8 research outputs found

    A New Formula for the BER of Binary Modulations with Dual-Branch Selection over Generalized-K Composite Fading Channels

    Full text link
    Error performance is one of the main performance measures and derivation of its closed-form expression has proved to be quite involved for certain systems. In this letter, a unified closed-form expression, applicable to different binary modulation schemes, for the bit error rate of dual-branch selection diversity based systems undergoing independent but not necessarily identically distributed generalized-K fading is derived in terms of the extended generalized bivariate Meijer G-function.Comment: Diversity schemes, selection combining, dual-branch selection diversity, binary modulation schemes, generalized-K (GK) model, composite fading, bit error rate (BER), and Meijer G-function distributio

    Wireless multiuser communication systems: diversity receiver performance analysis, GSMuD design, and fading channel simulator

    Get PDF
    Multipath fading phenomenon is central to the design and analysis of wireless communication systems including multiuser systems. If untreated, the fading will corrupt the transmitted signal and often cause performance degradations such as increased communication error and decreased data rate, as compared to wireline channels with little or no multipath fading. On the other hand, this multipath fading phenomenon, if fully utilized, can actually lead to system designs that provide additional gains in system performance as compared to systems that experience non-fading channels.;The central question this thesis tries to answer is how to design and analyze a wireless multiuser system that takes advantage of the benefits the diversity multipath fading channel provides. Two particular techniques are discussed and analyzed in the first part of the thesis: quadrature amplitude modulation (QAM) and diversity receivers, including maximal ratio combining (MRC) and generalized selection combining (GSC). We consider the practical case of imperfect channel estimation (ICE) and develop a new decision variable (DV) of MRC receiver output for M-QAM. By deriving its moment generating function (MGF), we obtain the exact bit error rate (BER) performance under arbitrary correlated Rayleigh and Rician channels, with ICE. GSC provides a tradeoff between receiver complexity and performance. We study the effect of ICE on the GSC output effective SNR under generalized fading channels and obtain the exact BER results for M-QAM systems. The significance of this part lies in that these results provide system designers means to evaluate how different practical channel estimators and their parameters can affect the system\u27s performance and help them distribute system resources that can most effectively improve performance.;In the second part of the thesis, we look at a new diversity technique unique to multiuser systems under multipath fading channels: the multiuser diversity. We devise a generalized selection multiuser diversity (GSMuD) scheme for the practical CDMA downlink systems, where users are selected for transmission based on their respective channel qualities. We include the effect of ICE in the design and analysis of GSMuD. Based on the marginal distribution of the ranked user signal-noise ratios (SNRs), we develop a practical adaptive modulation and coding (AMC) scheme and equal power allocation scheme and statistical optimal 1-D and 2-D power allocation schemes, to fully exploit the available multiuser diversity. We use the convex optimization procedures to obtain the 1-D and 2-D power allocation algorithms, which distribute the total system power in the waterfilling fashion alone the user (1-D) or both user and time (2-D) for the power-limited and energy-limited system respectively. We also propose a normalized SNR based GSMuD scheme where user access fairness issues are explicitly addressed. We address various fairness-related performance metrics such as the user\u27s average access probability (AAP), average access time (AAT), and average wait time (AWT) in the absolute- and normalized-SNR based GSMuD. These metrics are useful for system designers to determine parameters such as optimal packet size and delay constraints.;We observe that Nakakagami-m fading channel model is widely applied to model the real world multipath fading channels of different severity. In the last part of the thesis, we propose a Nakagami-m channel simulator that can generate accurate channel coefficients that follow the Nakagami-m model, with independent quadrature parts, accurate phase distribution and arbitrary auto-correlation property. We demonstrate that the proposed simulator can be extremely useful in simulations involving Nakagami-m fading channel models, evident from the numerous simulation results obtained in earlier parts of the thesis where the fading channel coefficients are generated using this proposed simulator

    Composite and Cascaded Generalized-K Fading Channel Modeling and Their Diversity and Performance Analysis

    Get PDF
    The introduction of new schemes that are based on the communication among nodes has motivated the use of composite fading models due to the fact that the nodes experience different multipath fading and shadowing statistics, which subsequently determines the required statistics for the performance analysis of different transceivers. The end-to-end signal-to-noise-ratio (SNR) statistics plays an essential role in the determination of the performance of cascaded digital communication systems. In this thesis, a closed-form expression for the probability density function (PDF) of the end-end SNR for independent but not necessarily identically distributed (i.n.i.d.) cascaded generalized-K (GK) composite fading channels is derived. The developed PDF expression in terms of the Meijer-G function allows the derivation of subsequent performance metrics, applicable to different modulation schemes, including outage probability, bit error rate for coherent as well as non-coherent systems, and average channel capacity that provides insights into the performance of a digital communication system operating in N cascaded GK composite fading environment. Another line of research that was motivated by the introduction of composite fading channels is the error performance. Error performance is one of the main performance measures and derivation of its closed-form expression has proved to be quite involved for certain systems. Hence, in this thesis, a unified closed-form expression, applicable to different binary modulation schemes, for the bit error rate of dual-branch selection diversity based systems undergoing i.n.i.d. GK fading is derived in terms of the extended generalized bivariate Meijer G-function

    Uticaj nesavršene ekstrakcije referentnog nosioca na performanse diverziti prijemnika digitalno fazno modulisanih signala u kanalu sa fedingom

    Get PDF
    The results of the research, presented in this dissertation, refer to the analysis of imperfect reference signal recovery influence on performance of digital systems with BPSK and QPSK modulation and diversity at the reception applied. In order to make the content easy for understanding, the theoretical basics, necessary for calculations performed in the following chapters, has been presented at the beginning. In the analysis of the imperfect reference signalrecovery influence on the performance of single channel systems for BPSK and QPSK signal detection two cases have been considered. The analysis has been performed for Hoyt and composite Kg fading channel. ..

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Otimização do fronthaul ótico para redes de acesso de rádio (baseadas) em computação em nuvem (CC-RANs)

    Get PDF
    Doutoramento conjunto (MAP-Tele) em Engenharia Eletrotécnica/TelecomunicaçõesA proliferação de diversos tipos de dispositivos moveis, aplicações e serviços com grande necessidade de largura de banda têm contribuído para o aumento de ligações de banda larga e ao aumento do volume de trafego das redes de telecomunicações moveis. Este aumento exponencial tem posto uma enorme pressão nos mobile operadores de redes móveis (MNOs). Um dos aspetos principais deste recente desenvolvimento, é a necessidade que as redes têm de oferecer baixa complexidade nas ligações, como também baixo consumo energético, muito baixa latência e ao mesmo tempo uma grande capacidade por baixo usto. De maneira a resolver estas questões, os MNOs têm focado a sua atenção na redes de acesso por rádio em nuvem (C-RAN) principalmente devido aos seus benefícios em termos de otimização de performance e relação qualidade preço. O standard para a distribuição de sinais sem fios por um fronthaul C-RAN é o common public radio interface (CPRI). No entanto, ligações óticas baseadas em interfaces CPRI necessitam de uma grande largura de banda. Estes requerimentos podem também ser atingidos com uma implementação em ligação free space optical (FSO) que é um sistema ótico que usa comunicação sem fios. O FSO tem sido uma alternativa muito apelativa aos sistemas de comunicação rádio (RF) pois combinam a flexibilidade e mobilidade das redes RF ao mesmo tempo que permitem a elevada largura de banda permitida pelo sistema ótico. No entanto, as ligações FSO são suscetíveis a alterações atmosféricas que podem prejudicar o desempenho do sistema de comunicação. Estas limitações têm evitado o FSO de ser tornar uma excelente solução para o fronthaul. Uma caracterização precisa do canal e tecnologias mais avançadas são então necessárias para uma implementação pratica de ligações FSO. Nesta tese, vamos estudar uma implementação eficiente para fronthaul baseada em tecnologia á rádio-sobre-FSO (RoFSO). Propomos expressões em forma fechada para mitigação das perdas de propagação e para a estimação da capacidade do canal de maneira a aliviar a complexidade do sistema de comunicação. Simulações numéricas são também apresentadas para formatos de modulação adaptativas. São também considerados esquemas como um sistema hibrido RF/FSO e tecnologias de transmissão apoiadas por retransmissores que ajudam a alivar os requerimentos impostos por um backhaul/fronthaul de C-RAN. Os modelos propostos não só reduzem o esforço computacional, como também têm outros méritos, tais como, uma elevada precisão na estimação do canal e desempenho, baixo requisitos na capacidade de memória e uma rápida e estável operação comparativamente com o estado da arte em sistemas analíticos (PON)-FSO. Este sistema é implementado num recetor em tempo real que é emulado através de uma field-programmable gate array (FPGA) comercial. Permitindo assim um sistema aberto, interoperabilidade, portabilidade e também obedecer a standards de software aberto. Os esquemas híbridos têm a habilidade de suportar diferentes aplicações, serviços e múltiplos operadores a partilharem a mesma infraestrutura de fibra ótica.The proliferation of different mobile devices, bandwidth-intensive applications and services contribute to the increase in the broadband connections and the volume of traffic on the mobile networks. This exponential growth has put considerable pressure on the mobile network operators (MNOs). In principal, there is a need for networks that not only offer low-complexity, low-energy consumption, and extremely low-latency but also high-capacity at relatively low cost. In order to address the demand, MNOs have given significant attention to the cloud radio access network (C-RAN) due to its beneficial features in terms of performance optimization and cost-effectiveness. The de facto standard for distributing wireless signal over the C-RAN fronthaul is the common public radio interface (CPRI). However, optical links based on CPRI interfaces requires large bandwidth. Also, the aforementioned requirements can be realized with the implementation of free space optical (FSO) link, which is an optical wireless system. The FSO is an appealing alternative to the radio frequency (RF) communication system that combines the flexibility and mobility offered by the RF networks with the high-data rates provided by the optical systems. However, the FSO links are susceptible to atmospheric impairments which eventually hinder the system performance. Consequently, these limitations prevent FSO from being an efficient standalone fronthaul solution. So, precise channel characterizations and advanced technologies are required for practical FSO link deployment and operation. In this thesis, we study an efficient fronthaul implementation that is based on radio-on-FSO (RoFSO) technologies. We propose closedform expressions for fading-mitigation and for the estimation of channel capacity so as to alleviate the system complexity. Numerical simulations are presented for adaptive modulation scheme using advanced modulation formats. We also consider schemes like hybrid RF/FSO and relay-assisted transmission technologies that can help in alleviating the stringent requirements by the C-RAN backhaul/fronthaul. The propose models not only reduce the computational requirements/efforts, but also have a number of diverse merits such as high-accuracy, low-memory requirements, fast and stable operation compared to the current state-of-the-art analytical based approaches. In addition to the FSO channel characterization, we present a proof-of-concept experiment in which we study the transmission capabilities of a hybrid passive optical network (PON)-FSO system. This is implemented with the real-time receiver that is emulated by a commercial field-programmable gate array (FPGA). This helps in facilitating an open system and hence enables interoperability, portability, and open software standards. The hybrid schemes have the ability to support different applications, services, and multiple operators over a shared optical fiber infrastructure

    Performance Analysis of a Class of GSC Receivers over Nonidentical Weibull Fading Channels

    No full text
    The performance of a class of generalized-selection combining (GSC) receivers operating over independent but nonidentically distributedWeibull fading channels is studied.We consider the case where the two branches with the largest instantaneous signal-to-noise ratio (SNR), from a total of L available, GSC(2, L) are selected. By introducing a novel property for the product of moments of ordered Weibull random variables, convenient closed form expressions for the moments of the GSC(2,L) outputSNRare derived. Using these expressions, important performance criteria, such as average output SNR and amount of fading, are obtained in closed form. Furthermore, employing the Pade\ub4approximants theory and themoment-generating function approach, outage and bit-error rate performance are studied. An attempt is also made to identify the equivalency between the Weibull and the Rice fading channel, which is typically used to model the mobile satellite channel. We present various numerical performance evaluation results for different modulation formats and channel conditions. These results are complemented by equivalent computer simulated resultswhich validate the accuracy of the proposed analysis
    corecore