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1. Introduction 

The design of telecommunication networks usually comprises three major phases. First, 
mathematical analysis is carried out and numerical results obtained. During this phase, 
simple models are used to facilitate calculations. These simple models involve hypotheses 
that are not realistic, leading to rough performance figures that are valid only as a first 
approach to the feasibility of the proposed network. Simulation is the second step in the 
design process before performance can be monitored and measured in the true network. In 
contrast to the simple models necessary for the mathematical analysis, models used in 
simulations permit the relaxation of strict adherence to most of the hypotheses assumed in 
those models. The results obtained by simulation are much closer to the true world than 
those obtained by analysis. The simulation of wireless cellular networks raises a set of 
specific problems that are not encountered in the simulation of other networks. The aim of 
this chapter is to state those issues and to present several ways to cope with them.  
 
Two types of simulation, Montecarlo and discrete event, are most commonly used in cellular 
networks to cope with two different problems. Montecarlo simulation has been shown to be 
appropriate for determining the coverage of base stations (BSs), the radiation patterns of 
antennas and other related problems. The main goal after these simulations is to fit the BSs 
at their possible emplacements using a geographic information system (GIS). Given the 
parameters of the equipment at the BS and receiving devices and the probabilistic models 
employed for propagation in the specific environment, the probability of a certain device at 
a certain point being covered can be determined. This is computed by averaging snapshots 
of the coverage in the desired area. On the other hand, most researchers and network 
designers make use of discrete event simulation for addressing issues related to the cellular 
features, mobility, handovers between neighbouring cells and traffic. 
 
The simulation of traffic-related issues in cellular networks is based on the arrival of traffic 
events (e.g., voice or data calls, packets, messages, etc.) to the network. The goal is to 
compute the probability of traffic being carried by the network given a certain network 
capacity (e.g., number of BSs, channels, bandwidth, etc.). A key issue is the intuitive fact that 
increasing the mobility leads to lower performance: i.e., when devices move faster, they 
need more handovers of their session between different BSs, increasing the probability of 
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interruption. In fact, mobility not only depends on speed, but also smaller cells lead to more 
handovers for the same speed; even the cell shape has an impact on the handover rate. 
These layout and mobility issues are dealt with in Section 2. Propagation issues are 
presented in Section 3. The models presented are common to the Montecarlo simulation of 
radio coverage, but they are used in a different manner when applied to the discrete event 
simulation of traffic and mobility. Section 4 deals with other issues, such as the cell 
wrapping needed to improve the efficiency of the simulation to achieve statistically reliable 
results, the features of different traffic classes and the various methods used to obtain 
statistical results. 

 
2. Layout and Mobility 

When simulating a cellular network, a layout for the BSs to which the mobile devices are 
connected must be assumed. There are several well established patterns, including 
hexagonal (typical for suburban areas), Manhattan (urban) and linear (highways). The 
possibility of having several connection layers must also be considered, e.g., microcells as 
the first choice and macrocells as umbrellas for overflowing traffic. In real cellular networks, 
the designer can plan BSs at any point, and therefore, the simulation should allow any 
position for the BSs. The problem of the cell borders is related to the layout. For simplicity, it 
is possible to simulate a network in which devices are covered by the BS closest to them. 
This kind of simulation is simple and allows direct conclusions from the results; however, it 
is not realistic. When the radiation patterns and random nature of the radio channel are 
taken into account (see Section 3), the borders are not regular shapes and may change with 
time. This increases the complexity of the simulation significantly; however, it offers realistic 
results, although they are more difficult to interpret. Section 2.1 addresses the above-
mentioned issues, showing how each kind of layout must be programmed and the way in 
which results must be interpreted. 
 
The mobile behaviour of devices within the cellular network can be characterised and 
simulated in a variety of ways, with each of them corresponding to a different scenario and 
environment. Experimental research has been conducted during the last two decades to 
determine the statistical properties of each representative user class, e.g., public networks, 
local area networks (LANs), indoors, outdoors, cars, pedestrians, etc. According to the 
network technology, geographical area and type of user, it is possible to feed the simulation 
with certain parameters such that the resulting movement will be similar to the real one. The 
Random Waypoint and Gauss-Markov models are the most relevant, but other useful 
models are also available. Section 2.2 addresses the way in which every model must be 
programmed and the different properties found with every movement. It also shows the 
simulation results acquired by the authors about the residence time in cells belonging to a 
wireless LAN (WLAN) when different models are applied. 

 
2.1 Layout 
The first issue is to select the area of the network that should be simulated. Depending on 
the environment (e.g., suburban, dense urban, indoors, etc.) and on the technology under 
study (e.g., GSM, UMTS, WiMax, WiFi, Bluetooth, etc.), the simulation area may encompass 
square kilometres (e.g., big city) or square meters (e.g., a single building). This area may be 

covered by a single high transmission power antenna or by many low power transmitters, 
with each providing coverage to a small portion of the whole simulation area. The second 
solution is the basis for cellular systems; the area covered by a single antenna (i.e., one BS) 
corresponds to the cell area. Different layouts can be obtained by positioning BSs according 
to different patterns. The selection of the best pattern to use can be driven by simple 
observations of the geometry of the area under study. As an example, linear patterns can be 
used to provide coverage on highways; BSs will be positioned along the path at regular 
distances.  
 
A regular pattern can also be applied when modelling symmetrical layouts in large 
suburban areas. The common technique used to position antennas to obtain a network of 
non-overlapping cells is by following the hexagonal pattern displayed in Fig. 1. Each cell is 
allocated a subset of the total radio channels assigned to the system. The cells are grouped 
into clusters, wherein the available channels are not allowed to be reused, to prevent 
interference among users of different cells. The number of cells per cluster represents the 
cluster size (N). According to (Rappaport, 1996), N can only have values that satisfy the 
following equation 
 

N = i2 + i· j + j2 , (1) 

 
where i and j are non-negative integers. N is equal to 7 in Fig. 1.  
 

 

 
 

Fig. 1. Hexagonal layout with a cluster size of 7 (in red). 
 
In dense urban environments with regular patterns, the Manhattan model is preferred 
because it follows the geometry of the streets, thus providing coverage both outside and 
inside the buildings. It considers a regular pattern of buildings, which are represented by 
regular squares, and a regular network of horizontal and vertical streets between the blocks. 
Antennas should be placed at every street crossing, and the cell size is assumed to be half a 
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interruption. In fact, mobility not only depends on speed, but also smaller cells lead to more 
handovers for the same speed; even the cell shape has an impact on the handover rate. 
These layout and mobility issues are dealt with in Section 2. Propagation issues are 
presented in Section 3. The models presented are common to the Montecarlo simulation of 
radio coverage, but they are used in a different manner when applied to the discrete event 
simulation of traffic and mobility. Section 4 deals with other issues, such as the cell 
wrapping needed to improve the efficiency of the simulation to achieve statistically reliable 
results, the features of different traffic classes and the various methods used to obtain 
statistical results. 

 
2. Layout and Mobility 

When simulating a cellular network, a layout for the BSs to which the mobile devices are 
connected must be assumed. There are several well established patterns, including 
hexagonal (typical for suburban areas), Manhattan (urban) and linear (highways). The 
possibility of having several connection layers must also be considered, e.g., microcells as 
the first choice and macrocells as umbrellas for overflowing traffic. In real cellular networks, 
the designer can plan BSs at any point, and therefore, the simulation should allow any 
position for the BSs. The problem of the cell borders is related to the layout. For simplicity, it 
is possible to simulate a network in which devices are covered by the BS closest to them. 
This kind of simulation is simple and allows direct conclusions from the results; however, it 
is not realistic. When the radiation patterns and random nature of the radio channel are 
taken into account (see Section 3), the borders are not regular shapes and may change with 
time. This increases the complexity of the simulation significantly; however, it offers realistic 
results, although they are more difficult to interpret. Section 2.1 addresses the above-
mentioned issues, showing how each kind of layout must be programmed and the way in 
which results must be interpreted. 
 
The mobile behaviour of devices within the cellular network can be characterised and 
simulated in a variety of ways, with each of them corresponding to a different scenario and 
environment. Experimental research has been conducted during the last two decades to 
determine the statistical properties of each representative user class, e.g., public networks, 
local area networks (LANs), indoors, outdoors, cars, pedestrians, etc. According to the 
network technology, geographical area and type of user, it is possible to feed the simulation 
with certain parameters such that the resulting movement will be similar to the real one. The 
Random Waypoint and Gauss-Markov models are the most relevant, but other useful 
models are also available. Section 2.2 addresses the way in which every model must be 
programmed and the different properties found with every movement. It also shows the 
simulation results acquired by the authors about the residence time in cells belonging to a 
wireless LAN (WLAN) when different models are applied. 

 
2.1 Layout 
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square kilometres (e.g., big city) or square meters (e.g., a single building). This area may be 

covered by a single high transmission power antenna or by many low power transmitters, 
with each providing coverage to a small portion of the whole simulation area. The second 
solution is the basis for cellular systems; the area covered by a single antenna (i.e., one BS) 
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Fig. 1. Hexagonal layout with a cluster size of 7 (in red). 
 
In dense urban environments with regular patterns, the Manhattan model is preferred 
because it follows the geometry of the streets, thus providing coverage both outside and 
inside the buildings. It considers a regular pattern of buildings, which are represented by 
regular squares, and a regular network of horizontal and vertical streets between the blocks. 
Antennas should be placed at every street crossing, and the cell size is assumed to be half a 



block in all directions. The cluster size for this layout can be computed using the equation 
from (Rappaport, 1996) 
 

N = i2 + j2 , (2) 
 
where i and j are non-negative integers.  
 
Multi-layer layouts may be needed for capacity constraints (i.e., hotspots). A regular 
macrocell pattern (e.g., hexagonal or Manhattan) representing the first layer of coverage, 
which provides continuity in the service, is superimposed, like an umbrella, onto a microcell 
pattern, which guarantees service for the overcrowded areas. Of course, different radio 
channels should be assigned to the two layers.  
 
Once the layout has been selected, the following problem is to find the number of BSs 
needed to cover the whole simulation area. For this purpose, the area covered by a single 
cell must be known. The cell boundaries can be evaluated according to the antennas’ 
parameters (e.g., transmission power, the radiation diagram, the antenna gain, the antenna 
height, etc.) and the radiation pattern of the environment under study. In a first 
approximation, the cell boundaries can be estimated according to the free space model, for 
which the transmission power decays with the power of distance. Different radiation 
patterns can be selected to represent a more realistic scenario in which the cell boundaries 
are not regular shapes and may change over time (see Section 3.2). The theoretical 
boundaries may be verified with specific simulation tools.  
 
Besides the BSs needed for coverage constraints, the number of antennas may also be tuned 
to meet the specific capacity requirements. The number of channels that a single BS may 
support limits the number of simultaneous users that can be connected to that BS. In dense 
urban areas, where a higher concentration of users is forecasted, it is better to position more 
BSs than the minimum number specified by coverage constraints. An example of tuning the 
cell boundaries can be found in (Zola & Barceló, 2006). Their work relies on an analytical 
study, known as link budget, from which it is possible to estimate the coverage range of a 
single-cell in different environments for a given system capacity. Many issues affect the 
system performance (i.e., propagation conditions, traffic density, user profiles, interference 
conditions, cell breathing, etc.), making the network designer's task quite complex. Software 
planning tools can assist greatly in managing complex situations. Starting from simulation 
analysis in a single-cell environment in which analytical results have been tested, a first 
layout of the BSs in the city of Barcelona is provided in (Zola & Barceló, 2006). In this 
multiple-cell asset, the intercell interference, the cell breathing, and the capacity 
requirements due to soft-handover generate new problems that do not appear in the single-
cell scenario (i.e., noise rise, BS power limits, etc.). With the final purpose of providing good 
coverage, the authors investigate how to improve this first layout by changing the 
configuration of any BSs (e.g., tilt and height) and, eventually, changing their locations (see 
Fig. 2). Optimal planning requires a long process of trial and error, from which one has to 
adjust the parameters to finally achieve a good provision of service. 
 
 
 
 

 

 
 

 

Fig. 2. BS layout in the city of Barcelona.  

 
2.2. Mobility patterns 
The purpose of a wireless network is to provide coverage to moving users. Knowledge 
about the pattern followed by mobile stations (MSs) in a given scenario may help network 
planning to guarantee service along the pathway followed by each user. The mobility 
pattern should mimic the movements of real MSs. Both trace-based models and synthetic 
models, based on theoretical algorithms, which describe the movement of a node 
statistically, can be used. The former can be derived from the observation of real 
movements; to achieve this, user’s log traces should be collected during a period long 
enough to capture periodical behaviours. An executable mobility model is described in 
(Tuduce & Gross, 2005). This model uses parameters extracted from the real-life mobility of 
WLAN users and generates mobility scenarios based on these parameters. In that study, 
spatial parameters and temporal parameters are independent from each other; however, a 
strong correlation between the space and time dimensions has been proven to exist. This 
aspect is overcome in (Kim et al., 2006). The authors specified a method for extracting users’ 
mobility tracks from real WLAN traces and applied it to a large set of traces of wireless 
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block in all directions. The cluster size for this layout can be computed using the equation 
from (Rappaport, 1996) 
 

N = i2 + j2 , (2) 
 
where i and j are non-negative integers.  
 
Multi-layer layouts may be needed for capacity constraints (i.e., hotspots). A regular 
macrocell pattern (e.g., hexagonal or Manhattan) representing the first layer of coverage, 
which provides continuity in the service, is superimposed, like an umbrella, onto a microcell 
pattern, which guarantees service for the overcrowded areas. Of course, different radio 
channels should be assigned to the two layers.  
 
Once the layout has been selected, the following problem is to find the number of BSs 
needed to cover the whole simulation area. For this purpose, the area covered by a single 
cell must be known. The cell boundaries can be evaluated according to the antennas’ 
parameters (e.g., transmission power, the radiation diagram, the antenna gain, the antenna 
height, etc.) and the radiation pattern of the environment under study. In a first 
approximation, the cell boundaries can be estimated according to the free space model, for 
which the transmission power decays with the power of distance. Different radiation 
patterns can be selected to represent a more realistic scenario in which the cell boundaries 
are not regular shapes and may change over time (see Section 3.2). The theoretical 
boundaries may be verified with specific simulation tools.  
 
Besides the BSs needed for coverage constraints, the number of antennas may also be tuned 
to meet the specific capacity requirements. The number of channels that a single BS may 
support limits the number of simultaneous users that can be connected to that BS. In dense 
urban areas, where a higher concentration of users is forecasted, it is better to position more 
BSs than the minimum number specified by coverage constraints. An example of tuning the 
cell boundaries can be found in (Zola & Barceló, 2006). Their work relies on an analytical 
study, known as link budget, from which it is possible to estimate the coverage range of a 
single-cell in different environments for a given system capacity. Many issues affect the 
system performance (i.e., propagation conditions, traffic density, user profiles, interference 
conditions, cell breathing, etc.), making the network designer's task quite complex. Software 
planning tools can assist greatly in managing complex situations. Starting from simulation 
analysis in a single-cell environment in which analytical results have been tested, a first 
layout of the BSs in the city of Barcelona is provided in (Zola & Barceló, 2006). In this 
multiple-cell asset, the intercell interference, the cell breathing, and the capacity 
requirements due to soft-handover generate new problems that do not appear in the single-
cell scenario (i.e., noise rise, BS power limits, etc.). With the final purpose of providing good 
coverage, the authors investigate how to improve this first layout by changing the 
configuration of any BSs (e.g., tilt and height) and, eventually, changing their locations (see 
Fig. 2). Optimal planning requires a long process of trial and error, from which one has to 
adjust the parameters to finally achieve a good provision of service. 
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2.2. Mobility patterns 
The purpose of a wireless network is to provide coverage to moving users. Knowledge 
about the pattern followed by mobile stations (MSs) in a given scenario may help network 
planning to guarantee service along the pathway followed by each user. The mobility 
pattern should mimic the movements of real MSs. Both trace-based models and synthetic 
models, based on theoretical algorithms, which describe the movement of a node 
statistically, can be used. The former can be derived from the observation of real 
movements; to achieve this, user’s log traces should be collected during a period long 
enough to capture periodical behaviours. An executable mobility model is described in 
(Tuduce & Gross, 2005). This model uses parameters extracted from the real-life mobility of 
WLAN users and generates mobility scenarios based on these parameters. In that study, 
spatial parameters and temporal parameters are independent from each other; however, a 
strong correlation between the space and time dimensions has been proven to exist. This 
aspect is overcome in (Kim et al., 2006). The authors specified a method for extracting users’ 
mobility tracks from real WLAN traces and applied it to a large set of traces of wireless 



users from Dartmouth College. Despite the ability of trace-based models to reflect real 
movements, they may be too specific for the environment from which they have been 
extracted. 
 

 

 (a) 

 (b) 
 

Fig. 3. Movement patterns following the Random Waypoint (a) or Gauss-Markov (b) 
mobility model. Simulation has been performed with ns-2 (NS-2). 

On the other hand, synthetic models attempt to realistically represent the behaviours of 
MSs over time while providing a simplified algorithm that describes their movements. 
Speed, direction and pause times are the main parameters needed to define how users move 
inside the simulation area. Despite the simplified and less realistic movement pattern 
generated, they capture enough of the key characteristics of human mobility to make 
protocol evaluation meaningful and easier. The Random Waypoint model and its variants 
have been widely used, as they are designed to emulate the movement of MSs in a 
simplified fashion. More realistic mobility models (e.g., Manhattan grid, Gauss-Markov, 

etc.) have been developed, which can capture some of the important characteristics of 
human movement patterns, such as regularity, the temporal dependence of velocity, the 
spatial dependence of velocity and geographic restrictions. In addition to individual 
models, in which each MS is allowed to move independently from the others, group 
mobility models have been developed to represent situations in which a cluster of MSs 
follow the same pattern while moving. We refer the interested reader to (Camp et al., 2002) 
for a comprehensive survey of the existing synthetic mobility patterns. Here, we only 
provide details of the Random Waypoint and the Gauss-Markov mobility models. 
 
The Random Waypoint mobility model was originally proposed in (Johnson & Maltz, 1996). 
In this model, each node is assigned an initial location (p0), a destination (p1) and a speed; 
both p0 and p1 are chosen independently and uniformly on the region in which the nodes 
move. The speed is chosen uniformly (or according to any other distribution) on an interval 
(vmin to vmax) independently of both the initial location and the destination. After reaching p1, 
a new destination and a new speed are chosen according to their distributions and 
independently of all previous destinations and speeds. The node may also remain still for a 
random pause time before starting its movement towards the next destination. With the 
pause time set to zero, the movement pattern obtained is very similar to that of the Random 
Walk mobility model. Fig. 3(a) depicts the resulting pattern with the pause time set to one. 
Due to the random fashion of the Random Waypoint model, it can generate unrealistic 
movements, such as sudden stops and sharp turns.  
 
The Gauss–Markov mobility model (Liang & Haas, 1999) introduces the concept of drift in 
the node’s movement. Initially, each node is assigned a current speed and direction. At fixed 
intervals of time (Δt), movements occur by updating the speed and direction of each node. 
The next location is computed based on the current location, speed and direction of 
movement, according to the following equations 
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where si and di are the new speed and direction of the node at time interval i; α (0 ≤ α ≤ 1) is 
the tuning parameter used to vary the degree of randomness in the mobility pattern; µs and 
µd are constants representing the asymptotic mean value of the speed and direction as i → ∞; 
and xi-1 and yi-1 are independent, uncorrelated, and stationary Gaussian processes with a 
mean of zero and a standard deviation equal to the asymptotic standard deviation of the 
speed and direction as i →∞. By varying α, it is possible to model different mobility patterns: 
for example, as α approaches zero, a drifting Random Walk is obtained, whereas with α=1, a 
linear motion is generated. At time interval i, the MS’s position is given by the equations  
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where (xi, yi) are the x and y coordinates of the MS’s position at the ith time interval, si and di 
are the old speed and direction, and Δt is the fixed time interval of a leg. Fig. 3(b) depicts the 
resulting pattern according to the Gauss-Markov model. From Fig. 3, it is evident that the 
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users from Dartmouth College. Despite the ability of trace-based models to reflect real 
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intervals of time (Δt), movements occur by updating the speed and direction of each node. 
The next location is computed based on the current location, speed and direction of 
movement, according to the following equations 
 

,)1()1(

,)1()1(

1
2

1

1
2

1









idii

isii

ydd

xss





 

(3) 
 

(4) 
 
where si and di are the new speed and direction of the node at time interval i; α (0 ≤ α ≤ 1) is 
the tuning parameter used to vary the degree of randomness in the mobility pattern; µs and 
µd are constants representing the asymptotic mean value of the speed and direction as i → ∞; 
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where (xi, yi) are the x and y coordinates of the MS’s position at the ith time interval, si and di 
are the old speed and direction, and Δt is the fixed time interval of a leg. Fig. 3(b) depicts the 
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Random Waypoint model tends to concentrate a node’s movements in the centre of the area, 
while the Gauss-Markov model does not. Moreover, the Gauss-Markov model eliminates 
the sudden stops and sharp turns of the Random Waypoint model because the next 
movement depends on the current one. 
 
The above-mentioned models can be applied when simulating a free surface in which the MS 
is allowed to move in any direction. Other environments should account for limitations in the 
paths followed by a given MS. For example, in urban environments, in which a regular pattern 
of horizontal and vertical streets is considered, MSs are allowed to move following one 
direction (e.g., horizontally) until the intersection with a vertical street is reached; then, the MS 
can turn left or right (90 degrees), or it follow the previous street. This is the basis of the 
Manhattan grid mobility model. Another example is given by vehicles driving on a highway. 
MSs follow the lane on the highway and their speed can be tuned according to the density of 
the traffic on the highway. This is known as the Freeway mobility model.  
 
In general, any network simulator should integrate a mobility tool in which a given 
mobility pattern can be generated according to a specific synthetic model. Once the mobility 
data have been generated, the MSs move inside the simulation area following that pattern. 
As an example, ns-2 (NS-2) integrates the setdest tool, by which the Random Walk or 
Random Waypoint mobility models can be simulated. Because of the limitations in the set of 
mobility models implemented by the network simulators, many research groups have been 
developing independent mobility tools (Bai et al., 2003; BONNMOTION), which provide 
mobility traces according to different synthetic models and to different formats; this last 
issue enables the integration of mobility data in different simulators.  
 
The impact of different mobility models on network parameters has been studied in recent 
years. In (Bai et al., 2003), the authors provide a framework to evaluate the impact of the 
mobility models on the routing protocols in ad-hoc networks. In contrast to other studies, in 
which only random mobility was taken into account, the authors pick scenarios that span a 
larger set of mobility characteristics than only the change of maximum velocity and pause 
time. Their results show that the protocol performance may vary drastically across mobility 
models and that performance rankings of protocols may vary with the mobility models 
used. The effect may be explained by the interaction of the mobility characteristics with the 
connectivity graph properties.  
 
In recent years, researchers have been interested in the distribution of node locations and in 
its effect on different network parameters (e.g., cell residence time, arrival rate at a cell, 
number of neighbours, etc.). In (Zola & Barcelo-Arroyo, 2009), the authors analyse the time 
that an MS remains under the coverage of the same AP (cell residence time) in a WLAN of 
medium size designed for pedestrians. The study is carried out by running simulations for 
different AP layouts and mobility models with Omnet++ (OMNET++). Different layouts 
have been implemented: 4 APs for minimal full coverage; 8 APs for reasonable coverage, 
and 16 APs for high capacity coverage. The effects that the use of different mobility patterns 
for pedestrians may have on the cell residence time and on the handover (HO) process have 
been studied. As shown in Table 1, the average number of HOs per hour at each AP 
decreases as the number of APs increases; moreover, the HO behaviour of the Gauss-
Markov model is very stable compared to that observed with the Random Waypoint model. 

Mobility model Layout 
Name Speed distribution Pause time 4APs 8APs 16APs 
Random Waypoint Uniform 0 10.96 6.34 4.92 
Random Waypoint Uniform 100 7.13 3.89 2.85 
Random Waypoint Normal 0 10.60 6.73 5.16 
Random Waypoint Normal 100 6.68 3.71 2.81 
Gauss-Markov Uniform 0 7.05 6.79 7.37 
Gauss-Markov Normal 0 7.03 6.72 7.82 

 

Table 1. Average number of handovers per hour and AP. 

 
3. The radio channel 

First, it must be stated that it is possible to simulate the cellular network without taking 
radio propagation into account. This is sometimes done to avoid the cumbersome 
programming of all the radio channel features when obtaining the first rough results or with 
the purpose of drawing mathematical conclusions. However, when fine tuning the network, 
it is absolutely necessary to take into account as many factors as possible. Most detailed 
models for radio channels share the same template, which can be written as 
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where Prx and Ptx are the received and transmitted power and fi is the ith factor impacting the 
radio transmission. The main factors related to the radio path that mainly affects the results 
are detailed in the next sections. 

 
3.1. Path loss 
This factor is usually represented by the slope in a logarithmic scale and, together with the 
radiated power, provides an idea of the range of the signal (i.e., coverage span). The nature 
of this factor is deterministic for a specific area; i.e., it is assumed that its value does not 
change with time as long as the scenario remains the same. Path loss models, also known as 
propagation models, are mainly considered in the network planning stage; consequently, 
they are used in the simulation field to assess the radio network planning or to study any 
other teletraffic variable that can be impacted by the radio channel features. There are 
several approaches for path loss modelling, depending on the application and the scenario 
in which the network is to be deployed. Most of these approaches have been proposed (and 
even adopted) by standard bodies, such as the International Telecommunications Union 
(ITU) or the Federal Communications Commission (FCC), but others have been developed 
by private organisations and public institutions. All of these models are based on a large 
amount of empirical data that are collected to characterise the propagation of radio signals 
in one or a few specific scenarios. Accordingly, no single model is able to fit all of the 
applications and scenarios. Consequently, it is likely that several independent models must 
be used to bind the expected results in terms of propagation.  
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decreases as the number of APs increases; moreover, the HO behaviour of the Gauss-
Markov model is very stable compared to that observed with the Random Waypoint model. 
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by private organisations and public institutions. All of these models are based on a large 
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Fig. 4. BS coverage map in the city of Barcelona according to the layout shown in Fig. 2. for 
the UMTS system.  
 
Propagation models can be classified according to several parameters. From the point of 
view of formulation, models are usually classified as empirical or semi-empirical. The 
difference between them is that semi-empirical models are analytical models with 
parameters that have been fitted using empirical data, whereas empirical models are based 
solely on data and have no underlying analytical model. Another common classification for 
models comes from the usage scenario: models are classified as either outdoor or indoor. A 
detailed survey on propagation models can be found in (Sarkar et al., 2003), but the most 
commonly used models are detailed below. 
 
 Okumura-Hata. This model is an empirical model addressed to the outdoors. It was built 

from measurements collected in Tokyo in 1960 (Okumura et al., 1968). Those 
measurements were used to determine the median field strength and several correction 
factors (e.g., degree of urbanisation, BS and MS heights, etc). Hata improved the 
Okumura proposal, adapting the model according to the scenario: urban, suburban and 

open areas. The Okumura-Hata model is especially applicable in networks operating in 
the band under 1500 MHz and in medium to large urban areas. 

 
 COST-231. The Cost Action 231 (COST 231) proposed two models for signal propagation 

in urban areas in the band from 900 to 1800 MHz: the Hata model and the Walfisch-
Ikegami model. The former is a semi-empirical model addressed to the urban outdoors. 
The Walfisch-Ikegami model is based on the theoretical Walfisch-Bertoni model. The 
Walfisch-Ikegami and Okumura-Hata models are commonly used for path-loss 
modelling in wireless networks simulations (e.g., GSM, UMTS, etc.). 

 Young. This model was built on the data collected in New York City in 1952 (Seybold, 
2005). It is a simpler model compared with those mentioned above and, hence, is less 
used but still suitable for first approaches. It is addressed to applications from 150 MHz 
to 3.7 GHz, and it has been used for radio modelling in technologies such as IEEE 802.11.  

 Dual-Slope Model. This model is based on a two-ray model (Feuerstein et al., 1994), 
accounting for the reflection of signals from the ground in addition to the direct path. It 
is mainly addressed to line-of-sight propagation (e.g., WiMax links). 

 
Most of the radio channel models presented above can be computed as proposed in (Martin-
Escalona & Barceló, 2004) 
 

, (8) 
 
where A1 is the power lost at one-meter, As stands for the path-loss slope and d is the 
distance between network nodes (usually a base station and a mobile station).  

Table 2 shows the parameters proposed for featuring the propagation in UMTS (e.g., public 
land mobile networks (PLMNs)) and in IEEE 802.11 networks (e.g., WLAN) according to 
(Holma & Toskala, 2000) and (Martin-Escalona & Barcelo-Arroyo, 2008), respectively. 
Furthermore, (ETSI TR 101 112) provides figures for these parameters in several 
environments typically used for radio-channel planning in PLMN. It has been observed that 
completely different radio channels can be characterised by the same propagation model as 
long as the parameters can be suited to the technology studied. 

Parameter UMTS WLAN 
A1 23 dB 40 dB 
AS 4 3.5 

 

Table 2. Parameters of Equation (8) according to two network technologies. 
 
An example of a coverage study for the UMTS system is described in (Zola & Barceló, 2006). 
The Okumura-Hata propagation model is used, in which the propagation losses in urban 
scenario can be computed as 
 

, (9) 
 
where d is the distance in kilometres. The coverage map for the BS layout in Barcelona shown 
in Fig. 2  is displayed in Fig. 4. Colours from red to yellow represent good coverage. The green 
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2005). It is a simpler model compared with those mentioned above and, hence, is less 
used but still suitable for first approaches. It is addressed to applications from 150 MHz 
to 3.7 GHz, and it has been used for radio modelling in technologies such as IEEE 802.11.  

 Dual-Slope Model. This model is based on a two-ray model (Feuerstein et al., 1994), 
accounting for the reflection of signals from the ground in addition to the direct path. It 
is mainly addressed to line-of-sight propagation (e.g., WiMax links). 

 
Most of the radio channel models presented above can be computed as proposed in (Martin-
Escalona & Barceló, 2004) 
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where A1 is the power lost at one-meter, As stands for the path-loss slope and d is the 
distance between network nodes (usually a base station and a mobile station).  

Table 2 shows the parameters proposed for featuring the propagation in UMTS (e.g., public 
land mobile networks (PLMNs)) and in IEEE 802.11 networks (e.g., WLAN) according to 
(Holma & Toskala, 2000) and (Martin-Escalona & Barcelo-Arroyo, 2008), respectively. 
Furthermore, (ETSI TR 101 112) provides figures for these parameters in several 
environments typically used for radio-channel planning in PLMN. It has been observed that 
completely different radio channels can be characterised by the same propagation model as 
long as the parameters can be suited to the technology studied. 

Parameter UMTS WLAN 
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Table 2. Parameters of Equation (8) according to two network technologies. 
 
An example of a coverage study for the UMTS system is described in (Zola & Barceló, 2006). 
The Okumura-Hata propagation model is used, in which the propagation losses in urban 
scenario can be computed as 
 

, (9) 
 
where d is the distance in kilometres. The coverage map for the BS layout in Barcelona shown 
in Fig. 2  is displayed in Fig. 4. Colours from red to yellow represent good coverage. The green 



areas represent weaker signal strength, and in those areas, users may not be allowed to 
connect to the system (or the service may be interrupted) due to coverage constraints. 

 
3.2. Slow fading 
The path loss suffers from fading that randomly depends on time and space. This 
phenomenon can be included in the simulation and alters the borders of the cell. In addition, 
the shape and coverage of the cell depends on time. Hence, slow fading is related to the 
mobility patterns because the same mobility pattern will provide different handover rates 
for different fading patterns. 
 
The slow fading (or shadowing) is generally modelled using the lognormal distribution, 
with a mean of zero and a specific standard deviation that depends on the scenario 
simulated. Typical values for such deviations range from 6 dB up to 12 dB (ETSI TR 101 
112). The lognormal shadowing model is the simplest approach for modelling the slow 
fading and, hence, does not account for several aspects that may distort the results of the 
simulation. The most important of these aspects are presented below. 
 
 Decorrelation distance. It is reasonable to think that a pedestrian user moving slowly 

involves slowly changing shadowing (i.e., near positions that involve similar fading). 
Conversely, mobile stations in vehicles moving at high speeds involve noticeably 
changing shadowing. Thus, the decorrelation distance addresses the question of how far 
a mobile station has to move for the shadowing conditions to change, i.e., the correlation 
of shadowing values according to the terminal displacements. 

 Correlation between base stations. This issue addresses the scenario in which one MS 
receives signals from two different BSs. Because the two links are partially determined 
by the placement of the MS, it is expected that the shadowing impacting the two links 
are similar (to some degree).  

 
Accordingly, correlated models are necessary for actual radio-channel modelling. Auto-
correlated models, which address the decorrelation distance issue, are the most common 
approach for slow fading simulations. One of the most popular auto-correlated models was 
proposed in (Gudmundson, 1991). According to (ETSI TR 101 112), the Gudmundson 
normalised autocorrelation function can be computed as 
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where Ax accounts for the displacement and dx stands for the decorrelation length, which is 
dependent on the scenario being simulated. For instance, a decorrelation length of 20 meters 
is proposed in vehicular scenarios, whereas 5 meters is preferred in pedestrian 
environments. Further information on these values are provided in (ETSI TR 101 112). 
Autocorrelation models are used as follows: 

1. Compute the lognormal shadow at time t1, using a zero-mean Gaussian random 
variable with a variance of σ2 dB. Hereafter, it will be known as S1. 

2. Compute the distance travelled between times t1 to t2, i.e., ∆x. 

3. Evaluate the normalised autocorrelation function at ∆x, i.e., R(∆x). 

4. The lognormal shadow at t2 (i.e., S2) is computed as a Gaussian random variable (in 
dB) with an average of R(∆x)· S1 and a variance of (1-R(∆x))· σ2. 

 
3.3. Channel featuring 
Several parameters have to be accounted for in comprehensive channel featuring. These 
parameters might not be directly involved in the path loss computation or the shadowing, 
but they can affect other simulated processes related to the radio link. An example of these 
parameters can be found in simulations modelling power control algorithms or connection 
admission control procedures. The data in Table 3, extracted from (Martin-Escalona & 
Barcelo-Arroyo, 2007; Martin-Escalona & Barcelo-Arroyo, 2008), are proposed as a 
framework for the main parameters required by these algorithms when simulating wireless 
networks.  
 

Parameter UMTS WLAN 
Minimum Signal to Noise Ratio (SIR) -9 dB -9 dB 
Sensitivity of the stations -109.2 dBm -65 dBm 
Maximum MS transmission power 21 dBm 17 dBm 
Minimum MS transmission power -44 dBm 0 dBm 
BS transmission power 43 dBm 17 dBm 
Handoff threshold for received power -106.2 dBm -62 dBm 
Handoff threshold for SIR at reception -6 dB -6 dB 

Table 3. Additional parameters used for radio channel characterisation. 

Users can currently choose from a wide range of free and commercial simulation tools, such 
as ns-2, Opnet, Omnet++, NetSim, CPSim, J-Sim, Packet, Tracer, Swans, etc. According to the 
literature, the three former tools are the ones that concentrate most of the simulation market. 
They provide a large amount of ready-to-use and highly configurable propagation models.  

Table 4 summarises the propagation models supported by the main current simulators.  

Simulator Radio channel models 

Omnet++ Deterministic (based on predefined boundaries), Rayleigh, Rice and 
Nakagami   

Opnet CCIR, Free Space, Hata, Longley-Rice, TIREM, Walfish-Ikegami, 
Rayleigh, Ricean and Two-Ray 

ns-2 Free-space (As = 2), dual-slope and lognormal shadowing 
 

Table 4. Propagation models supported by the most popular simulators. 

 
4. Simulation issues 

4.1. Cell wrapping 
Telecommunications is an area in which simulation is especially relevant, mainly due to the 
huge investment that network deployment or upgrades can represent. Operators have 
developed simulators to plan and manage all the features and services provided by their 
networks. The first simulators were highly constrained by the limitations of the hardware they 
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areas represent weaker signal strength, and in those areas, users may not be allowed to 
connect to the system (or the service may be interrupted) due to coverage constraints. 

 
3.2. Slow fading 
The path loss suffers from fading that randomly depends on time and space. This 
phenomenon can be included in the simulation and alters the borders of the cell. In addition, 
the shape and coverage of the cell depends on time. Hence, slow fading is related to the 
mobility patterns because the same mobility pattern will provide different handover rates 
for different fading patterns. 
 
The slow fading (or shadowing) is generally modelled using the lognormal distribution, 
with a mean of zero and a specific standard deviation that depends on the scenario 
simulated. Typical values for such deviations range from 6 dB up to 12 dB (ETSI TR 101 
112). The lognormal shadowing model is the simplest approach for modelling the slow 
fading and, hence, does not account for several aspects that may distort the results of the 
simulation. The most important of these aspects are presented below. 
 
 Decorrelation distance. It is reasonable to think that a pedestrian user moving slowly 

involves slowly changing shadowing (i.e., near positions that involve similar fading). 
Conversely, mobile stations in vehicles moving at high speeds involve noticeably 
changing shadowing. Thus, the decorrelation distance addresses the question of how far 
a mobile station has to move for the shadowing conditions to change, i.e., the correlation 
of shadowing values according to the terminal displacements. 

 Correlation between base stations. This issue addresses the scenario in which one MS 
receives signals from two different BSs. Because the two links are partially determined 
by the placement of the MS, it is expected that the shadowing impacting the two links 
are similar (to some degree).  

 
Accordingly, correlated models are necessary for actual radio-channel modelling. Auto-
correlated models, which address the decorrelation distance issue, are the most common 
approach for slow fading simulations. One of the most popular auto-correlated models was 
proposed in (Gudmundson, 1991). According to (ETSI TR 101 112), the Gudmundson 
normalised autocorrelation function can be computed as 
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where Ax accounts for the displacement and dx stands for the decorrelation length, which is 
dependent on the scenario being simulated. For instance, a decorrelation length of 20 meters 
is proposed in vehicular scenarios, whereas 5 meters is preferred in pedestrian 
environments. Further information on these values are provided in (ETSI TR 101 112). 
Autocorrelation models are used as follows: 

1. Compute the lognormal shadow at time t1, using a zero-mean Gaussian random 
variable with a variance of σ2 dB. Hereafter, it will be known as S1. 

2. Compute the distance travelled between times t1 to t2, i.e., ∆x. 

3. Evaluate the normalised autocorrelation function at ∆x, i.e., R(∆x). 

4. The lognormal shadow at t2 (i.e., S2) is computed as a Gaussian random variable (in 
dB) with an average of R(∆x)· S1 and a variance of (1-R(∆x))· σ2. 
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Several parameters have to be accounted for in comprehensive channel featuring. These 
parameters might not be directly involved in the path loss computation or the shadowing, 
but they can affect other simulated processes related to the radio link. An example of these 
parameters can be found in simulations modelling power control algorithms or connection 
admission control procedures. The data in Table 3, extracted from (Martin-Escalona & 
Barcelo-Arroyo, 2007; Martin-Escalona & Barcelo-Arroyo, 2008), are proposed as a 
framework for the main parameters required by these algorithms when simulating wireless 
networks.  
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BS transmission power 43 dBm 17 dBm 
Handoff threshold for received power -106.2 dBm -62 dBm 
Handoff threshold for SIR at reception -6 dB -6 dB 

Table 3. Additional parameters used for radio channel characterisation. 

Users can currently choose from a wide range of free and commercial simulation tools, such 
as ns-2, Opnet, Omnet++, NetSim, CPSim, J-Sim, Packet, Tracer, Swans, etc. According to the 
literature, the three former tools are the ones that concentrate most of the simulation market. 
They provide a large amount of ready-to-use and highly configurable propagation models.  

Table 4 summarises the propagation models supported by the main current simulators.  

Simulator Radio channel models 

Omnet++ Deterministic (based on predefined boundaries), Rayleigh, Rice and 
Nakagami   

Opnet CCIR, Free Space, Hata, Longley-Rice, TIREM, Walfish-Ikegami, 
Rayleigh, Ricean and Two-Ray 

ns-2 Free-space (As = 2), dual-slope and lognormal shadowing 
 

Table 4. Propagation models supported by the most popular simulators. 

 
4. Simulation issues 

4.1. Cell wrapping 
Telecommunications is an area in which simulation is especially relevant, mainly due to the 
huge investment that network deployment or upgrades can represent. Operators have 
developed simulators to plan and manage all the features and services provided by their 
networks. The first simulators were highly constrained by the limitations of the hardware they 



used, which led to simulations that were very time-consuming. Technology has evolved to the 
point that relatively complex models can be handled in acceptable execution times. However, 
cellular networks raise new issues that must be dealt with by simulation tools. 
 
Cellular networks divide coverage area into cells. Though planners are often interested in 
obtaining performance metrics for an area that is ideal, continuous and unlimited, an 
infinite area is impossible to simulate. If the simulated area is finite, there is a major 
difference between core cells (i.e., in the middle of the simulated layout) and boundary cells 
(i.e., at the edge of the layout). Core cells receive more traffic and interference than 
boundary cells. Because core cells are surrounded by other cells, performance metrics 
obtained in them are less impacted by the edge effect, and they can be considered to be 
representative of the ideal infinite layout. This fact raises an issue: because metrics and 
statistics are only obtained from centre cells, the simulation will consume much more time 
than is strictly necessary to obtain results. In addition, simulators have to set specific 
procedures to deal with users reaching the boundaries of the simulation area. These issues 
are collectively known as the edge or boundary effect (Zander & Kim, 2001). 

 
Several proposals address mitigating the edge effect in cellular network simulators. 
Overcoming the edge effect involves addressing two issues: mobility and the propagation 
model. Mobility wrapping aims to stop the mobile station from determining the limits of the 
simulated area. On the other hand, propagation wrapping assures that all of the cells show 
the same propagation features without accounting for their position inside the simulated 
area. Several proposals are explained below. 
 

 

 
 

Fig. 5. Ring-erasing approach, where only the inner 4 cells are taken into account. 
 
The simplest approach for addressing the edge effect is the ring-erasing technique (Zander 
& Kim, 2001). This approach is based on simulating a set of N cells; however, only the 

results that come from the M inner cells are considered. Using this technique reduces the 
edge effect but does not remove it completely (i.e., the simulation area is not actually 
unbounded). The lower the M/N ratio, the more accurate are the results, but a low M/N 
ratio involves a more time-consuming simulation. Fig. 5 illustrates this technique, where N 
and M are set to 36 and 4, respectively.  
 
A more efficient method for reducing the edge effect is mirroring, which forces the mobile 
stations to return to the simulation area when they reach the boundaries. This means that 
every time an MS exits the simulation area, another one will enter; this method assumes a 
homogeneous system in long-term equilibrium. In this technique, all of the cells receive the 
same amount of traffic. However, the edge effect is not removed in its entirety, as only the 
mobility issue of the edge effect is overcome and the propagation constraints are not dealt 
with (e.g., mobile and base stations in the boundary-cells are affected by fewer sources of 
interference). Moreover, as this approach affects the mobility pattern of mobile stations, it 
may not be suitable for all simulation scenarios. There are several implementations of this 
approach available, depending on the new position, direction and speed set for the MS after 
the simulation boundary is reached. The author in (Guerin, 1987) proposes mirroring the 
trajectory of the MS whenever it reaches the layout limits, as can be seen in Fig. 6. The 
authors in (Zonoozi & Dassanayake, 1997) propose a method for repositioning an MS within 
the cell whenever the MS reaches the cell boundaries. This means that the simulation can be 
carried out using only one cell, and therefore, the mobility edge effect is removed.  
 

 

 
 

Fig. 6. Mirror approach, in which stations re-enter the simulation area when they reach the 
boundaries. 
 
The most efficient method for allaying the edge effect is cell-wrapping. It is based on 
projecting the simulation area inside a torus, thus converting a finite area into an 
unbounded surface (Zander & Kim, 2001). Wrapping can apply to mobility (Domingo, 1996; 



Discrete event simulation of wireless cellular networks 15
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point that relatively complex models can be handled in acceptable execution times. However, 
cellular networks raise new issues that must be dealt with by simulation tools. 
 
Cellular networks divide coverage area into cells. Though planners are often interested in 
obtaining performance metrics for an area that is ideal, continuous and unlimited, an 
infinite area is impossible to simulate. If the simulated area is finite, there is a major 
difference between core cells (i.e., in the middle of the simulated layout) and boundary cells 
(i.e., at the edge of the layout). Core cells receive more traffic and interference than 
boundary cells. Because core cells are surrounded by other cells, performance metrics 
obtained in them are less impacted by the edge effect, and they can be considered to be 
representative of the ideal infinite layout. This fact raises an issue: because metrics and 
statistics are only obtained from centre cells, the simulation will consume much more time 
than is strictly necessary to obtain results. In addition, simulators have to set specific 
procedures to deal with users reaching the boundaries of the simulation area. These issues 
are collectively known as the edge or boundary effect (Zander & Kim, 2001). 

 
Several proposals address mitigating the edge effect in cellular network simulators. 
Overcoming the edge effect involves addressing two issues: mobility and the propagation 
model. Mobility wrapping aims to stop the mobile station from determining the limits of the 
simulated area. On the other hand, propagation wrapping assures that all of the cells show 
the same propagation features without accounting for their position inside the simulated 
area. Several proposals are explained below. 
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projecting the simulation area inside a torus, thus converting a finite area into an 
unbounded surface (Zander & Kim, 2001). Wrapping can apply to mobility (Domingo, 1996; 



Saitoh et al., 2001) and propagation (Orozco Lugo et al., 2001). Fig. 7 illustrates the 
procedure followed in mobility wrapping when an MS reaches the simulation boundaries. 
This figure shows an MS moving from Position A toward the bottom of the simulation area. 
The simulator updates the position of the MS until it reaches the lower limit of the 
simulation area at a point labelled A. The MS is then moved from point A to point B; these 
points are actually the same point, as the simulation area has become a torus. Finally, the 
MS moves on until it covers the forecasted distance. This wrapping has no influence on the 
mobility pattern set in the simulation. It only supplies the simulation with a way to remove 
the boundaries of the simulation area and, therefore, the edge effect on mobility. This 
approach is in accordance with simulations carried out in (Domingo, 1996; Saitoh et al., 
2001). 
 

 

 
 

Fig. 7. Mobility wrapping. 

A cross-shaped layout (e.g., Manhattan or similar) in which each cell is linked to four 
neighbouring cells is shown in (Orozco Lugo et al., 2001). As this approach considers both 
mobility and propagation wrapping, the edge effect is largely mitigated. However, its use is 
limited to cross-shaped layouts, because each cell is only connected to four neighbours.  
 
Double wrapping is a combination of mobility and propagation wrapping used by authors 
in several simulation studies (Martin-Escalona & Barcelo-Arroyo, 2007; Martin-Escalona & 
Barcelo-Arroyo, 2008). It is based on projecting a rectangular simulation area onto a toroidal 
surface. This means linking the top and bottom boundaries and the left and right 
boundaries. Although it is possible to use several shapes, a rectangular area was selected 
because this shape has been widely used and it entails low complexity upon 
implementation. Mobility wrapping is achieved by means of the algorithm described in Fig. 
7. Double wrapping uses this algorithm together with a new approach for removing the 
edge effect in the propagation. The explanation of this approach is based on the scenario 
shown in Fig. 8 in which two stations (TX and RX) act as a transmitter and a receiver, 
respectively.  
 

 

 
 

 

Fig. 8. Cell-wrapping at the propagation level. 
 
Propagation wrapping must emulate an infinite surface (virtual surface) on the actual 
simulation area. A preliminary method for achieving this consists of replicating the actual 
simulation area of N cells in the eight possible directions (i.e., top, bottom, left, right, and the 
four combinations.). This means that all of the cells and stations in the simulation area have 
multiple occurrences. Thus, a station inside the actual simulation area receives signals from 
all occurrences of the other stations. Hence, we must calculate as many propagation paths as 
there are occurrences taken into account. Note that the number of occurrences remains 
undefined, which can lead to highly time-demanding simulations. The complexity of this 
approach can be reduced by applying two simple assumptions: the first is to consider 
distance as having the greatest impact on propagation; this is the most common assumption; 
the second involves considering only the eight closest occurrences in the propagation 
pattern. Notice that this second assumption hardly constrains the system, because 
simulation areas are considered to be sufficiently large (i.e., they include several cells). 
According to these hypotheses, only the closest occurrence is relevant. Therefore, the path 
between two stations is established by checking two paths, i.e., the direct and inverse paths. 
The direct path is the path between the two stations inside the actual simulation area. The 
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undefined, which can lead to highly time-demanding simulations. The complexity of this 
approach can be reduced by applying two simple assumptions: the first is to consider 
distance as having the greatest impact on propagation; this is the most common assumption; 
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pattern. Notice that this second assumption hardly constrains the system, because 
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between two stations is established by checking two paths, i.e., the direct and inverse paths. 
The direct path is the path between the two stations inside the actual simulation area. The 



inverse path accounts for wrapping and is defined as the shortest path between any 
occurrence of the transmitter station outside the real simulation area and the receiver 
station. For example, in Fig. 8, the direct path goes from point C to D, but the inverse path 
involves Occurrence 6 (the closest one). This means that the inverse path goes from point C to 
E and then from point F to D. 
 
The path selected for propagation purposes is the shortest path between the direct and 
inverse paths. The distance associated with this path can be computed as 
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where dsx and dsy indicate the distance of the shortest path in the x and y axes, respectively. 
Additionally, the path direction can be easily obtained using the following expression 
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where αsp is the angle of the path if the position of the transmitter is considered as the origin 
of the coordinate system. Accordingly, the propagation path is completely defined by 
Equations (11) and (12). Note that this approach can be used together with any propagation 
model because it only removes the edge effect and does not interfere with the application 
propagation model. 

 
4.2. Traffic issues 
Each kind of traffic is characterised and modelled with different features that must be 
accounted for in the simulation. This includes the bandwidth required, time use, mobility, 
etc. In this way, it is unlikely that a worker using a laptop in a WLAN moves at a high 
speed, whereas voice traffic can be provided to devices in cars on a highway. On the other 
hand, the arrival of connections to the network and the time connected must be simulated in 
a different way depending on the service. Whereas a Poisson arrival process, which is easy 
to implement in the simulation, is suitable for voice, video or data connections must be 
simulated by other distributions that introduce further complexity. In the case of voice and 
low bit-rate data services, call duration is often modelled as a lognormal variable instead of 
the classic (and less complex) exponential assumption. This latter fact tends to favour lower 
service durations, whilst the lognormal assumption provides more realistic durations.  
 
The impact of the service duration model in certain teletraffic variables is studied in 
(Spedalieri et al., 2005). Specifically, channel holding time (i.e., the time that a channel of a 
cell remains busy due to the call), the time between handoff arrivals (i.e., the handoff traffic) 
and the handoff duration in UMTS networks are studied. In the case of the channel holding 
time, the exponential assumption involves lower average values compared with those of the 
lognormal case. Furthermore, the exponential call duration involves channel holding times 
that are not particularly sensitive to the load (in average), whilst the lognormal assumption 
produces more realistic figures, i.e., the higher the load, the lower is the mean channel 
holding time.  

Table 5 shows the average value under both assumptions and different network loads. The 
results show that even though shape and scale factors are different, the channel holding 
time is fit by the same candidate functions independently of whether the service duration is 
exponential or lognormal. 
 

Load Average(Log) Average(EXP) 
50 % 8.36 s 8.60 s 
70 % 8.32 s 8.39 s 
90 % 7.83 s 8.68 s 

Table 5. Channel holding time according to service duration: lognormal (log) and 
exponential (exp). 

The time between two consecutive handoffs to the same cell (i.e., sector in a BS) is studied in 
(Spedalieri et al., 2005) from a twofold point of view: including and neglecting simultaneous 
handoffs requests. It must be noted that the higher the user mobility, the more likely are 
simultaneous handoffs. Thus, in vehicle simulation, simultaneous handoffs occur frequently. 
The probability density function is then expected to show a peak at the origin due to the 
presence of the simultaneous handoffs. Table 6 shows the results achieved in (Spedalieri et al., 
2005), where P0 provides the probability that the time between consecutive handoffs is zero. 
As in the case of the channel holding time, results under the lognormal assumption are more 
sensitive to the load, especially when the load is very high. The results obtained for 
exponential service durations also depend on the system load, but the evolution is smoother. 
In both cases, simulations without accounting for the simultaneous handoffs do not seem to be 
sensitive to the load (on average). Furthermore, the model for the service duration also impacts 
the handoff traffic model, which is best fit by means of different random variables according to 
the approach followed to characterise the service duration. 
 

Load 
P0 (%) With all handoffs Without simultaneous handoffs 

Log Exp Average 
(Log) 

Average 
(Exp) 

Average 
(Log) 

Average 
(Exp) 

50 % 62.73 64.20 0.43 s 0.41 s 1.18 s 1.16 s 
70 % 69.43 69.50 0.34 s 0.33 s 1.10 s 1.09 s 
90 % 81.97 72.23 0.18 s 0.29 s 1.16 s 1.06 s 

Table 6. Results for the time between consecutive handoff requests. 

 
4.3. Gathering simulation results 
Collecting data is one of the main tasks of the simulation tools. The procedure followed to 
gather the information resulting from simulation has to be set up when modelling the 
system, because it can constrain the whole simulation process. Simulation tools usually 
allow three types of sampling: deterministic, event-driven and probabilistic. The former sets 
a deterministic rate and collects samples accordingly. This approach is the simplest and is 
generally followed in continuous simulations (e.g., electrical models). The main difficulty in 
this approach is setting the sampling frequency. High sampling frequencies involve more 
precise data but also entails a longer runtime (i.e., time spent until the simulation finishes). 
Conversely, low sampling frequencies provide faster simulations but less precise data. 
Setting a suitable sampling frequency can be hard work, and it is often based on experience, 
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inverse path accounts for wrapping and is defined as the shortest path between any 
occurrence of the transmitter station outside the real simulation area and the receiver 
station. For example, in Fig. 8, the direct path goes from point C to D, but the inverse path 
involves Occurrence 6 (the closest one). This means that the inverse path goes from point C to 
E and then from point F to D. 
 
The path selected for propagation purposes is the shortest path between the direct and 
inverse paths. The distance associated with this path can be computed as 
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4.3. Gathering simulation results 
Collecting data is one of the main tasks of the simulation tools. The procedure followed to 
gather the information resulting from simulation has to be set up when modelling the 
system, because it can constrain the whole simulation process. Simulation tools usually 
allow three types of sampling: deterministic, event-driven and probabilistic. The former sets 
a deterministic rate and collects samples accordingly. This approach is the simplest and is 
generally followed in continuous simulations (e.g., electrical models). The main difficulty in 
this approach is setting the sampling frequency. High sampling frequencies involve more 
precise data but also entails a longer runtime (i.e., time spent until the simulation finishes). 
Conversely, low sampling frequencies provide faster simulations but less precise data. 
Setting a suitable sampling frequency can be hard work, and it is often based on experience, 



which usually involves running the simulation several times. Event-driven sampling is 
proposed to overcome the drawbacks of deterministic sampling. It is used in discrete event 
simulations, which is the common case in the network field. Event-driven sampling consists 
of collecting one sample per event in the system. Hence, it is a comprehensive approach, as 
is deterministic sampling, but it only obtains a sample when something in the system 
happens. Although it requires lighter constraints in terms of computer resources, event-
driven sampling can represent a noticeable part of the simulation in complex systems where 
events are very frequent. The achievement of results can sometimes be simplified if the 
characteristics of the processes involved are considered. This is the main purpose of 
probabilistic sampling, which aims to reduce the complexity and improve the scalability of 
the sampling procedure. In this way, because of the PASTA property (Poisson arrivals see 
time averages), if the traffic is Poisson, the time statistics will be the same as the per 
connection statistics, and therefore, only one of them is needed. For other simple 
distributions, it is possible to obtain time results from connections, or vice versa, by simple 
calculations, simplifying the simulation needs.  

 
5. Concluding remarks 

This chapter offers an overview of discrete event simulation applied to wireless cellular 
networks. The layout and mobility patterns selected in the simulation are more realistic than 
are those assumed in the mathematical calculation. However, the specific model for a given 
network must be selected with care because the differences in the results obtained with 
different models are not negligible. The propagation models applied are common to 
Montecarlo simulations of radio coverage, but due to the different simulation principles, 
they are applied in a different manner. In addition, different simulated propagation models 
have an impact on the obtained traffic performance. The number of operations to be carried 
out in the discrete event simulation of wireless networks is high, raising the need for other 
techniques, such as cell wrapping. This technique performs best when applied to both the 
mobility and the propagation.  
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which usually involves running the simulation several times. Event-driven sampling is 
proposed to overcome the drawbacks of deterministic sampling. It is used in discrete event 
simulations, which is the common case in the network field. Event-driven sampling consists 
of collecting one sample per event in the system. Hence, it is a comprehensive approach, as 
is deterministic sampling, but it only obtains a sample when something in the system 
happens. Although it requires lighter constraints in terms of computer resources, event-
driven sampling can represent a noticeable part of the simulation in complex systems where 
events are very frequent. The achievement of results can sometimes be simplified if the 
characteristics of the processes involved are considered. This is the main purpose of 
probabilistic sampling, which aims to reduce the complexity and improve the scalability of 
the sampling procedure. In this way, because of the PASTA property (Poisson arrivals see 
time averages), if the traffic is Poisson, the time statistics will be the same as the per 
connection statistics, and therefore, only one of them is needed. For other simple 
distributions, it is possible to obtain time results from connections, or vice versa, by simple 
calculations, simplifying the simulation needs.  

 
5. Concluding remarks 

This chapter offers an overview of discrete event simulation applied to wireless cellular 
networks. The layout and mobility patterns selected in the simulation are more realistic than 
are those assumed in the mathematical calculation. However, the specific model for a given 
network must be selected with care because the differences in the results obtained with 
different models are not negligible. The propagation models applied are common to 
Montecarlo simulations of radio coverage, but due to the different simulation principles, 
they are applied in a different manner. In addition, different simulated propagation models 
have an impact on the obtained traffic performance. The number of operations to be carried 
out in the discrete event simulation of wireless networks is high, raising the need for other 
techniques, such as cell wrapping. This technique performs best when applied to both the 
mobility and the propagation.  
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Acronyms 
 
BS  Base Station  
FCC  Federal Communications Commission 
GIS  Geographic Information System 
GSM  Global System for Mobile communications 
HO  Handover 
ITU  International Telecommunications Union  
LAN  Local Area Network  
MS  Mobile Station  
PLMN  Public Land Mobile Network 
UMTS  Universal Mobile Telecommunications System 
WiFi  Wireless Fidelity 
WiMax  Worldwide Interoperability for Microwave Access 
WLAN  Wireless LAN  
 


