarks apply to their long term survival.

Another argument (made mostly in the context of mathematical proofs)
stems from the scientific validity and acceptance of computer generated, or
computer assisted proofs. For such proofs to be included as standard material,
the software system used to arrive at the result must also be available to
researchers, e.g., to independently check the proof for its correctness.

3 The reverse perspective

The considerations above lead the authors’ current research towards address-
ing the incorporation of formal verification methods in the Open Source
Software lifecycle in a very peculiar perspective: that of assisting the re-
engineering process of running code.

Typically, formal methods are designed to be applied during the develop-
ment phase, preferably from very early design stages. Difficulties and strate-
gies for proceeding this way are discussed elsewhere [BCPS10]. Our starting
point here is the fact that, faced with a high risk dependence on open source
components, often to be embedded on their own software, industry is more
and more prepared to spend resources to increase confidence in (the level of
understanding of) their code. From this point of view, the same principles and
calculi used for (formal) program development can be applied in the reverse di-
rection, from concrete to abstract models, for understanding and documenting
implementations. More precisely, we seek

• Developing program understanding and analysis techniques and combine
them for quality assessment of open source code. As Open Source Software
offers full access to source code this enables the effective application of ap-
proaches and tools entirely targeting code analysis. The nature of Open
Source Software entails the need for integration of techniques spanning the
”micro” to the ”macro” levels (e.g., from slicing to architectural recovery)
and with different levels of formality (e.g. from statistical analysis based
on code metrics to the identification and formal verification of hidden in-
variants). Sections 4 and 5 details two such techniques developed in this
context.

• Catering for their smooth integration into the peculiar development process
of Open Source Software without disturbing its collaborative, distributed
and heterogeneous character. This amounts to establish feedback loops in
open source development, making publicly available a number of interrelated
analysis tools, to enhance the overall software reliability.

Our proposal to achieve the latter objective is through an online, open

6

82

Barbosa, Henriques & Sanchez

infrastructure in which independently developed analysis tools (with different
levels of sophistication) are inserted to monitor, assess and, at a later stage,
certify open source products. Ideally, such an infrastructure would allow for
the registration of open source projects, their source code visualization and
analysis at different levels, as well as the rendering of analysis results in suit-
able, flexible formats to both Open Source Software developers and users. It
will not only provide support for open source software analysis, but also make
the evolution of open source software projects clearly visible to the open source
software community. In the long run, one may expect that feedback loops will
have an effective impact on the overall quality of Open Source Software prod-
ucts, with none or minimal intrusion on their life-cycle.

Such a certification infrastructure, currently under development at Univer-
sidade do Minho, adopts an open architecture, in the sense that new analysis
or visualization components can be easily added relying on an open, general
format for data/code representation. In the very spirit of Open Source Soft-
ware, this will allow separate use and distribution of the framework, such
that third parties can use it and plug-in their own analysis and visualization
components.

The following two sections outline two of such plug-in tools — Gamma
and CoordPat already developed in this project for source code analysis.

4 Gamma: A plug-in for assertion-based slicing

TheGamma toolkit [dCHP10,BdCHP10] is an assertion-based slicer equipped
with a verification component, to generate verification conditions, and a pro-
gram visualization functionality. Its purpose is to extract slices from code
through a number of different families of slicing algorithms (precondition,
postcondition, and contract-based).

This plug-in is intended to operate over source code suitably annotated
with contracts in the sense of the design by contract paradigm — an approach
that advocates specifying the behavior of program routines through the use of
annotations, and checking them individually, either statically or dynamically,
to obtain globally correct programs.

Of course this may sound strange with respect to its main application
target – Open Source Software. Actually, even if annotated Open Source
code may soon emerge as part of a code documentation effort whose need
the community is increasingly aware of, such is clearly not dominant today.
However, recent advances in automatic inference of annotations provide other
tools which act as pre-processors for Gamma. For example, a component
of Frama-C [CCPS09], a popular open source framework based on static
analysis, automatically infers the preconditions for a given procedure.

Gamma, whose implementation includes a new, very efficient slicing algo-
rithm [BdCHP10], is not only useful for code analysis, but also to assist auto-
matic code adaptation. This may involve elimination of code redundancy, but

7

83

Barbosa, Henriques & Sanchez

can also go much further. For example, suppose there is a library containing a
procedure that implements a traversal of some data structure, and collects a
substantial amount of information in that traversal. Now suppose this library
is to be reused dropping the requirement that all the information collected
in the traversal should be used. In this case the procedure respects a weaker
specification, and thus it makes sense to produce a specialized, correspond-
ing version of the library. This is crucial for software reuse, and open source
development heavily depends on reuse.

Specializations of assertion-based slicing, for example to focus exclusively
on post-condition annotations, may be used to study when a property is valid
in a specific section of a program (for example inside a critical region to be
executed on a specific thread) and false elsewhere. Therefore, it may be used to
study the correct behaviour of code with respect to that section. Similarly, the
property may correspond to some invariant on a data structure, which ought
to be maintained. The toolkit also generates, in a step-by-step fashion, a set of
verification conditions given as input to automatic SMT provers, which allows
to establish the initial correctness of the code with respect to their contracts.

5 CoordPat: A plug-in for architectural analysis

If Gamma addresses code micro level, i.e., the level of procedures and state-
ments, CoordPat is oriented toward code analysis in the large. Basically, it
may be regarded as a tool for reverse architectural analysis, providing a sys-
tematic way to encode and identify coordination patterns in source code. It
aims at uncovering, registering and classifying architectural decisions often left
undocumented and hardwired in the application code. Moreover, through the
systematic, tool-supported discovery of architectural decisions, it is expected
to entail the reconstruction of the corresponding specifications.

Actually, current software systems rely more and more on non trivial co-
ordination logic for combining autonomous services often running on different
platforms. Open Source Software is no exception. As a rule, however, in
typical, non trivial software systems, such a coordination layer is strongly
weaved, at the source code level, with the application. Therefore, its pre-
cise identification becomes a major methodological (and technical) problem
which cannot be overestimated and to which this tool aims at contributing.
Not seldom open source applications emerge by composition of multi-source,
heterogeneous and previously unrelated pieces of code, which makes archi-
tectural recovery processes both useful and challenging. Moreover, there is
a need, particularly critical in open source contexts, to control architectural
drifts, i.e., the accumulation of architectural inconsistencies resulting from
successive code modifications.

CoordPat implements a rigorous methodology [RB10,RB08] to extract,
from source code, its coordination layer, i.e. the architectural layer which cap-
tures system’s behaviour with respect to its network of interactions. The qual-

8

84

Barbosa, Henriques & Sanchez

ifier is borrowed from research on coordination models and languages [GC92],
which emerged in the nineties to exploit the full potential of parallel systems,
concurrency and cooperation of heterogeneous, loosely-coupled components.

The extraction methodology combines suitable slicing techniques to build
a family of dependence graphs by pruning a system dependence graph [HRB88]
first derived from source code. After the extraction stage, the tool exploits
such graphs to identify and combine instances of coordination patterns and
then reconstruct the original specification of the system’s coordination layer.
The word pattern is used here with the usual meaning: a way to describe and
reuse standard solutions for recurrent problems. Thus, CoordPat main-
tains an incrementally-built repository of patterns used to guide the analysis
process.

Coordination patterns are described in a formal, graph-based language
for which a relational semantics was introduced in [ORHB10]. A pattern
repository is integrated in the tool and dynamically populated by the users.
The tool also provides features for (i) basic editing of coordination patterns,
(ii) their syntactic and semantic validation, (iii) graph rendering for their
visualisation (see e.g. Fig. 1) and (iv) pattern discovery in a dependence
graph previously extracted.

Fig. 1. The Cyclic Query Pattern and its graphical representation

6 Conclusions and future work

Open Source Software is software whose license gives users the freedom to run
it for any purpose, to study and modify, and to redistribute copies of either

9

85

Barbosa, Henriques & Sanchez

the original or the modified program, without having to pay royalties to previ-
ous developers. Companies are becoming aware that integrating Open Source
Software into commercial products (made available by liberal open source li-
censes) reduce development costs while offering high-quality, extensively tested
components. Furthermore, governments are getting worried with the growing
dependence on proprietary formats and software in their administration, and
regard Open Source Software as a warranty of technological independence.
This turns out to a strategic advantage, mainly in the developing world.

Strengthening the role of Open Source Software in the global IT sector
is, therefore, a strategic aim and, so we believe, a condition for increased,
democratic citizenship in our information-led societies. However Open Source
Software quality can be very hard to measure and to compare [Spi11]. This
could be substantially improved if there were appropriate standards, supported
by analysis tools, for certifying such software. Developing such tools, making
them widely available for the open source community, and, in the long term,
contributing to the creation of an international certification authority for open
source software, is the path to which we would like to contribute.

This paper summarizes current research at Minho University, Portugal,
on a possible strategy leading to the establishment of an independent certi-
fication process, with potential for a long-term impact on the integration of
trustworthy, open source components, in large, complex systems. In short, we
made a case for formal methods use in the ’reverse’ direction, i.e., to guide
code based analysis of open source components with potential impact in their
improvement and reuse.

As related work, Alitheia Core [GS09] must be cited. This is an exten-
sible platform designed specifically for performing large-scale software quality
evaluation through the extraction and combination of a number of metrics
on open source projects, resorting both to white-box test and code analysis.
A central issue in this project is scalability to huge volumes of data, which
entails the need for complex mirroring schemes and multicore execution. Sev-
eral other projects exist proposing solutions for Open Source Software testing
and evaluation. For example, Qsos (www.qsos.org/) is a methodology to
assess, select and compare, open source components in an objective, traceable
way. Project Osstmm www.isecom.org/osstmm/ developed a peer- reviewed
methodology for performing security tests on Open Source Software. What
distinguishes our own proposal is the explicit aim of incorporating formal
methods in addressing Open Source Software certification.

But, of course, a lot of questions remain to be answered. To mention just
one we have not addressed so far: security. Security requires a specific anal-
ysis, since open source development does not usually follow the best security
practices. As [DAI09] notices, in a recent book on security certification of
Open Source Software, the lower number of security events involving Open
Source Software may be ascribed to its smaller market share rather than to its
robustness. Tools for security analysis must definitively be pluged-in into the

10

86

Barbosa, Henriques & Sanchez

certification infrastructure suggested above.
Another main issue, requiring further experimental research, is the study

of the potential impact of such an infrastructure in the concrete open source
communities to which it is directed. In any case such an integration, or
synergy, needs to be non disturbing of the community principles and (best)
practices.

Acknowledgements. This research was partially supported by the Cross
project, under contract PTDC/EIA-CCO/108995/2008 with Fct, the Por-
tuguese Foundation for Science and Technology. Several ideas discussed in
this paper and pursued in the Cross project benefited from discussions with
Antonio Cerone, Bernhard Aichernig and Siraj Shaikh on possible roles for
formal methods in Open Source Software certification, namely in the context
of the OpenCert workshops. Collaboration with Daniela da Cruz, Jorge Sousa
Pinto and José Barros in the development of the Gamma toolkit, as well
as with Nuno Oliveira and Nuno Rodrigues in the design of CoordPat, is
greatly acknowledged.

References

[Abe07] M. Aberdour. Achieving quality in open source software. IEEE
Software, pages 58–64, 2007.

[Aea02] L. Angelis and et al. Code quality analysis in open source software
development. Information Systems Journ., pages 43–60, 2002.

[BCPS10] L. S. Barbosa, A. Cerone, A. K. Petrenko, and S. A. Shaikh.
Certification of open-source software: A role for formal methods?
International Journal of Computer Systems Science and Engineering,
(4):273–281, 2010.

[BCS10] L. S. Barbosa, A. Cerone, and S. Shaikh, editors. Foundations and
Techniques for Open Source Software Certification, Proc. OpenCert
2010, Pisa, September, 2009. Electronic Communications of the
EASST, volume 33, 2010.

[BdCHP10] J. Bernardo Barros, Daniela da Cruz, Pedro Rangel Henriques,
and Jorge Sousa Pinto. Assertion-based slicing and slice graphs.
In SEFM’10 — 8th IEEE International Conference on Software
Engineering and Formal Methods, pages 93–102. IEEE Computer
Society, Conference Publishing Services (CPS), Sept 2010.

[CCPS09] L. Correnson, P. Cuoq, A. Puccetti, and J. Signoles. Frama-
C User Manual. http://frama-c.cea.fr/download/user-manual-

Beryllium-20090902.pdf., November 2009.

11

87

Barbosa, Henriques & Sanchez

[DAI09] Ernesto Damiani, Claudio Agostino Ardagna, and Nabil El Ioini. Open
Source Systems Security Certification. Springer, 2009.

[dCHP10] Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto.
Gamaslicer: an online laboratory for program verification and analysis.
In Proceedings of the Tenth Workshop on Language Descriptions, Tools
and Applications - LDTA ’10, pages 3:1–3:8. ACM, 2010.

[Fog05] Karl Fogel. Producing open source software - how to run a successful
free software project. O’Reilly, 2005.

[GC92] D. Gelernter and N. Carrier. Coordination languages and their
significance. Communication of the ACM, 2(35):97–107, February 1992.

[GS09] G. Gousios and D. Spinellis. Alitheia core: An extensible software
quality monitoring platform. In 31st International Conference on
Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver,
Canada, Proceedings, pages 579–582. IEEE, 2009.

[HRB88] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. In PLDI ’88: Proceedings of the ACM SIGPLAN
1988 Conf. on Programming Usage, Design and Implementation, pages
35–46. ACM Press, 1988.

[LC03] Gwendolyn K. Lee and Robert E. Cole. From a firm-based to a
community-based model of knowledge creation: The case of the linux
kernel development. Organization Science, 14:633–649, November 2003.

[MFH02] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two
Case Studies of Open Source Software Development: Apache and
Mozilla. ACM Transactions on Software Engineering and Methodology,
11(3):309–346, July 2002.

[MHP05] Martin Michlmayr, Francis Hunt, and David Probert. Quality practices
and problems in free software projects. In Marco Scotto and Giancarlo
Succi, editors, Proceedings of the First International Conference on
Open Source Systems, pages 24–28, Genova, Italy, 2005.

[ORHB10] Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques, and
Lus Soares Barbosa. A pattern language for architectural analysis.
In SBLP 2010 14th Brazilian Symposium in Programming Languages,
volume 2, pages 167–180. SBC — Brazilian Computer Society (ISSN:
2175-5922), 2010.

[RB08] N. F. Rodrigues and L. S. Barbosa. Coordinspector: a tool for
extracting coordination data from legacy code. In Proc. IEEE 8th
Inter. Working Conference on Source Code Analysis and Manipulation
(SCAM’08), Beijing, 2008. IEEE Computer Society, 2008.

[RB10] N. F. Rodrigues and L. S. Barbosa. Slicing for architectural analysis.
Sci. Comput. Program., 75(10):828–847, 2010.

12

88

Barbosa, Henriques & Sanchez

[Spi11] D. Spinellis. Choosing and using open source components. IEEE
Software, 28(3):96, 2011.

13

89

TTSS 2010

Stochastic Reo: a Case Study

Y.-J. Moon1, F. Arbab, A. Silva, C. Verhoef A. Stam

CWI, Amsterdam & Almende BV, Rotterdam, The Netherlands

Abstract

QoS analysis of coordinated distributed autonomous services is currently of interest in the area

of service-oriented computing and calls for new technologies and supporting tools. In previous

work, the first three authors have proposed a compositional automata model to provide semantics

for stochastic Reo, a channel based coordination language that supports the specification of QoS

values (such as request arrivals or processing rates). Furthermore, translations from this automata

model into stochastic models, such as continuous-time Markov chains (CTMCs) and interactive

Markov chains (IMCs) have also been presented.

Based on those results, we describe in this paper a case study of QoS analysis. We analyze a

certain instance of the ASK system, an industrial software system for connecting people offering

professional services to clients requiring those services. We develop a model of the ASK system

using stochastic Reo. The distributions used in this model were obtained by applying statistical

analysis techniques on the raw values that we obtained from the real logs of an actual running

ASK system. These distributions are used for the derived CTMC model for the ASK system to

analyze and to improve the performance of the system, under the assumption that the distributions

are exponentially distributed. In practice, this is not always the case. Thus, we also carry out a

simulation-based analysis by a Reo simulator that can deal with non-exponential distributions.

Compared to the analysis on the derived CTMC model, the simulation is approximation-based

analysis, but it reveals valuable insight in the behavior of the system. The outcome of both analyses

helps both the developers and the installations of the ASK system to improve the performance of

the system.

Keywords: Stochastic Reo, QoS analysis, case study, Extensible Coordination Tools

1 Introduction

The increasing complexity of software has motivated much research in order
to develop techniques for the modular development of systems. Component-
based software engineering and service-oriented computing aim at the devel-
opment of reusable software components and/or services as building blocks
that can be composed to build different applications. Research on software
composition plays a key role in this quest, as it offers flexible ways of plug-
ging components together. Connector based-languages, where channels or
connectors are used to compose components and services into a system play a
prominent role in the world of software composition. One of such languages is

1 Email: yjm@cwi.nl
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

90

Moon, Arbab, Silva, Stam, Verhoef

Reo [2,3], which offers a model of component and service coordination, wherein
complex connectors are constructed by composing various types of primitive
connectors called channels.

QoS analysis of composed software (intensive) systems has become popular
in the last few years, with the goal of evaluating and improving performance
and resource allocation in service-oriented applications.

Stochastic Reo [13] is an extension of Reo which allows for the specification
of stochastic values for the channels (e.g., arrival and processing rates). A
compositional automata model of Stochastic Reo was proposed in [13] and
translations from this automata model to stochastic models such as CTMCs
and IMCs were presented.

In this paper we show how the theory developed in previous papers, im-
plemented as tools, can be used to model a part of a real industrial system,
perform QoS analysis, and help the developers get an insight into the system
behavior, which enables to improve the performance of the system. We model
and analyze the ASK system, a software system developed by the Dutch com-
pany Almende, which provides efficient matching between service providers
and clients. An example of the application of the ASK system consists of a
service-based system running in a call center that matches calling clients with
the appropriate representatives that can provide them with the specialized
customer service that they need.

One challenge that arises when installing particular instances of the ASK
system is how to allocate resources, which are typically scarce or expensive.
For instance, in the particular example above, the call center wants to have
an optimal distribution of its operators’ schedules in order to reduce waiting
time for the customers without increasing enormously its personnel costs. A
stochastic model of the ASK system can be used to perform analysis and
provide advice to solve such problems.

The main contributions of this paper are the following:

(i) a stochastic Reo model of the ASK system 2 . The distributions in this
model were obtained by statistical analysis of real values filtered out of
the logs of an actual running ASK system.

(ii) analysis of several interesting properties using the probabilistic model
checker PRISM [12,15] which allowed to produce suggestions for the per-
formance improvement of the ASK system. This analysis is done on a
CTMC obtained from the Reo model.

(iii) analysis of the system using a simulator which enables the study of prop-
erties involving non-exponential distributions (CTMCs can deal only with
exponential distributions).

2 Details available at http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/
CaseStudies/SimulatoronASK/Reception.

2

91

Moon, Arbab, Silva, Stam, Verhoef

2 Preliminaries

Overview of Reo
Reo is a channel-based coordination model wherein so-called connectors

are used to coordinate (i.e., control the communication among) components
or services exogenously (from outside of those components and services). In
Reo, complex connectors are compositionally built out of primitive channels.
Channels are atomic connectors with exactly two ends, which can be either
source or sink ends. Source ends accept data into, and sink ends dispense
data out of their respective channels. Reo allows channels to be undirected,
i.e., to have respectively two source or two sink ends.

a b

Sync

a b

LossySync

a b

FIFO1

a b

SyncDrain

Fig. 1. Some basic Reo channels

Fig. 1 shows the graphical representations of some basic channel types.
The Sync channel is a directed, unbuffered channel that synchronously reads
data items from its source end and writes them to its sink end. The LossySync

channel behaves similarly, except that it does not block if the party at the
sink end is not ready to receive data. Instead, it just loses the data item.
FIFO1 is an asynchronous channel with a buffer of size one. The SyncDrain

channel differs from the other channels in that it has two source ends (and no
sink end). If there is data available at both ends, this channel consumes (and
loses) both data items synchronously.

Channels can be joined together using nodes. A node can have one of
three types: source, sink or mixed node, depending on whether all ends that
coincide on the node are source ends, sink ends or a combination of both.
Source and sink nodes, collectively called boundary nodes, form the boundary
of a connector, allowing interaction with its environment. Source nodes act as
synchronous replicators, and sink nodes as mergers. A mixed node combines
both behaviors by atomically consuming a data item from one sink end and
replicating it to all of its source ends.

An example connector is depicted in Fig. 2. It reads a data item from a,
buffers it in a FIFO1 and writes it to c. The connector loses data items from
a if and only if the FIFO1 buffer is already full. This construct, therefore,
behaves as a connector called (overflow) LossyFIFO1.

a b c

Fig. 2. Example connector: LossyFIFO1

Stochastic Reo
Stochastic Reo is an extension of Reo where channel ends and channels

are annotated with stochastic values for data arrival rates at channel ends
and processing delay rates on channels. Such rates are, e.g., non-negative real
values that describe how the probability that an event occurs varies with time.
Fig. 3 shows the stochastic versions of the primitive Reo channels in Fig. 1.

3

92

Moon, Arbab, Silva, Stam, Verhoef

Here and throughout, for simplicity, we omit the node names, since they can
be inferred from the names of their respective arrival rates: for instance, γa
is the arrival rate of node a.

γa γb

γab

γa γb

γab

γaL γa γb

γab

γa

γaF

γb

γFb

Fig. 3. Stochastic Reo channels corresponding to the channels in Fig. 1

A processing delay rate represents how long it takes for a channel to per-
form a certain activity, such as data-flow. For instance, a LossySync has two
associated rates γab and γaL for, respectively, successful data-flow from node
a to node b, and losing the data item from node a. In a FIFO1 γaF represents
the delay for data-flow from its source a into the buffer, and γFb for sending
the data from the buffer to the sink b.

Arrival rates describe the time between consecutive arrivals of I/O requests
at the source and sink nodes of Reo connectors. For instance, γa and γb in
Fig. 3 are the associated arrival rates of write/take requests at the nodes a
and b.

Since arrival rates on nodes model their interaction with the environment
only, mixed nodes have no associated arrival rates. This is justified by the fact
that a mixed node delivers data items instantaneously to the source end(s) of
its connected channel(s). Hence, when joining a source with a sink node into
a mixed node, their arrival rates are discarded. A more precise description of
Stochastic Reo appears in [4,13]. A stochastic version of the LossyFIFO1 is
depicted in Fig. 4, including its arrival and processing delay rates.

γa

γbF

γc

γFcγab

γaL

Fig. 4. Stochastic LossyFIFO1

3 ASK system

The “Access Society’s Knowledge” (ASK) system [16] is an industrial software
developed by the Dutch company Almende [1], and marketed by their daugh-
ter company ASK Community Systems [5]. The ASK system is a communi-
cation software product that acts as a mediator between service consumers
and service providers, for instance, connecting rescue institutions (e.g., fire
departments) and professional volunteers. The connection established by the
ASK system is provided by mechanisms for matching users requiring infor-
mation or services with potential suppliers. For this purpose, the matching
mechanisms use the profiles and availability offered by people who provide or
require services.

The main goal of the ASK system is to do the matching in an efficient way.
To achieve that, the system collects feedback on the quality of services after
the connection. Such feedback is used to decide better connections for the sub-
sequent requests of the same type. In addition, the system uses self-learning
and self-organizing mechanisms by continuously updating to users’ preferences
and available resources. Moreover, the ASK system enables users to inform

4

93

Moon, Arbab, Silva, Stam, Verhoef

others about their status, their availability, and how they can be contacted
best. This information is used to select the right people for a communication
session as well as the feedback.

To offer efficient connections, the ASK system considers:

• human knowledge and skills of service providers

• time schedules of the provision of services

• communication media such as telephones, SMS, and emails

When people request a certain service from specialists or service providers,
the ASK system attempts to select the best possible service provider. This
selection is based on the rating of the knowledge and the skills of service
providers who are available at that moment. This rating, in turn, is based
on the feedback on the quality of services offered by the service providers.
The occurrences of events can follow either regular schedules or ad-hoc sched-
ules. The ASK system deals with both of these situations while satisfying the
constraints and the purposes of users’ requests.

The ASK system generally considers the telephone as a primary commu-
nication medium, but other means of communication, such as email or SMS,
are also supported. These types of media must be considered according to the
reachability and the preferences of the users. For example, people can have
more than one email address and telephone number, with different associated
usage constraints and user preferences. Such information must be indicated
in the system to allow for efficient connections.

The ASK system acts as an agent that connects service providers and ser-
vice consumers in an efficient way, handling multitudes of such connections
simultaneously at any given time. The ASK system has a hierarchical modu-
lar architecture, i.e., it consists of a number of high-level components, which
in turn consist of lower-level components, etc., running as threads. In or-
der to handle massive numbers of connections concurrently, the components
need to utilize multiple threads that provide the same functionalities. In this
setting, allocation of system resources, e.g. the number of threads, to vari-
ous components plays a critical role in the performance and responsiveness
of an installed system in its actual deployment environment (e.g., properties
of servers, available telephone lines, call traffic, available human operators,
etc.), but determining the proper resource allocations to provide a good per-
formance is far from trivial. Deriving and analyzing a stochastic model for
an installed ASK system provides valuable input and insight for improving
its performance. Among other possibilities, such a model allows system ar-
chitects and installation operators to play what-if games by changing various
resource and demand parameters and discover how a deployed system would
perform under such scenarios, in order to adjust and fine-tune the system for
cost-effective, optimal performance.

5

94

Moon, Arbab, Silva, Stam, Verhoef

Various methods for performance evaluation have been suggested. Rig-
orous methods require mathematical models of a system involving variables
that represent the parameters relevant to its behavior. Stochastic variables
describe random system behavior, leading to more realistic models of behavior
than their deterministic counterparts. CTMCs are frequently used to model
such systems and their features and efficient closed-form and numerical tech-
niques [18] exists for their analysis. Traditionally, such models are constructed
by human experts whose experience and insight constitute the only link be-
tween the actual system and the resulting models.

Ideally, mathematical models for the analysis of the behavior of a sys-
tem should be derived from the same (hopefully, verified correct) models used
for its design and construction. Such automation makes the derivation of
these models less error-prone, and ensures that a derived analytical model
corresponds to its respective implemented system. An expressive modeling
formalism that simultaneously reflects structural, functional, and QoS prop-
erties of a modeled system constitutes a prerequisite for this automation. Reo
serves as an example of such a formalism: (1) it provides structural model
elements whose composition reflects the composition of their counterpart sys-
tem components with architectural fidelity; (2) it allows formal verification
of functional and behavioral properties of a modeled system; (3) it supports
derivation of executable code form its models; and (4) it supports derivation
of mathematical models for the analysis of the QoS properties of systems.

A Reo model of the ASK System was developed as a case study [8] within
the context of the EU project Credo [7] for verification of its functional prop-
erties. In the work we report in this paper, we refined and augmented this
Reo model with stochastic delays extracted from actual system logs to derive
a Stochastic Reo model for the ASK System. Together with Almende, we use
this model to analyze and study the QoS properties of the ASK system in
various settings. For instance, using the approach in [13], we derive CTMC
models from the Stochastic Reo model of the interesting parts of the ASK Sys-
tem, and feed them into CTMC analysis tools, which enables us to do model
checking of the stochastic behavior of the system. We will show the analysis
of several such properties using PRISM in Section 5. The following sections
describe the architecture of the ASK system in some detail. The figures and
the descriptions we use here are based on [17].

3.1 Overview of the ASK system

The top-level architecture of the ASK System is shown in Fig. 5. Every
component in this architecture has its own internal architecture, with several
levels of hierarchical nesting. At its top-level, the ASK system consists of three
parts: a web front-end, a database, and a contact engine. The web front-end

6

95

Moon, Arbab, Silva, Stam, Verhoef

deals with typical domain data, such as users, groups, phone numbers, mail
address, and so on. The database stores typical domain data, together with the
feedback from users and knowledge from past experience. The contact engine

handles the communication between the system and the outside world (e.g.,
by responding to or initiating telephone calls, SMS, emails, etc.) and provides
appropriate matching and scheduling functionalities.

Fig. 5. Overview of ASK system

As mentioned above, the ASK system connects service providers and con-
sumers for incoming requests. A connection is made when appropriate partici-
pants for a certain request are found. Until its proper connection is established,
an incoming request loops through the system repeatedly as (sub-)tasks. This
feature is called Request loop and it is represented by thick arrows in the
contact engine in Fig. 5.

The contact engine consists of five components: Reception, Matcher, Ex-

ecuter, ResourceManager, and Scheduler. The Reception component deter-
mines which steps must be taken by the ASK system to fulfill a request. The
Matcher component determines proper participants for fulfilling a request.
The Executer component determines the best means of connection between
the participants. The Resource Manager component either uses the Request
loop for complicated requests or establishes direct connections between users
for trivial requests. The Scheduler component, separated from the components
within the request loop, schedules requests based on the time constraints of
the requests in the database.

7

96

Moon, Arbab, Silva, Stam, Verhoef

4 Modeling the ASK system

In this section, we consider the contact engine, which contains the Request
loop, and focus specifically on the Reception component. The components in
the contact engine have very similar architectures, thus, the analysis carried
out here for the Reception component can be used for the other ones, as well.

4.1 The Reception component

The Reception component consists of multiple threads, the so-called Recep-

tionMonks (RM), which handle incoming requests using two different func-
tions:

• HostessTask (HT) which converts incoming requests into tasks that will
be put into the task queue.outside of the Reception component;

• HandleRequestTask (HRT) which takes care of the communication flow,
interacts with the database, and possibly generates new requests which are
dealt with by the Matcher or the Executer component. For example, given
an incoming request, HRT may ask questions from users by playing pre-
recorded messages, obtain information such as menu item choices, account
number, etc., punched in by the users, and store this information into the
database. During this communication, new requests can be generated and
sent to other components.

Each thread runs one of these two different functions/tasks exclusively.
That is, if an RM thread runs the HT function, then it is forbidden to run
the HRT function. This implies that the Reception component needs to have
at least two threads, one for HT and the other for HRT. In general, HRT
takes more time than HT, since it actually deals with incoming tasks. Thus,
the Reception component needs more threads running HRT. For simplicity of
modeling, we assume that every thread in the Reception component has only
one function, e.g., either HT or HRT. Reflecting this simplification, Fig. 6
shows the Reception model drawn in the Eclipse Coordination Tools (ECT) [9].
This figure shows a Reception component with three RM threads, one with
only HT and the other two with only HRT.

The RMHT and the indexed RMHRTs in Fig. 6 correspond to RM threads
for a HT and HRT functions, respectively. Incoming requests are converted
into tasks by the RMHT, and the converted tasks are stored in the task
queue which is represented as a FIFO1 laid between RMHT and the indexed
RMHRTs. The converted tasks are selected and handled by the RMHRTs.
We model task selection as a non-deterministic choice at the TQOut node in
Fig. 6, which will turn into a random process once we associate the distribu-
tions of the stochastic variables that describe the actual task mix of a running
system, as extracted from its logs.

8

97

Moon, Arbab, Silva, Stam, Verhoef

Fig. 6. Reception component in ECT

The graphical notation ⊗ used for TQOut in Fig. 6 is an abbrevia-
tion for an exclusive router [3] whose Reo circuit is depicted on the right.

a d

b

c

This circuit delivers an incoming data item
at node a to either node b or node c,
whichever one can accept it, and non-
deterministically selects one when both can.
The non-deterministic choice is actually conducted by the merger d. Thus,
the rates for the random selection apply to the merger d.

Fig. 6 serves as a basic template model for the Reception component.
Depending on the specific properties of interest in each analysis, we adapt
and vary this basic template slightly. For example, for the analysis of the
properties of the task queue, we may substitute a LossyFIFO1 connector for
the FIFO1 channel, as shown below.

4.2 Extracting distributions from logs

A stochastic model of the ASK system requires the distributions for all ac-
tivities in the system. To obtain these distributions, we applied statistical
data-analysis techniques on the raw values extracted from the real logs of
a running ASK system. The logs contained the data of 100 incoming calls.
Those calls simultaneously resulted in 369 requests sent to the Reception com-
ponent. The trace holds exact timings of all actions performed related to each
process.

We need to determine the rates for request arrivals (RRequestIn) and pro-
cessing delay at the Reception component, reading request arrivals from the
Matcher (RmatcherRequestOut) and the Executer (Rexecuter-RequestOut).
For this purpose, after a cleanup of the raw data by removing outliers and
erroneous data, we determined the appropriate distributions, using statistical

9

98

Moon, Arbab, Silva, Stam, Verhoef

tests (like the chi-square goodness-of-fit test).
For the Reo model, it is not important which type of distributions we

obtain. However, to perform analysis using PRISM, which takes a CTMC
as input, only exponential distributions can be used. In the case of request
arrival rates, we may indeed assume that the inter-arrival times of the requests
are exponentially distributed. This is reasonable since incoming calls to the
ASK system are independent from each other, and the inter-arrival times are
memoryless. However, in the case of processing delay rates, we were not able
to conclude that the rates are exponentially distributed. The statistical tests
showed that we may assume that the processing times follow a log-normal
distribution.

5 QoS analysis

In this section, we show how to analyze the ASK system using both the CTMC
and Reo Simulator approach. As mentioned in the previous section, the arrival
or service times for some activities are not exponentially distributed. This
is one of the reasons to analyze the Reo model with the Reo Simulator (see
Section 5.2). The simulator was also used when we could not obtain any proper
distribution from the logs at all. In this case, we used bootstrapping [14] in
the simulator with the original data as special inputs in the simulator for the
rates.

5.1 Analysis on the derived CTMC

In this section, we analyze the ASK system to reveal some of its interesting
properties in order to both evaluate and obtain clues for improving its per-
formance. We carry out our analysis on the CTMC model derived from the
Stochastic Reo model of the ASK system. We then feed the derived CTMC
model as input to PRISM. In PRISM, properties of models are expressed
using operations such as P, S, and R operators: the P operator is used to
reason about the probability of the occurrence of a certain event; the S op-
erator is used to reason about the steady-state behavior of a model; the R
operator is used to analyze reward-based properties. In addition, labels are
used to concisely express the formulas representing the properties of a model.
Specifically, we use the following labels to express some properties later.

• num dataLoss represents the number of task-loss in the task queue.

• run represents the running status of the RMHRT thread.

In general, resources are neither infinite nor free. Thus, one needs to
balance cost-effective resource utilization against most efficient performance,
i.e., obtaining the best performance taking into account the limited resource.
In the Reception component in Fig. 6, the resources of interest include:

10

99

Moon, Arbab, Silva, Stam, Verhoef

(i) the minimum capacity of the task queue

(ii) the utilization and/or the performance of the RMHRT threads that han-
dle tasks

5.1.1 Task queue

As mentioned above, RMHT merely converts incoming requests into tasks, but
it does not actually handles the requests. In general, the conversion into tasks
does not take long, whereas handling a request may take considerable time.
Thus, if the task queue has a small capacity, then RMHT frequently waits as it
is blocked until task queue capacity becomes available. On the other hand, if
the task queue has a large capacity, RMHT remains idle most of the time and
some queue capacity goes to waste. Therefore, we want to determine a reason-
able size for the task queue to make the ASK system efficient. We can check
the probability of RMHT blocking by iteratively increasing the queue capacity
by 1 in subsequent runs, but this laborious approach is too time consuming.
Alternatively, we can assume that the task queue has infinite capacity and try
to find how much of it is actually used. With this task queue, we obtained
the long-run expected number of task-loss due to unavailable buffer capacity
or the unbalanced performance of RMHT and RMHRT threads. For this pur-
pose, we use the following PRISM property R{"num dataLoss"}=?[S]. The
result is shown in Fig. 5.1.2.

To mimic an infinite queue, we use a LossySync channel feeding into a
queue with a fixed capacity. This construct always accepts arriving tasks,
but arriving tasks are lost when the queue is full. We can approximate the
minimum required queue capacity out of the expected number of losing tasks

Fig. 7. Expected number of task-loss in the task queue

11

100

Moon, Arbab, Silva, Stam, Verhoef

Fig. 8. steady-state probability of thread in use

by this construct. Replacing the FIFO1 queue in Fig. 6 by the LossyFIFO1

connector in Fig. 4 provides such a pseudo-infinite task queue for this analysis.
According to this result, around 18.5 3 requests are lost per second in front of
the task queue. From this result, we can conclude that the minimum capacity
of the task queue needs to be 20 to guarantee no task-loss.

5.1.2 Functions

The RMHRT threads are the primary task handling processes. Thus, the per-
formance of the Reception component depends on the collective performance
of its RMHRT threads. It is interesting to learn how many RMHRT threads
are required to handle a task load, or what is the reasonable performance of
RMHRT threads that can provide a satisfactory QoS. Instead of changing the
number of RMHRT threads, here we fix their number at 2 and vary their per-
formance by changing their processing delay rates. These two threads have
the same architecture with the same performance, thus, the analysis on the
utilization is carried out on the RMHRT1 thread, the result of which can be
used for the other RMHRT thread. We first find the steady-state probability
that the RMHRT1 thread is running, expressed as S=?["run"] in PRISM.
The result, shown in Fig. 8, implies that the utilization of the RMHRT1 is
18%.

In a series of analysis experiments on this property, we varied the pro-
cessing delay rates for the RMHRT1 thread. However, the gaps between
the experiment results are not significant. For example, when we considered
the activity of the RMHRT1 as an immediate activity by setting its rate as
2,147,483,687, the steady-state probability S=?[“run”] from this rate value

3 The result 0.0185 was derived with millisecond as time unit.

12

101

Moon, Arbab, Silva, Stam, Verhoef

 0
 0.5

 1
 1.5

 2
 2.5

 3 0
 1

 2
 3

 4
 5

 6

 0.26
 0.28

 0.3
 0.32
 0.34
 0.36
 0.38

 0.4
 0.42
 0.44
 0.46

Thread in use

Executer delay (ms)

Sojourn at TQ (ms)

 0.26
 0.28
 0.3
 0.32
 0.34
 0.36
 0.38
 0.4
 0.42
 0.44
 0.46

Fig. 9. Steady-state probability S=?["run"]

was 14%. Compared to the huge differences between these two values, their
resulting probabilities are barely changed. This implies that improving the
performance of the RMHRT1 thread does not influence the overall perfor-
mance of the Reception component that much, which suggests the presence of
some bottlenecks in this system.

In order to figure out the bottlenecks, we experimented with the model by
varying the rates relevant to other activities in the system. Fig. 9 shows the
probability results of these experiments. The label Sojourn at TQ presents
the exit rate from the task queue. As this rate decreases, incoming requests
stay longer in the task queue, and the RMHRT threads become more idle, i.e.,
the probability of the thread utilization decreases, since the request arrive at
the thread less frequently. The graph in Fig. 9 shows this tendency when one
projects this graph onto the (Prob., Soj.) plane. This implies that increasing
Sojourn at TQ value generates higher utilization of the thread.

The label Executer delay represents the frequency that the Executer
component takes the output from the Reception component. As this rate
decreases, the threads in the Reception component need to keep their results
waiting longer and block incoming tasks. Thus, the thread becomes less idle,
i.e., the utilization of the thread increases, but their throughput becomes
low since the thread just waits without doing anything. This tendency is
also observable in the graph in Fig. 9 when one projects this graph onto the
(Prob., Exe.) plane. To obtain meaningful utilization, we must increase
Executer delay.

Based on the graph in Fig. 9, we now determine bottlenecks in this system.
In general, a small change in a bottleneck causes significant differences for the
overall performance. The graph in Fig. 9 shows an instance of this: variations
in the rates in the interval [0.1, 0.6] for both Executer delay and Sojourn
at TQ induce a big variation on the probability of utilization of the thread
(represented in the vertical axis). Thus, these two rates can be assumed to

13

102

Moon, Arbab, Silva, Stam, Verhoef

be bottlenecks, which limit the overall performance. In order to mitigate
these bottlenecks, we need to increase both rates at least above 0.6. However,
we cannot increase these rates enormously since their relevant resources are
neither infinite nor free. As a criterion for this increase, we can consider the
convergent disposition of this graph. Above the value 1.3 of the respective
rates, the utilization of the thread converges. Thus, we can choose the third
values of the respective rates for the best cost-effective utilization of the thread
in this system.

5.2 Simulation-based analysis

The Stochastic Reo Simulator [10,19] supports performance evaluation of Reo
models through simulation. It allows arbitrary distributions for describing
stochastic properties of channels and components. The method used by this
tool combines simulation techniques and specific stochastic automata models
to conduct automated performance analysis of both steady-state and transient
properties of the model. The Stochastic Reo Simulator tool uses the coloring
semantics [6] of Reo to properly model context-dependent behavior, i.e. to
express the availability of requests. The tool is developed as a plug-in within
the Eclipse Coordination Tools (ECT) [9,11]. Through the GUI editor of the
ECT, one can develop a model of a system as a Reo circuit in an intuitive
way, annotate the circuit with rates, and then use the simulator to get insight
into the behavior of the model.

The simulator provides information about (1) the average waiting times of
I/O requests at boundary nodes, (2) buffer utilization, (3) end-to-end delays,
and (4) channel utilization. Using this simulator on the Reception component,
we used the distributions extracted in Section 4.2. Due to space limit, we do
not show details of the use of the simulator here. We show a more detailed
description on the ECT web-page 4 . As a few examples, the properties/facts
we learned about the Reception component from the simulation include: the
task queue is used 57% of the time; it takes, on the average, 6.5 milliseconds
to handle a request; and the waiting time of I/O requests at the RRequestIn
node in Fig. 6 is, on the average, 1.7 milliseconds.

6 Discussion

In this paper, we have presented a stochastic analysis of (a deployed installa-
tion of) the ASK system. We modeled the system using Stochastic Reo, from
which we generated the CTMCs corresponding to some of the modules of the
system. This enabled us to use the probabilistic model checker PRISM to ver-
ify some properties of interest, using the concrete data extracted from the logs

4 http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/CaseStudies/SimulatoronASK

14

103

Moon, Arbab, Silva, Stam, Verhoef

of the running ASK installation. The results of this verification allowed us to
draw conclusions about resource allocation and how the system installation
can be adapted in order to improve its performance. CTMC models have the
limitation of supporting only exponential distributions. To overcome this lim-
itation, we also used a simulator. Even though the result from the simulation
is approximation-based analysis, we can gain insight into the aspects of the
behavior of the system that involve non-exponential distributions.

We have focused our analysis in this paper only on the Reception compo-
nent of the ASK system. However, the other components have very similar
architectures and, thus, all the techniques used in this paper can be easily
applied to them as well.

The distributions used in this case study were obtained by statistical anal-
ysis based on the real logs of an actual running ASK system. Our analysis
revealed exponential distributions for the arrivals and I/O requests. However,
rates for the processing/service times of some components were not expo-
nentially distributed. This made it necessary to do simulation for additional
analysis. We used the Reo simulator [10,19], an integrated ECT tool, which
enables the use of arbitrary distributions and predefined probabilistic behav-
iors. Using this simulator we can study a model which, for instance, has
exponentially distributed data arrivals and log-normal distributed processing
rates in some components.

In this analysis, we found two bottlenecks that were caused by (1) the low
availability of the Executer component and (2) the long sojourn time at the
task queue. In what concerns (1), we observe that we are modeling the connec-
tions between the Reception and other components (Executer and Matcher)
synchronously (that is, using Sync channels), and that the observation that
the consumption rates of the other two components become bottlenecks is not
surprising. We have experimented with replacing the Sync channels with FI-
FOs to decouple the components and remove these bottlenecks. In the process
of these experiments, we identified another bottleneck internal to the Executer
component itself. In what concerns (2), the bottleneck is caused by congestion
between the task queue and the threads. Thus, we can widen the bandwidth
of this connection to obtain better performance for the system.

In earlier initiatives to improve the performance of the ASK system, the
focus has been primarily on improving the execution times of request handling
tasks, through extensive profiling. The work presented in this paper confirms
and explains the observations from small experiments with ASK components
in isolation, carried out by Almende last year. As a consequence of this,
Almende decided to put additional effort into the optimization of queue sizes
and bandwidth between the task queue and the threads in each of the ASK
components. First attempts in this direction yield promising results.

15

104

Moon, Arbab, Silva, Stam, Verhoef

Acknowledgments.
The authors are thankful to Christian Krause and Oscar Kanters for their

help in using the Reo simulator.

References

[1] Almende website. http://www.almende.com.

[2] F. Arbab. Reo: a channel-based coordination model for component composition. Mathematical

Structures in Computer Science, 14(3):329–366, 2004.

[3] F. Arbab. Abstract Behavior Types: a foundation model for components and their composition.

Science of Computer Programming, 55(1-3):3–52, 2005.

[4] F. Arbab, T. Chothia, R. van der Mei, S. Meng, Y.-J. Moon, and C. Verhoef. From

Coordination to Stochastic Models of QoS. In COORDINATION, volume 5521 of Lecture

Notes in Computer Science, pages 268–287. Springer, 2009.

[5] ASK community systems website. http://www.ask-cs.com.

[6] D. Clarke, D. Costa, and F. Arbab. Connector colouring I: Synchronisation and context

dependency. Science of Computer Programming, 66(3):205–225, 2007.

[7] Credo project. http://projects.cwi.nl/credo/.

[8] F. S. de Boer, I. Grabe, M. M. Jaghoori, A. Stam, and W. Yi. Modeling and Analysis of

Thread-Pools in an Industrial Communication Platform. In Proc. ICFEM’09, volume 5885 of

Lecture Notes in Computer Science, pages 367–386. Springer, 2009.

[9] Eclipse Coordination Tools. http://reo.project.cwi.nl/.

[10] O. Kanters. QoS analysis by simulation in Reo. Master’s thesis, Vrije Universiteit, Amsterdam,

The Netherlands, 2010.

[11] C. Krause. Reconfigurable Component Connectors. PhD thesis, Universiteit Leiden, 2011.

[12] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic Symbolic Model

Checker. In Computer Performance Evaluation/TOOLS, pages 200–204, 2002.

[13] Y.-J. Moon, A. Silva, C. Krause, and F. Arbab. A Compositional Semantics for Stochastic

Reo Connectors. In FOCLASA, volume 30 of EPTCS, pages 93–107, 2010.

[14] C. Z. Mooney and R. D. Duval. Bootstrapping: a nonparametric approach to statistical

inference. Sage Publications, 1993.

[15] PRISM website. http://www.prismmodelchecker.org/.

[16] A. Stam. The ASK System and the Challenge of Distributed Knowledge Discovery. In ISoLA,

volume 17 of Communications in Computer and Information Science, pages 663–668. Springer,

2008.

[17] A. Stam, S. Klüppelholz, T. Blechmann, and J. Klein. ReASK Final Models. Technical Report

To appear, Almende, The Netherlands and Technical University of Dresden, Germany, 2009.

[18] W. J. Stewart. Introduction to the numerical solution of Markov chains. Princeton University

Press, 1994.

[19] C. Verhoef, C. Krause, O. Kanters, and R. van der Mei. Simulation-based Performance Analysis

of Channel-based Coordination Models. In COORDINATION 2011, volume 6721 of Lecture

Notes in Computer Science, pages 187–201. Springer-Verlag, 2011.

16

105

TTSS 2011

A Calculus for a New Component Model in

Highly Distributed Environments

Antoine Beugnard1

Computer Science Department

Telecom Bretagne

Brest, France

Ali Hassan2

Computer Science Department

Telecom Bretagne

Brest, France

Abstract

The current software systems and their corresponding deployment environments are highly com-
plex and demanding. Multiple and unstable network technologies, resource-restricted devices, and
mobility, are few examples of these complexities. In this paper we propose a new component model,
called Cloud Component (CC), that copes with the challenges posed by mobile and pervasive en-
vironments. Traditional distributed applications are based on distribution transparency, where a
middleware layer is expected to handle and hide all remote communication. Cloud component
model is the result of a paradigm shift from distribution transparency to localization acknowledg-
ment, where all details of the deployment environment including networks and communication,
mobile devices, constrained devices, and sensors, are considered a first class concern. The cloud
component model is presented informally and formally with a mathematical notation. The infor-
mal notation allows for faster comprehension of the general concepts. While the formal notation
opens the door for a wide range of theoretical topics and provides a precise language to describe
details. We also propose an assembly model to build large systems using CCs as building blocks.
This assembly model is presented formally and fully implemented for the designer to be able to
automatically check if his/her design conforms to the CC assembly model.

Keywords: Software Components, Formal Models, Component Assembly, Automatic Design
Checker, Mobile and Pervasive Computing

1 Email: Antoine.Beugnard@telecom-bretagne.eu
2 Email: ali.hassan@telecom-bretagne.eu

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

106

Beugnard and Hassan

1 Introduction

During the last years new distributed platforms have emerged, often qualified
as highly distributed environments (HDE). HDEs still include powerful and
robust machines but they are rather composed of resource-constrained and
mobile devices such as laptops, personal digital assistants (or PDAs), smart-
phones, GPS devices, sensors, etc [7]. Moreover, these devices communicate
using a variety of dependable and undependable fixed and wireless networks.

This fundamental change in the deployment environment was not accom-
panied by a theoretical software model that provides deep understanding and
systematic solutions to build compatible software systems [1].

As Malek et al. [10] have noticed “transparency (i.e. hiding distribution,
location, and interaction of distributed objects) is considered a fundamen-
tal concept of engineering distributed software systems, as it allows for the
management of complexity associated with the development of such systems”.
This is usually achieved through the utilization of a middleware layer that has
as a main function (among others) to make remote calls appear as local calls.
That is correct for stable distributed systems, however, this same concept,
distribution transparency, has been shown to suffer from major shortcomings
when applied extensively in HDEs [10].

That leaves us in the following situation: there is excessive and increasing
need to build complex mobile and pervasive systems for entertainment and
professional uses. And at the same time, the fundamental engineering tech-
niques available are inherited from stable distributed environments, and suffer
from several drawbacks and weaknesses when utilized in these new environ-
ments. The only available answer currently is applying ad-hoc techniques to
overcome these drawbacks and weaknesses.

This work is a direct response to the above mentioned challenge. First
we propose a paradigm shift from remote communication transparency to lo-
calization being the first class concern. In other words, we no more hide or
abstract location, on the contrary, we acknowledge all aspects related to lo-
cation including the specification of devices, the networking paradigms they
use, the different network specifications available, security features, and all
related characteristics of the deployment environment. We discuss the limita-
tions of current component models, the paradigm shift needed, and selected
set of related work in section 2.

To achieve the above mentioned objective, we propose in section 3 a novel
component model called cloud component (CC). This model includes the ex-
pected deployment environment in its definition, i.e. we raise the importance
of deployment environment to be equal to the functionality required from the
component. The other important feature of this novel model is that it is
fundamentally distributed. A single CC is usually distributed over many dis-

2

107

Beugnard and Hassan

tant hosts, the specification of these hosts are considered and fundamentally
acknowledged during the development process of this CC, and all aspects re-
lated to communication, coordination, and quality of service are migrated to
be internal to the border of the CC.

A software component can be thought of as unit of assembly 3 . This is true
for all component models including cloud component model. In this paper we
propose a new approach to assemble CCs using systematic methodology that
maintains the properties of CC model. CC assembly is a tool to build large
systems using CCs as building blocks. Moreover, we present a technique to
automatically check the validity of this assembly. Cloud component assembly
and checking are presented in section 4.

The cloud component model and CC assembly are presented informally
and formally with a mathematical notation. The informal notation allows
for faster comprehension of the general concepts. While the formal notation
opens the door for a wide range of theoretical topics including component type
inference, subtypes, etc, and provides a precise language to describe details.
In addition, formal methods allow the designer to produce machine readable
designs where automated tools can verify specific properties at design time,
which in turn, increases the level of confidence in the correctness of design.
We conclude with a brief summary of our proposals and some future work.

2 Highly Distributed Environments - HDE

The emergence of mobile devices such as portable notebook computers, tablet
computers, PDAs, and mobile phones, and the advent of various wireless net-
working solutions make computation possible anywhere [14,13,12]. In this
paper, we define highly distributed environments as a target platform of our
work. These networks include distributed systems with laptops and wireless
networks, mobile systems, and pervasive systems. These networks violate
many familiar assumptions about the behavior of distributed environments,
and demand new techniques to build compatible and optimized software [1],
especially at the architectural level of the software development process.

The characteristics that the HDE infrastructure imposes include [12,1,4,5]:
1- Mobility of hardware, data, and code. 2- Heterogeneity of software and
devices. 3- Volatility of hardware and software components. 4- Small devices,
highly constrained resources, dynamic resources. 5- Connectivity failure
are not rare; disconnected operations. 6- High bandwidth and low latency
are no more available in continuous and dependable manner. 7- Software
components communicate using a variety of interaction paradigms (e.g.,

3 In this article we prefer to use the word assembly rather than composition since the
output of this operation (assembly) is not a software component.

3

108

Beugnard and Hassan

Fig. 1. Left: Distributed component model (CCM, EJB, .Net, etc) - remote access; no control over
the underneath infrastructure. Right: Cloud component model - local access; the component is
responsible for remote communication.

SOAP messaging, media streaming).

In spite of the above challenges that permeate the entire traditional soft-
ware development life cycle, software in these systems are expected to obey
the following constraints [4,14,5,10]: 1- Customized implementation: the im-
plemented software need to be efficient, customized, and can be deployed on
resource constrained devices. 2- Correctly respond to runtime changes in the
environment. 3- Preserve dependability and quality of service in this highly
dynamic environment.

2.1 Current component models limitations

The concept of software components has been widely adopted because of its
attractive and powerful encapsulation attributes [3,9]. Lau et al. noted: “En-
capsulation has the potential to counter complexity” [9].

After analyzing several component technologies such as CCM and EJB
for industry and Fractal and SOFA for academia, we found that they follow
a common paradigm. These component models rely on strong assumptions,
and they emulate local call on top of distributed networks, and finally they
consider any deviation from their implicit or explicit assumption as exceptions.
All of these points are considered limitations with regards to HDEs. For more
detailed discussion on these limitations, please refer to appendix A.

2.2 Paradigm shift with cloud components

To overcome these limitations, we propose a new component model called
Cloud Component (CC) which is a novel extension to the ’Medium’ concept
proposed by Beugnard et al [2,11]. CC encompasses all features provided by
currently existing component models and, moreover, is especially designed to
be used in the above mentioned complex environments. CC model provides the
capability of the instantiation of its interface(s) on each host that potentially
needs to access the service provided by this CC [2]. This will make the service
access explicitly local. In other words, if we want our component to be accessed

4

109

Beugnard and Hassan

at some host, we need to deploy an interface instance at that host. It is
evident that this instance will have some sort of remote communication with
other entities inside the component, but this is internal with respect to the
component border as explained in figure 1.

Migrating the communication to be internal inside the CC border has
significant contribution to the overall architecture of distributed applications.
In figure 1 (left) the server provides a service S which is accessible in sites A,
B, and C. If the resources at site A are not enough, or the connectivity at site
C is not adequate, or simply the configuration of site B is not compatible, the
service S of component Com is not accessible, i.e. useless.

With CC, figure 1 (right), this is not the case. Cloud component comCC
has its interface S instantiated on sites A, B, and C. Using it is simply a local
access of a locally available service. S at the three sites provides the same
(or similar) functionality, however, it is possible (and highly probable in this
case) to be implemented using completely different approaches. For example,
in site A special arrangements should be carried out to handle the extremely
limited resources and the mobile networking. In site C, constraints of site A
are relaxed, as result, different implementation technologies are utilized. The
same argument holds for site B, where there are stable fixed networking and
power supply, and rather advanced resources. At this site, there is no need for
the implementation to be prepared to handle complexities that arise in sites
such as A or C.

In other words, we allow several implementations of the same functionality
to exist side by side. The variation of implementation is driven by the vari-
ation of deployment environment, i.e. the characteristics of the hosts where
interfaces will be instantiated, and the characteristics of connectivity available
for each host. For the interface S to be instantiated on site A, there need to be
implementation variant that is compatible with the characteristics of site A.
This compatibility is checked statically before the instantiation of the system
and each of its roles but is out of the scope of this article.

2.3 Related Work

Didier Hoarau et al. deal with the challenges of HDEs [5,6,7]. However,
their solution has different scope from ours. First, they expand the already
existing component model Fractal. Second, they only model and handle the
disconnection of network connection among all characteristics of HDE.

Marija Mikic-Rakic provides a sophisticated response to one challenge pro-
posed by HDEs, which is the discontinuity of services where the system needs
to continue functioning in the near absence of the network [12]. This work
proposes a redeployment solution as part of a middleware called Prism-MW.

Finally, and the most related work, Sam Malek et. al. propose a frame-

5

110

Beugnard and Hassan

Fig. 2. Left: CC style with a single interface S. Middle: CC with two roles, cardinality, and
location. Right: CC com with two roles and three hosts.

work and tools to support the complete software engineering life-cycle for the
development of HDE applications [10]. While their tools help overcome the
challenges posed by HDEs, these challenges become natural details in our
novel component model, where they can be handled systematically.

3 Cloud Component Model

We chose the name Cloud Component since our component model encom-
passes physical borders and hence hides the technologies, implementation
variants, and architecture choices used to conform to the physical topology
of the underneath infrastructure. Our approach in presenting cloud compo-
nent model is based on two different notations: the informal notation and
the mathematical/formal notation. The informal notation is easier to under-
stand and is highly dependent on figures, while the formal notation is more
compact, more precise, and less ambiguous. The formal notation allows us to
communicate precise details easier, and allows us to easily present statements
and proofs.

3.1 The definition of cloud component

Definitions 1 to 5 collectively form the definition of cloud component.

3.1.1 Definition 1: Roles

Let C1 be a cloud component with single interface S as illustrated in figure 2
(left). S is defined through an Interface Definition Language - IDL. We assume
S defines the signature of provided and required functions of C1. The contract
of this interface could be more sophisticated, but we restrict its definition for
the sake of simplicity.

A cloud component can have several interfaces : P, Q, R, etc. We call these
interfaces ‘roles’ because their identification (set of functions they gather) is
guided by the way the component can be used through this interface. The
cloud component in figure 2 (middle) has two roles: S and R.

6

111

Beugnard and Hassan

3.1.2 Definition 2: Cardinality

Each cloud component can have several roles. In addition, the role is allowed
to have several instances, i.e., several carbon copies of the same IDL. The total
number of instances of a role in a running version of the component is called:
the cardinality of the role. In figure 2 (middle) the role S has cardinality
one and the role R has cardinality two. Combined with location property
(explained later), this approach will encapsulate the communication and all
its details and semantics inside the component.

3.1.3 Definition 3: Connection

Once the component border is defined, the connection rules can be defined.
In order to suppress ambiguity of 1-to-many or many-to-many connections
identified in [11] we allow a role to connect to only one role of another cloud
component in a one-to-one connection.

This rule applies at the instance level, when cloud components are actually
implemented. In order to allow a 1-to-many or many-to-many connectivity,
we use ‘role cardinality’.

3.1.4 Definition 4: Multiplicity

Cardinality is a number k ∈ N . We can allow more complex structure by not
specifying k (at some point of the design). Instead, we put constraints on k

called multiplicity. For example a role R can have multiplicity [1..5], [1..∗], or
simply ∗.
At this level of definition, we are not bounded by decidability features but
only consider constraints definition.

3.1.5 Definition 5: Location

Each role is assigned a location to run on. The location in the most basic form
is a computing host/device. In figure 2 (middle) a cloud component has two
different roles, S and R. Role S has one instance that is located at the host
Server. The role R has two instances that are located at the host Client.
Figure 2 (right) presents a cloud component that has two different roles, S
and R. Role S has one instance that is located at the host Server. The role
R has two instances one of them is located at the host Client 1 and the other
is located at host Client 2.

One should not mix our definition of location with the geographic loca-
tion. Our model does not define or recognize geographic location, rather, we
acknowledge location as a computing/electronic device that might be mobile
or not. It is fundamental to assert that location is integral part to the CC
definition, in other words, without location specification the cloud component

7

112

Beugnard and Hassan

definition will not be complete. Finally, and at design and implementation
stages, the collection of all locations are called ‘the expected deployment envi-
ronment.’

3.2 Formal definition of cloud component

A single cloud component is defined using the following four-tuple:

(i) A finite set of roles Λ.
(ii) A finite set of multiplicities for these roles µ.
(iii) A set of possible deployment environments L. Each L is either a finite

set of hosts H, or a finite set of host types T .
(iv) A function Z that maps roles to location types or hosts.

Ω ≡ (Λ, µ, L, Z)

The following formally defines the cloud component com in figure 2
(right):
Ωcom ≡ (Λ, µ, L, Z) where:

Λ = {ΛS, ΛR}
µ = {(ΛS, 1), (ΛR, 2)}
L = {{TServer, TClient 1, TClient 2}}
Z : ΛS ↓ TServer, ΛR ↓ TClient 1, ΛR ↓ TClient 2

The formal definition is read as follows: the CC com is defined using its
four-tuple. The set of roles contains two roles: role type S and role type R.
Role type S has multiplicity 1, and role type R has multiplicity 2. The set of
expected deployment environments has only one set, which contains three host
types: host type Server, host type Client1, and host type Client2. Finally Z

can be read as: The role S is localized at host of type Server. Role R has two
instances, one is localized at host of type Client1 and the other is localized
at a host of type Client2. Symbols used to construct the formal notation are
summarized in table B.1 in appendix B.

3.3 Formal definition of cloud component based system

Generally, a software component can be thought of as ’unit of composition’.
This is true for all component models including cloud component model. In
CC model, roles are the only access points of the component. A role can serve
as a connection port where component C1 connects to other component C2 as
in figure 3 (left). We choose to assembly components in specific architecture
to achieve our desired system specifications. As result we have σ the set of
assembly rules that includes the dependency rules between CCs, and all role
connections. Cloud component assembly will be discussed in detail in section
4.

8

113

Beugnard and Hassan

Fig. 3. Left: Two CCs are composed using roles S and Q. Right: Two CCs AlphaCC has two
role instances A and B, and BetaCC has two role instances C and D. A, C, and D are hosted
by desktopOne, while B is hosted by desktopTwo. Therefore, the connection between A and C is
legal, whereas the connection between B and D is not permitted.

A system built using cloud components consists of:

(i) A finite set of cloud components Ω.
(ii) A finite set of multiplicities for these cloud components M .
(iii) A set of assembly rules σ.
(iv) A set of possible deployment environments L.

As result, the system type is fully defined using the “four-tuple” notation:

S ≡ (Ω, M, σ, L)

Finally we define the system instance Ŝ. Let S be a CC based system that
is defined as above. Ŝ is an instance of that system and is defined using the
following five-tuple:

(i) The system type S that we want to instantiate.
(ii) The function τ that takes a cloud component as a parameter and returns

the number of instances of it.
(iii) The function K that takes a role as a parameter and returns its cardi-

nality, i.e. number of instances.
(iv) The deployment environment L which is a finite set of hosts H.
(v) The function Z that maps Γ 4 to L.

Ŝ ≡ (S, τ, K, L, Z)

4 Cloud Component Assembly

4.1 Assembly Constraints

In CC model, roles are the only access points of the component. A role
can serve as a connection port where component ComA connects to other
component ComB as in figure 3 (left).

4 Γ is defined in appendix B.

9

114

Beugnard and Hassan

Fig. 4. The importance of the ‘connection multiplicity’. Left: No information. Right: The
multiplicity of the connection is defined: [2..4].

4.1.1 First constraint - one-to-one

An instance of role S can connect to one instance only of any other role at
any time instance. We raised the importance of this constraint from being a
recommended design choice to be a fundamental model constraint for several
reasons. One of these reasons is to remove ambiguities in the connections.
Another and important reason is to control the design precisely, and to be
able using this control to ensure the delivery of the expected non-functional
properties. As an example, let us take the role S in figure C.1 from the banking
example in appendix C. And suppose S is hosted by some regular desktop. If
S is expected to have 10 connections, i.e. 10 clients that want to use the video
service, is completely different from S is expected to have 106 connections at
the same time. The difference exists in the design, implementation, and the
deployment host (probably a normal desktop will not be able to serve 106

connections). This difference should be recognized from the very early stages
in the design, and this is done in CC model by setting the multiplicity (or
cardinality) constraints over roles.

4.1.2 Second constraint - local connections only

Two instances of two roles can connect to each other only if both of them are
instantiated at the same host as in figure 3 (right). If they are instantiated
at different hosts they simply can not connect to each other. This is a direct
result of the paradigm shift discussed in section 2.2. It is fundamental in our
model to migrate all remote communications to be internal to the border of
the CC itself. This migration means that these remote communications are
designed and implemented using the special software development process 5

of the CC model, and more important, passed all checks necessary to ensure
the quality of service expected.

4.1.3 Third constraint - Connection multiplicity

When there is a connection between two roles, that does not mean that all
instances of these two roles should connect to each other. Figure 4 (left) is

5 We propose a novel software development process to build CCs and CC based systems.
The description of this process is out of the scope of this article and we will propose it in
future publication.

10

115

Beugnard and Hassan

an update of figure 3 (left) by adding multiplicities to roles S and Q. To
understand the connection in this figure we need to see the uncertainty that
exist at this phase of design. During runtime, there might be one instance of
S and five instance of Q, or nine instances of S and two instance of Q. So
how many connections we have at runtime between S and Q? To answer this
question we need to remember that the final responsibility of the design is held
by the designer himself, we only provide an advanced model and accompanied
tools and checkers. To facilitate the assembly design we add the connection
multiplicity, which is a range [min..max], where min is the minimum number
of connections that must exist at runtime, and max is the maximum number
of connections that might exist at runtime, as in figure 4 (right). Usually
these numbers reflect the need of either of the roles, or both. For example
if I have a role W that connects an ATM machine (CC ATM) to the bank
system (role S of CC Agent), I can expect W to need only one connection
at runtime, i.e. [1..1]. On the other hand I expect S to allow zero or more
connections at runtime, i.e. [0..∗]. Please see figure C.1 in appendix C.

4.2 Formal definition of cloud component assembly

CC assembly is based on the connection operator ⊗, which is a binary operator
that takes two CC roles and returns true if the designer explicitly listed those
two roles to be connected (this is done in σ as described later), otherwise it
returns false. The set of assembly rules is called σ and is defined using the
following context free grammar:
E → { I }
I → IJ, | IJ | �

J → (Ωvar.Λvar ⊗ Ωvar.Λvar, int, int)
Where var and int are terminals such that: var represents any string of char-
acters and int represents a positive integer. This grammar will recognize the
following syntax:
σ = {(Ωname.Λname ⊗ Ωname.Λname,min,max), (Ωname.Λname ⊗
Ωname.Λname,min,max), ..., (Ωname.Λname⊗Ωname.Λname,min,max)}.
The following shows the assembly in figure 4 (right) using formal notation:
σ = {(ΩComA.ΛS ⊗ ΩComB.ΛQ, 2, 4)}
In general we can write:
σ = {(ΩComA.ΛS ⊗ ΩComB.ΛQ, m, n)}
This connection has the following semantics: at least m instance of S connect
to m instance of Q, and at most n instance of S connect to n instance of Q.
This is correct for one and only one instance of each cloud component.

11

116

Beugnard and Hassan

Fig. 5. CC assembly normal form A. Ranges are always consistent (i.e. min � max).

Fig. 6. The relation between the two ranges [e..f] and [i..m] in figure 5. We start with level one,
and depending on the value of i we move to level two where we inspect the value of m. The label(s)
on the arrows leading to the decision level indicate the decisions made on the upper two levels.

4.3 Remark

The connection operator ⊗ is symmetric:
ΩComA.ΛS ⊗ ΩComB.ΛQ ⇐⇒ ΩComB.ΛQ⊗ ΩComA.ΛS
The above statement is read as follows: role S is connected to role Q if and
only if role Q is connected to role S.

4.4 Assembly checking algorithm

Figure 5 presents the general case of assembly, which is defined as normal
form A assuming there is a single instance of the CC. The connection here has
the following semantics (as mentioned in the definition): at least i instance of
S(Q) connect to i instance of Q(S), and at most m instance of S(Q) connect
to m instance of Q(S). This is correct for one and only one instance of each
cloud component ComA and ComB.
The two ranges [e..f] and [g..h] are not related in any way since cloud com-
ponents may have been designed independently. On the other hand, the two
ranges [e..f] and [i..m] are related as in figure 6. Cases presented in figure 6
can be reduced to the following four cases:

(i) i ≤ e & m ≤ e ⇒ Valid

(ii) i ≤ e & e ≤ m ⇒ Warning

(iii) e < i ≤ f ⇒ Warning

(iv) f < i ⇒ Error

The same argument holds for the two ranges [g..h] and [i..m] in figure 5.
Depending on the numbers, we have three cases:

(i) Valid: in this case we do not have a chance of connection problems at
runtime if the instantiation of roles respected the design.

12

117

Beugnard and Hassan

Fig. 7. Left: CC assembly normal form B. Multiple connections - role S is connected to three roles
Q1, Q2, and Q3. Right: Role S after assembly reduction - phase one.

Fig. 8. CC assembly normal form C. Other CCs can connect to Q, S, etc. Omitted for space.

(ii) Warning: in this case the designer need to be careful because even if
the instantiation respected the minimum requirements, we might face
invalid situations. For example, if e < i ≤ f , and at runtime we have
only e instances of S (legal situation), and we need i connections to S.
This situation will produce runtime error. As result, before asking for i
connections to S, the application must instantiate at least i instances of
S (possible because i ≤ f).

(iii) Error: here we do not have enough instances of the role to satisfy the
minimum connections need.

A role (specifically, role type) is not limited to be connected to only one
other role, rather, this number is unlimited. At runtime, this role is expected
to have several instances, where each instance is connected to one other role.
This is assembly normal form B and presented in figure 7 (left). To check this
assembly we need to get it back to normal form A in figure 5. We call this
conversion from the form normal form B to normal form A: assembly reduction
- phase one. For role S in figure 7 this is accomplished as in figure 7 (right).
Formally: Let σ = {(S ⊗ Q1, a1, b1), (S ⊗ Q2, a2, b2), · · · , (S ⊗ Qn, an, b2)}.
After assembly reduction - phase one, we get: σ = {(S,Q, a, b)} such that:
a =

�n
i=1ai, b =

�n
i=1bi, and Q is virtual role for checking only. This is for

role S only and must be done for all other roles that have connections to more
than one role.

Figure 8 presents CC assembly normal form C. The connection here has
the following semantics: at least i instance of S(resp.Q) connect to i instance
of Q(resp.S), and at most m instance of S(resp.Q) connect to m instance
of Q(resp.S). This is correct for one and only one instance of each cloud
component. More over, CCs ComA and ComB have multiplicities [a..b] and
[c..d] respectively.

Because of the multiplicities of the CCs, we are unable to use the checking
procedure used for normal form A directly on normal form C. To be able
to check this assembly, we will follow several assembly reductions starting

13

118

Beugnard and Hassan

Fig. 9. The result after reduction phase two and three on figure 8- CC multiplicities are completely
removed.

Fig. 10. Inclusive checking algorithm. The integrity checks, namely, check1() through check5(),
insure that the input is not corrupted with respect to normal form C.

from this general model. Assembly reduction phase two reduces the multi-
plicity of the CC to be incorporated (inserted) into the multiplicities of its
roles. Formally, let: ΩComA ≡ ({ΛP,ΛS}, {(ΛP, 1), (ΛS, e, f)}, L, Z)
and ΩComB ≡ ({ΛQ,ΛR}, {(ΛQ, g, h), (ΛR, 1)}, L, Z).
σ = {(ΩComA.ΛS ⊗ ΩComB.ΛQ, i,m)}. Now let S ≡
({ΩComA,ΩComB}, {(ΩComA, a, b), (ΩComB, c, d)}, σ, L). Assem-
bly reduction phase two produces the new multiplicities for all roles:
µComA = {(ΛP, a, b), (ΛS, ae, bf)} and µComB = {(ΛQ, cg, hd), (ΛR, c, d)}.

Assembly reduction phase three is trickier. The multiplicity of the con-
nection [i..m] is affected by both CC’s multiplicities, namely [a..b] and [c..d].
The objective of this phase is to end up with the connection multiplicity [x..y]
using the rule: ‘for x we choose the max of the mins, and for y we choose the
max of the maxs’. Formally: x = max{ia, ic}, and y = max{mb, md}. By
the end of this phase we will get back to normal form A that can be checked
directly as in figure 9.

The algorithm in figure 10 is fully implemented using C programming
language, and used to check the banking system example in appendix C.

5 Conclusion and Future Work

Highly distributed environments pose a number of challenges for software de-
velopment process. In this paper we propose a novel component model, the
cloud component, that converts the above mentioned challenges into regu-
lar and systematic software development details and tasks. Moreover, we
proposed a formal notation to describes our component model. This formal
notation is more compact, more precise, and less ambiguous. The formal no-
tation allows us to communicate precise details easier, and allows us to easily
present statements and proofs. Finally, we developed a formal model to build
large systems using CCs as building blocks, and developed an algorithm to
check the validity of the assembly, and implemented an automatic assembly
checker based on that algorithm.

14

119

Beugnard and Hassan

Several remaining challenges form the scope of our future work. The most
important challenge is related to the deployment environment modeling, and
designing an effective algorithm to be the basis of an automatic deployment
checker that checks the compatibility between cloud components and the ac-
tual environment where we are trying to deploy. We have investigated tech-
niques to accomplish this task, these techniques include Ontology and F-Logic
(Object Logic) for modeling. Moreover, we investigated several algorithms
that depend on reasoning based queries for automatic deployment checker.

References

[1] Cardelli, L., Abstractions for mobile computation, Secure Internet Programming, Security
Issues for Mobile and Distributed Objects - Lecture Notes in Computer Science 1603 (1999).

[2] Cariou, E., A. Beugnard and J.-M. Jézéquel, An architecture and a process for implementing

distributed collaborations, in: 6th International Enterprise Distributed Object Computing

Conference EDOC 2002, Lausanne, Switzerland, Proceedings (2002), pp. 132–143.

[3] Crnkovic, I., A. Vulgarakis and M. Chaudron, A classification framework for software

component models, Software Engineering, IEEE Transactions on (2010).

[4] France, R. and B. Rumpe, Model-driven development of complex software: A research roadmap,
in: International Conference on Software Engineering, ISCE, Workshop on the Future of

Software Engineering, FOSE, Minneapolis, USA, IEEE Computer Society, 2007, pp. 37–54.

[5] Hoareau, D., “Composants ubiquitaires pour reseaux dynamiques,” Ph.D. thesis, Universite
de Bretagne Sud (2007).

[6] Hoareau, D. and Y. Mahéo, Distribution of a hierarchical component in a non-connected

environment, in: 31st EUROMICRO Conference on Software Engineering and Advanced

Applications (EUROMICRO-SEAA), Porto, Portugal, 2005.

[7] Hoareau, D. and Y. Mahéo, Middleware support for the deployment of ubiquitous software

components, Personal and Ubiquitous Computing 12 (2008), pp. 167–178.

[8] Hourdin, V., J. Tigli, S. Lavirotte, G. Rey and M. Riveill, SLCA, composite services for

ubiquitous computing, in: Proceedings of the International Conference on Mobile Technology,

Applications, and Systems (2008).

[9] Lau, K. and Z. Wang;, Software component models, Software Engineering, IEEE Transactions
on 33 (2007), pp. 709–724.

[10] Malek, S., G. Edwards, Y. Brun, H. Tajalli, J. Garcia, I. Krka, N. Medvidovic, M. Mikic-Rakic
and G. Sukhatme, An architecture-driven software mobility framework, Journal of Systems and
Software 83 (2010), pp. 972–989.

[11] Matougui, S. and A. Beugnard, Two ways of implementing software connections among

distributed components, in: On the Move to Meaningful Internet Systems, OTM Confederated

International Conferences, Agia Napa, Cyprus, Proceedings, Part II, 2005.

[12] Mikic-Rakic, M., “Software architectural support for disconnected operation in distributed
environments,” Phd dissertation, University of Southern California (2004).

[13] Mikic-Rakic, M. and N. Medvidovic, Architecture-level support for software component

deployment in resource constrained environments, Component Deployment (2002), pp. 493–
502.

[14] Mikic-Rakic, M. and N. Medvidovic, Software architectural support for disconnected operation

in highly distributed environments, Component-Based Software Engineering (2004), pp. 23–39.

[15] Tibermacine, C., D. Hoareau and R. Kadri, Enforcing architecture and deployment constraints

of distributed component-based software, Fundamental Approaches to Software Engineering
(2007), pp. 140–154.

15

120

Beugnard and Hassan

A Current component models limitations

After analyzing several component technologies, we found that they follow a
common paradigm. These component models rely on strong assumptions, and
they emulate local call on top of distributed networks, and finally they consider
any deviation from their implicit or explicit assumption as exceptions. All of
these points are considered limitations with regards to HDEs as we explain in
the following:

Rely on strong assumption A common way to distribute a component-
based application consists of installing each component instance on a host;
the distribution then refers to the fact that a component can make distant
invocations to the services implemented by another component [6,11]. This
type of architecture usually relies on rather strong assumptions [6]:
(i) The stability of the execution platforms (the component server is highly

available - usually with backup recovery system)
(ii) All hosts have sufficient resources which include processing power, mem-

ory, and power supply.
(iii) The connectivity is reliable and has good characteristics (low latency,

enough bandwidth, stable, no disconnections, etc.).
In general, an application designed using this architecture can not be

installed and executed on deployment environments with hosts that are
potentially volatile and limited in resources, especially when disconnected
network operation and weak consistency of the characteristics of the con-
nectivity are possible or frequent, which is the case in HDEs [6,7].

Emulation The distributed component models mentioned above share a com-
mon goal: making aspects related to the distribution transparent to both
the application programmer and the users. They hide distribution by mak-
ing remote call appears to the caller as local call, but to some ad-hoc and
limited exceptions (see next point). However, by hiding distribution, these
mechanisms do not incorporate aspects related to disconnections, mobility,
and all other complexities mentioned in the previous section [8]. In gen-
eral, distributed applications are designed using the same techniques as a
centralized application [5,15].

Exceptions Most common component technologies were not originally de-
signed for HDE. Therefore, they consider any deviation from the strong
assumptions mentioned above such as inaccessibility of a machine or the
unavailability of certain resources as exceptions. The treatment of the var-
ious changes that may occur within the network is usually done by adding
code to adapt to these new events. This code will increase the complexity
of applications [5,15] with specific and ad-hoc extensions and poor method-
ological guidelines.

16

121

Beugnard and Hassan

Typical HDE applications are highly distributed, decentralized, and
mobile. Therefore, they are highly dependent on the underlying network
[14,13,12]. We believe that the successful paradigm in stable distributed net-
works ‘remote communication’ or ‘distribution transparency’ is no more de-
pendable in highly distributed environments HDE. There is fundamental need
to move from hiding the underlying network into acknowledging all its aspects
and details. It is possible to achieve that by introducing the concept ’location’.
We call this a paradigm shift from ‘distribution transparency’ to ‘localization’.

By location we mean the physical actual computing device where software
runs, and that ranges from simple mobile phone to large super computing
machine. Modeling location at early design stages will better reflect commu-
nication, mobility, and heterogeneity of devices.

Instead of delaying the distribution of software components over the com-
puting devices until the deployment phase, we propose integrating this concept
to the very early stages of software development process, especially architec-
ture. Mapping software components to the deployment environment is called
’localization’. Several models and techniques are proposed in this work to fa-
cilitate this approach. The localization of components is revised and refined
during the development process until we reach the final deployment plan of
the whole application.

It is clear that when we attach location property to a software component,
we – either explicitly or implicitly – attach information related to the resources
available in this location, the communication paradigms available, the power
supply type, and the security features, etc. This information will help (guide)
the design and implementation of the system itself.

Acknowledging the properties of the target infrastructure at the very early
stages of software development process will help us develop customized soft-
ware for that infrastructure. This software will utilize the resources to the
maximum or near maximum, and at the same time will tolerate the weak-
nesses and treat the previously considered exceptions as survivable expected
events.

B Symbols

Cloud Components and CC based systems can be described using for-
mal/mathematical notation. In this appendix we present the elements and
symbols of this notation/language in table B.1.

C Example - Banking System

In this appendix we presnt a simple banking system to explain the algoritm
proposed in section 4. The banking example is presented in figure C.1. The ∗

17

122

Beugnard and Hassan

Concept Symbol Comments

Start Symbol S Usually the complete system we want to model

Cloud Component Ω ΩA is read ’cloud component A’

Roles Λ Type ; ΛR is read ’role R”

Γ Instance ; ΓR is read ’instantiated role R’

Cardinality K

Role Multiplicity µ

CC Multiplicity M

Location - Type T

Location - Host H

Localized at ↓

CC Assembly σ The set of assembly rules

Connect Operator ⊗ A binding between two roles

Set of symbol Set of CCs Ω, set of roles Λ, etc.

Define ≡
Table B.1

Symbols used to construct the formal notation.

symbol can be reduced to [0..MAXINT] for computations. In this example
the system is built using three CCs. The Bank CC is responsible for all
database systems, security, transactions, and accounts. It is basically the
backbone of the system. The Agent CC is the filter that any access to Bank

will pass through. In other words, nobody can directly access Bank CC. ATM
CC is installed over all ATM machines to allow customers to access their
accounts, and perform bank transactions. Similarly, Internet CC is installed
on the customers devices to allow them to access their accounts using internet
banking.

We encoded this example using the formal language presented in this pa-
per, and used the automatic assembly checker to check the design. The as-
sembly checker generated the output presented in figure C.2.

The checker reports expected warnings and errors. For instance the error
reported (figure C.2 - right) on the system described figure C.1 (bottom) is
due to the too many instantiations of the ATM and Internet CCs.

18

123

Beugnard and Hassan

Fig. C.1. The banking system in normal form C. Up: Enterprise Edition. Down: Limited Edition

Fig. C.2. The output generated by the assembly checker. Up: For Enterprise Edition. Down: For
Limited Edition

19

124

	TTSS'11-Table of Contents
	Real World Model Checking of Millions of Lines of C/C++ Code
	Towards Certifiable Software for Medical Devices: The Pacemaker Case Study Revisited
	Admissible adversaries in PRISM for probabilistic security analysis
	Monadic Scripting in F# for Computer Games
	Tool Supported Analysis of Web Services Protocols
	A Formal Approach to Data Validation Constraints in MDE
	Towards rigorous analysis of Open Source Software
	Stochastic Reo: a Case Study
	A Calculus for a New Component Model in Highly Distributed Environments

