24,060 research outputs found

    Integrated Design and Implementation of Embedded Control Systems with Scilab

    Get PDF
    Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly time-consuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.Comment: 15 pages, 14 figures; Open Access at http://www.mdpi.org/sensors/papers/s8095501.pd

    BEEBS: Open Benchmarks for Energy Measurements on Embedded Platforms

    Full text link
    This paper presents and justifies an open benchmark suite named BEEBS, targeted at evaluating the energy consumption of embedded processors. We explore the possible sources of energy consumption, then select individual benchmarks from contemporary suites to cover these areas. Version one of BEEBS is presented here and contains 10 benchmarks that cover a wide range of typical embedded applications. The benchmark suite is portable across diverse architectures and is freely available. The benchmark suite is extensively evaluated, and the properties of its constituent programs are analysed. Using real hardware platforms we show case examples which illustrate the difference in power dissipation between three processor architectures and their related ISAs. We observe significant differences in the average instruction dissipation between the architectures of 4.4x, specifically 170uW/MHz (ARM Cortex-M0), 65uW/MHz (Adapteva Epiphany) and 88uW/MHz (XMOS XS1-L1)

    C-FLAT: Control-FLow ATtestation for Embedded Systems Software

    Full text link
    Remote attestation is a crucial security service particularly relevant to increasingly popular IoT (and other embedded) devices. It allows a trusted party (verifier) to learn the state of a remote, and potentially malware-infected, device (prover). Most existing approaches are static in nature and only check whether benign software is initially loaded on the prover. However, they are vulnerable to run-time attacks that hijack the application's control or data flow, e.g., via return-oriented programming or data-oriented exploits. As a concrete step towards more comprehensive run-time remote attestation, we present the design and implementation of Control- FLow ATtestation (C-FLAT) that enables remote attestation of an application's control-flow path, without requiring the source code. We describe a full prototype implementation of C-FLAT on Raspberry Pi using its ARM TrustZone hardware security extensions. We evaluate C-FLAT's performance using a real-world embedded (cyber-physical) application, and demonstrate its efficacy against control-flow hijacking attacks.Comment: Extended version of article to appear in CCS '16 Proceedings of the 23rd ACM Conference on Computer and Communications Securit

    RIOT OS Paves the Way for Implementation of High-Performance MAC Protocols

    Get PDF
    Implementing new, high-performance MAC protocols requires real-time features, to be able to synchronize correctly between different unrelated devices. Such features are highly desirable for operating wireless sensor networks (WSN) that are designed to be part of the Internet of Things (IoT). Unfortunately, the operating systems commonly used in this domain cannot provide such features. On the other hand, "bare-metal" development sacrifices portability, as well as the mul-titasking abilities needed to develop the rich applications that are useful in the domain of the Internet of Things. We describe in this paper how we helped solving these issues by contributing to the development of a port of RIOT OS on the MSP430 microcontroller, an architecture widely used in IoT-enabled motes. RIOT OS offers rich and advanced real-time features, especially the simultaneous use of as many hardware timers as the underlying platform (microcontroller) can offer. We then demonstrate the effectiveness of these features by presenting a new implementation, on RIOT OS, of S-CoSenS, an efficient MAC protocol that uses very low processing power and energy.Comment: SCITEPRESS. SENSORNETS 2015, Feb 2015, Angers, France. http://www.scitepress.or

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft
    corecore