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SUMMARY

It has been long recognized that atmospheric turbulence degrades the quality of

images and video sequences. Stationary objects being observed through the atmo-

sphere can appear blurred and waver spatially as if they are in motion. This phe-

nomenon is well recognized, especially in astronomy. The degradation arises from the

complicated, random fluctuations in the refractive index of the air, caused by fluctua-

tions in temperature. In this thesis, the fundamental theory of turbulence such as the

Kolmogorov law is reviewed. It is also shown that the point spread function (PSF) of

the turbulence can be derived from the physics equations that describe atmospheric

turbulence.

Atmospheric turbulence degradation is usually modeled as a linear convolution.

The turbulence is dynamic and random in nature. The blurring parameter of the PSF

of the turbulence is dependent on altitude, temperature, the rate of energy per mass

dissipated by viscous friction, the sheer rate of the wind, and so on. Information

about those turbulence conditions is often not available. Thus, the exact PSF of

the turbulence blur is generally unknown in practice. Consequentially, blind image

deconvolution technique is used in such a context. Blind image deconvolution is well

known to be an ill-posed problem. Certain assumptions about the image and/or

the blur must be made in order to find a solution. It has been observed that the

kurtosis of the blurred (smoothed) image is often higher than an unblurred version.

This observation is studied and justified using a frequency domain analysis where

kurtosis is first represented and then interpreted. An image can be decomposed

into a low frequency component and a high frequency component. It is found that
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the kurtosis of an image is dominated by the interaction of the low frequency and

high frequency components. Blurring alters the interaction and tends to increase the

kurtosis. In addition to the theoretical analysis, experiments are conducted to verify

that the smoothed image has higher kurtosis. This important observation forms the

basis for the new blind deconvolution method. Kurtosis can be viewed as a metric

to measure the quality of the resorted image without having the original image. In

simulations, when an original image is available, one can use peak signal-to-noise

ratio (PSNR), to determine the restored image that has the highest PSNR (PSNR

maximization) to estimate the blurring parameter. Kurtosis minimization based blur

identification works as following: given the functional form of the blur and an estimate

of the parameter space, the parameter is searched by minimizing the kurtosis of the

restored image. The restored image that has minimal kurtosis is used as the final

estimate of the true image and the corresponding parameter is the identified blurring

parameter. In many simulations, kurtosis minimization gives the same result as PSNR

maximization. Kurtosis minimization is a generally applicable blur identification

method. It has been tested on a variety of blurs including Gaussian blur, linear motion

blur, out-of-focus blur, averaging blur and atmospheric turbulence blurs. In many

experiments on standard test images, kurtosis minimization is able to give perfect

estimation at different levels of noise. Moreover, it is compared with generalized

cross validation (GCV) based blur identification on atmospheric turbulence blurs,

which is the main application in this thesis work.

Besides blurring, turbulence also introduces geometric distortion in the video since

the turbulence is time-varying. Such geometric distortion has been largely ignored

in previous work in the restoration of turbulence degraded video. In this thesis,

the time-varying distortion component (geometric distortion) is explicitly added into

the video degradation model. The few previous researchers who have addressed the

problem used a reference video, which is initially formed by time averaging of the
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original video. The video frame is then warped towards the reference frame. When

there is no object motion present, the approach works well in the sense that the

turbulent motion is suppressed and the video is stabilized. However, the performance

degrades severely when object motion does exist such as in panning or zooming or the

case when the object is moving in the scene. The time averaging approach leads to a

further degradation of the video in terms of the PSNR since the reference frame itself

is motion blurred. A new method is introduced in this thesis that does not use a time-

averaging reference video. Compensation is performed directly on the trajectories of

the pixels in the video. The trajectories of the pixels are built from optical flow

algorithms. An adaptive control grid interpolation (CGI) is used to compute the

optical flow. This CGI algorithm can be viewed as an extension to the classic Lucas-

Kanade method. The compensation along the motion trajectories effectively suppress

the turbulent motion while preserving real object motion. The new method works well

when there is real motion or when there is only turbulent motion in the video. Besides

subjective evaluation of the result, the performance is also objectively measured by

PSNR in simulated turbulence degraded video clips that include a variety of situations

such as camera panning, zooming and object movement. In all the cases, the new

method yields significant improvement over previous methods. The study of adaptive

length of the smoothing window is also reported in this thesis. It is found that it is

advantageous to adjust the smoothing window length since the turbulent motion is

dynamic and approximately periodic.

Within the turbulent motion suppression framework, multiple frames of denoising

are performed by warping the neighborhood frames towards the central frame fol-

lowed by averaging. Not only does it effectively reduce noise, it also helps in reducing

scintillation caused by atmospheric turbulence since the averaging decreases the vari-

ations in luminance. Mean squared error between consecutive frames are measured

to show the reduction in luminance variations.

xiv



In addition to its importance to astronomy, atmospheric turbulence degradation

can also appear in surveillance application where the video is degraded by horizontal-

path atmospheric turbulence. In these applications, it is desirable to have a real time

or near real time processing of the degraded video frames. A C/C++ implementation

is conducted to show that real time processing is achievable.

xv



CHAPTER I

INTRODUCTION

1.1 Statement of the Problem

Atmospheric turbulence is a well known source of distortion that can degrade the

quality of images and videos acquired by cameras viewing scenes from long distances.

This phenomenon is especially common in astronomy. For example, stars in outer

space viewed through telescopes appear blurred since the Earth’s atmosphere de-

grades the image quality. The physical cause of the turbulence is the fluctuations

in the refractive index of air [71]. These fluctuations involve many factors including

wind velocity, temperature gradients, elevation, etc. The dominant factor is usually

temperature variation. In practice, it is difficult to measure these factors, and thus

the parameters associated with a true physical model of atmospheric turbulence are

typically unknown. Consequently the task of compensating for turbulence distortion

can be viewed as a blind restoration problem. In addition to blurring, another effect

associated with turbulence is geometric distortion, which arises because the turbu-

lence is time-varying. This effect shows up in video when stationary objects appear

to waver.

Taking both effects into consideration, turbulence-degraded video g may be mod-

eled approximately as:

g(i, j, t) = D[x(i, j, t) ∗ h(i, j, t), t] + η(i, j, t), (1)

where * denotes two-dimensional convolution, η denotes time-varying additive noise,

D denotes the turbulence induced time-varying geometric distortion, h is the disper-

sive distortion component of the atmospheric turbulence, g is the observed degraded

video, and x is the original video. When t is fixed at a time when D(x) = x (i.e.
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no geometric distortion), the above model reduces to the common image degradation

model:

g(i, j) = x(i, j) ∗ h(i, j) + η(i, j), (2)

where the observed image g(i, j) is approximated as the sum of a two-dimensional

convolution of the true image, x(i, j), with a linear shift-invariant blur, (also known

as the point-spread-function (PSF)), h(i, j), and additive noise η(i, j).

If we consider a parameterized PSF for the turbulence, equation (2) can be rewrit-

ten as:

g = x ∗ h(θ) + η (3)

θ ∈ Ω

where θ is the blur parameters. The problem of recovering the true image x(i, j) from

the given degraded image g(i, j) is called image restoration in the signal processing

literature. Classical restoration methods require complete knowledge of the blurring

function h(i, j) prior to restoration. However, it is often impossible, or, in some cases,

impractical to determine the blur a priori. Such is the difficulty in characterizing

atmospheric turbulence in aerial and astronomy imaging. These situations typically

rely on blind image deconvolution approaches.

Many blind restoration algorithms have been proposed in the past [41, 52, 84, 69].

Since blind deconvolution is an ill-posed problem, certain assumptions are typically

made to make the problem tractable. For example, in the iterative blind deconvolution

(IBD) method proposed by Ayers and Dainty [3] and its extensions such as the double

regularization algorithm [89], images and blurs are assumed to be smooth and non-

negative. Auto-regressive moving average (ARMA) models are also commonly-used

models for the deblurring problem. The image is modeled as an autoregressive process

and the blur is modeled as a moving average process. Both maximum likelihood [84]

and generalized cross-validations [69] use this ARMA formulation.
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The approach taken in the first part of this thesis may be described as follows.

First assume that the form of the blurring function is known, but not the parameters.

Let x̂(θh) denote the deblurred image with the hypothetical parameter vector θh.

Given the set {Ψ : x̂(θh|θh ∈ Ω)}, which restoration is the best approximation of the

original image? The problem is easy if x is available and one can use the mean squared

error or the peak signal-to-noise ratio (PSNR) as a measurement. The restored image

with maximum PSNR may then be chosen as the best approximation, since, by this

criterion it is the closet fit. However, x is not available in practice. In this dissertation,

we introduce and explore the kurtosis, which is a measure of how outlier-prone a

distribution is, as a criterion for selecting the best deblurred image. In particular,

a kurtosis minimization based blur identification method is proposed and used to

restore turbulent-degraded video frames.

Much of the previous work in turbulent-degraded image restoration has focused

on still images and thus has only treated time invariant distortions [73, 75]. When

this is done on a frame-by-frame basis, the object is not stabilized in the video pro-

cessed by the method [73]. Only a few authors have considered methods based on

image registration and warping techniques [18, 17] to explicitly address the geometric

distortion component D. In those approaches, the time-averaged frames are typically

used as reference frames and the current frames are registered towards the reference

frames. The restored video has higher resolution and the video is stabilized in the

sense that the geometric component of the atmospheric distortion is suppressed. How-

ever, these methods usually cannot handle situations in which both turbulence and

real motion are present simultaneously. When true motion exists, the reference frame

will be motion-blurred. Small, fast moving objects may even be smoothed out in the

reference frames. The real motion is changed (slowed down) in the reference video

because of the averaging and consequently is not preserved in the restored video.
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Thus, such methods typically struggle to handle situations involving panning, zoom-

ing, or object movement. A new method is presented in this thesis to handle all of

the above situations whereby the quasi-periodic nature of the geometric distortion of

the turbulent motion is exploited. Motion is modeled explicitly and motion vector

fields are computed. The cumulative motion vectors are computed over an estimated

period of the turbulent motion. This efficiently separate the turbulent motion from

the real motion. The motion modeling, estimation, and compensation are developed

in greater detail in the subsequent chapters.

1.2 Scope of the Thesis

Chapter 2 provides an overview discussion of imaging through atmospheric turbulence

and a discussion of the major blind image restoration methods such as generalized

cross validation (GCV) and maximum likelihood. Earlier methods to address geo-

metric distortions in turbulence degraded video are also included in this chapter. The

limitation of this method is illustrated.

Chapter 3 describes the kurtosis-minimization-based blur identification. In this

chapter, the statistical relationship between minimum kurtosis and optimal restora-

tion is examined in the frequency domain using phase correlation. Then, kurtosis

minimization is applied to the identification of a number of different distortions such

as out-of-focus blur, Gaussian blur, atmospheric turbulence blur, and linear motion

blur. Comparisons are made with Generalized Cross Validation (GCV), which is one

of the highest performing methods for this kind of restoration.

Motion estimation and compensation and classic optical flow algorithms are re-

viewed in Chapter 4 as a precursor to the introduction of the geometric distortion

suppressing algorithm.

The simulation of turbulence degradations in video is presented in Chapter 5. In

order to quantitatively analyze the performance of the restoration algorithm, it is
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necessary to have the ground truth video. Thus the degraded videos were generated

in simulations. Experimental results on a number of both real and simulated videos

are presented. There are situations where it is critical to have the restoration run

in real time. Therefore, a C implementation of the algorithm was developed. It is

shown that real time performance is achievable after making some modifications to

the restoration algorithm.

Finally, in Chapter 6, a conclusion and further research directions are discussed.
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CHAPTER II

BACKGROUND

2.1 Imaging through Turbulence

Atmospheric turbulence can cause blurring and geometrical distortion in images and

videos acquired from a long distance away. Stationary objects being observed through

the atmosphere can appear blurred and waver spatially as if they are in motion. This

phenomenon is well recognized, especially in astronomy. The degradation arises from

the complicated, random fluctuations in the refractive index of the air.

In the paragraphs that follow, we will present an overview of physical equations

that describe atmospheric turbulence and some of the models used to represent the

distortion effects.

The phase of a wave that has propagated through turbulence is a space- and time-

varying random process. The value of a random process at one point x is a random

variable, and has a probability density function p(f [x]), mean µ(x) and variance

σ2(x). For a stationary process, none of these quantities depends on x, that is to

say, the statistics are the same everywhere. Atmospheric turbulence is approximately

a stationary process [82]. Although random processes are typically described by

correlation functions or covariances, in the atmospheric science structure functions are

typically used. As shown later, the optical transfer function of atmospheric turbulence

is represented by a structure function. A structure function is the mean square

difference between the two values of a random process at x and x + r [82]:

Df (r) = 〈|f(x)− f(x + r)|2〉 =

∫ ∞

−∞
|f(x)− f(x + r)|2p(x)dx (4)

where x,x + r are 3-d vector that represent two positions. The covariance function
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(spatial correlation with the function itself) is

Bf (r) = 〈f(x)f(x + r)〉 =

∫ ∞

−∞
f(x)f(x + r)p(x)dx. (5)

The relationship between the structure function and the covariance function is

Df (r) = 2(Bf (0)−Bf (r)) (6)

Within a range of separations |r| = |x1 − x2| that is greater than the inner

scale `0 (a few mm) and less than the outer scale L0 (ranges from 10’s to 100’s of

meters), structure function of quantities (such as refractive index and temperature)

in atmospheric turbulence D can be assumed to be homogeneous ( independent of

position D(x1,x2) = D(r)) and isotropic (independent of directions D(r) = D(r)

where r = |r|). The structure function for atmospheric turbulence obeys a power

law:

D(r) = C2r2/3 `0 < r < L0 (7)

where C is a constant. This is the well-known two-thirds power law derived by

Kolmogorov [82, 20, 60]. The refractive index structure function is

Dn(r) = C2
nr2/3 `0 < ∆r < L0 (8)

where Cn is the refractive index structure function constant. The refractive index

fluctuation results mainly from the fluctuation of temperature in the atmosphere.

The structure function of temperature in the atmosphere also follows a two-thirds

law:

DT (r) = C2
T r2/3 (9)

where CT is the temperature structure function constant. The two structure coeffi-

cients Cn and CT are related by

Cn = (
∂n

∂T
)CT . (10)
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The optical index of refraction for air at optical wavelengths, n, is given by

N = n− 1 = 80× 10−6P

T
, (11)

where T is the temperature in degrees Kelvin and P is the pressure in millibars

[33]. In a turbulent atmosphere, the relative fluctuations of temperature are much

stronger than those of pressure so that the index fluctuations are directly related to

the temperature fluctuations. From Equation (10) and Equation (11) we have

C2
n = (80× 10−6 P

T 2
)2C2

T . (12)

C2
n and C2

T have a strong dependence on altitude z and so usually they are denoted

as C2
n(z) and C2

T (z). The temperature structure constant C2
T (z) is given [33] by

C2
T (z) = α2ε

2
3 γ(z)2/β(z)2 (13)

where α is a constant, ε is the rate of energy per unit mass dissipated by viscous

friction, β(z) is the average shear rate of the wind, and γ(z) is the average vertical

gradient of the potential temperature.

When wavefronts pass through the atmosphere, refractive index variations in the

air may perturb the wavefronts in both amplitude and phase. Of these two compo-

nents, it is the phase fluctuation that is most responsible for the distortions we see.

Therefore, to simplify the discussion, the wavefront is represented as Ψ(x) = eiφ(x)

where φ(x) is the phase.

The spatial coherence function of the wavefront Ψ(x) is defined as

CΨ(r) = 〈Ψ(x)Ψ∗(x + r)〉 (14)

= 〈ei(φ(x)−φ(x+r))〉 (15)

CΨ(r) is a measure of how “related” the light wave Ψ is at one position (e.g. x) to

its values at neighboring positions (say x + r ). It can be interpreted as the optical

transfer function (OTF) of atmospheric turbulence. If there is no phase fluctuation,
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φ(x) − φ(x + r) = 0, then CΨ(r) = 1. Thus, in this case, the OTF is 1, meaning

there is no turbulence distortion. The quantity 〈ei(φ(x)−φ(x+r))〉 can be simplified

through a property of characteristic function as shown below. In probability theory,

the characteristic function of a random variable x is defined as the expected value of

eiκx

M(κ) = 〈eiκx〉 (16)

where κ is a real number. That is, M(κ) is the Fourier transform of the probability

distribution function:

M(κ) =

∫ ∞

−∞
eiκxp(x) dx. (17)

If the random variable is a Gaussian with mean µx and variance σ2
x,

〈eiκx〉 = e−
σ2

xκ2

2 eiκµx , (18)

or when 〈x〉 = 0

〈eix〉 = e−
〈x2〉

2 . (19)

This Equation (19) is to be used for the simplification of Equation (14). Since φ(x)−
φ(x + r) is a zero mean Gaussian random variable,

CΨ(r) = 〈ei(φ(x)−φ(x+r))〉 (20)

= e−
〈|φ(x)−φ(x+r)|2〉

2 (21)

= e−
Dφ(r)

2 . (22)

The phase shift of a wave propagating vertically (in the z direction) from height

h to height h + δh caused by refractive index fluctuations is

φ(x) = k

∫ h+δh

h

n(x, z) dz, (23)

where n(x, z) is the index of refraction and k is the wave number.

These relationships as defined by equations (4)-(23) are important because they

capture the intricate nature of atmospheric turbulence. The distortions caused by
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phase variation are dependent on altitude, temperature, rate of energy per mass

dissipated by viscous friction, sheer rate of the wind, and so on, working with a

multiparameter function like this is problematic and thus simplified models are use-

ful. From Equations (20) and (23), an optical transfer function (OTF) was derived

by Hufnagel and Stanley [33]. In terms of discrete frequencies, their OTF of the

atmosphere turbulence is given by

H(u, v) = e−λ(u2+v2)
5
6 , (24)

where u, v, are the discrete frequency variables and λ, which controls the severity of

the blur, is determined by the turbulence strength C2
N(z).

This model has wide applications. Because of its simplicity, we use this model for

atmospheric turbulence degraded video, realizing that the refraction index fluctuation

is a random process and that the blur is time-varying. Thus, besides the blurring

effect, geometric distortion will also occur.

2.2 Previous Works in Turbulence Degraded Image Restora-
tion

The restoration of atmospheric turbulence degraded images has been studied exten-

sively. The Labeyrie method [42], the Knox-Thompson method [39], and the triple

correlation method [53] represent speckle imaging techniques. The purpose of speckle

imaging [86, 30] is to obtain an estimate of the true object from a time series of short

exposure images of the object. This is accomplished by estimating both the Fourier

magnitude and phase of the object, separately, and then inverse Fourier transforming.

Such techniques assume that a series of short-exposure turbulence-degraded images

are available.

The imaging through turbulence can be modeled with the following convolution:

in(x) = hn(x) ∗ o(x) (25)
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where in(x) is the nth speckle image in an ensemble, o(x) is the object that we want

to recover, and hn(x) is the point-spread function. If we take Fourier transform of

this relationship, the convolution becomes a multiplication. Then We can average the

power spectrum over each frame and solve for the Fourier magnitude of the object as

following:

|O(u)| =
( ∑ |In(u)|2∑ |Hn(u)|2

)1/2

(26)

where u is spatial frequency vector. |Hn(u)| is estimated from a point reference in the

image. For the phase estimate of the object, the complex bispectrum is used. In sta-

tistical analysis, the bispectrum is a statistic used to search for nonlinear interactions.

The bispectrum [57] is defined in spatial frequency space as:

IB,n(u,v) = In(u)In(v)I∗n(u + v) (27)

where u and v are spatial frequency vectors. The Fourier phase of the object is shown

to be recursively related to the phase of the average complex bispectrum according

to a three-point integration [19]

arg(O(u + v)) = arg(O(u)) + arg(O(v))− arg(
1

N

∑
IB,n(u,v)) (28)

where N is the number of the observed images. The phase of the object is recursively

computed from this equation. After the phase and the magnitude are recovered, they

are simply combined and inverse transformed to give the restored image of the object.

As shown in Equation (26), a point-shaped reference adjacent to the object is

required so that |Hn(u)|2 can be estimated. The phase of the object is estimated by

Bispectral analysis as in Equation (28). Speckle imaging represents a fundamental

improvement in the resolution obtainable from large ground-based telescopes. How-

ever, noise is not in the model shown in Equation (25). The performance is degraded

when the image contains a certain level of noise. Generally, the computation demand

is high. This is partially because there are many frames to be processed, perhaps
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thousands [15], in order to achieve the desired results. There are some difficulties in

applying the method to surveillance images recorded over horizontal or slant paths.

For example, it is very unlikely to have a point reference for estimating |Hn(u)|2 as

required by the speckle imaging method.

Another approach to addressing the problem was the wavefront sensor technol-

ogy, which is used to determine the phase perturbation in each short-exposure image.

From the measured phase perturbations, deconvolution is then performed by wave-

front analysis [16]. The wavefront sensing technology can also be used in adaptive

optics [13] to correct the measured phase deviations by using a flexible mirror. Com-

plicated devices are needed in such technique. Sheppard et al [75] presented a MAP

( maximum a posteriori ) algorithm for deconvolution with Wave Front Sensing.

The restoration of turbulence-degraded images is often recognized as a blind im-

age deconvoltuion problem since the exact point spread function of the turbulence is

usually unknown and time varying. Ayers and Dainty [3] proposed the iterative blind

deconvolution method, which was applied to the restoration of turbulence-degraded

images. The image-domain constraint of nonnegativity is used in the iterative algo-

rithms to take advantage of the nonnegativity property of image intensity distribu-

tions. Promising results were obtained in simulations. However, the uniqueness and

convergence properties of the deconvolution algorithm are uncertain and the effect of

noise existing in the convolution data is unknown. Later, many approaches were rec-

ommended to improve the blind deconvolution method including least-squares-based

approaches [46, 47, 59] and maximum likelihood estimation [73, 45]. Generally, the

computation complexity is high for maximum likelihood estimation.

Other blind image deconvolution methods for the restoration of atmospheric tur-

bulence degraded images include an image division method that was proposed by

Frieden [22, 21] as a faster method for image restoration with only two short-exposure

images. The atmospheric turbulence PSF is modeled as a stochastic superposition
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of a series of disturbance or speckle functions. The Fourier frequency spectra of two

short-exposure images are used to establish nonlinear equations for the weights and

displacements of the speckle functions. The weights and displacements of the speckle

functions are found by the Newton-Raphson algorithm [22] and Marquadt-Levenberg

algorithm [21]. These methods are based on the assumption that the number of the

speckle functions, and the forms and parameters of the disturbance functions remain

unchanged. In reality, these assumptions might not hold. By assuming the PSF sup-

port is known, Zhang et al [90] proposed an approach to estimate the PSF coefficients

in the frequency domain from two short-exposure turbulence-degraded images when

the noise is omitted. As with other iterative restoration algorithms, the constraints

of non-negativity and smoothness are used to increase the noise robustness of the

approach.

In this thesis, a blind image deconvolution approach that incorporates the turbu-

lence model is preferred since no device/sensor is needed to measure phase perturba-

tion. The atmospheric turbulence parameter is estimated directly from the degraded

images.

2.3 Blur Identification

Classical work in blur identification often relied on using spectral nulls as identifi-

cation indicators. Some common image blur sources such as uniform linear motion

blur and out-of-focus blur have distinct patterns of zeros in the frequency domain.

Gennery [23] developed a frequency-plot inspection method that takes advantages

of this phenomenon. The major limitations of the method are: 1) the PSF form

must be known so that the blur parameters can be determined from the frequency

zero locations; 2) the original image needs to have enough high-frequency content so

that the patterns of zeros are identifiable; and 3) the noise level must be low enough

so that it will not obscure the frequency zeros. Stockham et al. [81] devised two
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automatic methods named homomorphic deconvolution (or cepstral averaging) and

power spectrum averaging. The method is based on the assumption that the PSF

is shift-invariant while the image is spatially varying. Therefore the non-stationary

frequency content of the original image can be “averaged out” while the blur will

survive from such averaging since it is assumed to be shift-invariant.

Recently, parametric methods have been used to identify PSFs that are more

general than those accommodated by early methods. A commonly-used model for the

deblurring problem is the Auto-Regressive Moving Average (ARMA) model, in which

the image is modeled as an autoregressive process and the blur is modeled as a moving

average process. Many algorithms use this ARMA formulation, including maximum

likelihood(ML) [84] and generalized cross-validation(GCV) [69]. The ARMA model

will be reviewed first, followed by the GCV and ML blind deconvolution algorithms.

2.3.1 Auto-Regressive Moving Average (ARMA) Model

The ARMA model represents an image as an autoregressive (AR) process and a blur

as a moving average (MA) process. In this way, the image and blur are distinguished.

This model has been found suitable for the blur identification problem. The blurring

is assumed to be a linear shift-invariant convolution operation, which is a MA process.

The blurred image is treated as an ARMA process. The blur identification problem is

then formulated as the identification of a 2-D ARMA model [83]. The ARMA model

is represented as follows:

x(i, j) =
∑

(k,l)∈R+

aklx(i− k, j − l) + η1(i, j) (29)

g(i, j) =
∑

(k,l)∈R

dklx(i− k, j − l) + η2(i, j) (30)

where x(i, j) is the original image with indices (i, j), g(i, j) is the image degraded

by shift invariant blur and additive noise, and η1(i, j) and η2(i, j) are independent,
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zero-mean, white Gaussian noises with variances σ1 and σ2, respectively. η1(i, j)

represents the AR model residual and η2(i, j) represents the random noise added to

the blurred image. R+ is the non-symmetric half-plane (NSHP) support of the AR

process. The support R of the MA process given by dij is, in general, non-causal.

Energy conservation of the MA process is almost always assumed in order to preserve

the mean value of the image; that is:

∑

(i,j)∈R

dij = 1 (31)

In vector-matrix form, a more compact representation is as follows:

x = Ax + η1 (32)

g = Dx + η2 (33)

Reduced to a single equation, (32) and (33) become

g = D(I − A)−1η1 + η2. (34)

With these models of image and blur, the blur identification problem becomes one

of determining the parameters of an ARMA model. There are several issues involved,

including: 1) the model order of both the AR and the MA models, 2) the method used

to determine the parameters, 3) treatment of image boundaries, and 4) the presence

of observation noise in the data.

2.3.2 Maximum Likelihood Blur Identification

The maximum likelihood (ML) method is one of the most powerful parameter estima-

tion methods. The ML estimator determines the parameters that are most likely to

have produced the blurred image [3, 12]. A number of researchers have investigated

blur identification methods that apply the ML criterion, including Tekalp et al. [83],

Lagendijk et al. [43], and Katsaggelos et al. [38]. All of the methods use the same

basic approach, although the implementations differ somewhat.
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The maximum-likelihood (ML) methods attempt to derive restoration filters by

estimating the PSF, variance of the additive noise, and the AR model coefficients of

the original image. Thus, the problem consists of estimating the parameter set

θ = {h(k, l), a(k, l), σ2
1, σ

2
2}

from g(i, j) (σ2
1 and σ2

2 are the variances of η1, and η2, respectively). An estimate

of the parameters is made such that the probability or likelihood of obtaining the

observed image given the parameter set θ, is maximized. The ML estimator is given

by:

θ̂ml = arg{max
θ∈Θ

L(θ)} = arg{max
θ∈Θ

log(p(g; θ))} (35)

where L(θ) denotes the log-likelihood function of θ, Θ specifies the range of elements

of θ, and p(g; θ) is the probability density function (pdf) of g for a given θ.

Different implementations exist to solve the nonlinear optimization problem as

described by Equation (35), such as gradient-based methods and the expectation

maximization (EM) algorithm [43, 38]. The EM algorithm is the most popular since

it is straightforward to implement. The EM algorithm converts the nonlinear opti-

mization problem into a linear iterative procedure. It is computationally efficient,

although convergence might be slower than for a gradient-based method.

2.3.3 Generalized Cross-Validation Blur Identification

Cross-validation is a well-known model evaluation technique in statistical data anal-

ysis. It is also known as “leave-one-out” or predictive sample reuse. The basic idea

is to remove some of the data before training starts. Then when training is done, the

data that was removed can be used to test the performance of the learned model on

“new” data.

The holdout method is the simplest kind of cross-validation. The data set is

separated into two sets, called the training set and the testing set. The model is

learned using the training set only. Then the model is used to predict the output

16



Estimation Set Validation Set

Validation Set Estimation Set

Figure 1: 2-fold Cross-validation
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values for the data in the testing set (it has never seen these output values before).

The errors it makes are accumulated to give the mean absolute test set error, which

is used to evaluate the model. The evaluation by the holdout method can have a

high variance. The evaluation may depend heavily on which data points end up in

the training set and which end up in the test set, and thus the evaluation may be

significantly different depending on how the division is made.

K-fold cross-validation is one way to improve over the holdout method. In the

k-fold cross-validation, the data set is divided into k subsets. Each time, one of the k

subsets is used as the testing set and the other k−1 subsets are put together to make

up a training set. Then the average error across all k trials is computed to evaluate

the model. The advantage of this method is that it matters less how the data gets

divided. Every data point gets to be in a test set exactly once, and gets to be in a

training set k − 1 times. The variance of the resulting estimate is reduced as k is

increased. The disadvantage of this method is that the training algorithm has to be

rerun from scratch k times, which means it takes k times as much computation to

make an evaluation. A variant of this method is to randomly divide the data into a

test and training set k different times. The advantage of doing this is that you can

independently choose how large each test set is and how many trials you average over.

The 2-fold cross-validation is illustrated in Figure 1.

Leave-one-out cross-validation is K-fold cross-validation taken to its logical

extreme, with K equal to N , the number of data points in the set. That means that

N separate times, the model is trained on all the data except for one point and a

prediction is made for that point. As before the average error is computed and used

to evaluate the model. The evaluation given by leave-one-out cross-validation error

(LOO-XVE) is good.

It had been demonstrated that cross-validation is able to estimate image param-

eters and regularization parameters from noisy and blurred images [68]. Reeves [69]
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extended leave-one-out cross-validation to determining the blurring parameter also.

The idea is quite simple. For a fixed value θ in the parameter space Θ, a restored

image fk(θ) is obtained using all but the k-th pixel values in the blurred image g. The

restored image is then reblurred to predict the one that was left out. The predication

error is recorded. Each time, a different pixel is left out while all the rest are used

to obtain the restored image. The mean-square predication error is computed for the

tested parameter. The process is performed for each candidate parameter in Θ, the

parameter space. Finally, the parameter with the minimum mean-square predication

error is selected as the best choice.

Let fk(θ) be the restored image that minimizes the following criterion:

Ek(f̂ , θ) =
1

N

N∑
i=1
i6=k

(gi − [D(θd)f̂ ]i)
2 + α‖Lf̂‖2 (36)

where D is the matrix in the ARMA model as in Equation (34), θd is the blurring

parameter, α is the regularization parameter that controls the degree of smoothing,

and L is the smoothing operator.

Let D−k represent the matrix D with the k-th row deleted; dk represent the k-th

row of matrix D and g[−k] denotes vector g with the k-th element removed. The

minimizer of the estimation equation (36) is given as

fk(θ) = (DT
−kD−k + αLT L)−1DT

−kg[−k]. (37)

The restored image fk(θ) is reblurred as in Equation (33) to predict the observation

gk that was left out when fk(θ) is estimated. The cross-validation criterion is the

mean square error over all k:

Vo(θ) =
1

N

N∑

k=1

(gk − [D(θd)f
k(θ)])2

k. (38)

If θ approximates the true ARMA parameter (D,A) and the regularization pa-

rameter α well, then the above MSE is expected to be small. The θ that minimizes
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Vo(θ) is selected as the estimated parameters. GCV has been compared with ML [69]

and it was shown that GCV outperforms ML in real noisy blurred images.

2.4 Turbulent Motion Suppression

Few researches have considered the turbulent geometric component of the atmospheric

turbulence problem. Fraser et al. [18] proposed an approach of first forming a pro-

totype that is initially the temporal average of the image sequence. This prototype

is motion-blurred, but is assumed to be geometrically correct. Then a hierarchically-

windowed phase-correlation technique is used to register the degraded video frame to

the prototype image, to sub-pixel accuracy. The prototype is updated by re-averaging

of the processed image sequence. The procedure is shown in Figure 2. Another pro-

Figure 2: Time averaging reference approach for the suppressing of turbulent mo-
tion. Step 1: Use time averaging to compute reference frames; Step 2: Use image
registration to warp the frame in the degraded video toward the corresponding refer-
ence frame; Step 3: Repeat the previous 2 steps by treating the processed video as
the input.
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cedure is the adaptive control grid interpolation used by Frakes et al. [17] for image

registration. This method was shown to work quite well in the absence of real motion

of objects in the scene. The restored video has higher resolution, and turbulence-

induced distortions are suppressed. The notable shortcoming of these methods is

that they are not designed to handle the situation in which both turbulence and real

motion are present.

An example is illustrated in Figure 3 to show the limitation of the time-averaging

reference approach. The example is a simulated panning video clip where the cam-

era is moving from left to right. Three frames are taken to form a reference frame.

Then frame 2 is warped towards the reference frame. Distortions are very obvious

in the warped frame. There is no turbulent motion in the video. However, a tur-

bulent motion effect is produced by the time-averaging approach, which is supposed

to suppress the turbulent motion. These examples highlight that the time-averaging

reference approach fails when real motion exists.

2.5 Summary

In this chapter, atmospheric turbulence distortion has been analyzed from the princi-

ples in physics. From these analyses, various simplified models have been considered

and form the basis for practical algorithms. Much work has been done in the area

of restoration and atmospheric turbulence suppression. However, the performance of

many methods are challenged when noise is present in the degraded images. Most

methods are focused on the blurring effect while only a subset of investigators have

considered geometric distortions. In this thesis, new methods to address both forms

of distortion will be introduced. Since a practical model for the turbulence degra-

dation is available, blur identification method can be used to identify the blurring

parameter. Among the previous blur identification methods, generalized cross vali-

dation (GCV) is one of the top runners and it will be used as a baseline for the new
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(a) (b)

(c) (d)

(e)

Figure 3: Three frames are taken from a simulated panning sequence. (a) Frame
1. (b) Frame 2. (c) Frame 3. (d) The average of the three frames, which is used
as the reference frame (target) for frame 2 (source). (e) The registered frame 2.
There is considerable distortion in the warped image; the boxes highlight two areas
of significant distortion.
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blur identification method that is to be presented in the next chapter. For geometric

distortion suppression, comparison against the Frakes method [17] will be made.
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CHAPTER III

KURTOSIS MINIMIZATION BASED BLUR

IDENTIFICATION

3.1 Kurtosis and Smoothing

In this section we discuss blur identification in the context of blind deconvolution.

We show the relationship between kurtosis and smoothness and discuss how kurtosis

can be used as a metric for PSF parameter prediction.

The kurtosis of a random variable is defined as its normalized fourth central mo-

ment

k =
E((x− µ)4)

σ4
(39)

where µ is the mean of x, σ is its standard deviation, and E(x) represents the ex-

pectation of the variable. The kurtosis measures the peakedness of a distribution.

The Gaussian distribution (k = 3) has a moderate tail and is called mesokurtic.

A platykurtic distribution has a small tail and its kurtosis is small (k < 3), and a

leptokurtic distribution has a long tail (k > 3).

Many researchers have observed the non-Gaussian statistics of natural images.

More specifically, it has been shown that the histograms of filtered images typically

have single modes with heavy tails, characteristic of highly kurtotic or leptokurtic

distributions. This statistical regularity has been observed for derivative filters, Gabor

filters, wavelets and even small random kernel filters [78, 55, 32, 76]. Gluckman [25]

examined the relationship between the phase structure of images and those observed

statistical regularities. Correlations in the phase angles of an image are used to

explain the non-Gaussian statistics of natural images. Here the phase structures are

used to analyze the relationship between the kurtosis of an image and its smoothed
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version.

To begin, consider that a bandlimited signal f(x) can be represented by a finite

Fourier series

f(x) =
n∑

i=1

mi cos(uix + φi), (40)

where mi and φi are the magnitude and phase angle associated with integer frequency

ui. For simplicity, the 1D case is considered and f(x) is assumed to be zero-mean.

To further simplify the analysis, we can work with symmetrically reflected signal

without loss of generality. This is because symmetric reflection does not change the

kurtosis. Such reflected signals have real Fourier transform, which is attractive for

analysis purposes. Thus, the phase of each frequency is either 0 or π, which can be

represented by the signed magnitudes si ∈ {−1, 1}. Next we will represent the image

as a sum of a low-frequency component fl(x) and a high-frequency component fh(x),

where

fl(x) =
n∑

i=1

ml,i cos(ul,ix + φl,i) (41)

fh(x) =
m∑

i=1

mh,i cos(uh,ix + φh,i) (42)

The kth central moment of f , which has zero mean, is:

µk(f) =
1

|Ω|
∫

Ω

fk(x)dx (43)

where Ω is the image domain. Defining the bi-variate moments of order 4 as µ40, µ04, µ31, µ13, µ22,

where

µpq(f) =
1

|Ω|
∫

Ω

fp
l (x)f q

h(x)dx, (44)
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the 4th central moment of f is then

µ4(f(x)) = µ4(fl(x) + fh(x)) (45)

=
1

|Ω|
∫

Ω

(fl(x) + fh(x))4dx

= µ40 + 4µ31 + 6µ22 + 4µ13 + µ04

µ31 =
3

4

∑
i,j,r,v

{(ml,iml,jml,rmh,v)(sl,isl,jsl,rsh,v)I(i, j, r, v)} (46)

µ13 =
3

4

∑
i,j,r,v

{(ml,imh,jmh,rmh,v)(sl,ish,jsh,rsh,v)I(i, j, r, v)} (47)

µ22 = µ20µ02 +
1

2

∑
i,j,r,v

{(ml,iml,jmh,rmh,v)(sl,isl,jsh,rsh,v)I(i, j, r, v)} (48)

where I(i, j, r, v) is an indicator function as introduced in [25]

I(i, j, r, v) =





1 if (ui − uj) = (ur − uv)

0 otherwise.
(49)

Intuitively, since DCT is an orthogonal transformation, (ui − uj) 6= (ur − uv) means

that (ui − uj), (ur − uv) are uncorrelated. Thus, there is no contribution to the

moment and the corresponding indicator function is zero. The moments µ13 ≈ 0

and µ31 ≈ 0 because (ui − uj) = (ur − uv) usually does not hold when three of the

four frequencies {i, j, r, v} lie in a single band (low or high) [25]. In the frequency

plane, low frequencies are in a small inner circle (most of the signal energy is in low

frequency band) and the high frequencies are outside the circle. When three points

are selected inside the circle and the fourth point is selected outside the circle, the

four points normally do not form a parallelogram ((ui − uj) 6= (ur − uv)).

The kurtosis of f(x) is then

kf =
µ4(f)

µ2
2(f)

(50)

=
µ40(fl) + µ40(fh) + 6(µ20µ02) + 3C

(µ20(fl) + µ20(fh))2
(51)
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Table 1: Examination of the condition in Equation (54) on the image classes.
Image Class Total Number Number of counterexamples Ratio

Natural 60 6 .90
City 70 2 .97

where C =
∑

i,j,r,v{(ml,iml,jmh,rmh,v)(sl,isl,jsh,rsh,v)I(i, j, r, v). The kurtosis of fl(x)

and fh(x) are:

kfl
=

µ40(fl)

µ2
20(fl)

(52)

kfh
=

µ40(fh)

µ2
20(fh)

. (53)

From Equation (50) and Equation (52), the condition for kfl
> kf is

3C < µ20(fl)µ20(fh)(2kfl
− 6) + (kfl

− kfh
)µ2

20(fh) (54)

Most natural images satisfy this condition (Equation 54). Since the point spread

function (PSF) is typically a low pass filter, for natural images, blurring will increase

the kurtosis. A smoothed (blurred) image has a higher kurtosis than the unblurred

original image. Two groups of man-made objects (buildings) and natural (landscape)

images were used to test the condition in Equation 54. Table 1 summarizes the results.

It can be seen that most images meet the condition. Figure 4 shows examples of man-

made objects images that do not comply with the condition. As a comparison, two

images from the same group that meet the condition are shown in Figure 5. The

histograms are drawn next to the images. Figure 6 and Figure 7 show both positive

and negative examples from the natural image group. The histograms of those images

that do not satisfy the condition are approximately unimodal (Figure 4 (b),(d) and

Figure 6 (d) ) or one of the peaks is bigger than the others as in Figure 6 (b). There

are also some common characteristics for the images whose kurtosis increases as they

are smoothed. Usually there is more than one peak and none of the histogram peaks

is significantly higher than the others (Figure 5 (b),(d) and Figure 7 (b),(d)).
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Figure 4: Counterexamples in the man-made object image data set where the kurto-
sis decreases as the image is blurred. The corresponding image histograms are plotted
next to each image.
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Figure 5: Positive examples of man-made structures where the kurtosis increases
when the image is blurred. The corresponding histograms are plotted next to each
image.
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Figure 6: Counterexamples in the natural image data set where the kurtosis de-
creases when the image is blurred. The corresponding histograms are plotted next to
each image.
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Figure 7: Positive examples of the natural images where the kurtosis increases when
the image is blurred. The corresponding histograms are plotted next to each image.
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3.2 Kurtosis Minimization for Blur Identification

The above analysis showed that an original unblurred image usually has a lower

kurtosis than a blurred one. Based on this property, we can optimize the restoration

filter parameter. The rationale is as follows. The restored image obtained using a

model with the correct blurring parameter should be closer to the original image than

one that uses an incorrect value. A restoration based on the incorrect parameter value

should be less sharp, i.e. smoother and the corresponding kurtosis should be higher.

In this thesis, we consider the following problem statement. Given a noisy blurred

image g with a known functional form for the PSF, we seek to find the best estimate

of the blur parameter ~θ. The parameter is searched within a reasonable space Ω.

At each step in the search loop, the image is deblurred using a Wiener restoration

filter G(u, v) or other non-blind restoration algorithm such as a regularized filter that

assumes the PSF is known and the kurtosis of the deblurred image f̂(~θ) is computed

and saved. Then the deblurred image with the smallest kurtosis is chosen as the final

restored image and the corresponding parameter is regarded as the identified blurring

parameter ~θk.

The Wiener restoration filter can be defined in the frequency domain as

G(u, v) =
H∗(u, v)

|H(u, v)|2 + Pn(u,v)
Pf (u,v)

, (55)

where Pf and Pn are the power spectral density of the signal and noise, respectively.

Since practically both Pn(u, v) and Pf (u, v) are not known, a more realistic form of

the Wiener filter is

G(u, v) =
H∗(u, v)

|H(u, v)|2 + nsr
, (56)

where the scalar nsr is the noise-to-signal ratio. The Wiener filter tends to behave as

a bandpass filter. In the region where the signal is very strong relative to the noise,

Pn(u, v)/Pf (u, v) ≈ 0 and the Wiener filter approximates H−1(u, v) (the inverse filter

for the PSF). In the region where the signal is very weak, Pn(u, v)/Pf (u, v) →∞ and
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G(u, v) → 0 so that noise will not be amplified in the restored image. Such bandpass

characteristics of the Wiener filter are important to kurtosis minimization based blur

identification. If the restoration filter amplifies noise, such as an inverse filter, the

kurtosis of the corresponding restored image will be low and the minimal kurtosis will

not respond to the image restored with the correct parameter. In that case, kurtosis

minimization might fail because of the improper restoration algorithm.

In practice, the noise-to-signal ratio is often approximated by the noise-to-blurred-

signal ratio, which can be estimated either in the spatial domain or in the frequency

domain. In the spatial domain, the average of all the local estimated variances within

a window such as 3 × 3 or 5 × 5 can be used as an estimate of the noise variance.

Then the blurred image variance is estimated using the difference between the overall

variance and the noise variance since noise and blurred image are assumed to be

uncorrelated. The nsr can also be estimated in the frequency domain where noise

is assumed to be white while the image is assumed to be band-limited. The noise

energy is estimated in the high-frequency band where the image energy is very low.

An example is shown in Figure 8 where the Cameraman image is blurred with a

block filter of length 7, which simulates linear motion blur. Gaussian noise (variance =

0.02) is then added to the result. The nsr is estimated as 0.0149 in frequency domain.

It can be seen that the image is successfully deblurred even when the practical form

of the Wiener filter is used.

The kurtosis minimization rule can be summarized as

~θk = arg{min
~θ∈Ω

k(f̂(~θ))}. (57)

The benchmark rule is the PSNR maximization rule,

~θPSNR = max
~θ∈Ω

PSNR(f̂(~θ)) (58)

PSNR is defined as

PSNR(f̂) = 10 log10

∑M
i=1

∑N
j=1 2552

∑M
i=1

∑N
j=1(f(i, j)− f̂(i, j))2

(59)
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(a)

(b)

Figure 8: (a) The noisy blurred Cameraman image (horizontal linear motion blur
of length 7, Gaussian noise variance is 0.02). (b) The restored image using a Wiener
filter (nsr is estimated as 0.0149).
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where M and N are the height and width of the image.

3.3 Reducing Ringing in Deblurred Images

In this work, the Wiener deblurring filter in Equation (55) is implemented with the

discrete Fourier transform (DFT). Because the DFT is a sampled version of the

DTFT, wrap-around effects exist when filtering is performed. That is to say, the

DFT multiplication that implements the filtering results in circular convolution in

the spatial domain, often leading to ringing effects at the boundaries. As an example,

see Figure 9. The ellipses highlight the boundary discontinuities associated with

circular convolution. Such boundary discontinuities contribute to the ringing effect

Figure 9: The periodicity implicit in the DFT representation leads to boundary
discontinuities.
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in deblurred images, which is illustrated in the following example. The Boat image

is blurred horizontally with a block filter of length 7. The blurred image is shown

in Figure 10 and the center part of the image is cropped as the image region to be

restored. No noise has been added to the blurred image. Figure 11(a) shows the

result when DFT-based restoration is performed without zero padding or any form

of boundary preprocessing.

Figure 10: The motion blurred Cameraman image. The length of the motion blur
is 7.

To reducing ringing effect, the image boundary can be preprocessed before it is
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(a) (b)

Figure 11: (a) The deblurred Boat image without boundary preprocessing, PSNR
= 19.43 dB. (b) The deblurred Boat image after the boundary smoothing, PSNR =
31.72 dB.

deblurred. Some common methods for dealing with boundary discontinuities are

interpolation/smoothing at the boundaries, windowing, and symmetric extension.

Figure 11(b) shows the result when a portion of the boundary is smoothed by

a Gaussian filter. In the boundary smoothing method, part of the boundary of the

image is smoothed without increasing the size of the image. Symmetric extension

increases the size of the image and thus increases the computational cost. The com-

plexity of the fast Fourier transform (FFT) is O(N2 log N) for an N ×N image. On

the other hand, the boundary smoothing method does not increase the size of the

image, but may not perform quite as well.

3.4 Efficient Searching Method

To find the blurring parameter associated with the minimum kurtosis, simple and

efficient searching methods may be employed, such as the bisection method or golden

section search. The bisection method involves a division of a given interval into two
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equal parts (halves). A simple bisection procedure for iteratively converging on a

solution which is assumed to lie inside some interval [a, b] proceeds by evaluating the

function at the midpoint of the original interval x = (a + b)/2 and testing to see in

which of the subintervals [a, (a+b)/2] or [(a+b)/2, b] the solution lies. The procedure

is then repeated with the new interval as often as needed to locate the solution to the

desired accuracy which is often measured by the range of the subintervals.

3.5 Experiments on Simulated and Real Turbulence Blurred
Images

The Lena image is blurred with the turbulence OTF model (λ = 0.008) and Gaussian

random noise (σ = 0.01) is added to the blurred image as in Figure 13. The blurred

signal to noise ratio BSNR in this case is as low as 1dB. BSNR is defined as

BSNR = 10 log
σ2

b

σ2
n

(60)

where b denotes the blurred signal and n is the noise.

The parameter search space is Ωλ = {λ : 0.001i|i = 0, 1, 2, . . . , 30}. Figure 12

shows the kurtosis and the PSNR as functions of the λ. Kurtosis matches very well

with PSNR in this example.

Figure 13 shows the degraded and the restored Lena image with the λ estimated

as 0.008, which is the value of λ that was used to create the degraded Lena image.

Figure 14 shows the example on a real tropospheric turbulence degraded image. The

λ is estimated as 0.0018.

For comparative purposes, the GCV blur identification method for the identifi-

cation of turbulence blurring parameter λ is also implemented. A collection of 100

images was used for the experiments. The images were blurred with λ = 0.001 and

random Gaussian noise was added at the level of BSNR = 20dB. Some examples of

the degraded images are shown in Figure 15.

Since the original images are available, PSNR of the restored images from both
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Figure 12: The Kurtosis and the PSNR of the restored Lena image as λ varies from
0 to 0.03 in steps of 0.001. The estimated λ is 0.008.

(a) (b)

Figure 13: (a) The degraded noisy blurred Lena image (λ = 0.01, σ = 0.01). (b)
The restored image (estimated λ = 0.01).
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(a) (b)

Figure 14: (a) A real turbulence degraded image. (b) The restored image (estimated
λ = 0.0018).

Figure 15: Example of degraded images that are used for comparison of the kurtosis
minimization method with generalized cross-validation.
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methods can be computed to assess the restoration performance. Figure 16 plots the

PSNR comparison of the two methods. Among the 100 images, kurtosis minimization

outperforms GCV on 90 images, while GCV outperforms kurtosis minimization on 10

images. On average, Kurtosis minimization outperforms GCV by around 1dB. The

algorithms run in Windows XP on a notebook computer. The CPU is a 1400MHz

Pentium M processor, with 768MB of RAM. The computation time is roughly the

same: on average, the GCV algorithm takes 0.20 sec to evaluate the error of a candi-

date λ, while kurtosis minimization takes 0.15 sec to evaluate the kurtosis of the image

restored with an assumed λ. Both GCV and kurtosis minimization were computed in

the DFT domain, therefore, the computation complexity is roughly the same. Because

kurtosis is measured on the restored image, there is no need to perform restoration

again when the parameter is identified since the image is already resorted using the

identified parameter. On the other hand, GCV is not directly computed from the

restored image and an additional step is required to get the final restored image.

3.6 Gaussian Blur Identification

Since an image is stored as a matrix of discrete pixels we need to create a discrete

approximation to the Gaussian function before convolution can be performed. A

rotationally symmetric discrete Gaussian low-pass filter of size hsize with standard

deviation σ (positive) is used to simulate a Gaussian blur. The (i, j)th coefficient of

the Gaussian filter is first computed as

hi,j = e−
i2+j2

2σ2 (61)

where (i, j) ∈ {−hsize, . . . , 0, . . . , hsize} × {−hsize, . . . , 0, . . . , hsize}. Then hi,j is nor-

malized so that
∑

i

∑
j hi,j = 1. In this experiment, the Cameraman image is

blurred by the Gaussian filter (hsize = 5, σ = 2.5). Gaussian noise (σ = 0.0025) is

added to the blurred image. For the restoration, the gaussian model is assumed but

the two parameters hsize and σ are treated as unknown. The search space for hsize is
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Figure 16: PSNR comparison of GCV and Kurtosis minimization on the image set.
On average, Kurtosis minimization outperforms GCV by around 1dB.

42



Table 2: PSNR and Kurtosis of f̂(hsize, σ), the restored Cameraman image with
the hypothetical Gaussian blur size hsize and standard deviation σ.

hsize PSNR
2 16.974 16.974 16.974 16.974 16.974
3 16.192 16.105 16.078 16.064 16.06
4 15.105 15.842 16.27 16.501 16.671
5 17.163 22.964 25.09 24.273 23.248
6 15.6 16.204 14.851 13.787 13.224
7 13.071 14.858 12.107 10.891 10.29
σ 1.5 2 2.5 3 3.5

hsize Kurtosis
2 2.2452 2.2452 2.2452 2.2452 2.2452
3 2.2476 2.2486 2.2497 2.2525 2.2545
4 2.2323 2.2235 2.2163 2.2139 2.2128
5 2.1852 2.1518 2.1417 2.1487 2.1554
6 2.2062 2.1642 2.194 2.2115 2.2055
7 2.1948 2.1768 2.1929 2.1897 2.1701
σ 1.5 2 2.5 3 3.5

Ωhsize
= {2, 3, 4, 5, 6, 7} and that for σ is Ωσ = {1.5, 2, 2.5, 3, 3.5}. Table 2 shows that

the minimum value of the kurtosis is achieved for (5, 2.5). These are also the values

where the PSNR is maximum, and these are the “correct” value in that these were

the values used to generate the data.

The USC-SIPI image database [1] is a popular database for image processing re-

search. Table 3 summarizes the Gaussian blur identification results using kurtosis

minimization on some of the USC images. Different Gaussian blur PSF parameters

were used and three different levels of noise were added to the blurred images. Kur-

tosis minimization performs very well in identifying the correct blurring parameters.

Noise usually has a negative impact on the performance of identification. As shown

in Table 3, the true blurring parameter for the Elaine image is (6 × 6, 2.0), but kur-

tosis minimization identified the parameter as (7× 7, 1.5) at the noise level of 30 bB

BSNR. Since the searching step for hsize and σ is 1 and .5 respectively, the identified

parameter is next to the real one.
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Table 3: Gaussian blur identifications on USC images using kurtosis minimization
Image Actual Parameter(hsize,σ) 30 dB BSNR 40 dB BSNR 60 dB BSNR

Cameraman 4× 4, 2.0 4× 4, 2.0 4× 4, 2.0 4× 4, 2.0
Boat 6× 6, 3.0 6× 6, 3.0 6× 6, 3.0 6× 6, 3.0

Baboon 5× 5, 2.5 5× 5, 2.5 5× 5, 2.5 5× 5, 2.5
Lena 5× 5, 2.0 5× 5, 2.0 5× 5, 2.0 5× 5, 2.0
Elaine 6× 6, 2.0 7× 7, 1.5 6× 6, 2.0 6× 6, 2.0

3.7 Out-of-focus Blur Identification

Out-of-focus blur is usually modeled as a circular averaging filter (pillbox) within a

square (2∗r+1)× (2∗r+1) matrix, where r is the radius of the blur. The coefficient

of an out-of-focus blur filter is:

hi,j =





1
πr2 if

√
i2 + j2 ≤ r;

0 otherwise.
(62)

Two examples are shown here, whose radii are r = 2 and r = 3, respectively. The

Cameraman image is blurred with a pillbox filter. Gaussian noise (σ = 0.0025)

is added to the blurred image. The search space for r is Ωr = {r : 1 + i ∗ 0.1|i =

0, 1, 2, . . . , 30}.
Figure 18 shows the degraded image and the three images restored with three

hypothetical radii. The kurtosis of the image that was restored with r=3.1 is the

minimum as plotted in Figure 17. The kurtosises of the other two images restored

with r = 2 and r = 5 are both higher.

As seen in Figure 17, although the estimated radius (r = 3.1) is different from the

real radius (r = 3) the PSNR for that value is higher. The reason is that the Wiener

filter is not the ideal one (Equation 55) since the original image is unknown and the

practical form of the Wiener filter (Equation 56) is used instead. Moreover, the noise

estimation might not be accurate enough. In Figure 17 (b), the kurtosis correctly

identifies the radius as 2 but this does not correspond to the maximum PSNR.

Table 4 summarizes more out-of-focus blur identification results using kurtosis
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Table 4: Out-of-focus blur identifications on USC images using kurtosis minimization
Image Actual Radius(r) 30 dB BSNR 40 dB BSNR 60 dB BSNR

Cameraman 2.5 2.5 2.5 2.5
Boat 3 3.1 3 3

Baboon 3.2 3.2 3.2 3.2
Lena 2.4 2.4 2.4 2.4
Elaine 3.5 3.5 3.5 3.5

Table 5: Linear motion blur identifications on USC images using kurtosis minimiza-
tion

Image Actual Length(L) 30 dB BSNR 40 dB BSNR 60 dB BSNR
Cameraman 8 8 8 8

Boat 6 6 6 6
Baboon 9 9 9 9
Lena 7 7 7 7
Elaine 5 5 5 5

minimization on the selected USC images.

3.8 Linear Motion Blur Identification

Linear horizontal motion blur is modeled as an averaging filter within a row vector

of 1×L, where L is the length of the motion blur. The filter approximates the linear

motion of a camera by L pixels in the horizontal direction. Two examples are shown

here. The true length are 7 and 9 respectively. The cameraman image is blurred with

the motion blur filters. Gaussian noise (σ = 0.005) is added to the blurred images.

The search space for L is ΩL = {L : 3 + i|i = 0, 1, 2, . . . , 10}. As seen in Figure 19,

the estimated lengths are 7 and 9 respectively. Figure 20 shows the degraded images

and three images restored with three different assumptions about the length of the

motion blur. The one with the correctly identified length has the minimum kurtosis.

Table 5 summarizes more linear horizontal motion blur identification results us-

ing kurtosis minimization on those selected USC images. There is no error in the

identification.
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Figure 17: Out-of-focus blur identification. (a) r = 3, estimated radius: 3.1. (b)
r = 2, estimated radius: 2.
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(a) (b)

(c) (d)

Figure 18: (a) The cameraman image that was degraded by out-of-focus blur (r = 3)
and Gaussian noise (σ = 0.0025). (b) The restored image with the estimated blur
radius (r = 3.1). (c) The restored image with r = 2. (d) The restored image with
r = 5.
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Figure 19: Linear motion blur identification. (a) L = 7, estimated length: 7. (b)
L = 9, estimated length: 9.
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(a) (b)

(c) (d)

Figure 20: (a) The cameraman image that was degraded by linear motion blur
(L = 7) and Gaussian noise (σ = 0.005). (b) The restored image with the estimated
length (L = 7). (c) The restored image with L = 4. (d) The restored image with
L = 9.
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3.9 Blur Identification with Incorrect Blur Model

In this experiment, the cameraman image was blurred with the turbulence model(λ =

0.0025) as in Equation (24) and white noise (σ = 0.002) was added. Then the kurtosis

minimization was used to identify the blur that was assumed to be an averaging filter

with a square matrix. The search space of hsize is Ωhsize
= {3, 4, 5, 6}. The estimated

hsize of the blur is 5 and the PSNR of the restored image is 20.78 dB. The PSNR of the

restored image using the correct model and parameter is 22.86 dB. This mismatch is

not surprising since the model is not correct, but the image is still improved as shown

in Figure 21. This illustrates that the technique is robust to model errors.
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(a)

(b)

Figure 21: (a) Atmospheric turbulence blurred image. (b) Restored image using
averaging filter blur model.
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CHAPTER IV

SUPPRESSION OF ATMOSPHERIC TURBULENT

MOTION

Atmospheric turbulence degradation can be viewed as having two major components:

spatial blur and time varying geometric distortion. It has been shown that kurtosis

minimization can be used to estimate the blurring parameter with a Wiener filter used

to perform deblurring to address the spatial blur. For the time-varying geometric

distortion, motion estimation can be used to compensate for turbulent motion within

a certain time window.

4.1 Optical Flow

The most pervasive method of motion representation is the block based method used

in the MPEG standard [4]. In this representation, vectors describe the movement of

blocks of pixels. An alternative representation is optical flow [61, 9, 62, 44], which

describes the movement of pixels within a video sequence. This motion is represented

as a vector-one for each pixel.

Optical flow has found wide applications in areas such as pattern recognition,

computer vision, and image processing.

4.1.1 Lucas-Kanade method

Optical flow methods try to calculate the motion between two image frames which are

taken at times t and t+ δt at every pixel position. As a pixel at location (x, y, t) with

intensity I(x, y, t) will have moved by δx, δy and δt between the two frames, then

under the assumption that the intensity of an object remains constant, the following
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image constraint equation can be written:

I(x, y, t) = I(x + δx, y + δy, t + δt). (63)

Assuming that the motion is small enough, the image constraint can be developed

by expanding I(x, y, t) in a Taylor series to get

I(x + δx, y + δy, t + δt) = I(x, y, t) +
∂I

∂x
δx +

∂I

∂y
δy +

∂I

∂t
δt + H.O.T. (64)

where H.O.T. means higher order terms, which are usually small enough to be ignored.

From these equations

∂I

∂x
δx +

∂I

∂y
δy +

∂I

∂t
δt = 0 (65)

or

∂I

∂x

δx

δt
+

∂I

∂y

δy

δt
+

∂I

∂t

δt

δt
= 0 (66)

which results in

∂I

∂x
Vx +

∂I

∂y
Vy +

∂I

∂t
= 0 (67)

where V x, V y are the x, y components of the velocity or optical flow of I(x, y, t)

and ∂I
∂x

, ∂I
∂y

and ∂I
∂t

are the partial derivatives of the image at (x, y, t) with respect to

the corresponding variables. Let us denote these derivatives as Ix, Iy and It in the

following.

Thus

IxVx + IyVy = −It (68)

or

∇I · ~V = −It (69)

Since there are two unknowns (Vx, Vy) and one equation, they cannot be solved

directly. This is known as the aperture problem in optical flow. It suggests that the

optical flow equation is ill-posed. To find the optical flow another set of equations

is needed to provide additional constraints. The additional constraint added in the

Lucas and Kanade [54] solution is to assume that the optical flow is locally constant.
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Assuming that the flow (Vx, Vy) is constant in a small window of size m×m with

m > 1, which is centered at the point x, y and that the pixels are indexed as 1...n,

we can get a set of equations:

Ix1Vx + Iy1Vy = −It1 (70)

Ix2Vx + Iy2Vy = −It2 (71)

... (72)

IxnVx + IynVy = −Itn (73)

(74)

Now the number of equations is larger than the number of unknowns (two); it is now

an over-determined system:



Ix1 Iy1

Ix2 Iy2

...
...

...

Ixn Iyn







Vx

Vy


 =




−It1

−It2

...

−Itn




(75)

or

A~V = −b (76)

To solve this over-determined system of equations we use the least squares method

(pseudoinverse) that minimizes ‖A~V + b‖2:

AT A~V = −AT b (77)

or

~V = −(AT A)−1AT b (78)

or




Vx

Vy


 = −




I2
x IxIy

IxIy I2
y




−1

(AT It) (79)
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This indicates that the optical flow can be obtained by calculating the derivatives

of the image with respect to all three variables (x, y, t). A weighting function W (i, j),

with i, j ∈ [1, .., m] should be added to give more emphasis to the center pixel of the

window. Gaussian functions are often preferred as the weighting functions. Other

functions are also possible. Let W be a diagonal matrix with weights. The weighted

least squares estimate is ~V = −(AT W 2A)−1AT W 2b. In addition for computing local

translations, the flow model can also be extended to affine image deformations as

shown in the control grid interpolation motion model, which will be discussed in

section 4.2.

When applied to image registration the Lukas-Kanade method is usually applied

in a coarse-to-fine iterative manner, in such a way that the spatial derivatives are

first computed at a coarse scale (a smaller image) in a pyramid. The source image is

warped [87] by the computed deformation, and iterative updates are then conducted

at successively finer scales. An image pyramid [36, 35, 72] represents a digital image

in different resolution levels. A low pass filter, e.g. a Gaussian filter, is first applied

to the image. Downsampling is then used to create a reduced resolution image. The

multiresolution Lucas-Kanade algorithm can be summarized as follows

• Compute Lucas-Kanade optical flow at the highest level 0.

• At level i

– Take flow ui−1,vi−1 from level i− 1.

– Bilinearly interpolate it to create u∗i ,v
∗
i of twice the resolution for level i.

– Multiply u∗i ,v
∗
i by 2.

– Warp the source image based on u∗i ,v
∗
i .

– Compute the motion u
′
i, v

′
i between the warped source image and the target

image at the current level (correction in the flow) by the LK algorithm.
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– Add the correction to get the flow for the current level: ui = u∗i + u
′
i; vi =

v∗i + v
′
i.

One of the common characteristics of the Lucas-Kanade algorithm and other local

optical flow algorithms, is that it does not compute a high density of flow vectors, i.e.

the flow fades out quickly across motion boundaries and the inner parts of homogenous

areas show little motion. Its advantage is the computation efficiency.

4.1.2 Horn-Schunck method

An alternative to the Lucas-Kanade algorithm, the Horn-Schunck method [31] of esti-

mating optical flow is a global method that introduces a global smoothness constraint

to solve the aperture problem.

A global objective (or energy) function is sought to be minimized. This function

is given as

f =

∫
((∇I · ~V + It)

2 + α(|∇Vx|2 + |∇Vy|2))dxdy (80)

where ∇I =




Ix

Iy

It




are the derivatives of the image intensity values along the x, y

and t dimensions, and ~V is the optical flow vector with the components V x, V y. The

parameter α is a regularization constant. Larger values of α lead to a smoother flow.

This function can be solved by calculating the Euler-Lagrange equations correspond-

ing to the solution of the above equation. These are given by

∆Vx − 1

α
Ix(IxVx + IyVy + It) = 0 (81)

∆Vy − 1

α
Iy(IxVx + IyVy + It) = 0 (82)

where ∆ denotes the Laplace operator so that ∆Vx = ∂
∂x

∂Vx

∂x
; ∆Vy = ∂

∂y

∂Vy

∂y
.
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Solving these equations using the Gauss-Seidel iteration [37] for the flow compo-

nents Vx, Vy results in an iterative scheme

V k+1
x =

∆V k
x − 1

α
Ix(IyV

k
y + It)

1
α
I2
x

(83)

V k+1
y =

∆V k
y − 1

α
Iy(IxV

k
x + It)

1
α
I2
y

(84)

where k + 1 denotes the next iteration, which is to be calculated and k is the last

calculated result. The initial velocities V 0
x , V 0

y are usually chosen to be 0. ∆Vx can

be obtained from

∆Vx =
∑

N(p)

Vx(N(p))− Vx(p) (85)

where N(p) are the neighbors of the pixel p. Similarly, ∆Vy is computed as

∆Vy =
∑

N(p)

Vy(N(p))− Vy(p). (86)

In contrast to the Lucas-Kanade method, the Horn-Schunck algorithm produces

a high density flow.

4.2 Adaptive Control Grid Interpolation Motion Model

For the computation of the optical flow/motion field, a modified control grid in-

terpolation (CGI) representation [17] is used. This can be viewed as an extension

of the Lucas-Kanade method. The optical flow is obtained by segmenting the im-

age into small contiguous square regions. The corners of these regions form control

points, which are used as the anchors from which the intermediate motion vectors are

computed using bilinear interpolation. CGI allows for the representation of complex

non-translational motion and in that regard is different from the conventional block

matching algorithm as used in video compression such as MPEG. We use a high

resolution CGI algorithm with embedded optical flow equations for calculating the

motion of the control points, leading to an accurate dense motion field representation.
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Figure 22: Example of a turbulent motion field.

Figure 22 shows an example of the motion field in a region of turbulence, where the

magnitudes of the velocities have been scaled for better visualization.

Within each region, the image constraint between pixels in images I0 and I1 is

described as:

I1[i, j] = I0[i + d1[i, j], j + d2[i, j]]

d1[i, j] = α1 + α2i + α3j + α4ij = αT θ[i, j] (87)

d2[i, j] = β1 + β2i + β3j + β4ij = βT θ[i, j]

where d1[i, j] is the horizontal component of the displacement vector at spatial lo-

cation (i, j) and d2[i, j] is its vertical component. This is equivalent to finding the

optimal motion vectors at each of the control points on the border of the region.

The bilinear parameters α, β are found in each region R by minimizing the error

∑

[i,j]∈R

(I0[i, j]− I1[i + αT θ[i, j], j + βT θ[i, j]])2. (88)

The error function in Equation (88) is simplified by using a first-order Taylor series
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expansion at (i, j)

∑

[i,j]∈R

(I0[i, j]− I1[i, j]− ∂I1[i, j]

∂i
αT θ[i, j]− ∂I1[i, j]

∂j
βT θ[i, j])2. (89)

The accuracy can be further improved by changing the location of the Taylor se-

ries expansion from (i, j) to (i + αT θ[i, j], j + βT θ[i, j]) and updating the parameter

estimates. This process usually converges in fewer than five iterations.

For global motion such as panning, there is no need to segment the image into

regions since the bilinear parameters α, β describe the motion of the entire image.

On the other hand, if the motion is complicated and localized such as in turbulence

(each region is moving differently), it is necessary to divide the image into regions

and estimate motion parameters for each region. To divide the image into regions, a

quadtree is used to decompose the image into regions. The termination criterion for

subdividing each region can be either a maximum square error (Equation 88) in each

block or a minimum block size.

4.3 Trajectory Estimation

Let us denote the motion between frame t and frame t − 1 as vt,t−1(i, j). Once

the motion between the frames has been computed, the trajectory for each pixel

(i, j) can be obtained. There are two methods we propose for determining the tra-

jectory c(i, j, k|t0 ≥ k ≥ t0 − n), where k is the frame number. Therefore, the

trajectory c(i, j, k|t0 ≥ k ≥ t0 − n) can be written as the collection of the starting

frame pixel It0(i, j) location in each frame k (t0 ≥ k ≥ t0 − n) {c(i, j, t0), c(i, j, t0 −
1), . . . , c(i, j, t0 − n)}.

Given the transitional matrix of motion fields {vt0,t0−1(i, j), . . . , vt0−n+1,t0−n(i, j)},
the motion trajectory c(i, j, k|t0 ≥ k ≥ t0−n) can be computed iteratively as follows:
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c(i, j, t0) = (i, j)

c(i, j, t0 − 1) = c(i, j, t0) + vt0,t0−1(c(i, j, t0))

... (90)

c(i, j, t0 − n) = c(i, j, t0 − n + 1) + vt0−n+1,t0−n(c(i, j, t0 − n + 1)).

The advantage of this approach is its computational efficiency. All of the motion fields

except for the farthest one from the current frame It0 , vt0−n+1,t0−n(i, j), can be reused

when the current frame moves to the next one It0+1 in the video. At each frame,

only one motion field needs to be computed to construct the new motion trajectory

c(i, j, t0 + 1 : t0 − n + 1).

However, the above approach is subject to error propagation, i.e. any errors in

c(i, j, t0 + k) are passed to c(i, j, t0 + k − 1). Alternatively, we take the following ap-

proach. The transitional matrix is instead made up of motion fields {vt0,t0−1(i, j), vt0,t0−2(i, j), . . . , vt0,t0−n(i, j)}.
With this choice, when the motion is computed, the source frame remains fixed, while

the target frame is changed.

c(i, j, t0 : t0 − n) is computed by the equations

c(i, j, t0) = (i, j)

c(i, j, t0 − 1) = (i, j) + vt0,t0−1(i, j)

... (91)

c(i, j, t0 − n) = (i, j) + vt0,t0−n(i, j).

Though the error propagation problem is avoided, the computation load is signifi-

cantly increased since the source frame shifts and each motion field needs to be com-

puted again. To illustrate the error propagation problem, the following experiment

is performed. In a turbulence video sequence, a frame i is to be registered toward

frame i + 4. Two different approaches are used to compute the motion between the
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two frames: recursively as in Equation (90) where the motion between frame i and

frame i+4 is computed from the motion fields {vi,i+1, vi+1,i+2, vi+2,i+3, vi+3,i+4} or non-

recursively as in Equation (90) where the motion between frame i and frame i + 4

(vi,i+4) is directly computed. After the motion is computed, the computed motion

field is used to warp frame i toward frame i + 4. The PSNR of the warped image is

used to assess the accuracy of the motion estimation. Figure 23 shows the compara-

tive result on a turbulence video clip. It can be seen that the non-recursive approach

has higher PSNR since the error propagation problem is avoided. On average, the

PSNR is 1 dB higher.
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Figure 23: In a turbulence video clip, frame i is registered to frame i + 4. Two
approaches are used to estimate the motion field: Recursive (motion between consec-
utive frames are used ) and non-recursive (directly compute the motion between the
two frames). PSNR comparison of the warped frame is plotted.
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4.4 Compensation of Motion Induced Distortion

Since turbulence is approximately quasi-periodic, the net displacement over the du-

ration of a period is approximately zero. Such is not the case for real motion. Con-

sequently, we can reduce the turbulent motion effect by using the centroid of the

trajectory taken over a period 2n + 1 as the target location for a period.

T̂ (i, j) =
1

2n + 1

∑

t0−n≤k≤t0+n

c(i, j, k) (92)

T̂ (i, j) approximates the locations of the pixels in frame t0 without the turbulence

distortion. We then warp the pixels in frame t0 from their original locations toward

their estimated locations through interpolation. The turbulent motion is suppressed

by this process while other motion characteristics are preserved.

The period is initially determined experimentally and it remains fixed. Since tur-

bulent motion is dynamic, we should be able to improve the turbulence suppression if

we can find a way to adjust the length of the trajectory smoothing filter. We observed

that one of the characteristics of the turbulent motion is zero mean quasi-periodicity.

The pixels in the image are pushed backwards and forwards. This phenomenon is

caused by the Gaussian random distribution of the phase fluctuations when optical

wavefronts propagate through the atmosphere.

For simplicity, consider the example where we track the motion of a simple pen-

dulum. If the current position is the zero displacement position as shown in Figure

24(a), the associated motion vectors might be {−2,−1, 0, 1, 2}, which means that

the pixel had been pushed backward and forward by turbulence. If we integrate the

motion vectors, we get a zero. Thus there is no need to compensate for the turbulent

motion at the current position since it is in the zero displacement position. For other

positions, there will be an offset. The offset can be estimated from the averaged

integration of the motion vectors. For example, as shown in Figure 24(b), we might

have a time window with the motion vectors {−3,−2,−1, 0, 1}. The average of the
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integration in this case results in -1, implying that the pendulum should be displaced

by -1. The center point o is set as the reference (origin of the coordinate system).

 −2         − 1        0           1           2

(a)

 −3         − 2        −1        0           1

(b)

Figure 24: Pendulum illustration. (a) center position. (b) offset position.

~c(t, o) represents the coordinate at time t. Because of the quasi-periodicy, we can

expect that

1

T

∫ T/2

−T/2

~c(t, o) = 0 (93)

where T is the period of the turbulent motion. Let ~c(t, p) represent the coordinate of

the current position at time t with p as the reference point. Then

~c(t, p) = ~c(t, o) + ~po (94)

where ~po is the offset. ~po needs to be estimated so that this offset can be compensated.

The offset is estimated by integrating over a period:

1

T

∫ T/2

−T/2

c~(t, p) =
1

T

∫ T/2

−T/2

~c(t, o) + ~po; (95)

~po =
1

T

∫ T/2

−T/2

~c(t, p); (96)
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~c(t, p) is obtained in the trajectories through motion estimation. The experiments of

the adaptive period turbulent motion compensation is reported in the next chapter,

which is dedicated to implementation and experimental results.

4.5 Scintillation Effects of Atmospheric Turbulence

Scintillation or twinkling is a general terms for describing rapid variations in apparent

brightness or color of a distant luminous object viewed through the atmosphere.

If the object lies outside the earth’s atmosphere, as in the case of outer space

objects like stars and planets, the phenomenon is called astronomical scintillation. If

the object lies within the atmosphere, it is called terrestrial scintillation.

Scintillation is defined as variations in luminance only, and so it does not cause

blurring of astronomical images. It is established that nearly all scintillation effects

are caused by irregular refraction, which is a result of small-scale fluctuations in air

density usually related to temperature gradients. Scintillation effect are illustrated in

Figure 25, which shows the pixel intensity of each frame at the location (10,10) in a

real turbulence degraded video clip. The pixel intensity changes dynamically in the

video clip. The variance is 40.

Though scintillation effects are not modeled in the degradation model, the denois-

ing step in the turbulent motion suppression can effectively reduce this effect. When

the neighborhood frames are warped and averaged, the noise and the scintillation

effects are both reduced since the intensity variations are decreased. The results are

shown in the following chapter ( Figure 31, Figure 32 and Figure 33).
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Figure 25: The pixel intensity at the location (10,10) in each frame in a real turbu-
lence degraded video clip. The intensity variation is a result of astronomical scintil-
lation. The variance of the intensity is 40.
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CHAPTER V

IMPLEMENTATION AND EXPERIMENTAL RESULTS

This chapter is dedicated to the implementation of the algorithm and the experi-

mental results for both simulated and real turbulence-degraded video sequences. The

restoration algorithm is implemented in both Matlab and in C, the latter to illustrate

that the restoration can be achieved in real-time or near real-time.

5.1 Simulation of Turbulence Degraded Video

As depicted in Equation (1), turbulence degradation is modeled in terms of a dis-

persive component h, a geometric distortion component D, and an additive noise

component η. Although this thesis does not contain innovations for dealing with

the noise component, denoising is embedded in the restoration algorithm through

the restoration using a Wiener filter for the modeled blur. It is also implicit in the

turbulent motion suppression. The dispersion h can be modeled by Equation (24).

The geometric distortion D is modeled through spatial pixel displacements obtained

typically from real turbulence video clips.

Generally, the following steps are taken to create video sequences with simulated

turbulence degradation:

1. First, motion fields are computed from a real turbulence video clip and applied

to the frames in a turbulence-free video as illustrated in Fig. 26(b).

2. Then, a linear shift invariant dispersion filter is applied, the result of which is

illustrated in Fig. 26(c).

3. Finally, Gaussian random noise is added to the blurred image. The noisy blurred

image is shown in Fig. 26(d).

66



(a) (b)

(c) (d)

Figure 26: The steps to simulate turbulence degraded video. (a) An original frame
from the car sequence. (b) The frame after the turbulent motion field was applied.
(c) The distorted frame blurred by atmospheric turbulence OTF (λ = 0.001). (d) The
image from (c) after random Gaussian noise (σ2 = 0.003) was added to the distorted
and blurred frame.
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(a) Frame 1 (b)Frame 10

(c)Frame 20 (d)Frame 30

Figure 27: Video frames from the Panning sequence.
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(a) Frame 82 (b) Frame 92

(c) Frame 100 (d) Frame 110

Figure 28: Video frames from the Zooming sequence.
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(a) (b)

(c) (d)

Figure 29: (a) A frame from video clip 2. (b) A frame from video clip 3. (c) A frame
from video clip 4. (d) A frame from video clip 5. All are real turbulence degraded
video clips.
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(a) (b)

Figure 30: (a) A real atmospheric turbulence blurred frame in the video clip1. (b)
The enhanced image of the moon using the new algorithm.

The λ parameters associated with the dispersion filter are extracted from real

turbulence-degraded video and are then applied in step 2 of the simulation process.

Noise variances are chosen from the set {0.0010, 0.0015, 0.0020, 0.0025, 0.0030} to sim-

ulate the levels of time varying Gaussian noise encountered in real data sets.

A number of video clips were simulated by the above procedure so that we would

have original and distorted video sequences for performance analysis purposes. We

select those representative video clips in the experiments. The car sequence is a such

a sequence in which the camera is fixed on a scene of a parking lot while a car is leaving

the lot. The Panning sequence is a clip in which the camera is panning a scene of

a building. The Zooming clip shows an anchorman in a television newsroom where

the camera is zooming in. Some frames from the Panning and Zooming sequences

are shown in Fig. 27 and Fig. 28 respectively.
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Figure 31: Mean-square-error between consecutive frames in the original video clip
and enhanced video. (a) video clip 1. (b) video clip 2.
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Figure 32: Mean-square-error between consecutive frames in the original video clip
and enhanced video. (a) video clip 3. (b) video clip 4.
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Figure 33: Mean-square-error between consecutive frames in the original video clip
5 and the enhanced video.
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5.2 Results of Fixed Period Enhancement Method

5.2.1 Performance Evaluation on Real Turbulence-degraded Video

A number of real atmospheric turbulence degraded videos were also tested. Figure

30 shows an example of a frame taken from a video sequence (video clip1) of the

moon acquired through a telescope. There is a fair amount of time-varying geometric

distortion and spatial dispersion in the sequence. The reduction in the distortion is

obvious in the processed video. The jitter and geometric distortions are no longer

visible, and the image is clearly sharper. Ideally, each frame should be the same

and there should be no difference between them. Because of noise and compensation

errors, minute changes can be seen from frame to frame. But overall the results

look very good. The mean-square-error between successive frames is shown in Figure

31(a) for both the original turbulent sequence and the enhanced sequence. While

frame differences do exist in both sequences, the variations are dramatically reduced

for the processed sequence. The other real turbulence degraded video clips are also

tested. Example frames from those video clips are shown in Figure 29. The mean-

square-error between successive frames of the video clips are shown in Figures 31, 32

and 33.

5.2.2 Performance Evaluation on Simulated Turbulence-degraded Video

To better assess the performance of our enhancement algorithms, it is useful to have

the original video sequences (i.e. the ground truth). This is not available for the

real turbulence degraded videos. Therefore, we rely on simulated videos for these

comparisons using simulated degraded videos with ground truth. PSNRs can be

computed to measure the overall restoration performance. For comparison, the time-

averaging reference frame approach used in [17, 18] is also implemented. In the

time-averaging reference frame approach, the video is filtered by a moving averaging

filter of length 5 to create the reference sequence. Then the frames are registered to
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the reference frames. Since there is a moving object in the video, the time-averaged

reference frames led to poor results, as shown in Figure 34. The proposed method

performs better than the time averaged reference approaches both subjectively and in

terms of PSNR. A visual comparative example of the geometric distortion reduction
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Figure 34: PSNR comparison of the restoration algorithm (fixed period) with time-
averaging reference [18, 17] on the Car video sequence. D: the degraded video; T: the
enhancement method with time-averaging [18, 17]; P: the proposed algorithm with
fixed period in this thesis.

is highlighted in Figure 35. The geometric distortion was not properly handled by

the time-averaging reference frame approach. Moreover, the frame is blurred since

there is real motions in the video.
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Figure 35: (a) An original frame in the Car sequence. (b) The degraded frame.
(c) The restored frame by the time-averaging reference approach [18, 17]. (d) The
restored frame by the new method.
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Figure 36: PSNR comparison of the time-averaged reference frame algorithm (time-
averaging)[17, 18], the centroid trajectory algorithm with fixed window (non-adaptive,
section 4.4), the centroid trajectory algorithm with adaptive window (adaptive, sec-
tion 4.4), and the optically degraded image sequence (degraded, unprocessed) on the
Car sequence.
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Figure 37: PSNR comparison of the time-averaged reference frame algorithm (time-
averaging)[17, 18], the centroid trajectory algorithm with fixed window (non-adaptive,
section 4.4), the centroid trajectory algorithm with adaptive window (adaptive, sec-
tion 4.4), and the optically degraded image sequence (degraded, unprocessed) on the
Zooming sequence.
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Figure 38: PSNR comparison of the time-averaged reference frame algorithm (time-
averaging)[17, 18], the centroid trajectory algorithm with fixed window (non-adaptive,
section 4.4), the centroid trajectory algorithm with adaptive window (adaptive, sec-
tion 4.4), and the optically degraded image sequence (degraded, unprocessed) on the
Panning sequence.
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5.3 Result of Adaptive Period Enhancement Method

As discussed in the previous chapter, a better restoration result might be achieved by

exploring the pseudo-periodicity of each pixel in the video frame caused by the geo-

metric distortion. The adaptive periodicity discussed in section 4.4 was implemented

and the PSNRs were computed on a frame-by-frame basis to measure the overall

performance for test sequences. In Figure 36, four results on the Car sequence are

compared. The first is the output of the adaptive centroid trajectory algorithm. Be-

low it is the output of the non-adaptive centroid trajectory algorithm with a fixed time

window of length 11. The PSNR of the degraded sequence is also plotted in Figure

36. At the bottom is the output from the algorithm based on time-averaging[17]. The

restored sequence using this algorithm was 0.8 dB worse on average than the degraded

sequence. This is because true motion exists in the degraded sequence. Therefore,

the reference is significantly corrupted by time-averaging when the reference frame

is made. As seen in Figure 36, the proposed adaptive method obtains improvement

over the previous fixed period method in terms of PSNR.

The similar comparison of algorithms on the Zooming clip is shown in Figure

37. In this example, the difference between the adaptive window method and the

fixed window method is not significant compared with the previous example. The

reason is that the motion in this example is global. When the camera is moving

toward the reporter, all the pixels in the frame are moving outward. In this case,

period estimation is unreliable. In the car video, only the car is moving while the

other parts of the scene are stationary. Thus, we can obtain good estimates of the

periodicities. Figure 38 shows the result on the Panning sequence. The motion

is global and the estimates of the period are not sufficiently accurate to yield an

advantage. Thus, there is no gain in using the adaptive period in this case.
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5.4 Commutativity of Deblurring and Motion Suppression

In the earlier chapters, deblurring was first performed followed by turbulent motion

suppression. Alternatively, motion suppression can be performed first, followed by

deblurring.

For the following reasons, it is preferable for motion suppression be performed

first.

• Optical flow computation involves the estimation of the gradient of the im-

age at (x, y, t). A frame in a turbulence degraded video is generally blurred

(smoothed). Since gradients can be better estimated in smoothed frames, the

optical flow computation is more robust and accurate.

• Atmospheric turbulence blur is spatially varying. When motion suppression

is performed, the motion between frames is computed and is used to warp

the individual frames toward the central frame. The warped frames are then

averaged to reduce the noise. In theory this should improve the SNR. Such

an averaging process not only reduces the noise, but also makes the turbulence

blurring approximately spatially invariant. This should help with the deblurring

in the next step, since the blurring model assumes that the blur is spatially

invariant. In this way, the spatially varying blur is converted into a spatially

invariant one.

• Since motion suppression takes less time than deblurring, it should have a higher

priority if there is a time constraint for the restoration algorithm. In the C

implementation, the motion suppression is performed first and then deblurring

takes place.
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5.5 Real time implementation in C

To design a real time implementation, we need to analyze how to reduce the com-

putational cost. Motion estimation is well known for its high computation demand.

As an effort to make motion computation efficient, we might consider performing the

computation of optical flow in the subband domain.

OpenCV is an Intel Open Source Computer Vision Library. It is a collection of

C functions, with a few in C++, that implements popular Image Processing and

Computer Vision algorithms. Several classical optical flow algorithms such as the

Lucas & Kanade algorithm and the Horn & Schunck algorithm are implemented in

this package. It also provides an image warping function and Video I/O functions.

The optical flow computation by the control grid interpolation (CGI) algorithm

has higher accuracy than the Lucas & Kanade algorithm and the Horn & Schunck al-

gorithm. Figure 39 shows comparative results on frames taken from a real turbulence

degraded video clip. The accuracy is measured by PSNR. Given a pair of consecu-

tive frames in the video, the PSNR between them is computed first. Then the three

optical flow algorithms are used to compute the motion between the two frames and

the computed motion is used to register the source frame toward the target frame.

The PSNR between the registered source and the target frame is computed to reflect

the accuracy of the optical flow computation. Among the three algorithms, the CGI

method provides the highest accuracy in this test. On average, the PSNR before

image registration is 26.09 dB, the PSNR of the image registered by CGI is 30.89 dB,

that of the Lucas & Kanade algorithm is 29.11 dB, and that of the Horn & Schunck

algorithm is 29.38 dB.

Qt is a GUI (graphical user interface) software toolkit. Qt simplifies the task of

writing and maintaining a GUI. It is used in building a simple windows application

for the restoration of atmospheric turbulence degraded video.

Our goal was to implement a real time application. Therefore, fixed period is
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Figure 39: Comparison of the three optical flow computation algorithms on the
moon video clip. The accuracy of the motion computation is evaluated by the PSNR
of the registered image and the target image. The higher the PSNR, the better the
optical flow estimate. On average, the PSNR before image registration is 26.09 dB,
the PSNR of the image registered by CGI is 30.89 dB. That of the Lucas & Kanade
algorithm is 29.11 dB, and that of the Horn & Schunck algorithm is 29.38 dB.
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considered favorably since it has low computation complexity. A shorter period cer-

tainly requires less time to process a frame. The application runs in Windows XP on

a notebook computer. The CPU is a 1400MHz Pentium M processor, with 768MB of

RAM. It is observed that it can run at a frame rate of 30 frames per second when the

period is 3 and there is no deblurring of the stabilized frame in which the turbulent

motion and noise is effectively reduced. When deblurring is turned on, it will slow

down the speed to around 10 frames per second. The size of the image is 256 by

256. The computational complexity is approximately proportional to the length of

the period.
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CHAPTER VI

CONCLUSION

6.1 Summary of Results

In this thesis work, the background of atmospheric turbulence degradation in imag-

ing was reviewed and two aspects are highlighted: blurring and geometric distortion.

Since the atmospheric turbulence blurring is unknown function, a blind image decon-

volution technique was developed based on a higher order statistic (HOS). It was ob-

served that the kurtosis generally increases as the image becomes blurred (smoothed).

Such an observation was explained in the frequency domain in terms of phase corre-

lation. It was shown that kurtosis minimization is effective in identifying the blurring

parameter. Kurtosis minimization is a general method for blur identification; it is

not limited to turbulence blur. To compensate for the geometric distortion, earlier

work on the turbulent motion compensation was extended to deal with situations in

which there is object motion. When there is no real motion, it was shown that the

time-averaged frames serve as good reference frames and that the turbulent motion

is reduced by registering frames towards their corresponding reference frames. When

object motion is present, the approach degrades the video further since the reference

frame is corrupted. Instead of using a reference frame, we smooth along the motion

trajectories and real motion is preserved while the turbulence motion is effectively

reduced. Though the scintillation effect is not considered separately in the model,

it can be handled the same way as noise removal while the turbulence motion is

suppressed.

The algorithm was initially designed and implemented in Matlab for fast proto-

typing. Later, a C/C++ implementation was developed to illustrate the real time
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performance of the restoration algorithm.

6.2 Further Directions

The restoration of video is different from the problem of single image restoration

since multiple observations are available. Though motion might be present among

the frames, image registration [8] can be used to compensate for the motion. After

motion compensation, the frames provide multiple observations. Thus multichannel

image restoration [80, 79, 64, 58, 63, 24, 27, 67], superresolution [14] or image fu-

sion [66] algorithms are applicable. In fact, a simple form of superresolution is used

while the turbulent motion is suppressed. The neighborhood frames are warped and

averaged. This is one of the simplest form of superresolution; nevertheless, it is ef-

fective and efficient. Given limited computation resources and real time demand,

simpler processing is always preferable because of its low complexity. When accuracy

is has a higher priority, more sophisticated methods are preferred. Further work shall

investigate multichannel image restoration approaches.

Though the turbulence blurring OTF is used, it might not accurately reflect the

real atmospheric turbulence blurring effect. Therefore, a “more” blind deconvolution

methods that do not assume a functional form of the blur should also be explored.

87



REFERENCES

[1] University of Southern California - Signal and Im-
age Processing Institute - The USC-SIPI Image Database.
http://sipi.usc.edu/services/database/Database.html.

[2] Aime, C., Borgnino, J., Martin, F., Petrov, R., and Ricort, G., “Con-
tribution to the Space-time Study of Stellar Speckle Patterns,” Journal of the
Optical Society of America A, vol. 3, pp. 1001–1009, July 1986.

[3] Ayers, G. R. and Dainty, J. C., “Iterative blind deconvolution method and
its applications,” Optics Letters, vol. 13, pp. 547–549, July 1988.

[4] Bergen, J. R., Anandan, P., Hanna, K. J., and Hingorani, R., “Hierar-
chical model-based motion estimation,” in ECCV ’92: Proc. of the Second Eu-
ropean Conference on Computer Vision, (London, UK), pp. 237–252, Springer-
Verlag, 1992.

[5] Chang, C.-C. and Lin, C.-J., LIBSVM: a Library for
Support Vector Machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[6] Colavita, M. M., Shao, M., and Staelin, D. H., “Atmospheric phase mea-
surements with the Mark III stellar interferometer,” Applied Optics, vol. 26,
pp. 4106–4112, Oct. 1987.

[7] Colavita, M. M., Swain, M. R., Akeson, R. L., Koresko, C. D., and
Hill, R. J., “Effects of atmospheric water vapor on infrared interferometry,”
Publications of the Astronomical Society of the Pacific, vol. 116, p. 876C885,
2004.

[8] Cole-Rhodes, A. A., Johnson, K. L., Moigne, J. L., and Zavorin, I.,
“Multiresolution registration of remote sensing imagery by optimization of mu-
tual information using a stochastic gradient.,” IEEE Transactions on Image Pro-
cessing, vol. 12, no. 12, pp. 1495–1511, 2003.

[9] Condell, J., Scotney, B., and Morrow, P., “Adaptive grid refinement pro-
cedures for efficient optical flow computation,” International Journal Computer
Vision, vol. 61, no. 1, pp. 31–54, 2005.

[10] Cortes, C. and Vapnik, V., “Support-vector network,” Machine Learning,
vol. 20, pp. 273–297, 1995.

88



[11] Cote, O. R., Hacker, J. M., Crawford, T. L., and Dobosy, R. J., “Clear
air turbulence and refractive turbulence in the upper troposphere and lower
stratosphere,” in Proc. of the American Meteorological Society’s Ninth Conf. on
Aviation, Range, and Aerospace Meteorol, (Orlando, USA), 2000.

[12] Davey, B. L. K., Lane, R. G., and Bates, R. H. T., “Blind deconvolution
of noisy complex-valued image,” Optics Communications, vol. 69, pp. 353–356,
Jan. 1989.

[13] Ellerbroke, B. L. and Rhoadarmer, T. A., “Adaptive wavefront control
algorithms for closed loop adaptive optics,” Mathematical and Computer Mod-
elling, vol. 33, pp. 145–158, 2001.

[14] Farsiu, S., Robinson, M. D., Elad, M., and Milanfar, P., “Fast and
robust multiframe super resolution.,” IEEE Transactions on Image Processing,
vol. 13, no. 10, pp. 1327–1344, 2004.

[15] Fontanella, J. C. and Seve, A., “Reconstruction of turbulence-degraded
images using the Knox-Thompson algorithm,” Journal of the Optical Society of
America A, vol. 4, pp. 438–448, Mar. 1987.

[16] Ford, S. D., Welsh, B. M., and Roggemann, M. C., “Constrained least-
squares estimation in deconvolution from wave-front sensing,” Optics Commu-
nications, vol. 151, pp. 93–100, May 1998.

[17] Frakes, D. H., Monaco, J. W., and Smith, M. J. T., “Suppression of
atmospheric turbulence in video using an adaptive control grid interpolation
approach,” in Proc. of the IEEE Int. Conf. Acoustics, Speech, and Signal Pro-
cessing, (Salt Lake City, USA), pp. 1881–1884, 2001.

[18] Fraser, D., Thorpe, G., and Lambert, A., “Atmospheric turbulence visu-
alization with wide-area motion-blur restoration,” Journal of the Optical Society
of America A, vol. 16, no. 7, pp. 1751–1758, 1999.

[19] Freeman, J. D., “Estimation of astronomical images from the bispectrum of
atmospherically distorted infrared data,” Ph.D. Thesis, 1989.

[20] Fried, D. L., “Statistics of a Geometric Representation of Wavefront Distor-
tion,” Journal of the Optical Society of America A, vol. 55, pp. 1427–1435, 1965.

[21] Frieden, B. R., “Turbulent image reconstruction using object power spectrum
information,” Optics Communications, vol. 109, p. 227C230, 1993.

[22] Frieden, B. R. and Oh, C., “Turbulent image reconstruction from a superpo-
sition model,” Optics Communications, vol. 98, p. 241C244, 1993.

[23] Gennery, D. B., “Determination of Optical Transfer Function by Inspection of
Frequency-domain Plot,” Journal of the Optical Society of America A, vol. 63,
pp. 1571–1577, 1973.

89



[24] Giannakis, G. B. and Jr., R. W. H., “Blind identification of multichannel fir
blurs and perfect image restoration.,” IEEE Transactions on Image Processing,
vol. 9, no. 11, pp. 1877–1896, 2000.

[25] Gluckman, G. M., “Kurtosis and the Phase Structure of Images,” in 3rd
International Workshop on Statistical and Computational Theories of Vision,
Nice, France, October 2003 (in conjunction with ICCV ’03), (Nice, France), 12–
15, 2003.

[26] Hamming, R. W., Numerical Methods for Scientists and Engineers. New York:
McGraw-Hill, 1962.

[27] Harikumar, G. and Bresler, Y., “Exact image deconvolution from multiple
fir blurs.,” IEEE Transactions on Image Processing, vol. 8, no. 6, pp. 846–862,
1999.

[28] Hildebrand, F. B., Introduction to Numerical Analysis. New York: McGraw-
Hill, 1974.

[29] Holmes, T. J., “Blind deconvolution quantum-limited incoherent imagery:
Maximum-likelihood approach,” J. Optical Society of America, vol. 9, pp. 1052
– 1061, 1992.

[30] Horch, E., “Speckle imaging in astronomy,” International J. of Imaging Sys-
tems and Technology, vol. 6, pp. 401–417, 1995.

[31] Horn, B. and Schunk, B. G., “Determining optical flow,” Artificial Intelli-
gence, vol. 17, pp. 185–203, 1981.

[32] Huang, J. and Mumford, D., “Statistics of natural images and models,” in
Proc. of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 541–547, 1999.

[33] Hufnagel, R. E. and Stanley, N. R., “Modulation Transfer Function As-
sociated with Image Transmission through Turbulence Media,” Journal of the
Optical Society of America A, vol. 54, pp. 52–61, 1964.

[34] Hyvärinen, A. and Oja, E., “Independent component analysis: Algorithms
and applications,” Neural Networks, vol. 13, pp. 411–430, 2000.

[35] Ichikawa, T., “A pyramidal representation of images,” in Proc. of International
Conference on Pattern Recognition, pp. 603–606, 1978.

[36] Ichikawa, T., “A pyramidal representation of images and its feature extraction
facility,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 3, pp. 257–
264, May 1981.

[37] Jeffreys, H. and Jeffreys, B. S., Methods of Mathematical Physics, 3rd ed.
Cambridge, England: Cambridge University Press, 1988.

90



[38] Katsaggelos, A. K. and Lay, K. T., “Maximum likelihood blur identification
and image restoration using the em algorithm,” IEEE Transactions on Signal
Processing, vol. 39, pp. 729–733, March 1991.

[39] Knox, K. T. and Thompson, B. J., “Recovery of images from atmospherically
degraded short-exposure photographs,” Astronomical Journal, vol. 193, pp. L45–
L48, Oct. 1974.

[40] Kundur, D. and Hatzinakos, D., “Blind image deconvolution,” IEEE Signal
Processing Magazine, vol. 13, pp. 43–64, May 1996.

[41] Kundur, D. and Hatzinakos, D., “Blind image deconvolution revisited,”
IEEE Signal Processing Magazine, vol. 13, pp. 61–63, Nov 1996.

[42] Labeyrie, A., “Attainment of diffraction limited resolution in large telescopes
by fourier analysing speckle patterns in star images,” Astronomy and Astro-
physics, vol. 6, pp. 85–87, May 1970.

[43] Lagendijk, R. L., Biemond, J., and Boekee, D. E., “Identification and
restoration of noisy blurred images using the expectation-maximization algo-
rithm,” IEEE Trans. Acoustics, Speech, Signal Processing, vol. 38, pp. 1180–
1191, July 1990.

[44] Lai, S.-H. and Vemuri, B. C., “Reliable and efficient computation of optical
flow,” International Journal Computer Vision, vol. 29, no. 2, pp. 87–105, 1998.

[45] Lam, E. Y. and Goodman, J. W., “Iterative statistical approach to blind
image deconvolution,” Journal of the Optical Society of America A, vol. 17,
p. 1177C1184, 2000.

[46] Lane, R. G., “Blind deconvolution of speckle image,” Journal of the Optical
Society of America A, vol. 9, pp. 1508–1514, 1992.

[47] Law, N. F. and Lane, R. G., “Blind deconvolution using least squares mini-
mization,” Optical Communication, vol. 128, pp. 341–352, 1996.

[48] Li, D., Mersereau, R. M., Frakes, D. H., and Smith, M. J. T., “New
method for suppressing optical turbulence in video,” in Proc. European Signal
Processing Conference (EUSIPCO’2005), (Antalya, Turkey), 2005.

[49] Li, D., Mersereau, R. M., and Simske, S., “Blur identification based on
kurtosis minimization,” in Proc. of the IEEE Int. Conf. Image Processing, vol. 1,
(Genoa,Italy), pp. 905–908, 2005.

[50] Li, D., Simske, S., and Mersereau, R. M., “Blind image deconvolution using
constrained variance maximization,” in the Proc. of the 38th Asilomar Conf. on
Signals, Systems and Computers, Pacific Grove, CA, USA, 2004.

91



[51] Li, D., Simske, S., and Mersereau, R. M., “Blind image deconvolution using
support vector regression,” in in Proc. of the IEEE Int. Conf. Acoustics, Speech,
and Signal Processing, Philadelphia, PA, USA, 2005.

[52] Likas, A. C. and Galatsanos, N. P., “A variational approach for bayesian
blind image deconvolution,” IEEE Transactions on Signal Processing, vol. 52,
pp. 2222–2233, Aug. 2004.

[53] Lohmann, A. W., Weigelt, G., and Wirnitzer, B., “Speckle masking in
astronomy - Triple correlation theory and applications,” Applied Optics, vol. 22,
pp. 4028–4037, Dec. 1983.

[54] Lucas, B. D. and Kanade, T., “An iterative image registration technique
with an application to stereo vision (darpa),” in Proc. of the 1981 DARPA Image
Understanding Workshop, pp. 121–130, April 1981.

[55] Mallat, S. G., “A theory for multiresolution signal decomposition: The
wavelet representation,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 11, pp. 674–693, July 1989.

[56] McCallum, B. C., “Blind deconvolution by simulated annealing,” Optics Com-
munications, vol. 75, pp. 101–105, Feb 1990.

[57] Mendel, J. M., “Tutorial on higher-order statistics (spectra) in signal process-
ing and system theory: theoretical results and some applications.,” Proc. IEEE,
vol. 79, no. 3, pp. 278–305, 1991.

[58] Molina, R., Mateos, J., Katsaggelos, A. K., and Vega, M., “Bayesian
multichannel image restoration using compound gauss-markov random fields.,”
IEEE Transactions on Image Processing, vol. 12, no. 12, pp. 1642–1654, 2003.

[59] Niura, N. and Baba, N., “Extended-object reconstruction with sequential use
of the iterative blind deconvolution method,” Optics Communications, vol. 89,
p. 375C379, 1992.

[60] Noll, R. J., “Zernike polynomials and atmospheric turbulence,” Journal of the
Optical Society of America A, vol. 66, pp. 207–211, Mar. 1976.

[61] Olsen, O. F. and Nielsen, M., “The generic structure of the optic flow field,”
Journal of Mathematical Imaging and Vision, vol. 24, no. 1, pp. 37–53, 2006.

[62] Ong, E. P. and Spann, M., “Robust optical flow computation based on least-
median-of-squares regression,” International Journal Computer Vision, vol. 31,
no. 1, pp. 51–82, 1999.

[63] Pai, H.-T. and Bovik, A. C., “On eigenstructure-based direct multichan-
nel blind image restoration.,” IEEE Transactions on Image Processing, vol. 10,
no. 10, pp. 1434–1446, 2001.

92



[64] Panci, G., Campisi, P., Colonnese, S., and Scarano, G., “Multichannel
blind image deconvolution using the bussgang algorithm: spatial and multires-
olution approaches.,” IEEE Transactions on Image Processing, vol. 12, no. 11,
pp. 1324–1337, 2003.

[65] Panofsky, H. A. and Dutton, J. A., Atmospheric Turbulence : Models and
Methods for Engineering Applications. Wiley, 1984.

[66] Petrovic, V. S. and Xydeas, C. S., “Gradient-based multiresolution image
fusion.,” IEEE Transactions on Image Processing, vol. 13, no. 2, pp. 228–237,
2004.

[67] Rajagopalan, A. N. and Chaudhuri, S., “A recursive algorithm for maxi-
mum likelihood-based identification of blur from multiple observations.,” IEEE
Transactions on Image Processing, vol. 7, no. 7, pp. 1075–1079, 1998.

[68] Reeves, S. J. and Mersereau, R. M., “Optimal estimation of the regular-
ization parameter and stabilizing functional for regularized image restoration,”
Optical Engineering, vol. 29, pp. 446–454, May 1990.

[69] Reeves, S. J. and Mersereau, R. M., “Blur identification by the method of
generalized cross-validation,” IEEE Trans. Image Processing, vol. 1, pp. 301–311,
July 1992.

[70] Richardson, W. H., “Bayesian-based iterative method of image restoration,”
J. Optical Society of America, vol. 62, pp. 55–59, 1972.

[71] Roggemann, M. C. and Welsh, B., Imaging Through Turbulence. CRC Press,
1996.

[72] Rosenfeld, A., “Some uses of pyramids in image processing and segmenta-
tion,” in Proc. of the DARPA Image Understanding Workshop, pp. 112–120,
1980.

[73] Schulz, T. J., “Multi-frame blind deconvolution of astronomical images,” Jour-
nal of the Optical Society of America A, vol. 10, pp. 1064–1073, 1993.

[74] Shepp, L. A. and Vardi, Y., “Maximum likelihood reconstruction in positron
emission tomography,” IEEE Trans. Medical Imaging, vol. 1, no. 2, pp. 113–122,
1982.

[75] Sheppard, D. G., Hunt, B. R., and Marcellin, M. W., “Iterative mul-
tiframe super-resolution algorithms for atmospheric turbulence-degraded im-
agery,” in in Proc. of the IEEE Int. Conf. Acoustics, Speech, and Signal Process-
ing, (Seattle, USA), pp. 2857–2860, May 12–15, 1998.

[76] Simoncelli, E. and Adelson, E., “Noise removal via bayesian wavelet cod-
ing,” in Proc. of the IEEE International Conference on Image Processing, (Lau-
sanne, Switzerland), IEEE Computer Society Press, Sept. 1996.

93



[77] Smith, M. J. T. and Barnwell, T., “A procedure for designing exact recon-
struction filter banks for tree-structured subband coders,” in Proc. of the IEEE
Int. Conf. Acoustics, Speech, and Signal Processing, pp. 27.1.1–27.1.4, Mar. 1984.

[78] Srivastava, A., Lee, A. B., Simoncelli, E. P., and Zhu, S. C., “On
advances in statistical modeling of natural images,” Journal of Mathematical
Imaging and Vision, vol. 18, Jan. 2003.

[79] Sroubek, F. and Flusser, J., “Multichannel blind iterative image restora-
tion.,” IEEE Transactions on Image Processing, vol. 12, no. 9, pp. 1094–1106,
2003.

[80] Sroubek, F. and Flusser, J., “Multichannel blind deconvolution of spatially
misaligned images.,” IEEE Transactions on Image Processing, vol. 14, no. 7,
pp. 874–883, 2005.

[81] Stockham Jr., T. G., Cannon, T. M., and Ingebresten, R. B., “Blind
deconvolution through digital signal processing,” Proc. IEEE, vol. 63, pp. 678–
692, Apr. 1975.

[82] Tatarski, V. I., Wave Propagation in a Turbulent Medium. McGraw-Hill,
1961.

[83] Tekalp, A. M., Kaufman, H., and Woods, J. W., “Identification of im-
age and blur parameters for the restoration of noncausal blurs,” IEEE Trans.
Acoustics, Speech, Signal Processing, vol. 34, pp. 963–972, Aug. 1986.

[84] Tekalp, R. L. L. A. M. and Biemond, J., “Maximum likelihood image and
blur identification: a unifying approach,” Optical Engineering, vol. 29, pp. 422–
435, May 1990.

[85] Turk, M. and Pentland, A., “Eigenfaces for recognition,” Journal of Cogni-
tive Neuroscience, vol. 3, pp. 71–86, Winter 1991.

[86] Wirnitzer, B., “Bispectral analysis at low light levels and astronomical speckle
masking,” Journal of the Optical Society of America A, vol. 2, pp. 14–21, Jan.
1985.

[87] Wolberg, G., Digital Image Warping. Los Alamitos, CA, USA: IEEE Com-
puter Society Press, 1994.

[88] Yap, K.-H., Guan, L., and Liu, W., “A recursive soft-decision approach to
blind image deconvolution,” IEEE Transactions on Signal Processing, vol. 51,
pp. 515–526, Feb. 2003.

[89] You, Y.-L. and Kaveh, M., “A regularization approach to joint blur identifi-
cation and image restoration.,” IEEE Transactions on Image Processing, vol. 5,
no. 3, pp. 416–428, 1996.

94



[90] Zhang, T. X., Hong, H. Y., and Shen, J., “Restoration algorithms for
turbulence-degraded images based on optimized estimation of discrete values
of overall point spread functions,” Optical Engineering, vol. 44, pp. 17005:1–17,
2005.

95



VITA

Dalong Li was born in Luoyang, China, in 1976. He received the B. S. from Univer-

sity of Petroleum in 1998 and the M. S. from the Institute of Automation, Chinese

Academy of Science in 2001. He received the Ph. D. degree in 2007 from the Georgia

Institute of Technology. He interned at HP lab, Kodak Research, the Mathworks

as well as Philips Research during his PhD program. His research interests include

image restoration, blur identification, and machine learning.

96


