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1. Introduction

Adaptive channel equalization without a training sequence is known as blind equalization
[1]-[11]. Consider a complex baseband model with a channel impulse response of cn. The
channel input, additive white Gaussian noise, and equalizer input are denoted by sn, wn

and un, respectively, as shown in Fig. 1. The transmitted data symbols, sn, are assumed to
consist of stationary independently and identically distributed (i.i.d.) complex non-Gaussian
random variables. The channel is possibly a non-minimum phase linear time-invariant filter.
The equalizer input, un = sn ∗ cn + wn is then sent to a tap-delay-line blind equalizer,
fn, intended to equalize the distortion caused by inter-symbol interference (ISI) without a
training signal, where ∗ denotes the convolution operation. The output of the blind equalizer,
yn = f ⋆

n ∗ un = sn ∗ hn + f ⋆

n ∗ wn, can be used to recover the transmitted data symbols,
sn, where ⋆ denotes complex conjugation and hn = f ⋆

n ∗ cn denotes the impulse response
of the combined channel-equalizer system whose parameter vector can be written as the
time-varying vector hn = [hn(1), hn(2), . . .]T with M arbitrarily located non-zero components
at a particular instant, n, during the blind equalization process, where M = 1, 2, 3, . . ..
For example, if M = 3 and IM = {1, 2, 5} is any M-element subset of the integers, then
hn = [hn(1), hn(2), 0, 0, hn(5), 0 . . . 0]T is a representative value of hn.

Fig. 1. A complex basedband-equivalent model.

The constant modulus algorithm (CMA) is one of the most widely used blind equalization
algorithms [1]-[3]. CMA is known to be phase-independent and one way to deal with its phase
ambiguity is through the use of a carrier phase rotator to produce the correct constellation
orientation, which increases the complexity of the implementation of the receiver. Moreover,
for high-order quadrature amplitude modulation (QAM) signal constellations (especially for
cross constellations such as 128-QAM, in which the corner points containing significant phase
information are not available), both the large adaptation noise and the increased sensitivity
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to phase jitter may make the phase rotator spin due to the crowded signal constellations
[10]-[13]. Wesolowski [4], [5] Oh and Chin [6], and Yang, Werner and Dumont [7], proposed
the multimodulus algorithm (MMA), whose cost function is given by

JMMA = E{[y2
R,n − R2,R]2}+ E{[y2

I,n − R2,I ]
2} (1)

where yR,n and yI,n are the real and imaginary parts of the equalizer output, respectively,
while R2,R and R2,I are given by R2,R = E[s4

R,n]/E[s2
R,n] and R2,I = E[s4

I,n]/E[s2
I,n], in which

sR,n and sI,n denote the real and imaginary parts of sn, respectively. Decomposing the cost
function of the MMA into real and imaginary parts thus allows both the modulus and the
phase of the equalizer output to be considered; therefore, joint blind equalization and carrier
phase recovery may be simultaneously accomplished, eliminating the need for an adaptive
phase rotator to perform separate constellation phase recovery in steady-state operation. The
tap-weight vector of the MMA, fn, is updated according to the stochastic gradient descent

(SGD) to obtain the blind equalizer output yn = f
H
n un

fn+1 = fn − µ · ∇JMMA = fn − µ · ∂JMMA

∂f
⋆

n
= fn − µ · e⋆

n · un (2)

where un = [un+l, . . . , un−l]
T and en = eR,n + jeI,n in which eR,n = yR,n · [y2

R,n − R2,R], eI,n =

yI,n · [y2
I,n − R2,I ] and L = 2l + 1 is the tap length of the equalizer.

The analysis in [9], which concerns only the square constellations, indicates that the MMA can
remove inter-symbol interference (ISI) and simultaneously correct the phase error. However,
when the transmitted symbols are drawn from a QAM constellation having an odd number
of bits per symbol (N = 22i+1, i = 2, 3, . . .), the N-points constellations can be arranged into
an oblong constellation [14], [15] so long as E[s2

R,n] �= E[s2
I,n] is satisfied. For example, Fig. 2

illustrates a 128-QAM arranged by oblong (8 × 16)-QAM with the required average energy
of 82. The conventional 128-cross QAM constellations with the required average energy of 82
can be obtained from a square constellation of 12 × 12 = 144 points by removing the four
outer points in each corner as illustrated in Fig. 3 [7]. Notably, the distance between two
adjacent message points in the oblong constellations illustrated in Fig. 2 has been modified
to be 1.759 instead of 2 as in the conventional cross 128-QAM, so that the average energies
required by both cross and oblong constellations are almost identical. In this chapter, the
oblong constellation illustrated in Fig. 2 is used as an example to demonstrate that the MMA
using asymmetric oblong QAM constellations with an odd number of bits per symbol may
significantly outperform its cross counterpart in the recovery of the carrier phase introduced
by channels, without requiring additional average transmitted power. We use the term
asymmetric because the oblong QAM is not quadrantally symmetric, i.e., E[s2

R,n] �= E[s2
I,n], and

as a consequence E[s2
n] �= 0. Although reducing the distance between adjacent message points

in the proposed oblong constellation in Fig. 2 may increase the steady-state symbol-error
rate (SER) or mean-squared error (MSE) of the adaptive equalizer, this chapter is concerned
with the unique feature of fast carrier phase recovery associated with the MMA using oblong
constellations during blind equalization process owing to its non-identical nature of the real
and imaginary parts of the source statistics.

2. Analysis of MMA using oblong constellations

This section presents an analysis of the MMA using oblong QAM constellations from the
perspective of its stationary points. Our analytical results demonstrate that the four saddle
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Fig. 2. Oblong constellations for 128-QAM sources.

points existing in the square and cross constellations along θ(k) = π/4, 3π/4, 5π/4, 7π/4
are absent when using oblong constellations. Consequently, the frequency of being
attracted towards the vicinity of the saddle points, around which the MMA exhibits slow
convergence, before converging to the desired minimum, is significantly reduced when using
oblong constellations. The use of oblong constellations may thus accelerate the magnitude
equalization process during the transient operation.

2.1 MMA Cost function of oblong constellations

After some algebraic manipulation, the expansion of the MMA cost function in (1) for
a complex i.i.d. zero-mean QAM source (for square, cross, and oblong constellations) with
each member of the symbol alphabet being equiprobable, and a complex baseband channel
excluding additive channel noise, can be written in the combined channel-equalizer space hn

as

JMMA =
1

4
· ℜ{E[s4] · ∑

i

h4(i) + 3E2[s2] · ∑
i

∑
l �=i

h2(i)h2(l)}+
3

4
(ksσ4

s · ∑
i

|h(i)|4

+ 2σ4
s ∑

i
∑
l �=i

|h(i)|2|h(l)|2 + E2[s2] · ∑
i

∑
l �=i

h2(i)(h2(l))∗) − R2,R · (ℜ{E[s2] · ∑
i

h2(i)} (3)

+σ2
s · ∑

i

|h(i)|2) − R2,I · (−ℜ{E[s2] · ∑
i

h2(i)}+ σ2
s · ∑

i

|h(i)|2) + R2
2,R + R2

2,I

where σ2
s = E[|sn|2] = E[s2

R,n] + E[s2
I,n] and ks = E[|sn|4]/σ4

s is the source kurtosis. The

first term of (3), (1/4) · ℜ{E[s4] · ∑i h4(i)}, which is related to the fourth-order statistics (or
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Fig. 3. cross constellations for 128-QAM sources.

fourth-power phase estimator) in [12], [13], [16]-[18] containing the phase information and is
absent from the CMA cost function, allows the MMA to recover a possible phase rotation
of the equalizer output. Note that when there is no possibility of confusion, the notation is

simplified by suppressing the time index n, so for example, sn � s = sR + jsI and hn(k) � h(k).
Terms sR and sI are assumed to be uncorrelated, and both are zero-mean, sub-Gaussian (such
that E[|s|4] − 2E2[|s|2] − |E[s2]|2 < 0). The values of the source statistics of, for example,
the oblong (8 × 16)-QAM can be computed to be E[s2

R] = 65.08 and E[s2
I ] = 16.08. For

convenience of mathematical analysis, (3) can also be expressed in the following polar space

with [r(k), θ(k)] = [
√

h2
R(k) + h2

I (k), tan−1(hI(k)/hR(k))], where h(k) = hR(k) + jhI(k),

JMMA =
1

4
E[s4] · ∑

i

r4(i) cos 4θ(i) +
3

2
· E2[s2] · (∑

i
∑
l �=i

r2(i)r2(l) cos[2θ(i)] cos[2θ(l)])

+
3

4
· ksσ4

s ∑
i

r4(i) +
3

2
· σ4

s ∑
i

∑
l �=i

r2(i)r2(l)− R2,R · [(E[s2
R] − E[s2

I ]) · ∑
i

r2(i) cos 2θ(i) (4)

+σ2
s · ∑

i

r2(i)] − R2,I · [−(E[s2
R] − E[s2

I ]) · ∑
i

r2(i) cos 2θ(i) + σ2
s · ∑

i

r2(i)] + R2
2,R + R2

2,I

Notably, for oblong constellations, R2,R �= R2,I , E[s4
R] �= E[s4

I ], E[s2
R] �= E[s2

I ] and E2[s2] =

E2[s2
R] + E2[s2

I ]− 2E[s2
R]E[s2

I ] �= 0. This asymmetric nature makes the major difference between
an oblong constellation and a square (or cross) constellation, since the shape of their resulting
MMA cost surfaces would be significantly different, as is revealed later in this chapter.
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2.2 Stationary points of MMA using oblong constellations

The equalizer is assumed to be either doubly-infinite in length as in [8] or of finite-length
fractionally spaced as in [3] under the equalizability conditions. The set of stationary points of
the MMA for oblong constellations considering M ≥ 1 can be obtained by setting the gradient

of JMMA in (4) to zero, such that ∇JMMA = r
∂JMMA

∂r(k)
+ Θ

r(k)
∂JMMA

∂θ(k)
= 0. The components of the

gradients are

∂JMMA

∂r(k)
= E[s4] · r3(k) · cos 4θ(k) + 6E2[s2] · r(k) · cos 2θ(k) · (∑

l �=k

r2(l) · cos 2θ(l))

+ 3ks · σ4
s · r3(k) + 6r(k) · σ4

s · ∑
l �=k

r2(l)− 2R2,R · r(k) · {[(E[s2
R] − E[s2

I ]) (5)

· cos 2θ(k)] + σ2
s } − 2R2,I · r(k) · {−[(E[s2

R] − E[s2
I ]) · cos 2θ(k)] + σ2

s }
∂JMMA

∂θ(k)
= −E[s4] · [sin 4θ(k)] · r4(k) − 62[s2] · r2(k) · [sin 2θ(k)] · (∑

l �=k

r2(l) · cos 2θ(l)) (6)

+2 sin 2θ(k) · (E[s2
R] − E[s2

I ]) · (R2,R − R2,I) · r2(k)

where we set each to zero. Clearly, one stationary point is at r(k) = 0. For r(k) > 0, (6) yields
both sin 4θ(k) = 0 and sin 2θ(k) = 0 or

θ(k) =
nπ

2
, (n = 0, 1, 2, 3) (7)

which reveals the location of the four stationary points of using the oblong constellations. This
is in contrast to the square (or cross) constellations, for which R2,R = R2,I and E[s2

R] = E[s2
I ]

such that the last two terms of (6) are both zero. Therefore, only sin 4θ(k) = 0 is required and,
consequently,

θ(k) =
nπ

4
, (n = 0, . . . , 7) (8)

The four stationary points given in (7) are now located. Substituting θ(k) ∈ {0, π} and θ(l) ∈
{0, π} (such that cos 2θ(k) = cos 2θ(l) = 1) into (5) yields

4r2
+(k)(E[s4

R] + E[s4
I ]) + 12(E2[s2

R] + E2[s2
I ]) · ∑

l �=k

r2
+(l)− 4E[s4

R]− 4E[s4
I ] = 0, k = 1, . . . , M (9)

where we have used E[s4] = E[s4
R] + E[s4

I ] − 6E[s2
R] · E[s2

I ]. Similarly, substituting θ(k) ∈
{π/2, 3π/2} and θ(l) ∈ {π/2, 3π/2} (such that cos 2θ(k) = cos 2θ(l) = −1) into (5) yields

4r2
−(k)(E[s4

R] + E[s4
I ]) + 12(E2[s2

R] + E2[s2
I ]) · ∑

l �=k

r2
−(l)− 4R2,R · E[s2

I ]− 4R2,I · E[s2
R] = 0, k = 1, . . . , M (10)

Clearly, (9) and (10) give r2
+(1) = r2

+(2) = . . . = r2
+(M) and r2

−(1) = r2
−(2) = . . . = r2

−(M),

respectively. Consequently, (9) and (10) given k = M suffice to determine r2
+(M) and r2

−(M):

r2
+(M) =

E[s4
R] + E[s4

I ]

E[s4
R] + E[s4

I ] + [3(M − 1)] · (E2[s2
R] + E2[s2

I ])
(11)

r2
−(M) =

R2,R · E[s2
I ] + R2,I · E[s2

R]

E[s4
R] + E[s4

I ] + [3(M − 1)] · (E2[s2
R] + E2[s2

I ])
(12)
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The following form for the four stationary points along θ(k) = 0, π/2, π, 3π/2 for each of the
M non-zero components of hn (for oblong constellations only) can thus be derived

|h(k)|2 = [r2
+(M) ∑

i∈In,θ(k)∈{0,π}
δ(k − i)] + [r2

−(M) ∑
i∈In,θ(k)∈{π

2 , 3π
2 }

δ(k − i)] (13)

Notably, since the four stationary points for each element of hn have precisely the same
location in the [hR(k), hI(k)] plane for a given M, the four stationary points given in (13) may
be viewed as the stationary points in terms of the overall vector hn in the MMA cost in (3)
under the common hR(k) and hI(k) space denoting the real and imaginary parts of h(k).

2.3 Two special cases: Square and cross constellations

For the special cases of both square and cross constellations, i.e., R2,R = R2,I , E[s2
R] = E[s2

I ]

and E[s4
R] = E[s4

I ], (4) reduces to the following cost function

JMMA =
1

4
E[s4] · ∑

i

r4(i) cos 4θ(i) +
3

4
[ksσ4

s ∑
i

r4(i) + 2σ4
s ∑

i
∑
l �=i

r2(i)r2(l)] (14)

−2σ2
s · R2,R · ∑

i

r2(i) + 2(R2,R)2

It has been shown in [9] that the following form for all possible stationary points of the MMA
(for square and cross constellations), except for r(k) = 0, can be expressed as

|hM(k)|2 = [r2
±(M) ∑

i∈In,θ(k)∈{0, π
2

,π, 3π
2
}

δ(k − i)] + [r2
×(M) ∑

i∈In,θ(k)∈{π
4

, 3π
4

, 5π
4

, 7π
4
}

δ(k − i)] (15)

where r2
±(M) = E[s4

R]/(E[s4
R] + [3(M − 1)] · E2[s2

R]) and r2
×(M) = 2E[s4

R]/(E[s4
R] + [3(2M −

1)] · E2[s2
R]). Figure 4 depicts the MMA cost surface for a cross 128 − QAM input for M = 1.

Notably, both r2
+(M) in (11) and r2

−(M) in (12) reduce to r2
±(M) when E[s2

R] = E[s2
I ] and

E[s4
R] = E[s4

I ].

2.4 Unstable equilibria of MMA when M ≥ 2
If the distribution of sn is sub-Gaussian, then all the pre-specified hn (with the associated
IM) with the stationary points shown in (13), for M ≥ 2, can be shown to be unstable
equilibria (saddle points) by applying the concept proposed by Foschini [8]. Consequently,
all the vectors hn, M = 2, 3, . . ., are saddle points. The locations of the four stationary points
at [±r+(M), 0] and [0,±r−(M)] for hn with the (8 × 16)− QAM source for different M can be
computed by using (11) and (12). For example, r+(10) = 0.249, r−(10) = 0.17; r+(5) = 0.36,
r−(5) = 0.245; r+(2) = 0.611, r−(2) = 0.416; r+(1) = 1, r−(1) = 0.68. Clearly, the four saddle
points are located nearer the origin as the number of non-zero components of hn rises. As M
decreases during the blind equalization process, the locations of the four saddle points for hn

move dynamically away from the origin in four mutually perpendicular directions. The four
saddle points eventually converge as M → 1 to [±1, 0] and [0,±r−(1)], where the former two
stationary points become the only two global minima, and the latter two are still two saddle
points.
When compared with (8) and (15), the result in (7) and (13) is significant, since it implies
that, for M ≥ 2 (during the transient (or startup) mode operation), the number of saddle
points is only half those of the square and cross constellations when the oblong constellations

304 Vehicular Technologies: Increasing Connectivity

www.intechopen.com



Fig. 4. MMA cost surface for 128-cross input as a function of hR(k) and hI(k) for M = 1

are adopted (i.e., the four saddle points existing in square and cross constellations along
θ(k) = π/4, 3π/4, 5π/4, 7π/4 disappear). Consequently, the frequency of attraction toward
the vicinity of the saddle points, around which it exhibits slow convergence, before converging
to the desired minimum, is significantly diminished when using oblong constellations.
Accordingly, using oblong constellations may accelerate the magnitude equalization (or residual
ISI removing) process during the transient mode operation.

2.5 Local maximum and local minimum of MMA when M ≥ 2
Computer simulations performed in this study demonstrate that once blind equalization
started, a non-zero component of hn with maximum magnitude square, r2(k), rose, and the
sum of the magnitude squared of the remaining M − 1 nonzero components, ∑l �=k r2(l),
fell rapidly, eventually diminishing to zero. The non-zero component of hn with maximum
magnitude square is called " h(k) with maximum modulus" in the remainder of this chapter. This
chapter focuses on the MMA cost in terms of h(k) with maximum modulus, which indicates
the performance of the MMA during the transient mode operation (M ≥ 2). To discover
how h(k) with maximum modulus evolves during the transient operation when the MMA
adopts the oblong QAM based on the SGD, the MMA cost can be considered in terms of h(k)
with maximum modulus alone by substituting the approximations ∑k ∑l �=k r2(k)r2(l) ∼= 0,
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∑l r4(l) ∼= r4(k), and ∑l r2(l) ∼= r2(k) (i.e., the sum of magnitude square of the remaining
(M − 1) non-zero components of hn are very small once the MMA begins functioning) into
(4).
From (5) and (6), one stationary point is located at the origin. The second derivative can be
shown that when M ≥ 2, ∇2 JMMA

∼= 12 · ksσ4
s · r2(k) − 4 · σ2

s · [R2,R + R2,I ]. Substituting
r2(k) = 0 into the above equation, yields ∇2 JMMA

∼= −4 · σ2
s · [R2,R + R2,I ] < 0, because the

situation involving h(k) with maximum modulus at the origin is our concern. The origin thus
corresponds to a local maximum in the MMA cost function in terms of h(k) with maximum
modulus alone during the transient mode operation. However, the origin corresponds to a
local minimum in the MMA cost function in terms of h(l), l �= k (i.e., the remaining M − 1
nonzero components of hn), during the transient mode operation, provided that ∇2 JMMA > 0
at the origin (or r2(k) > [R2,R + R2,I ] · σ2

s /3ksσ4
s
∼= 0.3868) for oblong (8 × 16)-QAM input.

2.6 Desired global minima of MMA when M = 1
When M → 1 (as in steady-state mode), the combined channel-equalizer impulse response
vector hn = [0, . . . , 0, h(k), 0, . . . , 0]T can be shown to be the only set of minima. The
set of all possible stationary points of vector hn for oblong constellations given M = 1
can be summarized as (i) r(k) = 0; (ii) r+(k) = 1, θ(k) = 0 or π; (iii) r2

−(k) =
R2,R ·E[s2

I ]+R2,I ·E[s2
R]

E[s4
R]+E[s4

I ]
, θ(k) = π/2 or 3π/2 by substituting M = 1 into (11) and (12). Examining

the second derivative of the cost function in (4) indicates that for a sub-Gaussian input,

[hR(k), hI(k)] = [0, 0], [hR(k), hI(k)] = [±1, 0] and [hR(k), hI(k)] = [0,±
√

R2,R·E[s2
I ]+R2,I ·E[s2

R]

E[s4
R]+E[s4

I ]
]

correspond to a local maximum, local (hence global) minima and two saddle points,
respectively. Notably, the finding that [1, 0] and [−1, 0] are the only two global minima reveals
that any phase error within 180◦ can be correctly detected when using oblong constellations.
This finding contrasts with equalizer output with a 90◦ phase ambiguity when using the
quadrantally symmetric QAM square and cross constellations because phase errors that
are multiples of 90◦ are undetectable. Figure 5 depicts the MMA cost surface for oblong
(8 × 16) − QAM input with M = 1 in (3) such that hn = [0, . . . , 0, hR(k) + jhI(k), 0, . . . , 0]T.
Even for M ≥ 2 , the MMA cost function in (4) can be visualized in terms of each non-zero
element of hn having four saddle points along θ(k) = 0, π/2, π, 3π/2. More specifically, there
is one local maximum at the origin in terms of h(k) with maximum modulus and one local
minimum at the origin in terms of h(l), l �= k, provided that r2(k) > 0.3868, explaining
why h(k) with maximum modulus moves toward [±r+(M), 0], rather than the origin, while
the remaining M − 1 nonzero components of hn move toward the origin, based on the SGD
method, during the transient operation.

3. Carrier phase tracking capability

This section presents two superior phase tracking capabilities of the oblong constellation.
First, when using the MMA with the oblong QAM based on the SGD, h(k) with maximum
modulus automatically moves toward the stationary points at [r+(M), 0] and [−r+(M), 0],
respectively, when −90◦ < θ(k) < 90◦ and 90◦ < θ(k) < 270◦ , once the magnitude of h(k)
with maximum modulus is large enough during the transient mode operation. Meanwhile,
the remaining M − 1 nonzero components of hn tend to diminish, and the two stationary
points at [r+(M), 0] → [1, 0] and [−r+(M), 0] → [−1, 0] automatically become the only two
global minima when M → 1. Second, an oblong constellation permits much faster phase
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Fig. 5. MMA cost surface for (8 × 16) − QAM input as a function of hR(k) and hI(k) for
M = 1

acquisition and tracking rates than a cross constellation, because the shape of the cost surface
of the oblong constellation inherently has a much steeper average gradient toward the two
global minima than the cross constellation.

3.1 Dynamic phase tracking using −∇θ JMMA

We start by rewriting (6) as ∂JMMA

∂θ = 2 sin 2θ(k){F · r2(k) − A · r4(k) cos 2θ(k) − 3B · r2(k) ·
∑l �=k r2(l) · cos 2θ(l)}, where, for notational simplicity, A = E[s4], B = E2[s2], and F =

{E[s2
R] − E[s2

I ]} · [R2,R − R2,I ]. For the special cases of square and cross constellations, F = 0

and B = 0 leading to ∇θ = Θ
r(k)

∂JMMA

∂θ(k)
= −E[s4] · r3(k) · sin 4θ(k), which is exactly the

result shown in [9] for the square QAM during the transient operation. This section is mainly
concerned with the magnitude of h(k) with maximum modulus [i.e., r(k) = max(|h(k)|)] and

its corresponding phase θ(k) = tan−1 hI(k)
hR(k)

. If C = {F · r2(k) − A · r4(k) cos 2θ(k) − 3B · r2(k) ·
∑l �=k r2(l) · cos 2θ(l)} > 0 can be proved, then the sign of ∂JMMA

∂θ(k)
= 2 sin 2θ(k) ·C is determined

entirely by sin 2θ(k). Hence, the non-zero component of hn with maximum modulus based on
the SGD in (2) can be readily shown to move toward the stationary points along θ(k) = 0 and
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θ(k) = 180◦ , respectively, when −90◦ < θ(k) < 90◦ and 90◦ < θ(k) < 270◦ , as shown in Fig.
6(a), provided that C > 0.
We consider the strictest condition when cos 2θ(l) = 1, for l �= k and, consequently, C may be
rewritten as C = {F · r2(k)− A · r4(k) cos 2θ(k) − 3B · r2(k) · ∑l �=k r2(l)}. In order to obtain the

condition of the size of r2(k) required for C > 0 [see (16) below], E[|y|2] ∼= E[|s|2] was assumed
to be satisfied (i.e., magnitude equalization was successfully accomplished with the constant
power constraint). Consequently, ∑l �=k r2(l) ∼= 1 − r2(k) was obtained by using E[|y|2] =

E[|s|2] · ∑l r2(l) [30]. This assumption is justifiable because one unique feature of the MMA
is that its magnitude equalization and carrier phase recovery remain simultaneously effective
once it starts functioning. However, this carrier phase recovery takes much longer than the
magnitude equalization, which might be almost accomplished in fewer than 1500 iterations,
in contrast to 10000 iterations or even more (e.g., for 128-QAM) for the carrier phase recovery.
Consequently, the MMA might still produce a high SER, because the equalizer output
still exhibits a large phase rotation even once the magnitude equalization has almost been

accomplished (ISI ≤ −20dB), where ISI is defined as ISI(dB) = 10 log{∑k |h(k)|2−max(|h(k)|2)
max(|h(k)|2) }.

By using the approximation, ∑l �=k r2(l) ∼= 1 − r2(k), it is straightforward to show that the
condition for C > 0 is

r2(k) = h2
R(k) + h2

I (k) >
3B − F

3B − A · cos 2θ(k)
(16)

Consequently, the MMA using the oblong QAM based on the SGD moves toward θ(k) = 0◦

and θ(k) = 180◦ when −90◦ < θ(k) < 90◦ and 90◦ < θ(k) < 270◦ , respectively. Equation
(16) reveals that the carrier phase recovery, and the tracking of any frequency offset of
the MMA using the oblong QAM, hinges on the success of magnitude equalization. To
give a rough idea of the size of r2(k) required to satisfy (16), thus allowing carrier phase
recovery to be undertaken and allowing the equalizer to be switched to the decision-directed
mode, let θ(k) → 0 (or θ(k) → π) such that the blind equalizer is transitioning to phase
recovery regime. Then cos 2θ(k) approximates unity and (16) becomes r2(k) ∼= h2

R(k) >

(3B − F)/(3B − A), which equals around 0.54 for (8 × 16) − QAM input. The condition in
(16) becomes increasingly strict as θ(k) → 0 (or θ(k) → π). For example, if θ(k) = π/6 , then
r2(k) > 0.459 for the (8 × 16) − QAM input. Simulation results confirm that the condition in
(16) is almost immediately satisfied as long as the channel is well equalized by choosing an
appropriate step-size parameter. By contrast, for the square and cross constellations, h(k) with
maximum modulus unconditionally moves toward the four stationary points at [±r±(M), 0] or
[0,±r±(M)], as long as E[s4] < 0, which is valid for most sub-Gaussian source (other than
8-PSK, 4-PSK, and V.29 modem [28]), as shown in Fig. 6(b), since for these two special cases,
F = 0, B = 0 and A < 0, (16) becomes r2(k) > 0, which is naturally satisfied. Also note
that the narrower the constellations (e.g., (4× 32)− QAM input) is used, the condition in (16)
becomes stricter. As an example, for the (4 × 32) − QAM input, (16) becomes r2(k) > 0.95
when θ(k) → 0. This result reveals that the use of a very narrow oblong constellation may not
yield satisfactory phase tracking capability.

3.2 Fast carrier phase recovery

The average slope (i.e., the average gradient) of the MMA cost surface using oblong
constellation, in terms of h(k) with maximum modulus alone, from saddle point [0, r−(M)]
toward [r+(M), 0], was compared with that of the cross constellation from saddle point
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Fig. 6. Trajectory of h(k) with maximum modulus using SGD for (a) oblong QAM and (b)
square and cross QAM.

(1/
√

2) · [r×(M), r×(M)] toward [r±(M), 0] in order to compare their phase tracking speeds.
This is because the rate of phase tracking hinges on the diminishing rate of the imaginary
part of h(k) with maximum modulus, which eventually diminishes to zero when the phase
rotation is fully recovered. Notably, due to the 180◦ symmetric QAM oblong constellation and
the quadrantally symmetric QAM cross constellations, exactly the same results would have
been obtained using the slope from the other saddle point [0,−r−(M)] to [±r+(M), 0] for

the oblong constellation, and the slope from (1/
√

2) · [±r×(M),±r×(M)] to [±r±(M), 0] or
[0,±r±(M)] for the cross constellation.
The average slope between two points at [a, b] and [c, d] in the MMA cost surface in terms of

h(k) with maximum modulus alone is defined as slope = JMMA[a,b]−JMMA[c,d]√
(a−c)2+(b−d)2

, where JMMA[a, b]

is calculated by substituting [a, b] into the MMA cost function in (4) (for oblong constellation)
or in (14) (for cross constellation) by using the approximations ∑l r2(l) ∼= r2(k), ∑l r4(l) ∼=
r4(k), and ∑k ∑l �=k r2(k)r2(l) ∼= 0 (i.e., the sum of magnitude square of the remaining (M − 1)
non-zero components of hn are very small once the MMA begins functioning). The average
slope of the MMA cost from [0, r−(M)] to [r+(M), 0] for the oblong constellation and the

average slope of the MMA cost from (1/
√

2) · [r×(M), r×(M)] to [r±(M), 0] for the cross
constellation can be approximated as, respectively,

slopeobl =
JMMA[0, r−(M)] − JMMA[r+(M), 0]

√

r2
+(M) + r2

−(M)
=

A
√

r2
+(M) + r2

−(M)
(17)

and

slopecross =
JMMA[ r×(M)√

2
,

r×(M)√
2

] − JMMA[r±(M), 0]
√

[ r×(M)√
2

− r±(M)]2 + [ r×(M)√
2

− 0]2
(18)
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=
B

√

r2
×(M) + r2

±(M) −
√

2 · r±(M) · r×(M)

where A = (−1/4) · E[s4] · [r4
+(M)− r4

−(M)] + (3/4) · ksσ
4
s · [r4

−(M)− r4
+(M)]− [R2,R + R2,I ] ·

σ2
s · [r2

−(M) − r2
+(M)] + [E[s2

R] − E[s2
I ]] · [R2,R − R2,I ] · [r2

−(M) + r2
+(M)] and B = (−1/4) ·

E[s4] · [r4
×(M) + r4

±(M)] + (3/4) · ksσ4
s · [r4

×(M) − r4
±(M)] − 2 · R2,R · σ2

s · [r2
×(M) − r2

±(M)].
Comparison of A with B term by term indicates that the first three terms of both A and B
are similar. However, the dominating term, which is the last term in A, contributes to the
large average slope of the MMA cost surface of using the oblong constellation, owing to its
asymmetric nature of E[s2

R] > E[s2
I ] and R2,R > R2,I inherent in the oblong constellation. The

ratio between the slopes of the two MMA cost surfaces can then be defined as r =
slopeobl

slopecross
=

A·
√

r2
×(M)+r2

±(M)−
√

2·r±(M)·r×(M)

B·
√

r2
+(M)+r2

−(M)
, which is calculated as 3.1, 7.6, 12.56, 17.54 and 25.02 for

M = 1, 3, 5, 7 and 10, respectively, when comparing oblong (8 × 16) − QAM with cross 128 −
QAM. The imaginary part of h(k) with maximum modulus using oblong constellation would
therefore diminish to zero much faster than that using cross constellation. Consequently,
when using oblong QAM based on the SGD, h(k) with maximum modulus moves toward
the two global minima at [±1, 0] much more rapidly than that of using the cross constellation.
Notably, the MMA cost surface of oblong constellation slopes down more sharply than its
cross counterpart as the number of non-zero components of hn rises. This finding reveals
that the imaginary part of h(k) with maximum modulus of oblong constellation diminishes
much faster than that of using the cross constellation, especially during the startup operation
of blind equalization. Also note that the larger the difference between E[s2

R] and E[s2
I ] for a

particular oblong constellation, the steeper the average gradient of the cost surface of oblong
constellation toward global minima than that of cross constellation.

4. Computer simulations

Some blind carrier phase tracking algorithms [20]-[23] and some multimodulus-based
algorithms [24], [25] for cross-QAM signals have been developed recently. Computer
simulations were performed to compare the performance of the MMA using both oblong
and cross constellations, and the performance of CMA using cross constellations followed
by either a dispersion minimization derotator (DMD) [20] or a phase tracker (PT) [21], [22] [29] to
correct the carrier phase offset of the CMA output. The computer simulations also included
a sliced constant cross algorithm (SCXA) for joint blind equalization and phase recovery of
odd-bit cross QAM proposed by Abrar and Qureshi [24]. The transmitted data symbol sn

is an i.i.d., and may be one of the following four possible sources: conventional 128-cross,
oblong (8 × 16)-QAM , and two modified 128-QAM constellations proposed by Cartwright
[23], known as the 128A-COB and 128C-COB, whose variance of the fourth power phase
estimator is much smaller than that of the 128-cross. The average energies of the conventional
128-cross, (8 × 16)-oblong , 128A-COB, and 128C-COB, are all 82, while the peak-to-average
energy ratios for the four constellations are 2.073, 2.585, 2.645, and 2.881, respectively. Notably,
the distance between two adjacent message points in 128A-COB and 128C-COB has been
reduced to 1.893 and 1.976, respectively, instead of 2. The channel used for the simulations
was the Brazil Ensemble C [26]. Computer experiments were carried out by using the
baseband-equivalent channel model developed in [27] with fractionally spaced equalizers
(FSE), and the sampling frequency was chosen to be four times the symbol rate. The input
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to each sub-equalizer is a 40◦ phase-rotated version of u
(j)
n = ∑i c

(j)
i sn−i + w

(j)
n , j = 1, 2, 3, 4.

The real and imaginary parts of the complex-valued additive white Gaussian noise w
(j)
n

were assumed to be independent, and had equal variance such that the signal-noise-ratios
(SNRs) were 30 dB. Here, SNR = Pavg/2σ2

w in which Pavg is the average power of the signal

constellation and σ2
w is the variance of each component of the complex valued noise source. In

the FSE, each of the four sub-equalizers had 31 complex tap weights with 15 units of time
delay. The tap weights of the fourth sub-equalizer were initialized by setting the central
tap weight to 1 and the others to zero, while all the tap weights of the remaining three
sub-equalizers were set to zero. The ensemble-averaged SER over 10 independent runs was
used as a performance index shown in Fig. 7 in which the symbol duration is 0.093µs as in the
ATSC DTV standard.
The MMA using (8 × 16) − oblong displayed a faster convergence rate than that of CMA +
DMD, CMA + PT, SCXA, MMA, using the conventional 128-cross and CMA + PT using
both 128A-COB and 128C-COB, according to Fig. 7. However, the MMA using (8× 16)-oblong
yielded a higher steady-state SER than that of CMA + PT and CMA + DMD using
the conventional 128-cross because the use of oblong constellations generates a higher
steady-state MSE than its conventional cross counterpart. Notably, the use of MMA without
requiring a phase rotator such as DMD and PT reduces the complexity of the implementation
of the receiver. Moreover, both DMD and PT yield results with a possible ambiguity of 90◦

when 128-cross, 128A-COB, and 128C-COB are used. Therefore, the use of MMA with oblong
constellations reduces the number of possible phase ambiguities by half. The CMA + PT using
the conventional 128-cross outperformed the CMA + PT using 128A-COB and 128C-COB
because the latter two constellations whose kurtosis ks = 1.462 and ks = 1.399, respectively,
are larger than that of the 128-cross (with ks = 1.34), sacrifice some equalizer convergence rate
(i.e., residual ISI removal speed) in order to gain some phase tracking speed, especially when
the ISI of the channel is severe. Simulation results similar to those of Fig. 7 were also obtained
when the same channel with different phase rotations were adopted because the carrier phase
offset was overshadowed by the severity of the ISI of the channel. However, the simulation
results also show that the SCXA proposed in [24] outperformed all the other schemes when
the phase rotations were less than 30◦ because the SCXA sometimes became trapped in some
undesirable local minima when the phase rotations were greater than 30◦ .

5. Conclusion

The analysis in this chapter demonstrates that the MMA using oblong constellations is less
likely to be attracted to saddle points than the MMA using both square and cross constellations
because the number of saddle points is only half of those of the square and cross constellations
when adopting oblong constellations during the transient mode operation. Moreover, the
finding that [1, 0] and [−1, 0] are the only two global minima reveals that any phase error
within 180◦ can be correctly detected when using oblong constellations. The 180◦ phase
ambiguity (and the 90◦ phase ambiguity for 128-cross, 128A-COB, and 128C-COB) may be
overcome by using differential encoding when necessary. This chapter also shows that the
oblong constellations to be used with the MMA may outperform the conventional cross
constellations in terms of carrier phase recovery owing to E[s2

R] �= E[s2
I ]. Intuitively, this

may be because the MMA cost function given by (1) reduces to JMMA = 2E{[y2
R,n − R2,R]2},

JMMA = 2E{[y2
R,n − R2,R]} which essentially considers only the real part of the equalizer

output, when the symmetric constellations are such that R2,R = R2,I , E[s4
R] = E[s4

I ] and
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Fig. 7. Ensemble-averaged SER performance using the Brazil Ensemble C for SNR = 30dB
and phase rotation 40◦ . Traces: (a) CMA + PT using 128-cross
(µ = 9 × 10−9, µPT = 2 × 10−8), (b) CMA + DMD using 128-cross
(µ = 9 × 10−9, µDMD = 4 × 10−8), (c) MMA using 128-cross (µ = 6 × 10−9),(d) MMA using
oblong (8 × 16)-QAM (µ = 10−8), (e) CMA + PT using 128A-COB
(µ = 6 × 10−9, µPT = 5 × 10−8), (f) SCXA using 128-cross (µ = 3 × 10−9), and (g)
CMA + PT using 128C-COB (µ = 6 × 10−9, µPT = 10−8).

E[s2
R] = E[s2

I ]. From a statistical perspective, the MMA cost function in (1) can be exploited
fully for blind equalization only when the asymmetric nature of the constellations is utilized.
However, the oblong constellation has a slightly higher peak-to-average power ratio and a
higher steady-state SER than the conventional cross constellation at the same average energy
level. Other asymmetric constellations may be designed (such as by adjusting the symbol
probabilities without reducing the distance between adjacent message points) to achieve the
best compromise among fast carrier phase recovery, low steady-state SER and low average
transmitted power, as long as E[s2

R] �= E[s2
I ].
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