
Performance and Fault Tolerance of Preconditioned Iterative
Solvers on Low-Power ARM Architectures

Aliaga, J. I., Catalan, S., Chalios, C., Nikolopoulos, D. S., & Quintana-Orti, E. S. (2015). Performance and Fault
Tolerance of Preconditioned Iterative Solvers on Low-Power ARM Architectures. In Workshop on Energy and
Resilience in Parallel Programming (ERPP): In conjunction with the ParCo'15 Conference.

Published in:
Workshop on Energy and Resilience in Parallel Programming (ERPP): In conjunction with the ParCo'15
Conference

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright the authors 2015.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/33588063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/performance-and-fault-tolerance-of-preconditioned-iterative-solvers-on-lowpower-arm-architectures(9a4cfb75-8989-4683-8ecc-46357f9753a3).html

Performance and Fault Tolerance of
Preconditioned Iterative Solvers on

Low-Power ARM Architectures

José I. ALIAGA , a,1 Sandra CATALÁN, a Charalampos CHALIOS, b

Dimitrios S. NIKOLOPOULOS, b Enrique S. QUINTANA-ORTÍ a

a Dpto. Ingeniería Ciencia de Computadores, Universidad Jaume I, Castellón (Spain)
b School of EEECS, Queen’s University of Belfast (United Kingdom)

Abstract. As the complexity of computing systems grows, reliability and energy
are two crucial challenges that will demand holistic solutions. In this paper, we
investigate the interplay among concurrency, power dissipation, energy consump-
tion and voltage-frequency scaling for a key numerical kernel for the solution of
sparse linear systems. Concretely, we leverage a task-parallel implementation of
the Conjugate Gradient method, equipped with an state-of-the-art preconditioner
embedded in the ILUPACK software, and target a low-power multicore processor
from ARM. In addition, we perform a theoretical analysis on the impact of a tech-
nique like Near Threshold Voltage Computing (NTVC) from the points of view of
increased hardware concurrency and error rate.

Keywords. Sparse linear systems, iterative solvers, ILUPACK, low power multicore
processors, high performance, energy efficiency, convergence

1. Introduction

As we move along the scaling projection for computing systems predicted by Moore’s
law, some of the technologies that have fuelled this exponential growth seem to be head-
ing for serious walls enforced by physical constraints [7]. Concretely, a system with bil-
lions of components will experience multiple faults and, therefore, the software has to be
made resilient in order to deal with this scenario. In addition, with the end of Dennard’s
scaling [5], the fraction of silicon that can be active (at the nominal operating voltage)
for a target thermal design power (TDP) rapidly decays. As a consequence, computer
architectures have turned towards dark silicon and heterogeneous designs [8], and Near
Threshold Voltage Computing (NTVC) has arisen as an appealing technology to reduce
energy consumption at the cost of increasing error rates.

The High Performance Conjugate Gradients (HPCG) benchmark [6] has been re-
cently introduced in an effort to create a relevant metric for ranking HPC systems us-
ing a benchmark with data access patterns that mimic those present in crucial HPC ap-
plications. In the reference implementation of HPCG, parallelism is extracted via MPI

1Corresponding Author: Dpto. de Ingeniería y Ciencia de Computadores, Universidad Jaume I, 12.071–
Castellón (Spain); E-mail: aliaga@icc.uji.es.

and OpenMP [6]. However, in an era where general-purpose processors (CPUs) contain
dozens of cores, the concurrency that is targeted by this legacy implementation may be
too fine-grain.

In this paper we investigate the scalability, energy efficiency and fault resilience of
low-power multicore ARM processors using our task-parallel version [1] of ILUPACK2

(Incomplete LU PACKage). This is a multi-threaded CG solver for sparse linear systems
furnished with a sophisticated algebraic multilevel factorization preconditioner. Com-
pared with the HPCG benchmark, our implementation of ILUPACK exhibits analogous
data access patterns and arithmetic-to-memory operation ratios. On the other hand, our
version is likely better suited to exploit the hardware concurrency of current multicore
processors [1,2]. This paper is an extension of previous work [4], with the following
major differences:

• First, we target a much more sophisticated iterative solver, with a complex pre-
conditioner based on ILUPACK, instead of the simple CG iteration in [4].

• Second, we employ a task-parallel version of the solver, in lieu of the simple
loop-based parallelization of the numerical kernels integrated into CG that was
leveraged in [4].

• As a result, our task-parallel solver exhibits fair scalability even when the data
resides off-chip, a property that is not present for the simple CG targeted in our
previous work.

The rest of the paper is structured as follows. In Sections 2 and 3 we briefly describe
the task-parallel version of ILUPACK and the target architecture, respectively. In Sec-
tion 4 we experimentally analyze the scalability of the solver and the impact of voltage-
frequency scaling on the execution time. In Section 5, we repeat this analysis from the
perspectives of power and energy consumption, so as to obtain an estimation of the en-
ergy gains (or losses) that would result from an execution that employed increasing levels
of hardware concurrency. In Section 6 we link error corruption with degradation of con-
vergence for the iterative solver, and we discuss its impact under two different scenarios.
Finally, in Section 7 we offer a few concluding remarks.

2. Task-Parallel Implementation of ILUPACK

Consider the linear system Ax = b, where A ∈ Rn×n is sparse, b ∈ Rn, and x ∈ Rn is the
sought-after solution. ILUPACK integrates an “inverse-based approach” to compute and
apply an algebraic multilevel preconditioner in order to accelerate the iterative solution
of the system [3]. In analogy with the HPCG benchmark, we consider hereafter that A is
symmetric positive definite (s.p.d.), and we study the (preconditioned) iterative solution
stage only, dismissing the computation of the preconditioner. The solve procedure in-
volves a sparse matrix-vector product (SPMV), the application of the preconditioner, and
a few vector operations (basically DOT products, AXPY-like updates and vector norms)
per iteration [13]; see Figure 1. We emphasize that a similar PCG iteration underlies the
HPCG benchmark.

Our task-parallel version of ILUPACK decomposes the solver into tasks, and abides
to the existing inter-task dependencies in order to produce a “correct” (i.e., dependency-

2http://ilupack.tu-bs.de

A→M O0. Preconditioner computation
Initialize x0,r0,z0,d0,β0,τ0;k := 0
while (τk > τmax) Loop for iterative PCG solver

wk := Adk O1. SPMV
ρk := βk/dT

k wk O2. DOT product
xk+1 := xk +ρkdk O3. AXPY

rk+1 := rk−ρkwk O4. AXPY

zk+1 := M−1rk+1 O5. Apply preconditioner
βk+1 := rT

k+1zk+1 O6. DOT product
dk+1 := zk+1 +(βk+1/βk)dk O7. AXPY-like
τk+1 :=‖ rk+1 ‖2 O8. vector 2-norm
k := k+1

endwhile

Figure 1. Algorithmic formulation of the preconditioned CG method. Here, τmax is an upper bound on the
relative residual for the computed approximation to the solution.

aware) execution, while exploiting the task parallelism implicit to the operation. Con-
cretely, each iteration of the PCG solve is decomposed into 8 macro-tasks, say O1–O8,
related by a partial order which enforces an almost strict serial execution. Specifically,
O1→O2→O4→O5→O6→O7, but O3 and O8 can be computed any time once O2
and O4 are respectively available. Here, each macro-task corresponds to one of the basic
operations that compose the iteration: SPMV, application of preconditioner, DOT, AXPY

and norms. The application of the preconditioner, performed inside O5, is decomposed
into two groups of micro-tasks, both organized as binary trees, with bottom-up depen-
dencies in the first one and top-down in the second, and a number of leaves l controlled
by the user. The remaining macro-tasks are decomposed into l independent micro-tasks
each, with the two dot products and vector 2-norm introducing a synchronization point
each. For further details, see [2].

3. Setup

All the experiments in the paper were performed using IEEE double-precision arithmetic
on an Exynos5 Odroid-XU development board assembled by Samsung. The Exynos5
contains an ARM Cortex-A15 quad-core cluster plus an ARM Cortex-A7 quad-core clus-
ter integrated into a single big.LITTLE system-on-chip (SoC). Each Cortex-A7 core has
a (32+32)–KByte L1 cache (data+instruction) and shares a 512–KByte L2 cache with
its siblings. The system has 2 Gbytes of DRAM. In order to target low-power scenarios,
we only employ the ARM Cortex-A7 cores during the experimentation, with frequencies
that vary in the range of {250, . . . ,600} MHz with step changes of 50 MHz.3 All codes
were compiled using gcc version 4.8.1 with the appropriate optimization flags.

For the analysis, we employed a s.p.d. linear system arising from the finite difference
discretization of a 3D Laplace problem, for a particular instance of size n=1,000,000 and
nnz=6,940,000 nonzero entries in the coefficient matrix A. Thus, the data clearly resides

3The actual frequencies of the Cortex-A7 double those reported by the cpufreq driver and the real range is
in [500,1200] MHz. The driver exposes these values (half of the actual) to make it easier to activate one of the
clusters/deactivate the other by just re-setting the frequency. Otherwise, the ranges of Cortex-A15 and Cortex-
A7 cores would overlap, and a different mechanism would be needed to change frequency across clusters.

Number of Cortex-A7 cores
1 2 4

S
pe

ed
-u

p

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Task parallel ILUPACK for different frequencies

250 MHz
400 MHz
600 MHz

Frequency (MHz)
50 100 150 200 250 300 350 400 450 500 550 600

T
im

e
(s

)

100

150

200

250

300

Task-parallel ILUPACK on 4 Cortex-A7 cores

Real
Estimated

Figure 2. Computational performance using 1–4 (left) and 4 (right) ARM Cortex-A7 cores and a problem
instance consisting of l=8 leaves.

off-chip. In the experiments, we always set l = 8, which offers enough parallelism for
the four ARM Cortex-A7 cores available in the system.

4. Computational Performance vs Frequency-Voltage Scaling

In this section we analyze the scalability of our task-parallel solver based on ILUPACK,
and the effect of frequency on performance.

The left hand-side plot in Figure 2 reports the speed-up of the solver with respect to
the sequential version of ILUPACK, operating on the same problem instance, but with
only one leaf. (Similar acceleration factors were observed when the sequential code was
applied to the same problem with the data partitioned into 8 leaves, as done in the parallel
case.) The results show fair speed-ups, close to 2× for 2 Cortex-A7 cores and slightly
below 3.5× when the full quad-core Cortex-A7 cluster is employed. Furthermore, the
acceleration is mostly independent of the operating (voltage-)frequency (pair). At this
point, it is worth mentioning that our experiments with this code and a slightly larger
instance of the same problem, on an Intel Xeon Phi, reveal accelerations factors of 15.5×
and 27.7× with 16 and 32 x86 cores, respectively, providing additional evidence of the
scalability of the solver [1].

The right-hand side plot in Figure 2 relates execution time vs frequency when the
number of cores is fixed to 4; see also the columns labeled as “Time” in Table 1. In
principle, we could expect that a variation of the operating frequency rendered an in-
versely proportional variation of the execution time. However, the interplay between fre-
quency and time is more subtle and strongly depends on whether the code is compute-
or memory-bound (i.e., dominated by the performance of the floating-point units or the
access to memory, respectively) as well as the effect of frequency on the memory band-
width. For example, in some x86 architectures, this bandwidth is independent of the fre-
quency while in others, and specifically for the Cortex-A7 cluster, it is mildly governed
by it. For example, in our experiments with the stream benchmark [12] on this architec-
ture, we observed decreases in the memory bandwidth by factors 0.86 and 0.70 when the
frequency was reduced in factors of 0.66 and 0.41.

Freq. Time (in s) Power (in W) Energy (in J)
(MHz) T (fi) Total, PT(fi) A7, PA7(fi) Total, PT(fi) A7, PA7(fi)

fi Real Estim. Real Estim. Real Estim. Real Estim. Real Estim.

50 – 291.8 – 0.215 – 0.118 – 62.5 – 30.9
100 – 259.5 – 0.214 – 0.111 – 55.8 – 27.2
150 – 230.1 – 0.217 – 0.109 – 50.3 – 24.4
200 – 203.6 – 0.225 – 0.112 – 46.1 – 22.6
250 183.4 180.0 0.237 0.239 0.120 0.121 43.5 43.0 21.9 21.7
300 155.8 159.3 0.263 0.259 0.141 0.137 40.9 41.2 21.0 21.7
350 139.6 141.5 0.287 0.287 0.161 0.161 40.1 40.6 22.5 22.6
400 125.7 126.6 0.324 0.325 0.193 0.194 40.7 41.2 24.3 24.5
450 117.4 114.6 0.368 0.372 0.235 0.238 43.2 43.1 27.5 27.3
500 106.7 105.5 0.436 0.431 0.297 0.292 46.6 46.1 31.7 31.1
550 100.6 99.3 0.502 0.502 0.359 0.359 50.5 50.4 36.1 35.7
600 94.0 96.0 0.587 0.587 0.438 0.438 55.2 55.8 41.2 41.3

Error 1.63e-2 6.29e-2 1.10e-2 9.20e-3 8.83e-3

Table 1. Experimental results and estimations collected with the task-parallel version of ILUPACK using 4
ARM Cortex-A7 cores and a problem instance consisting of l=8 leaves. The last row (“Error”) displays the
average relative error (∑i |ri − ei|/ri)/n, where ri and ei respectively denote the real and estimated values,
i ∈ {50,100,150, . . . ,600}, and n is the number of samples.

A major observation from this evaluation is that, for a complex code such as our
task-parallel version of ILUPACK, there are fragments of the code that are compute-
bound while others are memory-bound, making a prediction for the global behaviour of
the application is difficult. Nevertheless, the plot shows that it is possible to apply linear
regression in order to fit a quadratic polynomial that estimates the execution time T , as
a function of the frequency f (in MHz): T (f) = 5.80E-4 f 2− 7.33E-1 f + 3.27E+2 s.
Moreover, the validity of this regression is quantitatively demonstrated by the coefficient
of determination, 1− r2 = 6.69E-3, and the small relative differences between the real
measures and the polynomial approximation shown in the row labeled as “Error” of
Table 1. Using this polynomial to extrapolate the data, we observe an asymptotic lower
bound on the execution time, independent of the operating frequency, close to 100 s.

5. Power and Energy Efficiency vs Frequency-Voltage Scaling

This section considers the following iso-power4 scenario: Given the power dissipated by
the system when operating at its highest frequency, what is the number of cores/clusters
that can be crammed within the same power budget? In addition, given the variation of
hardware concurrency that is possible under iso-power conditions, how this affects the
execution time and, therefore, the energy efficiency of the alternative configurations?

The left-hand side plot in Figure 3 and (the columns labeled as “Power” in) Table 1
show the total power dissipated by the Exynos5 SoC plus the memory DIMMs as well as
that of the Cortex-A7 cluster only when executing the task-parallel version of ILUPACK
using 4 cores. For this metric, it is also possible to fit a precise linear regression curve.

4An analysis via a given iso-metric aims to obtain a metric-invariant set of analysis or design solutions.

Frequency (MHz)
50 100 150 200 250 300 350 400 450 500 550 600

P
ow

er
 (

W
)

0.1

0.2

0.3

0.4

0.5

0.6

Task-parallel ILUPACK on 4 Cortex-A7 cores

Real Cortex-A7
Real Total
Estimated Cortex-A7
Estimated Total

Frequency (MHz)
50 100 150 200 250 300 350 400 450 500 550 600

E
ne

rg
y

(J
)

20

25

30

35

40

45

50

55

60

65

Task-parallel ILUPACK on 4 Cortex-A7 cores

Real Cortex-A7
Real Total
Estimated Cortex-A7
Estimated Total

Figure 3. Power and energy efficiency vs frequency-voltage scaling using 4 ARM Cortex-A7 cores and a
problem instance consisting of l=8 leaves.

For this purpose, we take into account that the power is cubically dependent on the fre-
quency.5 Thus, for example, the total power is accurately estimated by PT (f) = 1.46E-
9 f 3 +2.76E-7 f 2−7.60E-5 f +2.18E-1 W, as 1− r2 = 5.72E-4. The regression curves
expose asymptotic lower bounds on the power dissipation rates, at 0.21 W and 0.11 W re-
spectively for the total and Cortex-A7 cluster, which can be attributed to the static power
of this board/CPU.

To conclude this initial analysis, the right-hand side plot in Figure 3 and (the columns
labeled as “Energy” in) Table 1 illustrate the behaviour of the code/architecture from the
point of view of total and Cortex-A7 energy consumption. The former can be approx-
imated by the quadratic polynomial ET (f) = 2.43E-4 f 2− 1.70E-1 f + 7.04E+1, with
1− r2 = 7.36E-3. (Alternatively, we could have used ET (f) = T (f)PT (f).) This plot re-
veals a “sweet spot” (optimal) from the point of view of total energy at 350 MHz, which
is shifted to 250 MHz if we consider the energy consumed by the Cortex-A7 cluster only.

For simplicity, let us work hereafter with the approximations to power and energy
obtained via linear regression. Table 1 reports that the Exynos5 SoC plus the mem-
ory DIMMs, operating at the highest frequency (fM = 600 MHz), dissipate PT(fM) =
0.587 W, with the Cortex-A7 cluster itself being responsible for a large fraction of this:
PA7(fM) = 0.438 W. However, from the point of view of energy, the optimal configu-
ration is attained when the application is executed with the cores at f = 350 MHz or
250–300 MHz, depending respectively on whether we consider the consumption by the
complete SoC+DIMMs or the Cortex-A7 only.

Let us examine the intermediate case fopt = 300 MHz. At this frequency, the
Exynos5+DIMMs dissipate PT(fopt) = 0.259 W while the Cortex-A7 cluster is re-
sponsible for PA7(fopt) = 0.137 W. This implies that, with the same power (iso-
power) dissipated by the system operating at fM, we can feed an ideal configuration,
which operates at fopt, and consists of PT(fM)/PT(fopt) = 0.587/0.259 = 2.26× or
PA7(fM)/PA7(fopt) = 0.438/0.137 = 3.19× more Cortex-A7 clusters/cores, depending

5We can identify two components in the power: static and dynamic. In practice, the static power depends
on the square of the voltage V while the dynamic power depends on V 2 f , with the voltage itself depending
linearly on the frequency [9].

respectively on whether we account for the full Exynos5+DIMMs or the Cortex-A7 cores
only. Given that it is not possible to build a fragment of a cluster, we now approximate
these numbers to CT(fM, fopt) = b2.26c= 2 and CA7(fM, fopt) = b3.19c= 3.

Let us analyze the energy efficiency of these options. At fM, the system consumes
ET(fM) = 55.8 J to solve the problem, with EA7(fM) = 41.3 J corresponding to the
Cortex-A7 cluster. Assuming perfect scalability (see Section 4), we can expect that
2 Cortex-A7 clusters, operating at fopt, obtain the solution in T̄ (fopt,2) = T (fopt)/2 =
159.3/2 = 79.6 s and 3 clusters in T̄ (fopt,3) = T (fopt)/3 = 159.3/3 = 53.1 s. For these
configurations, we can therefore estimate total and Cortex-A7 energy consumption of
ĒT(fopt,2) = T̄ (fopt,2) ·PT(fM) = 79.6 · 0.587 = 46.7 J and ĒA7(fopt,3) = T̄ (fopt,3) ·
PA7(fM) = 53.1 · 0.438 = 23.2 J, respectively. This represents a gain in energy effi-
ciency of ET(fM)/ĒT(fopt,2) = 55.8/46.7 = 1.19× compared with the SoC+DIMMs;
and EA7(fM)/ĒA7(fopt,3) = 41.3/23.2 = 1.77× with respect to the Cortex-A7.

We recognize that our assumption of perfect scalability may be slightly too opti-
mistic (tough we could expirementally observe a speed-up higher than 15 when execut-
ing the same code on 16 Intel Xeon cores). On the other hand, we point out that we
considered that a system consisting of 2 (or 3) clusters dissipated the same instantaneous
power as one composed of 2.26 (or 3.19) clusters. This partially compensates for the
scalability approximation. Table 2 collects the results from this analysis for all possible
frequencies, exposing the largest energy saving factors to be at 1.77×, for fi = 300 MHz,
if we consider only the Cortex-A7; and 1.34×, for fi = 350 MHz, if we take into account
the SoC+DIMMs.

Freq. P(fM)/P(fi) Ci =C(fM, fi) = T̄ (fi,Ci) = Ē(fi,Ci) = Gain/loss=
(MHz) bP(fM)/P(fi)c T (fi)/C(fi) T̄ (fi,Ci) ·P(fM) E(fM)/Ē(fi,Ci)

fi Total A7 Total A7 Total A7 Total A7 Total A7

50 2.73 3.71 2 3 145.9 97.2 85.6 42.6 0.65 0.96
100 2.74 3.94 2 3 129.7 86.5 76.1 37.8 0.73 1.09
150 2.70 4.01 2 4 115.0 57.5 67.5 25.1 0.82 1.63
200 2.60 3.91 2 3 101.8 67.8 59.7 29.7 0.93 1.38
250 2.45 3.61 2 3 90.0 60.0 52.8 26.2 1.05 1.57
300 2.26 3.19 2 3 79.6 53.1 46.7 23.2 1.19 1.77
350 2.04 2.72 2 2 70.7 70.7 41.5 30.9 1.34 1.33
400 1.80 2.25 1 2 126.6 63.3 74.3 27.7 0.75 1.48
450 1.57 1.84 1 1 114.6 114.6 67.2 50.1 0.82 0.82
500 1.36 1.50 1 1 105.5 105.5 61.9 46.2 0.90 0.89
550 1.16 1.22 1 1 99.3 99.3 58.2 43.4 0.95 0.94
600 1.00 1.00 1 1 96.0 96.0 55.8 41.3 1.00 1.00

Table 2. Potential energy savings (or losses) within an iso-power budget scenario determined using 4 ARM
Cortex-A7 cores and a problem instance consisting of l=8 leaves.

To summarize the analysis in this section, our experiments show that there exist
some “sweet points” from the perspective of frequency, which could allow to leverage a
larger number of cores that match the power budget of a full Cortex-A7 cluster operating
at the highest frequency (iso-power), solve the problem in less time, and increase energy
efficiency with respect to that configuration.

6. Energy Efficiency and Fault Tolerance

NTVC is a technology that promises important power/energy reductions by lowering the
voltage while keeping the frequency mostly constant [11]. While this decrease of power
can, in principle, be leveraged to integrate additional core concurrency, the potential
negative effect is that these hardware becomes less reliable and additional mechanisms
(e.g., in software) need to compensate for it.

In this section we study the error rate that can be accommodated into an iterative
solver such as ILUPACK, running on a “faulty” architecture, while still being more ef-
ficient from the point of view of energy consumption than the same code executed on
a reliable system. For this purpose, we consider that an unreliable hardware, operating
under NTVC, only corrupts the results from the floating-point arithmetic operations, de-
grading the convergence rate of the PCG iteration. In practice, faults can occur anywhere,
producing an ample variety of effects: from catastrophic crashes in the program (which
are easy to detect) to soft errors exerting no visible impact on the application (e.g., a
fault that corrupts the result of a branch prediction may affect performance, but not the
numerical results) [15].

As argued earlier, we can decompose the power into its static and dynamic compo-
nents, where the global consumption depends on V 2 f and, for safety, current technology
sets V proportionally to f . Assume that NTVC can lower the voltage while maintaining
the frequency. (In practice, even with NTVC, the frequency would need to be slightly
reduced as the voltage is diminished.) In an ideal situation where no errors occur, we
can therefore expect that the execution time of the solver does not vary, but its power
dissipation rate rapidly decays (indeed, quadratically with the reduction of voltage) and,
therefore, so does energy (in the same proportion). In other words, scaling the voltage as
V/σ changes the power to P/σ2, but preserves the execution time T , hence reducing the
energy by E/σ2. Let us analyze next the trade-offs in two configurations where errors
are present:

• Improve power/energy at the expense of time-to-solution (TTS). Given a de-
crease of power P̂ = P/s (produced by a reduction of voltage by σ =

√
s), we

can afford an error rate ê which degrades convergence by a factor of up to d̂,
with d̂ ≤ s, with an analogous increase in execution time T̂ = T · d̂, and still save
energy by a factor d̂/s, as Ê = T̂ · P̂ = T · d̂ ·P/s = (d̂/s)E ≤ E.

• Improve TTS/energy using additional hardware. Alternatively, we can lever-
age a reduction of power in P/s to increase the number of computational re-
sources (i.e., hardware) by a factor of s, and thus confront an iso-power scenario
with a dissipation rate P̃≈ P. This approach would benefit from the near perfect
scalability of ILUPACK, in order to reduce the execution time to T/s (when no
errors are present). In addition, we require that the increase in the error rate in-
duced by the use of additional hardware, likely from e to ẽ = e · s, does not pro-
duce an analogous raise the degradation rate by a factor of s as, otherwise, the
advantages of increasing the amount of hardware will be blurred. Our only hope
in this sense is to introduce a low-cost mechanism in the solver, in the form of
a detection+correction or a prevention strategy [10,14] which, for a cost c̃ that
depends on the iteration number, limits the effect of the errors on the convergence
degradation.

Under these ideal conditions, with a convergence degradation factor of d̃ ≤ s, the
execution is completed in T̃ = (T/s+ c̃) · d̃ = (d̃/s)T + c̃d̃ ≤ T ; and the energy
consumed by the new configuration is given by Ẽ = T̃ · P̃ = (T/s+ c̃) · d̃ ·P =
(d̃/s)E + c̃d̃P ≤ E. The factor c̃d̃ in the time and energy expressions represents
the cost of the fault tolerance mechanism, which initially increases time by c̃
units, but in total raises the cost to c̃d̃ because of the convergence degradation.
For simplicity, for the energy expression we assume that this mechanism dissi-
pates the same power rate as the solver, though the formula can be easily adapted
otherwise.

7. Concluding Remarks

We have conducted an experimental analysis of the effect of voltage-frequency scaling on
the scalability, power dissipation and energy consumption of an efficient multi-threaded
version of the preconditioned CG method on a low-power ARM multicore SoC. Our re-
sults show a remarkable scalability for the solver, independent of the operating frequency
f , but a lower bound on the execution time as f grows. Combined with the cubic relation
between power and frequency, this determines an optimal operating frequency from the
point of view of energy consumption which is in the low band, much below the high-
est possible in this chip. Using linear regression to interpolate the experimental data, we
have exposed the potential gains that can be obtained by leveraging the power budget
available by running at a lower frequency to execute the code with an increased number
of cores. For example, under certain conditions, the execution of the solver using 2 ARM
Cortex-A7 clusters at a very low frequency can report energy savings around 16% with
respect to an execution on a single cluster running at the highest frequency while match-
ing the iso-power of the global SoC+DIMMs. If we consider the power budget for the
Cortex-A7 cluster, though, it is possible to employ 3 ARM Cortex-A7 clusters instead
of 1, and the savings boost to 43%.

NTVC promises important reductions in the power consumption that allow the ex-
ploitation of Moore’s law to build multicore processors with increased numbers of cores
(or wider SIMD units) at the expense, possibly, of higher error rates. For an iterative
numerical solver like ILUPACK, we can expect that many of these errors occur during
the floating-point arithmetic, affecting the convergence rate of the method. In this sense,
it is important that the convergence degradation of the method does not grow at the same
pace as the error rate/number of computational resources enabled by NTVC. Otherwise,
benefits are cancelled, and we can only trade lower energy consumption for increased
execution time while keeping constant the number of computational resources.

Acknowledgments

The researchers from Universidad Jaume I (UJI) were supported by projects TIN2011-
23283 and TIN2014-53495-R of the Spanish Ministerio de Economía y Competitivi-
dad. We thank Maria Barreda from UJI for her support with the power measure-
ment system on the Exynos5 SoC. This research has also been partially supported by
the UK Engineering and Physical Sciences Research Council (grants EP/L000055/1,

EP/L004232/1, EP/M01147X/1, EP/M015742/1, EP/K017594/1), the Royal Society
(grant WM150009), and the European Commission (grants 644312, 610509, 323872).

References

[1] J. I. Aliaga, R. M. Badia, M. Barreda, M. Bollhöfer, and E. S. Quintana-Ortí. Leveraging task-parallelism
with OmpSs in ILUPACK’s preconditioned CG method. In 26th Int. Symp. on Computer Architecture
and High Performance Computing (SBAC-PAD), pages 262–269, 2014.

[2] J. I. Aliaga, M. Bollhöfer, A. F. Martín, and E. S. Quintana-Ortí. Exploiting thread-level parallelism in
the iterative solution of sparse linear systems. Parallel Computing, 37(3):183–202, 2011.

[3] Matthias Bollhöfer and Yousef Saad. Multilevel preconditioners constructed from inverse-based ILUs.
SIAM Journal on Scientific Computing, 27(5):1627–1650, 2006.

[4] C. Chalios, D. S. Nikolopoulos, S. Catalán, and E. S. Quintana-Ortí. Evaluating asymmetric multicore
systems-on-chip and the cost of fault tolerance using iso-metrics. IET Computers & Digital Techniques,
2015. To appear.

[5] R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc. Design of ion-implanted
MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits, 9(5):256–268, 1974.

[6] J. Dongarra and M. A. Heroux. Toward a new metric for ranking high performance computing systems.
Sandia Report SAND2013-4744, Sandia National Laboratories, June 2013.

[7] M. Duranton, K. De Bosschere, A. Cohen, J. Maebe, and H. Munk. HiPEAC vision 2015, 2015.
https://www.hipeac.org/assets/public/publications/vision/hipeac-vision-2015_
Dq0boL8.pdf.

[8] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark silicon and the end of
multicore scaling. In Proc. 38th Annual Int. Symp. Computer Arch., ISCA’11, pages 365–376, 2011.

[9] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kauf-
mann Pub., 5th edition, 2012.

[10] M. Hoemmen and M. A. Heroux. Fault-tolerant iterative methods via selective reliability. In Proceed-
ings of the 2011 International Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2011.

[11] U.R. Karpuzcu, Nam Sung Kim, and J. Torrellas. Coping with parametric variation at near-threshold
voltages. Micro, IEEE, 33(4):6–14, 2013.

[12] J. D. McCalpin. STREAM: sustainable memory bandwidth in high performance computers.
[13] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 3rd edition, 2003.
[14] P. Sao and R. Vuduc. Self-stabilizing iterative solvers. In Workshop Latest Advances in Scalable Algo-

rithms for Large-Scale Systems, pages 4:1–4:8, 2013.
[15] Daniel J. Sorin. Fault Tolerant Computer Architecture. Morgan & Claypool Pub., 2009.

