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ABSTRACT 

 

A powerful technique is presented for joint blind channel estimation and carrier offset 

method for code- division multiple access (CDMA) communication systems. The new 

technique combines singular value decomposition (SVD) analysis with carrier offset 

parameter.  

 

Current blind methods sustain a high computational complexity as they require the 

computation of a large SVD twice, and they are sensitive to accurate knowledge of the 

noise subspace rank. The proposed method overcomes both problems by computing 

the SVD only once.  

 

Extensive simulations using MatLab demonstrate the robustness of the proposed 

scheme and its performance is comparable to other existing SVD techniques with 

significant lower computational as much as 70% cost because it does not require 

knowledge of the rank of the noise sub-space. 

 

Also a kernel based equalization for CDMA communication systems is proposed, 

designed and simulated using MatLab. The proposed method in CDMA systems 

overcomes all other methods.  
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Overview 

Wireless communications, will be the leading way of communicating. One of the most 

important wireless systems nowadays, is the mobile networks, where wireless channels 

are used for the communication, between the mobile phones and the base stations. 

 

Of course, for the communication between the mobile phone and the base station, 

many different techniques and algorithms have been deployed, so as that 

communication to be possible. 

 

Since we talk about wireless communication, between the mobile phone and the base 

station, we need a channel access method or a multiple access method, which allows 

several terminals connected to the same physical medium to transmit over it and to 

share its capacity. 

 

Three principal types of multiple access schemes are used in modern digital radio 

systems. These are Frequency Division Multiple Access (FDMA), Time Division 

Multiple Access (TDMA) and CDMA. 
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In FDMA, the bandwidth of the available spectrum is divided into separate channels, 

each individual channel frequency being allocated to a different active remote station 

for transmission. 

 

In TDMA, the same spectrum channel frequency is shared by all the active remote 

stations, but each is only permitted to transmit in short bursts of time (slots), thus 

sharing the channel between all the remote stations by dividing it over time (hence 

time division). 

 

In a CDMA system all users occupy the same frequency, and there are separated from 

each by means of a special code. Each user is assigned a code applied as a secondary 

modulation, which is used to transform user’s signal into spread-spectrum-coded 

version of the user’s data stream. The receiver then uses the same spreading code to 

transform the spread-spectrum signal back into the original user’s data stream. 

 

Most of GSM systems today use TDMA, and some a hybrid version of TDMA with 

FDMA. These methods though have some major drawbacks such as the co channel 

interference, for this reason guard periods between the TDMA channels are used and 

guard bands for the FDMA channels are used.  

 

Both systems have an additional drawback when used for mobile communication. If 

for example they are used for digital transmission of voice, since a user’s voice 

contains large pause periods, FDMA and TDMA perform poorly. This is because 

frequency bands and time slots continue to be allotted to the user even in pause 
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periods. Thus, such a multiple access system limits the number of active users that 

simultaneously share the communication channel.  

An alternative multiple access system consists in allowing more than one users to 

share exactly the same channel with the use of direct-sequence spread spectrum 

waveforms. 

 

 According to this method, users are assigned different signature waveforms (or 

codes), and each transmitter sends its data stream by modulating its own signature 

waveform as in a single-user digital communication system.  

 

This approach is known as code division multiple access (CDMA), and permits users 

to access randomly the communication channel, at the same time and occupy the same 

frequency band. It is the signature waveforms that facilitate demodulation and signal 

separation at the receiver. 

 

The mobile users in CDMA systems are assigned a wave signature, which is used for 

signal transmission. These signatures due to their orthogonality, allow different users’ 

signals to occupy the same time and frequency. The mobile user receives the signal 

which is transmitted by the base station antenna. The mobile user must be able to 

detect and allocate the information which is designated for him, and isolate it from the 

rest of the received signal. In order to be accomplished the aforementioned; the 

knowledge of the composite signature is a necessity. 

 

Due to the multipath effect that the channel introduces, the duration of the signature is 

increased because of the convolution with the channel’s impulse response. The result 
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of this convolution will be referred from now on as composite signature. So in order to 

be possible the detection, an estimation of the unknown channel must be first 

evaluated. 

 

Apart from the channel a second parameter which we take under consideration is the 

carrier offset estimation. Generally in the wireless receivers of a telecommunication 

system, a sinusoidal signal is generated from a local oscillator, which has to be 

multiplied with the received signal, so as to be converted from the Radio Frequency 

zone to the Intermediate Frequency or baseband zone for further processing.  

 

When the transmitter is the Base Station and receivers the mobile phones, because of 

the different Local Oscillators in every mobile there will be a residual carrier after the 

above multiplication which we call carrier offset. 

 

The most recent joint blind channel and carrier offset estimation methods in 

synchronous CDMA systems; they are based in the modelling of the problem made by 

[1]. Taking into consideration only the multipath effect they proceed to a channel 

estimation technique through a technique which is based on the analysis of the signal 

and noise subspace.  

 

While [2] proceed to a joint blind channel and carrier offset estimation through the 

solution of an eigenvalue polynomial problem. Finally [3] convert [2] to a generalized 

eigenvalue problem. 
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The main characteristic of the above techniques is that they are based on the signature 

samples of the mobile receiver which stay unaffected from the intersymbol 

interference and at the same time the noise subspace dimension must be known [39].  

 

By having this information they perform a Singular Value Decomposition Analysis – 

SVD, to a matrix of a large dimension, so as to take, a base for the signal and noise 

subspace, after that taking advantage of the perpendicular placement to each other the 

two subspaces, they perform a second SVD analysis, in order to obtain a joint blind 

channel and carrier offset estimation.  

 

On the contrary, [3] examines the problem of blind channel estimation without 

considering the carrier offset parameter. By replacing the first SVD analysis [5] and 

using a matrix raised to a power, the determination of the base of the two subspaces is 

possible. 

 

 The main advantage of this technique is that it does not require the knowledge of the 

rank of the noise space, while all composite signature samples are taken into account, 

making the solution for this problem more realistic. 

 

In this thesis the above techniques will be thoroughly examined, by demonstrating 

analytically the problem modeling, and the subspace decomposition method technique. 

 

Afterwards, the methodology of [4] will be used for the joint channel and carrier offset 

estimation for CDMA systems problem, but we will produce an alternative solution to 
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the problem with lower complexity in comparison with any other method exists up to 

date. 

 

In addition, we will examine the algorithms which are based on kernel. These 

algorithms were recently developed in the machine learning scientific area, in few 

words this area is not based on a set of a predefined method but learns relations by 

itself from the incoming data. These algorithms were initially used for the solution of 

two classes’ classification problem. 

 

In general, an algorithm which is based on kernels constitutes one non-linear version 

of a linear algorithm, with the data to be processed so as to be picturized initially to a 

space of a larger dimension. 

 

 This representation has as a target, the non-linear formations which show the data 

initially to be vanished in the new space. Like if we have two non-linear separable 

classes, then by transferring the classification problem to a larger dimension space, 

then we can accomplish their linear separation. 

 

The classification algorithms through kernel like for example the SVM, it was only 

applied to occasions where the training data where known in advance. The desirable 

algorithms though are those which their training is on-line. 

 

 Thus, the training data need not to be known in advance to the system, but to come 

with the passage of time. NORMA constitutes such an algorithm which is based to the 

technique of stochastic gradient descent. On the contrary, APSM converts the 
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classification problem to the finding of a spot which belong to the cut of a group of 

convex sets in a Hilbert space. 

 

1.2 Motivation 

 
 

The original motivation of this research arose from the fact that no previous work is 

reported in the literature regarding the joint blind channel and carrier offset estimation 

using the power method and the kernel based classification was never used before for 

CDMA systems and compared with the rest of the classification techniques. 

In the last ten years, subspace based channel estimation algorithms have been 

developed for and applied to various vector channels. 

One of the earliest suggestions of applying the subspace method to channel estimation 

problems can be traced back to the work by Moulines et al. in 1995, which focuses on 

identifying time dispersive channel (modelled as an FIR filter) in Time Division 

Multiple Access (TDMA) system with oversampling in time and/or space domain by 

using subspace methods. 

With the popularity of CDMA communication systems, several works on the 

estimation of multipath channels in CDMA system by subspace methods have been 

reported in 1996. Among them, Liu and Xu's work in  deserves better observation. In 

this work, the authors study the identifiably problem of subspace channel estimation 

for the first time. Furthermore, they supply a closed form expression of the asymptotic 

performance of their estimator by using a first-order perturbation analysis. 

Since that time, several blind subspace channel estimation methods have been 

proposed and applied to different scenarios, such as: SIMO channels, frequency 

selective fading channels in DS-CDMA systems and MC-CDMA systems, multiple 
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receiver antennae and multiple transmitter antennae channels in CDMA systems, 

multi-carrier channels, etc. 

While these algorithms were developed separately for certain specific transmission 

scenarios, the similarities among them indicate that there must exist some common 

features of the underlying system models, which provide for the feasibility of the 

subspace channel estimation. Nevertheless, so far these common features have not 

been studied in the literature. 

 

1.3 Scope of the Thesis 

 
 

The scope of this thesis is to investigate the joint blind channel and carrier offset 

estimation methods and compares them with the proposed method. The new method 

combines singular value decomposition (SVD) analysis with carrier offset parameter.  

 

While existing blind methods suffer from high computational complexity as it is 

required the computation of a large SVD not only one but twice, plus it is sensitive to 

accurate knowledge of the noise subspace rank. The proposed method overcomes both 

problems by computing the SVD only once. 

 

 Extensive simulations demonstrate the robustness of the proposed scheme and its 

performance is comparable to other existing SVD techniques with significant lower 

computational cost as much as 67%, because it does not require knowledge of the rank 

of the noise sub-space. In addition, a kernel based equalization for CDMA 

communication systems is proposed. 
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 The proposed method in CDMA systems overcomes all other methods. Extensive 

simulations demonstrate the robustness of the proposed scheme and its performance 

superiority to other existing CDMA channel classification algorithms. 

 

1.4 Contribution to Knowledge 

 
The contributions of the work presented in the thesis can be categorised as follows: 

1. The estimation of the joint blind channel and carrier offset using the power 

method for a first time in literature and proving its superiority with simulations 

comparisons to the other methods. Additionally, showing its computational 

efficiency in comparison with the rest of the methods in the literature. 

 

2. The Kernel Based estimation that is for the first time implemented in the 

literature for CDMA systems, and proving with the model analysis and the 

simulation results, its superiority in comparison with the other classification 

models. 

 

 

 

1.5 Thesis Outline 

 

The main body of the thesis is divided into eleven chapters, the contents which are 

outlined in the following: 

 

In Chapter 2 is presented the data modeling of the system. 

 

In Chapter 3 we model the problem according to [1], based on the CDMA baseband 

signal which is designated for one user. Also, we examine the Inter-Symbol-
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Interference (ISI) due to the multipath effects that the channel introduces, while the 

samples of the user’s composite signature that remain unaffected from ISI are isolated. 

Then we define the received signal from the (mobile) user of interested which 

constitutes the overlapping of P signals which are being transmitted from the base 

station, each one of them are being designated for one of the P users of the system. 

 

In Chapter 4 we show the subspace analysis and channel estimation method from the 

way the data vectors are being received. 

 

In Chapter 5 the carrier offset parameter is being introduced, subspace analysis is 

being performed and we implement the joint estimation with the channel according to 

the techniques based on [2] and [3]. Techniques [2] and [3] are being compared as 

well. 

 

In Chapter 6 we conclude our work and we suggest future research based on our work. 

The published papers resulting from this research are attached in the Appendix B. 

Finally in Appendix A we have added the code used for the simulations which were 

performed with Matlab. 

 

In Chapter 6 it is presented of two linear separable classes through the support system 

machine, as well as in the case where the classes are not linear seperable. 

 

In Chapter 7 giving the basic elements which refer to the projections on convex sets 

(POCS[1]) on a Hilbert space. 
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In Chapter 8 we present APSM and its performance is compared with NORMA and 

PERCEPTRON. 

 

In Chapter 9 is modeled the problem of channel equation as a classification problem 

and we use and we compare the above algorithms, on a linear and on a non-linear 

channel. 

 

In Chapter 10 we examine a downlink of a CDMA system and we apply the 

algorithms for the recovery of the information of the user of interest. 
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CHAPTER 2 

DATA MODELLING 

 

 

2.1 Introduction 

 

We consider the estimation of channel parameters for code-division multiple access 

(CDMA) communication systems operating over channels with either single or 

multiple propagation paths. The multiuser channel estimation problem is decomposed 

into a series of single user problems through a subspace-based approach. By exploiting 

the eigen-structure of the received signal's sample correlation matrix, the observation 

space can be partitioned into a signal subspace and a noise subspace without prior 

knowledge of the unknown parameters. The channel estimate is formed by projecting a 

given user's spreading waveform into the estimated noise subspace and then either 

minimizing the likelihood or minimizing the Euclidean norm of this projection. Both 

of these approaches yield algorithms which are near-far resistant and do not require a 

preamble. 

 

 

2.2 Review Stage for single user (baseband signal) 

 

Let us consider a CDMA channel that is shared by P simultaneous users. The notations 

used are tabulated in Table 1. 

 
Table 2.1: Notations 

Symbol Description 

nS  The sequence of the information symbols 

cL  Number of bits in the chip code 

c User’s code 
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N Number of received vectors 

xxR  Autocorrelation matrix 

h Channel   Phase of the carrier 

L Length of the channel h 

P Number of users 

sT  Symbol interval 

cT  Chip interval 

 

 

Each user is assigned a signature waveform ( )w t with duration
s c cT L T

,
 where 

sT  is 

the symbol interval. A signature waveform may be expressed at the transmitter as 

 

s k

1

w (t)= c ( )
cL

c

k

p t kT


        0 st T           (1) 

and the transmitted waveform ( )y t  may be expressed as 

n=-

( ) w( )
n s

y t s t nT



 

        

    (2)

  
 

 

 

 

 
Figure 2.1: Baseband CDMA signal for BPSK modulation 

 

 

 

According to the sample of the y(t) with sampling rate 
1

c

c

R
T

  (3) (chip rate), we 

get for each symbol cL  (4) samples. The samples resulting from the sampling of a 

particular symbol are: 
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( ),  ( 2 ), ,  ( ),  with  
s c s c s c c s c c

y nT T y nT T y nT L T T L T                                           (5) 

     

    

 Inserting (1) into (2) and the result is inserted in (5) so we get (6) 

 In (6) because of (1), (2) and (5) we get: (nTs+iTc- kTc-nTs) = iTc-kTc = (i-k) Tc  

1 1

( ) ( ) (( ) )
c cL L

s c n k s c c s n k c

k k

y nT iT s c p nT iT kT nT s c p i k T
 

       
  

          (6)

 

 

Where,  1,....n N can be any symbol in the transmitted data sequence from the base 

station. And 1,.....,i P  is any user of interest amongst P users which are receiving the 

information transmitted from the servicing base station. 

 

 

Where                                    

                                    (( ) ) 1
c

p i k T             0 ct T 
                                          (7)

 

                                

Then 

1

1

2

( )

( 2 )
( )

( ) c

c

s c n

s c n

n

L

s c c n L

y nT T s c
c

y nT T s c
y n s

c
y nT L T s c

                
               (8) 

 

 

Due to the multiple spread, the received signal it contains the original signal 

(symbol) that follow the direct path from the transmitter to the receiver and also from 

its reaction (due to physical and technical obstructions) due to the multipath following 

different delayed paths [15].  

 

This effect introduces inter-symbol interference (ISI) and therefore it is increased 

while the data rate is increased. In order to calculate the performance of the mobile 

communication systems it is convenient to introduce a magnitude for the channel 

spreading in time domain, known as multipath delay spread.  
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This delay concerns the measurement for the time space that is intermediate between 

the first received signal and the last received delayed signal. 

 

We assume that the channel has a duration length L c
T  that is multiple to the chip 

interval. Therefore, we may assume that L<< cL  when the maximum delay introduced 

by the channel is too low compared to the symbol duration sT . The impulse response of 

the channel is  

 

1

( ) ( )
dL

i i

i

h t a p t 


                        (9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2: The multipath effect 

 

 

where 
ia  is the channel’s complex gain, 

i  the i-th path delay and 
dL  is the number of 
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delay paths. The ( )h t  has a sampling chip rate 

 
1

c

c

R
T

                       (10) 

Therefore by using L  samples  to configure the channel as an FIR filter with L  

sample coefficients 

  1

T

L
h hh                     (11) 

 

that introduce a channel vector. We have selected two time – invariant ISI channels for 

evaluating the performance of the system [25]. The models are shown in Table 2.2.  

 

Table 2.2: Coefficients of PROAKIS Channels 

 

Channel Channel coefficients 

weak 0.04  -0.05  0.07  -0.21  -0.5  0.72  0.36  0.21  0.03 0.07 

strong 0.407  0.815  0.407 

      

 

Their characteristics with respect to magnitude-frequency and phase-frequency are 

shown in the figure below.  

 

                                         

    

                   (a) Weak channel                                                                 (b) Strong channel                      

          

            Figure 2.3: Simulation of Proakis channels 
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where C is a matrix that consists of a Toeplitz matrix with matrix dimensions (Lc+L-

1)xL. Due to the growth of the signature duration during the sampling of the n-th 

symbol we have an interference at the (n-1)-th symbol. Figure 2.4 shows the second 

symbol sampling is: 
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 25 

Figure 2.4: The first two symbols 

 

Therefore, the n-th sample symbol is 
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The part from the above equation yn that remains unaffected from the ISI is: 

 
 

W

c

L

n n n n

L

w

x s x s

w

       
       (15) 

 

For the samples ωi, with i=δ, …, δc of the composite signature for each user will 

remain unaffected from the ISI are 

 

1
st
 symbol 

2
nd

 symbol 

Interference 

LcTc 

(L-1)Tc 

(Lc+L-1)Tc 
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



W = Ch

       (16) 

 

with C to be Toeplitz matrix with dimensions (Lc-L+1)L. 

 

 

2.3 Baseband Signal for P Users 

 

We assume that the number of users is P. For each user i, the sample vector of the n-

th symbol that are independent from the ISI are: 

 
 

( )

( ) ( )

( )

i i

c

w L

x n s n

w L





      
      (17)

     

 

( ),    
i

s n  i i i i ix (n) W W C h      (18)

     

  

the data vector that is received by the receiver it consists of the vector summation 

xi(nΨ, with i=1…P. 

 

1 1

( ) ( )
P P

n i i i

i i

x x n w s n
 

        (19)

     

 

where xn it consists of Lc-L+1 samples of the n-th symbol and P users of the system. In 

addition we assume that there are N vectors of xn, with n=1…σ from σ symbol 

samples at the receiver. 
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( 1) ( 1)c cL L N L L P P N       X W S  

 

 

 

 

 

2.4 Summary 

 
Since the signal subspace is determined solely by the users’ spreading waveforms and 

not their relative amplitudes, subspace-based methods are both near- far resistant and 

well suited for fading channels. It is also interesting to note that when calculating the 

estimate for given user, no knowledge of other users’ spreading waveforms is 

necessary. Thus, the algorithm can be used for both multi-user or single user 

estimation. Although we limited our work to channels with multipath spreads of less 

than half the symbol period, longer delays could easily be accommodated by 

increasing the length of the observation vectors. 
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CHAPTER 3 

SUBSPACE ANALYSIS AND CHANNEL ESTIMATION 

 

 

3.1 Introduction 

 

In this chapter, the performance of a subspace based channel estimation algorithm is 

investigated in a Code Division Multiple Access (CDMA) communication system. It is 

analyzed within two cases. The first case is absence of noise, while the second is 

calculated with the existence of noise. 

 

 

3.2 Absence of noise 

 

In the previous chapter was presented that: 

 

X(Lc -L+1)N = W(Lc -L+1)P SPxN          (22) 

 

 
 

Next the following assumptions are made: 

 

1. Assuming that the P columns of matrix W(Lc-L+1)P, which are the signature 

vectors wi; i = 1,…,P of the users are linearly independent. Thus the columns 

of W will constitute a base of the signal subspace. 

 

2. Assuming that the P lines of matrix SPxN, thus the users’ symbols are linearly 

independent. Therefore, rank(W) = rank(S) = P. 
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The column i =1, . . . ,P of matrix X constitutes a linear combination of P linearly 

independent columns of W with coefficients the elements of  i  column of S. Because 

P < N we will only have P linear independent columns to X, so rank(X) = P. 

Performing an SVD analysis at matrix X(Lc-L+1)xN  we get: 

 

( 1) ( 1)( 1) ( 1)

H

Lc L xN Lc LLc L x Lc L NxNU VX              
 (23) 

 

The matrices U and V are orthogonal. The columns ui of U constitute the right 

eigenvectors of matrix X and they result from the eigenvectors of matrix X
H
X  

[13][23]. 

Accordingly the columns vi of V represent the left eigenvectors of matrix X and they 

result from eigenvectors of matrix ( )1 1U VX
   . Indeed, since rank(X) = P 

the above relationship can be written as: 

 

1

( 1) 1( 1) 2( 1) ( 1)

2( )

0

0 0

( ) ( ) ( )
H

PxN

HLc L xN Lc L xP Lc L x Lc L

N P xN

PxP
V

U UX
V

       


   

 

   
1( 1)

( 1)
PxNLc L xP

Lc L xN U BX         (24) 

 

 

The columns of Ui corresponds to the non-zero and different eigenvalues of matrix X, 

so they are linear independent. From the last equation it can be observed that the 

column i=1,…,P of matrix X constitute a linear combination of P independent columns 

of 2U  with coefficients the elements of I column of matrix B. For that reason the 

columns of 2U W  they constitute a base of the signal subspace [33].  

 

Due to the orthoganality of U it is 1 2U U . That is 2U    is perpendicular to the base 

of  iU   of the signal subspace, so it is vertical and to the matrix W which also 

constitutes a different base of the signal subspace of: 2U W .Therefore, the 
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orthogonal complement of the signal subspace constitutes a noise subspace which is 

generated from the columns of matrix 2 0H
iU w  . In fact, the columns of 2U  

correspond to the zero eigenvalues of X, they will not compromise the only base [51]. 

 

So, by exploiting the orthogonality of the two subspaces, we get: 

 

i i iw C h   ,  2 0H
i iU C h                      (25) 

 

( 1) 2 1Lc L P L P Lc L        ,  i=1,…,P            (26) 

 

The above system is constituted from (Lc -L + 1)-P equations and L unknows 

hi(1)…hi(L) which are calculated for each one of the i=1,…,P users. Estimating the 

channel vector hi of user I, we can then to recover the signature of iw . It is observed 

that in order our system to have a solution the following must apply: 

 

( 1) 2 1Lc L P L P Lc L               (27) 

 

We end the analysis by simulating the procedure for a CDMA system with BPSK 

modulation and P=10 users, with spreading gain Lc=32, N=80 the received data 

vectors of the user of interested, to the strong and to the weak channel, without the 

presence of noise. We notice that the estimation is very close to the actual one, if we 

eliminate the mistake which occur in the sign, which is unavoidable. 

 



 31 

 
Figure 3.1: Channel and composite signature estimation with noise absence 

 

 

3.3 Noise Presence 

 

In a telecommunication channel there are various noise sources that can degrade the 

received signal. As an example the noise that is induced at the received antenna 

element or at thermal noise and the noise that is produced at the pre-amplified stage of 

the receiver. At the receiver’s input, all the above produced noises can be modeled as a 

complementary AWGN signal, that is statistically independent from the desirable 

signal. The power spectral density of the AWGN can be received from an analytical 

order or from experimental measurements. In this section, we introduce the noise 

parameter at the received data. It will be examined the behavior of the subspace 

method analysis as we analyzed before [35][38]. 

We assume that the signal according to the user of interest i, and the additive noise 

as a wide sense stationary, with stochastic procedures are independent to the time 

(where only the first two aptitudes, therefore the mean value and the autocorrelation). 

The autocorrelation matrix RxxєRmxm
 for a stationary stochastic procedure x is defined 

as 

 

   T

xx
E x x   R      (28) 
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where ȝ is the mean value of the vector procedure. For zero mean values procedures 

the above Eq. (28) becomes 

  T

xx
E xxR      (29) 

 
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1 2xx m
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x

x
E x x x

x

               
R        (30) 
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1 2
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xx
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x x x x x
E

x x x x x

                
R        (31) 

 

The Rxx(1,1) element is the E{} that is equal to the dispersion ı2
 were the first 

element of all probable vectors x. Due to the fact that this procedure is stationary 

2(1,1) (2,2) ( , )
xx xx xx

m m    R R R      (32) 

and therefore the main diagonal of Rxx is equal to the procedure’s dispersion. The 

Rxx(1,2) element is the E{} and it consists of  the hetero-correlation of the first and 

second vector of x. Therefore we observe that the elements 

(1,2) (2,3) ( 1, )
xx xx xx

m m   R R R      (33) 

consists of the hetero-correlation of a delayed sample procedure. Therefore due to the 

fact that is stationary will be 

 

(1,2) (2,3) ( 1, )

(2,1) (3,2) ( , 1)

xx xx xx

xx xx xx

m m

m m

    
   

R R R

R R R
     (34)

     

That means that the elements of the first upper and lower diagonal are equal. Using the 

same concept, for the j elements of upper and lower diagonals are equal and represent 

the hetero-correlation procedure of its delayed version of j samples. 

 In a procedure that the neighbor samples are correlated which means that is 
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altering slower in time, the diagonals of the Rxx are decreasing constantly when draw 

away from the main diagonal. In addition all the neighbor samples are not correlated, 

therefore changing faster in time, the diagonals of Rxx are decreasing very fast when 

the elements are draw away from the main diagonal. As an example is the white noise 

that each sample correlates only by itself [48]. Everything is random and uncorrelated. 

Therefore the autocorrelation matrix of this process is 

 
2

2

2

2

xx m m


 




        
R I      (35) 

The autocorrelation matrix properties are Hermitian, Toeplitz and positive semi-

defined. Therefore the eigenvalues will be. Let det[Rxx] to be the determinant. Then 

the eigenvalues solutions λi, with i=1,…, σ of the σ-th order equation is 

 det 0
xx

 R I       (36) 

 
and the respective eigenvectors of ui column will satisfy 

 

1xx i
R u u       (37) 

For a white noise procedure implies that all eigenvalues, λ1= λ2=... λΝ=ı2
 are equal 

to u1, 1≤i≤σ and can be an arbitrary vector. If the eigenvalues are distinctive then the 

eigenvectors are linearly independent and originate a base in R
N
. 

Hence, the n-th data vector that is received is 

1 1

( ) ( )
P P

n i i i

i i

x x n s n
 

  w        (38) 
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( 1)cn L L P n
x s   w     (40) 
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Let n(Lc-L+1)x1 the noise vector that is added at the data xn. Then the autocorrelation 

matrix of the received vector xn+n is 

     H H

n n n nxx
E x n x n E n n           R w w     

     

   

H H H H H H H H

n n n nxx
E E E E                  R w s s w w s n w w ns w w nn w   

       (41) 

 

 

If it is assumed that all noise samples and symbols are uncorrelated then                                                

and (41) becomes: 

H

ss nnxx
 R wR w R      (42) 

Also, it is assumed that all sn samples are independent and therefore uncorrelated, are 

following the same distribution. Hence 
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and for auto-correlated noise matrix 
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Finally, the autocorrelation matrix of the n-th vector that is received including noise is 
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V
R V V

V
   (46) 

Therefore we can analyze the Rxx eigenvalues in order to provide the eigenvectors V2
H
 

that represent the smallest eigenvalues ı2
 that consist a base of a noise subspace. In 

addition we calculate the channel vector hi for each user i=1,…,P as 

2

2

0  ,

0   , 1, ,

H

i i i i

H

i i
i P

 
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V w w C h

V C h
     (47) 

 

In reality, it is, an estimation of the Rxx, with a base of a finite number of received 

vectors xn, n=1,…, N 
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1 1ˆ ,  
N

H H
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  R XX X        (48) 

 

With               .using this form we can trace small changes in the original 

autocorrelation matrix as time passing, when the change in the procedure is small and 

specified in the duration of the N samples [23]. Also, the smallest eigenvalues is not 

equal to zero but equal ı2
n. Therefore using Eq. (47) 
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and hi represents the eigenvector that corresponds to the smallest eigenvalues of the 

matrix (Ci
H
V2V2

H
Ci).           (50) 

 

1... NX xx
    
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Hence, the simulation results using the above procedure for the same CDMA system 

for 10 users including noise and SNR from 0 dB to 30 dB are presented. The mean 

square error (MSE) is 

 
2 2

MSE min ,
h h h h

E
h hh h

            
     (51)

     

   

where E{.} is the stochastic average that approaches the arithmetic average of 100 

independent simulations. Finally, all the figures that follow, the MSE is in dB, 

10log10(MSE). In both cases when the SNR is increased the MSE is decreased 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

              (a) Strong Channel                                                 (b) Weak channel 

             

Figure 3.2: MSE channel estimation in conjunction with SNR 

 

3.4 Summary 

 

A blind channel identification method for MultiCarrier CDMA systems has been 

presented for both cases, absence or not of noise. First it estimated channel and 

composite signature with noise absence. Second, the method exploits the orthogonality 

between the signal and noise subspaces of the incoming signal. It also has been 



 37 

investigated the performance of the method: using a perturbation technique since in 

telecommunication nothing cannot be solved exactly without having errors at the 

receiver, we derived an analytical approximate expression of the estimation MSE, 

where the units of the MSE are the same as the quantity being estimated. The optimal 

solution is then perturbed. Computer simulations have revealed the high accuracy of 

the analytical approximation carried out. 
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CHAPTER 4 

ESTIMATION OF THE CARRIER OFFSET 

 

 

4.1 Introduction 

 

The demodulators which are used at the receivers are classified either as accordant or 

absonant. Depending whether they use or not one signal carrier which ideally must 

have the same phase and frequency with the transmitter carrier, so as to be the receiver 

able to demodulate the received signal. 

 

Usually, the phase and the frequency are recovered from the received signal by using a 

phase locked loop (PLL) which is using a local oscillator. The recovered can vary 

from the transmitter’s carrier due to phase noise which can be ought to, i.e. frequency 

slipping of the oscillator and due to the dynamic characteristics and of the transitional 

behaviour of the PLL. 

 

4.2 System Model 

 

The recovered carrier is expressed as 

 

u(t) = Vo[1 + a(t)] cos(ωot + φj(t) +dt2
/2)         (52) 

 

where d (longhead slipping) represents the result due to the caducity of the oscillator, 

a(t) is the amplitude noise  and φj(t) appoints the phase noise and Vo the initial voltage.  
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Often, the phase noise is usually entered to the model of a system of transmission as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1: Equivalent channel model for baseband transmission 

 

 

The phase noise or carrier offset φj(t), as we call it from now on, is constituted from 

components and random noise. For example, changes in temperature and voltage and 

changes in the impedance output of the oscillator are some components to name. 

 In this chapter we will introduce the carrier offset of the received CDMA signal and 

we will perform a joint channel and carrier offset estimation. Now we will assume that 

the signal received from one user is as follows: 

 

1

( )( ) ( )
Ld

l

l

j t
l ly t x ta e

 
          (53) 

 

Where Ld is the number of paths, αl and Ĳl are the attenuation and the delay which are 

introduced from path l, x(t) is the CDMA baseband signal of user i, and ω the residual 

of the carrier due to the not perfect synchronisation between the transmitter and 

receiver (mobile terminal). 

 

Mean of transmission 

which is modelled as a 

FIR filter: h=[h0…hL]
T
 

White Gaussian 

additive noise, n 

Noise phase 
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For the signature and the baseband signal of user, as it was presented in chapter 2, we 

have accordingly: 

 

k

1

w(t)= c ( )
cL

c

k

p t kT


           (54) 

 

( )

n=- 1 1

( ) ( ) l

Lc Ld
j t

sl n k l
k l

y t p t n kTca s c eT
  

             (55) 

 

According to (54) and (55), (56) becomes: 
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( ) ( )
Lc Ld
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By setting: 
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l
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   (57) 

 

(56) becomes: 

 

 
n=- 1

( ) ( )
Lc

j t
sn k

k

y t h t n kTcs e c T


 
                                                                              (58) 

 

 

We sampling y(t) with sampling rate Rc = 1/Tc   (chip rate), by receiving from each 

symbol Lc samples. The samples which come from the sampling of the n-th symbol is: 
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( 1)
Lc

j i
i k

k

c i kw h e



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With φ=ωTc and Tc=LcTc. For the samples wi, i=δ, …, δc of the composite signature 

which remain unaffected from the ISI are: 
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For matrix Z we can write the following: 
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(62) 

 

 

 

The Lc-L+1 samples from the n-th symbol which remain unaffected from the ISI  
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Supposing that we got P users. If we assume for every user i, the vector with samples 

of n-th symbol which are free of ISI are: 
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With matrix 
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ii i iw C hZ            (65) 

 

 

It must be mentioned that in the case where we assume as a receiver the mobile phone 

of the user of interest the carrier offset its common everywhere, so instead of φi we 

have φ. 

 

The data vectors which are received will constitute the sum of vectors of 

xi(nΨ, i=1…P.   
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(66) 

 

 

So xn  will be comprised from the Lc-L+1 samples of the n-th symbol, which is formed 

from the overlapping of n-th symbols of P users. 

Next we will adopt that we got N vectors  xn,  n=1…σ which can form the sampling of 

N symbols obtained at the receiver. 
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( 1) ( 1)Lc L Lc L PxNW SX               (67) 

 

 

Considering the noise matrix N(Lc-L+1)xN then: 

 

 

( 1) ( 1) ( 1)Lc L Lc L PxN Lc L xNW S NX               (68) 

 

In previous chapter we saw that we can perform eigenvalue analysis of matrix Rxx 

which constitutes an estimation of the autocorrelation matrix of X, so as to find the 

eigenvectors 
2

H

V  which correspond to the smallest eigenvalues and represent a base 
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of the noise subspace [26][28]. Thereafter, we calculate the channel hi vector for every 

user i=1,…,P like beforeμ 

  

2( 1 ) ( 1) 0H
Lc L P x Lc L iV w     ,   ii i iw C hZ  

 

2 0H
i i iV C hZ          (69) 

 

The above system of equations for every user, is not anymore linear because of matrix 

Zi. We focus now on the user of interest and we ignore the receiver i [62]. We set  

K = Lc-l+1 and z = e
jφ

. If qi the column of i of matrix 2
H

V  and T
ic  the row of i of 

matrix C, the above system can be written as: 
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(70) 
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We observe that we end up to a polynomial eigenvalue problem.  When 00
jez  , 

where φ0 is the real carrier offset, then the matrix Q(z0) must be  invertible, so as the 

channel vector h to be defined univocally. 

 

Thus, the real carrier offset will correspond to the smallest eigenvalue (which will be 

very close to zero) of matrix Q(z0) and the channel vector will constitute the 

corresponding vector. Because the z0 is unique, we have: 

  For z=z0 the smallest eigenvalue approaches zero 

  For 
0z z  the smallest eigenvalue is not zero 

 

 

Summing, the above steps are the following: 

 

 

1. SVD analysis to the autocorrelation matrix so as to get the eigenvectors 

2
H

V  which correspond to the smallest eigen-values and they constitute a 

base of the noise subspace. 

2. Sampling of φ at the range [-0.1 0.1], where we assume fluctuates and 

for every value we keep the smallest eigenvalue of matrix Q. The 

estimation of carrier offset will be that φ(vector) which gives the 

smallest eigenvalue and the channel estimation will be the eigenvector 

which corresponds to it. 
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Figure 4.2: The smallest eigenvlaues in function with the samples φ(vector). Strong channel –     

SNR=10dB 

 

 
 

Figure 4.3μ The smallest eigenvlaues in function with the samples φ(vector). Weak channel – 

SNR=10dB 
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Table 4.1 μ φ vectors and their smallest eigenvalues 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Strong channel 

 

 

 

(a) MSE carrier offset estimation in      (b) MSE channel vector estimation 

      function with SNR                                            in function with SNR 
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(a) MSE carrier offset estimation in      (b) MSE channel vector estimation 

      function with SNR                                            in function with SNR 

 

 
Figure 4.5: Weak channel 

 

 

At the above figures is presented the MSE of the carrier offset estimation and the MSE 

of channel vector estimation against SNR for both strong and weak channels. 

 

At the strong channel the MSE of carrier offset estimation is getting a smaller value as 

the SNR increases than in does in the weak channel. 

 

The opposite though happens with the MSE of the channel vector estimation, where 

the weak channel achieves lower values as the SNR increases in comparison with the 

strong channel. 

 

So, in the weak channel there is a better estimation of the channel vector, and in the 

strong channel there is a better estimation of the carrier offset. 
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4.3 Reduction to the generalized eigenvalue problem 

 

A different way to encounter the problem is to reduction the polynomial eigenvalue 

problem to a generalized eigenvalue problem. From (70) we got: 

  1 2
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We end up to a generalized eigenvalue problem, with matrix zX+Y to have the same 

eigenvalues as matrix Q(z) if we examine the matrices dimensions. The above matrix 

equation leads to the following system of equations: 
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                 (72) 

 

 

So in order to appoint the computations, the dimensions of the matrices L and X will 

be as follows: 
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We observe that only when Lc=2L the matrices X and Y are square matrices and we 

can to solve the generalized eigenvalue problem, with the estimation of the carrier 

offset which corresponds to the smallest eigenvalue, with the carrier offset estimation 

to correspond to the smallest eigenvalue and the channel estimation to come from the 

corresponding eigenvector choosing the first L elements and dividing with –z 
K-1 

. 

Otherwise we continue from (74) as follows: 
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The estimation is performed as before, by sampling on φ in the range [-0.1 0.1] and 

choosing the φ(vector) which corresponds to the smallest eigenvalue of Q each time. 
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But in this situation the dimension of Q is much larger, which makes the SVD analysis 

time-consuming [62][36]. 

4.4 Approximation of the Z matrix with the help of the Taylor 
expansion 

 

Closing this chapter we will present a way of encountering the problem which is based 

to the Zi matrix approach through Taylor series. 

Setting D=diag{1,2,…,K} isμ 
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Using the first two terms of Taylor series () becomes: 
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So the wanted φi(vector) and hi(vector) are those for which stands: 
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For the cost function J(φi, hi) we have: 

 

( )( , ) ( )
H

i ii i ii i
j jh hA BJ h h hA Bi ii ii                        (79) 

 

 



 52 

2
( , ) ( )H H HH H H

i i i i i i i ii i i i i i ii i i
jJ h h h h h h hA A A B B A B B        

 

2( ),
( )

i H H Hi
i i i i i i i ii i ii i

i

J h
jh h hA A A B B A B B

h

                                   (80) 

 

We observe that (80) leads to a polynomial problem, which will redact to a generalized 

eigenvalue problem Mx=λx. From (80) setting gi=φh,  then we have: 
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(81) 

 

 

 

We end up to a generalized eigenvalue problem for the carrier offset estimation to 

constitute the smallest eigenvalue of matrix M and the channel vector estimation, the 

first L samples of the corresponding eigenvector. From the figures which will follow 

we observe the Taylor method approach to give a better carrier offset estimation in the 

strong channel (Fig (4.6)) and Fig (4.7)). We could use more coefficients in Taylor 

technique with a result to have a better estimation. This would lead again to a 

generalized eigenvalue problem with a dimension that would made SVD analysis 

prohibitive. 
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(a) MSE carrier offset estimation in      (b) MSE channel vector estimation 

      function with SNR                                            in function with SNR 

 

 
Figure 4.6: Taylor approach -Strong channel 

 

 

(a) MSE carrier offset estimation in      (b) MSE channel vector estimation 

      function with SNR                                            in function with SNR 

 

 
                                              Figure 4.7: Taylor approach – Weak channel 
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(a) MSE carrier offset estimation in      (b) MSE channel vector estimation 

      function with SNR                                            in function with SNR 

 
Figure 4.8: Comparison of the two techniques on the strong channel 

 

 

 

 

(a) MSE carrier offset estimation in      (b) MSE channel vector estimation 

      function with SNR                                            in function with SNR 

 
Figure 4.9: Comparison of the two techniques on the weak channel 
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4.5 Summary 

 

In this chapter we introduced the carrier offset of the received CDMA signal and it 

was performed a joint channel and carrier offset estimation. It is demonstrated the 

MSE of carrier offset and channel error in function with the SNR for the two channels, 

the weak and the strong. The result was that with weak channel there is a better 

estimation of channel vector and with the strong channel there is better carrier offset 

estimation. Also it was performed a reduction to the generalized eigenvalue problem.  

The estimation is performed by sampling on φ in the range [-0.1 0.1] and choosing the 

φ(vector) which corresponds to the smallest eigenvalue of Q each time. But in this 

situation the dimension of Q is much larger, which makes the SVD analysis time-

consuming. Closing this chapter we present a way of encountering of the problem 

which is based to the Zi matrix approaching through Taylor series. 
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CHAPTER 5 

RAISE POWER METHOD 

 

 

5.1 Introduction 

 

The estimation techniques that we analyzed before are based on two steps: 

 

1. SVD analysis on a large matrix so as to take a base of the noise subspace and a 

base of the received signal subspace. 

 

2. SVD analysis on a smaller dimension matrix for the channel and carrier offset 

estimation. 

 

Basic drawback of these methods is the need for knowledge of the noise subspace. 

Taking into account only the ISI free symbols we end up that the signal subspace has 

dimension P, thus the numbers of users, while the noise subspace has a dimension of 

Lc-L+1-P. If we want to include all the samples of the composite signature, then the 

dimensions of the subspaces will not ne so obvious. 

 

In this paragraph will we work with all the sample of the composite signature, and then 

we will see that we can replace the first SVD analysis with the computation of a power 

of a matrix, while will not need the knowledge of the noise subspace. 
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5.2 The Raised Power method 

 

 

The (Lc + L – 1) samples from the nth symbol that are received at the receiver are 

given by: 
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Where the samples of the composite signature are as follows: 
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We now focus now to the user of interest (Zi=Z, Ci=C, Hi=h). We assume that the 

user obtains, with its receiver N vectors of data, each one of these vectors constitute 

the overlapping of the symbols of the P users. Taking into account and the noise 

vectors which lay on the matrix , the N vectors which are obtained at the 

receiver will be as (55). 

( 1) ( 1) ( 1)c c cL L N L L P P N L L N
X W S N                (85)

      

Performing an SVD analysis now on the autocorrelation matrix of (3), then 

 1cL L N
N   
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according to the analysis of the previous paragraph we would end up with: 
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Exploiting the orthogonality between signal and noise subspace we would have: 
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    (87) 

With matrix 
H

n nU U  to constitute the orthogonal projection matrix to the noise 

subspace, using equation (87) we have: 

 
 

 

1

n

2 2

s n

2 2

s n1

2

n

2

n

1

0

1

1

0

1

0

0

0

0

H

s

xx s n H

n

 

 






                      

U
R U U

U
   (88)

     

     



 59 

 
1

n

2

n

2 2

s n

2

n2 1

2 2n

s n

0

1 0

0

0 1

0

0
H

s

xx s n H

n


 

  

                   

U
R U U

U
    

 

     

 (59)    

   
1

n

2

n

2 2

s n

2
2 1

n
n

2 2

s n

0

1 0

0

0 1

0

0

k

k H
k

s

xx s n H

n


 

  


                             

U
R U U

U
 

 (60)   

 

 

 

   2 1

n

0 0

0

0 0
lim

1 0

0

0 1

H
k

s

xx s n Hk
n

 


               

U
R U U

U
    (89)

     

   

Finally,  2 1

nlim
k

H

xx n n
k

 
 R U U         (90)

      

 

 

 

 



 60 

From equation (90) it can be observed that by raising the inverse of the 

autocorrelation matrix to a power we can approach the projection matrix H

n n
U U , where 

the degree of the power does not need to be higher than three (k=3). So from (87) and 

(90) we get: 

 

  2 1

n 0   , 1,2,3

h=0

k
H H

xx

L L

k

Q

 



 

C Z R ZC h

     (91)

    

We end up to the known problem of eigenvalues but without performing an SVD 

analysis to the autocorrelation matrix, so as to define a base for the noise subspace. We 

must to mention here, that this is performed without taking into account only the inter-

symbol-interference free vectors which belong to the composite signature of the 

transmitter [96][99]. In addition, it is important to be mentioned that our method is not 

concerned with the dimension of the noise subspace. So now, from the moment that 

we have to our service an estimation of the autocorrelation matrix (91) becomes

h 0
L L

Q   [45]. 

 

So the steps required performing the joint blind channel estimation and carrier offset 

power method are: 

 

1. Calculate the autocorrelation matrix raised to the power k where k=1, 2 and 3. 

2. Sampling of φ in space [-0.1 0.1], where it is assumed to fluctuate, the smallest 

values of φ are stored in matrix Q. The estimation of the carrier offset it would 

be that φ which gives the smallest eigenvalues. The estimation of the channel is 

the eigenvector which corresponds to that eigenvalues. 
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Figure.5.1μ The smallest eigenvalues in conjunction with samples (phiΨ φ - Strong channel with k=1. 

 
Then we calculate the MSE (mean square average) error of the estimation of the 

carrier offset and of the channel for an (signal to noise ratio) for various SNR values 

using N=100, N=1000 and N=10000 symbols for the generation of the autocorrelation 

matrix [20][22]. We observe that only when the arithmetic average is big enough 

(N>>) the rule of big numbers applies, by acquiring better results for k>1. 

 (a) MSE carrier offset estimation against SNR              (b) MSE Channel vector estimation against SNR 

Figure 5.2: Formulation of autocorrelation matrix, strong channel with N=100 symbols 
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(a) MSE carrier offset estimation                                                     (b) MSE channel vector estimation in                                     

in conjuction with SNR            in conjuction with SNR 

 

Figure 5.3: Formulation of autocorrelation matrix, strong channel with N=1000 symbols 

 

 

 

             

 

               

(a) MSE carrier offset estimation in      (b) MSE channel vector estimation in                                    

conjunction with SNR                                                                  conjunction with SNR 

 

Figure 5.4: Formulation of autocorrelation matrix, strong channel with N=10000 symbols 
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Concluding we simulate the power raising method with that one of the subspace 

decomposition and then to the salvation of a polynomial eigenvalue problem in 

environment with SNR=10dBB and SNR=20dB, in conjunction with the number of 

symbols being received.  

The autocorrelation matrix is being estimated in advance as follows: 

 ( ) λ 1 ( Ψ ( ΨH

xx xx
n n x n x n  R R      (92)

   

With λ = 0.λλι to correspond to a 
1

333.333
1    samples window, while the inverse 

autocorrelation matrix which is used in the power method is: 

 

        
1 1

1 1

1

1 ( ) ( ) 11
1

λ λ ( Ψ 1 ( Ψ

H

xx xx

xx xx H

xx

n x n x n n
n n

x n n x n

  


       
R R

R R
R

    (93)

     

  

With initial value: 

 1

2

100
0    , xx

n

    R I           (94)  

 

5.3 Simulation Results 
 

It is examined 4000 symbols windows at the receiver, by performing either a 

channel change at symbol 2000 or a carrier offset change at symbol 2000. Initially the 

error in all methods is the same and with the passing of symbols the power method 

converges first and downgrades the error estimation level faster. 

It can be observed from all the simulation windows, that the power method 

converges faster to lower estimation levels compared to Subspace Decomposition (SD) 

methods. After the channel change or the carrier offset changes at 2000 symbol, for 

k=1 the method downgrades faster the estimation error requiring approximately 400 

symbols, for k=2 approx. 500 and for k=3 approx. 700. It can be observed from the 

simulation windows that the raised power method is better compared to the SD 

method.. In order to illustrate the performance of our method in this paper we use 
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BPSK modulation with number of users P=10, spreading gain Lc=32, and N=100 the 

received number of data vectors at the receiver. The SNR is set at 10dB and 20dB. 

It can be observed the behavior of our method using k=1, 2 and 3 in comparison 

with SD. We can clearly see that after a small number of transmitted symbols (100) 

our method has lower carrier offset estimation error in dB than the SD method. 

Moreover, when we have a change of the serving channel chosen to be at symbol 

2000, our method performs better immediately after the change since the carrier offset 

estimation error is at lower levels for the power method in comparison with the SD 

method. When we trigger a change in the carrier offset (φΨ, the proposed method 

performs better again since the channel estimation error is at lower levels before and 

after the change in phase (φΨ occurred at transmitted symbol 2000. 

It is worth mentioning that when one parameter changes then estimation of the other 

parameter is being affected too, despite of the fact that the value of this parameter may 

not change. The power method performs better to this phenomenon in comparison 

with the subspace analysis method. Finally, as it was expected for SNR=20dB we get 

smaller errors for estimation in comparison with SNR=10dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) Error in carrier offset estimation in conjunction with         (b) Error in channel vector estimation received     

symbols.                                                                                in conjunction with received symbols. 

 

Figure 5.5: Channel change – SNR=10dB 
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(a) Error in carrier offset estimation in conjunction             (b) Error in channel vector estimation in 

conjunction with received symbols                                                 conjunction with received symbols. 

 

Figure 5.6: Channel change – SNR=20dB 

 

 

 

 

 

 

 

 (a) Error in carrier offset estimation in conjunction             (b) Error in channel vector estimation in 

conjunction with received symbols.                                 conjunction with received symbols 

   

Figure 5.7: Change in the carrier offset parameter – SNR=10dB 
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 (a)  Error in carrier offset estimation in                                  (b) Error in channel vector estimation in 

conjunction with received symbols .   conjunction with received symbols. 

 

   

Figure 5.8: Change in the carrier offset parameter – SNR=20dB 

 

 

 

 

 

(a)  Error in carrier offset estimation in conjunction             (b) Error in channel vector estimation in 

conjunction with received symbol                                               conjunction with received symbols.  

   

Figure 5.9: Change in both the channel and the carrier offset parameter – SNR=10dB 
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(a) Error in carrier offset estimation in conjunction             (b) Error in channel vector estimation in  

with received symbols.                                                              conjunction with received symbols. 

 

Figure 5.10: Change in both the channel and the carrier offset parameter – SNR=20dB 

 

 

 

5.4 Summary 

 

In this part of the thesis we presented a novel method for joint channel and carrier 

offset estimation for CDMA communication systems. Our method is based on a two-

step methodology including the offset carrier parameter in the power method presented 

in [4] which has the advantage of reducing a two-step SVD analysis to a single step. 

Also, the performance of this method is independent of the knowledge of the signal 

subspace rank whereas the approaches in [1], [2], [3] are sensitive to correct knowledge 

of this parameter. As a result our technique performed better compared to other existing 

techniques at a significantly lower computational cost. 
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Support vectors 

Support vectors 

CHAPTER 6 

SUPPORT VECTOR MACHINES 

 

 

6.1 Introduction 

In this chapter we will first examine the problem of classification of two linearly 

separable classes and then we will look into the situation where the prototypes for 

classification belong to two non linear separable classes. 

 

6.2 Linearly separable classes 

 

We assume a set of N prototypes xi    R
n
; i = 1,…M, which is divided in two 

classes C1 and C2 which are linearly separable. We will examine the problem of 

classification of these two classes. If M<n, thus the number of components is bigger 

than from the number of prototypes, then there is always a hyperlevel which separates 

them [83]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.1: Support vectors 
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On  figure 6.1,  İ1 and İ2 are two hyperplanes which are separable in two classes 

and they constitute equivalent solutions of the simple perception. İ1 however 

constitutes what absolute separates the two classes, according to the maximum margin 

criterion [83]. 

The hyperplane to be far of equal distances from the closest prototypes of the two 

classes [83]. 

This margin to be the maximum possible. 

The prototypes of both classes which equal-distant from the margin of the dividing 

hyperplane are called support vectors. The equation of the dividing plane discriminant 

function is as follows: 

g(x) = w
T
x + wo = 0          (96) 

The w defines the address of the hyperplane, while wo defines the exact position on 

space. Our target is to seek that direction which gives us the maximum possible margin 

between the two classes. 

So given that the two classes are linearly separable there is a hyperplane w
T
x + wo = 

0 and one positive ρ>0 so as toμ 

  0 1
T

w x w  , when 
0 0 1 1 21 2

T T
x xw ws s

w w w w w

        

0 1
T

w x w  , when    
0( )

T
g x w x w

z
w w

                    (97) 

 

When the x prototypes constitute support vectors then the equations will apply. The 

distance of a point from line İ1 (the plane of interest in this situationΨ isμ 
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0( )
T

g x w x w
z

w w

            (98)  

Based on the above observation, if xs1 a support vector of class C1 and xs2 a support 

vector of class C2, then the margin between the two classes will be as follows: 

0 0 1 1 21 2
T T
x xw ws s

w w w w w

              (99) 

For every xi, i=1,…,σ we the corresponding label (class indicator) yi (exits targets 

as in the simple perception case) will be as follows: 

 

1 0, ,1 1
T

i i
yxx C w i      

 0 , 1,...,1
T

i
y i Nxw i                                     (100) 

 

Equally we can write:   0 , 1,...,1
T

i
y i Nxw i   . We end up to the following 

optimization problem: 

minimize     0i   

subject to  0 , 1,...,1
T

i
y i Nxw i                                    (101) 

 

The cost function which is to be minimized J(w) is strict convex from the moment 

its Hessian matrix is positively defined. Moreover, the inequality constraints are 

constituted from linear functions. These observations guarantee that the local minimum 

will be simultaneously be overall and unique.  
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We define the Lagrangian equation: 

 

   2

, 0, 0
1

1
( ) )[ ]1

2

N
T

i ii
i

w yw w xL   
                                           (102) 

 

The Karush-Kuhn-Tucker conditions are as follows: 

 

 
0

, 0, 10 0
N

ii i
ywL                                       (103) 

 

 , 0, 10
N

i ii i
yw w xLw                                  (104) 

 

0i  , active constrain (λȚ>0Ψ we have when xi is a support vector and not active 

(λi=0Ψ, when is not 

 

sN N  

 

The λi can be positive, when xi is support vector or zero in the case where is not. 

Therefore, w will compromise a linear combination of 0i  prototypes which 

correspond to 0i  and they constitute the classes support vectors.  
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From the moment they constitute the cost function is convex, and the sum of the 

feasible solutions constitutes a convex set, we can encounter the problem via the 

Langrange duality by formulating it to a Wolfe dual representation form, using the 

following conditions: 

 

1
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i i
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i ii
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The Lagrangian function will be as follows: 
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By combining the above, we end up to the following dual problem of optimization: 

 

, 0
1 1

1
max ( , )
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N N N
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i i j i ji j
i i j

L y yw x x

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Subject to  
1

0
N

i i
i

y
  

 , i=1,…,σ      (108) 

 

We see that the prototypes are coming to the problem in the form of internal product 

and the cost function its not anymore depends from the prototypes dimension, like we 

had before, where w will have the same dimension with the prototypes. After the 

calculation of λȚ, the w and w0 they will be as follows: 

 

1

N

i ii
i

w y x
  ,   1

0
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N T
i ii

N
ii
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6.3 Non Linear Separable Classes 

 

We observe now the situation where the prototypes for classification belong to two 

non linear separable classes. The Cover theorem declares that such a space can be 

transformed to a new space, where the prototyped are now linearly separable with a 

big probability, given that the following applies: 

 

1. the transformation is non-linear 

 

2. the dimension of the new space is large enough 

 

Supposing n
x R  a prototype to the original dimension space n, which can belong to 

the class C1 or C2 which are not linear separable. We suppose the k non linear 

functions: 

( ) ,
n k

x x k nR R   
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Φj(.) : Rn R , j=1,…,k         (110) 

 

Which define the depiction: 

 

( ) ,n kx x k nR R             (111) 

 

where: 

 

φ(x)=[ φ1(x), φ2(xΨ,…, φk(x)]
T        

(112)
 

 

 

 

Figure 6.2 :Class Separation 

 

Our target now its to see, if there exists a suitable value for k and the φj(.) so as the 

classes C1 and C2 to be linearly separable at the k-dimensional space which is defined 

by φ(x). Thus, we are looking for a k-dimension space where we can construct a 

hyperplane 
k

w R  so as: 

0 1
( ) 0,

T
x xw w C      

0 2
( ) 0,

T
x xw w C             (113) 
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If it is supposed that the initial space n the two classes are separated from a non linear 

hyperplane g(x)=0, then the above relationships constitute an approach of the non 

linear function g(x) and the linear combination of φj(x): 

0
1

( ) ( )
k

i i
i

g x xw w
          (114) 

 

That end to the classical problem of function approach through a class interopolation 

function. From the moment φj (.) are defined the problem is transformed to a linear 

classifier, where the estimation of w and w0 is demanded. 

 

Setting that 0
( ) 1x x   we end up to: 

 

0

( ) ( ) ( ) ( )
k

T
i i

i

g x x g x xw w 
                     (115) 

 

Therefore the new space dimension of the separable hyperplane w will be: 

 

1
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N

i ii
i

w y x
                      (116) 

 

Hence the equation of the separable hyperplane becomes: 

0

( ) ( )
N

T

i i
i

g x xy  
                      (117) 

 

The term φT
(xi)φ(x) represents an internal product to a space of larger dimension. The 

inner-product kernel is defined as follows: 

 

0

( , ) ( ) ( ) ( ) ( )
k

T

i i ij j
j

K xx x x x x   
   ,  i=1,…,σ                (118) 

 

and it constitutes a symmetrical function, thus K(x,xi)=K(xi,x).  

 

The eq.(118) declares that the inner-product of the prototypes in the new bigger 

dimension space that have been visualized, its expressed as a function of their  inner 

product  to a space of smaller dimension.  
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The space of larger dimension is known as Reproducing Kernel Hilbert Space 

(RKHS). 

 

Coming back to the problem of optimal separating hyperplane, and finding the 

appropriate kernel, that will indirectly express the representation to a larger dimension 

space, the Wolfe dual problem becomes: 

 

0
1 1 1

1
( , , ) ( )max

2

N N N

i i j i ji j
i i j

y yL w w x xK       
       (119) 

 

Subject to             1

0

, , ,0 . . .1

N

i i
i

i

y

i N






 

 

 

and after the finding of λȚ the classification of the unknown prototype x will be as 

follows: 

 

0
1

( ) ( ), 0
Ns

i ii
i

g x y x x wK
    , 1x C                  (120) 

 

0
1

( ) ( ), 0
Ns

i ii
i

g x y x x wK
    , 2x C                  (121) 

 

 

where Ns is the volume of support vectors, since for these corresponding λi is not zero. 

 

Closing we have to mention that the SVM optimization problem can be written and as 

a normalization problem: 

 

2

, 1

1
( )( ( ) )min

n

ii
f b i

fy f bxL
n

                    (122) 

 

where f(xi)=w
Tφ(xi). :f w  and L is the loss function. The role of this 

normalization parameter λ is to limit the space of feasible solutions. By choosing 



 77 

L(z)=max(0,1-z) we get a soft margin SVM . with L(z)=max(0,1-z)
2
 we have a 2-norm 

soft margin SVM while for L(z)=(1-z)
2
 we get the least squares SVM. 

 

6.4 Summary 

 

 

Closing the chapter it was demonstrated, that the linearly classes and the prototypes 

are coming to the problem in the form of internal product and the cost function is not 

depend on the prototypes dimension, where w will have the same dimension with the 

prototypes.  

As far as the problem of optimal separating hyperplane, and having find the 

appropriate kernel, which will indirectly express the representation to a larger 

dimension space we present the Wolfe dual problem. Finally, it has to be mentioned 

that the SVM optimization problem can be written and as a normalization problem, as 

it was discussed. 

 

 

 

 

 

 

 

 



 78 

CHAPTER 7 

 

 

PROJECTIONS ONTO CONVEX SETS 

 

 

7.1 Introduction 

 

In the following pages it is examined a projection of a close convex set in a Hilbert 

Space. Referred to that we will look at the modelling through convex sets, afterwards, 

having secure the closeness and convexity of a set, the next step will be to define the 

projection operator. At last we mention projections onto convex sets algorithms  

 

7.2 Projection of Convex Set in Hilbert Space 

 
Supposing C a close convex set in a Hilbert space H x H   a unique 

*
cx xP , which is close to x, thus: 

 

 
*

min
y C

x yx x                        (123) 

 

 

The x
* 

constitutes the projection of x H to a closed convex set C H  and is given 

as follows: 

 
*

cx xP                      (124) 

 

with Pc to constitute the projection operator on C. 
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Let it be W a closed convex set in a Hilbert H space. If W


 is the orthogonal 

complement of W, then H W W
   and {0}W W

  which means x H   

we have: 

 

x=x1+x2 ,  1x W  and 
2x W

                     (125) 

 

The x1 constitutes the projection of x on W, x1=Pwx, while x2 constitutes the 

projection of x on 
2,

w
W x P x

   , with w wI PP    . For a convex set on a Hilbert 

space, the projector operator is defined uniquely. An expansion which constitutes a 

relaxed operator: 

 

Tc=I+λ(Pc-I), (0,2)                    (126) 

 

With λ=1 we get Tc=Pc.  Moreover, 

 

Tcx=[I+λ(Pc-I)]x 

=x+λ(Pc-I)x 

=(1-λ)x+λPcx 

 

If x C , then Pc x=x and Tcx=x. If x C then 
c

T x y x y   , thus Tc brings x 

through projection closer to group C [104]. 

 

Basic POCS theory: 

 

Let it be C1, C2,…,Cm closed convex sets in a Hilbert space and 0 1 0m
iiC C  their 

section which will also constitute a convex set. Setting 
1 1
...

m mc c c
T T T T  the synthesis of 

all relaxed operators. 
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x H  and (0,2), 1,...,
i

i m   the sequence {T
n
x} converge weakly to a point of 

C0.  If anyone of  C1, C2,…, Cm constitutes a closed subspace, then we have a strong 

convergence to point Pc0x thus the projection of x H  on C0. 

 

 

Modelling through Convex Sets: 

 

Let it be the linear equation system Ax=b, mxn
A R , 

m
b R . We can write it in the 

form: 

 

    

1 1

2 2

a ,

a ,

a ,
m m

x b

x b

x b





 

 
Supposing the vector y verifies equation ,

i i
a x b . The sum of possible solutions of 

this equation is defined as follows: 

  : a ,
i i i

C y y b           (127) 

 
For the m equations of the system they are formed m groups of possible solutions C1, 

C2,…,Cm. The solution y* of the system will satisfy the m equations, so it will be at the 

trace of the sum of possible solutions: 

*

0
1

m

i
i

y C C


           (128)

  

 

If the system has no solution, then 0 0C  , otherwise C0 will contain the unique 

solution or an infinity number of elements which constitute a solution to the system. 
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When 0 0C   in order to find a solution to the system we apply POCS. Initially though 

we have to secure that Ci are close convex sets.  

 

The Ci will be convex if for any 2 elements of y1 and y2, their convex combination 

y3=αy1+(1-α)y2 , [0,1]  also constitutes element of Ci . a 

1 2

1 2

2

a ,y3 a , (1 )

a , a , (1 )

a , (1 ) a ,

(1 )

i i

i i

i i i

i i

i

ay a y

ay a y

a y a y

ab a b

b

  
  
  
  


       (129) 

 
So, 3 i

y C and the Ci constitute a convex set. 

 

The Ci will be closed if the limit y*of the converging sequence {yk} which is 

contained in Ci, also occurs in Ci. From the inequality Schwartz we have: 

 
* *a , a

i k i k
y y y y    

 

Due to convergence that will be: 

 

*lim 0

k

y yk


   

so: 

 
* *a , 0 a , a ,

i k i k i i
y y y y b           (130) 

 

 

Having guaranteed the closeness and convexity of Ci, the next step is to define the 

projection operator Pci on Ci. The projection Pcix of a vector x on Ci constitutes the 

vector  i
y C   , which minimizes the distance y x . 

 

So we have the following optimization problem: 
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minimize  
2

y x  

subject to a ,
i i

y b  

 

We define the Lagrangian function: 

    
2( , ) ( a , )

i i
L y y x y b      

( ) ( ) ( a , )T

i i
y x y x y b      

( a , )T T T T

i i
y y y x x y x x y b       

 

( , ) 0 2 2 a 0
y i
L y y x        

2

a ,
( , ) 0 a 0

2 a

i iT

y i i

i

x b
L y y b

         

 

 

Combining the above relationships comes up: 

 

2

a ,
a

a
i

i i

c i

i

x b
y P x x

           (131) 

 

So starting from an initial value x0, the repetition 

   

2 11 ...
mn c c c n

x P P P x           (132) 

 

converges to a point of the total of possible solutions, which will constitute the 

solution to the system. When the repetition approaches this point, let it be x
*
, it would 

be: 

 

1 1

* * * *...
mc c c

x P x P x P x            (133) 

 

meaning that *

0x C . Otherwise, 0 0C  , the system has no solution and the algorithm 

is not converging. 
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POCS Algorithm : 

 

 

Supposing C1, C2,…,Cm   m convex sets on a Hilbert space and 0 1 0m
iiC C   their 

trace, which will constitute also a convex set. Let it be Pci  the projection operator on 

group Ci. 

 

0x H  and 0
i

w   such as 1 1m
i iw  , the sequence {xn} which is created from: 

 

1

1
i

m

n i c n

i

x w P x 
  , (convex combination) 

 

it converges weakly to a point of C0. A more generalized morph of the above equation 

is as follows: 

1

1

( )
i

m

n n i c n n

i

x x w P x x 
   , 0<λ<2.      

 (134) 

 

In every repetition the xn is projected to all Ci and then we have a sum with these 

projections weights, which occur in parallel [10]. On the contrary, on the repetition 

2 11 ...
mn c c c n

x P P P x   the xn is projected to the groups sequentially, thus first at C1: 
1c n

P x  

after at C2: 
2 1
( )

c c n
P P x etc. If we let λ to vary we end up to the following repetitive form: 

1

1

( )
i

m

n n n i c n n

i

x x w P x x 
           (135) 

where 2
n

      for every 0 1  . The definition of λn from repetition to 

repetition can be determined as follows (Pierra): 

n n
L    

0 1   
 

2

2

1

i

i

m

i c n ni m

n
m

i c n ni

w P x x
L

w P x x





 

         (136) 
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CHAPTER 8 

ONLINE KERNEL-BASED CLASSIFICATION 

 

 

8.1 Introduction 

 

In this chapter we look at the classification through kernels, as well as online 

classification through adaptive project sub-gradient method (APSM). Furthermore 

there is a numerical example in last pages of the chapter. 

 

8.2 Kernel Classification and APSM method 

 

We consider the classification problem of a group of X vectors of R
n
. The X is 

represented to a space of larger dimension H which constitutes a Reproducing Kernel 

Hilbert Space (RKHS). This representation is performed through kernel function 

: n n
K R xR R which defines the representation :n

R H  

 

( ) ( ,.)x x K x           (137) 

    

With φ(.) to define the representation of R
n
 to H. The K(x,.) like any one point f of H, 

n
x R   constitutes a function from n

R R . Indeed at RHKS the following attribute 

is satisfied: 

( , ( ,.) ( ), , n
f K x f x f H x R            (138) 

 

resulting to: 

 
2

( ,.) ( ,.), ( ,.) ( , )K x K x K x K x x        (139) 
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Supposing C H a convex set. Given that f H we seek for the optimised way 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.1: Convex projection 

 

so as to move to a point C. It is enough to project f on C at the point where the distance 

is minimized: 

 

( ) minc
h

f P f f h           (140) 

 

In order to find the projection operator Pc(.) on C it only requires to calculate vector h 

which minimizes the distance f h . So, we have the following optimization 

problem: 

2
min

h
f h   

subject to a,h   

 

as we saw in chapter 7 the solution is: 

 

2

a,
( ) a

a
c

h
P f h f

            (141) 

 

when f C , then Pc(f)=f, so the above equation becomes: 

  
2

max 0, a,
( ) a,

a
c

h
P f f f H

           (142) 
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Classification through Kernels: 

 

Supposing group 
1 2{ , ,...} n

X x x R   that is constituted from vectors is coming from 

two classes. i
x  we define the label i

y  which is { 1} , according to the class it belong. 

Two pairs are createdμ {(x1,y1Ψ,(x1,y2Ψ,…}. τur target is given a margin 0   to 

define the function f(.), ( )f H and the offset b R such as: 

 

( ( ) ) , ( , )y f x b x y           (143) 

 

The unknowns f(.) and b are assumed as components of a vector u=[f(.),b], which 

belongs to HxR constitutes a space with all possible classifiers. This vector constitutes 

and the wanted classifier while HxR constitutes the space with all the possible 

classifiers. Supplying this space with inner-product of the form: 

 

1 2 1 2 1 2, (.), (.)u u f f bb          (144) 

 

This is transformed to a Hilbert space. The wanted classifier will be located in the 

group: 

 

{ : ( ( ) ) }C u HxR y f x b            (145) 

 

Eq.(145) is convex, from the moment that is defined as a positive half-plane. 

Combining equations (143), (144) and (145) gives: 

 

( ( ) ) ( )y f x b yf x yb       

( ), ( ,.)y f x K x yb     

[ ( ), ],[ ( ,.), ]f x b yk x y    

[ ( ), ], [ ( ,.),1]f x b y k x    

,u u             (146) 

 

 

Bases on the last equation, the group of the wanted classifiers can be written as: 
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{ : ,C u HxR u u            (147) 

 

 

It is observed that C constitutes a half-plane. Starting from an arbitrary u HxR , the 

best way of moving to a classifier it is through a projector.  

 

 

The desired projection  

 

 

 

 

 

 

 

 

 

 

      
Figure 8.2: Projector (u) through classifier 

 

 

constitutes a solution to the problem: 

  
2

min
h

h u  

subject to ,u u           (148) 

and it is 

 

2

max{0, , }

( ) ,c

u u

P u u u u HxR

u

 
          (149) 
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Moreover, it is: 

 
2

,u u u  

 

[ ( ,.),1], [ ( ,.),1]y K x y K x  

2( ,.), ( ,.)yK x yK x y   

2 2 2[ ( ,.), ( ,.) 1], ( 1) 1y K x K x y      

( , ) 1K x x            (150) 

 

Finally, the projection will be as follows: 

 

max{0, ( ( ) )}
( ) [ ( ,.),1],

( , ) 1
c

y f x b
P u u y K x u HxR

K x x

          (151) 

 

It is important at this point to define the following observation. At classification 

problems, the given margin ρ gives the loss function as it is used widely. 

 

( ( ( ) )) max{0, ( ( ) )}L y f x b y f x b           (152) 

 

 

If ( ( ) )y f x b   then we got the right classification and the margin is satisfied thus 

the vector which is to be classified lies at the class which belong and outside the 

margin of the two classes.  

 

If ( ( ) )y f x b   then we have again right classification but the margin is not satisfied. 

At this situation the vector that is classified, lies within the margin but from the side of 

the class which belongs to, it is classified correctly. 
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Finally, if ( ( ) ) 0y f x b  then we have a wrong classification. So, the desired 

classifier follows the above loss function as it is minimized. 

The distance between an arbitrary u HxR and the demanded classifier on C is: 

 

( , )) ( )
c c

D u Pu u P u          (153) 

max{0, ( ( )
[ ( ,.),1]

( , ) 1

y f x b
u u y K x

K x x

       

 =
max{0, ( ( ) )}

[ ( ,.),1 ,
( , ) 1

y f x b
ay K x a

K x x

     

 
1/2

[ ( ,.),1], [ ( ,.),1]ay K x ay K x  

2 2 2 2 1/2 2( ( ,.), ( ,.) ) , 1a y K x K x a y y    

2 2 1/2( ( , ) )a K x x a   
1/2( ( , ) 1)aK x x           (154) 

 

and the distance has finally as follows: 

 

max{0, ( ( ) )} ( ( ( ) ))
( , ( ))

( , ) 1 ( , ) 1
c

y f x b L y f x b
D u P u

K x x K x x

          (155) 

 

 

Therefore, the minimization of the distance ( , ( ))
c

D u P u equals with the minimization 

of the loss function ( ( ( ) ))L y f x b . 

 

Online Classification through adaptive Projected Subgradient Method (APSM) 

 

Supposing now that the sequence of pairs {(xi,yi)} with the data which come from the 

two classes with their labels, as well as the sequence of the margins {ρi}. Every pair 

with the corresponding margin defines the half plane. 

 

{ : ( ( ) ) }
i i i i

C u HxR y f x b               (156) 
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( )

2
( )

( )

( )

1,

jn

jn

n

j c n nj I

n

j c n nj I

n

w P u u

w P u u

M

otherwise





   




Thus the group that all the classifiers belong, achieve the margin {ρi} for given (xi,yi). 

As the data is coming a sequence of groups {Ci} is formulated, so the demanded 

classifier will lie on their trace, is not constituting the empty group. 

 

The projection is not performed sequentially in every half-plane but parallel on a 

group which is appointed from index set In defining which (xi,yi) will be processed at 

the time point n. starting from an arbitrary u0=[0,b0], the following sequence is created: 

 

1 ( )
i

n

n n n i c n n

i I

u u w P u u 
    

 

Combining (155) and (156) results in:  

 

1

max{0, ( ( ) )}
( [ ( ,.),1])

( , ) 1
n

i i n i n
n n n i n i i n

i I i i

y f x b
u u w u y K x u

K x x

 
      

1

max{0, ( ( ) )}
( [ ( ,.),1]) )

( , ) 1
n n

i i n i n
n n n i i i i n

i I i I i i

y f x b
u u w w y K x u

K x x


 

       

max{0, ( ( ) )}
[ ( ,.),1]

( , ) 1
n

i i n i n
n n i i

i I i i

y f x b
u w y K x

K x x




     

1 1

max{0, ( ( ) )}
[ (.), ] [ (.), ] [ ( ,.),1]

( , ) 1
n

i i n i n
n n n n n i i

i I i i

y f x b
f b f b w y K x

K x x

  
     (157) 

  

with the coefficient [0,2 ]
n n

M   where: 

 

 

      

                                                                           , when ( )

n j

n

n j I c
u P  

 
                                                    (158) 

                                                                          

 

 

 

 

 

If we assume that every timing moment we process only the current In=n. With this 

simplification we will get a closed expression for the classifier at the time moment n in 

function with the samples which have been received so far. 
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0 0[ (.), ] [0, ]f b b  

 

0 0 0
1 0 0 0 0

0 0

max{0, }
[ (.), ] [0, ] [ ( ,.),1]

( , ) 1

y b
f b b y K x

K x x

     

 

0 0 0 0[ ( ,.), ],a K x b a   0 0 0 0
0 0

0 0

max{0, }

( , ) 1

y y b
a

K x x

    

 

1 1 1 1 1
2 2 1 1 1 1 1 1

0 0

max{0, ( ( ) )}
[ (.), ] [ (.), ] [ ( , ) 1]

( , ) 1

y f x b
f b f b y K x x

K x x

      

 

 

0 0 1 1 0 0 1[ ( ,.) ( ,.), ],a K x a K x b a a      1 1 1 1 1 1
1 1

1, 1

max{0, ( ( ) )}

( ) 1

y y f x b
a

K x x

     

 

      
 

1 1

0

0 0

[ (.), ] [ ( ,.), ]
n n

n n i i i

i i

f b a K x b a
 

 
    

 

1 1max{0, ( ( ) )}

( , ) 1

i i i i
i i

i i

y y f x b
a

K x x

     

 
1 1

00 0
max{0, ( ( , ) )}

, 1,
( , ) 1

i i

i i i j j i jj j

i

i i

y y a K x x b a
i

K x x


 
    

 
   (159) 

 

 

When we have the processing of a number of samples at the same time moment, the 

classifier at timing moment n will be as follows

1 1
( ) ( )

0

0 0

[ (.), ] [ ( ,.), ]
n n

n n
i i

n n j j j

i j I i j I

f b a K x b a
 

   
    

( )
max{0, ( ( ) )}( ) , 1 1

( ) 1

i
j i i j ij y f x bi

j i j

i j

y
a w i n

K x x

            (160) 

 

Adaptive Selection of margin  
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Setting { : ( ( ) }C u HxR y f x b r    as the group with all the classifiers which fall 

into the margin 0r  for some pairs (x,y). For 1  and for ρ=γr we have the group 

{ : ( ( ) ) }C u HxR y f x b C     . If we project on C will get a C classifier,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.3: Projector (u)  

 

moving though deeper into this. On the above figure we observe that the projection 

2

1
( )

j

jj
c

w P u  (blue colour) brings us closer at the cut of groups Cr1 and Cr2 

than the projection 
2

1
( )

jj cj
w P u (red colour).  

 

The parameters ρn which define the half-planes that is projected on, constitute 

multiples of rn. The basic idea of selection has as follows. If the current estimation un 

hit on the margin rn, then and the next estimation un+1 its very probable to do the same 

thing, so we can increase ρn to a slightly bigger value ρn+1. On the contrary, if the 

current estimation does not hit on rn, then the ρn decreases to a smaller value ρn+1 so as 

to the next estimation to have bigger chance to hit on the margin rn+1=rn. 
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The changes of ρn are defined by the linear parametric model of v(ș-γr)+γr and ș 

where R  and Ȟ is an adequately positive minimized inclination. According to this 

any possible increase of ș is followed by an increase of ρ and vice-versa. 

 

8.3 Numeric Example 

 

We assume two classes, each one of them constitutes from data which come from the 

mix of two 2-D Gaussian allocations with equal weights. For the first class we have  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8.4: Gaussian Classes 

 

 

The Gaussian mean values and the co-dispersion matrices: 

 

              211 0 3            12 1 3
t   

 

 

11

5 2.5

2.5 5

              
12

5 1.5

1.5 5

     
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And for the second: 

 

           21 0 3
t                 22 1 3

t    

 

 

21

5 2.5

2.5 5

             
22

5 0

0 5

     

 

 

As kernel it was used the 
2

( ) ( )

( , )

tx y x y

K x y e 
   

 

 

Suppose a group of 400 samples which is used and for training and for control as well, 

under the meaning that the classifier which results at the time moment n is being 

controlled on the samples which have been received until then. 

 

The curves which come up correspond to the accumulated classification errors. Thus, 

the errors which have been measured for the current classifier at the time moment n 

and the errors that have occurred at the time moment n-1. 

 

For NORMA and Perceptron the rate of learning is 1/ n  . The APSM4 constitutes 

a parallel implementation of APSM with the index offset to be  In={n,n+1,n+2,n+3}, 

thus it is processing 4 samples simultaneously.  

 

Moreover, the relaxation parameter for the APSM is ȝn=1, while for APSM4 is ȝn= 

1.9Mn. In order the curves to be smoothing out we repeat the experiment 100 times 

and then we get the average values of the results. 
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 We observe that the dispersion ı2 
of the kernel function as well as the inclination Ȟ 

plays an important role to the performance of the algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                             Figure 8.5: ı2

=0.1, ȞNORMA=0.01, γ=3, įș = 10
-2 

, ȞAPSM=0.1 

 

 

                                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  Figure 8.6: ı2

=0.1, ȞNORMA=0.5, γ=1, įș = 10
-1 

, ȞAPSM=10
-3
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Figure 8.7: ı2

=0.8, ȞNORMA=0.5, γ=1, įș = 10
-1 

, ȞAPSM=10
-3

 

 

                               

 

 

We separate the group of sample in two parts. We use 400 in total samples for the 

training and every 25 samples we examine the classifier, which has arisen till then, on 

100 different samples. 

 

Next the curves are presented which come up from the NORMA for learning rate 

1/ n   and different values of inclination Ȟ.  

 

We observe for Ȟ=0.5 we get a better algorithm behaviour, for the specific always 

group of samples which came up from the mixture of the Gaussians described above. 
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                 Figure 8.8 : ı2
=0.8 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 8.9 : ı2

=0.1 
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Similarly as with APSM we study the behaviour of the random values of Ȟ inclination 

and of parameter ș on the parametric model which controls the changes of the margin. 

We observe that the inclination is small so the margin changes will be also small, the 

algorithm behaves better.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 8.10: ı2

=0.1 

 

 

 

 

 

 

     ı2
=0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             
           Figure 8.11: ı2

=0.8 
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Finally, after the first 400 symbols we perform the below change on the Gaussian 

allocations. For the first class the Gaussian have Gaussian values and matrices of co-

dispersion. 

 

                                11 6 6
t            12 5 6

t   

 

 

                             
11

6 1.5

1.5 6

              
12

6 0.5

0.5 6

     

 

 

And for the second: 

 

          

         21 2 6
t                 22 2 5

t    

 

 

                              
21

6 1.5

1.5 6

             
22

6 0

0 6

     

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                Figure 8.12: class 1 and class 2 

 

So for the figures that follow we have ı2
=0.1, γ=1, įș = 10

-2 
, ȞAPSM=10

-3 
, ȝn=1, while 

the  ȞNORMA values are changing and Mn. We observe that when we have the parallel 
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processing of the four samples (APSM4) so as the algorithm to be able to give the best 

behaviour and to follow successfully the change in sample dispersion, the ȝn must be 

as close to 2Mn as possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 8.13 : ȞNORMA=0.01, 1.9M 

 

      

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 8.14 : ȞNORMA=0.5,  1 
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Figure 8.15: ȞNORMA=0.1,  Mn 

 

    

                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 8.16 : ȞNORMA=0.05,  1.5Mn 
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Figure 8.17 : ȞNORMA=0.01,  2.3Mn 

 

 

 

       

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8.18 : ȞNORMA=0.05,  1.95Mn 
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Figure 8.19 : ȞNORMA=0.05,  1.8Mn                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                              Figure 8.20 : Change in classifiers sequence 
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                                         Figure 8.21: More weight to the running sample  

 

                Weight change 

 

8.4 Summary 

 

Looking at the figures above we conclude that although it understands the change in 

samples dispersion the MSE delays to fall when change occurs at time index 400 and 

onwards. At figure (8.20) we changed the sequence with which the change in 

dispersion takes place and we got again the same results, so the data is not responsible 

for that. 

 

 At figure (8.21) we changed the weights giving more weight to the running sample. 

We observe that the result it was slightly better. So this delay owed to the “memory” 

which is retained at the classifier’s coefficients from the previous dispersion.  
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CHAPTER 9 

 

CHANNEL EQUALIZATION 

 

 

9.1 Introduction 

 
In this chapter first it is examined the optimal solution in a channel with noise. 

Afterwards there will be an implementation from which conclusions will be drawn in 

the attached figures. 

 

9.2 Equalizer classification 

 
Suppose there is a telecommunication system with BPSK data modulation. The 

information bits 1
k

b    traverse through a linear channel, its exit is deformed from 

AWGσ. The equalizer’s target is the recovery of samples which were transmitted, on 

basis of the notices it takes from the channel’s exit. 

 

  

 

 

 

 

 
 Figure 9.1 : System Equalizer 

 

 

 

The samples which are received from the receiver are given from the following 

relationship: 
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1 1( , , , )
k k k k l k

x f b b b n            (161) 

 

with the function f(.) to represent the impact of the channel and the nk to constitute the 

noise sequence. The confluence of the channel to the whole deformation it is the 

intersymbol interference which expands to successively data symbols.  

 

The equalizer constitutes the reverse system and it tries to confute the impact of the 

channel, supplying decisions kb


and the transmitting symbols k
b  based on m 

successively symbols which received, 
1 1[ ]t

k k k k m
x x x x   . Usually we do usage of a 

delay r so as to be secured with the possible no causality nature of the inversed system. 

Therefore, the functionality of the equalizer at the time moment k has to make a 

decision based on m recent observations for the symbol which was sent at time 

moment k-r. 

 

Suppose a digital sequence which is transmitted through a channel with a transfer 

function: 

 
1

0

( )
l

i

i

i

H z h z
 


          (162) 

 

 

The volume of the possible sequences which we can have at the input of the channel, 

in the situation where the data symbols are binary, is 12l m

s
n

  . Suppose for example 

the linear channel: H(z)=0.5+1.0z
-1 

. The symbols sequence which is received from the 

equalizer will be as follows: 

10.5
k k k k

x b b n            (163) 

 

For equalizer with length m=2 the observation vectors are transformed: 
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1[ ]t

k k k
x x x   ,  k=1,…,σ         (164) 

 

 

We observe that the values of vectors xk depend from the values of three consecutive 

data symbols, specifically of bk , bk-1, bk-2. Omitting the impact of noise, the possible 

values of the received symbols xk , as and the possible input sequences at the channel 

are given in the following matrix: 

 

 

 

 

 

 

 

 

 

 

 

 

 

The symbols which are received from the channel without the impact of noise we will 

call them channel conditions which will break in two classes: 

 

{ ( ) 1}x b k r
      

{ ( ) 1}x b k r
               (165) 

 

 

 

The two classes which were formed contain information for the transfer function of the 

channel, the symbols statistics and the length of the equalizer. Given that the data 

symbols have equal possibility of occurrence, each one of the ns channel situations 

will have possibility of occurrence equals to
1

i

s

p
n

 . 
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Due to noise though, the received observation vector xk constitutes a random procedure 

with in condition density probability functions cantered on each channel’s condition. 

Therefore the observations will form clouds around the above points.  

 

For big values of the noise power, these clouds will be diffusive around these points, 

while for small values will be almost gathered around them. In the following figure it 

can be seen 1000 received symbols from the above channel for SNR=15dB and delay 

equals to r=1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  Figure 9.2: Noise clouds 

 

The clouds with centres  correspond to symbols bk-1=1 while the clouds with centres 

  correspond to symbols 1 1
k

b    . Therefore, the right decision problem deduce to a 

dual class classification problem. 
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The conditional density possibility function of vector xk which belong to the cloud 

which is formed around the channel condition , 1, ,
i s

x i n
   is: 

11
( ) ( )

2

22

1
( )

(2 )

t
k i k ii

x x x x

k i mm

i

p x x e


           (166) 

 

 

 But because the noise samples there among them independent so and uncorrelated, the 

matrix of co-dispersion is diagonal, 
2
I   and it will be: 

 

 
2

22

2

1
( )

(2 )

k ix x

k i m
p x x e 


    , 1, ,

s
i n

       (167) 

 

 

Depending on the conditional density possibility function of vector k
x  which belongs 

to the cloud which is transformed around the channel condition , 1, ,
i s

x i n
   is: 

 

   
2

22

2

1
( )

(2 )

k ix x

k i m
p x x e 


   , 1, ,

s
i n

       (168) 

 

 

Thereupon, conditional density probability function the xk to belong in class ȍ+
 is: 

 

1

1
( ) ( ),

sn

k i k i i

i s

p x p p x x p
n


 


              (169) 

 

 

and correspondingly on ȍ- 
is: 

 

1

1
( ) ( ),

sn

k i k i i

i s

p x p p x x p
n


 


          (170) 
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According to the Bayes classification rule the classification will be done with base the 

bigger a posteriori possibility, given the observation xk: 

( ) ( )
k k

P x P x
            (171) 

 

 

Supposing the classes as the data symbol equal, we end up to the following separating 

level equation: 

 
2 2

2 22 2

1 12 2

1 1
( ) 0

(2 ) (2 )

k i k j
s s

x x x x
n n

k m m
i j

f x e e 
 

    
 

        (172) 

 

And the classification is performed according its sign: 

 

 

( ) 0,
k k

f x x
   

 

( ) 0,
k k

f x x
           (173) 

 

 

 

9.3 Implementation of NORMA, Perceptron, APSM 

 

The above optimal solution depends on the noise power as from the desirable channel 

conditions. Moreover, it shows the same structure with the response of a two level 

RBF network. 

 

 
2

1

( ) ( )
n

k i

k i

i

x c
f x w 

             (174) 

 

Where wi denotes the weights of a hidden level which in the case of equal probable 

symbols may be constant, ci are the centres of the network which constitute the 

conditions of the channel. The parameter ρ is equal with the double of noise 

dispersion.  
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The non-linear function φ(.) constitutes a kernel function. But because the channel 

function in practise it is not known so as the RBF network to learn the optimal solution 

it will need an effective training on which it must detect the desirable conditions of the 

channel and place them on the centres of the network. 

 

On the previous chapter with recursive way projecting on convex sets we end up to the 

classifier: 

 

0

[ (.), ] [ ( ,.)
n

n n i i

i

f b a K x


  , 
1

0

0

]
n

i

i

b a



           (175) 

 

 

which we will use for equalization. Here the training does not include the detection of 

channel conditions as well as the determination of weights i
a  and of the offset. We use 

800 in total symbols and at every 25 we examine the classifier, which has come up 

until then, on 100 new symbols. 

 

 For the first 400 symbols the channel function is 
1( ) 0.5 1.0H z z
   with delay r=1 

and then the channel changes to 
1 2( ) 1.0 0.8 0.5H z z z
     with delay r=0. The 

length of the classifier is m=2 and the SNR is 10dB.  

For the implementation of the non-linear channel it is used the tanh(.) function after 

the exit of the channel symbols. For the APSM we have ȝn=1 and for the APSM5 

1.9Mn. 
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Figure 9.3: ȞNORMA=0.01, γ=1, įș = 10

-2 
, ȞAPSM=10

-3
 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                

Figure 9.4: ȞNORMA=0.01, γ=1, įș = 10
-2 

, ȞAPSM=10
-3
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9.4 Summary 

 

 

Looking at the above graphs we conclude that the misclassification errors are less in 

the nonlinear channel equalization case. Although as expected the graph has a similar 

figure. The highest value is achieved in both cases by NORMA. It is worth noting that 

in the nonlinear case, after the 400 time index the misclassification errors are steady 

between 16 and 18 for all aspects. 
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CHAPTER 10 

KERNEL BASED EQUALIZATION CDMA DOWNLINK SYSTEMS 

 

 

10.1 Introduction 

 

In the last chapter it is examined the equalization in general. In the pages of this 

chapter we are going further to the kernel based equalization CDMA downlink 

systems. So, first there will be a description and furthermore an analysis of the given 

problem. In last pages you can find a numerical example. 

 

10.2  Kernel Equalization 

 

In CDMA systems for each user an assignment of wave signature is allocated which is 

used to transmit its signal. These signatures they have the orthogonality property, 

which allow users to simultaneously occupy the same frequency band and time frame 

[38].  
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The receiver (mobile terminal) of the user in interest receives the signal, which is 

transmitted from the base station, and it must be in a position to detect the information, 

which is designated to him, and be able to isolate it from the rest of the signal, which  

Figure 10.1: Downlink System 

 

represents some kind of interference [74]. 

 

 

 

System Model 

 

 

Suppose the downlink CDMA system with P users, the spreading gain Lc, ( ) 1
i

b n    

the BPSK symbol of user i=1,…,P at the time moment n=1,…,σ and  

1[ 1]
c

t

i L k
s s s s    the signature vector of user i.  

 

At the time moment n the signal which transmits the base station will be as follows: 
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1 1 2 2( ) ( )
P P

x n s b s b s b n     

 

1

2

1 2

( )

( )
[ ]

( )

P

P

b n

b n
s s s

b n

       
 

  

1( )
cL xP Px

S b n  

 

 

 

For the matrix S which contains the users’ signatures appliesμ St
S=I 

 

 

Initially we examine the case of an AWGN channel, so the received signal from the 

receivers at time moment n will be: 

 

r(n)=Sb(n)+v(n)                             (176) 

 

 

where 
2( ) (0, )n N  . Our target is for every user of interest i to appoint the equalizer 

w so as the symbol bi(n) which is appointed for this time moment n to be given from 

the equation: 

 

( ) sgn( ( ))t

i
b n w r n                      (177) 

 

 

MMSE Linear Detector 

 

We seek the wopt so as: 

 

 
2arg min {( ( ) ( )) }t

opt i
w

w E b n w r n                       (178) 

 

 

 

 

We define the cost function: 
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2( ) {( ( ) ( ))( ( ) ( )) }t t t

i i
J w E b n w r n b n w r n    

 
2{ ( )} 2 { ( ) ( )} { ( ) ( )}t t t

i i
E b n E b n r n w w E r n r n w        (179) 

 

and its derivative is: 

 

( ) 2 { ( ) ( )} 2 { ( ) ( )}t

i
J w E r n b n E r n r n          (180) 

 

 

Setting the derivative equals to 0 we come up with: 

 

{ ( ) ( )} { ( ) ( )}t

opt i
E r n r n w E r n b n        (181) 

 

 

 

Supposing the data symbols are among them independent as well as the data symbols 

with the noise is uncorrelated, we have: 

 

{ ( ) ( )} {( ( ) ( ))( ( ) ( )) }t t
E r n r n E Sb n v n Sb n v n            

  

{ ( ) ( )} 2 { ( ) ( )} { ( ) ( )}t t t t t
SE b n b n S E v n b n S E v n v n    

 

 
2t

SS I            (182) 

 

 

and 

 

 

{ ( ) ( )} {( ( ) ( )) ( )}
i i

E r n b n E Sb n v n b n   

 

{ ( ) ( )} { ( ) ( )}
i i

SE b n b n E v n b n   

i
s            (183) 

 

Combining the above, the optimal linear equalizer for user I will be as follows: 
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2 1( )t

opt i
w SS I s            (184) 

10.3 Adaptive Implementation 

 

 

Suppose we want to find the 
* n

R 
 which minimizes the function: 

( ) { ( , )}E g X            (185) 

 

 

If Ȍ(.) is convex then by starting from any 0 we will have the convergence to the 

minimum of Ȍ(.) following the direction of the steepest descent ( ) :  

 

1 ( )
n n n

                  (186) 

 

 

We suppose that we have under our disposal the independent sequence 1 2{ , , , }
n

x x x

with implementations of the random variable X.  

 

In every step of the algorithm we replace the unknown ( ( ) { ( , )}
n

n E g X     with 

the noisy version of 1( , ),
n n

g x   so the stochastic gradient descent algorithm will be 

as follows: 

 

1 1( , )
n n n n

g x               (187) 

 

 

The cost function which we supposed to be convex to w because is quadratic with 

matrix Hessian: 
2 ( ) { ( ) ( )} 0t
J w E r n r n   since the autocorrelation matrix has non 

negative eigenvalues [9] [61]. 
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So as to get the stochastic gradient descent algorithm it is enough its gradient: 

 

2( , ) ( ( ) ( ))t

i
g X w b n w r n   , [ ( ), ( )]

i
X b n r n      (188) 

 

Finally the implementation is done with the known LMS: 

 

1 1 1 1

1
( , ) ( ( ) ( )) ( )

2

t

n n n n n n i
w w g x w w w r n b n r n              (189) 

 

Which converge to wopt which we calculated before. 

 

 

 

 

 

 

 

 

10.4 Numerical Example 

 

 
We suppose a CDMA system with P=3 users, with signature length Lc=8 and symbol 

modulation BPSK and AWGN channel with SNR = 10dB. We apply the MMSE 

equalizer with m=0.01. We send N=500 symbols and we control the equalizer every 

25 symbols on T=100 news. The experiment is repeated 100 times and next we receive 

an average values. 
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Figure 10.2: CDMA multiuser environment 

 

In environments with many users typically are used large length codes, which can be 

designed to be of low correlation, but are not orthogonal. For example, if we assume 

an environment with 30 users on an AWGN channel with SNR=10dB. 

 

On the figures below with the red colour it can be seen the BPSK symbols which are 

sent from the user of interest and with the blue colour the symbols that it receives, 

since it makes usage of its own signature. We observe that the bigger is the length of 

Figure 10.3: BPSK symbols sent 

 

the signature it is starting and formed 2 linear separable classes around the BPSK 

symbols. 
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Figure 10.4:  Spreading Gain over users 

 
 

Figure 10.5: Spreading Gain over users 

      

 

The increase in signature length has as a result the increase of the length of the 

received symbol r(n) at the receiver. At LMS the correction 
1( ( ) ( )) ( )t

n i
w r n b n r n    

Which is applied on w(n) at the n+1 repetition, is proportional of r(n). When the length 

of observation vectors is big, the algorithm appears gradient noise amplification.  
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Solution to the problem gives the normalized LMS (NLMS), which is based on the 

concept of minimal disturbance (Windrow and Lehr 1990), [95]. 

 

“in the light of a new input data, the parameters of an adaptive system should only be 

disturbed in a minimal fashion” [95]. 

 

 The iterative algorithm now will be as follows: 

 

1
1 2

( ( ) ( )) ( )

( )

t

n i
n n

w r n b n r n
w w

r n
 

         (190) 

 

On the figure that it follows is presented the performance of the NLMS on a 30-users 

environment and AWGN channel with SNR=10dB, for various values of the signature 

length Lc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10.6: Test Samples over Signature Length 
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10.5 Multipath effect 

 

 

From the above figure it can be seen the performance of the optimal linear equalizer is 

dependent from the signature length. The performance is improved for big signature 

length. In the case, when the channel is not AWGN, the multipath effect has as a result 

to increase the length of the received symbol Lc, which is the length of the signature, 

to Lc+L-1, due to the convolution with channel of length L.  

 

This has as a result at the receiver of interest during the sampling to have projection 

between the nth and (n-1) symbol. 

 

The system model will be now as follows: 

 

   

( )
( ) ( ),

( 1)

Sb n
r n H v n

Sb n

             (191) 

 

 

 

where 
1 2( ) [ ( ) ( ) ( )]t

p
b n b n b n b n  the vector with the symbols of P users at the time 

moment n, 
cL xP

S the matrix with the users signatures and 
2c cL x L

H the matrix Toeplitz of 

the channel: 

  

0 1 1

0 1 1

0 1 1

0 0

0 0

0 0

L

L

L

h h h

h h h
H

h h h






       
      (192) 

 

 

 

Next we use the following two channels: 
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sin( ) sin( )
cos( ) 1,2

2 2

i i
i i

a a
h a i

            (193) 

 

 

with 29.5o

i
a   and 

2 35o
a   . 

 

The advantage of Norma, Perceptron, and APSM is that it is not required the 

knowledge of the channel length because the calculations of the inner-products is done 

between the received symbols ok kernel functions and not between the received 

symbol and the coefficients of the equalizer as done in NLMS. 

 

Next we examine the algorithms in an environment of 30 users with signature length 

64 and SNR = 10dB. The kernels that we use are linear, while the nonlinearity on the 

channel is achieved through a polynomial 
2 30.2 0.1x x x  . The margin is constant. 

For the linear channel it has a value of 30 while for the non-linear a value of 10. We 

observe that the APSM and in the two occasions has a better performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10.7: Linear Channel 
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Figure 10.8:  Non-Linear Channel 

 

 

10.6 Summary 

 

Looking at the graphs above we can drawn some conclusions. First of all the figures 

have in both cases a very similar shape. The values in all aspects have the same 

highest value, in the linear compared to the nonlinear case. The peak is achieved at the 

same number of training samples. It is worth mention that the lowest values are 

accomplished with the linear channel. 
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CHAPTER 11 

 

CONCLUSIONS  

 

 

CDMA is the new standard used in the 3
rd

 generation mobile systems. Since multipath 

is known to degrade any modern communication system, so we were focused on 

developing channel estimation methods that could overcome this serious problem. 

 

A novel joint blind channel estimation and carrier offset method for code division 

multiple access CDMA communication systems is proposed. The new method 

combines SVD analysis with carrier offset parameter.  

 

While existing blind methods sustain from a high computational complexity as it is 

required the computation of a large SVD not only one but twice, plus it is sensitive to 

accurate knowledge of the noise subspace rank. The proposed method overcomes both 

problems by computing the SVD only once. Extensive simulations demonstrate the 

robustness of the proposed scheme and its performance is comparable to other existing 

SVD techniques with significant lower computational cost because it does not require 

knowledge of the rank of the noise sub-space. 

 

We mainly worked with blind methodology that requires minimal a-priori knowledge 

and adaptive techniques that are characterized by low computational complexity. Our 

major contribution in this area consists in developing the power method so as to 
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include for the first time the carrier offset combined with estimation of the channel. 

The proposed method is as much as 70% more efficient than any other method 

proposed in the literature.  

 

Also, the Kernel based estimation which is for the first time implemented in the 

literature for CDMA systems. Therefore in this thesis it was managed to introduce for 

a first in literature a kernel based equalization for CDMA systems. 

 

In addition, we show its superiority in comparison with the other classification models 

and proving that with the model analysis and the simulation results. 

 

In general, this thesis proposed an advanced adaptive algorithm which outperforms all 

other existing algorithms. Moreover, it also incorporated the carrier offset estimation 

which is an inventible problem all time classic problem. Our method outperforms all 

other methods because is characterized by the lower computational complexity and the 

inclusion of the carrier offset for the first time in literature. 

 

Furthermore, this thesis presented and modelled again for the first in literature how 

SVM can be used for CDMA system equalization.   
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FUTURE WORK 

 

Apart from CDMA, there is another communication technology named OFDM which 

has been proposed as a standard for a number of modern digital services. 

 

These two digital technologies differ, so they also differ in the way the channel vector, 

carrier offset and equalization can be done as we demonstrated for CDMA. 

 

As no other method, in literature match ours for CDMA, the same case would be for 

OFDM. A novel and state of the art method for OFDM can also be modelled in the 

same fashion we showed for CDMA. 

 

Up to day there was no blind channel method with carrier frequency offset estimation 

and equalization for CDMA. The same case again is for OFDM.  

 

It would be of great interested to implement the same novel methods for OFDM for 

the first time in literature. 

 

Moving further, another method to be considered for implementing the novel models 

is the Multi Carrier-CDMA which combines the advantages of both CDMA and 

OFMD. 

 

All the above methods can also be expanded for MIMO structures MIMO CDMA or 

MIMO OFDM and finally ending to MIMO MC-CDMA. 
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All the above improvements modelled and suggested in this Thesis will give to the 

existing LTE (Long Term Evolution) networks even better performance. As LTE uses 

digital networks which include CDMA and OFDM technologies. 
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