183 research outputs found

    Exploiting task-based programming models for resilience

    Get PDF
    Hardware errors become more common as silicon technologies shrink and become more vulnerable, especially in memory cells, which are the most exposed to errors. Permanent and intermittent faults are caused by manufacturing variability and circuits ageing. While these can be mitigated once they are identified, their continuous rate of appearance throughout the lifetime of memory devices will always cause unexpected errors. In addition, transient faults are caused by effects such as radiation or small voltage/frequency margins, and there is no efficient way to shield against these events. Other constraints related to the diminishing sizes of transistors, such as power consumption and memory latency have caused the microprocessor industry to turn to increasingly complex processor architectures. To solve the difficulties arising from programming such architectures, programming models have emerged that rely on runtime systems. These systems form a new intermediate layer on the hardware-software abstraction stack, that performs tasks such as distributing work across computing resources: processor cores, accelerators, etc. These runtime systems dispose of a lot of information, both from the hardware and the applications, and offer thus many possibilities for optimisations. This thesis proposes solutions to the increasing fault rates in memory, across multiple resilience disciplines, from algorithm-based fault tolerance to hardware error correcting codes, through OS reliability strategies. These solutions rely for their efficiency on the opportunities presented by runtime systems. The first contribution of this thesis is an algorithmic-based resilience technique, allowing to tolerate detected errors in memory. This technique allows to recover data that is lost by performing computations that rely on simple redundancy relations identified in the program. The recovery is demonstrated for a family of iterative solvers, the Krylov subspace methods, and evaluated for the conjugate gradient solver. The runtime can transparently overlap the recovery with the computations of the algorithm, which allows to mask the already low overheads of this technique. The second part of this thesis proposes a metric to characterise the impact of faults in memory, which outperforms state-of-the-art metrics in precision and assurances on the error rate. This metric reveals a key insight into data that is not relevant to the program, and we propose an OS-level strategy to ignore errors in such data, by delaying the reporting of detected errors. This allows to reduce failure rates of running programs, by ignoring errors that have no impact. The architectural-level contribution of this thesis is a dynamically adaptable Error Correcting Code (ECC) scheme, that can increase protection of memory regions where the impact of errors is highest. A runtime methodology is presented to estimate the fault rate at runtime using our metric, through performance monitoring tools of current commodity processors. Guiding the dynamic ECC scheme online using the methodology's vulnerability estimates allows to decrease error rates of programs at a fraction of the redundancy cost required for a uniformly stronger ECC. This provides a useful and wide range of trade-offs between redundancy and error rates. The work presented in this thesis demonstrates that runtime systems allow to make the most of redundancy stored in memory, to help tackle increasing error rates in DRAM. This exploited redundancy can be an inherent part of algorithms that allows to tolerate higher fault rates, or in the form of dead data stored in memory. Redundancy can also be added to a program, in the form of ECC. In all cases, the runtime allows to decrease failure rates efficiently, by diminishing recovery costs, identifying redundant data, or targeting critical data. It is thus a very valuable tool for the future computing systems, as it can perform optimisations across different layers of abstractions.Los errores en memoria se vuelven más comunes a medida que las tecnologías de silicio reducen su tamaño. La variabilidad de fabricación y el envejecimiento de los circuitos causan fallos permanentes e intermitentes. Aunque se pueden mitigar una vez identificados, su continua tasa de aparición siempre causa errores inesperados. Además, la memoria también sufre de fallos transitorios contra los cuales no se puede proteger eficientemente. Estos fallos están causados por efectos como la radiación o los reducidos márgenes de voltaje y frecuencia. Otras restricciones coetáneas, como el consumo de energía y la latencia de la memoria, obligaron a las arquitecturas de computadores a volverse cada vez más complejas. Para programar tales procesadores, se desarrollaron modelos de programación basados en entornos de ejecución. Estos sistemas forman una nueva abstracción entre hardware y software, realizando tareas como la distribución del trabajo entre recursos informáticos: núcleos de procesadores, aceleradores, etc. Estos entornos de ejecución disponen de mucha información tanto sobre el hardware como sobre las aplicaciones, y ofrecen así muchas posibilidades de optimización. Esta tesis propone soluciones a los fallos en memoria entre múltiples disciplinas de resiliencia, desde la tolerancia a fallos basada en algoritmos, hasta los códigos de corrección de errores en hardware, incluyendo estrategias de resiliencia del sistema operativo. La eficiencia de estas soluciones depende de las oportunidades que presentan los entornos de ejecución. La primera contribución de esta tesis es una técnica a nivel algorítmico que permite corregir fallos encontrados mientras el programa su ejecuta. Para corregir fallos se han identificado redundancias simples en los datos del programa para toda una clase de algoritmos, los métodos del subespacio de Krylov (gradiente conjugado, GMRES, etc). La estrategia de recuperación de datos desarrollada permite corregir errores sin tener que reinicializar el algoritmo, y aprovecha el modelo de programación para superponer las computaciones del algoritmo y de la recuperación de datos. La segunda parte de esta tesis propone una métrica para caracterizar el impacto de los fallos en la memoria. Esta métrica supera en precisión a las métricas de vanguardia y permite identificar datos que son menos relevantes para el programa. Se propone una estrategia a nivel del sistema operativo retrasando la notificación de los errores detectados, que permite ignorar fallos en estos datos y reducir la tasa de fracaso del programa. Por último, la contribución a nivel arquitectónico de esta tesis es un esquema de Código de Corrección de Errores (ECC por sus siglas en inglés) adaptable dinámicamente. Este esquema puede aumentar la protección de las regiones de memoria donde el impacto de los errores es mayor. Se presenta una metodología para estimar el riesgo de fallo en tiempo de ejecución utilizando nuestra métrica, a través de las herramientas de monitorización del rendimiento disponibles en los procesadores actuales. El esquema de ECC guiado dinámicamente con estas estimaciones de vulnerabilidad permite disminuir la tasa de fracaso de los programas a una fracción del coste de redundancia requerido para un ECC uniformemente más fuerte. El trabajo presentado en esta tesis demuestra que los entornos de ejecución permiten aprovechar al máximo la redundancia contenida en la memoria, para contener el aumento de los errores en ella. Esta redundancia explotada puede ser una parte inherente de los algoritmos que permite tolerar más fallos, en forma de datos inutilizados almacenados en la memoria, o agregada a la memoria de un programa en forma de ECC. En todos los casos, el entorno de ejecución permite disminuir los efectos de los fallos de manera eficiente, disminuyendo los costes de recuperación, identificando datos redundantes, o focalizando esfuerzos de protección en los datos críticos.Postprint (published version

    Resiliency in numerical algorithm design for extreme scale simulations

    Get PDF
    This work is based on the seminar titled ‘Resiliency in Numerical Algorithm Design for Extreme Scale Simulations’ held March 1–6, 2020, at Schloss Dagstuhl, that was attended by all the authors. Advanced supercomputing is characterized by very high computation speeds at the cost of involving an enormous amount of resources and costs. A typical large-scale computation running for 48 h on a system consuming 20 MW, as predicted for exascale systems, would consume a million kWh, corresponding to about 100k Euro in energy cost for executing 1023 floating-point operations. It is clearly unacceptable to lose the whole computation if any of the several million parallel processes fails during the execution. Moreover, if a single operation suffers from a bit-flip error, should the whole computation be declared invalid? What about the notion of reproducibility itself: should this core paradigm of science be revised and refined for results that are obtained by large-scale simulation? Naive versions of conventional resilience techniques will not scale to the exascale regime: with a main memory footprint of tens of Petabytes, synchronously writing checkpoint data all the way to background storage at frequent intervals will create intolerable overheads in runtime and energy consumption. Forecasts show that the mean time between failures could be lower than the time to recover from such a checkpoint, so that large calculations at scale might not make any progress if robust alternatives are not investigated. More advanced resilience techniques must be devised. The key may lie in exploiting both advanced system features as well as specific application knowledge. Research will face two essential questions: (1) what are the reliability requirements for a particular computation and (2) how do we best design the algorithms and software to meet these requirements? While the analysis of use cases can help understand the particular reliability requirements, the construction of remedies is currently wide open. One avenue would be to refine and improve on system- or application-level checkpointing and rollback strategies in the case an error is detected. Developers might use fault notification interfaces and flexible runtime systems to respond to node failures in an application-dependent fashion. Novel numerical algorithms or more stochastic computational approaches may be required to meet accuracy requirements in the face of undetectable soft errors. These ideas constituted an essential topic of the seminar. The goal of this Dagstuhl Seminar was to bring together a diverse group of scientists with expertise in exascale computing to discuss novel ways to make applications resilient against detected and undetected faults. In particular, participants explored the role that algorithms and applications play in the holistic approach needed to tackle this challenge. This article gathers a broad range of perspectives on the role of algorithms, applications and systems in achieving resilience for extreme scale simulations. The ultimate goal is to spark novel ideas and encourage the development of concrete solutions for achieving such resilience holistically.Peer Reviewed"Article signat per 36 autors/es: Emmanuel Agullo, Mirco Altenbernd, Hartwig Anzt, Leonardo Bautista-Gomez, Tommaso Benacchio, Luca Bonaventura, Hans-Joachim Bungartz, Sanjay Chatterjee, Florina M. Ciorba, Nathan DeBardeleben, Daniel Drzisga, Sebastian Eibl, Christian Engelmann, Wilfried N. Gansterer, Luc Giraud, Dominik G ̈oddeke, Marco Heisig, Fabienne Jezequel, Nils Kohl, Xiaoye Sherry Li, Romain Lion, Miriam Mehl, Paul Mycek, Michael Obersteiner, Enrique S. Quintana-Ortiz, Francesco Rizzi, Ulrich Rude, Martin Schulz, Fred Fung, Robert Speck, Linda Stals, Keita Teranishi, Samuel Thibault, Dominik Thonnes, Andreas Wagner and Barbara Wohlmuth"Postprint (author's final draft

    Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond

    Full text link
    In this and a set of companion whitepapers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These whitepapers describe how calculation using lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones.Comment: 44 pages. 1 of USQCD whitepapers

    Exploiting task-based programming models for resilience

    Get PDF
    Hardware errors become more common as silicon technologies shrink and become more vulnerable, especially in memory cells, which are the most exposed to errors. Permanent and intermittent faults are caused by manufacturing variability and circuits ageing. While these can be mitigated once they are identified, their continuous rate of appearance throughout the lifetime of memory devices will always cause unexpected errors. In addition, transient faults are caused by effects such as radiation or small voltage/frequency margins, and there is no efficient way to shield against these events. Other constraints related to the diminishing sizes of transistors, such as power consumption and memory latency have caused the microprocessor industry to turn to increasingly complex processor architectures. To solve the difficulties arising from programming such architectures, programming models have emerged that rely on runtime systems. These systems form a new intermediate layer on the hardware-software abstraction stack, that performs tasks such as distributing work across computing resources: processor cores, accelerators, etc. These runtime systems dispose of a lot of information, both from the hardware and the applications, and offer thus many possibilities for optimisations. This thesis proposes solutions to the increasing fault rates in memory, across multiple resilience disciplines, from algorithm-based fault tolerance to hardware error correcting codes, through OS reliability strategies. These solutions rely for their efficiency on the opportunities presented by runtime systems. The first contribution of this thesis is an algorithmic-based resilience technique, allowing to tolerate detected errors in memory. This technique allows to recover data that is lost by performing computations that rely on simple redundancy relations identified in the program. The recovery is demonstrated for a family of iterative solvers, the Krylov subspace methods, and evaluated for the conjugate gradient solver. The runtime can transparently overlap the recovery with the computations of the algorithm, which allows to mask the already low overheads of this technique. The second part of this thesis proposes a metric to characterise the impact of faults in memory, which outperforms state-of-the-art metrics in precision and assurances on the error rate. This metric reveals a key insight into data that is not relevant to the program, and we propose an OS-level strategy to ignore errors in such data, by delaying the reporting of detected errors. This allows to reduce failure rates of running programs, by ignoring errors that have no impact. The architectural-level contribution of this thesis is a dynamically adaptable Error Correcting Code (ECC) scheme, that can increase protection of memory regions where the impact of errors is highest. A runtime methodology is presented to estimate the fault rate at runtime using our metric, through performance monitoring tools of current commodity processors. Guiding the dynamic ECC scheme online using the methodology's vulnerability estimates allows to decrease error rates of programs at a fraction of the redundancy cost required for a uniformly stronger ECC. This provides a useful and wide range of trade-offs between redundancy and error rates. The work presented in this thesis demonstrates that runtime systems allow to make the most of redundancy stored in memory, to help tackle increasing error rates in DRAM. This exploited redundancy can be an inherent part of algorithms that allows to tolerate higher fault rates, or in the form of dead data stored in memory. Redundancy can also be added to a program, in the form of ECC. In all cases, the runtime allows to decrease failure rates efficiently, by diminishing recovery costs, identifying redundant data, or targeting critical data. It is thus a very valuable tool for the future computing systems, as it can perform optimisations across different layers of abstractions.Los errores en memoria se vuelven más comunes a medida que las tecnologías de silicio reducen su tamaño. La variabilidad de fabricación y el envejecimiento de los circuitos causan fallos permanentes e intermitentes. Aunque se pueden mitigar una vez identificados, su continua tasa de aparición siempre causa errores inesperados. Además, la memoria también sufre de fallos transitorios contra los cuales no se puede proteger eficientemente. Estos fallos están causados por efectos como la radiación o los reducidos márgenes de voltaje y frecuencia. Otras restricciones coetáneas, como el consumo de energía y la latencia de la memoria, obligaron a las arquitecturas de computadores a volverse cada vez más complejas. Para programar tales procesadores, se desarrollaron modelos de programación basados en entornos de ejecución. Estos sistemas forman una nueva abstracción entre hardware y software, realizando tareas como la distribución del trabajo entre recursos informáticos: núcleos de procesadores, aceleradores, etc. Estos entornos de ejecución disponen de mucha información tanto sobre el hardware como sobre las aplicaciones, y ofrecen así muchas posibilidades de optimización. Esta tesis propone soluciones a los fallos en memoria entre múltiples disciplinas de resiliencia, desde la tolerancia a fallos basada en algoritmos, hasta los códigos de corrección de errores en hardware, incluyendo estrategias de resiliencia del sistema operativo. La eficiencia de estas soluciones depende de las oportunidades que presentan los entornos de ejecución. La primera contribución de esta tesis es una técnica a nivel algorítmico que permite corregir fallos encontrados mientras el programa su ejecuta. Para corregir fallos se han identificado redundancias simples en los datos del programa para toda una clase de algoritmos, los métodos del subespacio de Krylov (gradiente conjugado, GMRES, etc). La estrategia de recuperación de datos desarrollada permite corregir errores sin tener que reinicializar el algoritmo, y aprovecha el modelo de programación para superponer las computaciones del algoritmo y de la recuperación de datos. La segunda parte de esta tesis propone una métrica para caracterizar el impacto de los fallos en la memoria. Esta métrica supera en precisión a las métricas de vanguardia y permite identificar datos que son menos relevantes para el programa. Se propone una estrategia a nivel del sistema operativo retrasando la notificación de los errores detectados, que permite ignorar fallos en estos datos y reducir la tasa de fracaso del programa. Por último, la contribución a nivel arquitectónico de esta tesis es un esquema de Código de Corrección de Errores (ECC por sus siglas en inglés) adaptable dinámicamente. Este esquema puede aumentar la protección de las regiones de memoria donde el impacto de los errores es mayor. Se presenta una metodología para estimar el riesgo de fallo en tiempo de ejecución utilizando nuestra métrica, a través de las herramientas de monitorización del rendimiento disponibles en los procesadores actuales. El esquema de ECC guiado dinámicamente con estas estimaciones de vulnerabilidad permite disminuir la tasa de fracaso de los programas a una fracción del coste de redundancia requerido para un ECC uniformemente más fuerte. El trabajo presentado en esta tesis demuestra que los entornos de ejecución permiten aprovechar al máximo la redundancia contenida en la memoria, para contener el aumento de los errores en ella. Esta redundancia explotada puede ser una parte inherente de los algoritmos que permite tolerar más fallos, en forma de datos inutilizados almacenados en la memoria, o agregada a la memoria de un programa en forma de ECC. En todos los casos, el entorno de ejecución permite disminuir los efectos de los fallos de manera eficiente, disminuyendo los costes de recuperación, identificando datos redundantes, o focalizando esfuerzos de protección en los datos críticos

    Performance and Energy Optimization of the Iterative Solution of Sparse Linear Systems on Multicore Processors

    Get PDF
    En esta tesis doctoral se aborda la solución de sistemas dispersos de ecuaciones lineales utilizando métodos iterativos precondicionados basados en subespacios de Krylov. En concreto, se centra en ILUPACK, una biblioteca que implementa precondicionadores de tipo ILU multinivel para la solución eficiente de sistemas lineales dispersos. El incremento en el número de ecuaciones, y la aparición de nuevas arquitecturas, motiva el desarrollo de una versión paralela de ILUPACK que optimice tanto el tiempo de ejecución como el consumo energético en arquitecturas multinúcleo actuales y en clusters de nodos construidos con esta tecnología. El objetivo principal de la tesis es el diseño, implementación y valuación de resolutores paralelos energéticamente eficientes para sistemas lineales dispersos orientados a procesadores multinúcleo así como aceleradores hardware como el Intel Xeon Phi. Para lograr este objetivo, se aprovecha el paralelismo de tareas mediante OmpSs y MPI, y se desarrolla un entorno automático para detectar ineficiencias energéticas.In this dissertation we target the solution of large sparse systems of linear equations using preconditioned iterative methods based on Krylov subspaces. Specifically, we focus on ILUPACK, a library that offers multi-level ILU preconditioners for the effective solution of sparse linear systems. The increase of the number of equations and the introduction of new HPC architectures motivates us to develop a parallel version of ILUPACK which optimizes both execution time and energy consumption on current multicore architectures and clusters of nodes built from this type of technology. Thus, the main goal of this thesis is the design, implementation and evaluation of parallel and energy-efficient iterative sparse linear system solvers for multicore processors as well as recent manycore accelerators such as the Intel Xeon Phi. To fulfill the general objective, we optimize ILUPACK exploiting task parallelism via OmpSs and MPI, and also develope an automatic framework to detect energy inefficiencies

    Custom optimization algorithms for efficient hardware implementation

    No full text
    The focus is on real-time optimal decision making with application in advanced control systems. These computationally intensive schemes, which involve the repeated solution of (convex) optimization problems within a sampling interval, require more efficient computational methods than currently available for extending their application to highly dynamical systems and setups with resource-constrained embedded computing platforms. A range of techniques are proposed to exploit synergies between digital hardware, numerical analysis and algorithm design. These techniques build on top of parameterisable hardware code generation tools that generate VHDL code describing custom computing architectures for interior-point methods and a range of first-order constrained optimization methods. Since memory limitations are often important in embedded implementations we develop a custom storage scheme for KKT matrices arising in interior-point methods for control, which reduces memory requirements significantly and prevents I/O bandwidth limitations from affecting the performance in our implementations. To take advantage of the trend towards parallel computing architectures and to exploit the special characteristics of our custom architectures we propose several high-level parallel optimal control schemes that can reduce computation time. A novel optimization formulation was devised for reducing the computational effort in solving certain problems independent of the computing platform used. In order to be able to solve optimization problems in fixed-point arithmetic, which is significantly more resource-efficient than floating-point, tailored linear algebra algorithms were developed for solving the linear systems that form the computational bottleneck in many optimization methods. These methods come with guarantees for reliable operation. We also provide finite-precision error analysis for fixed-point implementations of first-order methods that can be used to minimize the use of resources while meeting accuracy specifications. The suggested techniques are demonstrated on several practical examples, including a hardware-in-the-loop setup for optimization-based control of a large airliner.Open Acces

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Cumulative reports and publications through December 31, 1990

    Get PDF
    This document contains a complete list of ICASE reports. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available

    Cumulative reports and publications through December 31, 1988

    Get PDF
    This document contains a complete list of ICASE Reports. Since ICASE Reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available
    corecore