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Synchronization and Resource Allocation in 

Downlink OFDM systems 

Fan Wu 

Abstract 

The next generation (4G) wireless systems are expected to provide 

universal personal and multimedia communications with seamless connection 

and very high rate transmissions and without regard to the users' mobility and 

location. OFDM technique is recognized as one of the leading candidates to 

provide the wireless signalling for 4G systems. The major challenges in 

downlink multiuser OFDM based 4G systems include the wireless channel, the 

synchronization and radio resource management. Thus algorithms are required 

to achieve accurate timing and frequency offset estimation and the efficient 

utilization of radio resources such as subcarrier. bit and power allocation. 

The objectives of the thesis are of two fields. Firstly, we presented the 

frequency offset estimation algorithms for OFDM systems. Building our work 

upon the classic single u.ser OFDM architecture, we proposed two FFT-based 

frequency offset estimation algorithms with low computational complexity. 

The computer simulation results and comparisons show that the proposed 

algorithms provide smaller error variance than previous well-known algorithm. 

Secondly, we presented the resource allocation algorithms for OFDM 

systems. Building our work upon the downlink multiuser OFDM architecture. 

we aimed to minimize the total transmit power by exploiting the system 

diversity through the management of subcarrier allocation, adaptive 

modulation and power allocation. Particularly, we focused on the dynamic 

resource allocation algorithms for multiuser OFDM system and multiuser 

MIMO-OFDM system. For the multiuser OFDM system, we proposed a low-
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complexity chaimel gain difference based subcarrier allocation algorithm. For 

the multiuser MIMO-OFDM system, we proposed a unit-power based 

subcarrier allocation algorithm. These proposed algorithms are all combined 

with the optimal bit allocation algorithm to achieve the minimal total transmit 

power. The numerical results and comparisons with various conventional non-

adaptive and adaptive algorithmic approaches are provided to show that the 

proposed resource allocation algorithms improve the system efficiencies and 

performance given thai the Quality of Service (QoS) for each user is 

guaranteed. 

The simulation work of this project is based on hand written codes in the 

platform of the MATLAB R2007b. 
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Chapter 1. Introduction 

Chapter 1 

Introduction 

The increased demand for reliable and secure wireless communication 

services is reflected in the deployment of the first generation (IG) systems to 

the third generation (3G) systems and the fast development of fourth 

generation (4G) systems to provide a comprehensive and secure all-IP based 

solution. The evolution of wireless communication systems are reviewed in 

Section l.I. This thesis concentrates on developing efficient synchronization 

algorithms and resource allocation techniques for the 4G systems where the 

Orthogonal Frequency Division Multiplexing (OFDM) technique and Multiple 

input Multiple Output (MIMO) technique play important roles in. In Section 

1.2, the OFDM system and the OFDM-MIMO system under single user and 

multiuser environment are reviewed respectively. Section 1.3 and 1.4 describe 

the importance of synchronization and resource allocation in OFDM systems. 

Section 1.5 presents the project scope and objectives, whereas the thesis 

organization is given in Section 1.6. 

1.1. Evolution of Wireless Communication Systems 

The first telegraph networit was invented by Samuel Morse in 1838 and 

later was replaced by the telephone [1]. In 1895. Guglielmo Marconi and 

Alexander Popov demonstrated the first ship-to-shore radio commimication 

with distance of 18 miles. Radio systems have increased in importance since 

that time for both voice and data communication over larger distances with 

better quality, less power, and smaller, cheaper devices. 
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It is predicted that by 2010 diere will be over 1700 million mobile 

subscribers worldwide [2]. The rapid expansion in the demand for all types of 

wireless services, ranging from voice and low rate data services up to high rate 

data and multimedia applications, has fuelled the evolution of wireless 

communication systems from the first generation analogue system to the third 

generation system that support high-speed wireless communications [3]. 

• The first generation of cellular wireless system (IG) 

The IG system operates on 800 MHz-900MHz band and uses 

Frequency Division Multiple Access (FDMA) technology to divide the 

total system bandwidth into specific frequency channels that are assigned to 

individual user to transmit analogue voice signals with the low date rate 

between mobile phones and near-by radio stations. For example, the Total 

Access Communications System (TACS) used in the UK divides the 

bandwidth spaced by 25 kHz and provides 8 kb/s data rate, and the 

Advanced Mobile Phone System (AMPS) used in USA divides the 

bandwidth spaced by 30 kHz and provides 10 kb/s data rate. The IG system 

was first launched in late 1970s to early 1980s and has been out of our sight 

gradually. 

• The second generation of cellular wireless system (2G) 

In 1990s, two types of 2G system were standardized and deployed. One 

is deployed in Europe originally under the name of cellular mobile systems 

(CMS) such as Global System for Mobile Communications (GSM), which 

is more prevalent today and with cell radius length of 3-5 kilometres. The 

other is called as the personal communication systems (PCS) deployed in 
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USA originally which has much smaller cells, typically 200-500 meters in 

radius. In PCS, the distance between mobile phones and the near-by base 

station is shorter than that in CMS. which reduces the power required to 

transmit signals and improves the voice quality. However, a larger number 

of cells is required in PCS to cover the same area, thus making it suitable to 

more densely populated metropolitan and urban areas. 

Compared with IG, the 2G system provides the digital data services 

such as short messaging in addition to voice over a radio channel. It 

improved voice security and quality, and increased capacity to handle calls 

with higher data rates which is between 9,6 kb/s to 14.4 kb/s. The standards 

used in Europe and Japan such as GSM and Personal Digital Cellular 

(PDC) are employing the Time Division Multiple Access (TDMA) 

technology where time is divided orthogonally and each channel occupies 

the entire fVequency band over its assigned Hmeslot. In North America and 

part of Asia, the Interim Standard 95 (IS-95) standard exists with GSM. It 

uses the Code Division Multiple Access (CDMA) technique which 

employs spread spectrum technology and a special coding scheme to allow 

multiple users to be multiplexed over the same channel. Overall speaking, 

these standards-based systems all allow more efficient use of the radio 

spectmm than the previous FDMA technology [4]. 

But there are too many standards for 2 0 systems because of the great 

market potential such as IS-95. Integrated Digital Enhanced Network 

(iDEN) in USA. and GSM900, PDC in Europe and Japan. These standards 

are all incompatible and do not interoperate with each other. This feet 

makes the roaming between different countries impossible if tbey use 

different standards. Thus many cellular phones today are multi-mode. In 

addition. Pulse nature of TDMA transmission used in 2G interferes with 

some electronics, especially certain audio amplifiers. 
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Currently, there are some enhanced technologies for the evolved 2G 

system, such as General Packet Radio Service (GPRS). The data rate can 

reach from 56 kb/s to 144 kb/s. The GPRS extends the GSM and make 

more services available such as the "Always on" internet access and 

Multimedia messaging service (MMS). Subsequently, the Enhanced Data 

rates for GSM Evolution (EDGE) which is known as Enhanced GPRS, is 

developed to improve the data rates further, h pro\ides the data 

transmission rate up to 236.8 kb/s, and requires no hardware or software 

changes to be made in GSM core networks. It meets the International 

Telecommunications Union (ITU) requirement for a 3G network. With 

EDGE, the service providers can offer more wireless data application 

including web-based email and video conferencing. 

The third generation of cellular wireless system (3G) 

In late 1990s, the standardization of the 3 0 systems was started [2], The 

main characteristics of 3G systems known collectively as International 

Mobile Telecommunications (IMT) 2000 is a set of requirements defined 

by the ITU. Many 3G standards are developed according to iMT-2000. The 

main standards used in 3G systems are the wideband CDMA (WCDMA) 

standard and Universal Mobile Telecommunication System (UMTS), 

which provides different data rates depending on mobility and location, 

from 384 kb/s for pedestrian use to 144 kb/s for \ehicular use to 2 Mb/s for 

indoor office use. In addition, ttie 3G mobile services are compatible with 

2G networks. Therefore, the appearance of 3G provides higher data 

transmitting speed, increases support for multimedia data applications, such 

as video and photography, and keep constantly online which means 

customers are charged by the quantity of data they transmitted, not the time 

file:///ehicular
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coonected to the network. However, the 3G systems still have some 

remaining problems shown as follow: 

a. There are many 3G standards such as UMTS in Europe, 

CDMA2000 in USA and Time Division Synchronous CDMA (TD-

SCDMA) in China. It is still dif&cult to achieve globe seamless 

roaming. 

b. Transmitting speed is still not high enough to satisfy multimedia 

requirements. 

Furthermore, the Third-Generation Pannership Project (3GPP) works 

on further extensions to 3G standards and tries to make a globally 

applicable 3G mobile phone system specification. It is named as Long 

Term Evolution (LTE) and developed according to the specifications 

already displayed for the fourth Generation (4G) systems by IMT. Its 

specification provides downlink peak rates of at least 100 Mb/s, and uplink 

of at least 50 Mb/s. It also supports both frequency division duplexing 

(FDD) and lime division duplexing (TDD) in the same platform, and 

seamless passing to cell towers with older network technology such as 

GSM and W-CDMA. LTE is the last step towards to 4G systems and 

classified as Pre-4G. 

The fourth Generation (4G) Communication systems 

Currently, wireless communication is moving towards the Next 

Generation ("beyond 3 0 ' or ' 40 ' ) featured by all-IP based networks, 

seamless connection, high mobility, and very high rate transmissions [2, 5, 

6], 4 0 system is expected to support al least 100 Mb/s peak rates in full-
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mobility wide area coverage and 1 Gb/s in low-mobility local area 

coverage, according to the requirements of the rTU-Radiocomniunication 

Sector (ITU-R) [4]. It is projected to solve the remaining problems of 3G 

systems as mentioned previously. 

The 4G system will operate on a global standard that provides global 

mobility and service portability so that service provider will no longer be 

limited by single-system [3]. In other words. 4G should be able to provided 

very smooth global roaming ubiquitously. Furthermore, the 4G standard 

will be broadband IP-based and entirely applying packet switching for 

transmission with seamlessly access convergence [2]. It means that 4G 

integrated all access technologies, services and applications can unlimitedly 

be run through wireless backbone using IP address. 

In addition to high data rates, future system must support a higher 

Quality of Service (QoS) than currenl cellular systems, which are designed 

to achieve 90 - 95% coverage [6]. Thus. 4G systems are likely to require a 

QoS close to 100%. In order to achieve this goal, the communication 

system is required lo be more flexible and adaptive. In many applications it 

is more important to maintain network connectivity than the actual data rale 

achieved [5]. If the channel is very poor, the data rate has to drop to 

maintain the link. Alternatively, for applications requiring a fixed data rate, 

the QoS can be improved by allocating additional resources to users with a 

poor transmission paih- Currently, a large part of European research 

activities on 4 0 have been gathered into the WINNER project [7], while 

other parallel activities have been carried out, e.g. in the Wireless World 

Research Forum f 8] or the Chinese FuTuRE project [9, 10]. 

Orthogonal Frequency Division Multiplexing (OFDM) technique has 

the potential to surpass the capacity of CDMA systems and to provide the 

wireless access method for 4G systems [5]. In addition, the Multiple Input 
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Multiple Output (MIMO) technique is combined with OFDM to be 

considered In various multiuser systems including ADSL, Digital Video 

Broadcast (DVB). Digital Audio Broadcast (DAB). European 

Telecommunication Standard Institute's (ETSl) HIPERLAN/2. high-speed 

wireless local area networks (WLAN) and 4G systems [11,12,13]. 
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1.2. OFDM Architecture Background 

The OFDM and MIMO-OFDM technologies are used in the project 

systems and are introduced in this section. The multiple access techniques are 

also combined with these systems to optimize the resource sharing between 

multiple users. 

I.2.I. Review of OFDM Technique 

Orthogonal Frequency Division Multiplexing (OFDM) is a high speed 

multi-carrier transmission technique which divides the spectrum to many sub-

carriers and each subcarrier being modulated by a low data rate stream. As 

shown in Figure. 1.1, OFDM technique makes the sub-carriers overlapping but 

orthogonal each other to increase the spectral efficiency by comparing with 

Frequency Division Multiplexing (FDM) technique. 

n A A A A teouency 
* • 

(1).ConivMi(aitFifqocni7'DintkmMDlnfilai(TT)I>I)miitnciiiiei modslniDa inlmiqDC 

imof of Ux bnMhndth 
fequency 

» • 

(2) OnbofonilFit^KDn'lTniiiaDMulifilei [OFDM] onitucitiin nkxlQlatiaa ^rdsnquf 

Figure.1.1. (I ).FDM spectrum and (2).OFDM spectrum [112] 

Signals are orthogonal if they are mutually independent of each other. 

Orthogonality is a property that allows multiple intbrmation signals to be 

transmitted perfectly over a common channel and detected, without 

8 
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interference [17]. In OFDM system, information is allocated to subcarriers 

where each one has a sinusoid. The summation of these sinusoids is the OFDM 

signal. TTiere are two conditions to achieve the orthogonality between 

subcarriers. First, all subcarriers have an integer number of cycles per OFDM 

symbol. Second, the adjacent subtarriers are also chosen to be exact one cycle 

difference per OFDM symbol. 
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Figure. 1.2. (a) Time domain construction of an OFDM signal with 5 

subcarriers (b) Spectrum of OFDM signal with 5 subcarriers 
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Figure. 1,2 shows the construction of 5 subcarriers for an OFDM signal in 

both time and frequency domain. In (a), 5 subcarriers are content with the two 

conditions of Orthogonality. In (b), each subcarrier has a peak at the centre 

frequency and nulls evenly spaced by a gap equal to the carrier spacing, and 

the peak of each subcarrier is corresponding to the nulls of all other subcarriers, 

which represents the Orthogonality between subcarriers. 
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Figure. 1.3. Theoretical OFDM system model [18, 21-23] 

The model of theoretical OFDM systems [18, 21-23] is shown in 

Figure.1.3. cu^ is the angular frequency shift between subcarriers, and is equal 

to(2^. ) where T is the sample inter\'al, .v is the number of subcarriers 
NT. 

and is the subcarrier spacing frequency. The OFDM transmitted signal is 
AT 

given by: 

« , - i 

SU)=Y.'--^ 
JBBIJ 

(1-1) 
n=;0 

where t-,̂  is the baseband modulated data. We can see that lots of oscillators 

are needed to generate the subcarriers in the transmitter and lots of Low-Pass 

Filters (LPF) for demodulation in receiver, which make OFDM not suitable for 
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practical use. In 1970s, S. Weinstein proposed to apply the Discrete Fourier 

Transform (DFT) to reduce the difficulties of modulation and demodulation 

[14]. For discrete time, subcarriers are sampled by kT^ ( k - 0,1,...iV ). the 

OFDM transmitted signal can be written as: 

N-\ 

S{k)^Y^c^e jls.nklS 
(1-2) 

n=0 

The Equation (1-2) is the Inverse Discrete Fourier Transform (IDFT) which 

can be computed efficiently using Inverse Fast Fourier Transform (IFFT) 

algorithm. The typical OFDM system model is shown in Figure.] .4. 
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Figure. 1.4. Typical OFDM system model 

Furthermore, in the existing 2G and 3G systems, the Inter-symbol-

interference (ISI) imposed by multipath effect which will be described in 

Chapter 3. can be efficiently mitigated by the use of an complex equaliser. As 

shown in Figure. 1.4 of OFDM system, the cyclic prefix (CP) the cyclic prefix 

(CP) is chosen to be longer than the channel delay spread which is the time 

difference between first path and the last path, and inserted into the beginning 

of OFDM symbol S^, and then the CP-added OFDM symbol is converted from 

parallel status to serial status and up-converted for transmission. And in the 
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receiver side, the CP is discarded so that the ISl can be eliminated easily 

because the interfered samples caused by the ISI only exist in the CP range. 

This significantly simplifies the channel equalisation at the receiver in 

comparison with conventional single-carrier modulation. The received signal is 

down-converted first followed by the serial-to-parallel conversion, and then 

recovered by using the Fast Fourier Transform (FFT) algorithm. Finally the 

recovered data is demodulated to achieve the original information bits. 

Although OFDM provides many advantages over traditional transmission 

techniques. OFDM system has some main drawbacks including its high 

sensitivity to frequency and timing offset. 

12 
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1.2.2. Review of MIMO and MIMO-OFDM Systems 

MIMO system 

Currently, the principal technique combined with the future OFDM based 

wireless communication systems is MIMO technique [20. 21]. Due to die 

promising gain in channel capacity and dramatic improvement in physical-

layer performance, MTMO systems attract signiticant attention in wireless 

communications recently [24-27, 32]. and will play an important role in future 

wireless communication system. In MIMO system, multiple antennas are 

deployed at both the transmitter and receiver in order to exploit the spatial 

dimension freedom, and combat the harmful effects in mobile radio 

communication. For example, in complex wireless fading channel, MIMO 

system can significantly improve the link reliability without sacrificing the 

bandwidth eflicieDcy, and increase the data throughput and link range without 

additional bandwidth or transmit power [28] [29]. 

MIMO technique constitutes a cost-effective approach to high-throughput 

wireless communications. The concepts of MIMOs have been under 

development for many years in wireless systems. The earliest MIMO 

applications in wireless communications date back to the mid-1980s, when 

Winters in [93-95] published a number of breakthrough contributions. He 

introduced a technique of transmitting data from multiple users using multiple 

antennas at both the transmitter and receiver ends. Since then. Winters and 

others have made further significant advances in the field of MIMOs [96-100], 

especially in [98], G. J. Foschini refined new approaches to MiMO technique 

which is called as Bell Laboratories Layered Space-Time (BLAST). The 

BLAST is offering spatial multiplexing by allocating data over transmit 

antennas so that the multiple data streams can be transmitted simultaneously 

13 
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within a single frequency band to improve the data capacity of the system 

effectively and resuh in a multiplexing gain. Other MTMO techniques employ 

the Space Time Codes (STC) to explore the space diversity and result in a 

diversity gain. There are two types of STC which are Space Time Trelhs Codes 

(STTC) and Space Time Block Codes (STBC) [101, 102]. STTC uses 

convolutional encoders lo encode the signal and then create separate streams. 

Each stream is transmitted over a transmit antenna. The receiver decodes the 

signal using a Viterbi decoder. For STBC. the data is spht into blocks. Each 

data block is sent independently after converting from serial to parallel over 

different antennas, and then the data is retransmitted in different fonnats for r 

time slots and each antenna transmits a different symbol every time slot. In 

receiver, the signals received over / time slots are combined for decoding. By 

comparing STTC with STBC, STBC is straightforward design over every time 

slot and STTC requires more complicated Viterbi algorithm to achieve 

maximum likelihood decoding. 

However, multi-channel interference (MCI) is the key problem in MIMO 

system. The channel inversion and SVD techniques are proposed to overcome 

this problem [87, 103]. The channel inversion is using the inversed channel 

matrix as the pre-processing in transmitter in order to separate the multiple 

channels and cancel MCI. The SVD is using Ihe right singular matrix as pre

processing in transmitter, and left singular matrix as post-processing for signal 

reconstruction in receiver, so that the data is only weighted by real singular 

values without MCI after transmitting in the channel. 

IVTTMO-OFDM system 

In a very high data rate MEMO communication system, the radio channel 

introduces the ISI. In this case, MIMO systems require highly complex 

14 
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equalization techniques. However, OFDM simplifies the channel equalisation 

by inserting CP. and OFDM also converts the frequency-selective channel into 

a set of parallel flat-fading channels so that the MTMO-retated algorithms easy 

to be implemented with OFDM systems [83]. Therefore OFDM can be 

combined with MIMO transceiver to increase the diversity gain including the 

spatial diversity obtained by spatially separated antennas in a multipath 

scattering environment and the frequency diversity obtained by the data 

transmission in multiple frequency components, with the aim of combating 

signal fading, enlarging the system capacity, and improving the transmission 

rate, the transmission range and the transmission reliability. The 

comprehensive overview of MIMO techniques in OFDM system is given in 

[111]. 

A MTMO-OFDM system transmits independent OFDM modulated data 

from multiple antennas simultaneously. At the receiver, after OFDM 

demodulation, MIMO decoding on each of the subcarriers extracts the data 

from all the transmitting antennas on all the subcarriers. The block diagram of 

a MIMO-OFDM system with .V, transmit antennas and N „ receive antennas 

is shown in Figure.1.5. At the transmitter side, the input data is converted in 

parallel and distributed over N subcarriers, so that there are A/ data streams 

din) in the /(''' subcarrier. The data streams are weighted by aN ,xM Pre-

coder matrix F(n) in the «"* subcarrier. and the weighted data streams from 

all A' subcarriers generate the inputs of IFFT processors of A', transmit 

antennas. Consequently, the outputs of the n^ "" IFFT processor are inserted 

by the CP to generate the signal ready to be sent in the n^ * transmit antenna. 

At the receiver, the data stream in the w„'* receive antenna is processed by FFT 

processor after removing CP. Then the outputs of all FFT processors are 
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derived with the precoding and channel information. Finally, the original data 

is estimated in the Detector. 
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Figure.1.5. MTMO-OFDM System 

The received data vector in the «"'subcarrier y(n) can be expressed as: 

y ( n ) = H ( M ) S ( « ) + w ( n ) 

where 
(1-3) 

s( /7) = F ( " ) d ( / 7 ) (I-4a) 
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H(n) 

/ / ( «.l.l) 

H(n.2.l) 

H{n.N„.2) 

\«) = 

f(fl.l.l) 

Fin.l.\) 

F{n.S,.\) 

//(n.1,2) 

W(n.2,2) 

Hin.N ^,2) 

F(n.l.2) -

F\n.l.l\ -

F{n.}l,.l) -

n 

fiin ,1.A^,) 

H(n.2,N^) 

H(n.N„.y,) 

iJ.iWf 1 

FinXM) 

Fli, N,M) 

(I-4b) 

:i-4c) 

Hn)=[<Hn.l).d{n,2) d{n.M)Y ( I ^ ) 

H(n) is theN^xN^ channel frequency response matrix in the n"' subcarrier, 

and w{«) is the noise vector. In addition, the number of data streams M for 

each subcarrier is usually chosen according to equation (1 -5), so that the data in 

the receiver can be easily detected under this condition. Because as shown in 

(1-3) and (1-4), there are N ^ equations with M unknown data variables in the 

receiver data detector if the prccoder infomiation is also known by receiver. So 

if system meets the condition of (1-5), these unknown data variables can be 

estimated, otherwise additional technique such as STC has to be applied for 

data recovery. 

M < irmi N^,N^} (1-5) 
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1.2.3. Multiuser OFDM and NUMO-OFDM Systems 

One of the main limitations for wireless communication systems is that the 

bandwidth must be shared by multiple users [ ] . 19]. Traditionally, the radio 

resources have been shared between users in time, frequency and/or code 

domains, using time-, frequency- or code division multiple access (TDMA. 

FDMA or CDMA), respectively [1, 19]. The multi-carrier system can also be 

combined with the multiple access method to provide separation of multiple 

users. Orthogonal frequency division multiple-access (OFDMA) combines 

FDMA with OFDM by assigning a unique set of subcarriers to each user, and 

then the receiver processes the received signal to separate the transmitted 

signal for users according to their assigned subcarriers. For static allocation, 

the subcarriers allocated to each user are fixed without considering the channel 

conditions, therefore dynamic resource allocation is required to provide 

flexibility to allocate different QoS to different users based on users' channel 

conditions. For OFDMA, one subcarrier can only be used by one user at given 

time. However, for the multiuser MIMO-OFDM system, the subcarrier is 

allowed to be shared between several users. Further research on dynamic 

resource allocation in OFDMA system and multiuser MIMO-OFDM system at 

the downlink is discussed in Chapter 5. 

In a A: users downlink MIMO-OFDM system as shown in Figure.1.6, N^ 

antennas are located in transmitter and .v , antennas are located at the k "* user. 

At the transmitter, the data are processed before transmission, which we refer 

to as transmit preprocessing, and then launched into the MIMO channel. Let 

d ^ „ represent die L^ x\ simultaneously transmitted data symbol vector(s) for 

the k '* user at the n '* subcam'er. This data symbol vector is passed through a 

transmit precoder F, „ which is a N-^ x L^ matrix, in order to output A' , terms 
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Figure. 1.6. Downlink multiuser MIMO-OFDM system at the n" 

subcarrier [83] 

to be the data transmitted to the A'* user over iV„ antenna at the n"' 

subcarricr. We also refer H ^ ^ as the MIMO channel for user* , which is a 

iVj X N ^ matrix. At the receiver of user* , the receive signals can be written 

as: 

y, = H , y F, SVTA , + w. 

; ' * * • i 

= H, F, ,/P, d, +H, Y H , F ,/P d -tw. 

(1-6) 

. = !,<.1 

where 5„ is the set of users who transmit data simultaneously on the «'* 

subcarrier and S., e [1,2....A']. As shown in equation (1-6), the second term 

represents the multiuser interference (MU!) which affects the signal reception 

of user* . Several methods have been developed to cancel this interference 

such as Zero Forcing (ZF) and Singular value Decomposition (SVD). Further 

details are described in Chapter 5. The MCI which is also called as Inter-

antenna Interference can be cancelled with the aid of SVD. Finally the data can 

be easily recovered. 
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U . Importance of SynchroDization in OFDM System 

As described in Section 1.2.1, Synchronization is one of the main 

drawbacks and has been one of the crucial research topics in OFDM system 

because of its sensitivity to the timing and frequency errors [33]. To guarantee 

the fast and accurate data transmission. ISl and Inter Carrier Interference (ICl) 

caused in the transmission have to be eliminated or reduced to minimum. In 

OFDM system, ISI can be avoided by inserting CP with length greater than the 

channel delay spread, and the ICl can be eliminated by maintaining the 

orthogonality between carriers under the condition that the transmitter and the 

receiver have the exact same carrier frequency. But in the real mobile 

transmission, frequency offset (FO) (A/) will be arising from the frequency 

mismatch of the transmitter and the receiver oscillators and the existence of 

Doppler shift in the channel. The consequence caused by frequency offset is 

shown in Figure.1.7 (b). By comparing with Figure.1.7 (a), the FO results in 

the reduction of the amplitude of desired signal and introduces the ICl. 

SUA / , / ,*! / (Hz) 

(a) No frequency oEfeet 

/ ,+ V" /(Hz) 
(b) "With frequency offset 

Figure. 1.7. OFDM symbol spectrum [112] 
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Also as shoivTi in Figure. 1.8. in both AWGN channel and Raylcigh flat 

fading channel which is described in Chapter 3. the higher frequency offset 
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which is normalized to subcarrier spacing will cause the higher BER in OFDM 

system. The reason is the higher frequency offset leads higher phase shift that 

rotates the desired signal out of the correct decision region. In addition, due to 

the delay of signal when transmitting in the channel, the receiver in general 

starts sampling a new frame at the incorrect time instant. Therefore, it is 

important to estimate the frequency olTset to minimize its impact, and to 

estimate the timing offset at the receiver to identify the start time of each frame 

and the FFT window position for each OFDM. 

1.4. Importance of Resource Allocation in Multiuser OFDM System and 

Multiuser MIMO-OFDM System 

As described in Section 1.2.3, the FDMA multiple access technique is 

combined with OFDM for multiple u.sers to share the available bandwidth 

which are the subcarriers of OFDM system. For the static allocation method, 

each user is allocated a number of subcarriers which are fixed all the time. 

However, the subcarriers that experience deep fade with bad channel condition 

to one user may not be in deep fade for other users, in fact, it is quite unlikely 

that a subcarrier will be in deep fade in all users' channels, as the fading 

pararaelers for different users' channels are mutually independent. Therefore 

the dynamic resource allocation scheme where the subcarriers are assigned to 

the users based on users' channel state information (CSI) is required. Channel-

aware adaptive resource allocation has been shown to achieve higher system 

performance than static resource allocation, and is becoming more critical in 

current and future wireless communication systems as the user data rate 

requirements increase [34]. Similarly, in multiu.ser MIMO-OFDM system, its 

spectral efficiency can be increased if the system effectively adapts to the radio 

channel and take advantage of the available resource in both frequency and 

22 



Chapter 1. [ntroduction 

space domains. By working with users' CSI. we aim to achieve the optimal 

subcarriers set assigned lo each user in multiuser OFDM system and the 

optimal set of users sharing each subcarrier in multiuser MIMO-OFDM 

system. This dynamic resource allocation process normally has two goals. One 

is minimizing the total transmit power given the constraints on the users' data 

rate, and another is ma.ximizing the overall data rate with a total transmit power 

constraint. 

In this thesis, we consider the time division duplex (TDD) system, which 

uses the same carrier frequency alternately for transmission and reception, and 

thus, for the downlink transmission, the CSI can be tracked at the base station 

(BS) according to the previous received upUnk frame. We assume the perfect 

channel estimation is carried out so that BS can achieve the dynamic resource 

allocation by using the perfect users' CSI. 
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1.5. Scopes and Objectives of the Project 

The scope of this thesis in a broad sense is concentrating in two aspects. 

One is the Synchronization in OFDM system, and another one is the Downlink 

Resource Allocation in Multiuser OFDM system and Multiuser MIMO-OFDM 

system. In particular, the issues about synchronization especially the frequency 

offset estimation are explored in OFDM system, then the issues pertaining to 

adaptive resource allocation for future OFDM based wireless systems are 

examined while considering their special characteristics such as multiple 

access techniques and MIMO antenna techniques. The aims here are to study 

the system level perfonnance of future uireless systems based on the above 

two aspects by using both theoretical analysis and modeling simulations. 

Towards these aims, the project takes the following lines of research: 

Synchronization 

• Fully study current algorithms for the timing offset and frequency offset 

estimation to develop the understanding of the main issues and problems 

of synchronization in OFDM system. Based on the review, we 

summarize the timing offset estimation algorithms and evaluate Ihem by 

computer simulation. And then we focus to explore the novel frequency 

offset estimation algorithms. 

• Two FFF-based frequency offset estimation algorithms in OFDM 

system are proposed. One is Linear Interpolation based algorithm; and 

the other is matched filter based algorithm. Modelling simulation is 

carried out under the additive white Gaussian noise (AWGN) channel, 

multipath static fading channel and multipath time-varying fading 

channel by evaluating the error variance (EV). More accurate and stable 
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estimation result in the lower EV. The simulation results show their 

improvement with, lower EV than the conventional well-known 

algorithm. 

• TTie integrated model for timing and frequency offset estimation in 

OFDM system is proposed. 

Donnlink Resource allocation 

• Review in details the current adaptive resource allocation in the 

multiuser OFDM system to identity the main optimization methods. 

And then we focus on the total transmit power minimization and 

theoretically study the relevant optimal solution of subcarrier allocation 

which has high computation complexity. 

• Propose a sub-optimal channel gain difference based subcarrier 

allocation algorithm which is evaluated by the total transmit power, the 

familiar bit error rate (BER) vs. Signal to noise ratio (SNR) and the 

computation complexity. 

• Subsequently, special focus is put on resource allocation in multiuser 

MIMO-OFDM system. Because of the feature of subcarrier sharing 

among users, the pre-processing techniques ZF and SVD, prior to data 

transmission in the MIMO channel are examined. 

• According to the SVD assisted pre-processing multiuser MIMO-OFDM 

system, a subcarrier allocation algorithm is proposed to assign the users 

for each subcarrier with the goal of total power minimization in the 

whole system. 
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1.6. Organization of the Thesis 

The thesis is written as a monograph for the sake of clarity, but parts of the 

contributions in Chapters 4, 5 have been published or accepted for publication 

in the publications listed in Section 1.7. The rest of the thesis follows the 

organization given below. 

Chapter 2 contains the literature review of previous work related to the 

contributions of the thesis. The review includes the current timing offset and 

frequency offset estimation algorithms in OFDM system. Furthermore, the 

downlink resource allocation in multiuser OFDM system, MIMO link, pre

processing techniques and resource allocation in multiuser MIMO-OFDM 

system are also reviewed. 

Chapter 3 presents the wireless channel models including the theoretical 

analysis and computer simulation of Rayleigh flat fading channel, frequency 

selective fading channel, and the MIMO-OFDM channel model. TTie channel 

models developed here will be applied in the later research work. 

Chapter 4 considers the synchronization techniques including tithing and 

frequency offset estimation in OFDM system. Some of the popular algorithms 

are fully studied, and two FFT-based frequency offset estimation algorithms 

are proposed. 

Chapter 5 focuses on the downlink resource allocation in multiuser OFDM 

system and multiuser MIMO-OFDM system. The optimal solution of 

subcarrier allocation in multiuser OFDM system is studied and a novel channel 

gain difference based subcarrier allocation algorithm is proposed and 

evaluated. Furthermore, the ZF and SVD assisted pre-processing techniques in 

MIMO system are studied. Then a subcarrier allocation algorithm is proposed 

for multiuser MIMO-OFDM system according to the SVD based pre

processing technique. 
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Chapter 6 concludes the thesis. The main results and conclusions are 

summarized. Moreover, some open questions and directions for fijmre research 

are pointed out. 
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Chapter 2 

Literature Review 

In this chapter we review the challenges as well as some existing solutions 

of the Synchronization Techniques in OFDM system, the downlink Resource 

Allocation in Multiuser OFDM system, MIMO system. Multiuser MIMO 

system and the downlink Resource Allocation in Multiuser MIMO-OFDM 

system, in Section 2.1. the comprehensive study of current synchronization 

techniques is presented including the timing synchronization and frequency 

synchronization. Section 2.2.1 reviews existing downlink resource allocation 

algorithms in Multiuser OFDM system. Section 2.2.2 reviews the point to point 

MIMO system followed by the Multiuser MIMO system presented in section 

2.2.3. In section 2.2.4, the downlink Resource Allocation in Multiuser MIMO-

OFDM system is reviewed. Finally section 2.3 gives the summary of literature 

review. 

2.1. SynchronizatioD in OFDM System 

In order to realize the synchronization in OFDM system, two methods are 

mainly used which are data-aided and non-data-aided respectively. 

For the data-aided method, special signals such as training sequence and 

pilot symbols are transmitted, which are specially chosen to achieve rapid 

synchronization. These special signals can be continuously transmitted signals 

or periodically transmitted symbols, specified by their shape, auto-correlation 

function, spectrum and other specific parameters [35. 88]. The synchronism is 

established quickly with high accuracy and low computation, but such scheme 

uses part of the available bandwidth and consequently reduces the data 
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transmission speed. It is appropriate for common access systems, systems with 

packet transmission, and local networks [88]. 

fur the non-data aided method, also named as blind synchronization, the 

CP is often used for estimation [89-92], This type of synchronization requires 

sufficiently large number of samples to get a reliable estimation. The CP length 

and SNR value will influence the estimation performance. If CP is containing 

the interference from previous symbol in ISI channel, the performance will be 

reduced. In addition, estimation range of blind synchronization is relatively 

small, not suitable for acquisition. 

In this thesis, data-aided methods are focused on due to their wide use 

when researching modem WLAN systems. Some of the well-known timing 

and frequency synchronization methods are now reviewed in section 2.1.1 and 

section 2.1.2 respectively. 

2.1.1. Timing Synchronization in OFDM System 

SchmidI and Cox in [35] proposed a timing synchronization method. Two 

training symbols are placed at the beginning of the frame. The first symbol has 

identical halves in time domain, so that the correlation between these two 

halves can be carried out to find out the timing metric in the receiver. However, 

the metric suffers from a plateau which leads some uncertainty in determining 

the start of the frame. To alleviate this, the authors propose a 90% averaging 

method to finalize the start lime, H. Minn et al. in [36] modified Schraidl's 

method in [35] and proposed two new timing synchronization methods. The 

first method uses two modifications: 1) all samples over one symbol period 

(excluding CP) are used in calculation of half symbol energy required in 

designing timing metric and 2) averaging of timing metrics over a window of 

CP length is used instead of 90% maximum points averaging. The second 
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method uses a training symbol containing four equal length parts: the first two 

are identical and the last two are the negative of the first two. Both methods 

give smaller estimator error variance than the timing synchronization method 

in [35], especially second method, but still have large Mean Square Error 

(MSE) in ISI channel. Byungjoon Park et al. in [37] presented a novel liming 

offset estimation method by modifying the training symbol structure, which 

produces an even sharper timing metric and has significantiy smaller MSE than 

SchmidPs in [35] and Minn's in [36]. Nanda Kishore et al. in [38] proposed a 

method which has same preamble structure with [35], but he assumes that the 

receiver knows the one half of the preamble first, and then join it to the 

calculation of timing metric to yield a sharp peak at the correct symbol 

boundary. Seung et al. in [39] proposed timing offset estimation method and 

designed a new time domain preamble to give smaller MSE than in [35], [36] 

and [37] especially in the fast varying channel. Its main advantage is found in 

applications operating in fast Rayleigh fading channel without assuming the 

dominant path by using the window search method. 

2.1.2. Frequency Synchronization in OFDM System 

Moose et al. in [40] analyzed the effects of the frequency offset on the 

OFDM system, and found that the main problem is the ICI between the 

subcarriers. He also described a technique to estimate the frequency offset 

using two repeated OFDM symbols. The maximum likelihood estimation 

(MLE) algorithm and variance of estimation are also derived, but the 

estimation range is limited inside half sub carrier interval. Classen el al. in [41] 

use the pilot symbols distributed over the subcarriers of two OFDM symbols to 

carry out the frequency acquisilion and tracking. This technique is very 

computationally complex because it uses a trial and error method where the 

30 



Chapter 2. Literature Review 

carrier frequency is incremented in small steps over the entire acquisition range 

until the correct carrier frequency is found, and consequently it is impractical. 

By considering a preamble consisting of two OFDM symbols. Schmidl et al, in 

[35] proposed a method for frequency synchronization. Two training symbols 

are placed at the begiiming of the frame. TTie first symbol has identical halves 

in time domain, which is used to generate timing metric for timing 

synchronization as explained in section 2.LI. At the optimum symbol time, the 

phase of the numerator term of the timing metric is examined for frequency 

fractional estimation, and if the absolute value of phase is greater than;:-. the 

correlation between compensated first and second training symbol is carried 

out for integral estimation after FFT in frequency domain. We know the 

training symbol's structure is related to synchronization capability. Lambrette 

et al. in [42] proposed a method using CAZAC (Constant Amplitude Zero 

Autocorrelation) sequence. He inserted repeated CAZAC sequence every few 

OFDM symbols to get the accurate frequency ofiFset estimation. Yun Hee Kim 

et al. in [43] proposed a method using one differentially coded training symbol 

to find out the integral part of the frequency offset. Therefore there is only one 

OFDM training symbol needed. Morelli et al. in [44] proposed best linear 

Unbiased Estimation (BLUE) method. Its training symbol is made by many 

repeated parts. It improved the frequency offset estimation range and accuracy 

but increased the computation. Kan shi et al. in [46] proposed scheme 

exploiting the repetitive structure of a training symbol and extended the range 

of the carrier estimate which is up two subcanier spacing. In WLAN system, 

training sequences are also widely used for synchronization. According to the 

IEEE 802.11 standardization group and the corresponding preamble design 

specified by the IEEE standard, Jian Li et al. in [45] presented an efficient 

carrier frequency offset estimation algorithm for the OFDM based WLANs. 

Short training symbols results in better accuracy than long training symbols. 
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2.2. Resource Allocation ID Multiuser OFDM System and Multiuser 

MIMO-OFDM System 

One of the main limitations for wireless communication systems is that the 

bandwidth must be shared by multiple users [I. 191. which also exists in 

OFDM system and MEMO-OFDM system. The users observe multipalh fading 

but have independent fading parameters due to their different locations. The 

probability that a subcarrier has been in deep fade for one user may also be in 

deep fade for other users is quite low. Therefore efficient resource allocation 

algorithms allocating the subcarrier, power and bit adaptively according to the 

user's CSI are required in Multiuser wireless communication system in order to 

increase the system efficiency. 

2.2.1. Adaptive Resource Allocation in Multiuser OFDM System 

In the single-user OFDM system, the user utilizes all good and stable 

available subcarriers, and then the adaptive loading algorithms are applied to 

allocate the bits over subcairiers. Many algorithms have been developed to 

achieve this goal [47-50]. 

In the multi-user OFDM systems. Mattias et al, in [51] carried out the 

conceptual Study of OFDM with traditional multiple access techniques, 

including OFDM-FDMA, OFDM-TDMA and OFDM-CDMA, their 

performance for downlink of OFDM systems are studied in [52]. The OFDM-

FDMA allocates each user a particular band of subcarrriers. the OFDM-TDMA 

allocates each user a particular time slot with all subcarrriers, and OFDM-

CDMA allocates each use a subset of orthogonal codes for spreading over 

subcarriers. We focus the work on downlink OFDM FDMA system. 
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For the traditional OFDM-FDMA system, the resource allocation does not 

consider the users' CSI. and the subcarriers allocated to user are fixed in all 

channel environments. In real world, different users will experience peaks in 

their channel quality at different times. This effect has been called multi-user 

diversity. When the number of users is large, the system performance can be 

improved if the base station (BS) schedules its transmission to those users with 

favor^le channel fading conditions. Because of the various channel conditions 

among different users, it is possible that the user with higher average channel 

gains will use most of the system resources. To optimize the system in a fair 

way for downlink transmission system, the CSI of each user needs to be gained 

in the BS. In our work, we assume that (a) the transmitted signals experience 

quasi static frequency selective fading which can be modelled as a collection of 

M parallel flat fading channels. As a result, the channel remams unchanged 

from the time that measurements are made until the data packet is transmitted 

to receivers, (b) users" CSI are perfectly known by the BS and users' receiver. 

Generally speaking, there are two classes of optimization techniques that have 

been proposed in the literature: margin adaptive (MA) [53], [54]. [55] and rate 

adaptive (RA) [56], [57], [58]. 

Margin adaptive (M.A) Resource Allocation in Multiuser OFDM system 

The objective of the margin adaptive resource allocation is to achieve the 

minimum overall transmit-power given the constraints on the users' data rate 

or bit error rate (BER). Wong et al. in [53] proposed an optimization algorithm 

based on Lagrange relaxation in order to minimize the total transmission power 

with satisfying all users' rate requirement in downlink transmission system. 

The algorithm is applied in BS to allocate subcarriers first by achieving the 

minimum total transmission power and satisfying all users' rate requirement. 
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then the single user optimal bit allocation (OBA) is applied on the assigned 

subcarriers for each user. The aJgorithni significantly outperforms the fix 

allocation schemes (e.g. OFDM-FDMA). but it is very complex and has heavy 

computation. To cope with this problem, the authors in [54] proposed a 

simplified sub-optimal algorithm with performance close to optimal solution. 

However the modified scheme fixes the number of assigned subcarriers of each 

user which is not a good strategy in practical systems. Didem Klvanc and Hui 

Liu in [55] proposed the craving greedy subcarrier and power allocation 

algorithm for downlink transmission system. The algorithm was separated into 

two stages: the first stage determines the number of subcarriers based on SNR 

and users" rate requirement, the second stage allocates appropriate subcarriers 

to each user by using amplitude craving greedy (ACG) subcarrier assignment 

algorithm in order to minimize the total transmit power. To reduce the 

computational complexity. Kim et al in [59] converted the nonlinear 

optimization problem into a linear integer-programming problem. However, 

the complexity still grows exponentially with the number of subcarriers and 

users. Li Zhen ct al. in [60] modified the algorithm in [55] and proposed the 

improved ACG algorithm to further improve the system performance. 

Guodong Zhang ei al. in [61] proposed a novel dynamic subcarrier and bit 

allocation algorithm for real-time services in multiuser OFDM systems, which 

takes advantage of the instantaneous channel gain in subcarrier and bit 

allocation properly without relying on the nonlinear optimization technique 

like algorithm in [53], in order to reduce the computational complexity. 

Mathematically, the original problem of margin adaptive resource 

allocation in Multiuser OFDM system can be formulated as: 

,v -̂ J 

XX^r-A<c*.„) (2-1) mm 
^i "^ ^ a . 

34 



Chapter 2. Literature Review 

Where P is the tola! transmit power, t", „ is the bit rate for the k" user on the 

n' subcarrier in one OFDM symbol, a / , is the channel power gain for the A " 

user on the o"subcarTier, andD e [0. A/] is the set of all possible constellation 

values for c, „ with maximum allowed value M. 

In addition, ./(c) is the required received power for reception of c 

bits/symbol when channel gain equals to unity, here we consider the system 

employing MQAM. therefore/(t) is given as [53]: 

/(«•)=-^[£?-'(-^)] = (2' -1) (2-2) 
3 4 

where N„ is the noise power spectral density (PSD), p is the given BER. and 

Q represents Q-function. And the minimization is subject to the following 

constraints. 

r-l 

Cj „ * 0 . then ft.„ - 0 for* ^ k' (2-4) 

where /?̂  is the required data rate for user k. And as shown in equation (2-4), 

one subcarrier can only be assigned to one user. 

Rate adaptive (RA) Resource Allocation in Multiuser OFDM system 

The objective of rate adaptive resource allocation is to adapt the transmit 

power by allocating bits using with water-filling scheme for each user in each 

subcarrier and maximize the overall data rate with a total transmit power 

constraint. W. Rhee et al. in [56] described an optimal subcarrier allocation 

algorithm and proposed a sub-optimal adaptive subchannel allocation 
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algorithm in order to maximize the total data rate. But the frequency selective 

nature of users' channel is ignored by allocating equal power across all 

subcarriers- H.Yin et al. in [57] proposed a two-step algorilhm that maximizes 

the total rate subject to users' rates and the total power constraints. The 

algorilhm first estimates the resource required to satisfy the rate requirement of 

each user according to their average channel gain; and then pick the subcarriers 

with good channel gains so that the total rate is maximized. Gerhard Miinz et al. 

in [62] proposed a computationally efficient water-filling algorithm to 

determine the subcarrier allocation for a multiple access OFDM system. Tt 

maximizes the target rate under the constraints of individual user power 

budgets. After that, the bit and power allocation for each user is determined by 

one of single-user loading algorithms. J. Jang et al. in [58] proposed algorithm 

to maximize the total capacity under constant total power and proved that the 

sum capacity is maximized when each subchannel is assigned to the user with 

the best subchannel gain and power is then distributed by the water-filling 

algorithm. Z. Shen et al. in [63] discussed the solution for Quality of Service 

(QoS) which is neglected in [58]. The proportional fairness is introduced in 

order to control the capacity ratios among users, and ensure that each user is 

able to meet his target data rate. It also takes into account the frequency 

selective nature of a user's channel through the use of water-filling during 

power allocation to each user. Chandrashekar Mohanram et al. proposed an 

algorithm that performs joint subcarrier and power allocation in multiuser 

OFDM [64]. The aim is to maximize the overall rate while achieving 

proportional fairness amongst users under a total power constraint. 

Mathematically, the original problem can be formulated as: 

max ^ « , (2-5) 
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«. = Zl«g:(i + ' ' . -^. ,J 

Subject to S Z -''*." - ^"•'-' (2-6) 
i - i ( = 1 

/•, ^ > 0 for all /i. n 

A^,A^,..., y4j are all disjoint 

A^^ A,K^ ... ^ A^ ^ {1,2,..., N) 

Where K is the total number of users, v is the total number of subcarriers, 

/̂ „,„, is the overall power constraint, P, „ is the power allocated to the k"' user 

in the ii'"subcarrier, ;', „ is the channel gain to noise power ratio for the *" 

user in the n'" subcarrier. a , „ is the channel gain for the ;" user in the «'* 

subcarrier, /v„ is the noise power spectral density (PSD) of AWGN. B is the 

overall available bandwidth, .ĵ  is the set of all subcarriers allocated to the k'" 

user, and R^ is the *" user's rate. 
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Different classes of algorithms for MA and RA resource allocation 

Some outstanding research in the MA and RA based resource allocation in 

multiuser OFDM systems are classified as follow: 

M a g a A d ^ i m 

Wmftil 
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•i*A4ipn* 

(MM) 
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Figure.2.1. Different classes of aiogorithms for MA andRA resource allocation 

fllO] 

Our work will focus on the margin adaptive optimization technique, 

because the multimedia service plays an important role in the future wireless 

communication system, of which the delay-critical real-time interactive 

applications such as the voice or video transmission may require a fixed data 

rate [65]. Thus the total power minimization is necessary to achieve the high 

system performance. We will review the optimal solution and propose a simple 

but efficient sub-optimal method in Chapter 5. 

38 



Chapter 2. Literature Review 

2.2.2. Multiuser M1MO System 

For a multiuser MIMO system, the optimal sum capacity based on the 

resource allocation over different dimensions (users, space, frequency) is given 

by the actual sum rate capacity of the trequency-selective MTMO downlink 

broadcast channel which are discussed in [66, 67, 68]. However, heavy 

computation is required to achieve the optimal sum capacity by solving the 

convex optimisation problem. Therefore, sub-optimal with less complex 

techniques have been proposed. Multiuser diversity for the dirty paper coding 

(DPC) with ZF approach was studied by Tu et al. in [69], where they proposed 

a greedy algorithm for the selection of users and their encoding order for 

maximising the sum rate. This algorithm combined with ZF-DPC was shown to 

have a sum rate very close to the capacity. Tejera et al. [70] investigated 

different spatial sub-channel allocation algorithms aiming to maximize the sum 

rate of the multiuser MIMO BC. However, these papers aimed to maximize the 

system capacity through joint power control, but the instantaneous QoS 

provisioning is not guaranteed. In other words, although the data rate-sum is 

maximized, some user's data rate might be very low for certain lime intervals 

due to poor channel conditions. Therefore, ether transmitter design criteria 

should be considered in order to guarantee the QoS for all users. Lee et al. [71 ] 

studied the symmetric capacity of MIMO downlink channel which is defined to 

be the maximum rate that can be allocated to every user in the system, of which 

the fairness between users is guaranteed. 

The algorithms generally require very complex nonlinear computation 

based on the DPC [67]. The sub-optimal with less complex transmission 

techniques are necessary. Linear beamforming, which is also known as Spatial 

Division Multiple Access (SDMA). is a sub-optimal transmission strategy that 

enables the spatial separation of concurrent users. The data stream of each user 
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is multiplied by the beamforming weight vector independently and spread over 

the multiple antennas. The muhiuser interi'erencc (MUI) between multiple data 

streams can be eliminated by the proper selection of weight vectors among 

users. Unlike the DPC applied in MIMO broadcast channel, the optimal 

beamforming cannot be written as a convex optimization problem [71]. In 

addition, beamfomiing can combine with a proper selection of users to have 

the same asymptotic sum-rate as the DPC. when there are a targe number of 

users exisiing in the system [71, 72]. Because the probability of finding a set of 

close-to-orthogonal users with large channel gains is increased along with the 

growing of the number of users. Lai et al. in [73] proposed a ZF-based 

preceding approach to decompose the multiuser MIMO downlink channel into 

multiple parallel independent single-user MIMO downlink channels. Each 

equivalent single-user MIMO channel has the same propenies as a 

conventional single-user MIMO channel. Furthermore, Liu et al. in [74] 

proposed a novel Singular Value Decomposition (SVD) based preceding 

approach in downlink multiuser MIMO system, which takes into account the 

specific characteristics of the individual users channel matrix, instead of 

treating all the users' channels jointly as in the traditional ZF-based multiuser 

transmission (MUT) technique, and then the maximum rate scenario is 

considered under the user' power constraints. Both algorithms in [73] and [74] 

assumed all users to transmit data simultaneously and the number of transmit 

antennas in BS is related with the number of users and the number of users" 

receive antennas. For a downlink MIMO system with targe number of users, it 

requires large number of the transmit antennas in BS which is impractical. 

Therefore, in real resource optimized system with large number of users, a set 

of users is selected to transmit data simultaneously over multiple antennas, and 

then the relevant preceding technique is applied for the selected set of users. 

Dimic et al. in [75] utilized the sub-optimal greedy user selection algorithm in 
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the ZF beamforming based downlink MIMO system where users' receivers ail 

have single antenna. Yoo et al. in [12] also lised the greedy user selection 

algorithm in ZF beamforming based MIMO system, but with an additional 

semi-orthogonality test between users. The performance shows its asymptotical 

optimality. In Chapter 5, we will discuss performance of downlink Multiuser 

MIMO systems that applied the preceding techniques in [73] and [74] 

respectively, and then extend the Liu's preceding technique in [74] to the 

downlink Multiuser MIMO-OFDM system. 

2.2.3. Adaptive Resource Allocation in Multiuser MIMO-OFDM System 

In previous sections, the MA and RA resource allocation algorithms 

proposed in Multiuser OFDM system has been fully studied. Subsequently, we 

introduce the Multiuser MIMO system applying various preceding techniques 

such as ZF and SVD. In this section, the OFDM is combined with Multiuser 

MIMO system with preceding techniques, and then the resource allocation in 

Multiuser MIMO-OFDM system is reviewed. 

There are some challenging issues raised in the Multiuser MIMO-OFDM 

system. First of all, with the similarity in Multiuser MIMO system, the multiple 

users are allowed to transmit data simultaneously on each subcarrier, which is 

called as subcarrier sharing between users and generates the MUI between 

users. This fact makes the optimization problem combinatorial and nonconvex. 

Furthermore, adapting the transmission of one user affects the interference to 

other co-channel users, which, in turn, changes the optimal transmission 

schemes of all users. The proper preceding techniques in Multiuser MIMO 

system can be extended to Multiuser MIMO-OFDM system to solve this 

problem. Second, the inter-antenna interference (LAF) caused by the signals 

from multiple transmit antennas of a given user being received on the same 
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receive antenna, makes the signals more difficult to be separated and decoded 

from multiple antennas. Tliird, MTMO-OFDM systems are occupying both the 

space and frequency domains, so that we have to decide which dimension 

should be used by which set of users. Finally, QoS requirements require 

additional constraints on the optimization problem. 

For each subcarrier of Multiuser MIMO-OFDM system, the maximum 

number of data streams that can be allocated is limited by the number of 

transmit antennas at the BS. while the number of streams per user is limited by 

the number of receive antennas at the terminal. If the total number of allocated 

streams exceeds the number of BS antennas, the system becomes interference 

limited [78]. In real system serv-ing a large number of users by fixed number of 

BS antennas, it is impossible to assign all users in each subcarrier which may 

cause the total number of allocated streams exceeds the number of BS antennas. 

Therefore, the efficient user selection algorithm is required to allocate the best 

users for each subcarrier. The user selection algorithm can also be known as 

subcarrier allocation which represents to assign best users on each subcarrier. 

The adaptive subcarrier allocation algorithm for Multiuser MIMO-OFDM 

system has attracted increasing research interest recently. 

With consideration of combining MIMO with OFDM, Tsang et al. in [76, 

77] extended the rale maximization problem to the Multiple-Input-Single-Out 

(MISO)-OFDM system. The authors found that the optimal and sub-optimal 

solution to maximize the total date rate by considering best assignment of users 

on each subcarrier subject to total power constraints and each user's QoS 

requirements. Obviously, the number of users in a subcarrier has two 

conflicting effects on the system throughput. One is that adding more users on 

a subcarrier increases the number of spatial channels; however, another effect 

is that more users introduce more interference among the users which reduces 

the throughput in each spatial channel. The authors take into consideration 
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these two conflicting effects when solving the maximization problem. 

Subsequently. Zhang et al. in [79. 80] extended the resource allocation to 

Multiuser MIMO-OFDM system, and the dynamic subcarrier allocation 

algorithm is simplified to group users according to the spatial signatures or 

comparability of the user channels, with the aim of minimizing the total 

transmit power in uplink transmission subject to the tiilfillment of each user's 

QoS requirements including bit-error rate (BER) and data rate. In order to 

maximize the capacity of each user, several subcarrier allocation algorithms 

have been obtained in [52. 53]. However, these subcarrier allocation algorithms 

only outperform two scenarios. One is the static allocation; another one is that 

one subcarrier is only assigned to one user, b [83, 84], Chan et al. considered 

the optimal power allocation for a multiuser MIMO-OFDM system using ZF 

precoder based multiplexing with the objective to maximize the system 

capacity. The authors also extend the user selection to antenna selection and 

dimension selection. In [85]. Maw et al. proposed another method to maximize 

the total throughput under the constraints of total power and proportional data 

rate fairness among users instead of equal power allocation. In [86]. the 

multiuser MIMO-OFDM system with ZF beamformer was proposed to remove 

the multiuser interference among the simultaneously tran.smitting users. The 

aim is to minimize the total transmit power under the constraints of users" data 

rates. In [87], Karaa et al. developed linear preceding schemes for downlink in 

MIMO-OFDM systems, and then endeavours to optimize the power allocation 

across OFDM subcarriers. So far, significant research work has been carried 

out for power allocation in order to maximize the system capacity. Not much 

woilc is considered for the total power minimization under users' data rate 

constraints, especially in downlink Multiuser MIMO-OFDM system. In 

addition, fixed data rate may be required for the delay-critical real-tune 

interactive applications such as the voice or video transmission in fiiture 
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multimedia based wireless communication system [65]. Therefore the total 

power minimization under users' data rate constraints in the downlink MIMO-

OFDM systems is focused on our work. 

In the Chapter 5, we propose a novel and efficient user selection algorithm 

with the aim of total transmit power minimization based on the extended 

downlink Multiuser MIMO-OFDM system from [74]. 
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Chapter 3 

Wireless Channel Modelling 

Wireless channel is the medium of data transmission between transmitter 

and receiver. It is an important factor that influences the performance of 

wireless communication systems. In this chapter we comprehensively study the 

wireless channel characterization through theoretical analysis, channel 

modelling, and computer simulations. We will use the mullipath fading channel 

model in the analysis and simulation in our research. In Section 3-1, the 

wireless channel characterization is presented. Section 3.2 theoretically 

analyzes the muitipath fading channel, and the corresponding computer 

simulation is carried out to measure the channel models. Section 3.3 evaluates 

the performance of MIMO/MIMO-OFDM systems operating in the muitipath 

channel model. Finally section 3.4 summarizes conclusions from this chapter 

3.1. Wireless Channel Characterization 

After signal is sent out from the transmitter and before signal arrives the 

receiver, alt the paths the signal passes through are called communication 

channel. The wireless channel can be the simple Line of Sight (LOS) 

transmission, or distorted by various factors such as Path loss which describes 

the power loss in space, shadowing over large areas, and the muitipath effects 

caused by the signal reflection from buildings, mountains and tree leaves and 

results in the signal fading or enlargement. In addition, the signal will also be 

affected by the Doppler Effect if there is relative movement between 

transmitter and receiver. The Doppler Effect makes the channel varies with 

time and spread the signal energy in frequency domain, which increases the 
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uncertainty of the signal quality. Because of the diversity and time variation of 

channel, the channel characterization plays the key role in the receiver design. 

And because of increased uncertainty, wireless channels are normally analysed 

and simulated by the statistics methods. The wireless channel is not only 

susceptible to noise, interference, but also channel impediments where the 

received signal is affected by Path loss. Large-scale propagation and small-

scale propagation. These impediments are discussed in details below. 

3.1.1. Path Loss 

The Path loss describes the loss in power as the radio signal propagates in 

space, the signal power will be decreased by the increased distance, and path 

loss is a fiinclion of distance and will be increased with distance. Variation due 

to path loss occurs over very large distances (100-1000 meters) [1]. There are 

two popular charuiel models to describe the path loss propagation. 

One is called free space propagation model. It treats the region between the 

transmitter and receiver as being &ee of all objects that might absorb or reflect 

radio frequency (RF) energy, and within this region, the atmosphere behaves as 

a perfectly uniform medium [1]. This model is widely used in the satellite 

communication, .\nother one is called Log-Distance path loss model. In the 

indoor or outdoor environment, the receive signal power will have exponential 

decay along with the increase of distance. 

3.1.2. Large-scale Propagation 

The Large-scale propagation represents the average signal power 

attenuation or path loss due to motion over large areas. This phenomenon is 

affected by prominent terrain contours (hills, forests, billboards, clumps of 
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buildings, etc.) between the transmitter and receiver, and is often represented as 

being "shadowed" [I]. In another word, if two receivers have same distance 

with one transmitter, they will receive the signal with different power because 

their signals are shadowed by different terrain and objects. The most common 

model for this attenuation is log-normal shadowing. This model has been 

confirmed empirically to accurately model the variation in received power in 

both outdoor and indoor radio propagation environments [1], 

3.1.3. Small-scale Propagation 

This small-scale propagation is used to describe the variation of signal 

power in short distance or lime, which is also called as fading. The variation 

includes amplitude, phase, and frequency. There are mainly two factors to 

consider for small-scale fading, which are the Multipath Effect and the Doppler 

Effect. The Multipath EtTect represents the signal arrives at the receiver from 

multiple paths with different phase, amplitude and time delay, therefore results 

in the Time Dispersion and Frequency selective fading. And yet the Doppler 

Effect results in the Frequency Dispersion and Time selective fading. These 

four factors exist together in the channel, however the signal bandwidth (BW) 

and symbol period will determine which effect is more obvious. 

Time Dispersion 

The signal arrives al the receiver from multiple paths with different fading 

and time delay. Figure.3.l shows the Multipath Effect on the received signal. 
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Figiire.3.1. Multipath Effect on the received signal 

In Fiaure.3.I, we use rn.r|,...,r,_| to represent the time delay of the signal 

arriving at the receiver from i paths. The received signal which is the addition 

of signal from all L paths is dispersed on time and having longer time duration 

then the transmitted signal. In addition, if the interval between different path 

delays is more than the one ssmibol period, these paths are called as Resolvable 

because receiver can distinguish them. Otherwise if two or more paths arrive at 

the receiver almost at the same time with time difference less than one symbol 

period, they are seen as one path and called as Un-resolvable. In real wireless 

channel, for one resolvable path, its signal is actually consisting of the signals 

from many un-resolvable paths. The signals from these un-resolvable paths are 

presenting the Rayleigh Distribution, which will be described in later section. 

Subsequently, the time difference between first path and the last path is 

called as delay spread r^, . E>ue to delay spread, one symbol in the received 

signal will be interfered by r^, / r previous symbols where r, is symbol 

period, causing ISI (Inter-symbol interference). To avoid ISI, 7", should be 

greater than r^, . Relative to delay spread, the coherence bandwidth can be 

defined according to the Root mean square (RMS) delay spread. If the signal 

bandwidth is less than the coherence bandwidth, the signal will have same 
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fading in all signal frequencies; otherwise the signal variation in its constituent 

frequencies will be different. 

Flat fading and Frequency selective fading 

Based on coherence bandwidth, we define the system as Narrowband if the 

signal bandwidth is smaller than the coherence bandwidth or the delay spread 

is less than symbol period. In Narrowband system, the signal has same fading 

in frequencies which is known as Flat fading. In flat fading channel, although 

the signal arrive at the receiver from different paths with certain delays, all the 

delays are less than symbol period, therefore, the multipath signals are all un-

resolvable, and are recognized as one path. 

Inversely, if the signal bandwidth is greater than the coherence bandwidth 

or the delay spread is greater than symbol period, the system is defined as 

Wideband, and the signal has different fading in frequencies which is known as 

Frequency selective fading. In frequency selective fading channel, the delays of 

several paths are greater than symbol period, which will results in the ISI. In 

fact, frequency selective fading channel is merging several flat fading channels 

together, each one having own average power and path delay. 

Frequency Dispersion 

If there is relative motion between transmitter and receiver, the Doppler 

Fffect will affect the signal so that the signal frequency is shifted by Doppler 

shift /j within the range of maximum Doppler shift/,. /^ and/ , are given as: 
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where y is mobile station speed, / is carrier frequency, c is light speed and 0 

is the angle of signal wave and mobile station direction. If the mobile station is 

moving toward the transmitter, Doppler shift is positive, so the signal 

frequency will increase, inversely, it will decrease. The signal transmitted from 

mobile station centred at / is distributed in ( / - /^ ,/^ + /„ )• I" the Power 

density Spectrum (PDS) point of view, if there is no Doppler shift e.xisting. the 

signal power is converging around the central frequency /, . Otherwise, the 

PDS is converging to maximum Doppler shift /̂  as U sharp shown in 

Figure.3.2. and results in the low PDS around the centra! frequency/^, 

sm 

It-hi fc4n 

Figures.2. U sharp of PDS caused by Doppler Effect 

Relative to Doppler shift, the coherence time which is defined according to 

the maximum Doppler shift, measures the time duration that the channel 

impulse response is invariant and highly correlated. If the symbol period is 

greater than coherence time, the channel varies before completely transmitting 

one symbol. 
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Slow fading and fast fading 

Based on the coherence time, if symbol period is greater than the coherence 

time, the channel is called as fast fading which means the channel variation 

speed is faster than signal transmission speed. The channel is varied before one 

symbol finishing transmission. We also call it as time selective fading. 

Inversely, if symbol period is less than the coherence time, the channel is 

called as slow fading which means the channel variation speed is slower than 

signal transmission speed. We can assume the channel doesn't vary over 

couple of symbols in this case. We also call it as time flat fading. 

3.1.4. Summary 

Path loss. Large-scale propagation and small-scale propagation exist 

together in the real wireless channel. But in the theory based research, we 

normally don't use them together because of the high complexity. If we 

analyse the system capacity, signal covering area or Handoff" algorithms, the 

channel model with path loss propagation and large-scale propagation is widely 

used. However if we focus on the baseband signal processing between 

transmitter and receiver, channel model with small-scale propagation is used 

because baseband signal processing operates on samples with short period time, 

the signal variation over short time becomes an important and key factor. 

We have overviewed the wireless channel characterization. Because we 

work on the baseband signal processing, we focus on the small-scale 

propagation. In the followed sections, we will analyse the multipath fading 

channel model and MIMO channel model, and then utilize the computer 

simulation to show the variation of signal affected by the small-scale 

propagation and the system performance. 

51 



Chapter 3. Wireless Channel Modelling 

3.2. Fading Channel Modelling 

We will carry out the mathematical analysis on Raylei^ distribution. It is 

used to model the flat fading channel which is consisting of the frequency 

selective fading channel. Subsequently, we will study the well-known 

Improved Jake's model which is widely applied to build up the Rayleigh fading 

channel. 

3.2.1. Basic Analysis 

We consider a baseband waveformgcr), so the transmitted signal .s(0 can 

be represented as: 

:r(0 = Rc{g(r).^'^'^^'} (3-2) 

where f^ is carrier frequency. Then in the receiver, the received signal »•(/) 

added from ,v path can be represented as: 

: (3-3) 

where «„ is the path attenuation. /̂ ^ is Ihe maximum Doppler frequency 

Doppler shift. e„ is the path arrive angle, and 5*, is the carrier initial phase in 

path. According to equation (3-3), the received baseband signal r (/) is: 

r U) ^ g(t).j^ a _,.e''^''•-'••-*•' (3^) 
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According to equation (3-4). fading process / ( / ) is given by: 

/(/) = S«"- l i l t t, .co.O../-(-*. I 

,e 

= ^ ar„.cos( l.^.J'^.cos 9^.1 + ^„) + y" .^ or„.sBi( 2.Jr./., .cos (?„./ + ^„ ) 

(3-5) 

Now we introduce two random process .\cinand .&(/> where 

Xc{n = 2 «„-cos( 2.^.y;,.co5 e „ j + ^,) (3-6) 
u 

\ 
-Vs(/) = ^ a„.sin( 2.;r./m.cos (9„./ + 0„ ) (3-7) 

Then / ( r ) can be replaced as; 

/ ( 0 = .tc(0+y..*:Y(0 (3-8) 

As shown in above analysis, the received signal is made of \ paths, and the 

.fi(nand .Vi(()are both Gaussian random processes for large ,v by Central 

Limit Theorem [104]. We denote the fading envelop of / u ) asr . and r has a 

Rayleigh Probability Density Function (PDF) shown as: 

"uurfwe* * ' ' ) = a 1 2(T , " ^ ' ' ^ (3-9) 

r <0 . 

. ^ 4 ^ (3-10) 
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3.2.2. Review of Jake's Model 

Jakes derived his well-known simulation model for Rayleigh fading 

channel [105], ,v low-frequency oscillators are needed to generate A Doppler 

shift. In order to reduce the number of low-frequency oscillators and the 

complexity. Jakes makes the assumptions for path attenuation o'̂ ând path 

arrive angle e, shown as; 

« „ = ^ (3-11) 
V.v 

e,, = l : ^^ . „ = i.2 N (3-12) 
A* 

,V = 4A/ + 2 {3--13) 

Now the number of distinct Doppler frequency shifts is reduced from v to 

.W +1, only M +1 low-frequency oscillators are needed to generate Rayleigh 

fading channel. Subsequently, the normalized fading process of this model can 

be represented as: 

itit) = («•(/) + jMs{/) (3-14) 

Hr( / ) = — ^ y « co&( l.rr.fJ .r) (3-15) 

2 *' 

usO) = - r = Z ^ '=°'*( 2.7r../y„./) (3-16) 

where 

fVz^cos /J„.n = 0 

\2cQs /i .n ^ 1.2,..A/ 
(3-17) 

2sin /? . « = 1.2...A/ 
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r 
— .n = 0 

/?„ = ^ ^ (3-19) 
.n = \.2...M 

M 

fm.rt = 0 
fd. = (3-20) 

/m.CfK (f^^.n ^ \.2...M 

There are various modifications of Jakes' model proposed. We call them the 

femily of Jakes' simulators. Among the Jakes" simulator family, the improved 

Jakes' model proposed by Pop and Beaulieu [106] is widely used due to its 

wide-sense stationarity (WSS) [104]. Compared with original Jakes' model, the 

improved Jake's model lies in the random initial phases^, which is uniformly 

distributed on [-K.rzw however, the original Jakes' model assumes that (J_ = o 

for all n. The introduction of these random phases jî  eliminates the stationarity 

problem occurring in original Jake's model [104]. The normalized fading 

function of the improved Jake's model is modified fi'om (3-14). (3-15) and (3-

16), and given by: 

«( / ) = i/c (O + JMxit) (3-21) 

2 " 
(«•(/) = —j^"^ a„ cos( 2.jr.fd^^.i + (rfj 

2 " 
us 

(3-22) 

(3-23) s (t) = — ) = ^ y b cos( I.Ji.fd J + ^ ) 

where a„ .ft„ ,,9„ and /iJ„ are the same as those in original Jake's model. The 

improved Jakes' model is used in our research. 

55 



Chapter 3. Wireless Channel Modelling 

3.2.3. SimulatioD and Performance Evaluation 

In this section, we will evaluate the performance of wireless systems 

operating in Rayleigh flat fading channel and frequency selective fading 

channel by computer simulations. 

3.2.3.1. Rayleigh Flat Fading Channel 

The model for Rayleigh flat fading channel is built up according to the 

analysis of improved Jakes' model in Section 3.2.2. The required parameters 

areUsted inTable.3.1. 

Data symbol length 

Minimum time resolution (Symbol period) (s) 

Number of Oscillator 

Carrier Frequency (GHz) 

Mobile unit speed (km/Ti) 

2000 

0.5 X 10"' ' 

16 

2.0 

100300 

Table.3.]. Flat fading channel model parameters I 

According to Tablc.3.1, 100 ms is needed to transmit 2000 data symbol 

when the symbol period is 0.5»lo ^ s. We evaluate the power and phase 

variations over this 100ms in the flat fading channel with the vehicle speed of 

100 km/h and 300 km/h. The results are shown in Figure.3.3 (a) and (b) 

respectively. 
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(a) Speed of mobile unit 100 km/h 

MU 

4n 50 60 
TimB (fne'} 

100 

(b) Speed of mobile unit 300 km/li 

Figure.3.3. Flat Fading Channel Variation in 100ms 

Figure.3.3 clearly shows the channel variation in two environments. In case 

(a), deepest fade occurred between -20dB and -30dB. In case (b), deepest fade 

occurred between -30dB and -40dB. The channel in case (b) varies more 

frequently than case (a). Therefore, the faster mobile unit, the frequent the 

channel changes (Power and Phase) which will results in more distortion to the 

transmitted signal. 
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In addition, we also evaluate the signal envelop in the flat fading channel, 

which should have the Rayleigh distribution. Figure.3.4 shows the envelop 

distribution PDF achieved by simulation and die corresponding theoretical 

Rayleigh PDF calculated from equation (3-14). 

(a) 2.0GHz Carrier Frequency 
100 kmJTi Speed 

(b) 2, OGHz Carrier Frequency 
300kin/li speed 

Figure.3.4. Rayleigh distribution of signal envelop 

As shown in Figure.3.4, the received signal envelop distribution is mostly 

satisfled with the theoretical Rayleigh Distribution in both two environments. 

3.2.3.2. Frequency Selective Fading Channel 

Section 3.1.3 shows the frequency selective fading channel is consisting of 

several independenl flat fading channels. The amplitude of signal in each flat 

fading channel is Rayleigh Distributed, and each flat fading channel also has its 

own average power and the time delay. The diagram in Figure.3.5 shows block 

diagram model of frequency selective fading channel. 
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Delay of 
each path 

la 

t\ 

^ ^ * i 

• 

t«.i ^ 

Rayleigh 

Rayleigh 

« 

Rayleigh 

Average Power of 
each path 

P(* 

Px 

• / 

p^i 

Figure.3.5. Frequency Selective Fading Channel model 

Based on the model shown in Figure3.5. the required parameters to 

evaluate frequency selective fading channel are listed in Table.3,2. We 

assumes there are 38400 data symbols, the symbol interval is 260ns. Therefore 

there are totally 99.84ms (approximately 100ms) needed to transmit 38400 data 

symbols. The power and phase variations over lOOms in frequency selective 

fading channel with vehicle speed of 125 km/h and 250 km/h are shown in 

Figure.3.6 (a) and (b) respectively. 

Data symbol length 

Symbol period (sec) 

Number of Paths 

Path delay (sec) 

Average power (dB) 

Carrier Frequency <GHz) 

Vehicle speed (km/h) 

384000 

360 X 10 " 

4 

[ 0 , 260 X 10 ' ,521 - in ",7RI .^10 " ] 

[0,-3,-6,-9] 

2.0 

125 /250 

Table.3.2. Frequency selective fading channel model parameters 11 
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20 - T — • r " -T r-

(b) 

Figrue.3.6. Frequency Selective Fading Channel Variation in 100ms 

(a). 125 kiTi/h speed (b). 350 km/h speed 
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As with flat fading channel, the frequency selective channel shown in 

Figure.3.6, the faster vehicle results in the rapid channel variation in both 

power and phase, thereby results in more distortion in the signal. These facts 

further explain the fast fading and slow fading described in section 3.1.3. 

In addition, the use of an OFDM scheme is optimum for dealing with the 

frequency-selective fading channel because OFDM converts frequency 

selective fading channel into a number of parallel flat-fading channels. 

Therefore, we are able to continuously evaluate the performance of OFDM 

system operating in the frequency selective fading channel. The required 

OFDM system and frequency selective fading channel parameters are listed in 

Table.3.3, and the results are shown in Figure.3.7 and Figure.3.8 respectively. 

Number of subcarriers 

Symbol period (sec) 

Modulation scheme 

Number of Paths 

Path delay (sec) 

Average power (dB) 

Carrier Frequency (GHz) 

Vehicle speed (km/h) 

Average SNR(dB) 

64 

100 xIO ' 

QPSK 

5 

[0 , 200 X 10 ' ,400 X in " ,600 X 10 " 

800 x lO " ] 

[0,-4.-8,-13.-18] 

2.0 

60 

3 

Table.3.3. OFDM system and frequency selective fading channel 

parameters 
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2Q 40 

Sub earner 

icf 

10' 

10^ 

to 
20 40 

Subcamei 
EO 

Figure.3.7. Transfer function and BER of QPSK-OFDM system in frequency 

selective fading channel 

The Figure.3.7 shows the subcarriers' transfer function and the BER of a 

QPSK-OFDM system for specific realization of this frequency selective fading 

channel. Obviously, the BER is highest in the subcarrier with the deepest 

fading. The BER on "good'" subcarriers can be as low asio ~', and the BER on 

subcarriers that are in deep fading are up to 0.3. This also has a significant 

impact on the average BER: higher channel transfer function leads lower BER, 

and the BER on "bad" subcarriers dominates the behavior. 
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Figure.3.8. BER of QPSK-OFDM system for various of SNR 

Subsequently, the Figure.3.8 shows the BER performance of the QPSK 

based OFDM system in a frequency selective channel specified in Table.3.3. 

The BER decreases almost linearly as the SNR increases. 
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3.3. MIMO Channel Model 

The multiple antennas are used for three purposes which are beamforming, 

diversity and spatial multiplexing. Here, we consider a MIMO channel with 

fJ J transmit and A' „ receive antennas. When the transmitter knows the 

channel, we can form JV, different orthogonal beams and transmit parallel 

datastreams generated by spatial multiplexing over these beams. The increase 

in spectral efficiency and channel capacity offered by MIMO systems is based 

on the utilization of space diversity at both the transmitter and the receiver. We 

will analyze the capacity of MIMO Rayleigh flat fading channel and MIMO 

frequency selective fading channel in this section. The channel gain matrix is 

assumed to be perfectly known by transmitter and receiver. 

3.3.1. Capacit>" of MIMO Rayleigh Rat Fading channel 

3.3.1.1 Review of SISO Channel 

Before exploring die MIMO channel capacity, we firstly smdy the SISO 

channel capacity for comparison with MIMO channel capacity later on. In 

Rayleigh flat fading channel, the channel gain// is time varying and Rayleigh 

distributed. At the i'*time slot over total transmit period 7", the instantaneous 

received SNR \%Y[i\ = P[i]H[if IN„B where a is the bandwidth, /*[(] is Uie 

transmit power at t ime/, and N^ as noise power spectral density. The capacity 

C is computed using Shannon capacity fortnula for an AWGN channel with 

SNR ;•. averaged over the distribution of y . 
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I 7 
2] S log ,(l + ) 

(3-24) 

N,B 

where i is the number of time period in r . The channel gain matrix g is 

perfectly known by transmitter, and we let the transmit power P(i) vary with 

time subject to an average power constraint P : 

'-' i-i 

(3-25) 

The water-filling scheme can be applied for optimum power allocation over 

time?" ioiP(i). 

3.3.1.2 Review of MIMO Channel 

In MTMO channel whose channel gain matrix experiences Rayleigh flat 

fading, we denote the N ̂ y. .V, matrix of the MIMO channel gain as: 

r A. 

H = 

A, . • f',.. ' 

A,v I A. , , "•"' J 

(3-26) 

where A,, is time varying transfer function from the j"" transmit to the i'* 

receive antenna and Rayleigh distributed over transmit time 7". There are .W 

channel matrix realizations during time 7 . The charmers capacity is measured 

by the expected value of the capacity taken over all M channel realizations. 

For each channel realization, SVD is applied to covert MIMO channel as 
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D = miD( N^..\\) independent parallel subchannels. The total capacity is given 

by: 

where 5 is the bandwidth. P[</1 is the transmit power at the d'" parallel 

subchannel of the m'" channel realization, (T[d~\h the J ""nonzero singular 

value of the channel gain H at the m" channel realization, and N„ as noise 

power spectral density. Here we use the short-term power constraint which 

assumes the total power associated with each channel realization is equal the 

average power constraint/* , and the transmit power P{i) in each channel 

realization vary between parallel channels subject to P . 

-LnJ]=P (3.28) 

Then for each channel realization, the channel gain matrix H is perfectly 

known by transmitter so that the water-filling scheme is applied for optimum 

power allocation over parallel channels for/'(/). 

33.] J. Simulation and Performance Evaluation 

We evaluate the capacity of MIMO flat fading channel through comparing 

with that in SISO flat fading channel. The parameters of the flat fading channel 

between each transmit antenna and receive antenna are listed in Table.3.4, and 

simulation results are shown in Figure.3.9. 
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Bandwidth 

Noise power spectral density { N^) 

Number of Oscillator 

Carrier Frequency (GHz) 

Vehicle speed (kni'li) 

20kHz 

10 •' 

16 

2.0 

125 

Table.3.4. Flat fading channel model parameters 11 

10 15 
SNR (dB) 

Figure.3.9. Capacity of SISO and MIMO flat fading channels 

As shown in Figure.3.9, the channel capacity increases as the increase of 

number of antennas in flat fading environment. Thus the experiment proves 

that the MIMO technique results in the increase of flat fading channel capacity 

compared with SJSO system by exploring the space diversity between multiple 

antennas. 
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3.3.2. Capacity of MHVIO Frequency Selective Fading Channel 

Again, the use of an OFDM scheme is optimum for dealing with the 

frequency selective fading channel because OFDM converts frequency 

selective fading chaimel into a number of parallel flat-fading channels. Thus 

we analyze the capacity of MIMO frequency selective fading channel by using 

OFDM technique. We denote v̂ as the nimiber of subcarriers of OFDM 

system, and the transmit time as 7". 

3.3.2.1. Review of SISO Channel 

Firstly, we study the SISO frequency selective fading channel capacity 

using OFDM technique. At the /""time slot over total transmit periodr . each 

subcarrier experiences independent flat fading, and the power p\ n ] is allocated 

to each subcarrier subject to a total power constraint P , We also assimie P, is 

equal to the average power P over transmit t imer . Then the capacity at time / 

is the sum of capacities on the flat fading channels of all subcarriers averaged 

over .V subcarriers. The total capacity is the sum of capacities of all time 

periods averaged over time r and given by; 

1 ' 1 ' Pln]H[n\-

where L is the number of time period in T , ff\n] is the channel gain in 

subcarrier n at the time / , N„ as noise power spectral density, B is the total 

bandwidth, B = B/ N isthe bandwidth of each subcarrier, and 
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P='E. ^l"! 
• ' I 

(3-30) 

At time/, the channel gain W[H]for each subcarriern is perfectly known 

by transmitter, so that the water-filling scheme is applied to allocate optimum 

power to/"[«]subject to (3-30). 

3.3.2.2. Reriew of MIMO Channel 

There are L time periods over the transmit time 7" . At time / , we assume 

that the total power P is equal the average power P over T, and is equally 

distributed to .v subcarriers so that the total power of each subcarrier at time / 

isP,^=P,-'N . Applying OFDM results in that each subcairier has an 

independent fiat fading MIMO channel realization H at time / , which is 

converted toD = nnrK N,.N,) parallel subchannels by using SVD. Therefore, 

the capacity of each subcanier at time ; is the sum of capacities over D 

parallel subchannels. Subsequently, the capacity at time i is the expected value 

of capacities over N subcarriers, which represents the total capacity over T is 

the expected value of capacities over L time periods, which is given by: 

^ - 7 l - I I ^ . f a e ^ " ^ ^ g > (3-31) 

where B is the total bandwidth, S_ = B / iV is the bandwidth of each subcarrier. 

P[d]is the transmit power at the J ' parallel subchannel of the n"' subcarrier 

at the time i, cr[d]is the rf'* nonzero singular value of the channel gain H of 

the n"" subcanier at the time / , and N^ as noise power spectral density. 
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The MIMO channel gain matrix H of the «" subcarrier at time i is 

perfectly known by transmitter so that the water-filting theory is applied for 

optimum power allocation over the D parallel subchannels for the n'" 

subcarrier at time /, subject to P„, shown as: 

I''W]=/'„, (3-32) 

3.3.2.3. Simulation and Performance Evaluation 

We evaluate the capacity of MJMO frequency selective fading channel 

through comparing with that m SISO frequency selective fading channel in 

OFDM system. The parameters of OFDM system and the frequency selective 

fading channel between each transmit antenna and receive antenna are listed in 

Table.3.5. and simulation results are shown in Figure.3.10. 

Number of Subcarrier 

Bandwidth (Hz) 

Noise Power spectral density 

Sample period (sec) 

Number of Paths 

Path delay (sec) 

Average power (dB) 

Carrier Frequency (GHz) 

Vehicle speed (km/h) 

64 

lOMHz 

io " 

100 x l O " 

5 

[0. 200 xIO \ 4 0 0 X 10 " ' ,600 xlO " ^ 

800 xlO " ] 

[0,-4,-8.-13,-18] 

2.0 

60 

Table.3.5. Frequency selective fading channel model parameters 11 
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10 15 
SNR (dB) 

Figure.3. i 0. Capacity of STSO and MIMO frequency selective fading channels 

As shown in Figure.3.10, the channel capacity increases with the increase 

of number of antennas in frequency selective fading environment. Thus the 

experiment also proves that the MIMO technique results in the increase of 

frequency selective fading channel capacity compared with SISO system by 

exploring the space diversity between multiple antennas. 
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3.4. Summary' 

In this chapter, we present an introduction to the characterization of 

wireless channel including Path loss. Large-scale propagation and small-scale 

propagation. Then because we focus on the baseband signal processing 

between transmitter and receiver, the channel model with small-scale 

propagation is described in detail due to its sensitive variation over short time. 

In small-scale propagation, the Multipath Effect and Doppler Effect results in 

the time dispersion and frequency dispersion so that the wireless channel can 

be classified as flat fading, frequency selective fading, slow fading and fast 

fading. Subsequently, the improved Jakes" model is designed based on the 

mathematical analysis of Rayleigh fading property to generate the Rayleigb flat 

fading channel. The frequency selective fading channel is consisting of several 

independent Rayleigh flat fading channels, each one having its own average 

power and lime delay. Furthermore, the signal's power and phase variation are 

evaluated in two situations. One when data transmitted in the Rayleigh flat 

fadmg channel from vehicles with different speeds. Another when data 

transmitted in the frequency selective fading channel from vehicles with 

different speeds. The results prove that the faster vehicles results in rapid 

channel variations in both power and phase, thereby more distortion in the 

signal. Finally, the MIMO flat fading channel and MIMO frequency selective 

fading channel are introduced by focusing on the channel capacity analysis. By 

exploring the space diversity between multiple antennas in both flat fading and 

frequency selective fading environments, the simulation results prove that 

MIMO technique results in an increase of channel capacity as number of 

antennas increases. 
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Chapter 4 

Synchronization Techniques in Downlink OFDM 

System 

In this chapter, we focus on the synchronization techniques in single user 

OFDM System. Synchronization has been one of the crucial research topics in 

OFDM system because of its sensitivity to the timing and frequency errors 133]. 

Only by achieving the accurate synchronization, the data can be received in 

correct timing and compensated by frequency offset, so that the resource 

allocation which will be described in Chapter 5 can perform its advantages in 

the OFDM systems. In Section 4.1, an introduction to the synchronization 

problems in the OFDM system is given. Then the theory of several well-known 

timing offset estimators is reviewed in theory and their perfomiances are 

evaluated by computer simulation in Section 4.2. Furthermore, we proposed 

two novel FFT-based frequency offset estimators in Section 4.3. which provide 

lower error variances than previous algorithm in different channel 

environments. In Section 4.4, the integrated model for timing and frequency 

synchronization is proposed based on our novel FFT-based frequency offset 

estimators, and followed by the chapter summary in Section 4.5. 

4.1. Introduction 

Frequency offset (FO) will be arising from the frequency mismatch of the 

transmitter and the receiver oscillators and the existence of Doppler shift in the 

channel. The frequency offset will reduce the amplitude of desired signal and 

introduces the ICI. In addition, due to the delay of signal when transmittmg in 
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the channel, the receiver in general starts sampling a new frame at the incorrect 

time instant. Therefore, it is important to estimate and compensate for the 

frequency offset to minimize its impact, and to estimate the timing offset at the 

receiver to identify the start time of each frame and the FFT window position 

for each OFDM. 

As we know, the OFDM signal S^ is generated at baseband by taking the N 

points IFFT of modulated (QAM) symbols distributed in Nj{< N) data 

subcarrieis. Then the signal will be up-converted to a carrier with high 

frequency / - for transmission in the channel -1( can be express as: 

5 (0 -V '^ ' ^ ' " ' - ' (4-1) 

In the receiver, the signal will be down-converted by f^ . The sampled 

received signal ''„ can be expressed as: 

1-1 

r„=e •2^S,_,X+<Pn (4-2) 

where h^ is the channel impulse response with length »•, A/| is the frequency 

offset which is normally normalized with subcarrier spacing l/,vr^ where r,is 

the sample interval, re is the symbol delay, and r̂̂  is the white Gaussian noise. 

Therefore, as shown in equation (4-2). timing offset is modelled as a delay in 

the received signal, and frequency offset is modelled as a phase distortion of 

the received data in time domain. 

In OFDM system, there are two types of methods for the timing and 

frequency synchronization which are data-aided and non-data-aided as 

described in chapter 2. In this thesis, we focus on the data-aided method. We 

will find out how the different preamble design and patterns improve the 

estimation performance. 

74 



Chapter 4. Synchronization Technique in Downlink OFDM System 

4.2. Timing Synchronization 

We will briefly overview several Timing estimators of OFDM system in 

this section. Different design and pattern of training symbols are sent through 

the channel and in receiver the timing metric is generated to indicate the start 

point and the FFT window position for OFDM symbol. 

Start 
,,-•• poml 

1st path - • 

2nd path • 

Cum^ted isifree 
S ^ ^ interval 
interval 

Figure.4.0. OFDM timing estimation 

As shown, in Figure.4.0, the job of timing estimation is to find out the start 

point of each frame, and make this start point as the FFT window position for 

OFDM symbol, Ideally, the start point is shown in the Figure.4.0, which is the 

boundary of useful part of training symbol. However in practical, the start point 

will be shifted right or left by couple of samples especially in fast varying 

channel The number of shifted samples is called timing offset. Therefore the 

algorithms are explored to order to minimize the timing offset. Here we use a 

sliding window with length ,V . This window is slid until the peak point is 

generated at the boundary of training symbol which is seen as the correct 

timing point. 
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4.2.1. Schmidl's Timing offset Estimator 

Schmidl et.al proposed the classical methods for both timing and frequency 

offset estimation in OFDM systems [35]. Two training symbols are placed at 

the beginning of each frame as preamble. Tlie m-sequence is used to generate 

the training sequences. The first training symbol has two identical halves in the 

time domain. It has the following pattern: 

S,^[A.A] (4-3) 

We use first training symbol to detect the frame. The conjugate of a sample 

from the first half is multiplied by the corresponding sample from the second 

half, and the products of each of these pairs of samples are summed- At the 

start of the frame, the magnitude of the sum will be peaked. The timing metric 

of this estimator is given by [37]: 

M(d) = p ^ (4-4) 

where 

n ^ ) = i;'--^"-"-..«- (4-5) 

«(</) = S b - ^ f <4-6) 

L- N/2 is the length of complex samples in one half of first training symbol 

excluding CP, and rfis a time index corresponding to the first sample in a 

sliding window of 2L samples. 

The second training sequence will be used for frequency offset estimation, 

which will be described in Section 4.3.1. 
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4.2.2. iVlinn''s Timing offset Estimator 

Because the timing metric of Schmidt's method reaches a plateau which 

leads to some uncertainty as to the start of the frame, Mimi et al [36] modified 

the training sequence's pattern and timing metric's definition, and then 

designed the first training symbol having four parts with following patterns: 

S„=[A,A,-A,-A] (4-7) 

where A represents samples of length L - A'/4generated by A^/4 point IFFT 

of N^/4 length modulated data of a PN sequence. The timing metric applied 

is same as (4-4), but 

P{d) = ZZ'"i-2u-.-0.2u^^t (4-8) 

''(^'>-iXl0.m.-.J' (4-9) 
1 - ' I in-n 

where rf is a rime index corresponding to the first sample in a sliding window 

of 4L samples. 

4.2.3. Park's Timing offset Estimator 

Minn's method [36] reduces the timing metric plateau found in Schmidt's 

method [35] but the MSE is still large particularly in ISl channels. This is 

resulted from the timing metric values around the correct timing point in 

Minn's method are almost the same. Park et al [37] proposed to increase the 

difference between the peak timing metric with respect to other metric values. 

The proposed method entails moditying the training sequence's pattern and 

timing metric's definition to maximize the different pairs of product between 

them. The training symbol having four parts with the following patterns; 
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Sp=[A,B.A*.B*] (4-10) 

where A represents samples of length i - ;V/4 generated by IFFT of a PN 

sequence. B is designed to be symmetric with .4 which means B is the reversed 

sequence of ^ . /I*and B* are conjugate of .-1 andSrespectively. The timing 

metric applied is same as (4-4), but 

.V 2 

where t/ is a time index corresponding to the first sample in a sliding window 

of 4L samples. 

4.2.4. Seung's Timing offset Estimator 

In fast varying channel where the first channel path is not always dominant, 

the performance of Park's method [37] is degraded since it assumed the first 

arrived channel path is dominant. Seung et al proposed a modified method to 

define the time domain preamble pattern as follow [39]: 

Sc=\A,B*] (4-13) 

where A represents the sequence with length of /. = <V''2 generated by IFFT of 

the constant amplitude zero auto-correction (CAZAC) sequence modulated by 

QPSK. B* represents the complex conjugate of S . which is time reversed 

version of A. 

This method then uses zero padding for the guard interval of the preamble 

instead of the conventional cychc prefix. The timing metric applied is same as 

(4-4), but 
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-V.I-I 
p(' / )= Z'.'-*'^v-*^' f'*-̂ ''̂  

" ( ^ - ^ S l ' - . - v z l - ' (4-15) 

where i/ is a time index corresponding to the first sample in a sliding window 

of 2L samples. The Seung's timing metric has impulse peak at the correct 

symbol timing point. In fast varying channel, the impulses from timing metric 

are thresholded by a pre-defined value and combined in the moving summation 

block. The point with maximum value in the moving summation block is 

defined as estimated correct time point. By using this threshold-based window 

method, the interval between the peak point and the estimated correct time 

point is estimated, and then the peak point is compensated by this interval to 

produce more accurate estimation 
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4.2.5. Evaluation of Timing offset Estimators 

In this section, the performance of these Timing estimators is investigated 

by computer simulation in single user OFDM system. The system and 

multipath channel parameters are listed in Table-4.1. 

System Parameters: 

Number of data subcarriers (A^^) 

IFFT points ( N ) 

Data modulation 

Date rate (Mbits/s) 

CP length 

Frequency offset 

1000 

1024 

QPSK 

18 

!0%ofOFDMs>.-mbo! 

12.4 subcarrier spacing 

Multipath channel parameters: 

Number of Paths 

Path delays r, (samples) 

Path gains b, 

Max Doppler shift /^(Hz) 

16 

[0.4.8....60] 

, cxp(-r, ,60) 

l2exp(-r,/30) 

60 

Table.4.1. OFDM system and multipath channel parameters 

The OFDM symbols are generated by 1000 frequencies, and then slightly 

oversampled at a rate of 1024 samples for the useful part of each symbol. 
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4.2.5.1. Timing Metrics 

First of all, under the no noise and distortion condition, the timing metrics 

of Schmidrs. Minn's. Park's and Seung's are evaluated In order to show 

clearly the sharp timing metrics of Park's and Seung's methods, Seung's 

method is individually shown in Figure,4.1 (b), and the Schmidl's, Minn's and 

Park's methods are shown in Figure.4.1 (a) respectively. In the figures, the 

correct start time point (index 0 in the figure) is taken as the start of the useful 

part of training symbol (after cyclic prefix). 

As shown in Figure.4.1, the timing metric of SchmidI method will reach a 

plateau that causes the ambiguity when estimating precise start time point. The 

Minn's method reduced the timing metric plateau, but adjacent samples to 

metric peak value have almost the same values as the metric at the preamble 

boundary (peak metric value) when data is transmitted in the channel with 

noise and fading distortion. This occurrence causes some incorrect estimation. 

The Park's and Seung's method gives impulse-shaped timing metrics which 

make them outperform the Schmidl's and Minns' methods. But Park's method 

has lots of small subpeaks at the other positions of correct timing which will 

cause incorrect estimation in fast varying channel. In Seung's method, the 

shape of timing metric is the ideal impulse and the small subpeaks in Park's 

method are suppressed. 
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Figure.4.1. Timing metrics of Timing offset estimators under no noise and 

distortion condition 
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So far, we have investigated the timing metrics of all timing offset 

estimators under the condition of no noise and distortion. Subsequently, we 

investigate the timing metrics of these timing offset estimators under both ISI 

static channel and muliipath time-varying fading channel. The Schmidl's and 

Minn's methods are shown in Figure.4.2 (a) and Figurc.4.2 (b), the Park's 

method is shown in Figure.4.2 (c) and Figure.4.2 (d), and the Seung's method 

is shown in Figure.4.2 (e) and Figure.4,2 (f). The parameters of multipath time-

varying channel are listed in Table.4.1, and the path gains of the static 1ST 

channel are fixed and assumed to be same as the path gains of the multipath 

time-varying channel. 
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(0- Timing metric of Seung's method in multipath time-varying channel 

Figurc.4.2. Timing metrics of Timing offset estimators under ISl static 

channel and multipath time-varying channel 

As shown in Figure.4.2. in both ISI static channel and muhipath lime-

varying channel, these timing metrics are not generating the peak in the correct 

start time point. The signal in receiver is the summation of signals from 

multiple paths, and the path with strongest signal is random in the channel, so 

multiple peaks are generated instead of one peak at the correct start point. For 

SchmidPs. Minn's and Park's methods, they all assume the first path is 

dominant so that the highest peak point is determined as the time start point. 

But the Seung's method proposed a simple threshold-based windowing method 

to find out the interval between the highest peak point and the correct time 

point, and then the highest peak point is compensated by this interval to 

produce more accurate estimation. In the Section 4.2.5.2, the mean and error 

variance of these timing offset estimators are evaluated. 
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4.2.5J1. Mean and Error Variance of Timing offset in Static ISI Channel 

and multipath Time-var>'ing Channel 

in this section, we evaluate the timing offset estimators by their mean and 

error variance in both ISI static channel and Multipath time-varying channel 

under ditTerent SNR conditions (0-20dB), The channel parameters are the same 

as that listed in Table.4.1. For each SNR. we estimate the timing offsets in 

1000 dilTerenl channel environments for all these methods, and then the mean 

and error variance for each method on each SNR are calculated. Finally the 

results are shown in Figure.4.3 (a) and Figure.4.3 (b) respectively. 
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Variance 
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—*— Mmn's method 
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(a). Mean and Error variance of Timing offsets in ISI static channel 
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Figure.4.3. Mean and Error variance of Timing offsets in both 

ISI static channel and Muitipalh time-varying channel 

As shown in Figure.4.3 (a) and Figure.4.3 (b), the followings are observed 

in both ISI static and mullipalh time-varying channel; 

1. The means of peak points for each SNR in the Schmidl's, Minn's and 

Park's methods have significant gap with zero point which is marked as 

correct timing point. As shown in the Figure.4.3, the minus mean points 

for Schmidl's method over the SNR values mean that the peak points 

generated by Schmidl's method are mostly located at the left hand side 

of coirect timing point. Subsequently, we can also find out the Seiuig's 
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method generates near zero point estimation by applying threshold-

based windowing method, which means the more accurate estimation is 

achieved compared with Schmidl's, Minn's and Park's methods. 

2. Schmidl's method generates the h i ^e s t error variance in the estimates 

for the SNR range considered. And Seung's method has smaller error 

variance than all other three methods. This fact gives same conclusion 

with the evaluation done by Timing metrics. The Seung's method 

applying the threshold-based windowing method produces the best 

performance and Park's method having ideal impulse timing metric but 

with sub-peaks produces the second good performance, and the Minn's 

method reducing the timing metric plateau of Schmidl's method 

therefore outperforms SchmidPs method. 
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4.3. Frequency Synch runizatioD 

After reviewing the Timing synchronization techniques, we will briefly 

overview the Schmidl's Frequency offset estimator proposed in [35] because it 

is classic and popular used. Subsequently, we propose two simple but efficient 

FFT-based Frequency offset estimators. 

4.3.1. Schniidrs Frequency offset Estimator 

As mentioned in Section 4.2.1, SchmidI et al designed two training symbols 

as preamble. The first one has two identical parts 5,,, and s,„^, wiih N/2 

samples each and L{=NI2) delay between identical samples. They will 

remain identical after passing through the channel, except the phase difference 

^ ber\^'een them due to the frequency offset (A/^), The received two parts of 

first training symbol r^„ and ;•, ^^are given as: 

r,,„=s,y~'^'''-"'-^cp{nT,) (4-161 

(4-17) 

Consequently, without noise, the two parts will have the following relation: 

'-,.,.. ='-,.„.e'"""'-''' (4-18) 
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The phase of their correlation is: 

^ = 2nI4^LT^ =7tAf,NT^ (4-19) 

which can be estimated at the best timing point. 

i^ = angle{Pi,d)) (4-20) 

Then if 1^| is less then ;r. the frequency offset will be: 

Otherwise 

-v: 

V. nNT, 
2/ 

AT. 

(4-21) 

(4-22) 
J I 

where /̂  is an integer. To find the unknown second term in (4-22), the two 

training symbols are partially corrected with the known frequency offset by 

multiplying the samples with 

e x p ( - y 2 ; r - ^ 0 = e x p ( - y 2 - ^ / ) (4-23) 
nNT, NT. 

Let the FFT's of received first and second offset frequency corrected training 

symbols (/^j,/%_i) and the differentially modulated even frequencies of the 

second training symbol be (u^). The sliding correlation between the FFTs and 

(«i) is given by 

5 ( 0 - ' " ' .•^. ^ . . . . (4-24) 
2(I|F,,P)^ 

teA-

91 



Chapter 4. Synchronization Technique in Downlink OFDM System 

where X is the set of indices for even frequency components of the second 

training symbol. Finally, the / corresponding to the maximum value offl(/)is 

marked as ? . and used to calculate integral frequency offset in (4-22). 

4.3.2. Proposed FFT-based Frequency offset Estimators 

We propose two FFT-based frequency offset estimators in this section by 

using the first training symbol of SchmidPs method. This training symbol is 

inserted in the beginning of data frame. In the receiver, we synchronize the 

data frame in time first to fmd out the boundary of the useful part of received 

training symbol, which is denoted as r^. 

r „ - V ' ' ^ " " ^ ' " " - (4-25) 

where A^ is the training symbol which is assumed to be known to the receiver, 

N^ is the length of cyclic prefix of training symbol. A/' is the frequency offset, 

and r, is sample interval. r„ is multiplied with the conjugate of the known 

training symbol A^ to get the modified received training symbol £/„, and then 

t/„ is processed by N-points FFT to get the frequency domain spectrum F^. 

< = r„.A„ 
(4-26) 

= Kr 
V I 

F, =Y.^„e •''"•••'• ^{0<k<.W-l) (4-27) 

The coarse frequency is yielded by searching for the largest magnitude given 

by (4-27). Let bin number of the largest magnitude be k^^, then the coarse 

frequency /„^,„is given by: 
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J coarsi NT. 
(4-28) 

When the signal ii„ is highly correlated with one certain waveform within 

the set ofe''^"'*"'. it will be represented by a large magnitude on certain 

frequency in the k,^ -rh bin. If A/; is exactly same as the maximum FFT 

bin's frequency, this large magnitude will fall in the centre of the|rj(jt,^^ )|. 

otherwise the large magnitude will be placed in one bin whose frequency is the 

closest to the actual 4/",. Especially in the later case, the large magnitude is laid 

between two adjacent bins. Figure.4,4 shows the spectrum of rf^with various 

frequency offsets. 

lOOr 

12.4 subcamer spacng : • ; 

Figure.4.4. 128-FFT spectrum of t/„wilh various frequency offset 

Figure.4.4 (a) is obtained when the A/', exactly equals to the 12* bin's 

frequency. Figure.4.4 (b) and Figure.4.4 (c) illustrate the spectrums when their 
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A/" îs not the same as the FFT bin frequency. As shown in the Figure.4.4 (b) 

and Figure.4.4 (c), A/\of 12.4 subcanier spacing and 12.6 subcarrier spacing 

are represented by the 12"' bin and 13"' bin respectively since the 12*̂  bin and 

13' bin are laid on the closest place of their actual A/'̂ ., 

The coarse frequency offset estimator above can achieve precise estimation 

when the A/", equals to the FFT bin frequency. However the cl„ is not always 

same as the FFT bin frequency due to the oscillator mismatch. Doppler shift 

and noise in the channel, therefore fiirther process is necessary to estimate the 

fine ft^uency offset. To alleviate this problem, we propose two methods for 

the estimation of the fine frequency offset. 

4.3.2.1. FFT method-I: Linear Interpolation based Estimator 

This method is based on the algorithm proposed in [109] which is extended 

to OFDM system. It utilises the magnitude value of the largest magnitude 

î C^nnx )| ' ^^^ magnitude of components on both sides of the largest spectrum 

\F{k^^ -1)[ anA\F{k^^ +1)|. These three values are interpolated by using the 

equation (4-28). and the fine frequency offset is given as; 

fr.n, =--^- (4-29) 

where the a is a switching function, and can be defined as: 

« = i r \F{k^-\)\<\F{k^^i)\ 
(4-30) 
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Therefore the overall frequency offset A/", is expressed as: 

4/; = .L.r,f^frmf 

• l A ^ , + ^ . T T T : ^ r-^) 

(4-3!) 

-VT, r a - ) / F ( A - +«) + !• 

4.3.2.2. FFT method-II: Matched filter based Estimator 

Briefly, the matched filter based estimator consists of a spectrum shifting of 

f,, transformation of the shifted signal from frequency domain to the time 

domain, and then estimation of fine frequency offset by matched filler 

approach. 

The first step is the spectrum shifting which is shifting the FFT's bin 

depending on the estimated value of the coarse frequency. Mathematically, the 

spectrum shifting is expressed as; 

= |^„fe'^"'^'-'~-«'"'''"'- (4-32) 

This requires a high computational complexity, because we have to generate N 

-complex sinusoid signals and then perform ,v -complex multiplications. Thus 

our shifting algorithm is shifting the maximum bin A^ to zero frequency 

position to compensate £/„by/^„„„^ in frequency domain to get d„, so that d„ 

has the spectrum which is distorted by fine frequency /,;„^only. Figure.4.5 

illustrates the shifting process of rf„with frequency offset of 12.4 subcarrier 
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spacing. The shifted spectrum represents the spectrum of signal t/„ with fine 

frequency offset 0.4 subcarrier spacing only in frequency domain. 

so 
Numbet of FF I bins 

Figure.4.5. 128-points FFT spectrum of d„ and shifted signal t/̂ , 

Furthermore, in order to satisfy the equation (4-32) and N-points Inverse 

Fast Fourier Transform (TFFT) is applied to the shifted signal to transform from 

frequency domain to time domain, as given by: 

N-\ 

d:=YK^'""'"' (4-33) 
*=o 

where F^ is shifted F^. For simplicity, the equation (4-33) can be expressed as: 

dl = M „.€'*- (4-34) 

where .W„and (p„ are magnitude and phase of i/Respectively. As we know, d\ 

represents the expected modified received training symbol distorted by fine 

frequency offset only. d[ is supposed to be same with d^, so that the fine 

frequency estimator is derived under matched filter concept by matching d[ 
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withrf .̂ However, the coarse fr^uency offset operated over the cyclic prefix 

of training symbol will lead the phase change foT^„, and also when ^„reaches 

its maximum value ;r. immediately it will go down to the minimum value-;T, 

and vice versa. Therefore before approaching next step analysis, we need to 

correct these two problems to make sure d^ is exactly same with t/„ in both 

magnitude and phase. Subsequently, we use the figures to clearly explain these 

two problems. Figure.4.6 shows the magnitude and phase of shifted signal t/,' 

and expected signal J„. 
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Figure.4.6. Magnitude and Phase comparison of the shifted signal t/̂ 'and the 

expected signal d^ 
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As shown in Figure.4.6, the magnitudes of dlaDdJ„ are exactly same, but 

there are phase difference between d^ and d„. Additionally, the phase reaches 

maximum values in 77"' sample ofd,,, and then from 78"" sample, the phase 

jumps ITT to be the negative value so that the phase linear spreading is 

destroyed. All of these facts lead the incorrect fine frequency offset estimation. 

Through experiment, we find out the phase difference (9„ is caused by the 

coarse frequency offset operating on the cyclic prefix of training symbol and is 

equal To angl4.e^ "'""'"'''') , In addition, the 2;r jump can be resolved by 

changing the jumped phases to their 2,-i complement, which is called 2;z 

correction. Figure.4.7 shows the results after the phase compensation and ITT 

correction. 
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Figure.4.7. Phase of the shifted signal Ĵ  after phase compensation and 2;r 

correction 
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As shown in Figure.4.7. after the phase compensation and2;r correction, J^has 

exactly same phase and magnitude as d„, ^„is modified as [^„-6*,,],,, where 

I.],^nieans 2;r correction. Then the matched filter output is given by the auto-

correction of rf^witht/^, with zero shift, and its real part can be expressed as: 

MFm^Y.''^„\A„f^o^[<l>, -e,,\„ -li^r.M + N^)T,) (4-35) 

AiF{0)can be maximized by appropriate choice off^^^. Differentiate with 

respect to/^„^., and set result to zero gives: 

- ^ = -X«„Kl'2T-("+^,)J'.-sm([,*„-ffJ,,-2^,„>-f/^/^.)r,)=0(4-36) 

If ([̂ „ - ^ o ] , , -2^-^^.(«+Z.)X,)is small then 

«=o 
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Therefore the fine frequency offset ffj„gis: 

.v-t 

/.... = "^ ^q (4-38) 
,2 

""I 
-1=0 

Finally, tfie total frequency offset A/̂  is given by: 

^.=f.r,.r,.^U.- = ' ^ + — ^n (4-39) 

11=0 
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4.3.3. Simulation and PerformaDCe Evaluation 

In this section, the perfonnance of Schmidl's and proposed frequency ofiset 

estimators is investigated by computer simulation. The system and multipath 

time-varying channel parameters are listed in Tab!e.4.2. Because we also 

evaluate the performance in multipath static fading channel, then we assume 

the path gains of the multipath static fading channel to be fixed and same as the 

path gains in the multipath time-varying fading channeh 

System Parameters: 

Number of data subcarriers ( Nj ) 

IFFT points { N ) 

Data modulation 

Date rate (Mbits/s) 

CP length 

Frequency offset 

1000 

1024 

QPSK 

18 

10% of OFDM symbol 

2.4 subcarrier spacing 

Multipath time-varying channel parameters: 

Number of Paths 

Pad] delays r, (samples) 

Path gains h^ 

Max Doppler shift _/;,(Hz) 

3 

[0,6,11] 

[0.9.0,36.0.29] 

60 

Table.4.2. OFDM system and multipath channel parameters 

The OFDM symbols are generated by 1000 frequencies, and then slightly 

oversarapled at a rate of 1024 samples for the usefiil part of each symbol. 
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4 .33 . ] . Comparison of Pre-deflned and Estimated Krequeiicy offset 

First of all, a series of frequency offeets are defined with values from 0 lo 

4.8 subcarrier spacing with interval of 0.4 subcarrier spacing. For each pre

defined frequency offset, the &J\ estimated by the proposed methods and 

normalized by subcarrier spacing is compared with pre-defined value in both 

AWGN channel and multipath time-varying fading chaimel with SNR=iOdB 

respectively. Results are shown in Figure.4.8. 

[a) 

UiA^nr i inns-failing fading channel 

(b) 

Figure.4.8. Actual and estimated frequency offset comparison in 

(a) AWGN channel (b) Muliipath time-varying fading channel 
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As shown in Figure.4.8. in both AWGN channel and Mullipath time-

varying fading channel, the two proposed FFT-based methods can achieve 

accurate estimation for all the pre-defined frequency offsets. Funherraore, in 

Section 4.3.3.2. we will evaluate the proposed methods by their error variances. 

4.3J.2. Error Variance of Estimated Frequency offset 

Secondly, the Error Variance (EV) of the estimated frequency offset is 

evaluated and compared between the Schmidl's method proposed in [35] and 

two proposed methods. As shown in Table.4.3. the frequency offset is assumed 

as 2.4 subcarrier spacing. The SNR is set from 0 to 24dB with interval of 3dB. 

Finally the EVs of different SNR for these estimators are evaluated m AWGM 

channel, multipath static fading channel and muttipath time-varying fading 

channel respectively. Results are shown in Figure.4.9. 

AWGN chawel 

IG 15 
SNR(dB) 

(a) 
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Figure.4.9. Error variances of frequency offset estimators in channels of 

(a) AWGN (b) Multipath static fading (c) Multipath time-varying fading 

104 



Chapter 4. Synchronization Technique in Downlink OFDM System 

As shown in Figure.4.9. the proposed FFT-based methods produce lower 

error variances than Schmidl's method in both AWGN channel and multipath 

static fading channel. However due to the variability of random phase effected 

in the multipath time-varying fading channel, FFT method !-Linear 

Interpolation based estimator cannot provide the stable accurate estimation and 

give higher error variance than Schmidl's method in the multipath time-varying 

fading channel. The reason is that FFT method-I only consider the magnitudes 

of FFT outputs. Simultaneously, in the same multipath time-varying fading 

channel, the FFT method Il-matched filter based estimator still outperforms 

Schmidl's method since it fiilly utilizes and corrects the signal phases. 

The proposed algorithms can also be easily extended to multiuser downlink 

OFDM systems. The training sequence transmitted from base station is 

perfectly known by each mobile user so that the accurate frequency offset 

estimation can be achieved by proposed methods for each mobile user. 

105 



Chapter 4. Synchroniz-ation Technique in Downlink OFDM System 

4-33.3. Computation Complexity 

This section presents the comparison of the computation complexity 

between the two proposed methods with Schmidl method. We assume the 

training symbol used for estimation has 1024 samples, and Radix-2 FFT is 

applied when needed. The results are shown in Table.4.3. 

Schmidl's 
method 

FFT 
method-1 

FFT 
method- 11 

Addition 

23445 

13 

5142 

Product 

48131 

1099 

15507 

Exponential 
Evaluation 
4524 

10 

1044 

Magnimde 
Evaluation 
5868 

1024 

4096 

Table.4.3. Computational Complexity 

As shown in Table.4.4. the proposed FFT-based frequency offset estimators 

have smaller computation complexity than Schmidl' method, which makes 

them usefril in real practice. 

4.4. Integrated Model for Timing and Frequency Synchronization 

In this section, we propose the integrated synchronization model for both 

timing and frequency synchronization based on our proposed FFT-based 

frequency offset estimators in OFDM systems. The model is shown in 

Figure-4.10. Generally speaking, when one data frame containing training 

symbol and several data symbols is received, the timing synchronization is 

performed first to find out the boundary of training symbol, and then this 

training symbol will be processed by N-FFT in order to apply the proposed 

FFT- based methods to find out the frequency offset. Finally the frequency 
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offset will be compensated to the OFDM data symbols to improve the quality 

of data demodulation. 

OFDM Data 
Block 

Data Timing 
Detector 1 

V 
) - K e - > - « ' * . 

Received Signal 
'at frequency 

t 

Received Data 
• • wilt &-equcDCjr - L 

oEsct t/. 

Timing 
Estimator 

i 
Training Symbol r, 

i 
Known sequence^ ~~^QQ 

N-FTT 

IF] 
r *l 1 • 

b 

• 

• ^ 

Max Finder 

l^(*«-Dt 
i^(*—>i, 

\Fik^+\i 
"W 

f1n« freqnoM^ 
trarcAer 

1 

4 
FreqnoK? estinuitc A/'c 

Figure.4.10. Jnlegrated Model for timing and frequency synchronization 
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4.5. Sumiaary 

In this chapter, the comprehensive study of the synchronization in OFDM 

system is carried out including the time and frequency offset estimarion. 

Schmidl's, Minn's, Park's and Seung's timing offset estimators reviewed and 

their performance is evaluated by computer simulation in MATLAB with own 

written codes. Under the environment of no noise and distortion, the SchmidFs 

method generates plateau before the correct training symbol boundary with 

length of cyclic prefix. Minn's method reduces the plateau but has many 

similar values around the correct training symbol boundary. Park's method 

generates timing metric with impulse sharp peak at the correct training symbol 

boundary but also with many small sub-peaks, and only Seung's estimator 

generates timing metric with impulse sharp peak at the correct training symbol 

boundary and without nearby sub-peaks. Then in the multipath fading 

environment, all these methods offset the peak point away from the correct 

training symbol boundary because of the random strongest path signal in the 

channel. However. Scung's method applied the threshold-based windowing 

methtKl to estimate and compensate the offset. Therefore based on the 

simulation results of the timing offset error variance, it clearly shows Seung's 

method has the smallest error variance in both Multipath static fading channel 

and Multipath time-varying fading channel. 

After reviewing the timing synchronization, we focus on the frequency 

synchronization in OFDM systems. First of all. we review the Schmidl's 

frequency offset estimator, and then propose two FFT-based frequency offset 

estimators. In the proposed algorithms, the training symbol is assumed to be 

known in receiver, and is multiplying with received training symbol to cancel 

the phase effects from the complex training symbol. Then this modified 

training symbol is processed by FFT. The first method is applying Linear 
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Interpolation technique over the magnitudes of the FFT outputs. And the 

second method is applying matched filter concept by considering both 

magnitudes and phases. Through computer simulation in MATLAB with own 

written codes, we find out the two proposed algorithms have lower error 

variance than SchmidPs algorithm and the second proposed algorithm has 

lower error variance than the first proposed algorithm in both AWGN channel 

and multipath static fading channel. In the multipath time-varying fading 

channel, the second algorithm still outperforms Schmidl's algorithm, but the 

first algorithm has slightly higher error variance than Schmidl's algorithm 

because of the lack of consideration on phase. Overall speaking, the two 

proposed algorithms can produce accurate and stable frequency offset 

estimation performance in the AWGN channel and multipath static fading 

channel such as the warehouse indoor environment. And the second matched 

filter-based algorithm can also produce accurate and stable frequency offset 

estimation performance in the multipath time-varying fading channel such as 

outdoor high speed movement environment. 
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Chapter 5 

Resource Allocation in the OFDM System 

In this chapter, we focus on the margin adaptive (MA) optimization 

technique applied for resource allocation in the multiuser SISO/MIMO-OFDM 

systems operating in the downlink of cellular network, with the aim of 

minimizing total transmit power under the users" data rate constraints, in order 

to meet the fixed data rate requirement of the delay-critical real-time 

interactive applications in future wireless communication systems. The 

subcarrier allocation algorithms are explored in this chapter. We review the 

previous published subcarrier allocation algorithms, and propose simple but 

efficient subcarrier allocation algorithms with better performance in both 

multiuser SISO and MIMO-OFDM systems. 

5.1. Introduction 

Resource allocation in OFDM system includes the subcarrier, bit and 

power allocation. As mentioned in Chapter 2, the MA optimization is to 

achieve the minimum overall transmit power given the constraints on the users' 

data rate or bit error rate (BER). In Single-user SISO-OFDM system, all 

subcarriers are allocated to one user, so only bit and power allocation is 

required to be optimized. We review the optimal greedy bit and power 

allocation algorithm for Single-user SISO-OFDM system in Section 5.2. In 

Section 5.3, we analyze the optimal solution of MA optimization in Multi-user 

SISO-OFDM system, review two sub-optimal algorithms, and then propose the 

channel gain difference based sub-optimal subcarrier allocation algorithm. 

Subsequently, we discuss the resource allocation in Multi-user MTMO-OFDM 
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system in Section 5.4. Two types of transceiver design methodologies based on 

different preceding techniques in multiuser MTMO systems are reviewed and 

evaluated by computer simulation. The one with belter pertbrmance is 

extended as our multiuser MIMO-OFDM system model. Subsequently, we 

review the Zhang's and Extend correlation based (ECBA) subcanier allocation 

algorithms, and then propose our efficient subcarrier allocation algorithm with 

significant improvement compared with Zhang's and ECBA subcarrier 

algorithms. Finally, Section 5.5 summaries the chapter. 

5.2. Bit and Power Allocation in Single-user SiSO-OFDM System 

In single user OFDM systems, all Â  subcarriers are used by the user. If 

number of bits allocated to the subcarrier with low channel gain is same with 

that allocated to the subcarrier with high channel gain, it will lead the transmit 

power to be wasted because it requires more power to transmit same number of 

bits on the subcarrier with high channel gain. Therefore there are many loading 

algorithms [47-50] developed to solve this problem, assigning different bits to 

subcarriers according to the channel gains of each subcarrier, which is 

transmitting more bits in subcarrier with high channel gain and less bits even 

zero bit in subcarrier with low channel gain. 

Before solving the multi-user allocation problem, we first derive the bit 

allocation algorithm which minimizes the total transmit power, for single-user 

system. The single-user allocation problem provides an easy understanding of 

resource allocation problem, and will also be used in our multi-user solution. 
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5.2.1. Optimal Bit and Power Allocation Algorithm 

For Single user OFDM system optimization, the total transmit power can 

be minimized by adaptively allocating c^ bits on the n"' subcam'er over ail 

A'' subcarriers under the constraint of total date rale R . Then the optimization 

problem can be rewritten from equation (2-1) as: 

« . 

subject to 

/? = Z "̂ (5-2) 

As the power needed to transmit a certain number of bits in a subcarrier is 

independent of the numbers of bits allocated to other subcarriers, it turns out 

that a greedy approach is optimal [53J. The greedy algorithm assigns one bit at 

a time to the subcarrier that requires the least additional power. We make some 

modification by assigning w bits at a time. The allocation process will be 

completed once all R bits are assigned. The algorithm is named as Optimal Bit 

Allocation (OBA), and briefly described in Appendix J. 
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5.2.2. Simulation and Performance Evaluation 

Tn order to see the performance of this Single user OBA algorithm, we 

assume 32 subcamers for the OFDM system and chaimel gains are perfectly 

known by transmitter. Then Figure.5.1.1 shows the channel response and the 

bits allocation over subcarriers according to channel gains. As clearly shown in 

Figure.5,1.1, when the channel gain of a subcarrier is large, more bits are 

allocated on that subcarrier. When the channel gain of a subcarrier is small, 

less or even no bits are allocated on that subcarrier. 

60 90 
Subcarriet 

Figure.5.1.1. Frequency domain channel response and bit allocation 

In addition, in order to show the further improvement of the Single user 

OBA algorithm, we compare the BER of the single user OFDM system 

with/without applying OBA in the 5-path frequency selective fading channel. 

The amplitude of each path varies independently of the others, according to a 

Rayleigh distribution with an exponential power-delay profile. The result is 

shown in Figure.5.1.2. 
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10 

-6—Non-adaptive Equal Brt Allocalion 

-*—Adaptive Optimal Bit Allocation 

5 6 
SNR(dB) 

ID 

Figure.5.1.2. BER v.s. SNR in Single user OFDM system 

with/without applying OBA 

As shown in the Figure.5.1.2. under the condition that same number of bits 

is transmitted in one OFDM symbol, the system perfonnance is improved by 

applying OBA instead of allocating equal bits over all subcarriers. 
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5.3. Resource AUocatioD in Multioser SISO-OFDM System 

This section considers a downlink OFDM system with .v subcarriers as 

shown in Figure.5.2, and base station serves A; users. We focus on the margin 

adaptive optimization which is minimizing the overall transmit power under 

given constant data rate/(, of the A "'user. In the base station transmitter, the 

data from the^ users are fed into a subcarrier mapping block which allocates 

subcarriers and bits to different users, and then based on the bits allocated in 

each subcarrier, adaptive modulation is carried out to generate one OFDM 

symbol containing v samples. Here, we assume the instantaneous channel 

conditions of all users are perfectly known at the base station for the adaptive 

subcarrier-bit-and-power allocation. 

In the process of subcarrier, bit and power allocation, we define p , ^ as the 

binary indicator for the i'^user and the ""' subcarrier. That is. p , „ = i if the 

«' subcarrier is assigned to die A'* user, while p , , = 0 , otherwise. In 

addition, no more than one user is allowed to transmit on the same subcarrier. 

That is. for subcarrier n, if ^ = I then/j; „ = 0 for alU * A . Moreover, let 

i\ ^ denote the number of bits of the k'" user that are assigned on the n'* 

subcairier, which is the integer within the set of all possible QAM constellation 

values [0, M ] where M is the maximum number of bits transmitted in one 

subcarrier. 

After the IFFT process and adding cyclic prefix, the signals are transmitted 

via downlink channels. When the length of the cyclic prefix is longer than the 

maximum time dispersion, the ISI (Inter-symbol interference) is mitigated and 

the channel appears flat on every subcarrier. Assume that the subcarrier-bit-

and-power allocation information is sent to the users via a dedicated control 
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channel. After removing the cyclic prefix and the FFT process, the user is able 

to extract its data symbols from the assigned subcarriers according to the 

subcarrier allocation information and map the modulated symbols to bits 

according to the bit and power loading information. 

Sntea 

S. 

t t eE 

«tolCB( 

&IMC V 

U B U B H T 

IHT 
AM 

CodK 
PRfix 

Figure.5.2. Block diagram of an Adaptive Multiuser SISO-OFDM system 

[110] 
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53.1. Optimal Solution 

Based on this original formulation showTi in equation (2-1). Wong et al. 

[53] proposed a combinational Lagrangian optimization solution. They relaxed 

the constraints of integer bits per subcarrier and no subcarrier sharing to allow 

the indicator p,, as the sharing factor to be a real number within the interval 

[0, IJ. Also, the number of bits for the k"' user in the n"' subcarrier c,__ is 

now a real number within the interval [0. M ]. We defme /•, „ = c, ^p^ ̂  with 

constraint [0,p, ^M ]. Then the new optimization problem is formulated as a 

convex minimization problem over a convex set. 

/•i.Mo.n 

with constraints: 

\ 
f^. =S''*.-. (5-4) 

> = Z^^." (5-5) 

Then using optimization technique, the Lagrangian L with Lagrange 

multipliers/t^ and^^ is obtained. 

^- ZZ^A(-^>-Z'i-(I^..-«*) 
(5-6) 

t ^ i 
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And/: is differentiated with respect to r, , andp, , respectively, we obtain the 

necessary conditions for the optimal solution. r,\ andp, \ . 

^,. = P L A '(-l,..".'.) (5-7) 

where 

•^,.*=J ' i . . 0^ .A" '< '1 .«L)^ W (5-9) 

/ ' . . (•^) = ^ [ . / ; ( / . " ' ( ' i a ; „ » - A a ; „ / ; - ' ( A Q ' ; j ] (5-10) 

Since constraint (5-5) must be satisfied, we find ft"om (5-8) that for the «'* 

subcarrier. if H ̂  ^(A^^),k = I....K are all different, only the user with the 

smallest if, „(.?^,) can use this subcarrier. 

p[ „ ^UPI„ = 0. for all k ^ k' (5-11) 

where 

A-=argi™i H, „</!,,> (5-12) 

In order to get the optimal solution, we choose a fixed set of Lagrange 

multipliers /i, , then use them to determine user k assigned for the n' 

subcarrier by (5-9), (5-10), (5-11) and (5-12), thereby p', „ and ;.•. can be 

calculated for the n" subcarrier. Although this leads lo the optimal solution, 

the individual rale constraints^ may not be satisfied. To solve this problem. 
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starting with some small values for all x, . the iterative method increases one of 

the-ijSO thai more /jj\becomes one white r, '.in (5-7) increases for those n, 

thus 2 1 '* " increases and finally satisfy/?^ for user k _ Then, the process is 

repeated for the rest of the users. 

In die process of adjusting-i^ .(A" = \.-K), if for the n"" subcarrier. more 

than on^H^^(X^j.).k ~ \....K has the same values, p\^ has to take values 

within the interval (0, 1), This solution represents that multiple users are 

sharing the n"' subcarrier, the ratio of the symbols used by different users are 

proportional t o p , \ . Now. the optimal values of p , \ is obtained, so that the 

optimum number of bits for the A'* user in the n"" subcarrier ^i„ is 

represented as: 

c*.- ^ -1 
0 otherwise 

(5-13) 

5.3.2. Wong^s Sub-optimal Subcarrier Allocation Algorithm 

The results obtained from the optimal solution described in Section 5.3.1 

cannot be used immediately in our original problem (2-1). This is because the 

resulting c\ ^ may not be integer and within [0. Af ]. Another mismatch may be 

a resulting p],, within (0, 1), indicating a subcarrier sharing solution. To solve 

these problems. Wong et al. proposed a sub-optimal method where the 

subcarrier allocation follows essentially to the above optimal solution, and p" „ 

is modified by letting for the n"" subcanier. 
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p\.^ = I , where i = arg max p\ „ (5-14) 

p;„ = o.foraU k ^k' (5-15) 

/7,'. = 1 means the n"' subcarrier is assigned to the A "' user, while p," „ = o , 

otherwise. Finally, the single user OBA algorithm described in Section 5.2 is 

applied to each user on the allocated subcarriers. 

5.3J. Combined Sub-optimal Subcarrier Allocation .Algorithm 

In [58], Jang et a! proposed a subcarrier allocation algorithm which is 

allocating the subcarrier to the user with the best channel condition. For each 

subcarrier, by comparing the channel gains of all the users, the subcarrier i."; 

allocated to the user with the highest channel gain. This process is repeated 

until all the subcarriers are distributed. But this method doesn't take into 

account the fairness between users. Because a user may have high channel 

gains on all subcarriers, thereby dominating the subcarriers. Then in [63], the 

fairness among the users is considered. The following constraint is added to 

determine the number of subcarriers n, required for user * by the proportion to 

the required data ratefi^ . The proportion of left hand side is equal to the 

proportion of right hand side in equation (5-16). 

(5-16) 

Here, we combined the maximum bit-rate method proposed in [58] and the 

conslraint in [63]. Finally the bit and power allocation is done by single user 

OBA algorithm described in Section 5.2. The combined sub-optimal method is 

briefly described in the Appendix 11. 
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5.3.4. Proposed Channel Gain Difference based Subcarner Allocation 

Algorithm 

In this thesis, we propose a simple but efficient sub-optimal subcarrier 

allocation method. A new factor D^ which is the gain difference between the 

maximum and the next maximum users' channel gains for each subcarriern , is 

introduced. The subcarriers are allocated to different users according to this 

factor. Finally the single user OBA is applied for the bit and power allocation. 

The proposed method makes some modification on the Step II of combined 

sub-optimal method for the subcarrier allocation based on the new factor. The 

modification is briefly described in Appendix III. 

121 



Chapter 5. Resource allocation in the OFDM System 

5.3.5. Simulation and Performance Evaluation 

hi this section, we compare the perfbmiance of the proposed method with 

currently available schemes such as the Static subcarrier allocation method 

(Fixed OFDM-FDMA), the Wong' method and the combined sub-optimal 

method. We assume the channel of each user experiences frequency selective 

fading with an exponential power-delay profile. 

5.3.5.1. Subcarrier Allocation Comparison 

hi this section, we compare the subcarrier allocation solution between 

combined sub-optimal method and proposed method. We first consider the 2-

User OFDM system and use the figures of users' channel gains to show the 

improvement of proposed method. Subsequently, we consider the 3-User. 4-

User, 5-User, 6-User and 7-User OFDM system. With the number of users 

increase, it would not be clear to show all users' channel gains in one figure. 

Therefore we use tables to show the total transmit power for each user on the 

allocated subcarriers. 

2-User OFDM system 

Figure.5.3 shows the comparison of subcarrier allocation between 

combined sub-optimal method and proposed method applied in a 2-User 

OFDM system. We assume a 2-User OFDM system with I2S .subcarriers, and 

data rate ratio between user 1 and user 2 is /t, : R. = 1 : 3 , therefore user I 

requires 32 subcarriers and user 2 requires 96 suhcarriers. The channel gains 

of these two users are shown in Figure.5.3 (a), and the subcarrier allocation in 

combined sub-optimal method and proposed method are shown in Figiire.5.3 
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(b) and Figure.5.3 (c) respectively. The blue stars represent the subcarriers 

allocated to user I, and the red circles represent the subcarriers allocated to 

user 2. 
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(c). The subcarrier allocation in proposed method 

Figure.5.3. Subcarrier allocation in 2-User OFDM system 

As shown in Figure.5.3 (a), the maximum channel gain for user 1 is 

occurring around 120* subcamer. In Figure.5.3 (b). the subcarrier allocation of 

the combined sub-optimal method allocates subcarriers within the range (P ' 

subcarrier to 4' subcarrier and 25' subcarrier to 52 subcarrier) to user 1, 

because user 1 has relatively higher channel gains than user 2 within this range. 

Beyond this, user 1 has reached the number of subcarriers required {32 

subcarriers). so that subcarrier allocation to user 1 does not occur at the area 

containing the subcarrier with maximum channel gain. Opposilely, the 

subcarrier allocation of the proposed method shown in Figure.5.3 (c) assigns 

most of the subcamers to the user possessing maximum D„ {i.e. user 1 around 

120* subcarrier) where D„ is defuied as the gain difference between the 

maximum and the next maximum users' channel gains for each subcarrier. The 

subcarriers around 120* subcarrier for user 1 all have large difference with user 

2. Therefore these subcarriers are firstly selected for user 1. 
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3-L'ser. 4-L'ser. 5-Lser. b-Liser and 7-User OFDM systems 

We now show the improvement of proposed method in the OFDM systems 

u'ith nnore than two users by the total transmit power over the allocated 

subcarriers for each user under the condition of unit receive power is assumed 

for each subcarrier. The transmit power of one user on one of allocated 

subcarriers is the reciprocal of this user" channel ^ in on this allocated 

subcarrier. The total transmit powers over the allocated subcarriers for each 

user in the 3-User, 4-User, 5-User. 6-User and 7-User OFDM system 

respectively are calculated by applying both combined sub-optimal method and 

proposed method. The frequency is divided to 128 subcarriers for all these 

systems. 5-path frequency selective fading channel is used, and the amplitude 

of each path varies independently of the others, according to a Rayleigh 

distribution with an exponential power-delay profile. The results are based on 

the 1000 times simulation for^ch system, and shown in die Table 5.1. 

3-User OFDM system. User data rate ratio R, . R, :R, = l:2:\ 

Combined sub-optimal 

method 

Proposed method 

User 1 

22.3710 

21.0098 

User 2 

58.5643 

50.4119 

User 3 

22.1395 

20.9187 

4-User OFDM system..User data rate ratio /?, : ;?. : /?,: /?j - 3 :1 : 2 : 2 

Combined sub-optimal 

method 

Proposed method 

User 1 

39.6114 

34.4712 

User 2 

10.4479 

9.6062 

User 3 

22.5513 

20.9970 

User 4 

21.9255 

20.8266 
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5-User OFDM system. User data rate ratio R^ : R. : R., : R^: R, = 2 A-.i-.l :} 

Combined sub-

optimal method 

Proposed method 

Userl 

22.0775 

20.6283 

User 2 

10.3862 

4.5998 

User 3 

41.2528 

35.3139 

User 4 

10.3240 

9.5457 

User 5 

10.3529 

9.6940 

6-User OFDM system 

User data rate ratio R,: R. : R, : R,, : R, : R^ = 4 : 2 :6 :1: 2 

Combined 

sub-optimal 

method 

Proposed 

method 

Userl 

22.0810 

20.8509 

User 2 

10.3117 

9,6056 

User 3 

41.0346 

35,4518 

User 4 

5.2203 

4.6995 

User 5 

10.3269 

9.55H4 

User 6 

5.1612 

4.6970 

7-User OFDM system 

User data rate ratio R, : R. : R\ R-. R- R : ff, = 3 : 1 : 4 : 2 : 1 : 2 :3 

Combined 

sub-optimal 

method 

Proposed 

method 

User 1 

16-0933 

14.9339 

User 2 

5,1585 

4.6699 

User 3 

23.5373 

21.1312 

User 4 

10.1914 

9.4951 

Users 

4.9926 

4.6311 

User 6 

10.3933 

9.5321 

User 7 

16.0821 

14.8382 

Table.S. 1. The total transmit powers over the allocated subcarriers for users 
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As shown in Tabte,5.1. in these Multiuser (3 -7 users) OFDM systems, we 

find out the total transmit power of each user on the subcarriers allocated by 

the proposed method is always larger than that by combined sub-optimal 

method. Therefore it obviously shows thai the total transmit power is always 

less in the systems applying proposed method than that applying combined 

sub-optimal method. Therefore according to the figure and tables explanation. 

the improvement of proposed method is clearly shown. 

5.3.S.2. Average Bit SNR with Number of Users 

The Figure.5.4 shows the average bit SNR (in dB) needed to achieve the 

same BER P = iO * versus the number of users by applying the proposed 

method, combined sub-optimal method. Wong's method and some static 

multiple accesses with/without bit loading. The average required transmit 

power is defmed as the ratio of overall transmit energy per OFDM symbol to 

the total number of bits transmitted per OFDM symbol. Then the average bit 

SNR is defined as the ratio of the average required transmit power to the noise 

PSDleveLv„. 

As shown in Figure.5.4, we find that the optimal bit allocation (OBA) leads 

belter performance than the equal bit ailocarion ("EBA) in the Fixed OFDM-

FDMA systems with 2dB- 3.5dB advantage. Wong's method, combined sub-

optimal method and proposed method apply the adaptive subcarrier allocation 

combined with OBA; thereby they all lead better performance than Fixed 

OFDM-FDMA systems. Wong's method is 3-5dB better than Fixed OFDM-

FDMA with OBA and 5-8dB better than Fixed OFDM-FDMA with EBA. 

Compared with Wong's method, the combined sub-optimal method saves the 

transmit power aroimd 0.5dB when number of users equals 4 and 7. and 

requires almosl equal transmit power with Wong's method when number of 
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users equals 3, 5 and 6. TTius it has similar overall performance with Wong's 

method. However, our proposed method has around 0.5-ldB advantage over 

Wong's method in saving the transmit power. 

- Fiiad OFDM-FDMA with Equal bn allccation 

-e—Fl)lBdOFDM-FD^^Awllh Optimal bri allocation 

- B — Wong's method 
—0— ComtMned Sub-optimal Method 

- A — Proposed Method 

*.5 5 5.5 
NunAei of Users 

65 

Figure.5.4. Average Bit SNR vs. Number of users 

5.3.5^^. BER with Average Bit SNR 

Figure.5.5 continuously shows the improvement with more familiar BER 

versus bit SNR curves. We assume a 5- user OFDM system. For different BER 

requirement ( P = lo ' - lo ' ), the relevant Average bit SNR (in dB) is 

calculated. Then we concluded that our proposed method outperforms other 
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methods under the same operating environment, and that conibmed sub-

optimal method also gives slightly better performance than Wong's method. 

IQ 15 
Araiage bit SNR (dB) 

Figure.5.5. BER vs. Average Bit SNR in 5-users OFDM system 

5.3.5.4. Probability of Total Transmit Power Distribution 

Figure.5.6 shows the total transmit power (TTP) distribution in a five-user 

OFDM system by applying proposed method, combined sub-optimal method 

and Wong's method. The red tine represents the proposed method, blue line 

represents the combined sub-optimal method, and the green line represents the 

Wong's method. We find out the TTP is distributed over 33.9-37dB, 34.2-

39.6dB and 35,l-37.1dB in die system applying proposed method, combined 

sub-optimal method and Wong's method respectively. The proposed method 

gives the smallest TT? range, in addition, under the same probability, the 
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system applying proposed method always require less TTP than the system 

applying combined sub-optimal method and Wong's method . Hence, these 

facts further prove the improvement of proposed method. 

1 
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•n 
» 
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r •- 1 

^ ^ ^ " Wong's method 

" Combined sub-optimal method 
^ ^ ^ Proposed method 

^ ^ » — ' 
a 34 36 36 3 7 3 8 39 4C 

Total transmit power (dB) 

Figure.5.6. Probability and total transmit power 

5.3.5.5. Computation Complexit>' 

The compulation complexities of the Wong's method, combined sub-

optimal method and proposed method are calculated by the laboratory 

computer processor for 1000 times each imder the 3-User system, the 4- User 

system, the 5- User system, the 6- User system and the 7- User system 

resfiectively. Then we calculale their average operation time in these multiuser 

systems to represent the computation complexity. 
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Figure.5.7. Average operation time vs. Number of users 

As shown in the Figure.5.7. the required average operation time is 

increased for all three algorithms along with the increase of number of users. 

However the increase trend is relatively flat for proposed method and 

combined sub-optimal method, and quickly raising for Wong's method. In 

addition, the Wong's method has much higher complexity (!0" --lO') than the 

combined sub-optimal method and the proposed method. And the proposed 

method has slightly higher complexity than the combined sub-optimal method 

because it required some computation to calculate and compare the channel 

gain differences. But its order of magnitude is belowio", so it is easy to be 

implemented with the current processors. Therefore both combined sub-

optimal method and the proposed method are much more practical in real life 

than the Wong's method. 
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5.4. Resource AUocation in Multiuser MIMO-OFDM System 

5.4.1. Multiuser MIMO System Model 

In his section, we review two types of precoding techniques applied in the 

Multiuser MIMO systems. One is Lai's model [13] using Zero-forcing 

technique; another is Liu's model [14] using Singular Value Decomposition 

(SVD) technique. For both models, the base station has A'̂  transmit antennas 

and serves A' mobile users, each user having A \ receive antenna. The 

frequency band is divided to .v subcarriers. The channel matrix H , for user ft 

which is a ^^ x N, matrix is not varied during the symbol interval. 

In addition, we denote a A:-user system with A'̂  transmit antennas at the 

base station and h\ antennas at the A''' mobile user as a 

(,v, .[A'',,A', A'A-D system, and also denote single-user system with ,V^ 

transmit antennas at the base station and y antennas at the mobile user as a 

IN^.N) system. 

5.4.1.1. Lai's Model 

In the Lai's model [73], users" data are pre-processed before transmission 

at bascstation. Let d, is the i , xi transmit data symbol vector for user k , 

where L^(<N,) is the number of parallel data symbols transmitted 

simultaneously for user ft . This data symbol is passed through a transmit 

precoder F̂  which is a A'̂  x L^ matrix. At the receiver of userft , the received 

signals can be written by a vector of length jV,. and given by: 

y . - " . Z F - d . + w . (5-20) 
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where » is the Gaiissian noise vectors. In order to cancel the interference from 

other users, user k defines his precoder F, to be: 

F, =V.A, (5-21) 

K 

where v , is an orthonomial basis of the subspace D ker< H,) with m, the 
1=1..«* 

diniention. where keT( ,v i denotes the null space or kernel of .v . and n 

represents the intersection of the subspaces, and 

m .-N,-Y,N. (5-22) 

In addition, A^ is consisting of the right singular vectors of H , v , if SVD 

technique is used. By substituting (5-2 i) to (5-20), we can obtain: 

y, =H.F,d. +w, =H.V,A,d, ^w, (5-23) 

Note that the multiuser MIMO system has been decoupled to A: parallel single-

user MIMO systems. We can think the equivalent single-user MIMO channel 

for user * as H , v, and the equivalent transmit processor as A, . The multiuser 

MIMO decomposition has the following key properties; 

1) The equivalent single-user system for user k is a system with m^ 

transmit antennas and N^ receive antennas. 

2) Increasing A'r by one increases the m^ by one from equation (5-22). 

E.g. a (6,[2,2^]) 3-iiser MIMO system is equivalent to a (m^ ^) 

single-user system with ^^^ = 2 , then a (7,[2,2,2]) 3-user MIMO 

system is equivalent to a (m^ .2) single-user system with m^ = 3 . 
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But this system has a drawback. The number of simultaneous users is restricted 

by the number of transmit antennas. If we have targe number of users in the 

system, the efficient user selection algorithm is necessary to decide the users 

who can transmit data simultaneously. 

5.4.1.2. Liu's Model 

Liu's model [74] is SVD assisted transceiver design. At the base station, 

users" data are processed before transmission. Let d, is the ,v, v i transmit data 

symbol vector for user A . It requires the number of transmit data symbol equals 

to the number of receive antennas for user* . This data symbol is passed 

through a transmit precoder F, which is a A", x \\ matrix. At the receiver of 

userA . the received signals can be written by a vector of length N^, and given 

by: 

y. = H , f F^d .^w, (5-24) 

By assuming ranJ.- (H,)- N, andN^ - H '^' ' *^hannel matrix H . for user k is 

decomposed by SVD and given by: 

1^1 

H. = u J E ; ^ o ] V," 

(5-25) 
f v " 

= D.^r^v;:, 
where u , and v , are the ,v, y ,v, andA*, x .v, left and right singular vectors of 

Ji ^ respectively, i:, is the ,v, ' .v, diagonal matrix containing the singular 

values of H ,Hf . Furthermore, v, . is the matrix with size of N , x w, , and 
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containing the right singular vectors corresponding to the non-zero singular 

values of H, , v, . is the matrix with size of .v, K (.̂ f̂  - ,v, j , and containing the 

r i ^ t singular vectors corresponding to the zero singular values of H , . 

!f we let F = [F,.F, F, Jandd =[d^d; d^.]' , then (5-24) can be written as: 

y, = H,Fd + w, = IJ,2;;'v",Fd + w. (5-26) 

According to (5-26), the overall received signal y of all the K users can be 

expressed as: 

y = U2:'H'''Fd +w (5-27) 

where 

V = Jiag il),,U, UJ 

2; = (/wg{i:,.E, s j 

w^[w: .w: . . . .w; f (5-28) 

The base station transmit precoder F is designed to cancel the Multiuser 

Interference (MUI). As shown in (5-27), the MUI can be fully removed if F is 

chosen to be: 

F = [V,"]- (5-29) 

By substituting the overall transmit precoder (5-29) into (5-27), the overall 

receive signal y of all the K users can be simplified as: 

y = U2:"d + w (5-30) 

To be more specific, the receive signal of useri can be expressed as: 

y. =u. i : ;^d . + « . (5-31) 
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Considering (5-31), we can see that the MUI is cancelled, but there may exist 

Inter-antenna Interference (lAI) among the antenna-specific symbols 

transmitted by the base station to the user( . The L\l can be suppressed by 

multiplying (5-31) by u " , and then the received data symbol d. can be 

expressed as: 

^. = ̂ ; ^ « ' , + u > , (5-3i) 

or jointly as: 

d = [ d : . d : dlY (5-32) 

5.4.1.3. Evaluation and Extension 

According to the above analysis, the difference between Lai's model and 

Liu's model is the users' precoder design. In this section, we evaluate the BER 

performance of Lai's model and Liu' model over several SNR values. The 

model with better performance is extended to our MIMO-OFDM system. In the 

simulation. QPSK is utilized for data modulation. More than 10.000 

independent flai fading MIMO channels are used to obtain BER simulation. 

And number of data streams transmitted by each user is equal to L 

(L, = /., =. . . = i . . = / . ) . 

First of all, we consider two types of Multiuser MIMO systems. One is 

having 6 transmit antennas in base station, and 2 receive antennas for each user. 

Another one is having 7 transmit antennas in base station, and 2 receive 

antennas for each user. In both systems, each user transmits £ = 2 data symbols 

simultaneously. Under each system setting, Lai's model and Liu's model are 

applied, and the results are shown in Figure.5.8. 
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Figure.5.8. Performance comparison between single-user MIMO systems 

and Multiuser MIMO systems for Lai's model, and performance comparison 

between Lai's model and Liu's model in Multiuser MIMO systems 

As shown in Figure.5.8, for Lai's model, it shows that (6, [2, 2, 2]) 

Multiuser MIMO system has similar performance with (2, 2) single-user 

MIMO system, and (7, [2, 2. 2]) Multiuser MIMO system has similar 

performance with {3. 2) single-user MIMO system. In both (6. [2, 2, 2]) and (7, 

[2, 2, 2]) Multiuser MIMO systems, Liu's model provides smaller BER than 

Lai's mode) over all SNR values. 

Subsequently, since Multi-input single-ou^ut (MISO) system is a special 

case of an MIMO system, the decomposition approach is also f^jplicable to 

Multiuser MISO systems. We consider two types of Multiuser MISO systems. 

One is having 3 transmit antennas in base station, and single receive antermas 
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for each user. Another one is having 4 transmit antennas in base station, and 

single receive antennas for each user. In both systems, each user transmits 

/. = I data symbol simultaneously. Under each system setting. Lai's model and 

Liu's model arc applied, and the results are shown in Figure.5.9. 

IQ 
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LaL (3.Il,1,ip.L=1,3iiEers | 
Lai: (1.1). L=1, EJngle user 

- « - -Lw:0,[1,l,11),L=1,3u58rs 
-e--L»L(4. |1.1.1|) , L=1.3iisers 

• Lac (2,1). L-1, single user 
* Lflj (i,|1.1,1]),L=1.3ijse^5 

•^---•'-•'pJ^-'-',V--jJTJj;J^f?-',-r--7-jJ,';«PfJf?. 

10 15 
SNR(dB) 

Figure.5.9. Performance comparison between single-user MISO systems 

and Multiuser MISO systems for Lai's model, and performance comparison 

between Lai "s model and Liu's model in Multiuser MISO systems 

As shown in Figure.5.9, for Lai's model, it shows that {3, fl, I. 1]) 

Multiuser MISO system has similar performance with (1,1) single-user MTMO 

system, and (4, [1, 1, 1]) Multiuser MiSO system has similar performance with 

(2, 1) single-user MISO system. In both (3, [I. 1, I]) and (4, [1, 1. 1]) 

Multiuser MISO systems, Liu's model provides smaller BER than Lai's model 

over all SNR values. 
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Summary 

Both Lai's model and Liu's model proposed novel precoding technique in 

Multiuser MIMO systems in order to cancel the MUI. Liu's model can provide 

better performance as shown in our simulation results. We will extend Liu's 

SVD assisted model to Multiuser MIMO-OFDM system. However when the 

base station has large number of users to serve in real life, there will be large 

number of transmit antennas required to cover all users, which is impractical. 

Therefore, in the extended Liu's model in our Multiuser MIMO-OFDM 

system, we propose a simple but efficient subcarrier allocation algorithm to 

decide the users who can transmit data simultaneously on each subcarrier so 

that the system flexibility can be better achieved. 
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5.4.2. Extended SVD assisted Multiuser MIMO-OFDM System 

We consider a downlink muUiuser MIMO-OFDM system with \ 

subcarriers. The base station (BS) has A', transmit antennas to serve/.' mobile 

users where each user having .v^ receive antennas. We assume the users' 

channel matrix which is not varied during the coherence interval and is 

perfectly known in both BS and users' mobile units, and thatmnk (H^_i = N^ 

J E.I. 

and V, > y .v„ where 5, is the subset of users sharing the n' subcarrier. The 

received signal of the user k on the n'" subcarrier is represented as: 

y ..- = ".." Z F- .VpITd.., + «. . .-^ E S, (5-33) 
1 - J 

whered,^ is the parallel A ^ data of user A transmitted on the n'" subcarrier, 

P , , = diag {Pi „,.P, ,2 P,, V 1 is the N,>: N^diagonal matrix, representing the 

transmit power level of user * on the n'" subcarrier for A' ^ data symbols. F , , is 

the MrX^f precoder matrix for user k on the n'" subcarrier, H, ^ is the 

.V, >• /tf^chaiuiel matrix for user k on the n'' subcarricr, and w^ _̂  is the complex 

Gaussian noise with zero mean for user k on the n"" subcarrier. As shown in the 

multiuser MIMO system of [74|, the precoder is containing the transmit power 

level P, „ which is pre-defined as constraints, hi our work, p. „ is a separate 

identity from the precoder because it is the factor which is unknown and needs 

to be minimized. According to the SVD based matrix decomposition method in 

[74], the H ^ ^ can be expressed as: 
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H._„ = u,.„[i::.:.o] v.". 

(5-34) 

where u . „ and V,, are the N^ - ,v, and N, X N^ left and right singular vectois 

of H , ^ respectively, r , „ is the.v, x w, diagonal matrix containing the singular 

vahies ofH, „H "„. Furthermore, V, , , is the matrix with size of ,v, i*;^,, and 

containing the right singular vectors corresponding to the non-zero singular 

values ofH, „. V, „. is the matrix with size of N^y (N,. - N ̂ ), and containing 

the right singular vectors corresponding to the zero singular values of H, __. 

Then we consider the system in overall view with the following definitions: 

^,=i<.K "[..r.^^s. 

E. =^/^g[E,..E,,„ E . J . t € S . 

V.., =[V,,.,.V,„ V,,.J,A-e5„ 

w„ = [ w , ' , . w : . . . . . w : j \ i E 5 , (5-35) 

where d is the overall transmitted data vector on the n" subcarrier, F is the 

overall precoder matrix on the n"" subcarrier, and P_ is the overall transmit 

power level matrix on the «'* subcarrier. Therefore according to (741, the overall 

received signal vector y„ of ail the users sharing the n" subcarrier can be 

expressed as: 

y, - u . i : - v : ^F .V? :d . -Hw, (5-36) 
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As shown in (5-36), the MUI on the «"• subcarrier can be fully removed when 

F̂  is chosen to be; 

F. =IV„".r (5-37) 

where[VJ'^]' denotes the psedo-inverse of vj'^. By substituting(5-37) into (5-

36), y ̂  can be expressed as; 

To be more specific, the received signal of user * on the n"" subcarrier can be 

expressed as: 

y,,„ = L^.^^;'^/^7d..- + « . . , -*e5„ (5-39) 

As shown in (5-39), user k has fully removed the MUI generated from other 

users sharing the n'" subcarrier. Furthennorc. the lAI among the antenna-

specific sj'mbols can be suppressed by post-processing y,^ with u"„ and 

shown as: 

U".y..n = J..„ = i^l.'VpiTd.. +^ :> . , - -* ^ S. (5-40) 

where d,,, is the .'v„ >: I received data for user k on then"'subcanier from the 

iV̂  antennas. Then we assume that users' unity power-normalized data 

d, ^. A e S„ transmitted on the n" subcarrier are not correlated with each other. 

so£(d ,„d" , )= / . According to (5-40), the required receive power P,\ for 

user k on the n'" subcairier is given by: 

K. = ^.Jl 
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thus, 

P. . =[<2:;;)"'] 'P;..-A^5. (5-42) 

Here P,', = tiiag {/'.'„,./'.'.. P,'..„v, I which is to support 

' i , =[^1-I ' t---• '• . ..\. i^'its by satisfying target bit error rate (BER) p for 

user k on the n" subcarrier over A% receive antennas. According to [53], 

P^\^Ak s S_.i = 1.2 A„)can be expressed as; 

/•;„, = /<-.,.„) = 4^10 '<^>]N2'- -n (5-43) 
3 4 

where JV„ is the noise power spectral density, Q is the inversed Q function. 

Because of the precoder F^,. the actual transmit power P,'', for user k on the 

w" subcarrier is: 

P f ^ y If r P 
' IL.K £^ ll*^! J>.i|| ' t..H.i 

= ' ' ^ ^ ^ ( C F . . , P > . . ) - A ^ S . (5-44) 
= r™*(F;',F..[{2:;j)"']'p;,.) 

where f, „, is the /" column of F , , . According to (5-44), the effective channel 

gains g, „ of the user k on the "'" subcarrier can be expressed as: 

%,.,=dU^Kf:j,.SK^\\y't\k.5, (5-45) 

We then denote the g, _, as the /'' diagonal element ofg. „. The total transmit 

power for users on all subcarriers are formulated as: 
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- ZLK. 

I t s . . '1 g l . , , i 

Then the optimization problem can be formulated as: 

(5^6) 

" " C / = inin Z Z Z 
»=i i . s . .=1 S i 

subject to the following conditions: 

(5-47) 

Z/'i .- 'Z^".-' = «.- * = ' f^ 
• • I : I 

P,.=< 

V, 

(5^8) 

(5-49) r - l 

\=° ^ Z^ . .^-o 
I. .-I 

where R^ is the data rate of user * and P^ „=\ means subcarrierfi is allocated 

to user * . 
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S.43. Subcarrier and Bit Allocation 

In this section, we focus on the subcarrier allocation algorithms in the 

extended SVD assisted multiuser MFMO-OFDM system. We review the 

maximum singular value-based subcarrier allocation algorithm proposed by 

Zhang in [79], and the Extended Correlation based subcarrier allocation 

algorithm (ECBA) extended from the correlation based user selection 

algorithm in multiuser MIMO systems proposed in [108], The aim is to analyze 

these algorithms and their computational complexities for comparison with our 

proposed subcarrier allocation algorithm. 

As a result of subcarrier allocation, the set of users 5,, sharing the n'" 

subcarrier is applied to calculate the effective channel gams g, , of the user t 

on the n" subcarrier- Then the single user OBA algorithm described in Section 

5.2 is applied to allocate bits to the assigned subcarriers with minimum power 

for each user. 

5.4.3.1. Zhang's Subcarrier Allocation Algorithm 

Zhang's subcarrier allocation algorithm [79] is based on the maximum 

singular value of each user's channel, and each subcarrier can be allocated to 

only one user at most. The algorithm is composed of two steps which are the 

constructive initial allocation (CIA) and the iterative subcarrier swapping 

(ISS), For the CIA. we firsdy order the maximum singular values of channel 

matrixes in all subcarriers for each user in descending order, then consider the 

first un-assigned subcarrier in the ordered liste of all users, one user at a time, 

subsequently consider the second un-assigned subcarrier in the ordered lists of 

all users. The process is repeated until all the subcarriers are assigned to users. 

Based on the initial allocation results, the ISS is carried out. The idea is that if 
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for user pair ((,_/>, we can find a pair of subcarriers (n,,n ), so that allocating 

n to user j , and allocating M to user / leads a decrease in the total transmit 

power, then the subcarrier allocation is swapped. The process is iterative until 

the total transmit power cannot be further reduced. 

In CIA step, sorting .v maximum singular values for each user takes Oi N) 

running time. There are A' users, thus CLA requires compulation of 0{KN ) . In 

ISS step, the main computation comes from calculating the power deduction 

factors for all possible swapping subcarrier pairs. We assume each user is 

assigned approximately {N i K) subcarriers for each iteration on average. There 

are C,*" user pairs where C* is the 2-combination of the set K , thus 

0(C,''(A'/ A 'K 'V/A: ) ) = 0(A'") possible swapping cases is required per 

iteration. Thus the total computational complexity is 0(KS + t-V ') where L is 

the number of iterations. Normally ISS step takes a pre-defmed number of 

iterations in order to reduce tlie complexity. 

5.4.3.2. Extended Correlation based Subcarrier Allocation .Algorithm 

In [108], the channel correlation metric between user t and user y is 

proposed for the user selection in multiuser MIMO systems and the channel 

correlation metric is defined as: 

llH.H';ir 
''..- = l^^^—^ (5-50) 

where H, is the channel matrix of user i . Here we modify the channel 

ll"...H:..r 
correlation metric as ri = for the subcamer n so that it can be 

•• i i H . i r i H " i." 
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used in the subcarrier allocation of multiuser MIMO-OFDM systems with the 

following definition: 

1. Each subcarrier is allowed to be shared between multiple users. 

2. The maximum number of users shanng one subcarrier is k =N, 'M„, 

3. The subset of users in the "'" subcarrier is5^ = ^.Vn e /V , 

4. The set of available users m the n"' subcarrier is(yi„ = {1,2,... A: |, Vn e A'. 

5. The number of subcarriers required by users n^.vk e K is proportional 

to their data rate. 

Mi :« , :...: n^ = R, : R^ :... .R^ 

* (5-51) 

Then the ECBA algorithm is executed as follows; 

for each subcarrier n e [i...,. ,v] 

(a) Findw = arg max H , „ 
1^ -U 

S =S u « t/1 = t / l -u n =n -N, p =1 

(b) white size {S^)< k 

Find a useru , M = are im V J?. , 

If DOi/ found, break the loop, otherwise 

P; =l,U\ =U\ -u.'} = n - N „ S =S \Jv 

end 

end 
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For the n'* subcarrier. average (J (A,') running time is required to find out the 

user with highest channel nonn value, and maximum OiicK) running time is 

required to select rest of users for the n'* subcarrier. TTierefore, the total 

computation complexity maximizes totXAfs: + NKJC). 

5.4.3.3. Proposed Unit Power based Subcarrier Allocation Algorithm 

We propose our modified subcarrier allocation algorithm. The definition of 

proposed algorithm is inherited from thai in ECBA. 

The Freobenius norm indicates the overall energy of the channel. We fmd 

out the maximum channel Freobenius norm (MCFN) among all users for each 

subcarrier and order the subcarriers by their MCFN values. The subcarrier 

allocation is from the first to the last ordered subcarrier so that the user having 

higher channel energy has the priority to be served. We denote r as the set of 

ordered v subcarriers. Then we assume unit received power required in each 

receive antenna among all users and all subcarriers, so that 

/>.'„, -I.(VJt € K,^ne .V,Vie .V,) (5-52) 

For the «" subcarrier in/ . the user with MCFN is selected first, subsequently 

the user generating maximum effective channel gains ĝ  ^ then requiring 

minimum transmit power ( y l' s, ,^) if assigned to this subcarrier is selected 
. - J 

ileratively until K is reached. The detailed algorithm is described as follow: 
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/or eac/i subcarriern in r 

(a) Find u - aqi max IIH , , 
i t t I, 

(b) while ste(S_)< K 

Find a user" . iJ = arg mm V —^^ 

If no« found, break the loop, otherwise 

p,^ = I ,UK = [-n„ - « ,/r = H, - A-, ,S„ = 5„ w« 

£/)J 

In the proposed algorithm, sorting JV suhcarriers requires 0(N) running time. 

Then for each subcarrier, average 0( A') running time is required to find out the 

user with highest channel norm value, and maximum 0{ KKM ) running lime is 

required to select the rest of users for the n" subcanier where w is the average 

computation required for the calculation of effective channel gains g,^ . 

Therefore, the total computation complexity maximizes to 

0(N + NK + NKKM ) . 
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5.4.4. Simulation and Performance Evaluation 

In this section, we compare the performance of Zhang's algorithm, ECBA 

algorillim and proposed algorithm. The target BER is set to belO ' , the number 

of subcarriers is set to 32 and the number of iterations L of Zhang's algorithm is 

set to be 15. The wireless channel between a couple of transmit antenna and 

receive antenna is modeled as a 5-path frequency selective fading channel. The 

amplitude of each path varies independentfy of the others, according to a 

Rayleigh distribution with an exponential power-delay profile. The noise power 

spectral density level is assumed to be unity {N^ = \ ) . Two situations are 

considered; 

(a) Single receive antenna for all users (A'̂ , = 1) 

The sum of target data rate of users is 256 bits/symbol. The achieved 

results are shown in Figures.5.10, 5.11 and 5.12. 

a. 

1 

7A 

72 

7D 

ea i— 

- A — ProposBd algomhm - 2 T> antennae 
-9—ECBA-2TX antennas 

•O- Slang's algorthm-STi arlennas 
- A- - Proposed algartthm -1 T> atitennas 
• O- - ECBA • 4 T. aniennas 
6 - Zharg's algor^hm - A Jx antannae 

^r,-^ -H9-

- B - — ^ 
. ^ . . ^ . ^ . . ^ . ^ . ^ . . ^ . _ ^ . , ^ _ ^ . ^ ^ . . _ . _ . . . ^ ^ . ^ . . ^ . . ^ I 

10 
Number of users 

Figure.S.lO.Total transmit power vs. Number of users (.V^ = I) 
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T^TTTETTTTrnT^TTrFTTTTrrnTTTTTTTITrr 

_,^A=.=^=.=S=-= "»• • • - - B ' 

sia-

H^ 
l=..==.,=.:™,=^nrr:rS«-:ir 

10 

-A— ProROMd alaorahm - 2 Tn aMannit 
-©— eCBA 2 T> iMennss 
-Q—-&ang^s aJgarrthm - 2 T> anternas 

— A - -Pr^pofftd alganlhm - 4T)r anlonnB 

'• — « • • ECBA • 4 Tn imennas 

— S- - iOiang's atgonthm - 4 T i antannAs 

'::h:i:iTi:i"SJi3iii:?i?Ti:l3i::r"riTmi"pHjinfHiiTTJjn" 

^.^,::^:^.;;^.','^-r::n!.|,.:./::.::::::;_:j,: 

4r 

ID U 
Numfcei of users 

Figure.5.11. Running time vs. Number of users (-V̂  = I) 

16 me t tyftun 
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Figui^.5.12.Total transmit power vs. number of antennas wben number of 

users is !6(A', = I) 
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(b) Multiple receive antenna for all users (A'„ =2) 

The system capacity is increased with the growth of number of receive 

antennas, so the sum of target data rate of users is 512 bits/symbol. The 

achieved results are shown in Figures.5.13. 5.14 and 5.15. 

ID -
-A—PlOfKKffd a^gnfillirTi . 4 T i Mf lanaa 

—©— EC&A - 4 Ta •rrffnriH 
-G— Thang * aJgnittini - 4 Ti dfiiDin» 

6> 

Nunibv of u&an 
16 

Figure.5.13.Total transmit power vs. Number of users(.v^ = 2) 
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Hfr- -p-— ti '^ •••• - a - ' -

- Proposei slgotiltim - 4 T< antennas 
-ECBA-4Tianlennas 
'Zhang's algnnlhrn - 4Tx sitennas 

':::nn::ii:^:;;^:E^:|||ri!i^:iinUH: jii:;;iH!:ni:i:ijU 

B to 13 
NiEiAerD) users 

Figure.5.14.Running time vs. Number of users (Â ^ = 2) 

152 



Chapter 5. Resource allocation in the OFDM System 

73 

-Pfoposmt jlqonlhrn 
-ECBA 
- Zhang's alganlhm 

tJS 5 S.5 6 6.5 7 
Numbei of Iransnut irdennaE 

7.5 B 

Figure.5,1 S.Tolal transmit power vs. number of antennas when number of 

users is \6{N„ =- 2) 

Number of transmit antennas 

Normalized Correlation 

between two receive antennas 

(ECBA) 

Normalized Correlation 

between two receive antennas 

(Proposed algorithm) 

4 

0.3963 

0.3606 

6 

0.7062 

0.6722 

8 

1.0130 

0.9809 

10 

1.3791 

1.3409 

Table,5.2. Normalized sub-channel correlations of users on their allocated 

subcarriers in a 16-user MIMO-OFDM system (-V ̂  = 2) 

With end-user using one or two receiving antennas, Figure.5.10 and 

Figure.5.13 show that proposed algorithm outperforms the Zhang's algorithm 

and the ECBA algorithm with lower total transmit power for various number of 
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users. Increasing the number of receive antennas, the performance gap between 

ECB.\ and proposed algorithm is enlarged because the proposed algonthm 

reduces the correlation between sub-channels of users which is not considered 

by ECBA. The Table 5.2 shows this fact. As shown in Table 5.2. in the 16-user 

MIMO-OFDM system with different number of transmit antennas, the sum of 

sub-channel correlations of users on their allocated subcarriers given by 

proposed algorithm is always less than that given by ECBA. 

Figure.5.11 and Figure.5.14 show the computing complexity required for 

these three algorithms, which is increased with the growth of number of users. 

The running time is computed using a laboratory computer processor. Faster 

processor may take shorter running time but the conclusion from the running 

lime comparison for the algorithms does not change. Zhang's algorithm requires 

very high computation due to the iterations in ISS step. The proposed algorithm 

requires slightly higher computation than ECBA algorithm because of the 

calculation of effective channel gains. However the cost of the computation 

increase is in exchange of lowering the transmit power and is within limit of up 

to date processors. 

Figure.5.12 and Figure.5.15 show that for all three algorithms, the required 

total transmit power is reduced as the number of transmit antennas increases 

under the condition of fixed number of users. And the proposed algorithm 

always outperfonns Zhang's algorithm and ECBA algorithm as the number of 

transmit antennas increases. 

Overall speaking, the proposed algorithm selects the users for each 

subcarrier. who is requiring minimum transmit power until the allowed 

maximum number of users is met. It has the similar idea with the greedy 

optimum algorithm; however it has much tower computation complexity. 
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5.5. Summary 

In this chapter, the resource allocation in multiuser SISO/MIMO OFDM 

systems is explored. First of all, we review the single user optimal bit allocation 

algorithm in SISO-OFDM systems so that it can be applied in the followed 

multiuser solutions. Secondly, we analyze the optimal subcarrier and bit 

allocation in multiuser SISO-OFDM systems followed by two sub-optimal 

subcarrier allocation algorithms called Wong's sub-optimal algorithm and 

combined sub-optimal algorithm. And then we propose an efficient channel 

gain difference based subcarrier allocation algorithm with low complexity. The 

simulation results show that proposed algorithm outperforms the Wong's sub-

optimal algorithm and combined sub-optimal algorithm. Third, we study two 

advanced preceding based transceiver design methodoiogies in multiuser 

MTMO systems and fmd out by computer simulation that the SVD assisted 

model has lower BER performance. Then the SVD assisted model is extended 

to multiuser MIMO-OFDM systems. Based on the extended SVD assisted 

multiuser MIMO-OFDM system, Zhang's and ECBA subcarrier allocation 

algorithms are reviewed and a unit power based subcarrier allocation is 

proposed. The simulation results show the significant improvement on the 

proposed subcarrier algoritfam compared with Zhang's and ECBA subcarrier 

allocation algorithms. 
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Chapter 6 

Conclusions and Future Work 

6.1. Thesis Main Conclusions 

The next generation (4G) OFDM based wireless systems are expected to be 

all-IP based and provide universal personal and multimedia communications 

services for heterogeneous classes of traffics such as voice, web browsing, 

teleconferencing and interactive games etc. The major challenges include the 

wireless channel, the synchronization, radio resources and diverse QoS 

requirements. This motivates the development of synchronization algorithms to 

provide smaller error variance and better estimation accuracy, and resource 

allocation techniques to provide subcarrier, power and bit allocation under 

guaranteed fairness to ensure the QoS for each user. 

In this thesis, we firstly focus on the synchronization technique in classic 

single user OFDM system. The following work has been done. 

• Comprehensive study of timing synchronization algorithms in OFDM 

system. 

• Two accurate FFT-based Frequency Offset estimation algorithms in OFDM 

systems are proposed. 

• Lower estimation error variance than Schmidl's method for FFT-based 

algorithm I in AWGN and time invariant channels 

• Lower estimation error variance than Schmidl's method for FFT-based 

algorithm 11 in AWGN, time invariant/variant channels 

• Both FFT-based algorithms have low computational complexity 
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Subsequently, we concentrate on the resource allocation algorithms for 

multiuser OFDM system and multiuser MIMO-OFDM system over downlink 

transmission. The following work has been done. 

Multiuser OFDM system 

• Review the single user optimal bit allocation algorithm. 

• Analyze the optimal subcarrier and bit allocation in multiuser OFDM 

system followed by two sub-optimai subcarrier allocation algorithms called 

Wong's sub-optimal algorithm and combined sub-optimal algorithm. 

• Propose an efficient channel gain difference based subcarrier allocation 

algorithm with low complexity. 

• The proposed algorithm outperforms the Wong's sub-optimal algorithm 

and combined sub-optimal algorithm with lower total transmit power. 

• The fairness among users and the overall power efficiency are guaranteed. 

Multiuser MIMO-OFDM system 

• Study two advanced precoding based transceiver design methodologies in 

multiuser MIMO systems and find out the SVD assisted model has lower 

BER performance through computer simulation. 

• The SVD assisted model is extended to multiuser MIMO-OFDM systems. 

• Based on the extended SVD assisted multiuser MIMO-OFDM system, 

Zhang's and ECBA subcarrier allocation algorithms are reviewed and a 

unit power based subcarrier allocation is proposed. 

• The simulation results show the significant improvement on the proposed 

subcarrier algorithm compared with Zhang's and ECBA subcarrier 

allocation algorithms. 

• The fairness among users and the overall power efficiency are guaranteed. 
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6.2. Suggested Future Work 

The work presented in this thesis can be extended in many ways. We give 

some suggested aspects for potential future research. 

• Synchronization in uplink multiuser OFDM / MIMO-OFDM systems 

The proposed frequency offset estimation algorithms are based on the 

classic single user OFDM architecture. They can be extended to the uplink 

multiuser OFDM'MIMO-OFDM systems. The training sequence 

transmitted from each mobile user is perfectly known by base station so 

that the accurate frequency oftset estimation can be achieved by proposed 

methods. 

• Rate adaptive resource allocation in multiuser OFDM/MIMO-OFDM 

systems 

We have explored the Margin adaptive resource allocation scheme in 

this thesis. It is interesting to investigate the best assignment of subcarrier 

and power among users under the constraint of fixed total transmit power, 

so that the total data rate of system is maximized and each user's minimum 

required data rate is also achieved. 

• Resource allocation with imperfect channel status information 

The proposed algorithms in multiuser OFDM/MTMO-OFDM systems 

make the assumption that the perfect channel information is available for 

adaptive resource allocation. In real life, the estimated channel is not 

accurate due to the estimation error or the time delay between estimation 

and transmission. Tlierefore the transmitter optimisation with noisy channel 

estimates is still largely an unresolved research problem. It is of interest to 

explore the resource allocation schemes in the presence of channel 

mismatch. 
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• MAC-PHY based cross layer resource allocation in OFDM systems 

Most existing resource allocation algorithms focus on the physical layer 

of the overall network protocol stack. These algorithms are based on the 

assumption of deterministic traffic arrival and do not consider the dynamic 

queuing behaviours in MAC layer. In practice, traffics arrive at the receiver 

randomly so that dynamic queuing should be considered. Comparing with 

the PHY layer resource allocation, the MAC layer seeks the QoS 

specialized in packet delay, packet scheduling and throughput instead of 

those observed in PHY layer such as user's data rate and BER. Therefore, 

cross-layer approaches jointly considering physical layer and MAC layer 

issues hold significant potential for improving the system performance. To 

date, little work has been done to investigate cross-layer resource allocation 

algorithms for OFDM systems, when the constraints such as imperfect 

channel estimation, random traffic arrival, and various QoS requirements 

are considered, it is of interest to explore the low complexity joint PHY-

MAC resource allocation algorithms under the real wireless environments. 

The future communication systems have high demands on the real-time 

services such as teleconferencing, online video etc. These applications 

introduce a maximum allowed delay for each packet. The joint PHY-MAC 

resource allocation algorithms, which not only consider each user's channel 

status information and QoS requirements, but also the waiting time and the 

maximum allowable packet delay, will bring the benefit for developing the 

efficient and intelligent wireless communication systems. 

• Intelligent resource allocation implementation 

In current work, the optimization is carried out independently in every 

frame. For the real systems, the channel and queuing status are correlated in 

consecutive frames. The resource allocation algorithms where the resource 
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allocation in one fi^me is obtaiDed by the updates from the previous frames 

can significantly reduce the computational complexity. 

Resource allocation in wireless ad-hoc networks 

In this thesis, the central base station is sen/ing the mobile users with 

aim of allocating subcarrier, bit and power efficiently among users. 

However the ad-hoc networks require the peer to peer communications, 

therefore il is a big challenge to allocate the resources in a distributed 

manner for the future WLANs and wireless sensor networks. 

Next generation WLANs development 

The next generation WLANs are expected to provide services parallel to 

their wired counterparts. MIMO techniques have been applied in the 

curreni IEEE 802.1 IWLAN standards. For example, the MIMO-based 

IEEE 802.1 In promises an average data rate of 200Mbit/sec. Although 

MIMO techniques have been applied at the PPTY layer, its impact on 

net\vork capacity and protocol d e s i ^ is still not well investigated. It is of 

interest lo further research the MIMO techniques and WLANs by 

concentrating on the network and protocol aspects. 
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Single user Optimal Bit Allocation algorithm 

Initialization: 

For the «''' subcarrier, letc^ = O.Vn . m bits are assigned at a time, 

A^. ^ [/<'")-/(0)] 'a„". where / ( t ) is required received power for 

reception of c bits/symbol when channel gain equals to unity which can 

be calculated by equation (2-2). 

Iterations: 

Repeal the following R > m times: 

/)'= aî  nil ^ AP .̂ 

A/*, =[/{£•..+ m)- / (c . . ) ] / a ; 

End; 

Finish: 

{c„) ,̂ | is the final bit allocation solution. 

The initialization stage computes, for each subcarrier, the additional 

power needed to transmit an additional bit. For each bit assignment 

iteration, the subcarrier that needs the minimum additional power is 

assigned m more bits, and the new additional power for that subcarrier 

is updated. Finally, it gives the optimal bits assignment for each 

subcamer. 
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II. Combined Sub-optimal Subcarrier Allocation algorithm 

Step 1: 

Assign the number of subcarriers M, to user k based on the 

proportionality given in (5-16). 

Step n: 

For each subcarrier n 

1) Order the channel gains of all users for subcarrier n in 

descending order so that the users are ordered from highest 

channel gain to lowest channel gain. 

2) If the user k with the highest channel gain doesn't meet the 

required number of subcarriers n , , this subcarrier is assigned 

to this user, 

3) Otherwise procedure 2) is applied to the user* + l . 

End 

Fiaally all users are assigned the subcarriers according to their own 

required number of subcarriers. 

Step III: 

Now the subcarrier allocation between users has been obtained through 

Step I]. 

For each user A' 

The single user OBA algorithm described in Appendix 1 is 

applied for the bit and power allocation in the assigned 

subcarriers. 

End 
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ID. Proposed Channel Gain Difference based Subcarrier Allocation 

Algoritfaoi 

Modified Step n: 

Initialise the allocated subcarrier set B which is empty bul can have 

maximum jV elements, user set U which contains all A' users. 

While the number of elements in tf is less than total number of 

subcarriers N , do the following: 

A: 

For each unallocated subcarrier n 

1) Order the channel gains of users in t/ in descending 

order. 

2) Calculate the difference D,, between the maximum 

channel gain and the next maximum channel gain for 

subcarrier H 

End 

B: 

Find out maximum D,.. and its corresponding subcarrier" . and 

then fmd out the user k with maximum channel gain in 

subcarriern . 

C: 

If user k hasn't met the required number of subcarriers n . 

assign subcamer n to user k , and then update the allocated 

subcarrier set B . Otherwise remove user k from user sett/ . 

End 

Finally all users are assigned the subcarriers according to their own 

required number of subcarriers. 
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The advantage of the proposed method is introducing the channel gain 

difference factor £)__ to ensure users have the largest chance to occupy 

their best subcarriers. 
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Abstract— (his paper jnievtigatM Ihr allocation of subcarricrs 
and poner In the downlink channels of multiuser OFDM 
sy^ems. Ttie ^oal is to minimise the tulul transmit power 
undi^r the constraints uf user data rates and bit error rate 
(BER). \%e propose a sub-optimitl algorithm to achieve the goal 
in this paper. \ \e introduce a nct̂  Tactor which is the gain 
dtfTercnce hetuccn the maximum and the next maximum 
users' channel gains for each subcarrier. Then the subcarriers 
are allocated to difTerenl users accurdinn to Ihis factor. The 
simulation results show this ali;urithm outperforms the 
multiuser UKDM systems with static Krequenct I)i\ision 
Multiple Access (KDMA) technique, also it uutperrurms the 
sub-optimal method proposed bi %\ong. We quanltf) the 
improvement in terms of total required transmit power and 
BKR, 

hevtvords: Mulliaser OFDM. Suhcarrier Allocation 

1. INTRODIICTION 

RESOIJRCF- management including subcarricr, power and 
bit allocation has raised the hoi discussion in Multiuser 

OFDM system opiimizalion. Simple but cfRcieni 
optimization algorithms are inquired for the practical use. In 
Multiuser OFUM-hDMA systems, usere have muitipath 
fading but each has independent fading parameters due to 
different lotalions. A subcarrier in deep fade for one user 
may not be in deep fade for other users. Therefore it is 
necessary to find out a method to allocale subcarrieis 
efficiently between users according to the channel state 
information (CSl) which can be analyzed from the uplink 
received symbols in lime division duplex (TDD) wireless 
commtmication system. In Ihis paper, the perfect CSl of 
each user is assumed to be known by the base station. 

Generally speaking, there are two classes of optimization 
techniques; margin adapiive (MA) (1], [2], [3] which is lo 
achieve the minimum overall transmit power given the 
constraints on the users' data rate or bit error rate (BHR). 
and rate adaptive (RA) (4], [5], |6] which Js to adapt the 
transmit power with water-filling policy for each user in 
each subcarrier and to maximize the overall data rate with 3 
total transmit power constrainl. We focus on Margin 
Adaptive optimization. 

Wong et al. proposed an optimal optimization algorithm 
based on Lagrange relaxation in order to minimize the total 

transmission power with satisfying all users" rale 
requirement [I]. He applied this algorilhm lo allocate the 
subcarrier first, and then applied a single user optimal bit 
alkK-ation (OBA) for each user on the assigned subcarriers. 
The algorithm outperforms the fixed allocation schemes 
(e.g.. Ol-DM-TDMA. OFDM-FDMA etc) a lot, but it is 
very complex and has heavy compulation. To cope with this 
problem. Wong ci al. proposed a simplified sub-optima! 
algorithm which performs closely with optimal solution j2 | . 
Bui ii has llxed the number of assigned subcarriers of each 
user which is not a good strategy in practical systems. 
Ki\anc ct al. proposed the famous Graving Greedy 
subcarrier and power allocation algorilhm [3]. The 
algorithm v^as separated into two stages: the tirsl step is 
determining the number of subcatriers based on SSR and 
users' rale requirement, the second step allocates the 
appropriate subcarrier to each user by using amplimde 
craving greed\ (ACG) subcarrier assignment algorilhm m 
order to minimize the total transmit power. To reduce the 
computational complexity, Kim ci al. convened the 
nonlinear optimization problem into a linear integer-
programming problem [7J, However, the complexity still 
grows exponentially with the number of subcarricrs and 
users. Zhang at el. proposed a novel dynamic subcarrier and 
bit allocation algorilhm for real-time services in multiuser 
OFDM systems, which takes advantage of the instaiJtancous 
channel gain in subcarricr and bit allocation properly 
without relying on the nonlinear optimization technique like 
algorilhm in [1], in order to reduce the compulation 
complexit>' [8]. 

In this paper, we propose a two-step subcarrier and power 
allocalion algorilhm. We introduce a factor which is the gain 
difference between the maximum and the next maximum 
users' channel gains for each subcarrier. The subcarriers are 
allocated to different users according to this factor. Then 
single user OBA as described in section 111 (A) is applied to 
each user on the assigned subcarriers to minimize the total 
transmit power. The rest of the paper is organized as follows. 
Section II describes the Muhiuser OFDM System Model and 
MA optimization problem formulation. Section III describes 
the single user OBA method, Wong's method in [1] and 
combined sub-optimal method from [6] and [4]. Section IV 
describes the proposed method. Section V presents the 
performance according to the simulation results. Finally, 
Section VI concludes the paper. 

http://ac.uk
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I I . SYSTEM MODEL 

The Multiuser OFDM system has K users and N 
subcarriers. The base station assigns sutwarriers to each user 
and determines the number of bits on each subcarrier 
according to the CSI of each user. Subcarrier sharing 
between users is not allowed. This paper focuses on the MA 
optimization. Mathematically, the original problem can be 
formulated as [ I ]: 

^ ^ 1 „ . . 
( I ) "^-"SS^-^''^"' 

where P is the total power, ^^ „ ^ '^^ number of bits for 

k user on fi subcarrier in one OFDM symbol, Q^ijjis 

the channel power gain for k user on n subcanier, 

and D^[Q,M] is the set of all possible constellation 

values for c^^ „ with maximum allowed value M . 

In addition, /(c) is the required received power for 

reception of C bits/symbol when channel gain equals to 

imiiy: here we consider the system employing MQAM. 

the re fo re / ( f ) is expressed as [1]: 

3 4 
(2) 

where N^, is the noise power spectral density, /*_. is Ihe 

given BER. and Q represents Q-funciion. And Ihe 

minimization is subject to the following constraints: 

/f*=S^».« (3) 
n^l 

f i . „ ? ^ 0 , i h e n f^ij, = 0 f o r A ^ A ' ' (4> 

R^ is the required data rate for user k. 

111. ALGURiTHMS IN THt LiTb.RATURE 

In this section, we present the review of the published 
algorithms of subcarrier. bit and power allocations. 

A. Single user OB A Method 

The Single user OBA method proposed in [1] will be 
applied after subcamer allocation to minimize the total 
transmil-power. In a Single user OFDM system 
optimization, the problem in 11) can be rewritten as: 

Subject to 
.V 

(5) 

(6) 

\ greedy approach is optimal by assi^ing bits to the 
subcarrier that requires the least additional power until all 
R bits are assigned. The algorithm is described in Table 1. 

Initialization: 

For aL n , let c„ = 0 . m bits are assigned each 

time.An = L / " ( m ) - / ( 0 ) ] / ( a ' ; . / ( c ) c a n b e 

calculated by (2) 
Iterations: 

Repeat the following {Rt m) times: 

n ' ^ a r g m i n , , AP^; 

c.- = c, +'«; 

AP„=[/{c„^m)-f(c,)]/a;, 
Finish: 

i^„ 1^1 's I K final bit allocation solution. 

Table I. Single user OBA Algorithm 

B. Wong s Method 

Wong proposed Ihe optimal solution in [1] by rehLKing the 

requirement c , ^ G D to allow C, „ being a real number 

within [0, A / ] . The detailed algorithm is briefly described in 
[ 1 ]. But the optimal solution requires a complex converging 
process, and results cannot be used immediately in the 

original problem (I) because C^ „ may not be an integer. So 

Wong proposed a sub-optimal method to use Ihe optimal 
solution to obtain the subcamer allocation, and then the 
single user OBA method is applied to each user on the 
allocated subcarricrs. 

C. Combined Suh-opiimal Method 

In | 6 | . Jang et al proposed the maximum bit-rate method 
which is allocating the subcarrier to the user with ihc best 
channel condition. For each subcarrier. by comparing the 
channel gains of all the users, the subcarrier is allocated to 
the u.ser with the highesi channel gain. This process is 
repealed until all the subcarriers are distributed. But this 
method doesn't take into account the fairness between u.sers. 
A nscr may have high channel gains on all subcaiiieis, 
thereby dominating the subcarriers. Then in [9]. the fairness 
among the users is considered. The constraini (7) is added to 
determine the number of subcarriers S^ required for user 

k by the proportion of the required data rate fl^. As shown 

in (7), die proportionality of left hand side of (7) is equal to 
the proportionality of right hand side. 

Sy.Sj'- — :S^ -R^-.R^: ...R^ (7) 



Assign the number of subcarriers 5 , to user k based on 

the proponionaliiy given in (7), 
Step I : 

For each subcarrier n 
1) Order the channel gains of all usere for 

subcaniern in descending order so that ihc users 
are ordered from highest channel gain to lowest 
channel gain. 

2) If the user k with the highest channel gain 
doesn't meet the required number of 
subcarricrs S^ - this subcarrier is assigned to this 

user. 
3) Otherwise procedure 2) is applied to The 

aser k + i 
hnd 
Finally all users arc assigned the subcarriers according to 
ihcir own required number of subcarriers. 

Step II: 

Now we ha\e the subcarricr allocation between users 
given in Step I. 
For each user k 

The single user bit-loading algorithm described in 
Section III (A) is applied for the bit and power 
allocation in the assigned subcarriers, 

Lnd 

Tabic II. Combined sub-optimal method 

Here, wc combined the maximum hit-rate method 
proposed in [6] and the constraint in [9]. Finally the hit and 
power allocation is done by Single user OBA method. The 
algoritlim is briefly described in Table II. 

IV. PROPOSED MLTHOD 

In this paper, we proposed a simple but efficient sub-

optimal subcarrier allocation method. A new factor D„ , 

which is the gain difference between the maximum and the 
next maximum users" channel gains for each subcarrier, is 
introduced. The subcarriers are allocated to different users 
according to this factor. Finally the bit and power allocation 
is also done by the single user OBA method. The proposed 
method makes some modification on the Step 1 of combined 
sub-optimal method for the subcarrier allocation based on 
the new factor. The modification is briefly described in 
Tabic III, 

The advantage of the proposed method is 

introducing D^ to ensure users have the largest chance to 

occupy their best subcarriers. Fig.l shows the comparison 

initialize the allocated subcarrier set B which is empty 

but can have maximimi N elements. The user sci V 

contains all K user^. 

While the number of elements in B is less than total 

number of subcaniers A/ , do the following: 

A. 
For each unallocated subcarricr n 

1) Order the channel gains of users in U in 
descending order, 

2) Calculate the difference D„ between the 

maximum and the next maximum users' 
channel gains for subcarrier n 

End 

B, Find out maximum D^, and its corresponding 

subcamern , and then find out the user k with 

maximum channel gain in subcarriern . 

C. If user k hasn't met the required number of 

subcarriers S , assign subcarrier n to user k . 

and then update the allocated subcarrier set B . 

Otherwise remove user A' from user self/ . 

End 

Finally all users are assigned the subcairicrs according to 
their own required number of subcarricrs. 

Table III. Proposed method 

of subcairicr allocation between the proposed method and 
the combined sub-optimal method. Wc assume a 2-uscr 
OKDM system with 128 subcarricrs. and data rate ratio 

between user 1 and user 2 is ^ | : R~ = 1 : 3 . therefore user 
I requires 32 subcarricrs and user 2 requires 96 subearrier^. 
The channel gains of these Two u.sers are shown in Fig.l (a), 
and the subcarrier allocation in combined sub-optimal 
method and proposed method are shown in Fig.l (b) and 
Fig.l (c) respectively. The stars represent the subcarriers 
allocated lo user 1, and the circles represent the subcarriers 
allocated to user 2. 

As shown in Fig.l (a), the maximum channel gain for 
user I is occurring around 120* subcarrier. In Fig.l {b}. the 
subcarrier allocation of the combined sub-optimal method 
allocates subcarricrs within the range ( l " subcarrier to 4'*' 
subcarrier and 25* subcarrier lo 52'*' subcarrier) to user I, 
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Co) Subcarrier allocation in combined sub-optimal method 

because user I has relatively higher channel gains than user 
2 within this range. Beyond this, user I has reached the 
number of subcamcrs required (32 subcamcrs), so that 
subcanier allocation to user I does not occur in the area 
containing the subcarrier with maximum channel gain. 
Oppositely, the subcanicr allocaiiun of ihe proposed method 
shown in Fig.i (c) assigns mosi of ihe subcarriers to the user 

possessing maximum D^ (i.e. user 1 around 120* 

subcarrier) where D„ is defined as the gain difference 

between the maximum and the next maximum users' 
channel gains for each subcarrier. The subcarricrs around 
the 120"' subcarrier for user 1 all hove large difterencc with 
user 2. Thus these subcarriers are firstly selected for user 1-

A 
.A 

\ J 

/ 

- t, 

o 
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(c) Subcarricr allocation in proposed method 

Fig.l. Subcarricr allocation comparison 

V, PERFORMANCE 

in this section, we compare the performance of the 
proposed method wiih currently available schemes such as 
the Static subcarricr allocation method (Fixed OFDM-
FDMA). the Wong' mcihod and ihe combined sub-oplimal 
method. 

We assume the Mukiuser OFDM operales wiih 128 
subcarricr^. and the characteristics of users" channels are 
five-paih frequency selective Rayleigh lading channels with 
exponential power delay profile. We quantify the 
improvement in terms of the Average bit SNR and BER. 
The Average bit SNR is defined as the ratio of the average 
required transmit power to ihe noise PSD level N^ . while 

(he average required transmit power is defined as the ratio 
of overall transmit energy per OFDM symbol to the total 
number of bits transmitted per OFDM symbol. 

The Fig.2 shows the average bit SNR (in dB) needed 10 

achieve the same BER P. = 10^" plotted versus the 

number of users for the proposed method, combined sub-
optimal method, Wong's mcihod and Fixed OFDM-FDMA 
with OBA and equal bit allocation (EBA). We find that the 
OBA leads better performance than EBA in the Fixed 
OFDM-FDMA systems with 2dB-3.5dB advantage. Wong's 
method, combined sub-optimal meihod and proposed 
method apply the adaptive subcarrier allocation combined 
with OBA; thereby they all lead better performance than 
Fixed OFDM-FDMA syslems Wong's method is 3-5dB 
beiier than Fixed OFDM-FDMA with OBA and 5-8dB 
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better than Fixed OFDM-FDMA with EBA. Compared with 
Wong's method, the combined sub-optimal method saves 
the transmit power around 0.5dB when number of users 
equals 4 and 7. and requires almost equal transmit power 
with Wong's method when number of iLsers equals 3. 5 and 
6, Thus it has siinilar overall performance with Wong's 
method. However, our proposed method has around 0,5-ldB 
advantage over Wong's method in saving the transmit 
power. 

Fig..l continiiously shows the improvement with more 
familiar BFR versus bit SNR CLjr\'es. We assume a five user 
OFDM system. For different BFR requirement 

( / • , , = 10 "' - 1 0 ' ' ). the relevant Average bit SNR (in 

dB) is calculated. Then we concluded that our proposed 
method outperforms other methods under the same 
operating cnvironmenl, and ihai combined sub-optimal 
method also gives slightly better performance than Wong's 
method. 

.additionally, in the aspect of algorithm's computation 
complexity, both combined sub-optimal method and 
proposed me I hod require much less compulation than 
Wong's method because diey don't have the complex 
converging process like Wong's method, ihereforc ihey arc 
much more practical in real life. 

VI. CONCLUSION 

In ihis paper, wc investigate the subcarrier and power 
allocation in Downlink of Multiuser OFDM Systems. The 
proposed method not only considers the fairness of 
subcamcr allocation between users, but also introduces a 
factor which is the difference between the maximum 
channel gain and second maximum channel gain for each 
subearrier. Then the subcarricr allocation is carried out 
according to the factor. 

Simulation results show it outperforms the Fixed OFDM-
FDMA. Wong's method and the combined sub-optimal 
method In addition, the proposed method has much less 
computation complexity than the optimal solution proposed 
in [1] because it doesn't require the complex converging 
process. For large number of users, the proposed method 
may require relatively large computation for comparison 

between user's channel gains to determine D^ for each 

subcarrier. However, with ihc increasing processors, this 
should not be difficult to achieve. Thereby it is much more 
useful in practice systems. 
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ihstracl—In lhi« paper, l«o fast and accurale FFT-bsscd 
frequency ufTscI estimation metliods fur OKDM systems are 
proposed. %\e anai\7.e and simulate proposed meltiods in holh 
Gaussian and multipalh fading ehanneh. and compare (he 
results »ilh those obtained using ndl kno^^^ Schmidi's method. 
The simutatinn results arc presented in terms of Error V sriance 
(E\) . Both propoM;d FET-hased methods have significantlv 
smaller E\ than Schntidl's method in . \ \ \CN and Mullipath 
static fading channel and the proposed Î FT melhud-ll also has 
smaller E\' than Schmidl's method in multipath time-vanring 
fading channel. 

Index Terms— OtDM, synchronization, frequency offset. HT. 
Error Variance 

prefix. However, the most popular method is that proposed by 
SchmidI [4]. using a preamble consisting of two OFDM 
training symbols with specific design. 

In this papier. Sehmidi's method is reviewed, and then two 
fast and efficient FhT-based frequency offset estimaiion 
methods arc proposed. The performance of proposed methods 
is evaluated through comparing the actual IVcquency offset 
with that estimated together ^̂  ith the KV of estimated results. 
The results obtained are compared with those obtained using 
Schmidl's method [4]. Finally, the computational complexities 
are computed and compared with Schmidl's method. The rest 
of paper is organized as follow. Section II brielly describes the 
OFD.M system model. Section 111 reviews Schmidl's method 
and introduces oiu" proposed FFT-based methods. Section IV 
presents the simulation results. Section V concludes the paper. 

1. INTRODUCTION 

S Y C H R O N I Z A T I O N is one of the crucial research topics 
in onhogonal frequency division multiplexing (OFDM) 
system because of its sensitivity to the liming and frequency 
errors [ I ], 

To guarantee last and accurate data transmission. Inter 
Carrier Interference (ICl ] caused in the transmission has to be 
etiminaicd as much as possible which can be achieved by 
maintaining the orthogonalily of carriers such that the 
transmitter and the receiver have the exact same carrier 
frequency. Bui m the real world, frequency offsets wl l be 
arising from the frequency mismatch of the iran.sniitter and 
the receiver oscillators and the existence of Doppler shift in 
the channel. So it is important to be able to csdmate the 
frequency oflsei to minimize its impact on system 
performance. 

Moose [2| described a technique to estimate the frequency 
oflsct tising two repealed OFDM symbols but the eslitnation 
range is limited within half sub carrier interval. Jan [3] 
proposed a maximum likelihood (ML) frequency offset 
estimation method for OFDM systems by using the cyclic 

II. OFD.M SYSTEM MODEL 

The block diagram of a typical OFDM transceiver is shown 
in Figure 1. A block of input information data bits is encoded 

and mapped to PSK or (JAM symbol c'„. and eon\ened by 

the serial to parallel converter to a number of parallel streams 
which go through the Inverse Fast Fourier Transform (IFFT) 
processor and a cyclic prefix (CP) is inserted to the IFFT 
output. The CP consists of the output own last N sampler. 

The baseband OFDM symbol 5^ can be expressed as: 

s.-
I ,V.-i 

•jNtf, 
Y,c„.e''^''(-N^<k<N-\) (I) 

where A' is the number of IFFT points. N^. is number of 

subcairiers ( .V̂  < .V ). These symbols are filtered, up-

converted and then transmitted. 

Thereseaich was sufqwrted by Umveisilyof Plymoulh, UK 

http://plvmuuth.ac.uk


Figure. I. Block Diagram of OFDM Transceiver 
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At the receiver, the timing offset is modelled as a delay in 
the received signal and frequency offset is modelled as a 
phase distortion of the received data in the time domain [5]. 
The received samples of the OFDM symbol can be expressed 
as: 

r, = r ' = ' " '.£5,__./)„,+7, (2) 

Here, h^ is the channel impulse response with length v , 

ie is the delay of a symbol. £ is the frequency offsel 

/ , . normali:^cd to the subcarrier spacing [/(.VT,). whereZ^ is 

the sample interval, and ^^ is the white Gaussian noise. The 

boundary of preamble and the fiequeiKV offset will be 
estimated by liming and frequency synchronization algorithms 
respeciivcly and then ibc OFDM symbols inside the frame 
needs to be compensated for the frequency offset before 
carrjing out demodulation. 

111. FREQUENCY OFFSET ESTIMATORS 

in this section, we review the Schmidl's method firei, and 
then propose two FFT-based frequency offset eslimalton 
methods. All training symbols are QPSK modulated, and then 

muhiplied by in frequency domain in order to maintain 
approximately constant signal power. 

3.1. SchmidI method 

SchmidI [4] designed two training symbols as preamble. 

The first one has two identical parts 5 ,^ and .V, „^£ with N12 

samples each and I- {- N12 t delay beti^een identical 

samples. They will remain identical after passing through the 

channel, except the phase difference ^ between ihem due lo 

the frequency offsei. 

<P^ljzJ^^LT^=K.f^NT, (3) 

where 0 can be estimated from the timing metric given in [4j 

at the optimum timing poini , Then if |01 is less i h e n ^ , the 

frequency offset will be: 

Otherwise 

/,=0/(;iATJ 

f.-^^" 

(4) 

mr. NT. 
(5) 

where P is an integer. We correct the two training symbols 

0 
with the computed frequency ofFsei ). All we have to 

;cV7", 

do now is to tind the unknown second term in (5). Lei the 
FFT's of received first and second corrected training symbols 

he^.F^^. / ^ ^ ) and the differentially modulated PN sequence 

on the even frequencies of the second training symbol be 

I Uj ). Then Jie sliding correlation between the FFTs and 

(U j ) is given by 

*e.V 

(6) 

where X is the set of indices for even frequency components 

of the second trainmg symbol. Finally, the / corresponding 

lo the maximum value of d ( / ) is used lo calculate integral 

frequency offset in (5), 



3,2. Proposed FhT-based methods 

Frequency offset estimation eomes after a precise liming 

eslitnation. the recci\'ed training symbol r„ after removing 

the CP is muhiplied with the conjugate of the known training 

symbol to gel ihc modified signal t/,,. and then processed by 

N-poim FFT as shown in (7) for ftrquency offset search. The 
training symbol can be the one applied for liming offset 
estimation in Schmidl's method so that only one training 
symbol is required for both time and frequency 
synchronization in OFDM systems. 

J Hm-
1 a 

AT; FU™J/F(A-_+a)+l 
(11) 

Then the frequency offset is given by: 

Ji- Jcvne J linr 

a 
NT m _ ) / F ( i +a) + ] 

) (12) 

*̂=Z'̂ ''-̂ ""'"' \0<k<.\'-\) 

d=r.A. 

(7) 

(8) 

where .-i,, is the training sequence which is assumed to be 

known to the recei\'er. A^ is its conjugate. The coarse 

frequency oflset f^^^^.is given by (9) w*ere k^^ is the bin 

number of the largest magnitude in the FFT outputs. 

J (IfOMF 
NT. 

(91 

Normally equation (9) gives the exact frequency when the 

largest magnitude falls at the centre of the F ( A ' ^ , ) . 

However, when it is offset to the right or the left of the centre 
due to noise or distortion, equation (91 will gi\e an incorrect 
frequency. To alleviate this problem, wc propose two 
methods for line frequency search. 

3.2-1-FFT method-1 

Wc use ihc largest magnitude K^(An„i)^ . and two 

magnitudes on both sides of largest magnitude /^(A^^, —1) 

and |F (A:^^ ,+ l ) | . Define a switching function a as: 

« - l '/ \F(k^.,-l)\<\F(k^+\)\ 
(10) 

It can be shown that the fine frequency offset is given by: 

3.2.2. FFT melhod-ll 

We define the phase S,,, which is caused by the coarse 

frequency offset operating on the CP of training symbol as: 

e^=angle{e a' f. f.r. 
) (13) 

The first step is the spectrum shifting, which is shifting the 

maximum bin A'^^^to zero frequency position to achieve the 

spectrum of the signal distorted by fine frequency offset only. 
And then IFFT is applied to transform signal back to time 
domain given by: 

,v-i 

^ . - Z ^ i •^'"''"* ' (0 ^ A' ^ -^ -1) (14) 
n ^ 

where F , is the shifted FFT ouipui. Then d^ can be 

represented in polar coordinates as equation (15) with 

magnitude M^ and phase AT,, , which is the same as the 

expected training sequence subject to fine frequency offset 

f fbw "" 'y ^^ shown in equation (16) 

5„ ^ M.£ I " . 

s ^Ufe'"'''-"^''''' 
n fl 

(15) 

(16) 

The match filler (MF) ouqiut is given by autocorrelation of 

S„ and S„, and the real MF out is given by: 

.v-i 

(17) 
n=0 



The estimate of this fine fi-equency offset derived in |6J is: 4.2 Performance of Freqncncy estimators 

N-\ 

X-W„.j,4„f.(«+Nj.K-^„],, 
/ f i « ~ 

_ l!=<l 

S-i (18) 

2 ; r r , X ( n + ^ f . A ^ . H r 
11=0 

The frequency offset is given by; 

K 
NT. 

__ ^ngx . n^ 

2jfr,XV'+N^y-.M„\A^f 
(19) 

.F=0 

Note: tf,, needs the phase compensation with 0^, and 

IJT phase correciion denoted as [.J,, to achieve accurate 

estunation. 

IV. SIMULATION RESULTS 

4.1 Simutation Parameters 

Simulations are carried out to evaluate the proposed 
methods. Table I and II show the necessary simulation 
parameters and Ihe multipaih time-varying fading channel 
model respectively. The multipath static lading channel has 
zero Dopplcr shift, and fixed path gains which are the same 
as those of the multipath time-varying fading channel model. 

Number of subcaniers ( N^) 

IFFT points ( N ) 

Dale rate { R , ) (Mbits's) 

CP length 
Frequency offset 

1000 

1024 

IR 

10% of OhDM symbol 
2,4 subcarrier spacing 

Table I. Simulation Parameters 

Maximiun Doppler shift (Hz) 
Number of Paths 
Delays of the paths in samples 
Path gain 

60 
3 

[0,6,11] 
[0-9.0.36,0.29] 

Table II. Multipath time-varying Fading channel 

The simulations arc carried out to evaluate the proposed 
methods and compared with the Schmidl's method. 

First of all. a series of frequency offsets are assumed, then 

for each one. the value /_. estimated by the proposed methods 
is compared with the actual value in AWGN channel and 
multipath lime-varying fading channel with SNR in both 
channels fixed at lOdB. Results are shown in Figure.2. 

AWGN channel 

D 06 IB I 2 5 3 3 5 4 * 5 5 
Actual ralalnv fraquHntr affesl 

(a) 
MuRipalh timt-vwying fading chniM 

0 0.5 I I ^ 2 Z5 3 3.6 4 4 S S 

(b) 
Figure.2. Proposed FFT-based estimators' performance in 

(a) AWGN (b) Multipath limc-varying fading channel 

Figure.2 shows Ihe estimated versus assumed frequency 
offset of the proposed methods when system is operating io 
AWGN channel and multipath time-varying fading channel. 
The results show the excellent agreement of estimated with 
assumed frequency offset values. 



Subsequently, the EV is evaluated and eompared for the 
proposed methods. Here the frequency offsel is assumed as 
2.4 subcairier spacing. The SNR is set in the range of 0 to 
24dB witli 3 da intervals. The EVs of diflerenl SNR for these 
estimators are evaluated in AWGN channel, mullipalh sialic 
fading channel and multipath time-varying fading channel 
respectively. Results are shown in Figure.3. Obviously, in 
AWGN Channel and mull ipalh static fading channel , 
proposed FFT method-I and FFT melhod-il all have smaller 
LV than Schmidl' meihod. and FFT method-11 has smaller 
LV than FFT method-I. In the multipath time-varying fading 
channel. FFT mcthod-Il still has smaller liV than the other 
two. however FhT meihod-I has slightly higher FV than 
SchmidFs method because the lack of consideration on signal 
phase leads the un-slabled estimation. 

AWGNchainel 

-Schtrudrs melhoif 
- FFT iriBlhod-l 
- FFT method-n 

Time invarani Frequeticj seleMws [iding channal 
dilaj3=(0.6.111, alle=p 9. • 36, 029] 

ID" 

Time nnaitl FrsquencT eeleclive lading channsl. 
tt=eOH!, ielsys^P.B, 111. Jtte=J0.9.0.3B,0.291 

10 

-Schmdl'E mBthod 
- FFT malhoO-l 
- FFT malhod-ll 

ID 15 
Srffl(dB) 

(C) 

20 25 

Figure.3. FV of Proposed methods and Schmidl method in 
(a) AWGN channel 

(b) Multipaih static fading channel 
(c) Mullipalh time-varying fading chamicl 

4 J The Computational Compleiitj-

This section prescnis ihe comparison of the computational 
complexity of proposed meihods with thai of Schmidl's 
meihod. We assume the training symbol used for estimation 
has 1(124 samples, and Radix-2 FFT is applied when needed. 
The results are shown in Table 111, 

As shown in Table 111. the proposed meihods have less 
compulalional requiremeni than Schmidl' method. Both 
proposed methods can be practically implemented in real life. 

Schmidl 
meihod 

Frr 
niclhod-l 

FKT 
method-

11 

Addition 

2344? 

13 

5142 

Product 

4SI31 

1099 

15507 

Fxponeni 
Evaluation 
4524 

10 

1044 

Magnitude 
Evaluation 
5868 

1024 

4096 

Table III, Computational Complexity 



V. CONCLUSIONS 

Frequency ofEsei estimation in O F D M sysfem is presented 

in thin paper. The popular Schmidl ' s method is reviewed, and 

two fast and cflfieicnl FFT-based methods are proposed. 

Simulat ion results from the proposed FFT-bascd methods 

show excelieni i requcncy estimates, and even provide belter 

perfonnanec than Schmid i ' s method in both A W G N channel 

and muliipath sialic feding channel. In the mutt ipath t ime-

varying fading channel . FFT method-l l still outperforms 

Schmidl ' s method, but FFT method-l has slightly higher t V 

ihan Schmid l ' s method because of the lack of considerat ion 

on signal phase. Additionally, they all require small 

compulat ion complexity so ihai the est imates can be 

computed in short l ime using available fast processors . 

Therefore, the proposed methods can provide good 

pcrfomiance with low complexity. 
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AbsiracI—this paper proposes a unil power based subcarrier 
allocation algoriihm with the aim of minimiziag the total 
transmit po»er in the downlink multiuser \nMCM>FDM 
svslcnis. and compares its performance and complexity with 
7.hani;'s algorithm and extended Correlation-based algorithm 
(t'CBAl. B> applying Singular \ alur Decomposition (S\'D), the 
inter-antenna interference IIAI) and multiple user interference 
( M i l ) can be minimized. Our proposal is combined with the 
single user optimal bit allocation (OB.AI algurilbm to achieve the 
aim. We verify Ibe proposal by simulation of the performance of 
total transmit power and calculating the computation complexity. 
The simulation results show our modiricalion has significant 
improvement compared with Zhang's algorithm and the ECBA. 

Index terms — Multiuser MLMO-OFDM. SVD, subairrier 
allocation 

I. INTRODUCTION 

OFDM converts a frequency-selective channel into a set of 
parallel flai-fading channels, and consequently makes MIMO-
related algoriihrn-s easy to implemeni [ 11. Recently, there have 
been heated discussions for efficient resource allocation in 
multiuser MIMO-OFDM systems. Consequently, several 
resource allocation algorithms were proposed in multiuser 
SISO-OFDM sysiem [2-1]. In [5], the resource allocation was 
extended to MIMO-OFDM systems based on SVD by utilizing 
the selection diversity gain. The user with maximum singular 
mode is selected during subcarrier allocation. In {6]. Liu et al. 
proposed a novel SVD based downlink multiuser MFMO 
sysiem. which akes into account the specific characteristics of 
the individual users channel matrix, instead of treating all the 
u.sers' channels jointly, as in the traditional multiuser 
transmission (MUT) technique. In [7], Ji el al. proposed the 
channel correlation metric between users and used it to select 
users in the multiuser MIMO systems. 

In downlink MIMO-OFDM systems, each subcarrier has 
multiple spalial layers; therefore muhiple users can share one 
subcarrier for transmission. The problem raised is ihc MUl. In 
this paper, we extend the SVD based multiuser MIMO system 
in [6] to muhiuser MIMO-OFDM system so that the MUl in 
each subcarrier can be minimized or cancelled. Subsequenliy. 
we review the Zhang's subcairier allocation algorithm 
proposed in [5] and describe the ECBA extended from the 
correlation ba.scd user selection algorithm in multiuser MIMO 
systems proposed in [7]. Because Zhang's algorithm requires 

large computation and only one user is assigned in each 
subcarrier and ECBA algorithm does not consider the 
coneialion among the spatial sub-channels within individual 
user. Therefore, we propose a unit power based subcarricr 
allocation algorithm which alleviates these problems. After the 
subearrier allocation, the u.sers' effective channel gains for each 
subcarrier arc calculated. Each user's eflective channel gains 
on the assigned subcarriers are applied to the single user OB.A 
algorithm described in [3] to allocate bits on each assigned 
subcarrier, and finally achieve system optimization. 

The rest of the paper is organized as follov^s. Section U 
describes the multiuser SVD based MiMO-OFDM system 
model. Section III describes the previous algorithms and our 
proposed modification algorithm for subcarrier allocation. 
Section TV presents the simulation results. Finally. Section V 
concludes the paper. 

11. SYSTEM MODEL 

We consider a downlink multiuser MIMO-OFDM sysiem 

with .V subcarriers. The basesiaion |BS) has A'/- transmit 

antennas to ser\'eK mobile users where each user ha\ingNg 

receive antennas. We assume the users* channel matrix which 

is not varied during the one Irame time and is perfectly known 

in both BS and users' mobile units, and that ^^ > V"^^ where 

S„ is the subset of users sharing the / / subcairier.The received 

signal of the user k on the K'* subcarrier is represented as: 

Un = H , „ 2 ^ F < „ . y P ^ d . . „ + w , ^ . A E 5 „ 

'=1 , ( I ) 

wheredij , is the parallel N^dataof user A iransmincd on the 

n'" subcarricr , P,.„ =(/wg!/ ' , .„ , . / l . . , : A,,,,v, I is the 

Sg X Ng diagonal matrix, representing the traru-mil power level 

ofuser /t on the n " subcarrier for (V ,̂ data symbols, F,^, is lhe 

NfXNg precoder matrix for user k on the 
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n'^subcarrier-H^j, Is the ;v,, x ̂ ^ '̂̂ ^""* '̂ ^^Tix for user k on 

ihe n'* subcamer, and w, „ is the complex Gaussian noise 

with zero mean for user k on the n' subcarrier. As shown in 
the muhiuser MIMO system of [61. the precoder is containing 
the iRinsmii power level P^^ which is pre-defined as 

constraints. In our paper. P^^ is separated with precoder 

because it is the factor which is unknown and needs to be 
minimized. According lo the SVD based matrix decomposition 
method in [6]. the Hj^, can be expressed as 

v" 
(2) 

where Uj^, and V̂  „ are the Nf,xNg laid NjXN-r left and 

nght singular vectors of Hi„ respectively. H^jjis the.V^x^^ 

diagonal malrLv containing the singular values ofH(j , l l j j , . 

Furthennore. V\„ , i s the matrix with size of.v,.>:,v„, and 

containing the right singular vectors corresponding to Ihe non

zero singular values of H, „. V(,, . is the matrix with size of 

NT-xiN-r-Nf). and containing the right singular vectors 

corresponding lo the zero singular values of H j ^ . 

Then we consider the system in overall view with the 
fallowing definitions: 

d„-ldl.dl„,..jil„f,keS„ (3) 

P„=d,«giP,^.P,. P ,^ l .*eS„ (5) 

U„=(/wg{U,.„.U,^ V,J,keS„ (6) 

Z„=dfag\Z,,„X2.„ 2:*^l.AeS„ (7) 

V„.=[V,,^,.V^„,,...V,,,,).Ae5, (8) 

« , = t w [ „ , w L - w L f ' A e S , (9) 

where d„ is the overall transmitted data on the n' subcajrier, 

F, is the overall precoder on the n' subcarrier. and/'„ is the 

overall transmit power level on the n' subcarrier. Therefore 
the overall received signal vector y„ of all the users sharing the 

n'* subcarrier can be expressed as: 

y„ = u X " V „ « , F „ V ^ d . + w, (10) 

As shown in (10), the MUT on the n'''subcarrier can be fully 
removed when F„ is chosen to be: 

where fV'̂ , ]* denotes the pscdo-inverse of V̂*̂^ . By 

substitulingt 11) into (10). y„ can be expressed as: 

To be more specific, the received signal of user k on the 

n"" subcarriei can be expressed as: 

yu = UiX.'V^<i*..+«...-*es„ (13) 
As shown in (13). user k has fully removed the MUI 

generated from other users sharing the n' subcanier. 
Furthermore, the lAI among the antenna-specific symbols can 
be suppressed by posl-processmg yj„ with L( „and shown as: 

vi'.„yt^=d,^=-S.\z^d^_„ + v'L^,_„,keS„ (14) 

where d; „ is the iVj,xI received data for user k on 

the fl'* subcarrier from the <V̂  antennas. Then we assume that 

users' unity power-normalized data d, „.Ae5„ transmitted 

on the " " subcarrier are not correlated with each other, 

so £(dij,d^„) = / . According to (14), the required receive 

power PJij, for user k on the n* subcarrier is given by: 

^tj, = d,^d"_„ 

= £(2:i;Vp^d,X.(V^)"<^Si»") 
= K-Jp^,Eid,,,dt)iJp^.i''(^\'^'>" O?) 

H,^].2.H 
= Ei-VPt-W*."* <4;) 

So. 
= (^im^ 
P,...=Ht,l)-']'Pi.„.ksS„ (16) 

HereP;^,=^flg!/^^.,./V^^,...,/y;„^^} is Ihe required receive 

power to support l•^_„ =[f(_„i,rt„,, . .x,i^vjl ' ' 's by satisfying 

target bit error rale (BER) P^ for user k on the n' subcarrier 

over A'fl receive antennas. According to [2], 

f^„,,{k£ S„.i= 1.2...., A*;,)can be expressed as: 

f^.n. =/(^*..) = %C>"'4'l''^"" -'* "^ 
J 4 

where N(, is the noise power spectral density, and Q ' is the 

inversed Q fiinciion. Because of the precoder fi„. the actual 

transmit power P,^ for user A on the B"" subcanio- is: 

pr. = ij^..,f n,„ 
M 

.Ae5„(I8) 

K=iKr (11) 



where /v^jjis Ihe ;'* column of Fj^,. According to (18). the 

effective channel gains g( „ of the user k on the 

n' subcarrier can be expressed as: 

We then denote dieg^.^jas the /'*diagonal element ofg^j,. 

The total transmit power for useis on all subcarriers are 
formulated as: 

V 

'^lalol = iS'-/-.̂ iii;-''''-' 
Then the optimization problem can be formulated as: 

subject to the following conditions: 

I;A.(£ '^i.-.)=fli. * = i f^ 
n=l 

A,„ = 

*=1 

= 1 '/ £'•',.. *o 

= 0 if X'''-"-'"" 

(20) 

(21) 

(22) 

(23) 

where R^ is the data rate of user k and /'̂  „ =! means 

subcatriern is allocated to user k . 

HI. SUBCARRltR AND BIT AU-OCATION 

In this section, we focus on the subcarrier allocation 
algorithms in multiuser MIMO-OFDM systems based on the 
re\ iew of previous algorithms and our proposed algorithm. 
.^.1. Reviews of Subcarrier allocation algorithms 

We will review the maximum singular value-based 
subcarrier allocation algorithm proposed by Zhang in [5]. and 
the ECBA subcarrier allocation algorithm extended from the 
correlation based user selection algorithm in multiuser MIMO 
s>stems proposed in [7]. 
.^.1.1. Zhang's subcarrier allocation algorithm 

Zhang's subcarrier allocation algorithm is based on the 
maximum singular value of each user's channel, and each 
••uhcarner can be allocated to only one user al most. The 
detailed algorithm is described in [.'']. 
3.1.2. Fslended Correlation-based subcairier allocation 
Algorithm (ECBA) 

In |7], the channel correlaiion metric beiween user / and 
usery is proposed lor ihe user selection in multiuser MIMO 
systems and defined by: 

' 7 ^ , = -
H,H' 

H I - H 
(24) 

Here the channel correlation metric is extended to the 
subcarrier ailocaiion of muhiuser MIMO-OFDM systems with 
the following definition. 

Definition 

1. Each subcarrier is allowed to be shared between 
multiple users. 

2. The maximum number of users sharing one subcarrier 

is K = Nr'N^, 

3. The subset of users in the n' subcarrier 
is S„ = 0, Vn e .V , 

4. The set of available users in the n ' subcatrier 
ist/l„ = il.2,...^l,VneJV. 

5. The number of subcarriers required by users 
«!, VA e K is proportional to their data rate. 

tif : / ! • > : . . . : « ^ ~ ^ i • ^'' • — - ^K 

*= l 

Then the ECBA algorithm is executed as follows: 
_/breoc/isubcairier ne[l,...,/V] 

(a) FindM = argmax Hj ̂  
iEi.' l,," 

(b) ^^hiie siielS„)<K 

Find a userit, it = arg min / rf^j^ 
1*:J'I ^ J 

(25) 

l e t I,, 
a,>0 ' ™e.V, 

If no H found, break the loop, otherwise 

end 

OIlJ 
3.2. Proposed subcarrier allocation algorithm 

We propose our unit power based subcarrier allocation 
algorithm. The definition of proposed algorithm is inherited 
from that in ECBA. 

Wc modif>' the ECB.A as follow. The Frcobenius norm 
indicates the overall energy of the channel. We find out the 
maximum channel Frobenius norm (MCFNi among all users 
for each subcarrier and order the subcarricrs by their MCFN 
values. The subcarrier allocation is from the first to the last 
ordered subcarricr so that the user having higher channel 
energy has the priority to be served. Wc denote T as the set of 
ordered N subcarriers. Then we assume unit received power 
required in each receive antenna among all users and all 
subcarriers, so that 

/^^j =l,(Vite ^ .Vne N.Vie Ng) (26) 
For each subcarrier in T. the user with MCFN is selected fust, 
subsequenily the users generating maximum cfteclive channel 
gains g^^ then requiring minimum transmit power if added in 

this subearrier are selecled until K is reached. The detailed 
algorithm is described as follow: 



for each subcaiucT n in T 

(a) Find M-argniax||H( „j" 

S„=5„ui i , f / l„=t / l„-« 

"„ =' '^- 'Vj! , /?«,» = I 

(b) while si-e[S„)<K 

Finda userw. M = arE min \—^^ 

S„=S.LJji 

If no II found, break the loop, otherwise 

end 

end 

3.3. Bit allocation 
As a result of subcairier allocation, the set of users 5„ 

sharing the n"" subcarrier is applied to calculate the efFeclive 

channel gains g^ ,̂ of the user k on the n' subcarrier. Then 

the single user DBA algorithm described in [3] is applied to 
allocaie bils to the assigned subcarriers with minimum power 
for each user. 

IV. PERFORMANCE EVALUATION 

In this section, we compare the performance of Zhang's 
algoriihm. ECBA algorithm and proposed algcirilhm. The 
liirgct BER is set u> be 10 . ihc number of subcarriers is sei to 
32 and the number of iteraiions L of Zhang's algorilhtn is set 
to be 15. The noise pt>wer speclral density level is assumed lo 
be unity (.Vp = 1). Two situations are considered; 

(a) Single receive antenna for all users (.V„ =1) 
The sum of largei data raie of users is 256 biLs/symbol. 
The achieved results are shown in Fig. 1.2 and 3. 
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Fig,2- Running lime vs. number of users(A's =1) 

Fig.3.Toial Iransmii power vs. number of anlennas when 
number of users is \b(N ^ =1) 

(b) Mulitpte receive antenna for all users (.V,, = 2) 
The system capacity is increased with the growth nl 
number of receive antennas, so the sum of largei data rate 
of users is 512 biLs/symbol, The achieved results are 
shown in Fig.4.5 and 6. 

Fig. 1 .Total transmit power vs. number of users (JVJJ = 1) Fig.4.Total transmit power vs. number of users {.V̂  =2) 
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Fig.5.Running lime vs. number of users (.Vj, =2) 

5.S E ES ' 

Fij;,6.Total transmit power vs. number of antennas when 
number of users is 16(,V^ =2) 

allocated subcarricrs given bv proposed algorithm is alway ŝ 
less than thai given by ECBA. 

Fig.2 and Fig.5 show the computing complexity required 
for these three algorithms, which is increased widi the growih 
of number of users. The running time is computed using a 
laboratory computer processor. Faster processor may take 
shorter running time but the conclusion from the running time 
comparison for the algorithms does nol change. Zhang's 
algorithm requires verj' high computation due to the iteration 
process. The proposed algorithm requires slightly higher 
computation than ECB.A algorithm because of the calculation 
of effective channel gains. However the cost of the 
computation increase is in exchange of lowering lie transmit 
power and is within limit of up to dale processors. 

Fig-3 and Fig.6 show thai for all three algorithms, the 
required total transmit pt)wer is reduced as the number of 
transmit antennas increases under the condition of fixed 
number of users. And the proposed algorithm still outpeiî 'orms 
Zhang's algorithm and ECBA algorithm as the number of 
transmit antennas increases. 

V. CONCLUSION 

In this paper, we propose a simple but efTicienI subcairier 
allocation algorithm in !he multiuser MIMO-OFDM systems. 
The SVD method is applied to cancel the interference among 
the users sharing the same subcarrier. Through comparison 
between proposed algorithm, Zhang's algorithm and ECBA 
algorithm, the proptised algorithm keeps outperforming the 
Zhang's algoriihm and ECBA algorithm with lower total 
iransmit power when increasing the number of transmit 
antennas and number of users. This lowering of iransmit power 
comes at the cost of a slight increase in the computation 
complexity of proposed algorithm. However it is accepted in 
nowadays processors tor real use. 

Number of 
transmit antennas 

ECBA 
Proposed 

aluorithm 

4 

0..1963 

0.3606 

6 

0.7062 

0.6722 

8 

!.OI."(0 

0.9809 

10 

1.3791 • 

1.3409 

Table. I. Normalized sub-channel correlations of users on 
their allocated subcarriers in a 16-user MIMO-OFDM system 

('V« = 2) 

With end-user using one or two receiving antennas, Fig.l 
and Fig.4 show that proposed algorithm outperforms the 
Zhang's algorithm and the ECBA algorithm with lower total 
transmit power for various number of u.sers. Increasing the 
number of receive antennas, the performance gap between 
ECBA and proposed algoriihm is enlarged because the 
proposed algoriihm reduces ihe correlation between sub
channels of u.sers which is not considered by ECBA, The 
Table.I shows this fad. As shown in Table.I, in the 16-user 
MIMO-OFDM system with different number of iransffiit 
antennas, the sum of sub-channel corretalions of users on their 
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