6,077 research outputs found

    System model development for nuclear thermal propulsion

    Get PDF
    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown, and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, and cost and time required for the technology to reach flight-ready status. Since Oct. 1991, the U.S. Department of Energy (DOE), Department of Defense (DOD), and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. The first level will provide rapid, parameterized calculations of overall system performance. Succeeding computer programs will provide analysis of each component in sufficient detail to guide the design teams and experimental efforts. The computer programs will allow simulation of the entire system to allow prediction of the integrated performance. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review

    Agent-based control for decentralised demand side management in the smart grid

    No full text
    Central to the vision of the smart grid is the deployment of smart meters that will allow autonomous software agents, representing the consumers, to optimise their use of devices and heating in the smart home while interacting with the grid. However, without some form of coordination, the population of agents may end up with overly-homogeneous optimised consumption patterns that may generate significant peaks in demand in the grid. These peaks, in turn, reduce the efficiency of the overall system, increase carbon emissions, and may even, in the worst case, cause blackouts. Hence, in this paper, we introduce a novel model of a Decentralised Demand Side Management (DDSM) mechanism that allows agents, by adapting the deferment of their loads based on grid prices, to coordinate in a decentralised manner. Specifically, using average UK consumption profiles for 26M homes, we demonstrate that, through an emergent coordination of the agents, the peak demand of domestic consumers in the grid can be reduced by up to 17% and carbon emissions by up to 6%. We also show that our DDSM mechanism is robust to the increasing electrification of heating in UK homes (i.e. it exhibits a similar efficiency)

    Scaling energy management in buildings with artificial intelligence

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen

    The safety case and the lessons learned for the reliability and maintainability case

    Get PDF
    This paper examine the safety case and the lessons learned for the reliability and maintainability case

    Computational intelligence techniques for HVAC systems: a review

    Get PDF
    Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 emissions. The drive to reduce energy use and associated greenhouse gas emissions from buildings has acted as a catalyst in the development of advanced computational methods for energy efficient design, management and control of buildings and systems. Heating, ventilation and air conditioning (HVAC) systems are the major source of energy consumption in buildings and an ideal candidate for substantial reductions in energy demand. Significant advances have been made in the past decades on the application of computational intelligence (CI) techniques for HVAC design, control, management, optimization, and fault detection and diagnosis. This article presents a comprehensive and critical review on the theory and applications of CI techniques for prediction, optimization, control and diagnosis of HVAC systems.The analysis of trends reveals the minimization of energy consumption was the key optimization objective in the reviewed research, closely followed by the optimization of thermal comfort, indoor air quality and occupant preferences. Hardcoded Matlab program was the most widely used simulation tool, followed by TRNSYS, EnergyPlus, DOE–2, HVACSim+ and ESP–r. Metaheuristic algorithms were the preferred CI method for solving HVAC related problems and in particular genetic algorithms were applied in most of the studies. Despite the low number of studies focussing on MAS, as compared to the other CI techniques, interest in the technique is increasing due to their ability of dividing and conquering an HVAC optimization problem with enhanced overall performance. The paper also identifies prospective future advancements and research directions

    Optimierungsrahmen fĂŒr die Verbesserung der EnergieflexibilitĂ€t in WohngebĂ€uden

    Get PDF
    Energy flexibility is balancing the supply and demand of a building according to climate conditions, user preferences, and grid constraints. Energy flexibility in households is a practical approach to achieving sustainability in the building sector. However, the diversity in flexibility potential of energy systems and climatic variability complicate the selection of envelope parameters and building energy systems (BESs). This study aimed to design a framework to improve the energy flexibility of the building. For this purpose, a single-family house and diversified BESs were simulated in a TRNSYS-Python co-simulation platform. Initially, the bi-objective optimization identified flexible building envelopes in twenty-four locations. Then, the multi-criteria assessment of BESs was conducted using life-cycle energy flexibility indicators. Lastly, the energy flexibility potential of the BES was evaluated by employing steady-state optimization and model predictive control (MPC). The findings of this work set a benchmark for flexible household envelopes. The systematic approach for selecting BES could guide the energy system design, providing insight into energy flexibility. Further, this investigation has established that the dataset of building thermal load, boundary conditions, and control disturbances can be used to develop an MPC-based dynamic control. That controller could be employed on different BESs to achieve energy flexibility.EnergieflexibilitĂ€t ist der Ausgleich von Versorgung und Bedarf eines GebĂ€udes je nach Klima, NutzerprĂ€ferenzen und NetzbeschrĂ€nkungen. EnergieflexibilitĂ€t ist damit ein praktischer Ansatz fĂŒr Nachhaltigkeit in GebĂ€uden. Die Vielfalt des FlexibilitĂ€tspotenzials von Energiesystemen und die klimatischen Unterschiede erschweren jedoch die Auswahl von HĂŒllparametern und GebĂ€udeenergiesystemen (BESs). Diese Studie zielte darauf ab, einen Rahmen zur Verbesserung der energetischen FlexibilitĂ€t von GebĂ€uden zu entwickeln. Hierzu wurden ein Einfamilienhaus und verschiedene BES in einer TRNSYS-Python Co-Simulationsplattform simuliert. ZunĂ€chst wurden ĂŒber eine bi-objektive Optimierung flexible GebĂ€udehĂŒllen an vierundzwanzig Standorten ermittelt. Danach erfolgte eine multikriterielle Bewertung der BES anhand von EnergieflexibilitĂ€tsindikatoren ĂŒber den gesamten Lebenszyklus. Schließlich wurde das EnergieflexibilitĂ€tspotenzial der BES durch den Einsatz statischer Optimierung und modellprĂ€diktiver Regelung (MPC) bewertet. Die Ergebnisse dieser Arbeit setzen einen Maßstab fĂŒr flexible GebĂ€udehĂŒllen. Der systematische Ansatz zur Auswahl von BES könnte als Leitfaden fĂŒr die Auslegung zukĂŒnftiger Systeme dienen. DarĂŒber hinaus hat die Untersuchung ergeben, dass Daten zu thermischer Belastung des GebĂ€udes, Randbedingungen und Regelungsstörungen zur Entwicklung eines MPC verwendet werden können. Dieser Regler könnte bei verschiedenen BES eingesetzt werden, um EnergieflexibilitĂ€t zu erreichen

    IEA ECES Annex 31 Final Report - Energy Storage with Energy Efficient Buildings and Districts: Optimization and Automation

    Get PDF
    At present, the energy requirements in buildings are majorly met from non-renewable sources where the contribution of renewable sources is still in its initial stage. Meeting the peak energy demand by non-renewable energy sources is highly expensive for the utility companies and it critically influences the environment through GHG emissions. In addition, renewable energy sources are inherently intermittent in nature. Therefore, to make both renewable and nonrenewable energy sources more efficient in building/district applications, they should be integrated with energy storage systems. Nevertheless, determination of the optimal operation and integration of energy storage with buildings/districts are not straightforward. The real strength of integrating energy storage technologies with buildings/districts is stalled by the high computational demand (or even lack of) tools and optimization techniques. Annex 31 aims to resolve this gap by critically addressing the challenges in integrating energy storage systems in buildings/districts from the perspective of design, development of simplified modeling tools and optimization techniques

    Proceedings of Abstracts, School of Physics, Engineering and Computer Science Research Conference 2022

    Get PDF
    © 2022 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Plenary by Prof. Timothy Foat, ‘Indoor dispersion at Dstl and its recent application to COVID-19 transmission’ is © Crown copyright (2022), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected] present proceedings record the abstracts submitted and accepted for presentation at SPECS 2022, the second edition of the School of Physics, Engineering and Computer Science Research Conference that took place online, the 12th April 2022

    Optimization approaches for exploiting the load flexibility of electric heating devices in smart grids

    Get PDF
    Energy systems all over the world are undergoing a fundamental transition to tackle climate change and other environmental challenges. The share of electricity generated by renewable energy sources has been steadily increasing. In order to cope with the intermittent nature of renewable energy sources, like photovoltaic systems and wind turbines, the electrical demand has to be adjusted to their power generation. To this end, flexible electrical loads are necessary. Moreover, optimization approaches and advanced information and communication technology can help to transform the traditional electricity grid into a smart grid. To shift the electricity consumption in time, electric heating devices, such as heat pumps or electric water heaters, provide significant flexibility. In order to exploit this flexibility, optimization approaches for controlling flexible devices are essential. Most studies in the literature use centralized optimization or uncoordinated decentralized optimization. Centralized optimization has crucial drawbacks regarding computational complexity, privacy, and robustness, but uncoordinated decentralized optimization leads to suboptimal results. In this thesis, coordinated decentralized and hybrid optimization approaches with low computational requirements are developed for exploiting the flexibility of electric heating devices. An essential feature of all developed methods is that they preserve the privacy of the residents. This cumulative thesis comprises four papers that introduce different types of optimization approaches. In Paper A, rule-based heuristic control algorithms for modulating electric heating devices are developed that minimize the heating costs of a residential area. Moreover, control algorithms for minimizing surplus energy that otherwise could be curtailed are introduced. They increase the self-consumption rate of locally generated electricity from photovoltaics. The heuristic control algorithms use a privacy-preserving control and communication architecture that combines centralized and decentralized control approaches. Compared to a conventional control strategy, the results of simulations show cost reductions of between 4.1% and 13.3% and reductions of between 38.3% and 52.6% regarding the surplus energy. Paper B introduces two novel coordinating decentralized optimization approaches for scheduling-based optimization. A comparison with different decentralized optimization approaches from the literature shows that the developed methods, on average, lead to 10% less surplus energy. Further, an optimization procedure is defined that generates a diverse solution pool for the problem of maximizing the self-consumption rate of locally generated renewable energy. This solution pool is needed for the coordination mechanisms of several decentralized optimization approaches. Combining the decentralized optimization approaches with the defined procedure to generate diverse solution pools, on average, leads to 100 kWh (16.5%) less surplus energy per day for a simulated residential area with 90 buildings. In Paper C, another decentralized optimization approach that aims to minimize surplus energy and reduce the peak load in a local grid is developed. Moreover, two methods that distribute a central wind power profile to the different buildings of a residential area are introduced. Compared to the approaches from the literature, the novel decentralized optimization approach leads to improvements of between 0.8% and 13.3% regarding the surplus energy and the peak load. Paper D introduces uncertainty handling control algorithms for modulating electricheating devices. The algorithms can help centralized and decentralized scheduling-based optimization approaches to react to erroneous predictions of demand and generation. The analysis shows that the developed methods avoid violations of the residents\u27 comfort limits and increase the self-consumption rate of electricity generated by photovoltaic systems. All introduced optimization approaches yield a good trade-off between runtime and the quality of the results. Further, they respect the privacy of residents, lead to better utilization of renewable energy, and stabilize the grid. Hence, the developed optimization approaches can help future energy systems to cope with the high share of intermittent renewable energy sources

    Efficiency and Optimization of Buildings Energy Consumption: Volume II

    Get PDF
    This reprint, as a continuation of a previous Special Issue entitled “Efficiency and Optimization of Buildings Energy Consumption”, gives an up-to-date overview of new technologies based on Machine Learning (ML) and Internet of Things (IoT) procedures to improve the mathematical approach of algorithms that allow control systems to be improved with the aim of reducing housing sector energy consumption
    • 

    corecore