1,863 research outputs found

    Restoration of Atmospheric Turbulence Degraded Video using Kurtosis Minimization and Motion Compensation

    Get PDF
    In this thesis work, the background of atmospheric turbulence degradation in imaging was reviewed and two aspects are highlighted: blurring and geometric distortion. The turbulence burring parameter is determined by the atmospheric turbulence condition that is often unknown; therefore, a blur identification technique was developed that is based on a higher order statistics (HOS). It was observed that the kurtosis generally increases as an image becomes blurred (smoothed). Such an observation was interpreted in the frequency domain in terms of phase correlation. Kurtosis minimization based blur identification is built upon this observation. It was shown that kurtosis minimization is effective in identifying the blurring parameter directly from the degraded image. Kurtosis minimization is a general method for blur identification. It has been tested on a variety of blurs such as Gaussian blur, out of focus blur as well as motion blur. To compensate for the geometric distortion, earlier work on the turbulent motion compensation was extended to deal with situations in which there is camera/object motion. Trajectory smoothing is used to suppress the turbulent motion while preserving the real motion. Though the scintillation effect of atmospheric turbulence is not considered separately, it can be handled the same way as multiple frame denoising while motion trajectories are built.Ph.D.Committee Chair: Mersereau, Russell; Committee Co-Chair: Smith, Mark; Committee Member: Lanterman, Aaron; Committee Member: Wang, May; Committee Member: Tannenbaum, Allen; Committee Member: Williams, Dougla

    Blind phase noise estimation for CO-OFDM transmissions

    Get PDF
    In this paper, we discuss in detail the performance of different blind phase noise estimation schemes for coherent optical orthogonal frequency-division multiplexing transmissions. We first derive a general model of such systems with phase noise. Based on this model, the phase cycle slip probability in blind phase noise estimation is calculated. For blind phase tracking, we present and discuss the implementation of feedback loop and digital phase tracking. We then analyze in detail the performance of a decision-direct-free blind scheme, in which only three test phases are required for phase noise compensation. We show that the decision-direct-free blind scheme is transparent to QAM formats, and can provide a similar performance to the conventional blind phase search employing 16 test phases. We also propose two novel cost functions to further reduce the complexity of this scheme

    SYNCHRONIZATION AND RESOURCE ALLOCATION IN DOWNLINK OFDM SYSTEMS

    Get PDF
    The next generation (4G) wireless systems are expected to provide universal personal and multimedia communications with seamless connection and very high rate transmissions and without regard to the users’ mobility and location. OFDM technique is recognized as one of the leading candidates to provide the wireless signalling for 4G systems. The major challenges in downlink multiuser OFDM based 4G systems include the wireless channel, the synchronization and radio resource management. Thus algorithms are required to achieve accurate timing and frequency offset estimation and the efficient utilization of radio resources such as subcarrier, bit and power allocation. The objectives of the thesis are of two fields. Firstly, we presented the frequency offset estimation algorithms for OFDM systems. Building our work upon the classic single user OFDM architecture, we proposed two FFT-based frequency offset estimation algorithms with low computational complexity. The computer simulation results and comparisons show that the proposed algorithms provide smaller error variance than previous well-known algorithm. Secondly, we presented the resource allocation algorithms for OFDM systems. Building our work upon the downlink multiuser OFDM architecture, we aimed to minimize the total transmit power by exploiting the system diversity through the management of subcarrier allocation, adaptive modulation and power allocation. Particularly, we focused on the dynamic resource allocation algorithms for multiuser OFDM system and multiuser MIMO-OFDM system. For the multiuser OFDM system, we proposed a lowiv complexity channel gain difference based subcarrier allocation algorithm. For the multiuser MIMO-OFDM system, we proposed a unit-power based subcarrier allocation algorithm. These proposed algorithms are all combined with the optimal bit allocation algorithm to achieve the minimal total transmit power. The numerical results and comparisons with various conventional nonadaptive and adaptive algorithmic approaches are provided to show that the proposed resource allocation algorithms improve the system efficiencies and performance given that the Quality of Service (QoS) for each user is guaranteed. The simulation work of this project is based on hand written codes in the platform of the MATLAB R2007b

    Impacto de imperfeições do laser em receptores ópticos coerentes com formatos de modulação de alta ordem

    Get PDF
    Orientador: Darli Augusto de Arruda MelloDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Atualmente, os sistemas ópticos coerentes transmitem grandes volumes de informação graças à utilização de formatos de modulação de alta ordem. No entanto, esses formatos de modulação são mais suscetíveis a perturbações de fase geradas por imperfeições nos lasers utilizados no transmissor e receptor. Este trabalho centrou-se em uma análise das imperfeições do laser e seu impacto sobre o desempenho de receptores ópticos coerentes com formatos de modulação de alta ordem. Em especial, avaliaram-se as duas fontes principais de perturbações de fase: o ruído de fase do laser e as flutuações na frequência de operação, efeito conhecido como jitter de frequência da portadora. Primeiramente, investigou-se o impacto das imperfeições do laser por meio de simulações. O ruído de fase foi simulado como um processo discreto de Wiener, e o jitter de frequência foi modelado como uma forma de onda senoidal. Os resultados permitiram avaliar o comportamento do sistema sob diversas condições de frequência e amplitude do sinal de jitter. Posteriormente, o impacto das perturbações de fase foi avaliado por meio de experimentos. Observou-se que parâmetro de largura de linha calculado por métodos existentes não é suficiente para prever o comportamento dos algoritmos de processamento digital de sinais sob condições intensas de jitter. Alternativamente, o trabalho sugeriu uma metodologia mais conveniente para prever o impacto das perturbações do laser no desempenho do sistema, que leva em consideração a composição de ruído de fase e jitter de frequênciaAbstract: Currently, coherent optical systems transmit large volumes of information thanks to the use of high-order modulation formats. However, such modulation formats are more susceptible to phase perturbations generated by imperfections in the lasers used in the transmitter and receiver. This work focused on an analysis of laser imperfections and their impact on the performance of coherent optical receivers with high-order modulation formats. In particular, the two main sources of phase perturbations were evaluated: laser phase noise and fluctuations in the operating frequency, an effect known as carrier frequency jitter. First, the impact of laser imperfections was evaluated by simulations. Phase noise was modeled as a Wiener process, and frequency jitter was assumed to be sinusoidal. The results allowed to evaluate the behavior of the system under different conditions of frequency and amplitude of the jitter signal. Later, the impact of phase perturbations was evaluated through experiments. It was observed that the laser linewidth calculated by existing methods is not sufficient to predict the behavior of the digital signal processing algorithms under intense jitter conditions. Alternatively, the work suggested a more convenient methodology for predicting the impact of laser perturbations on system performance, which takes into account the composition of phase noise and carrier frequency jitterMestradoTelecomunicações e TelemáticaMestra em Engenharia ElétricaCAPE
    corecore