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ABSTRACT

Composite and Cascaded Generalized-K Fading Channel

Modeling and Their Diversity and Performance Analyses

Imran Shafique Ansari

The introduction of new schemes that are based on the communication among

nodes has motivated the use of composite fading models due to the fact that the

nodes experience different multipath fading and shadowing statistics, which subse-

quently determines the required statistics for the performance analysis of different

transceivers.

The end-to-end signal-to-noise-ratio (SNR) statistics plays an essential role in the

determination of the performance of cascaded digital communication systems. In

this thesis, a closed-form expression for the probability density function (PDF) of

the end-end SNR for independent but not necessarily identically distributed (i.n.i.d.)

cascaded generalized-K (GK) composite fading channels is derived. The developed

PDF expression in terms of the Meijer-G function allows the derivation of subsequent

performance metrics, applicable to different modulation schemes, including outage

probability, bit error rate for coherent as well as non-coherent systems, and average

channel capacity that provides insights into the performance of a digital communica-

tion system operating in N cascaded GK composite fading environment.
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Another line of research that was motivated by the introduction of composite

fading channels is the error performance. Error performance is one of the main

performance measures and derivation of its closed-form expression has proved to

be quite involved for certain systems. Hence, in this thesis, a unified closed-form

expression, applicable to different binary modulation schemes, for the bit error rate

of dual-branch selection diversity based systems undergoing i.n.i.d. GK fading is

derived in terms of the extended generalized bivariate Meijer G-function.
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Chapter I

Introduction

I.1 Wireless Channel Modeling and Composite Fad-

ing Channels

In wireless channels, a radiated electromagnetic wave interacts with the medium be-

tween the transmitter and the receiver in a complicated way i.e. the incident wave

interacts with surface irregularities via diffraction, scattering, reflection, and absorp-

tion creating a chain or a flow of scattered partial waves. Besides this, the physical

properties of the surface structure such as geometrical proportions and electromag-

netic reflection properties also influence the amplitudes and phases of such type of

partial waves. Hence, in space, such scattered partial waves interfere with each other

and possibly with the direct wave, building up an irregular electromagnetic field. On

the other hand, the signal power tends to decrease with distance and the existence of

large scatterers such as trees, buildings, and mountains introduces random variations

of the local mean of the envelope or equivalently the local mean power. Hence, global

deterministic characterization is not possible and can only be specific. Therefore, the

only way to characterize such channel is probabilistic. In other words, to statistically
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model wireless channels, these small-scale and large-scale propagation mechanisms

are to be considered independently [2].

Having mentioned small-scale fading above, it occurs due to the superposition of

the received multipath signals which are due to the processes of reflection, diffraction,

and scattering. Hence, within a scale that is comparable to the carrier wavelength,

the superposition of the multipath signals may add constructively (in-phase) or de-

structively (out-of-phase) causing the phenomenon of small-scale fading or multipath

fading.

Whereas, the scattering caused due to the presence of general terrain, large build-

ings and vegetation wherein the local mean received power varies in a wireless channel

is a phenomenon that is referred to as large-scale fading or shadowing.

Additionally, wireless communications are driven by a complicated phenomenon

known as radio-wave propagation that is characterized by various effects including

multipath fading and shadowing. The statistical behavior of these effects is described

by different models depending on the nature of the communication environment. It

is becoming necessary to study such effects. Hence, we intend to study large-scale

fading as well as small-scale fading concurrently as the multihop relay networks are

emerging in the current times.

Now, since the geographically distributed nodes experience different multipath

fading and shadowing statistics, hence, modeling composite fading channels, where

the multipath fading and shadowing are modeled jointly, is essential for the perfor-

mance analysis of different communication systems.

I.2 Cascaded Channels

The concept of using mobile terminals as relay stations is emerging as a feasible option

for overcoming the problems of the next generation wireless networks. Conventional
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relaying systems use relays as pure forwarders whereas cooperative relays tackle the

fundamental features of wireless medium i.e. its broadcast nature, and its ability to

provide independent channels and hence achieving diversity. Cooperative networks

benefit from the broadcast nature because of the fact that once a signal is transmitted,

it can be received and usefully forwarded by multiple terminals [3].

Nevertheless, whichever type of relaying system one employs, it encompasses the

concept of multiple scattering radio propagation channels [4] that has been proved

useful in many scientific fields of communications and to fit many propagation sce-

narios in the recent past. For instance, in a multihop communication system [5],

the source node communicates with the destination node via a given number of N

hops. Those intermediate nodes called hops are analog repeaters i.e. operate under

amplify-and-forward relay with fixed gains and hence, such a channel accounts to a

cascaded channel that can be modeled as a product of fading amplitudes or this can

also be referred to as multiplicative fading models.

In other words, wireless multihop transmission exploits wireless cascaded channel

wherein each relay terminal multiplies the received signal from the previous terminal

by a constant gain determined by path-loss without performing phase-correction. This

forms an efficient technology for extending the coverage with respect to the channel

path-loss and increasing the channel capacity of wireless communications especially

in severe multipath fading channels [1].

Hence, these so-called cascaded fading channels have recently gained significant

interest in modeling the propagation environment. These models can be physically

interpreted by considering received signals generated by the product of a large number

of rays reflecting N statistically independent scatterers. This concept of cascaded

channels is analogous to modeling propagation via keyholes [6] or via diffracting

wedges like rooftops or street corners, among others [4], as shown below in figure I.1.

The γn’s in the figure represent the channel model.

3



(a)

(b)

Figure I.1: Propagation scenarios of cascaded fading channels: (a) cascaded fading
channels created by keyholes, (b) cascaded fading channels created by amplify-and-
relay terminals [1].
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This can be physically interpreted by considering a source and a destination termi-

nal surrounded by several stationary and moving objects such that the signal trans-

mitted by the source terminal can propagate to the receiver only through minute

apertures (that can be considered as keyholes), among obstacles. Hence, each such

keyhole then acts as a source terminal to the next keyhole thus forming the complete

communication channel that can be considered as a cascaded fading channel [7].

Cascaded fading models have proved to be useful in the performance analysis

of space-time block codes (STBCs) over different channel models. Additionally, they

have also proved useful in analytical study of the performance of equal-gain combining

(EGC) diversity receivers [7].

Besides having a discussion of cascaded channels wherein there are relays con-

nected in series forming a chain, its worthwhile to discuss the possibility of having

these relays connected between the source node and the destination node in a paral-

lel fashion leading to multiple copies of same message reaching at the receivers end.

This parallel fashion allows employment of different types of schemes to achieve better

system performance. Following section discusses this concept further.

I.3 Selection Diversity

In wireless systems with base stations or access points communicating with small

low power terminals, the terminals may be limited to a single transmit chain due to

power complexity constraints. On the contrary, multiple transmit and receive antenna

systems i.e. multiple input and multiple output (MIMO) systems offer substantial

performance improvement in wireless systems by increasing their spectral efficiency

and/or by reducing the effects of the channel impairments [8].

One of the most simplest and most efficient techniques to overcome the destruc-

tive effects of fading in wireless communication systems, as of yet, is diversity. In all

5



of these diversity techniques, the receiver processes the obtained diversity signals in

a way that maximizes the system’s power efficiency. There are several diversity tech-

niques such as EGC, maximal ratio combining (MRC), selection combining (SC), and

a combination of MRC and SC referred to as generalized selection combining (GSC).

Intuitively and also it is a proved fact that among these diversity techniques, SC is the

least complicated. This is because the processing is done only on one of the diversity

branches of the receiver [9]. Hence, diversity reception can significantly improve the

performance of wireless communication systems in the presence of multipath fading

and interference [10].

Recently, there has been considerable interest in low-complexity combining schemes

for diversity-rich environments. Diversity combining is one of the most effective

fading-mitigation techniques. In general, the performance of wireless communication

systems improves as the number of available diversity paths increases. Therefore,

emerging wireless communication systems are employing physical-layer solutions op-

erating in diversity-rich environments, or in other words, with a larger number of

diversity paths. For instance, ultra-wideband code-division multiple-access systems,

millimeter-wave systems and MIMO systems [11].

Additionally, different diversity schemes have taken up an important role in wire-

less communication systems. The main reason behind this is that these different

diversity schemes allow for multiple transmission and/or reception paths for the same

signal [12]. One of the simplest diversity combining scheme, as mentioned above, is

the SC diversity scheme where only one of the diversity branches is processed. Specif-

ically, SC scheme chooses the branch with highest signal-to-noise ratio (SNR) that

corresponds to the strongest signal if equal power is assumed among the different

branches [13]-[14]. Therefore, for simplicity, this SC scheme has been employed in the

current work and the positive results encourage to further work on different diversity

techniques.
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I.4 Objectives and Contributions

The main objective of this thesis is to contribute toward appropriate channel model-

ing, cascaded channels, and dual SC under generalized-K (GK) fading environment

where the GK model is described in the upcoming chapter.

A very essential tool for performance analysis of wireless communication systems is

the underlying composite fading model where the effects of both multipath fading and

shadowing are incorporated. Hence in Chapter II, an introductory background to a

simple yet sufficiently accurate composite fading model i.e. the GK fading model that

bypasses the analytical and numerical difficulties associated with the existing models

in literature is presented. Further, some statistical characteristics of the GK model

including its probability density function (PDF) and cumulative density function

(CDF) are discussed.

In Chapter III, a closed-form expression of the PDF of the end-end SNR for inde-

pendent but not necessarily identically distributed (i.n.i.d.) cascaded GK composite

fading channels is derived. The developed PDF expression in terms of the Meijer-G

function (refer Appendix A) allows the derivation of subsequent performance met-

rics, applicable to different modulation schemes, including outage probability (OP),

bit error rate (BER) for coherent as well as non-coherent systems, and average channel

capacity (EC) that provides insights into the performance of a digital communication

system operating in N cascaded GK composite fading environment.

Using the results obtained in Chapter II, a unified closed-form expression, appli-

cable to different binary modulation schemes, for the BER of dual-branch diversity

SC based systems undergoing i.n.i.d. GK fading is derived in terms of the extended

generalized bivariate Meijer G-function (EGBMGF) in Chapter IV.

The contributions of this thesis folds in the following streams:

• The discussion of the GK model and presenting some of its statistical char-

acteristics including its PDF and CDF. The important outcome to be taken into

7



consideration is the derivation of CDF i.e. it has been derived directly from the PDF

rather than employing the relatively complex moment generating function (MGF)

approach.

• The derivation of the PDF expression and various performance metrics for a

cascaded system running under GK environment.

• Derivation of the exact closed-form BER expression for a dual-branch diversity

SC system running under GK environment.
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Chapter II

The Generalized-K Fading System

and Channel Model

Considering the case wherein we have shadowing in addition to the multipath fading

considered previously, each receiver is subject to a composite fading signal [12]. For

such a scenario, several composite fading models have been proposed such as Suzuki

[15], Nakagami-lognormal [16], Rice-lognormal [17] and Generalized-K (GK) [18] etc.

Unfortunately for the first three models, closed form probability density function

(PDF) does not exists making further performance analysis difficult. With regards

to the latter model, acknowledging their contribution, the authors in [7] and [19]

have proposed a statistical characterization of GK model via deployment of a rather

complicated moment generating function (MGF) approach.

Using the Nakagami multipath fading model that is versatile enough to model var-

ious multipath fading conditions ranging from severe fading to non-fading scenario,

and the Gamma model for shadowing [20], has led to the GK (Gamma-Gamma) com-

posite fading model [18], [21]-[24]. GK distribution, earlier used in radar applications

and recently being used in the context of wireless digital communications over fading

channels, is one of the relatively new tractable models used to describe the statistical

9



behavior of multipath fading and shadowing effects as compared to log-normal based

models. As an instance to the above statement, the desired relationship between the

parameter of Gamma PDF and the log-normal PDF is given by [23] as

ms =
1

exp(σ2)− 1
. (II.1)

Furthermore, GK fading model is quite general model as it includes K -distribution

[25] as its special case and accurately approximates many other fading models such

as Nakagami-m and Rayleigh-Lognormal (R-L) ([22] and references therein). Finally,

GK distribution is a distribution of the product of two independent Gamma random

variables (RV) and hence is a special case of the Fox H -function (refer Appendix

A) and in turn a special case of Meijer G-function where the product of two Meijer

G-function’s can be represented in terms of the extended generalized bivariate Meijer

G-function (EGBMGF) (refer Appendix B) [26].

II.1 Basic Model

A multi-hop communication system with a source, a destination, and (N -1) interme-

diate relay nodes is considered. The channel gain for the nth hop is denoted by hn. In

a Nakagami multipath fading channel, γ = |hn|2 follows Gamma distribution; addi-

tionally, the shadowing component is also assumed to follow a Gamma distribution.

Hence, the channel gains experience composite fading whose statistics follow a GK

distribution given by

pγ(γ) =
2bmm+ms

Γ(mm)Γ(ms)
γ
mm+ms

2
−1Kms−mm(2b

√
γ), γ > 0, (II.2)

where Γ(·) is the Gamma function as defined in [27, Eq. (8.310)], mm and ms are the

Nakagami multipath fading and shadowing parameters, respectively. In (II.2) Km(·)
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is the modified Bessel function of the second kind and order m, b =
√

mmms
Ω0

, and Ω0

is the mean of the local power. The parameters mm and ms quantify the severity of

multipath fading and shadowing, respectively, in the sense that small values of mm

and ms indicate severe multipath fading and shadowing conditions respectively, and

vice versa. Additionally, mm = 1 represents the non-line of sight (NLOS) branch and

mm = 2 represents the line of sight (LOS) branch. The instantaneous signal-to-noise

ratio (SNR) of the nth branch/relay is given by γn = (Eb/N0)xn
2 where xn is the

signal amplitude for the nth branch, Eb is the average energy per bit and N0 is the

power spectral density (PSD) of the additive white Gaussian noise (AWGN).

II.2 Statistical Characteristics

The PDF and cumulative density function (CDF) expressions of the GK RVs can also

be written in terms of Meijer G-function. This section presents some interesting and

very useful characteristics of GK fading channel.

Lemma 1: The PDF of a GK RV can be expressed in terms of the Meijer-G

function as

pγ(y) =

(
mmms

Γ (mm) Γ (ms) Ω0

)
G2,0

0,2

[(
mmms

Ω0

)
y

∣∣∣∣mm − 1,ms − 1

]
, y > 0. (II.3)

Proof. We may use the fact that the PDF of the product of N independent Gamma

RVs can expressed as a H-function PDF that is given by [28, Eq. (6.4.9)] as follows

p(x) =

(
N∏
i=1

1

θiΓ (ki)

)
HN,0

0,N

[(
N∏
1

1

θi

)
x

∣∣∣∣∣ (ki − 1, 1), . . . , (kN − 1, 1)

]
, x > 0. (II.4)
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Then, with N = 2, the GK PDF can be expressed as

p(x) =

(
mmms

Γ (mm) Γ (ms) Ω0

)
H2,0

0,2

[(
mmms

Ω0

)
x

∣∣∣∣ (mm − 1, 1), (ms − 1, 1)

]
, x > 0.

(II.5)

Now by applying [28, Eq. (6.2.8)], the expression in (II.3) follows.

Further, substituting (II.3) in [29, Eq. (26)] and utilizing [28, Eq. (6.2.4)], the

CDF of GK can be written as

Pγ(γ) =
1

Γ (mm) Γ (ms)
G2,1

1,3

(mmms

Ω0

)
γ

∣∣∣∣ 1

mm,ms, 0

 , γ > 0, (II.6)

where G[·] is the Meijer G-function [27].
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Chapter III

Exact SNR Statistics for Cascaded

Generalized-K Composite Fading

Channels

Modeling of composite fading channels, where the multipath fading and shadowing

effects are incorporated, is essential for analyzing the performance of different commu-

nication schemes. In this chapter, an overview of the current models of multipath fad-

ing and shadowing is first given and the generalized-K(GK) composite fading model

is then presented. Secondly, signal-to-noise ratio (SNR) statistics for the cascaded

GK composite fading channels is presented along with some performance metrics,

including outage probability (OP), bit error rate (BER), and ergodic capacity (EC).

III.1 Related Work

Cascaded channels i.e. product of random variables (RVs) has been addressed quite

extensively by the researchers in the near past from many different perspectives. As

far as digital communication systems are concerned, the case of having propagation

13



with only multipath fading, related work includes performance analysis of cascaded

Rayleigh [30], cascaded Nakagami-m [31] and cascaded Weibull channels [32]. Re-

cently, cascaded channel modeling of multiple-input multiple-output (MIMO) systems

has been used for the double Rayleigh model [6, 33] and the double Nakagami-m

model [34]. Additionally, the product of Nakagami-m and Weibull RVs has found

implementations in the performance of multihop relay networks [35, 36] and in the

derivation of closed-form upper bounds for the distribution of the sum of RVs [37].

Considering the case where shadowing and multipath fading are considered, each

receiver is subject to a composite fading signal [12]. For such a scenario, as men-

tioned in Chapter II, several composite fading models have been proposed such as

Suzuki [15], Nakagami-lognormal [16], Rice-lognormal [17] and Generalized-K (GK)

[18]. As discussed in Chapter II, unfortunately for the former three models, closed

form probability density function (PDF) does not exists and hence halting further

performance analysis whereas with regards to the later model, acknowledging their

contribution, the authors in [7] and [19] have proposed a statistical characterization

of GK model via deployment of a rather complicated moment generating function

(MGF) approach. Similar work, with similar approach mentioned above, has been

addressed for generalized Nakagami-m (GNM) [1].

In this chapter, the problem of independent but not necessarily identically dis-

tributed (i.n.i.d.) cascaded fading channels for GK fading environment with a PDF-

based approach is addressed. In particular, the umbrella of the Meijer-G [27] function

has been extensively used for the computation of the end-to-end SNR and complete

further analysis. In addition, being aware of the flexibility of the GK model, the

performance analysis including the computation of the OP, BER for both coherent

as well as non-coherent modulation schemes and the average channel capacity or

equivalently EC has been presented.

In th following section, we derive the computation of the end-to-end SNR of the
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cascaded GK model followed by the performance analysis for the different performance

metrics mentioned earlier.

III.2 End-to-End SNR Statistic

The end-to-end SNR in a non-regenerative (amplify-and-forward) multihop network,

while considering a cascaded system or in other words having the intermediate nodes

as keyholes as shown in earlier chapter in figure I.1, can be expressed as

γ =
N∏
n=1

γn, (III.1)

where γn = |hn|2 is the SNR of the nth hop and N is the total number of hops.

In the following, the closed-form expression of the PDF for the end-to-end SNR

in i.n.i.d. GK channels is derived. The derivations are based on the H-function (refer

Appendix A) distribution umbrella.

Proposition: The PDF of the end-to-end SNR, as given in (III.1), can be expressed

as

p(y) =
N∏
n=1

(
mmnmsn

Γ (mmn) Γ (msn) Ω0n

)
G2N,0

0,2N

[
N∏
n=1

(
mmnmsn

Ω0n

)
y

∣∣∣∣∣κ1

]
, y > 0, (III.2)

where κ1 = (mm1 − 1), (ms1 − 1), . . . , (mmN − 1), (msN − 1).

Proof. The proof is based on the representation of the GK PDF as H-function PDF

and hence, subsequently utilizing the Lemma 1 presented in the previous chapter and

[28, Theorem (6.4.1)], the PDF of γ can be expressed as

p(y) =
N∏
n=1

(
mmnmsn

Γ (mmn) Γ (msn) Ω0n

)
H2N,0

0,2N

[
N∏
n=1

(
mmnmsn

Ω0n

)
y

∣∣∣∣∣κ2

]
, y > 0, (III.3)

15



where κ2 = (mm1 − 1, 1), (ms1 − 1, 1), . . . , (mmN − 1, 1), (msN − 1, 1). This final

expression can be written in a simplified Meijer G-function form using [28, Eq. (6.2.8)]

as in (III.2).

III.3 Performance Analysis

In this section, the developed expression for the end-end SNR is utilized to derive

closed-form expressions for the different performance metrics such as OP, BER for

both coherent and non-coherent modulation schemes and EC for a digital system

operating over N i.n.i.d. cascaded GK composite fading channels.

III.3.1 Outage Probability

The outage probability Pout is defined as the percentage of time that the instantaneous

SNR per symbol is below a certain threshold γth and can be expressed as

Pout(γth) = Pr {γ ≤ γth} =

∫ γth

0

pγ(x)dx. (III.4)

By using [29, Eq. (26)] (also refer Appendix C), Pout can be expressed in closed-

form as

Pout = CDF(γ)|γth =

(
N∏
n=1

1

Γ (mm) Γ (ms)

)
G2N,1

1,2N+1

 N∏
n=1

(
mmnmsn

Ω0n

)
γth

∣∣∣∣∣ 1

κ3, 0

 ,
(III.5)

where κ3 = mm1 ,ms1 , . . . ,mmN ,msN .
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III.3.2 BER Analysis

The average BER for the multihop relay networks is given by

Pb =

∫
0

∞
Pe (γ) fγ (γ) dγ. (III.6)

Coherent Case

For coherent modulation schemes, the BER for the nonfading scenario can be ex-

pressed as

Pe (γ) = a erfc
(√

bγ
)
, (III.7)

and

erfc
(√

bγ
)

=
√
π
−1
G2,0

1,2

bγ
∣∣∣∣∣∣∣

1

0, 1/2

 , (III.8)

where a and b describe different modulation schemes. For example, for binary phase

shift keying (BPSK), the corresponding values of are a = 1/2 and b = 1.

Now, substituting (III.2), (III.7) and (III.8) into (III.6) and using [27, Eq. (7.811)],

we get

Pb = aπ
−1
2

N∏
n=1

(
mmnmsn

Γ (mmn) Γ (msn) Ω0n

)
1

b
G2N,2

2,2N+1


∏N

n=1

(
mmnmsn

Ω0n

)
b

∣∣∣∣∣∣ 0,−1/2

κ1,−1

 .
(III.9)

Non-Coherent Case

For non-coherent modulation schemes, the BER for the nonfading scenario can be

expressed as

Pe (γ) = c exp(−dγ), (III.10)

17



where c and d describe different modulation schemes. For example, for binary differ-

ential shift keying (DPSK), the corresponding values of are c = 1/2 and d = 1.

Now, substituting (III.2) and (III.10) into (III.6) and using [27, Eq. (7.813.1)] or

[38], we get after some manipulations

Pb = c
N∏
n=1

(
mmnmsn

Γ (mmn) Γ (msn) Ω0n

)
1

d
G2N,1

1,2N


∏N

n=1

(
mmnmsn

Ω0n

)
d

∣∣∣∣∣∣ 0

κ1

 . (III.11)

III.3.3 Ergodic Capacity

The ergodic capacity, assuming long coding periods over the composite fading real-

izations, is defined as

C =

∫
0

∞
log2(1 + γ)fγ(γ)dγ =

∫
0

∞ ln(1 + γ)

ln 2
fγ(γ)dγ. (III.12)

Now using the fact that ln(1 + γ) = G1,2
2,2

γ
∣∣∣∣∣∣∣

1, 1

1, 0

 from [28, Eq. (6.4.2)] or [39],

we may use [27, Eq. (7.811)] to express the ergodic capacity as

C =
1

ln 2

N∏
n=1

(
mmnmsn

Γ(mmn)Γ(msn)Ωon

)
G2N+2,1

2,2N+2

 N∏
n=1

(
mmnmsn

Ω0n

)∣∣∣∣∣ −1, 0

−1,−1, κ1

 .
(III.13)

III.4 Results and Discussions

The results for various performance metrics like OP, BER and EC for cascaded GK

composite fading channels are presented in this section. Both, independent and iden-

tically distributed (i.i.d.) as well as i.n.i.d. channels are considered. The average SNR

per bit in all the scenarios discussed is assumed to be equal. Additionally, in case of
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BER, we have considered coherent BPSK (a=1/2 and b=1) and non-coherent DPSK

(c=1/2 and d=1) systems. In Monte Carlo simulations, the GK fading channel was

generated by the product of two independent gamma RVs.

In the following figures III.1 and III.2 we can observe that the developed expression

in (III.1) for the end-to-end SNR of GK fading cascaded channels operating over

varying hops (N = 2, 3, and 4) matches the Monte Carlo simulations perfectly for

i.i.d. case as well as i.n.i.d. case respectively. The different values for multipath fading

effect and shadowing effect for i.i.d. case were as follows; mm = 1, and ms = 0.5

whereas for i.n.i.d. case were mm1 = 0.5, mm2 = 2, mm3 = 1, mm4 = 1, ms1 = 0.5,

ms2 = 4, ms3 = 2, and ms4 = 10. These values were selected randomly to prove

the validity of the obtained results and hence specific values based on the standards

can be used to obtain the required results. Similar outcomes can be observed for

different number of hops i.e. different values of N and with other varying values for

the multipath fading and shadowing parameters.
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Figure III.1: End-to-end SNR/PDF for different (N) number of hops with i.i.d. chan-
nels having mm = 1 and ms = 0.5.
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Figure III.2: End-to-end SNR/PDF for different (N) number of hops with i.n.i.d.
channels having mm1 = 0.5, mm2 = 2, mm3 = 1, mm4 = 1, ms1 = 0.5, ms2 = 4,
ms3 = 2, and ms4 = 10.

For comprehensive demonstration, from here onward, i.n.i.d. channels are con-

sidered and hence for i.i.d. case, similar Monte Carlo simulations will result into

expected outcomes and in fact, it will be easier to simulate. The multipath fading

and shadowing effect values employed are as mm1 = 2, mm2 = 1, mm3 = 0.5, mm4 = 1,

ms1 = 1, ms2 = 1.5, ms3 = 4, ms4 = 2. These values were selected randomly to prove

the validity of the obtained results and hence specific values based on the standards

can be used to obtain the required results.

The derived expression in (III.5) matches with the Monte Carlo simulation shown

figure III.3. The different specifications considered in the Monte Carlo simulations for

OP were varying SNR from 0 dB through 20 dB, and a threshold of γth = 0.001. As

expected, we see that as the number of hops N increases and as the SNR decreases,
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the OP increases.
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Figure III.3: Outage Probability (OP) with respect to varying SNRs for different
(N) number of hops with i.n.i.d. channels having mm1 = 2, mm2 = 1, mm3 = 0.5,
mm4 = 1, ms1 = 1, ms2 = 1.5, ms3 = 4, and ms4 = 2.

Similar Monte Carlo simulations based on different thresholds and also for a 3-D

plot having effects with both the varying SNRs as well as thresholds are demonstrated

next. The basic results were presented above. Now, some additional and informative

Monte Carlo simulation results are presented for more insight.

Outage probability (OP) based on varying threshold’s can be seen in the following

figure III.4. (III.5) has been verified and compared against the Monte Carlo simula-

tion. The different specifications considered in the Monte Carlo simulations for OP

were varying threshold from γth = 0.001 through γth = 10, and a SNR of 25 dB. As

expected, we see that as the number of hops N increases and as the SNR decreases,

the OP increases.
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Figure III.4: OP with respect to varying thresholds for different (N) number of hops
with i.n.i.d. channels having mm1 = 2, mm2 = 1, mm3 = 0.5, mm4 = 1, ms1 = 1,
ms2 = 1.5, ms3 = 4, and ms4 = 2.

OP based on both varying SNRs as well as varying thresholds can be seen in

the following figure III.5. The different specifications considered in the Monte Carlo

simulations for OP were as: varying SNR from 0 dB through 30 dB and varying

threshold from γth = 0.001 through γth = 2. It can be seen that as the SNR increases

and as the threshold decreases, better performance is achieved i.e. low OP is achieved.
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Figure III.5: OP with respect to varying both SNRs and thresholds with i.n.i.d.
channels having mm1 = 2, mm2 = 1, mm3 = 0.5, mm4 = 1, ms1 = 1, ms2 = 1.5,
ms3 = 4, and ms4 = 2.

Now with regards to BER, it can be observed for BPSK (as coherent case) and

DPSK (as non-coherent case) modulation schemes from figures III.6 and III.7 respec-

tively that as the number of hops N increases, the BER also increases, as expected.

Additionally, as the SNR increases (varies from 0 dB through 20dB), the BER de-

creases expectedly. These results are in accordance with the numerical values acquired

from MAPLE for the equations presented in (III.9) and (III.11), respectively.
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Figure III.6: BER for coherent modulation schemes (BPSK) for different (N) number
of hops with i.n.i.d. channels having mm1 = 2, mm2 = 1, mm3 = 0.5, mm4 = 1,
ms1 = 1, ms2 = 1.5, ms3 = 4, and ms4 = 2.
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Figure III.7: BER for non-coherent modulation schemes (DPSK) for different (N)
number of hops with i.n.i.d. channels having mm1 = 2, mm2 = 1, mm3 = 0.5,
mm4 = 1, ms1 = 1, ms2 = 1.5, ms3 = 4, and ms4 = 2.

Furthermore, it can be observed from figure III.8 that as the number of hops N

increases, the EC decreases due to loss of power from hop-to-hop. Additionally, as

the SNR increases (varies from −5 dB through 40 dB), the EC increases. These

results are in accordance with the numerical values acquired from MAPLE for the

EC expression acquired in (III.13).
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Figure III.8: Ergodic Capacity (Average Capacity) for different (N) number of hops
with i.n.i.d. channels having mm1 = 2, mm2 = 1, mm3 = 0.5, mm4 = 1, ms1 = 1,
ms2 = 1.5, ms3 = 4, and ms4 = 2.

III.5 Conclusion

Previous analysis of the performance of multihop relay networks in cascaded GK

composite fading channels has relied on a MGF based approach. In this chapter,

the exact expression for the distribution of the end-to-end SNR PDF in cascaded

GK composite fading channels is derived utilizing the umbrella of Fox H-function

extensively. Next, closed-form expressions for the subsequent performance metrics

like OP, BER for both coherent and non-coherent modulation schemes, and EC were

presented. The obtained results conform with the Monte Carlo simulation results.
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Chapter IV

An Exact Closed-Form Expression

for the BER of Binary

Modulations with Dual-Branch

Selection over Generalized-K

Composite Fading Channels

Studying different diversity schemes has marked its importance among the researchers

as it undoubtedly increases the efficiency of the communication system. Hence, this

chapter discusses similar issue and proceeds as follows. A brief overview on the related

work in terms of diversity schemes is presented followed by the specific model used

for the communication system in this problem. Finally, the actual bit error rate

(BER) analysis is presented in exact closed-form involving the interesting extended

generalized bivariate Meijer G function (EGBMGF) (refer Appendix B).
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IV.1 Related Work

Using the Nakagami multipath fading model that is versatile enough to model various

multipath fading conditions ranging from severe fading to non-fading scenario, and

the Gamma model for shadowing has led to the generalized-K (Gamma-Gamma)

composite fading model [18], [21]-[24]. As mentioned in Chapter II, generalized-K

(GK) distribution, earlier used in radar applications and recently being used in the

context of wireless digital communications over fading channels, is one of the relatively

new tractable models used to describe the statistical behavior of multipath fading and

shadowing effects as compared to log-normal based models. GK fading model is quite

general model as it includes K -distribution as its special case and accurately approxi-

mates many other fading models such as Nakagami-m and Rayleigh-Lognormal (R-L)

([22] and references therein). Finally, GK distribution is a distribution of the product

of two independent Gamma random variables (RV) and hence is a special case of the

Fox H -function and in turn a special case of Meijer G-function where the product of

two Meijer G-function’s can be represented in terms of a EGBMGF [26].

It is noteworthy to mention that BER is one of the most important performance

measures that forms the basis in designing wireless communication systems. Based

on the open technical literature and up to the best of our knowledge, error analysis

has been performed for dual diversity with selection combining (SC) over log-normal

fading channels in closed-form using moment generating function (MGF) based ap-

proach in [40] and with Weibull fading channel as an approximate using characteristic

function (CF) based approach in [41]. Additionally, error performance analysis of SC

systems with independent and identically distributed (i.i.d.) GK fading branches was

performed in [42] involving integral form expressions. Further, in [43] the analysis

was performed for dual-branch SC citing the difficulty in deriving the expression for

the probability density function (PDF). This issue was tackled in [8] for an arbitrary

number of branches and the authors therein have described and utilized a method to
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perform the BER analysis directly from the cumulative density function (CDF) elim-

inating the need of deriving the PDF and relying on the Gauss-Laguerre quadrature

technique.

In this work, this problem has been revisited under the umbrella of the H -functions

and an exact closed-form expression of the BER of binary modulation systems with

dual-branch SC scheme and undergoing GK fading where the channels are indepen-

dent but not necessarily identically distributed (i.n.i.d.) was derived. The remainder

of the chapter is organized as follows. Section two introduces the system model. Next,

section three presents the analytical BER analysis, and finally, section four discusses

the results and summarizes the chapter.

IV.2 Specific Model

The system model considered is described as follows. A SC based communication

system with a source and a destination is considered with i.n.i.d. channels as follows

Y = αX + n, (IV.1)

where Y is the received signal at the receiver end, X is the transmitted signal, α

is the channel gain, and n is the additive white Gaussian noise (AWGN). Following

channel properties and statistical characteristics remain similar to as described earlier

in Chapter II.
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IV.3 BER Analysis

In SC combining scheme, the highest SNR branch is selected. In this case, for dual-

diversity, the SNR, γsc, is given by

γsc = max(γ1, γ2). (IV.2)

The CDF of γsc is given by

F (γsc) = Pr(max(γ1, γ2) ≤ γsc) =
2∏

n=1

Fγn(γsc). (IV.3)

The BER for SC is given by

Pe =

∫
0

∞
Pe (ε|γsc) fγn (γ) dγsc =

∫
0

∞
Pe (ε|γsc) dFγn (γsc) , (IV.4)

where Pe (ε|γsc) is the conditional error probability (CEP) for the given SNR. A unified

CEP expression for coherent and non-coherent binary modulation schemes over an

AWGN channel is given in [44] as

Pe (ε|γsc) =
Γ(p, qγsc)

2Γ(p)
, (IV.5)

where Γ(·, ·) is the complementary incomplete gamma function [27, Eq. (8.350.2)].

The parameters p and q in (IV.5) account for different modulation schemes. For an

extensive list of modulation schemes represented by these parameters, one may look

into [45] or as shown in table IV.1.

Now, applying integration by parts in (IV.4), we get

Pe = Pe (ε|γsc)F (γsc)|∞0 −
∫ ∞

0

F (γsc)dPe (ε|γsc) . (IV.6)
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Table IV.1: Conditional Error Probability (CEP) Parameters
Modulation p q

Binary Frequency Shift Keying (BFSK) 0.5 0.5
Binary Phase Shift Keying (BPSK) 0.5 1
Differential Phase Shift Keying (DPSK) 1 1

The first term goes to zero using [46, Eq. (6.5.3)]. Further, substituting (IV.5) into

(IV.6) and using [46, Eq. (6.5.25)], the average BER can be written as

Pe =
qp

2Γ(p)

∫ ∞
0

exp(−qγsc)γp−1
sc F (γsc)dγsc. (IV.7)

On substituting (IV.3) in the above obtained expression, we get

Pe =
qp

2Γ(p)

∫ ∞
0

exp(−qγsc)γp−1
sc

2∏
n=1

Fγn(γ)dγsc. (IV.8)

Using [26], we obtain the product of the CDFs present in the above expression in

terms of EGBMGF as

2∏
n=1

Fγn(γ) = Fγ1(γ)Fγ2(γ) = κ1 S



 0, 0

0, 0

 2, 1

1, 0

 2, 1

1, 0





−;−

1;κ2

1;κ3



(κ4) γ

(κ5) γ


, (IV.9)

where S[·] is the EGBMGF as given in [47, Eq. (2.1)], κ1 = 1
Γ(mm1 )Γ(ms1 )Γ(mm2 )Γ(ms2 )

,

κ2 = mm1 ,ms1 , 0, κ3 = mm2 ,ms2 , 0, κ4 =
mm1ms1

Ωo1
and κ5 =

mm2ms2
Ωo2

. The above
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expression can also be expressed as,

2∏
n=1

Fγn(γ) = Fγ1(γ)Fγ2(γ) = κ1 G
0,0:2,1:2,1
0,0:1,3:1,3

 −

−


1

κ2


1

κ3

 (κ4γ) , (κ5γ)

 ,

(IV.10)

where G(·) is EGBMGF as in [48]. Additionally, (IV.9) or (IV.10) can be represented

as,

2∏
n=1

Fγn(γ) = Fγ1(γ)Fγ2(γ) = κ1

× S

 κ4γ, κ5γ


 0, 0

0, 0

 −
−


 2, 1

1, 3

 1

κ2


 2, 1

1, 3

 1

κ3

 , (IV.11)

where S[·] is EGBMGF as in [49, Eq. (4)].

Lemma 2 [47, Eq. (2.1)]: The integral involving the EGBMGF of two variables

with an exponential term with the RV as one of its argument and a term with RV
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itself evaluates to

∫ ∞
0

xλ−1e−µx S



 p, 0

A− p,B

 q, r

C − q,D − r

 k, l

E − k, F − l





(a); (b)

(c); (d)

(e); (f)



αxρ

βxρ


dx

= (2π)
1
2

(1−ρ)ρ
λ−1/2

µλ
S



 p+ ρ, 0

A− p,B

 q, r

C − q,D − r

 k, l

E − k, F − l





∆(ρ, λ), (a); (b)

(c); (d)

(e); (f)



αρρ

µρ

βρρ

µρ


,

(IV.12)

where ∆(ρ, λ) = λ
ρ
, λ+1

ρ
, · · · , λ+ρ−1

ρ
[47, Eq. (1.7)].

Now, substituting (IV.9) or (IV.10) or (IV.11) into (IV.8), then using the Lemma 2

given above and performing additional manipulations (refer Appendix C), the desired

closed-form expression for the average BER is obtained as

Pe =
κ1

2Γ(p)
S



 1, 0

0, 0

 2, 1

1, 0

 2, 1

1, 0





p

1;κ2

1;κ3



(κ4)
q

(κ5)
q


, (IV.13)
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or equivalently

Pe =
κ1

2Γ(p)
G1,0:2,1:2,1

1,0:1,3:1,3

 p


1

κ2


1

κ3

 (κ4)
1

q
, (κ5)

1

q

 , (IV.14)

or equivalently

Pe =
κ1

2Γ(p)
S

 κ4

q
,
κ5

q


 1, 0

1, 0

 p


 2, 1

1, 3

 1

κ2


 2, 1

1, 3

 1

κ3

 . (IV.15)

IV.4 Results and Discussion

The numerical results for BER of SC scheme with dual-diversity over i.n.i.d. GK

fading channels are presented in this section.

The exact solution presented above in (IV.13), (IV.14) and/or (IV.15) has not been

found computable and hence its computability/evaluation was implemented using

Mathematica as can be seen in Appendix B. This computability, therefore, has been

utilized for different digital modulation schemes and is employed to discuss the results

in comparison to respective Monte Carlo simulation outcomes.

The average SNR per bit in all the scenarios discussed is assumed to be equal. In

addition, different digital modulation schemes are represented based on the values of

p and q where p = 0.5 and q = 1 represents binary phase shift keying (BPSK), p = 1

and q = 1 represents differential phase shift keying (DPSK) and binary frequency shift

keying (BFSK) is represented by p = 0.5 and q = 0.5. In Monte Carlo simulations,

the GK fading channel was generated by the product of two independent gamma RVs.

We observe from figures IV.1, IV.2, and IV.3 that this implemented computability

of EGBMGF provides a perfect match to the MATLAB simulated results and the

results are as expected i.e. the BER increases as the shadowing effect increases (i.e.

value of ms decreases) while keeping multipath fading constant at mm = 1. The
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figures shown respectively represent BPSK, BFSK, and DPSK. Its important to note

here that these values for the parameters were selected randomly to prove the validity

of the obtained results and hence specific values based on the standards can be used

to obtain the required results.
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Figure IV.1: I.I.D. BPSK BER for mm = 1 and varying ms.
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Figure IV.2: I.I.D. BFSK BER for mm = 1 and varying ms.
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Figure IV.3: I.I.D. DPSK BER for mm = 1 and varying ms.

Similarly, keeping shadowing effect constant at ms = 2 and varying the multipath

fading, following expected results are observed for BPSK as demonstrated in figure

IV.4. It shows that the BER increases as the effect of multipath fading increases (i.e.

value of mm decreases) while keeping the shadowing effect constant.
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Figure IV.4: I.I.D. BPSK BER for varying mm and ms = 2.

Furthermore, to demonstrate the case that the results presented in this chapter

also handle the presence of i.n.i.d. GK channels, following figure IV.5 presents the

different modulation schemes with different effects of multipath fading and shadowing

on both their channels. The values utilized for multipath fading and shadowing were

as follows; mm1 = 1, mm2 = 2, ms1 = 0.5, and ms2 = 4. It can be seen that, as

expected, BPSK outperforms the other modulation schemes and BFSK and DPSK

perform in similar fashion at lower SNR whereas as the SNR increases DPSK performs

better than BFSK.
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Figure IV.5: BER for different modulation schemes undergoing i.n.i.d. channels with
mm1 = 1, mm2 = 2, ms1 = 0.5, and ms2 = 4.

Similar results for any other values of m′ms and m′ss can be observed for the exact

closed-form BER for dual-diversity i.n.i.d. GK channels presented in this chapter.

IV.5 Conclusion

An exact closed-form expression for the BER performance of different binary modula-

tions with dual-branch SC scheme over i.n.i.d. GK fading was derived. The analytical

calculations were done utilizing a general class of special functions, specifically, the

EGBMGF. In addition, this chapter presents numerical examples to illustrate the

mathematical formulation developed in this work and to show the effect of the fading

and shadowing severity and unbalance on the system performance.
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Chapter V

Concluding Remarks

V.1 Summary

This work was motivated by the new modeling problems that the emerging commu-

nication systems have spurred and the subsequent role of such models in the perfor-

mance of these communication systems. In this thesis, some of the tools needed to

model and further analyze the performance of different communication systems have

been developed. First, the characterization of composite fading channels is considered

where the generalized-K (GK) composite fading model is introduced and some of its

statistical characteristics were proposed.

In Chapter III,we applied the GK model to cascaded channels to analyze its

end-to-end signal-to-noise ratio (SNR). Next, the performance metrics for these in-

dependent but not necessarily identical (i.n.i.d.) cascaded channels undergoing GK

fading were analyzed. These metrics included outage probability (OP), bit error rate

(BER), and ergodic capacity (EC). This chapter demonstrated that such type of sim-

ilar analysis can be done via simpler methods and approaches with the help of special

functions and their extensive and extremely useful properties.

Then in Chapter IV, the same model was employed to analyze the BER of a
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dual-diversity system with selection combining scheme undergoing i.n.i.d. GK fading

channels. The results were presented in terms of extended generalized bivariate Mei-

jer G-function (EGBMGF). Although these types of special functions do not seem

to be that useful, if computable, this view changes to a positive one. Hence, the

computability of this EGBMGF was tackled using Mathematica and is present in the

appendices of this thesis. The outcome of this chapter along with the computabil-

ity of EGBMGF opens up new horizons as well as broadens up the current scope of

research work in this field of study.

V.2 Future Research Work

The work presented in this thesis can be extended in the following directions.

With the computability of extended generalized bivariate MeijerG-function (EGB-

MGF), the presented results can be extended to the dual-diversity of chain of nodes

or in other words dual-diversity of cascaded channels.

Moreover, the extension can be in the direction of analyzing different performance

metrics for the model utilized in Chapter IV and also for the model that is mentioned

above i.e. involving dual-diversity of cascaded channels.

Another possible extension is studying the different diversity techniques such as

switching diversity and maximal ratio combining, among others, to both the models

discussed above.

We also observe that having the computability of EGBMGF in a very generalized

form, this might allow to look into multivariate form of Meijer G-function. If this

comes out to be tractable then undoubtedly we will see much more possible research

study openings further in this track. In addition, this will allow to analyze the

communication systems in a rather simpler form relative to other techniques being

employed traditionally.
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Appendix A

The H-Function Distribution

Family

Definition: The H-function can be defined as

Hm,n
p,q

z


(a1, α1), . . . , (ap, αp)

(b1, β1), . . . , (bq, βq)

 =

1

2πi

∫
C

∏m
j=1 Γ(bj − βjs)

∏n
j=1 Γ(1− aj + αjs)∏q

j=m+1 Γ(1− bj + βjs)
∏q

j=n+1 Γ(aj − αjs)
zsds,

(A.1)

where 0 ≤ m ≤ q, 0 ≤ n ≤ p, αj > 0, and βj > 0 and aj(j = 1, 2, . . . , p) and bj(j =

1, 2, . . . , q) are complex numbers such that no pole of Γ(bj − βjs) for j = 1, 2, . . . ,m

coincides with with any pole of Γ(1− aj + αjs) for j = 1, 2, . . . , n. The contour C is

a straight line parallel to the imaginary axis in the complex plane and the poles of

Γ(bj − βjs) lie on the right of C while those of Γ(1− aj + αjs) lie on the left of C.

Many of the so-called special functions are special cases of the H-function, includ-

ing Gauss and confluent hypergeometric functions, MacRobert E-function, Meijer

function, and Bessel functions [28, 50].

The Meijer G-function can be expressed as
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Gm,n
p,q

z

a1, . . . , ap

b1, . . . , bq

 = Hm,n
p,q

z


(a1, 1), . . . , (ap, 1)

(b1, 1), . . . , (bq, 1)

 . (A.2)

Definition: The H-function distribution can be expressed as

p(x) = k Hm,n
p,q

cx


(a1, α1), . . . , (ap, αp)

(b1, β1), . . . , (bq, βq)

 , x > 0, (A.3)

where k and c are the parameters of the distribution such that
∫∞

0
p(x)dx = 1.

The characteristic function of the H-function distribution can be derived as [2]

φ(t) =
k

c
Hn+1,m
q,p+1

− i
c
x


(0, 1)(1− a1 − α1, α1), . . . , (1− ap − αp, αp)

(1− b1 − β1, β1), . . . , (1− bq − βq, βq)

 , x > 0.

(A.4)

Many non-negative distributions are special cases of the H-function including the

Gamma distribution, the Weibull distribution, the Beta distribution, the Rayleigh

distribution, and the general hypergeometric distribution. As an instance, the general

hypergeometric distribution expressed in terms of Meijer G-function and hence in

terms of H-function is shown below in (A.5).

pFq

 ap

bq

∣∣∣∣∣∣∣ z
 =

Γ(ap)

Γ(bq)
Gp,1
p,q+1

 1− ap

0, 1− bq

∣∣∣∣∣∣∣− z


=
Γ(ap)

Γ(bq)
Hp,1
p,q+1

 (1− ap, 1)

(0, 1), (1− bq, 1)

∣∣∣∣∣∣∣− z
 .

(A.5)

Similarly, other distributions can be expressed in such similar form.
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Appendix B

Extended Generalized Bivariate

Meijer G-Function

B.1 Definition

The extended generalized bivariate Meijer G-function (EGBMGF) can be defined in

any of the following ways.
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Representation 1 : Based on [47]

S

 x

y

 ≡ S



 p, 0

A− p,B

 q, r

C − q,D − r

 k, l

E − k, F − l





(a); (b)

(c); (d)

(e); (f)



x

y


=

1

(2πi)2

∫
C1

∫
C2

∏p
j=1 Γ(aj + s+ t)

∏q
j=1 Γ(1− cj + s)∏A

j=p+1 Γ(1− aj − s− t)
∏B

j=1 Γ(bj + s+ t)

.

∏r
j=1 Γ(dj − s)

∏k
j=1 Γ(1− ej + t)

∏l
j=1 Γ(fj − t)∏C

j=q+1 Γ(cj − s)
∏D

j=r+1 Γ(1− dj + s)
∏E

j=k+1 Γ(ej − t)

.
xsytdsdt∏F

j=l+1 Γ(1− fj + t)
,

(B.1)

where A+ C < B +D, A+ E < B + F .

Representation 2 : Based on [49]

S

 x

y

 ≡ S

x, y

 m1, 0

p1, q1

 ap1

bq1


 n2,m2

p2, q2

 cp2

dq2


 n3,m3

p3, q3

 ep3

fq3


≡ Gm1,0:n2,m2:n3,m3

p1,q1:p2,q2:p3,q3

 a1, . . . , ap1

b1, . . . , bq1


c1, . . . , cp2

d1, . . . , dq2


e1, . . . , ep3

f1, . . . , fq3

x, y


=
1

(2πi)2

∫
C1

∫
C2

∏m1

j=1 Γ(aj + s+ t)
∏m2

j=1 Γ(1− cj + s)∏p1
j=m1+1 Γ(1− aj − s− t)

∏q1
j=1 Γ(bj + s+ t)

.

∏n2

j=1 Γ(dj − s)
∏m3

j=1 Γ(1− ej + t)
∏n3

j=1 Γ(fj − t)∏p2
j=m2+1 Γ(cj − s)

∏q2
j=n2+1 Γ(1− dj + s)

∏p3
j=m3+1 Γ(ej − t)

.
xsytdsdt∏q3

j=n3+1 Γ(1− fj + t)
,

(B.2)

where C1 and C2 are two suitable contours and positive integers p1, p2, p3, q1, q2, q3,
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m1, m2, m3, n2, and n3 satisfy the following inequalities. q2 ≥ 1, q3 ≥ 1, p1 ≥ 0,

0 ≤ m1 ≤ p1, 0 ≤ m2 ≤ p2, 0 ≤ n2 ≤ q2, 0 ≤ m3 ≤ p3, 0 ≤ n3 ≤ q3, p1 + p2 ≤ q1 + q2,

p1 + p3 ≤ q1 + q3. The values x = 0 and y = 0 are excluded.

It is important to learn the relationship between both the representations shown

above. Following equalities must be noted from both the above representations; p =

m1, A = p1, B = q1, q = m2, r = n2, C = p2, D = q2, k = m3, l = n3, E = p3, and

F = q3.

B.2 Implementation

The EGBMGF was implemented in Mathemtica and the code is as shown below.

With this implementation, the EGBMGF can be evaluated fast and accurately. An

illustration along with the implementation code is demonstrated for its proper usage.

(*Extended Generalized Bivariate Meijer G-Function (EGBMGF)*)(*Extended Generalized Bivariate Meijer G-Function (EGBMGF)*)(*Extended Generalized Bivariate Meijer G-Function (EGBMGF)*)

Clear All;Clear All;Clear All;

(*Exception*)(*Exception*)(*Exception*)

S::Inconsistent Coeffs = "Inconsistent coefficients!";S::Inconsistent Coeffs = "Inconsistent coefficients!";S::Inconsistent Coeffs = "Inconsistent coefficients!";

S[{ast , bst }, {as , bs }, {at , bt }, {zs , zt }]:=Module[{},S[{ast , bst }, {as , bs }, {at , bt }, {zs , zt }]:=Module[{},S[{ast , bst }, {as , bs }, {at , bt }, {zs , zt }]:=Module[{},

(*Gamma product terms with only ′s′ as argument with other parameters*)(*Gamma product terms with only ′s′ as argument with other parameters*)(*Gamma product terms with only ′s′ as argument with other parameters*)

Pas = Function[u,Product[Gamma[1− as[[1, n]] + u], {n, 1,Length[as[[1]]]}]];Pas = Function[u,Product[Gamma[1− as[[1, n]] + u], {n, 1,Length[as[[1]]]}]];Pas = Function[u,Product[Gamma[1− as[[1, n]] + u], {n, 1,Length[as[[1]]]}]];

Qas = Function[u,Product[Gamma[as[[2, n]]− u], {n, 1,Length[as[[2]]]}]];Qas = Function[u,Product[Gamma[as[[2, n]]− u], {n, 1,Length[as[[2]]]}]];Qas = Function[u,Product[Gamma[as[[2, n]]− u], {n, 1,Length[as[[2]]]}]];

Pbs = Function[u,Product[Gamma[bs[[1, n]]− u], {n, 1,Length[bs[[1]]]}]];Pbs = Function[u,Product[Gamma[bs[[1, n]]− u], {n, 1,Length[bs[[1]]]}]];Pbs = Function[u,Product[Gamma[bs[[1, n]]− u], {n, 1,Length[bs[[1]]]}]];

Qbs = Function[u,Product[Gamma[1− bs[[2, n]] + u], {n, 1,Length[bs[[2]]]}]];Qbs = Function[u,Product[Gamma[1− bs[[2, n]] + u], {n, 1,Length[bs[[2]]]}]];Qbs = Function[u,Product[Gamma[1− bs[[2, n]] + u], {n, 1,Length[bs[[2]]]}]];

Ms = Function[u,Pas[u]Pbs[u]/(Qas[u]Qbs[u])];Ms = Function[u,Pas[u]Pbs[u]/(Qas[u]Qbs[u])];Ms = Function[u,Pas[u]Pbs[u]/(Qas[u]Qbs[u])];
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(*Gamma product terms with only ′t′ as argument with other parameters*)(*Gamma product terms with only ′t′ as argument with other parameters*)(*Gamma product terms with only ′t′ as argument with other parameters*)

Pat = Function[u,Product[Gamma[1− at[[1, n]] + u], {n, 1,Length[at[[1]]]}]];Pat = Function[u,Product[Gamma[1− at[[1, n]] + u], {n, 1,Length[at[[1]]]}]];Pat = Function[u,Product[Gamma[1− at[[1, n]] + u], {n, 1,Length[at[[1]]]}]];

Qat = Function[u,Product[Gamma[at[[2, n]]− u], {n, 1,Length[at[[2]]]}]];Qat = Function[u,Product[Gamma[at[[2, n]]− u], {n, 1,Length[at[[2]]]}]];Qat = Function[u,Product[Gamma[at[[2, n]]− u], {n, 1,Length[at[[2]]]}]];

Pbt = Function[u,Product[Gamma[bt[[1, n]]− u], {n, 1,Length[bt[[1]]]}]];Pbt = Function[u,Product[Gamma[bt[[1, n]]− u], {n, 1,Length[bt[[1]]]}]];Pbt = Function[u,Product[Gamma[bt[[1, n]]− u], {n, 1,Length[bt[[1]]]}]];

Qbt = Function[u,Product[Gamma[1− bt[[2, n]] + u], {n, 1,Length[bt[[2]]]}]];Qbt = Function[u,Product[Gamma[1− bt[[2, n]] + u], {n, 1,Length[bt[[2]]]}]];Qbt = Function[u,Product[Gamma[1− bt[[2, n]] + u], {n, 1,Length[bt[[2]]]}]];

Mt = Function[u,Pat[u]Pbt[u]/(Qat[u]Qbt[u])];Mt = Function[u,Pat[u]Pbt[u]/(Qat[u]Qbt[u])];Mt = Function[u,Pat[u]Pbt[u]/(Qat[u]Qbt[u])];

(*Gamma product terms with only ′s+ t′ as argument with other parameters*)(*Gamma product terms with only ′s+ t′ as argument with other parameters*)(*Gamma product terms with only ′s+ t′ as argument with other parameters*)

Past = Function[u,Product[Gamma[ast[[1, n]] + u], {n, 1,Length[ast[[1]]]}]];Past = Function[u,Product[Gamma[ast[[1, n]] + u], {n, 1,Length[ast[[1]]]}]];Past = Function[u,Product[Gamma[ast[[1, n]] + u], {n, 1,Length[ast[[1]]]}]];

Qast = Function[u,Product[Gamma[1− ast[[2, n]]− u], {n, 1,Length[ast[[2]]]}]];Qast = Function[u,Product[Gamma[1− ast[[2, n]]− u], {n, 1,Length[ast[[2]]]}]];Qast = Function[u,Product[Gamma[1− ast[[2, n]]− u], {n, 1,Length[ast[[2]]]}]];

Qbst = Function[u,Product[Gamma[bst[[2, n]] + u], {n, 1,Length[bst[[2]]]}]];Qbst = Function[u,Product[Gamma[bst[[2, n]] + u], {n, 1,Length[bst[[2]]]}]];Qbst = Function[u,Product[Gamma[bst[[2, n]] + u], {n, 1,Length[bst[[2]]]}]];

Mst = Function[u,Past[u]/(Qast[u]Qbst[u])];Mst = Function[u,Past[u]/(Qast[u]Qbst[u])];Mst = Function[u,Past[u]/(Qast[u]Qbst[u])];

(*Contour limiters(Depends on numerator Gamma arguments(*Contour limiters(Depends on numerator Gamma arguments(*Contour limiters(Depends on numerator Gamma arguments

i.e. it must be half of the least valued Gamma arguments)*)i.e. it must be half of the least valued Gamma arguments)*)i.e. it must be half of the least valued Gamma arguments)*)

Rs = 1/4;Rs = 1/4;Rs = 1/4;

Rt = 1/4;Rt = 1/4;Rt = 1/4;

(*Assignments and Declarations*)(*Assignments and Declarations*)(*Assignments and Declarations*)

Zs = zs;Zs = zs;Zs = zs;

Zt = zt;Zt = zt;Zt = zt;

W = 50;W = 50;W = 50;

(*Final Evaluation*)(*Final Evaluation*)(*Final Evaluation*)

Print["Numerical Integration:"];Print["Numerical Integration:"];Print["Numerical Integration:"];

value = 1
(2πI)2

NIntegrate[MT[s, t]ZssZtt, {s,Rs− IW,Rs + IW},value = 1
(2πI)2

NIntegrate[MT[s, t]ZssZtt, {s,Rs− IW,Rs + IW},value = 1
(2πI)2

NIntegrate[MT[s, t]ZssZtt, {s,Rs− IW,Rs + IW},

{t,Rt− IW,Rt + IW}];{t,Rt− IW,Rt + IW}];{t,Rt− IW,Rt + IW}];
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(*Returning back the value*)(*Returning back the value*)(*Returning back the value*)

Return[value];Return[value];Return[value];

];];];

(*End of EGBMGF*)(*End of EGBMGF*)(*End of EGBMGF*)

Here is an example of employing this implemented EGBMGF.

(*Testing*)(*Testing*)(*Testing*)

(*Declarations*)(*Declarations*)(*Declarations*)

p = 0.5; q = 1;p = 0.5; q = 1;p = 0.5; q = 1;

mm1 = 1; ms1 = 2; mm2 = 1; ms2 = 2;mm1 = 1; ms1 = 2; mm2 = 1; ms2 = 2;mm1 = 1; ms1 = 2; mm2 = 1; ms2 = 2;

Ω1 = 1; Ω2 = 1;Ω1 = 1; Ω2 = 1;Ω1 = 1; Ω2 = 1;

snr = 10∧(15/10)(*SNR = 0− 20dBs*);snr = 10∧(15/10)(*SNR = 0− 20dBs*);snr = 10∧(15/10)(*SNR = 0− 20dBs*);

(*Invoking the implemented EGBMGF module*)(*Invoking the implemented EGBMGF module*)(*Invoking the implemented EGBMGF module*)

B = 1
2Gamma[p]Gamma[mm1]Gamma[ms1]Gamma[mm2]Gamma[ms2]

S[{{{p}, {}}, {{}, {}}},B = 1
2Gamma[p]Gamma[mm1]Gamma[ms1]Gamma[mm2]Gamma[ms2]

S[{{{p}, {}}, {{}, {}}},B = 1
2Gamma[p]Gamma[mm1]Gamma[ms1]Gamma[mm2]Gamma[ms2]

S[{{{p}, {}}, {{}, {}}},

{{{1}, {}}, {{mm1,ms1}, {0}}},{{{1}, {}}, {{mm1,ms1}, {0}}},{{{1}, {}}, {{mm1,ms1}, {0}}},

{{{1}, {}}, {{mm2,ms2}, {0}}},{{{1}, {}}, {{mm2,ms2}, {0}}},{{{1}, {}}, {{mm2,ms2}, {0}}},{
mm1 ms1
Ω1 snr q

, mm2 ms2
Ω2 snr q

}]{
mm1 ms1
Ω1 snr q

, mm2 ms2
Ω2 snr q

}]{
mm1 ms1
Ω1 snr q

, mm2 ms2
Ω2 snr q

}]

(*END*)(*END*)(*END*)

Out = 0.00102393− 7.09829× 10−16iOut = 0.00102393− 7.09829× 10−16iOut = 0.00102393− 7.09829× 10−16i

It is important to learn the relationship between the representations shown in

the previous section and the implemented code presented above. Following equalities

must be noted from both the above representations and the implemented code; (a) =

ap1 = ast , (b) = bq1 = bst , (c) = cp2 = as , (d) = dq2 = bs , (e) = ep3 = at , and

(f) = fq3 = bt .
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Appendix C

Derivations of Some Equations

C.1 Derivation of the Outage Probability (OP) in

(III.5)

Having (III.2), it is substituted in (III.4) and the following is obtained

Pout =

∫ γth

0

N∏
n=1

(
mmnmsn

Γ (mmn) Γ (msn) Ω0n

)
G2N,0

0,2N

[
N∏
n=1

(
mmnmsn

Ω0n

)
y

∣∣∣∣∣κ1

]
dy, y > 0,

(C.1)

where κ1 = (mm1 − 1), (ms1 − 1), . . . , (mmN − 1), (msN − 1).

Now, using [29, Eq. (26)], the integral simplifies to

Pout =
N∏
n=1

(
mmnmsn

Γ (mmn) Γ (msn) Ω0n

)
γth G

2N,1
1,2N+1

 N∏
n=1

(
mmnmsn

Ω0n

)
γth

∣∣∣∣∣ 0

κ1,−1

 .
(C.2)

This result can be further represented as
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Pout =
N∏
n=1

(
1

Γ (mmn) Γ (msn)

) N∏
n=1

(
mmnmsn

Ω0n

)
γth

×G2N,1
1,2N+1

 N∏
n=1

(
mmnmsn

Ω0n

)
γth

∣∣∣∣∣ 0

κ1,−1

 . (C.3)

Now, utilizing [28, Eq. (6.2.4)], following final result is obtained

Pout =
N∏
n=1

(
1

Γ (mmn) Γ (msn)

)
G2N,1

1,2N+1

 N∏
n=1

(
mmnmsn

Ω0n

)
γth

∣∣∣∣∣ 1

κ3, 0

 , (C.4)

where κ3 = mm1 ,ms1 , . . . ,mmN ,msN .

C.2 Derivation for the Bit Error Rate (BER) in

(IV.13)

As explained in Chapter 4, substituting (IV.9) or (IV.10) or (IV.11) into (IV.8) gives

the following

Pe =
qp

2Γ(p)

∫ ∞
0

exp(−qγsc)γp−1
sc κ1 S



 0, 0

0, 0

 2, 1

1, 0

 2, 1

1, 0





−;−

1;κ2

1;κ3



(κ4) γ

(κ5) γ


dγ, (C.5)
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where S[·] is the extended generalized bivariate Meijer G-function (EGBMGF) as

given in [47, Eq. (2.1)], κ1 = 1
Γ(mm1 )Γ(ms1 )Γ(mm2 )Γ(ms2 )

, κ2 = mm1 ,ms1 , 0, κ3 =

mm2 ,ms2 , 0, κ4 =
mm1ms1

Ωo1
and κ5 =

mm2ms2
Ωo2

.

Now using the Lemma 2 on the above equation results into

Pe =
qp

2Γ(p)
(2π)

1
2

(1−1) 1(p− 1
2

)

qp
κ1 S



 1, 0

0, 0

 2, 1

1, 0

 2, 1

1, 0





∆(1, p),−;−

1;κ2

1;κ3



(κ4)
q

(κ5)
q


, (C.6)

where ∆(1, p) = p
1

= p.

With further simplification, the final result is obtained as follows

Pe =
1

2Γ(p)
κ1 S



 1, 0

0, 0

 2, 1

1, 0

 2, 1

1, 0





p,−;−

1;κ2

1;κ3



(κ4)
q

(κ5)
q


. (C.7)
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Appendix D

Papers Submitted and Under

Preparation

• I. S. Ansari, S. Al-Ahmadi, F. Yilmaz, M.-S. Alouini, and H. Yanikomeroglu, “An

exact closed-form expression for the BER of binary modulations with dual-branch

selection over Generalized-K fading”, Submitted to IEEE 73rd Vehicular Technology

Conference: VTC 2011-Spring, Budapest, Hungary.

• I. S. Ansari, S. Al-Ahmadi, F. Yilmaz, M.-S. Alouini, and H. Yanikomeroglu, “An

exact closed-form expression for the BER and capacity of binary modulations with

dual-branch selection over Generalized-K fading”, Submitted to IEEE Transactions

on Communications, Dec. 2010.
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