313 research outputs found

    The dynamic counter-based broadcast for mobile ad hoc networks

    Get PDF
    Broadcasting is a fundamental operation in mobile ad hoc networks (MANETs) crucial to the successful deployment of MANETs in practice. Simple flooding is the most basic broadcasting technique where each node rebroadcasts any received packet exactly once. Although flooding is ideal for its simplicity and high reachability it has a critical disadvantage in that it tends to generate excessive collision and consumes the medium by unneeded and redundant packets. A number of broadcasting schemes have been proposed in MANETs to alleviate the drawbacks of flooding while maintaining a reasonable level of reachability. These schemes mainly fall into two categories: stochastic and deterministic. While the former employs a simple yet effective probabilistic principle to reduce redundant rebroadcasts the latter typically requires sophisticated control mechanisms to reduce excessive broadcast. The key danger with schemes that aim to reduce redundant broadcasts retransmissions is that they often do so at the expense of a reachability threshold which can be required in many applications. Among the proposed stochastic schemes, is counter-based broadcasting. In this scheme redundant broadcasts are inhibited by criteria related to the number of duplicate packets received. For this scheme to achieve optimal reachability, it requires fairly stable and known nodal distributions. However, in general, a MANETs‟ topology changes continuously and unpredictably over time. Though the counter-based scheme was among the earliest suggestions to reduce the problems associated with broadcasting, there have been few attempts to analyse in depth the performance of such an approach in MANETs. Accordingly, the first part of this research, Chapter 3, sets a baseline study of the counter-based scheme analysing it under various network operating conditions. The second part, Chapter 4, attempts to establish the claim that alleviating existing stochastic counter-based scheme by dynamically setting threshold values according to local neighbourhood density improves overall network efficiency. This is done through the implementation and analysis of the Dynamic Counter-Based (DCB) scheme, developed as part of this work. The study shows a clear benefit of the proposed scheme in terms of average collision rate, saved rebroadcasts and end-to-end delay, while maintaining reachability. The third part of this research, Chapter 5, evaluates dynamic counting and tests its performance in some approximately realistic scenarios. The examples chosen are from the rapidly developing field of Vehicular Ad hoc Networks (VANETs). The schemes are studied under metropolitan settings, involving nodes moving in streets and lanes with speed and direction constraints. Two models are considered and implemented: the first assuming an unobstructed open terrain; the other taking account of buildings and obstacles. While broadcasting is a vital operation in most MANET routing protocols, investigation of stochastic broadcast schemes for MANETs has tended to focus on the broadcast schemes, with little examination on the impact of those schemes in specific applications, such as route discovery in routing protocols. The fourth part of this research, Chapter 6, evaluates the performance of the Ad hoc On-demand Distance Vector (AODV) routing protocol with a route discovery mechanism based on dynamic-counting. AODV was chosen as it is widely accepted by the research community and is standardised by the MANET IETF working group. That said, other routing protocols would be expected to interact in a similar manner. The performance of the AODV routing protocol is analysed under three broadcasting mechanisms, notably AODV with flooding, AODV with counting and AODV with dynamic counting. Results establish that a noticeable advantage, in most considered metrics can be achieved using dynamic counting with AODV compared to simple counting or traditional flooding. In summary, this research analysis the Dynamic Counter-Based scheme under a range of network operating conditions and applications; and demonstrates a clear benefit of the scheme when compared to its predecessors under a wide range of considered conditions

    Energy Efficient Location Aided Routing Protocol for Wireless MANETs

    Get PDF
    A Mobile Ad-Hoc Network (MANET) is a collection of wireless mobile nodes forming a temporary network without using any centralized access point, infrastructure, or centralized administration. In this paper we introduce an Energy Efficient Location Aided Routing (EELAR) Protocol for MANETs that is based on the Location Aided Routing (LAR). EELAR makes significant reduction in the energy consumption of the mobile nodes batteries by limiting the area of discovering a new route to a smaller zone. Thus, control packets overhead is significantly reduced. In EELAR a reference wireless base station is used and the network's circular area centered at the base station is divided into six equal sub-areas. At route discovery instead of flooding control packets to the whole network area, they are flooded to only the sub-area of the destination mobile node. The base station stores locations of the mobile nodes in a position table. To show the efficiency of the proposed protocol we present simulations using NS-2. Simulation results show that EELAR protocol makes an improvement in control packet overhead and delivery ratio compared to AODV, LAR, and DSR protocols.Comment: 9 Pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS 2009, ISSN 1947 5500, Impact factor 0.423, http://sites.google.com/site/ijcsis

    Performance Study of Adhoc on-Demand Link Quality Aware Route Search Protocol (AO-LQARSP)

    Get PDF
    A Wireless Sensor Network (WSN) is a network with few tens to thousands of small devices called sensor nodes which are connected wirelessly and involve in communicating the data. WSNs have generated tremendous interest among researchers in recent years because of its potential usage in wide variety of applications. The sensor nodes in WSNs have scarce power; they work in harsh and unattended environments which initiates the need for a better and more reliable routing path to send data. In this paper a routing protocol is proposed to select the route based on better signal strength conditions using Link Quality Indicator of the received signal for IEEE 802.15.4 standard. The performance of the proposed routing protocol is compared with standard reactive routing protocol Adhoc On-demand Distance Vector (AODV) with metrics like total packets received, throughput, total bytes received, average end-to-end delay and average jitter and total energy consumed for various node density scenarios

    Improving quality of service through road side back-bone network in VANET

    Get PDF
    The vehicular ad hoc Networks (VANETs) are expected to support a large spectrum of traffic alert, dynamic route planning, file sharing, safety and infotainment applications to improve traffic management. User satisfaction plus in time delivery of real-time messages is the most significant quality evaluation criterion for vehicular applications. High mobility and rapidly changing topologies always lead to intermittent quality of services, higher delay and packet dropping issues in network. To improve the quality of services for multi-hop and dynamic environment, different types of solutions have been proposed. The article introduces multi-protocol label switching based on roadside backbone network to provide widespread, scalable, high-speed, robust quality of services and improve network efficiency. The simulation results showed that proposed model improves data transmission and routing performance in terms of data delivery, throughput, end-to-end delay and achieve adequate utilization of resources

    Efficient access of mobile flows to heterogeneous networks under flash crowds

    Get PDF
    Future wireless networks need to offer orders of magnitude more capacity to address the predicted growth in mobile traffic demand. Operators to enhance the capacity of cellular networks are increasingly using WiFi to offload traffic from their core networks. This paper deals with the efficient and flexible management of a heterogeneous networking environment offering wireless access to multimode terminals. This wireless access is evaluated under disruptive usage scenarios, such as flash crowds, which can mean unwanted severe congestion on a specific operator network whilst the remaining available capacity from other access technologies is not being used. To address these issues, we propose a scalable network assisted distributed solution that is administered by centralized policies, and an embedded reputation system, by which initially selfish operators are encouraged to cooperate under the threat of churn. Our solution after detecting a congested technology, including within its wired backhaul, automatically offloads and balances the flows amongst the access resources from all the existing technologies, following some quality metrics. Our results show that the smart integration of access networks can yield an additional wireless quality for mobile flows up to thirty eight percent beyond that feasible from the best effort standalone operation of each wireless access technology. It is also evidenced that backhaul constraints are conveniently reflected on the way the flow access to wireless media is granted. Finally, we have analyzed the sensitivity of the handover decision algorithm running in each terminal agent to consecutive flash crowds, as well as its centralized feature that controls the connection quality offered by a heterogeneous access infrastructure owned by distinct operators

    Layered Mobility Model Architecture - LEMMA

    Full text link
    This paper presents the generic layered architecture for mobility models (LEMMA), which can be used to construct a wide variety of mobility models, including the majority of models used in wireless network simulations. The fundamental components of the architecture are described and analyzed, in addition to its benefits. One of the core principles stipulates that each mobility model is divided in five distinct layers that communicate via interfaces. This allows their easy replacement and recombination, which we support by reviewing 19 layers that can form 480 different mobility models. Some of the advanced features provided by the architecture are also discussed, such as layer aggregation, and creation of hybrid and group mobility models. Finally, some of the numerous existing studies of the different layers are presented

    Performance analysis and application development of hybrid WiMAX-WiFi IP video surveillance systems

    Get PDF
    Traditional Closed Circuit Television (CCTV) analogue cameras installed in buildings and other areas of security interest necessitates the use of cable lines. However, analogue systems are limited by distance; and storing analogue data requires huge space or bandwidth. Wired systems are also prone to vandalism, they cannot be installed in a hostile terrain and in heritage sites, where cabling would distort original design. Currently, there is a paradigm shift towards wireless solutions (WiMAX, Wi-Fi, 3G, 4G) to complement and in some cases replace the wired system. A wireless solution of the Fourth-Generation Surveillance System (4GSS) has been proposed in this thesis. It is a hybrid WiMAX-WiFi video surveillance system. The performance analysis of the hybrid WiMAX-WiFi is compared with the conventional WiMAX surveillance models. The video surveillance models and the algorithm that exploit the advantages of both WiMAX and Wi-Fi for scenarios of fixed and mobile wireless cameras have been proposed, simulated and compared with the mathematical/analytical models. The hybrid WiMAX-WiFi video surveillance model has been extended to include a Wireless Mesh configuration on the Wi-Fi part, to improve the scalability and reliability. A performance analysis for hybrid WiMAX-WiFi system with an appropriate Mobility model has been considered for the case of mobile cameras. A security software application for mobile smartphones that sends surveillance images to either local or remote servers has been developed. The developed software has been tested, evaluated and deployed in low bandwidth Wi-Fi wireless network environments. WiMAX is a wireless metropolitan access network technology that provides broadband services to the connected customers. Major modules and units of WiMAX include the Customer Provided Equipment (CPE), the Access Service Network (ASN) which consist one or more Base Stations (BS) and the Connectivity Service Network (CSN). Various interfaces exist between each unit and module. WiMAX is based on the IEEE 802.16 family of standards. Wi-Fi, on the other hand, is a wireless access network operating in the local area network; and it is based on the IEEE 802.11 standards

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore