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Abstract 

Energy systems all over the world are undergoing a fundamental transition to tackle climate 

change and other environmental challenges. The share of electricity generated by renewable 

energy sources has been steadily increasing. In order to cope with the intermittent nature of 

renewable energy sources, like photovoltaic systems and wind turbines, the electrical demand 

has to be adjusted to their power generation. To this end, flexible electrical loads are necessary. 

Moreover, optimization approaches and advanced information and communication technology 

can help to transform the traditional electricity grid into a smart grid.  

To shift the electricity consumption in time, electric heating devices, such as heat pumps or 

electric water heaters, provide significant flexibility. In order to exploit this flexibility, 

optimization approaches for controlling flexible devices are essential. Most studies in the 

literature use centralized optimization or uncoordinated decentralized optimization. Centralized 

optimization has crucial drawbacks regarding computational complexity, privacy, and 

robustness, but uncoordinated decentralized optimization leads to suboptimal results. In this 

thesis, coordinated decentralized and hybrid optimization approaches with low computational 

requirements are developed for exploiting the flexibility of electric heating devices. An 

essential feature of all developed methods is that they preserve the privacy of the residents. This 

cumulative thesis comprises four papers that introduce different types of optimization 

approaches.  

In Paper A, rule-based heuristic control algorithms for modulating electric heating devices are 

developed that minimize the heating costs of a residential area. Moreover, control algorithms 

for minimizing surplus energy that otherwise could be curtailed are introduced. They increase 

the self-consumption rate of locally generated electricity from photovoltaics. The heuristic 

control algorithms use a privacy-preserving control and communication architecture that 

combines centralized and decentralized control approaches. Compared to a conventional 

control strategy, the results of simulations show cost reductions of between 4.1% and 13.3% 

and reductions of between 38.3% and 52.6% regarding the surplus energy. Paper B introduces 

two novel coordinating decentralized optimization approaches for scheduling-based 

optimization. A comparison with different decentralized optimization approaches from the 

literature shows that the developed methods, on average, lead to 10% less surplus energy. 

Further, an optimization procedure is defined that generates a diverse solution pool for the 

problem of maximizing the self-consumption rate of locally generated renewable energy. This 

solution pool is needed for the coordination mechanisms of several decentralized optimization 

approaches. Combining the decentralized optimization approaches with the defined procedure 

to generate diverse solution pools, on average, leads to 100 kWh (16.5%) less surplus energy 

per day for a simulated residential area with 90 buildings.  

In Paper C, another decentralized optimization approach that aims to minimize surplus energy 

and reduce the peak load in a local grid is developed. Moreover, two methods that distribute a 
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central wind power profile to the different buildings of a residential area are introduced. 

Compared to the approaches from the literature, the novel decentralized optimization approach 

leads to improvements of between 0.8% and 13.3% regarding the surplus energy and the peak 

load. Paper D introduces uncertainty handling control algorithms for modulating electric 

heating devices. The algorithms can help centralized and decentralized scheduling-based 

optimization approaches to react to erroneous predictions of demand and generation. The 

analysis shows that the developed methods avoid violations of the residents' comfort limits and 

increase the self-consumption rate of electricity generated by photovoltaic systems.  

All introduced optimization approaches yield a good trade-off between runtime and the quality 

of the results. Further, they respect the privacy of residents, lead to better utilization of 

renewable energy, and stabilize the grid. Hence, the developed optimization approaches can 

help future energy systems to cope with the high share of intermittent renewable energy sources. 
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Part I: Overview 

1 Introduction 

1.1 Motivation 

To mitigate the effects of climate change, most countries in the world have signed the Paris 

Agreement of the United Nations from 2015 [1]. The nations have agreed on "holding the 

increase in the global average temperature to well below 2° C above pre-industrial levels and 

pursuing efforts to limit the temperature increase to 1.5° C above pre-industrial levels" [1]. In 

order to achieve this aim, it is vital to reduce the emission of greenhouse gases, like carbon 

dioxide (CO2) and methane (CH4), significantly. Burning fossil fuels, such as coal, oil, and gas, 

is the primary source of greenhouse gas emissions from human activities [2]. The use of 

renewable energy sources (RES) for generating electricity is a major factor for the transition to 

a sustainable energy system that is independent of fossil fuels. RES cover photovoltaics (PV), 

solar thermal energy, wind energy, hydro energy, geothermal energy, and all types of biomass 

[3]. RES have crucial benefits for the energy system and the society such as [3, 4]: 

 Reduction of greenhouse gas emissions

 Reduction of environmental problems (e.g., acid rain)

 Slower depletion of the world's nonrenewable energy sources

 Reduction of the dependency on fuel imports from other countries

The share of RES in Europe has continually been increasing during the last years. Figure 1 

shows the share of renewable energy in gross final energy consumption of Europe (EU 27) 

between the years 2009 and 2018. During this period, the share has increased by more than 5% 

in total. The goal for the year 2020 was set to 20% [5], and in 2030, 32% of the final energy 

consumption in Europe is aimed to be served by RES [6]. The change to a sustainable energy 

system with high penetration of RES has been taking place around the world. In the United 

States, the share of RES in the total energy consumption rose from 5% in 2001 to 11% in 2018 

[7], and in China, the installed capacity of RES between 2009 and 2017 tripled [8]. 

Figure 1: Share of renewable energy in gross final energy consumption of Europe [5] 
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The proportion of RES in Germany's electricity production mix for the year 2018 was 35% and 

thus slightly higher than the one in Europe as a whole (33%) [9]. Wind energy generated by far 

most of the RES-based electricity in Germany (17%). The expansion of the installed capacity 

for wind power and PV has been the main reason for the increasing share of RES in the 

electricity generation of Europe [5, 9]. The European Commission expects the energy from 

wind and PV to proceed to grow significantly and thus to be the main drivers for achieving 

Europe's sustainability goals for 2030 [9]. The generation of electricity in Europe is increasingly 

decentralized due to the large-scale penetration of RES.  

Although having significant benefits, RES bring about crucial challenges to the energy system 

due to the weather-dependent power generation of wind turbines and PV systems. As their 

power output can only be partially controlled, the energy system has to realize a paradigm shift. 

While in the past energy system the electricity generation followed the demand, in the future 

the electricity demand has to be adjusted to the power supply of the volatile RES. To this end, 

flexible electrical devices are necessary that can shift their time of operation or vary their power 

consumption. Besides, advanced information and communication technology can help to 

transform the traditional electricity grid into a smart grid that can react to the intermittent supply 

by RES and keep the system reliable.  

In a smart grid, the electrical consumption can be automatically adjusted to the volatile 

electricity generation [10]. For this purpose, the components of the grid have to be able to 

exchange information about the load in the (local) grid and their flexibility in real-time. There 

are smart meters currently being rolled out in Germany that can not only monitor electricity 

demand and generation at high temporal resolution but also communicate with other 

components in the grid [11]. Until 2032, each traditional meter will have to be replaced by an 

advanced metering device [11]. 

Besides batteries for storing electricity from RES, flexible electrical loads will play an integral 

part in the transition of the energy system. Some of the electrical devices will have to adjust 

their demand for electricity based on external information. Demand response describes a direct 

or indirect change in the electricity usage of the customers in response to specific signals [12]. 

These signals might be based on a price or a generation profile. The signal might also be a 

command for changing or shifting the operation of the flexible electrical devices. 

Adjusting the electricity demand can also stabilize the grid and increase its efficiency. There 

are several ways how demand response can contribute. Flexible electrical loads can control the 

voltage in the distribution grid and manage the congestion by providing ancillary services [13]. 

Moreover, reserve capacity can be provided to ensure a stable frequency in the grid. Demand 

response can also reduce the peak load (peak shaving) in local grids and consequently limit the 

stress on transformers and other grid components. Another application for utilizing flexible 

loads is to purchase electricity from the energy markets at low prices. An aggregator can pool 

multiple flexible devices and shift their main electrical load to periods with low electricity 

prices or place bids in the balancing power market [14]. 
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The flexibility of electrical loads can be used in residential areas, in non-residential buildings, 

and industrial applications. Some industrial sectors can provide flexibility on a large scale, like 

the aluminum production industry, the cement manufacturing industry, or the paper and wood 

industry [15]. In the residential sector, several devices are suitable for demand response [16]. 

The operation of washing machines, tumble dryers, and dishwashers can be shifted in time, 

making their electrical loads deferrable. Furthermore, electric vehicles (EVs) can be charged in 

the residential area and thus provide flexibility to the system.  

Another significant source of load flexibility in residential areas is seen in thermostatically 

controlled loads, such as electric heating devices, refrigerators, freezers, and air conditioners 

[16]. Thermostatically controlled loads can also be utilized in non-residential buildings and in 

industrial applications (e.g., cooling in the food industry [15]) to shift the electrical consumption 

in time. Since heating accounts for the largest part of household energy consumption [17], 

electric heating devices can play a pivotal role in providing flexibility. The goal of this thesis 

is to develop optimization approaches for exploiting the flexibility of electric heating devices 

in smart grids. The optimization approaches should yield a good trade-off between the quality 

of the results and computational time while not infringing on the residents' privacy.  

1.2 Structure of the thesis 

This thesis consists of two parts. Part I motivates and summarizes the research. To this end, 

Section 1 introduces and motivates the topic of this thesis. Section 2 describes the techno-

economic background of electric heating. It explains the significance of integrating flexible 

electrical loads into the energy system and lists the most common electric heating devices. 

Based on three motivational case studies, Section 3 defines the research goals of this thesis. The 

case studies demonstrate the benefits of optimally shifting the operation of electric heating 

devices. A comprehensive literature review is given in Section 4. The relevant optimization 

approaches for electric heating devices from the literature are grouped into different non-

disjunctive categories. Section 5 gives an overview of the four included papers of this thesis. It 

summarizes the main aspects of the developed optimization methods for each paper and the 

results of simulations. The first part of the thesis ends with conclusions in Section 6. Moreover, 

the section describes the limitations of this thesis and shows possible directions for future 

research. Part II includes the four papers this thesis is based on.  

 

2 Techno-economic background of electric heating 

This section explains the importance of electric heating for future energy systems. It describes 

the techno-economic background for using the flexibility of electric heating devices. In order 

to exploit electrical load flexibility, the buildings need information and communication 

technology and an energy management system (EMS). Buildings with an EMS are referred to 

as smart buildings. They can control the flexible devices and optimize their operation based on 

internal information (e.g., from the local PV system) or external signals from the grid. To this 
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end, the devices themselves require to have interfaces that allow the EMS to observe them and 

adjust their electrical load.   

In particular electric heating devices coupled with thermal storage can provide flexibility. In 

[18], Gils assesses the theoretical demand response potential of electric heating devices in 

Europe. The analysis estimates a load shifting potential for 2010 of more than 140 GW for 

residential buildings. Fehrenbach et al. [19] predict that the capacity of thermal storage in 

Germany's residential areas will amount to levels between 40 and 78 GWh in 2030. Based on 

their study, this figure could increase up to 252 GWh until the year 2050.  

Figure 2 shows the global energy-related CO2 emissions of the different sectors in 2015. The 

industry sector contributed most to the global CO2 emissions with 41%, followed by the 

building sector and the transport sector. The building sector can be subdivided into residential 

and non-residential buildings. Residential buildings were responsible for higher CO2 emissions 

(17%) compared to non-residential buildings (11%). The diagram shows that the building sector 

caused more than a quarter of global emissions in 2015. Thus, a significant reduction of its CO2 

emissions is essential to achieve the climate goals.  

 

Figure 2: Share of global energy-related CO2 emissions by sector in 2015 [20] 

In Europe, the household sector accounted for 27.2% of the final energy consumption in 2017 

[17]. Fossil fuels mainly generated the energy needed for the household sector, whereas RES 

accounted for merely 17.5% [17]. Figure 3 illustrates the energy consumption of European 

households in 2017, grouped by the type of application it was used for. Space heating 

constituted by far the most significant part with more than 64%. Domestic hot water (DHW) 

accounted for 14.8% of the final energy consumption and was thus the second most energy-

intensive application in households, followed by lighting and electrical appliances with 14.4%. 

Electric heating devices can be used for both space heating and DHW preparation. As heating 

applications make up approximately 80% of the end energy consumption in households, there 

is a strong need to decarbonize them by using RES. At the same time, there is an opportunity 

to make the energy consumption of residential areas flexible when integrating more electric 

heating devices. 
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Figure 3: Energy consumption of European households in 2017 [17] 

The most common electric heating devices that have already been utilized for demand response 

are: 

 Heat pumps (see for example [13]) 

 Electric water heaters/electric heating elements in hot water tanks (see for example [21]) 

 Air conditioners (see for example [22]) 

 Ventilation fans for heating (see for example [23]) 

 Electric storage heaters (see for example [24]) 

Closely related to electric heating devices are combined heat and power systems (CHPs). They 

usually use gas or other fossil fuels to generate heat and electricity simultaneously. CHP 

systems can also use hydrogen or renewable biomass to generate electricity. Due to the 

increased efficiency of the cogeneration process, small heat and power systems (micro CHPs) 

are expected to play a significant role in curbing CO2 emissions of residential areas [25].  

In order to decouple heat generation and usage in buildings and provide flexibility, a heat 

storage system is needed. Thus, the heating devices can, for instance, run whenever there is a 

high generation of electricity by RES or there is a need to increase the load for ancillary services 

to stabilize the grid. In contrast, during periods with low generation by RES, thermal storage 

allows the electric heating devices to reduce their load without affecting the residents' comfort 

negatively. The following types of thermal storage are common for buildings in residential areas 

[13, 24, 26]: 

 Thermal inertia of the building mass 

 Hot water tanks (for DHW and as buffer storage for space heating) 

 Phase change materials 

 High-density bricks (for electric storage heaters) 

One crucial advantage of electric heating devices is their capability to use the building mass for 

thermal storage and thus provide flexibility. Every building has thermal inertia due to the 

Space heating
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construction materials of its envelope and floors. Consequently, load flexibility can be provided 

without additional investments in storage systems. In [27], Hedegaard et al. investigate different 

thermal storage options for demand response with heat pumps. They conclude that the use of 

the buildings' thermal mass offers the most cost-effective solution. Electric heating devices can 

primarily provide flexibility on an intra-day time scale [28]. Various factors influence the 

electro-thermal flexibility of residential buildings such as: 

 Outside temperature 

 Occupant behavior and comfort limits 

 Thermal power of the heating device 

 Capacity of the thermal storage 

In particular, heat pumps are considered to play a pivotal role in future energy systems because 

of their comparatively high efficiency and their flexibility [29, 30]. Depending on the heat 

source, heat pumps are classified into air-source, ground-source, and water-source systems. In 

Europe, the most common types are air-source heat pumps, followed by ground-source heat 

pumps [31]. Due to the strong variations of the ambient temperature, the efficiency of air-source 

heat pumps changes significantly during a day and shows seasonality [13]. Although the main 

period of use for electric heating devices falls into winter and transition periods, heat pumps 

and electric heating elements inside hot water tanks generate DHW during the whole year. 

Generally, heat pumps can be used not only for space heating in winter but also for space 

cooling in summer if their mode of operation is reversible [32]. Hence, they can provide load 

shifting potentials for demand response throughout the whole year. 

More and more manufacturers offer heat pumps that can be integrated into a smart grid [33]. In 

Germany, the Federal Association for Heat Pumps (Bundesverband Wärmepumpe) assigns a 

label (smart-grid-ready-label [34]) to heat pumps whose control units can react to external 

signals and thus to the volatile electricity generation by RES. Most of today's offered heat 

pumps in Germany have this label [35]. Especially beneficial for smart grids are modulating 

heat pumps that not only can be switched on and off but also regulate their power consumption 

by varying the compressor speed. The majority of air-source heat pumps offered in Germany 

are assumed to be modulating heat pumps in 2020 [33]. 

In Germany, the most common fuels for heating systems were natural gas (48%) and oil (30%) 

in 2019 [36]. Electric heating devices only play a minor role in today's heating system. The 

share of electric storage heaters is 2.3% and heat pumps account for merely 3.4% [36]. In 

Europe, the share of heat pumps is slightly less than 10% and thus significantly higher compared 

to Germany [37]. France, Italy, and Spain are the countries with the biggest heat pump markets 

in Europe. Norway has the highest share of buildings that are equipped with a heat pump (44%), 

followed by the other Scandinavian countries Sweden (35%) and Finland (28%) [31]. 

Figure 4 shows the development of heat pump sales in Europe between the years 2009 and 

2018. During the last four years, the European heat pump market has achieved a yearly growth 

of over 10%. By 2018, almost 12 million heat pumps had been installed across Europe. If the 
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market proceeds to grow similarly, a doubling of the sales is expected by 2024 compared to the 

figure of 2018 [37]. Heat pumps are especially popular in modern buildings as their high 

insulation standards reduce the heating system's supply temperature (sink temperature of the 

heat pump), which results in increased efficiency for space heating [13].  

Many newer buildings use an underfloor heating system to decrease the heat pump's sink 

temperature. The generated heat energy is stored in the concrete of the floor and thus in the 

building mass. In Germany, heat pumps have become the primary heating technology for newly 

built residential buildings with a share of about 44% in 2018 [38]. Heat pumps and other electric 

heating devices can also be utilized for demand response in district heating networks with 

powerful heat generation units [39, 40].  

 

Figure 4: Sales of heat pumps in Europe [37] 

To exploit the flexibility of electric heating devices, the heat generation has to be decoupled 

from the heat demand by using intelligent control algorithms. The used control approach 

strongly influences the flexibility [41]. Currently, it is common practice to use a conventional 

hysteresis based control method [42, 43]. The conventional control approach starts heating the 

thermal storage when the storage's lower temperature limit is reached, and the heating stops as 

soon as the temperature reaches the upper level. Such a control approach does not exploit the 

flexibility of thermal storage and is not suitable for demand response.  

Heat pumps have already been used to some degree for demand response. In Germany, for 

example, the operation of most heat pumps can be blocked three times a day for a maximum of 

two hours by the grid operator [28, 44]. The aim of decreasing their loads is to lower the stress 

on the grid in return for reduced grid fees for the customers. More advanced control strategies 

that optimally use the load shifting potentials can react to the current situation in the power 

system and lead to better utilization of RES. 

 

 

7



 

   

3 Motivational case studies and research goals 

This section illustrates three motivational case studies (Section 3.1) that demonstrate the 

benefits of shifting electrical loads. Based on these case studies, Section 3.2 identifies the 

research goals of this thesis.  

3.1 Motivational case studies 

The benefits of using the flexibility of electric heating devices for the energy system are shown 

by three case studies. The objective of the first case study is to reduce the curtailment of wind 

power (Section 3.1.1), and the second case study illustrates the benefits of shifting loads to 

minimize electricity costs (Section 3.1.2). The third motivational case study shows the 

reduction of the peak load in a residential area by optimally scheduling the operations of the 

electric heating devices (Section 3.1.3). The days which are used in each case study are 

randomly chosen from the heating period in Germany (October – March). 

3.1.1 Reducing curtailment of wind power 

In Germany, around 5.4 GWh of the electricity generation from RES were curtailed in 2018 

due to congestions in the transmission grid [45]. Wind turbines (97%) contributed most to the 

total curtailment. More than half (53%) of Germany's total energy curtailment in 2018 could be 

attributed to the federal state of Schleswig-Holstein (North of Germany). One possibility to 

reduce the curtailment is to react to the wind turbines' volatile power generation by using 

flexible electrical loads. This case study considers one grid node in Schleswig-Holstein with 

significant curtailment (in the district of Nordfriesland). The objective is to analyze to what 

extent electric heating devices could have reduced the curtailed energy during one day in 

February 2015.   

To this end, an optimization model of a residential area in Schleswig-Holstein is set up. The 

goal of the optimization problem is to minimize curtailment for this grid node. The model 

incorporates the properties of the German building stock regarding the distribution of different 

building types and insulation levels [46] and is run with 100 buildings. Afterward, the results 

are scaled up to the total number of buildings that were connected to the investigated grid node 

(about 15,000 buildings).  

All buildings utilize the building mass for thermal storage. The thermal capacity of the building 

mass is based on the values specified in EN ISO 13790 [47]. The electric heating devices can 

exploit a specific temperature range to optimally react to the electricity generation by RES. This 

temperature range has to be defined before the optimization by the residents. It ensures that 

their comfort is not affected negatively by the flexible operation of the electric heating device. 

A higher permissible temperature range leads to higher flexibility. For this case study, the 

assumption is made that the buildings' residents have a comfort range of 2° K (20° C to 22° C). 

Moreover, all buildings have a hot water tank for DHW that serves as a second thermal storage 

system. 

8



 

   

The buildings are either single-family houses, multi-family houses, or terraced buildings. 

Figure 5 shows the curtailed electrical power during February 15th, 2015, for one grid node in 

the district of Nordfriesland. The curtailment data from Figure 5 is the output of a transmission 

grid model by Schermeyer [48]. The curve of the curtailed electrical power strongly correlates 

with the power generated by RES. It can be seen that electricity is curtailed from 04:00 to 15:00. 

The demand data for this case study is based on CREST, a high-resolution stochastic model that 

generates load profiles (space heating, electricity, and DHW) for residential buildings [49]. 

 

Figure 5: Curtailed electrical power during February 15th, 2015 for one grid node in the district of Nordfriesland [48] 

Different scenarios are used to investigate the effects of flexible electrical loads on the 

curtailment. The share of buildings equipped with electric heating devices is exogenously 

increased in the optimization model. Depending on the buildings' ages and their insulation 

levels, either a modulating air-source heat pump is used or an electric heating element in 

addition to a gas boiler. The electric heating element only runs if electricity generated by RES 

is available. The gas boiler serves as the primary heating system. Heat pumps can only be 

efficient in buildings with high insulation standards due to the reduced supply temperatures of 

their heating systems [13]. Therefore, heat pumps are not used for older buildings in this case 

study. In the base case scenario, no electric heating devices are used in the buildings. Instead, 

the buildings use fossil-fuel based heating systems (gas or oil). 

The flexible electric heating devices have to react to the supply curve of RES or the predicted 

curtailment profile to minimize the curtailment. Figure 6 illustratively shows the electrical load 

of a heat pump and thus its heating activity (yellow curve) and the resulting temperature profile 

(red curve) of one single-family house during the investigated day. The heat pump has a 

maximum electrical power of 2500 W, which can be modulated continuously. As an air-source 

heat pump is used for this building, the efficiency strongly depends on the outside temperature.  

It can be seen in Figure 6 that during periods with high curtailment (and thus high generation 

of electricity by RES), the heat pump operates with high modulation degrees. This results in an 

increased room temperature (07:00 to 14:00). In periods with less or no RES generation, the 
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power consumption of the heat pump is strongly reduced, leading to a drop in the room 

temperature (before 07:00). The optimization problem includes a constraint that forces the room 

temperature at the end of the day to be at 21° C. Therefore, the heat pump increases its load at 

the end of the day to heat up the building to the desired temperature.  

 

Figure 6: Electrical power of a heat pump and the resulting temperature profile of one building 

Figure 7 depicts the curtailed energy depending on the share of buildings with electric heating 

devices. The diagram is based on multiple runs of the optimization problem for the residential 

area with varying input parameters. As expected, a higher penetration of electric heating devices 

reduces the curtailment. A share of 10% leads to reductions of more than 30% (from 144 MWh 

to 100 MWh). If one out of five buildings is equipped with an electric heating device, the 

curtailed energy can be halved in the case study. The highest investigated share is 40%, which 

leads to diminishing the curtailment by more than 125 MWh (89%) compared to the base case 

scenario with no electric heating devices.  

 

Figure 7: Curtailed energy depending on the share of buildings with electric heating devices 
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Increasing the share of electric heating devices on all grid nodes in Schleswig-Holstein would 

not always reduce the curtailment significantly. A reason for this is that the number of buildings 

that are connected to the nodes with high curtailment was rather low in 2015 [48]. Nevertheless, 

this case study demonstrates the capability of electric heating devices to reduce curtailment of 

RES. This leads to a higher self-consumption rate of locally generated and climate-friendly 

electricity from RES. Thus, a large-scale penetration of flexible electric heating devices can 

reduce greenhouse gas emissions and help to decarbonize the building sector.    

3.1.2 Minimizing electricity costs 

The objective of this case study is to show that an optimal operation of flexible electrical devices 

can reduce electricity costs. An optimization problem is defined for a residential area. The goal 

of the optimization is to minimize the residential area's electricity costs under the assumption 

of a time-dependent price for electricity. The optimal control strategy should shift the load of 

the electric heating devices into periods with low prices in the electricity market.  

Demand data (heat, electricity, and DHW) generated by the software tool synPRO [50] from 

Fraunhofer Institute for Solar Energy Systems [51] is used for this and the following 

(Section 3.1.3) case study. This tool combines a thermal resistance-capacity model (5R1C 

model) for space heating, as described in EN ISO 13790 [47], with a behavioral model, which 

is based on the Harmonized European Time of Use Survey [52]. The models used by synPRO 

are explained and validated against measured data in [50]. 

Figure 8 shows the prices for electricity on the day-ahead market of the European Energy 

Exchange on December 4th, 2017 [53]. For every hour of the day, there is a different price, 

ranging from about 12 to 51 € per MWh. It is assumed that the buildings have a time-dependent 

electricity tariff based on these prices. This means that the shown prices are directly forwarded 

to the customers. Duties and taxes are assumed to be fixed. An aggregator controls the electric 

heating devices of the residential area, intending to minimize the electricity costs. To this end, 

the aggregator runs an optimization problem (optimal control).  

 

Figure 8: Prices for electricity at the day-ahead market of the European Energy Exchange on December 4th, 2017 [53] 
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In this case study, only one scenario is analyzed. The residential area consists of 40 single-

family houses that are located in Braunschweig (Germany). All buildings have air-source heat 

pumps that can continuously vary their power consumption. Further, they use an underfloor 

heating system for thermal storage (the heat is stored in the concrete) and a hot water tank for 

DHW. 

Figure 9 illustrates the combined electrical power of the heat pumps and the resulting costs for 

the conventional control and the optimal control strategy. The costs do not comprise duties 

(e.g., renewable energy surcharge) and taxes. It can be seen that the optimal control – as 

opposed to the conventional control – avoids to schedule the heating activities into periods with 

high prices (16:00 to 19:00). Moreover, the optimal control utilizes the low price between 03:00 

and 04:00 by increasing the electrical loads of the heat pumps. The electricity consumption of 

inflexible devices is not considered in this case study.  

The optimal control results in electricity costs of 34.30 € for that day, which is 11.60 € lower 

compared to the conventional control (45.90 €). The higher the fluctuations and the ranges of 

the prices, the more cost savings can be realized by using the optimal control strategy for a 

residential area on a given day. Besides, the cost savings strongly depend on the number of 

flexible devices considered in the optimization.   

 

Figure 9: Total electrical load of the heat pumps and resulting costs with conventional and optimal control 

This simple case study shows that shifting electrical loads can reduce electricity costs 

significantly when having time-dependent electricity tariffs. The buildings in this case study do 

not have a PV system. Considering PV generation in the residential area could lead to higher 

cost savings for the optimized control compared to conventional control.  

3.1.3 Minimize peak load (peak shaving) 

Another application for flexible electrical loads is reducing the peak load in a local grid. This 

decreases the stress on the transformers and other grid components. Moreover, peak shaving 

12



 

   

can prevent costly grid extensions due to new electrical loads such as EVs and heat pumps. The 

objective of the optimization problem is to minimize the peak electrical load of all buildings 

combined. 

For this case study, three types of buildings are considered that are all single-family houses. 

The buildings have different insulation levels and heating systems (modulating air-source heat 

pumps, ground-source heat pumps, and electric heating elements). Analogous to the previous 

case study of Section 3.1.2, the buildings that are equipped with a heat pump use an underfloor 

heating system and a DHW tank for thermal storage. Buildings with gas heating devices have 

a combined hot water tank that serves for both space heating and DHW. The overall number of 

buildings is 40.  

Figure 10 shows the resulting electrical power of the modeled residential area during one day 

in January. The load profile of the conventional control shows multiple high peaks, whereas the 

optimal control strongly flattens the load curve. The conventional control leads to a peak load 

of 70.3 kW, which is more than 27 kW higher than the resulting peak load of the optimal control 

strategy. In the analysis, whose results are displayed in Figure 10, merely electric heating 

devices are used as flexible loads. An inclusion of 5 EVs into the model of the residential area 

leads to a 35 kW difference between the conventional and the optimal control regarding the 

peak load. In this and the previous case study (Section 3.1.2), the optimal control leads to 

reduced electrical energy consumption for heating (the areas of the green curves in Figure 9 

and Figure 10 are smaller than the ones of the brown curves). The reason for this is that the 

optimal control incorporates the volatile efficiency of the air-source heat pumps into its decision 

making. Therefore, the air-source heat pumps primarily operate during periods with high 

outside temperatures as this increases their efficiency.  

 

Figure 10: Total electrical load of the modeled residential area with conventional and optimal control 

In the modeled residential area of this and the previous case study (Section 3.1.2), each building 

uses an electric heating device. While this is not representative of today's heating systems in 

Germany, this configuration is used to show the benefits of exploiting thermoelectric flexibility. 
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The buildings use heat pumps and electric heating elements as it is assumed that these 

technologies will have significant market share in the future. To keep the runtime of the 

optimization low in all case studies, the number of buildings with electric heating devices does 

not exceed 40.  

3.2 Research goals 

The three case studies from the previous section demonstrate the benefits of optimally 

exploiting the load flexibility of electric heating devices. However, in all case studies, a 

centralized optimization approach is used to control the decentral flexible devices. Centralized 

optimization approaches are based on a central control unit that needs data from each building 

for demand and generation forecasts. This data is used as input to a centralized optimization 

problem that generates optimal schedules for each flexible device in the residential area. The 

central control unit then either controls the devices directly or sends the schedules to the EMS 

of the different buildings.  

Centralized optimization leads to the overall best result for the residential area but has several 

crucial drawbacks that limit its applicability in real-world environments [54]. A centralized 

optimization approach strongly infringes on the privacy of the residents as personal data (e.g., 

electricity profiles, heating profiles, and DHW usage patterns of the households) has to be 

collected and processed continuously. Moreover, the computational complexity of centralized 

optimization problems is fairly high due to the NP-hardness of scheduling problems [55]. 

Hence, applying centralized optimization to larger residential areas or districts with high 

numbers of flexible devices can be computationally infeasible. Another disadvantage is the low 

level of robustness against single-point failures and cyber-attacks due to the necessity of a 

central control unit [56]. The whole energy system can incur immense damage if the central 

controller fails due to technical problems or an external cyber-attack. 

The goal of this thesis is to develop novel optimization approaches that exploit the flexibility 

of electric heating devices in smart grids and tackle the fundamental problems of centralized 

optimization. The designed approaches should have strongly reduced computational 

complexity such that they are applicable to larger districts. Further, the optimization approaches 

must preserve the residents' privacy by avoiding to collect and process personal data. Also, the 

level of robustness of the developed methods should be increased compared to centralized 

optimization.  

To this end, several heuristic optimization algorithms are designed in this thesis that fulfill the 

properties mentioned above and can thus be applied to larger residential areas. The algorithms 

should lead to results that are close to the optimal solution of the centralized optimization. 

Moreover, approaches that can either directly or indirectly handle uncertainties in the 

optimization are developed. While the focus of this thesis is to design algorithms for electric 

heating devices, some of the developed methods can also be used for other types of flexible 

electrical loads.   
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4 Literature review 

Many approaches for exploiting electrical load flexibility can be found in the literature. The 

following sections list the relevant literature that deals with optimization and control 

approaches for utilizing the flexibility of electric heating devices and other residential loads in 

smart grids (algorithms for scheduling flexible loads in the industry can be found in [57]). The 

optimization approaches can be predictive or non-predictive (Section 4.1). Another way of 

clustering the approaches is whether the optimization is performed in a centralized or 

decentralized way (Section 4.2). Besides, the approaches can be distinguished by the method 

for solving the resulting optimization problem itself (Section 4.3). In Section 4.4, uncertainty 

handling approaches are explained that are capable of dealing with erroneous predictions. As 

the used partitions of the relevant literature are not disjunctive, Table 6 in the appendix lists all 

reviewed approaches of this section with additional information.  

Table 1 to Table 4 contain information about the objectives of the different optimization and 

control approaches, the flexible devices, and the case studies. Most reviewed algorithms aim to 

minimize the electricity costs given a time-dependent price for electricity. The other most 

common objectives of the analyzed literature are the maximization of PV self-consumption 

rates and the reduction of peak loads. Also, other objectives, such as minimizing the carbon 

emissions, providing ancillary services, or smoothening the fluctuations in the grid, are used.  

Most studies use heat pumps as their primary source of load flexibility, followed by electric 

water heaters and stationary batteries. In several studies, the heating, ventilation, and air-

conditioning system of a building is summarized by HVAC. A few of the reviewed studies do 

not consider electric heating devices but use other flexible devices instead (e.g., CHPs, EVs, 

refrigerators). Still, they are included in the literature review since the basic approaches 

explained in those studies are also applicable to electric heating devices. As there are many 

studies dealing with optimization approaches for demand response in smart grids, the reviewed 

literature is confined to the most relevant approaches for this thesis. 

4.1 Predictive vs. non-predictive approaches   

Optimization approaches for exploiting load flexibility in smart grids can be distinguished by 

their need for incorporating predictions into the control of the flexible device. Today, most 

(electric) heating devices are controlled by using non-predictive methods [13]. The majority of 

non-predictive methods, which aim at utilizing the flexibility of electric heating devices, are 

rule-based control approaches [58-66]. They consist of a set of if-then rules that are based on 

expert knowledge. Averaged or real-time values from temperature sensors, PV systems, grid 

frequency, or electricity prices are used to continuously derive a control action [13]. Some non-

predictive approaches just use a predefined schedule to control flexible devices [67].  

The main advantages of non-predictive approaches are their simplicity and low computational 

requirements. However, as they do not incorporate any information about the future into their 

decision making, non-predictive approaches are unlikely to result in optimal control actions. 
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Furthermore, the design of appropriate rules under frequently changing conditions (e.g., 

demand and generation patterns, price structures) can be challenging [13].   

Predictive approaches, in contrast, make use of forecasted future values and incorporate them 

into the decision making. Both internal information about the building (like the demand for 

heat, DHW, and electricity or the PV generation) and external signals (like prices, loads in the 

grid, and wind generation) can be predicted. The vast majority of the reviewed papers apply 

predictive approaches that calculate a schedule by solving an optimization problem [42, 54, 62, 

68-103]. This optimal schedule defines control actions for the optimization horizon of the 

flexible devices that can be implemented by their local control systems. To this end, most of 

the scheduling approaches rely on a model of the system that maps input parameters (e.g., 

heating power of a heat pump) to outputs (e.g., temperature of a building). However, there are 

also predictive approaches that do not calculate an optimal schedule but instead use rule-based 

control methods that consider predictions of future values [104, 105]. Table 1 contains a list of 

several predictive and non-predictive approaches.    

Table 1: List of predictive and non-predictive approaches 

Source Predictive vs. 

non-predictive 

Objective Flexible devices Case study 

Salpakari et al. 

2016 [65] 

Non-predictive Maximize PV self-

consumption 

Heat pump, battery, 

shiftable appliances 

1 low-energy house in 

Finland 

Rodríguez et al. 

2018 [64] 

Non-predictive Minimize electricity costs Heat pump, battery 1 low-energy house in 

Germany 

Arteconi et al. 

2013 [58] 

Non-predictive Minimize electricity costs Heat pump 1 detached house in 

Northern Ireland 

Thygesen et al. 

2014 [66] 

Non-predictive Maximize PV self-

consumption 

Heat pump 1 energy-efficient 

building in Sweden 

Lee et al. 2015 

[67] 

Non-predictive Minimize peak load Heat pump 1 low-energy house in 

Korea 

Nolting et al. 

2019 [63] 

Predictive and 

non-predictive 

Minimize electricity costs Heat pump 1 building in Germany 

Buchmann et al. 

2017 [60] 

Predictive and 

non-predictive 

Maximize utilization of 

RES 

Battery, electric 

heating 

Real prototype 

Dar et al. 2014 

[104] 

Predictive Maximize PV self-

consumption, minimize 

peak load 

Heat pump 1 zero-energy building in 

Norway 

Sichilalu et al. 

2014 [96] 

Predictive Minimize electricity 

costs, maximize PV self-

consumption 

Heat pump water 

heaters 

1 hotel building in South 

Africa 

Rogers et al. 2011 

[92] 

Predictive Minimize carbon 

emissions 

Heat pump 1 building in the UK 

Vrettos et al. 2013 

[100] 

Predictive Minimize electricity costs Heat pump, electric 

water heater, battery 

1 average Swiss 

residential building 

Ali et al. 2014 

[68] 

Predictive Minimize electricity costs Electric storage 

heater 

1 building in the Nordic 

energy market's area 

Wang et al. 2014 

[106] 

Predictive Smoothing power 

fluctuations 

Heat pumps, 

batteries 

1,000 flexible devices in a 

residential area 

Pedersen et al. 

2011 [90] 

Predictive Minimize costs for 

electricity purchase 

Heat pumps 10 buildings in Denmark 
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4.2 Centralized vs. decentralized approaches   

Optimization approaches for demand response can also be distinguished by grouping them into 

centralized and decentralized methods. As mentioned before, in centralized optimization 

approaches, a central entity solves an optimization problem for the whole residential area. It 

then directly or indirectly controls the flexible devices of the buildings based on the calculated 

optimal schedules [14, 70, 71, 73, 75, 81, 82, 85, 89, 95, 101]. Also, rule-based control strategies 

for multiple buildings can be applied in a centralized way [105]. Decentralized approaches only 

depend on local information of the building. Most decentralized approaches merely consider 

single buildings for the optimization [42, 58, 62-69, 76, 80, 84, 90, 92-94, 96, 99, 100, 104, 

107]. However, there are also several decentralized approaches that aim to optimize multiple 

buildings [54, 60, 61, 78, 79, 82, 83, 86, 91, 98, 101, 102, 108, 109].  

Combinations of centralized and decentralized optimization approaches are called hybrid 

methods [72, 74, 77, 87, 88, 103, 110]. Analogous to the decentralized optimization approaches 

for multiple buildings, the control actions of the individual buildings are mainly based on local 

information. However, a central unit influences these decisions by considering the situation of 

the entire residential area or local grid. A selection of centralized, decentralized, and hybrid 

methods can be found in Table 2. 

Table 2: List of centralized, decentralized, and hybrid approaches 

Source Centralized vs. 

decentralized 

Multiple 

buildings 

Objective Flexible 

devices 

Case study 

Biegel et al. 

2013 [14] 

Centralized Yes Minimize costs for 

electricity purchase 

Heat pumps 10,000 heat pumps 

in Denmark 

Korkas et al. 

2016 [111] 

Centralized Yes Matching demand and 

supply 

HVAC systems Microgrid with 3 

buildings 

Biegel et al. 

2013 [73] 

Centralized Yes Provision of ancillary 

services 

Heat pumps, 

refrigerators, 

freezers 

10,000 flexible 

on/off devices 

Hao et al. 2015 

[105] 

Centralized Yes Provision of frequency 

control (ancillary 

services) 

Air-conditioners 1,000 devices in the 

USA 

Kolen et al. 

2017 [54] 

Decentralized Yes Minimize peak-to-valley 

distance of grid load 

Heat pumps, 

CHPs 

146 single-family 

houses 

Ramchurn et al. 

2011 [91] 

Decentralized Yes Minimize peak load Heat pumps, 

shiftable 

appliances 

5,000 agents in the 

United Kingdom 

Chang et al. 

2014 [78] 

Decentralized Yes Minimize costs for 

electricity purchase 

Air-

conditioners, 

batteries 

400 customers 

Menon et al. 

2019 [86] 

Decentralized Yes Minimize electricity costs Heat pumps 12 buildings in 

Switzerland 

Fischer et al. 

2017 [62] 

Decentralized No Minimize electricity costs, 

Maximize PV self- 

consumption 

Heat pump, 

electric back-up 

heater 

1 multi-family 

house in Germany 

De Coninck et 

al. 2014 [61] 

Centralized and 

decentralized 

Yes Provision of voltage 

control, minimize 

curtailment 

Heat pumps for 

DHW 

33 buildings in a 

moderate climate 

(Europe) 
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Source Centralized vs. 

decentralized 

Multiple 

buildings 

Objective Flexible 

devices 

Case study 

Ogston et al. 

2007 [88] 

Hybrid 

 

Yes Minimize peak load Refrigerators, 

general 

flexibility 

200,000 households 

in Australia 

Blaauwbroek et 

al. 2015 [74] 

Hybrid 

 

Yes Matching demand and 

supply 

Heat pumps, 

CHPs 

500 appliances 

Braun et al. 

2015 [77] 

Hybrid 

 

Yes Matching demand and 

supply 

Batteries 300 residential 

customers in 

Australia 

Bao et al. 2015 

[110] 

Hybrid Yes Provision of frequency 

control 

On/off 

appliances 

100 appliances 

Bhattarai et al. 

2014 [72] 

Hybrid Yes Minimize electricity costs Heat pumps Test case network in 

Denmark 

4.3 Different methods for solving the optimization problem 

Several methods exist to solve the resulting optimization problem for controlling flexible 

electrical devices. Exact methods can guarantee to find the global optimum of the scheduling 

problem [14, 62, 68, 70, 73-75, 77-79, 83-86, 90-92, 96, 99-101, 103, 107, 112]. Depending on 

the mathematical formulation and the structure of the problem, the exact methods can be 

divided into linear programming (LP) [62, 68, 77, 78, 90, 96, 112], non-linear programming 

(NLP) [99], quadratic programming (QP) [79, 83, 101], mixed-integer linear programming 

(MILP) [73, 75, 85, 86], mixed-integer quadratic programming (MIQP) [74, 91, 92, 100, 103] 

and dynamic programming (DP) [107]. Specific algorithms exist to solve the different types of 

problems.  

Some studies apply decomposition methods [78, 79, 83]. These methods break down a large 

optimization problem into several smaller problems that can be solved by distributed agents 

with reduced computational effort. Model-predictive control (MPC) is also used in many 

studies [62, 70, 77, 79, 84, 86, 100, 101, 103, 112]. MPC approaches iteratively solve an 

optimization problem and successively implement the result for the first time slot of the rolling-

horizon to control the flexible device. The relevant input data for the optimization problem 

(such as demand, generation, and prices) is predicted at the beginning of each iteration.  

Many studies use problem-specific heuristics for the optimization [58-67, 69, 71, 74, 88, 94, 

104-106, 108]. In contrast to exact optimization methods, heuristics cannot guarantee to find 

the globally optimal solution of the optimization problem. However, they are usually 

significantly faster than the exact algorithms. Further, they often require less information about 

the optimization problem itself (e.g., no explicit mathematical model of the electric heating 

device). Most of them need no (or very little) information about future values (particularly the 

rule-based control heuristics [58-60, 62-66, 104-106]).  

Metaheuristic optimization methods define a generic search principle for approximately solving 

an optimization problem by using randomness and local search techniques [113]. As they are 

heuristics, the quality of the found solutions cannot be guaranteed. Since metaheuristics are not 

problem-specific, they can be applied to a wide variety of problems. In the context of demand 
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response, population-based metaheuristics are used in the literature, like evolutionary 

algorithms (EA) [42, 76, 80], memetic algorithms (MA) [82], and particle swarm optimization 

(PSO) [95].  

Several studies apply dynamic demand control [85, 109, 110]. Approaches from this field use 

algorithms integrated into flexible appliances to regulate their energy consumption and thus 

their electrical load. Based on the current frequency of the grid, the algorithms use a rule-based 

control approach to adjust the electrical power of the flexible devices with the aim of stabilizing 

the grid frequency or the voltage [114].  

Algorithmic game theory, in combination with exact optimization methods, is also applied to 

exploit the load flexibility in smart grids [87, 102]. Game theory generally studies the 

interaction between competing or cooperating rational individuals [115]. The reviewed game-

theoretic approaches for demand response use a decentralized or hybrid communication system. 

The distributed agents generate schedules by solving a local optimization problem. These 

schedules are then negotiated among the agents and adjusted using methods from algorithmic 

game theory.  

In recent years, methods from the field of reinforcement learning have increasingly been used 

for demand response [93, 97]. Reinforcement learning is an area of machine learning that does 

not require mathematical models of the environment or any specific knowledge. The different 

agents learn the optimal control actions from past experience. The objective is to find out which 

actions maximize the cumulative reward. Table 3 shows studies that apply different 

optimization methods for solving the resulting optimization problems.  

Table 3: List of different optimization methods 

Source Optimization 

method 

Objective Flexible devices Case study 

Juelsgaard et al. 

2014 [83] 

Exact (QP, 

Decomposition) 

Minimize active losses in 

the grid 

Heat pumps, EVs 342 buildings in 

Denmark 

Verhelst et al. 

2012 [99] 

Exact (NLP) Minimize electricity 

costs 

Heat pump 1 residential building 

Worthmann et al. 

2015 [101] 

Exact (decentralized 

and centralized MPC) 

Minimize peak load Batteries 300 buildings in 

Australia 

Favre et al. 2014 

[107] 

Exact (DP) Minimize electricity 

costs and carbon 

emissions 

Electric heating 

devices 

1 building in France 

Brahman et al. 

2015 [75] 

Exact (MILP) Minimize energy costs CHPs, EVs, 

shiftable appliances 

Residential energy 

hub 

Hong et al. 2012 

[108] 

Heuristic Matching demand and 

supply 

Heat pump 2 buildings with 

different insulation 

levels 

Sánchez et al. 

2019 [94] 

Heuristic Maximize PV self-

consumption 

Heat pump 1 single-family house 

in Switzerland 

Brunner et al. 2013 

[59] 

Heuristic (rule-based) Minimize peak load Heat pumps Low voltage 

distribution grid in 

Germany 
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Source Optimization 

method 

Objective Flexible devices Case study 

Sepulveda et al. 

2010 [95] 

Metaheuristic (PSO) Minimize peak load Electric water 

heaters 

200 buildings in Saint 

John (Canada) 

Lösch et al. 2014 

[42] 

Metaheuristic (EA) Minimize electricity 

costs 

Heat pump 1 building in 

Germany 

Braun et al. 2016 

[76] 

Metaheuristic (EA) Minimize electricity 

costs, emissions, and 

wear, maximize comfort 

CHP, shiftable 

devices 

1 building in 

Germany 

Hu et al. 2012 [82] Metaheuristic (MA) Minimize electricity 

costs, maximize autarky 

HVAC systems, 

batteries 

2 buildings in 

Arizona (USA) 

Kim et al. 2015 

[116] 

Dynamic demand 

control (centralized) 

Provision of frequency 

control 

Heat pumps Test system 

Molina-García et 

al. 2011 [109] 

Dynamic demand 

control 

(decentralized) 

Provision of frequency 

control 

HVAC systems, 

refrigerators, 

freezers 

Residential load 

scenarios 

Zhu et al. 2011 

[102] 

Game theory and 

MILP 

Minimize peak load EVs, water heaters, 

shiftable appliances 

4 households 

Nguyen et al. 2012 

[87] 

Game theory and LP Minimize peak-to-

average ratio 

Battery, shiftable 

appliances, EVs 

Smart grid with 10 

users 

Ruelens et al. 2017 

[93] 

Reinforcement 

learning 

Minimize electricity 

costs 

Heat pump, electric 

water heater 

1 building in Belgium 

De Somer et al. 

2017 [97] 

Reinforcement 

learning 

Maximize PV self-

consumption 

Electric water 

heaters 

6 residential buildings 

4.4 Uncertainty handling methods 

The predictive approaches rely on forecasts about the demand, the RES generation, or 

electricity prices. Because of deviations between predicted and real load profiles and prices, 

methods that can handle the uncertainties of forecasts are essential for predictive approaches in 

real-world applications. Schedule correcting algorithms [80, 98] overrule the actions of a 

previously calculated schedule if a constraint violation is about to occur or if there are 

substantial deviations between predicted and measured values. MPC approaches can 

immediately react to changes in the input parameters of the optimization as they iteratively 

solve an optimization problem using new predictions for every iteration. They only implement 

the first actions of the calculated schedule. Due to their ability to react to erroneous forecasts, 

MPC approaches are popular for demand response with electric heating devices [62, 70, 77, 79, 

84, 86, 100, 101, 103, 112]. Another way of dealing with uncertainties is to observe the 

measured value for the demand and generation and to trigger a rescheduling in case of 

significant deviations between forecasted values and actual measurements [69, 71, 103]. 

A way to directly consider uncertainties in the optimization problem is to apply stochastic [81, 

89] or robust optimization [79, 85]. In robust optimization, the solutions of the optimization 

problems should remain feasible in all cases of erroneous predictions. However, in real-world 

applications, it is necessary to have a reasonable trade-off between robustness and optimality. 

In stochastic optimization, the probability distribution of the input parameters can either be 

predicted or is assumed to be known before the optimization procedure. The goal is to generate 

a solution that is feasible for all realizations of the input data. This solution maximizes an 
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objective function that can contain random variables. Table 4 lists several studies that apply 

uncertainty handling methods.  

Table 4: List of uncertainty handling methods 

Source Uncertainty handling 

method 

Objective Flexible devices Case study 

Gao et al. 2015 

[80] 

Schedule correcting 

algorithm 

Minimize electricity costs Air-conditioners 1 commercial 

building in Hong 

Kong 

Stoyanova et al. 

2014 [98] 

Schedule correcting 

algorithm 

Ensure grid stability, 

reduce expenses of 

customers 

Heat pumps, 

CHPs 

62 households 

Kajgaard et al. 

2013 [84] 

MPC Minimize energy costs Heat pump 1 typical Danish 

single-family house 

Zwickel et al. 

2019 [112] 

MPC Minimize energy costs 

and energy consumption 

HVAC system 

(with heat pump) 

1 office building in 

Germany 

Diekerhof et al. 

2018 [79] 

Robust MPC Minimize electricity costs 

and peak load 

Heat pumps 2,000 buildings 

Arnold et al. 2011 

[70] 

MPC with soft and hard 

constraints 

Minimize overall 

operation costs 

CHPs Energy-hub 

Stoyanova et al. 

2020 [103] 

MPC and rescheduling Integration of RES, 

minimize residual 

deviation 

Heat pumps, 

CHPs 

10 buildings in a 

city district 

Barbato et al. 

2012 [71] 

Rescheduling Minimize energy costs Shiftable 

appliances, 

battery 

Residential building 

Allerding et al. 

2011 [69] 

Rescheduling, real-time 

reaction 

Minimize electricity 

costs, improvement of 

grid state 

Shiftable 

appliances, CHP 

1 smart building in 

Germany 

Good et al. 2015 

[81] 

Stochastic optimization Minimize energy costs, 

discomfort 

Heat pumps, 

CHPs 

50 residential flats 

Ottesen et al. 

2015 [89] 

Stochastic optimization Minimize peak load Electric water 

heater, fans, lights 

1 university 

building in Norway 

Kim et al. 2013 

[85] 

Robust optimization Minimize energy costs Shiftable devices 50 devices 

5 Summary of the included papers 

In this section, the four embedded papers of this thesis are summarized. In all papers, the 

developed optimization approaches are compared to an exact centralized optimization approach 

(MILP) that serves as a benchmark. The optimization horizon for the case studies of all papers 

is one day. Paper A (Section 5.1) and Paper D (Section 5.4) use a rolling horizon approach with 

non-overlapping time horizons to optimize one week with seven iterations. The data for all 

papers is provided by the software tool synPro (see Section 3.1.2). 

The time resolution for all studies is five minutes. This time resolution is recommended by 

Salom et al. [117] and Cao et al. [118] to capture the short-term fluctuations of PV systems. A 

fundamental part of all optimization problems is the model of thermal storage. A uniform 
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temperature model with an energy difference equation is used in all papers. These types of 

thermal models are frequently used in the literature (see for example [65, 119, 120]).  

It is assumed that all buildings in the residential area have an EMS that can utilize an existing 

communication network to exchange information with other buildings. Further, the EMS can 

monitor and control all flexible devices in the building by either using rule-based control 

methods (Paper A) or solving a local optimization problem (Paper B, C, D). Table 5 gives an 

overview of the four included papers.  

Table 5: Overview of the included papers 

 Paper A Paper B Paper C Paper D 

Predictive vs. non-

predictive 
Predictive and non-

predictive 
Predictive Predictive Predictive 

Centralized vs. 

decentralized 
Decentralized and 

hybrid (centralized 

MILP as benchmark) 

Decentralized 

(centralized MILP as 

benchmark) 

Decentralized 

(centralized MILP as 

benchmark) 

Decentralized (also 

applicable to 

centralized) 

Multiple buildings Yes Yes Yes No (but possible) 

Uncertainty 

considered 

Not necessary for the 

non-predictive 

approaches 

No No Yes (schedule 

correction) 

Solving method Heuristics (rule-based) Exact (MILP) 

combined with 

heuristic coordination 

Exact (MILP) 

combined with 

heuristic coordination 

Exact (MILP) 

combined with 

heuristic corrections 

Objective Minimize electricity 

costs and surplus 

energy  

Minimize surplus 

energy  

Minimize surplus 

energy and peak load 

Minimize surplus 

energy  

Flexible devices Heat pumps Heat pumps, electric 

heating elements 

Heat pumps, electric 

heating elements, 

EVs 

Heat pump 

Case study 40 residential buildings 

in Germany 

30 to 150 residential 

buildings in Germany 

15 to 75 residential 

buildings in Germany 

1 residential building 

in Germany 

Thermal storage 

for space heating 

Underfloor heating 

systems 

Underfloor heating 

systems, hot water 

tanks 

Underfloor heating 

systems, combined 

storage systems 

Underfloor heating 

system 

Thermal storage 

for domestic hot 

water 

Hot water tanks Hot water tanks Hot water tanks, 

combined storage 

systems 

Hot water tank 

Considered 

renewable energy 

sources 

PV systems PV systems PV systems, wind 

turbine 

PV system 

 

5.1 Paper A: Demand response with heuristic control strategies for modulating 

heat pumps 

In this paper [121], three heuristic control algorithms are developed for demand response with 

modulating heat pumps. Two of them aim at minimizing the electricity-based heating costs 

(Past Value Heuristic and Future Value Heuristic). The objective of the third heuristic is to 

minimize surplus energy from PV in a residential area that otherwise could be curtailed 

(Incremental Control Heuristic). All heuristic control strategies are rule-based approaches that 
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do not require a model of the building or the heating device (model-free). They successively 

calculate a control action for every time slot and do not specify a schedule of future control 

actions. Both cost minimization heuristics are decentralized optimization approaches. The Past 

Value Heuristic is a non-predictive method that infers its control actions from current and past 

electricity prices and the current state of the thermal storage. The Future Value Heuristic 

requires a forecast of future electricity prices and is therefore a predictive approach.  

The Incremental Control Heuristic for minimizing surplus energy (and thus maximize the self-

consumption rate) of locally generated PV energy is a non-predictive and hybrid optimization 

approach. It uses a control and communication architecture that preserves the privacy of the 

residents. The communication architecture is based on a central control unit that sends 

unidirectional control advice to the internal controllers of the buildings, which then decide about 

the execution of control actions.  

None of the three heuristic control algorithms breaches the privacy of the residents as they do 

not collect or process load profiles of the buildings. Besides, they exploit the flexibility of heat 

pumps without using powerful computational devices. For both of the non-predictive 

approaches, there is no need to consider uncertainties as they do not require any forecasts. The 

uncertainties of future electricity prices are not considered in this study for the predictive Future 

Value Heuristic. 

Thermal systems for 40 buildings are modeled to compare the heuristics with a centralized 

optimization and a conventional control approach. The flexibility comes from the inertia of an 

underfloor heating system and from a hot water tank for DHW. To analyze the developed 

approaches, the case study covers 12 weeks from the heating period of Germany. Two price 

scenarios are defined for the cost minimization heuristics. The results reveal that in all weeks 

the control heuristics lead to reduced heating costs compared to a conventional control strategy. 

The average improvements are between 4.1% and 13.3%. The improvements strongly depend 

on the volatility and ranges of the prices on the electricity markets (day-ahead and intraday 

market). The centralized optimization approach leads to improvements of between 20.7% and 

33.3%. 

In the problem of surplus energy minimization, the heuristic control strategies perform 

surprisingly well. Analogous to the cost minimization problem, two scenarios are defined with 

different peak powers of the buildings' PV systems. For PV systems with 10 (7) kW peak power, 

the reduction of surplus energy is 38.3% (52.6%). The centralized optimization approach leads 

to another 13% improvement while having strongly increased runtimes and requiring complete 

information about future demand and generation.  

On average, the centralized optimization needs more than four minutes for the optimization of 

one week, whereas the heuristic control and the conventional control strategies require three 

seconds (including the simulations). This study demonstrates the suitability of a privacy-

preserving communication and control architecture combined with heuristic control strategies 
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for shifting electrical loads in residential areas. The developed control approaches can be 

modified for virtual power plant operators, aggregators, or the provision of ancillary services. 

5.2 Paper B: Decentralized optimization approaches for using the load 

flexibility of electric heating devices 

In this paper [122], two novel coordinating decentralized optimization approaches for utilizing 

electrical load flexibility are developed. The two introduced algorithms, called Parallel 

Successive Cluster Optimization (PSCO) and Parallel Successive Cluster Optimization with 

IDA (PSCO-IDA), are based on the Iterative Desync Algorithm (IDA) by Kolen et al. [54]. IDA 

is a privacy-preserving and effective algorithm for decentralized optimization. It defines a 

heuristic coordination mechanism for the buildings in the residential area. For the coordination, 

all buildings need to have a solution pool with multiple diverse schedules. Analogous to IDA, 

the developed algorithms PSCO and PSCO-IDA are predictive scheduling-based optimization 

approaches. PSCO-IDA also requires the buildings to have a solution pool. All investigated 

decentralized approaches use heuristic coordination mechanisms. However, the basic local 

optimization problem can be solved by using exact methods (as it is done in this study), 

heuristics, or metaheuristics. The goal of the optimization is to minimize surplus energy in the 

residential area. Uncertainties are not considered in this study.  

Another contribution of this paper is the definition of a new optimization procedure that 

generates the required solution pools for the coordination in a systematic way. The new 

optimization procedure iteratively uses a specific optimization problem that outputs a diverse 

schedule for the problem of minimizing surplus energy from locally generated renewable 

energy.  

For the case study, a base case scenario is defined with 90 buildings. Three types of buildings 

with different insulation levels and heating systems are used (non-modulating ground source 

heat pumps, modulating air-source heat pumps, and a gas heating system with additional 

electric heating elements). The buildings utilize hot water tanks and the inertia of underfloor 

heating systems for thermal storage. All buildings have a PV system. The analysis is done for 

15 days of Germany’s heating period. Different scenarios with changing peak powers of the PV 

systems and changing numbers of buildings are defined to evaluate the developed optimization 

approaches.  

For the base case scenario, IDA, with the introduced optimization procedure to systematically 

generate diverse solutions, is compared to IDA with the automatically created solution pools of 

the commercial solver CPLEX [123]. The solver creates the solution pool by simply storing the 

found solutions during the optimization process. The developed optimization procedure can 

improve the results of IDA significantly. On average, it leads to about 100 kWh less surplus 

energy per day. 

Moreover, the case study shows that PSCO-IDA outperforms IDA in all scenarios and, on 

average, is about 10% closer to the optimal solution. The PSCO algorithm yields similar results 
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as IDA while having reduced data exchange requirements. All investigated decentralized 

optimization approaches (IDA, PSCO, and PSCO-IDA) lead to significant improvements 

compared to an uncoordinated decentralized optimization approach. Although centralized 

optimization leads to better results, this study shows that it has strongly increased runtimes and 

is not applicable to larger residential areas. In contrast to the developed decentralized 

optimization approaches, centralized optimization does not scale well with the number of 

buildings as its runtimes grow exponentially.  

5.3 Paper C: Demand response through decentralized optimization in 

residential areas with wind and photovoltaics 

This paper [124] develops a novel coordination mechanism for the optimal use of flexible 

electrical loads on a decentralized level. The aim is to react to the volatile supply from RES in 

a residential area and to reduce the peak load. The Sequential Parallel Cluster Optimization 

with IDA (SEPACO-IDA) is a privacy-preserving approach that combines two coordination 

algorithms from the literature for decentralized optimization (PSCO-IDA [122] and IDA [54]). 

SEPACO-IDA is a scheduling-based predictive approach that uses a heuristic coordination 

mechanism for decentralized optimization. Analogous to PSCO-IDA and IDA, a solution pool 

with multiple diverse schedules is created during the optimization. This paper uses the 

optimization procedure introduced in [122] to generate diverse solution pools for the buildings.  

For the analysis, a residential area is modeled with three types of buildings that have different 

insulation levels and electric heating systems (ground source heat pumps, modulating air-source 

heat pumps, and a gas heating system with additional modulating electric heating elements). 

Some of the buildings have a PV system, and some use EVs that are charged at home. Moreover, 

a small wind turbine (100 kW) is connected to the local grid. The buildings use underfloor 

heating systems and hot water tanks for thermal storage. Several scenarios are generated for the 

analysis by using a Monte Carlo sampling method. This method generates different 

combinations of parameters for the residential area (e.g., number of buildings, number of EVs, 

power of wind turbine, share of buildings with PV).  

Each building’s EMS solves an optimization problem with two objectives. The first objective 

is to minimize the surplus energy, which simultaneously maximizes the self-consumption rate 

of locally generated electricity from RES. Besides, the buildings intend to minimize their peak 

load. A weighted sum approach is used with different weight combinations to transform the 

two-dimensional objective space of the optimization problem into a one-dimensional space. 

SEPACO-IDA coordinates the decentralized optimization problems of the buildings and the 

selection of the schedules from the solution pool to optimize the two goals for the residential 

area as a whole. Uncertainties are not considered in this study. 

The results show that SEPACO-IDA outperforms the other approaches for scheduling-based 

decentralized optimization from the literature. The differences in optimality compared to 

PSCO-IDA are small (between 0.8% and 2.4%). However, SEPACO-IDA has additional 

advantages over PSCO-IDA regarding the level of privacy as no direct information from another 
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single building is used. The improvements compared to IDA are significant (between 11.1% 

and 13.3%). Moreover, this study clearly illustrates the suboptimal results of uncoordinated 

decentralized optimization and, consequently, the strong need for coordination mechanisms.   

The development and evaluation of two methods for distributing a central wind power profile 

to the local optimization problems of distributed buildings (Equal Distribution and Score-Rank-

Proportional Distribution) is another contribution of this paper. The different decentralized 

optimization approaches are combined with the methods for wind profile assignment. The 

results reveal the dependency of the most suitable wind profile assignment method on the used 

decentralized optimization approach. 

5.4 Paper D: Uncertainty handling control algorithms for demand response 

with modulating electric heating devices   

To exploit the flexibility of electric heating devices, scheduling-based optimization uses 

demand and generation predictions to calculate an operative schedule of the heating devices. 

Due to deviations between predicted and real energy profiles, additional uncertainty handling 

methods are necessary that adjust the actions imposed by the schedule to the current situation. 

In this paper [125], two simple but effective corrective control algorithms for buildings in smart 

grids with modulating heating devices are developed (Storage Correction algorithm and PV 

Correction algorithm). These schedule correcting algorithms are rule-based approaches that 

can cope with the uncertainties of predictions. In contrast to other uncertainty handling 

approaches, the algorithms introduced in this paper are specially designed for modulating 

heating devices. Another essential feature of the developed approaches is that they combine a 

corrective mechanism with elements from robust optimization. 

The Storage Correction algorithm strongly decreases the likelihood and degree of constraint 

violations of the thermal storage. Thermal constraint violations result in a loss of comfort for 

the residents and can cause technical problems. The heuristic algorithm overrules the control 

actions of the previously calculated optimal schedule if a constraint violation is about to occur. 

Uncertainties in the PV forecast and the prediction of the building’s electrical demand do not 

lead to constraint violations of the thermal storage but to suboptimal decisions. Hence, the PV 

Correction algorithm adjusts the recommended actions of the optimal schedule by reacting to 

the measured power generation of the PV system. The goal is to maximize the self-consumption 

rate of locally generated PV energy. 

For the analysis, only one building is considered to show the applicability of the developed 

correction algorithms in general. The building has a PV system and uses a modulating air-

source heat pump coupled to an underfloor heating system and a hot water tank. The developed 

algorithms can be used with both centralized and decentralized optimization approaches in 

smart grids. 

The analysis shows that the developed approaches lead to a higher usage of locally generated 

electricity from PV systems while avoiding violations of the residents’ comfort limits. Further, 
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the results reveal that erroneous predictions of electricity demand and generation diminish the 

capability of electric heating devices to react to the volatile generation by the RES. Higher 

predictions errors lead to higher numbers of necessary corrections to avoid constraint violations. 

Even a low prediction error of only 2% makes, on average, 76 corrections necessary in the 

schedule for one simulated week.  

Moreover, using the Storage Correction algorithm in combination with the PV Correction 

algorithm leads to better results than only using the Storage Correction algorithm. As expected, 

the results for the uncertainty handling methods are in all investigated weeks better than those 

of the conventional control approach (11 to 15 kWh less surplus energy) but worse than those 

of the optimization with perfect foresight (7 to 10 kWh more surplus energy). 

 

6 Conclusions, critical appraisal and outlook 

This section concludes the thesis. Section 6.1 summarizes the main characteristics of the 

developed optimization approaches and draws conclusions. Several simplifications and 

assumptions were necessary for this study. Hence, the limitations of this thesis are discussed in 

Section 6.2. As there is still a need for research in the field of load flexibility in smart grids, 

Section 6.3 points out possible directions for future research.  

6.1 Conclusions 

The flexibility of electric heating devices can help to overcome the challenges caused by 

increasing shares of intermittent renewable energy sources in the energy system. In this thesis, 

several novel optimization approaches that exploit the flexibility of electric heating devices and 

other electrical loads in smart grids are developed. The primary goal of the introduced 

algorithms is to adjust the electrical consumption of multiple devices in a coordinative way. 

Thus, the electrical load can react to the intermittent electricity generation from renewable 

energy sources. For the evaluation of the developed approaches, residential areas with different 

building types are modeled. The buildings use different electric heating devices. The main 

flexibility comes from underfloor heating systems, which utilize the building mass to store heat 

energy, and from hot water tanks. 

The introduced algorithms tackle the disadvantages of centralized optimization approaches 

regarding privacy, computational complexity, and robustness. Basically, three types of 

optimization approaches are developed in this thesis. The first type comprises model-free and 

rule-based control heuristics for modulating electric heating devices (Paper A). They use 

decentralized or hybrid control and communication architectures that preserve the privacy of 

the residents. Two of the developed approaches are non-predictive approaches that do not need 

forecasts of future demand and electricity generation. Simulations show up to 52.6% less 

surplus energy and up to 13.3% lower costs compared to a conventional control approach. 
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The second type comprises predictive scheduling-based methods (Paper B and Paper C). They 

use heuristic coordination mechanisms for decentralized optimization that are based on solution 

pools with diverse schedules. The approaches make use of a newly defined optimization 

procedure that generates these diverse schedules for the problem of minimizing surplus energy 

from locally generated renewable energy (Paper B). Furthermore, methods for distributing a 

central wind power profile to the local optimization problems of distributed agents are 

developed and evaluated (Paper C). The introduced decentralized optimization approaches from 

Paper B and Paper C are not restricted to electric heating devices but can be used with every 

type of flexible electrical load. They outperform an effective and privacy-preserving approach 

for decentralized optimization from the literature by generating solutions that are, on average, 

between 10% and 13% closer to the optimum.  

The third type of developed methods comprises uncertainty handling control algorithms for 

modulating electric heating devices (Paper D). Corrective control algorithms for scheduling-

based predictive optimization are introduced and evaluated. They can cope with the 

uncertainties of demand and generation predictions by adjusting the recommended actions of a 

previously calculated schedule. These supplementary methods can be used with both 

centralized and decentralized optimization approaches. 

All introduced methods preserve the privacy of the residents and yield good results. This thesis 

shows the suboptimality of the currently used conventional control approaches for electric 

heating devices and the advantages of coordinated decentralized optimization. The differences 

between all introduced optimization approaches to a conventional control strategy are 

remarkable. In contrast to centralized optimization, the developed algorithms have low 

computational complexity and scale well with the number of buildings in the residential area. 

Hence, they can be applied to larger residential areas with many buildings or even to whole 

regions. Sustainable energy systems with high shares of renewable energy sources can profit 

from applying the developed optimization approaches, as they are capable of adjusting the 

electrical demand to the volatile electricity generation. 

6.2 Critical appraisal 

For the analysis, several simplifications were made to reduce the model complexity and to deal 

with data availability problems. The efficiency of the modulating heat pump in the used models 

does not depend on the modulation degree. However, in reality, the modulation degree has a 

non-negligible impact on the heat pump’s efficiency [62]. Considering the dependency of the 

heat pump's efficiency on the modulation degree makes the model nonlinear. This would result 

in strongly increased runtimes. Moreover, the heating system’s supply temperature is assumed 

to be constant. In reality, the supply temperature of the heating system depends on the outside 

temperature.  

Another assumption is the exact and immediate heat energy transfer from the thermal storage 

systems (underfloor heating system and hot water tanks) to the rooms of the buildings. The heat 

demand data for the case studies is given externally. It quantifies the heating energy that is 
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necessary to keep the room temperature at 21° C. In the optimization models of the buildings 

the exact amount of heat energy, which is predefined by the external time series data for space 

heating, is immediately transferred from the thermal storage. Modeling a realistic heat transfer 

would require a detailed thermal model of the building and the hot water tank, which was not 

in the scope of this thesis. Incorporating such a model in an optimization problem would 

strongly increase the computational effort to solve it. In particular, the centralized optimization 

problems, which served as a benchmark for all developed optimization approaches, would 

become computationally challenging. Moreover, such a model would be based on many 

assumptions regarding the buildings’ heat transfer coefficients and geometry. Further, 

information or assumptions about the geometry of the underfloor heating system would be 

required to model a realistic heat transfer from the thermal storage to the building. Due to the 

lack of real-world data, synthetic load profiles (demand for electricity, space heating, and 

domestic hot water) and photovoltaic generation time series were used in this thesis. The 

synthetic data was generated by the software tool synPRO.  

For the scheduling-based decentralized optimization approaches (Paper B and Paper C) and all 

centralized optimization approaches, no uncertainties were considered. However, in reality, 

forecasts of future demand and supply are always erroneous. Consequently, the results of all 

predictive optimization approaches represent upper bounds for the realizable improvements. 

The consideration of uncertainties will affect the results and will require uncertainty handling 

optimization approaches that can deal with erroneous predictions. Schedule correcting 

algorithms are introduced in this thesis (Paper D). These methods can be applied to the 

developed scheduling-based optimization approaches of Paper B and Paper C. They overrule 

the actions imposed by a previously calculated optimal schedule to avoid violations of the 

resident’s comfort levels caused by erroneous predictions. However, other uncertainty handling 

approaches found in the literature, like stochastic optimization, (purely) robust optimization, 

model predictive control, and rescheduling were not investigated. 

In this thesis, different optimization approaches for exploiting the electrical load flexibility in 

smart grids were investigated from a system perspective. Market mechanisms for incentivizing 

building owners to use their flexibility (see for example [126]) or special market designs for 

locally trading electricity (see for example [127, 128]) were not analyzed as the energy market 

itself was neglected in this thesis. The simplifying assumption was made that all building 

owners agree to participate in the optimization procedures without any incentive. Further, the 

building owners allow other buildings to use their locally generated photovoltaic energy 

without any payments, as costs for selling electricity were not considered. Designing market 

strategies that can be combined with decentralized optimization approaches was not in the scope 

of this thesis. 

The developed optimization approaches are all investigated in simulations and not in real-world 

environments. Not all existing electric heating devices can directly use the developed methods 

in real-world applications. Their local control units might not fit to the methods or might 

interfere with them. Although many heat pumps can react to external signals (smart-grid-ready-
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label [34]), it might be necessary to adjust the introduced optimization approaches to the 

specific control units of the used heating devices.  

In all case studies, multiple days or weeks were randomly chosen from the heating period of 

Germany to evaluate the developed optimization approaches. A more sophisticated way of 

selecting days or weeks for the case studies is to use representative time series. For instance, 

self-organizing maps, a specific type of artificial neural network, seem promising for the task 

of finding representative days for energy-related optimization models [129].  

6.3 Outlook 

Additional research is necessary to successfully integrate electric heating devices into smart 

grids and exploit their flexibility. The different optimization approaches should be investigated 

and compared in real-world experiments to evaluate their practicability. Rule-based non-

predictive approaches are easier to implement and do not rely on a thermal model of the 

building. In contrast, predictive scheduling-based approaches use a thermal model of the 

building and the flexible devices. Further, they incorporate predictions into their decision 

making, which can be an advantage. For model-based approaches, exact methods to solve the 

resulting optimization problem can be used that guarantee to find the optimal solution. In 

simulations that are based on the assumption of perfect foresight, they lead to the best results.  

However, fundamental questions arise regarding model-based predictive approaches in real-

world experiments. One core question is how detailed the thermal model has to be in order to 

capture the thermal dynamics of buildings accurately. A more detailed building model increases 

the computational complexity of scheduling-based optimization problems. This might make 

exact optimization methods infeasible.  

Another vital question arises concerning the accuracy of the needed predictions in reality. 

Related to this, research has to be conducted to infer which uncertainty handling methods 

should be used to cope with erroneous predictions. The model-based scheduling approaches 

should be compared to both rule-based approaches and to methods from the field of 

reinforcement learning in experiments with different types of buildings and electric heating 

devices.   

The incorporation of other flexible devices into the simulations and real-world experiments, 

such as combined heat and power systems or cooling devices, constitutes another direction for 

future work. As the demand for space cooling is going to increase due to global warming [130], 

air conditioners can provide significant flexibility in the future. Especially in periods with low 

electricity generation by renewable energy sources, combined heat and power systems can 

contribute to the security of supply by generating electricity.    

In addition to real-world applications, large-scale energy system models can significantly profit 

from the developed optimization approaches. Energy system models typically use centralized 

optimization for large regions (e.g., countries or continents). They are frequently used to 

analyze economic and technical pathways for the optimal transition of energy systems and to 
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infer policy advice [131]. Integrating the volatile electricity generation from photovoltaics and 

wind turbines, drastically increases the computational cost of energy system models, as the 

renewable energy sources have to be modeled with high temporal and spatial resolution [131-

133]. Since the developed optimization approaches yield good results while having strongly 

reduced runtimes compared to centralized optimization, they can be used for large energy 

system models to answer different research questions. In particular, the developed approaches 

can be used for a detailed analysis of electrical load flexibility in different regions. The 

scheduling-based optimization methods presented in Paper B, C, and D can be combined to 

calculate a realistic load shifting potential of electric heating devices. These numbers can then 

be compared to the resulting potentials when using the rule-based control strategies of Paper A. 

Another important research field is the design of market mechanisms that incentivize the 

building owners to participate in optimization approaches like the ones developed in this thesis. 

The optimization approaches maximize the self-consumption rate of locally generated 

renewable energy for residential areas from the perspective of the whole system. Further, they 

can reduce the peak load in local grids. The combination of such optimization approaches with 

suitable market designs constitutes a crucial task for the transition of the energy system.  

Closely related to the market design is the question of user acceptance. This is important for all 

types of flexible loads in residential and non-residential areas. Both the optimization approaches 

and the market mechanisms have to be in line with data protection laws and should not lead to 

any inconvenience for the residents. Thus, future energy systems with high shares of renewable 

energy sources can significantly contribute to achieving the climate goals and to minimize the 

harmful impact on the environment while satisfying the energy needs of humanity. 
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Appendix 

 

Literature Review 

Table 6: List of the relevant studies found in the literature 

Source Predictive vs. 

non-predictive 

Centralized vs. 

decentralized 

Multiple 

buildings 

Solving method Uncertainty 

considered 

Salpakari et al. 

2016 [65] 

Non-predictive Decentralized No Heuristic (rule-based) Not necessary (rule-

based) 

Rodríguez et al. 

2018 [64] 

Non-predictive Decentralized No Heuristic (rule-based) Not necessary (rule-

based) 

Arteconi et al. 

2013 [58] 

Non-predictive Decentralized No Heuristic (rule-based) Not necessary (rule-

based) 

Thygeses et al. 

2014 [66] 

Non-predictive Decentralized No Heuristic (rule-based) Not necessary (rule-

based) 

Lee et al. 2015 

[67] 

Non-predictive Decentralized No Heuristic (predefined 

schedule) 

No 

Nolting et al. 

2019 [63] 

Both Decentralized No Heuristic (rule-based) Not necessary (rule-

based) 

Buchmann et 

al. 2017 [60] 

Both Decentralized Yes Heuristic (rule-based, 

swarm intelligence) 

Not necessary 

Dar et al. 2014 

[104] 

Predictive Decentralized No Heuristic (predictive 

rule-based) 

Not necessary (rule-

based) 

Sichilalu et al. 

2014 [96] 

Predictive Decentralized No Exact (LP) No 

Rogers et al. 

2011 [92] 

Predictive Decentralized No Exact (MIQP) No 

Vrettos et al. 

2013 [100] 

Predictive Decentralized No Exact (MPC with 

MIQP) 

Yes (MPC) 

Ali et al. 2014 

[68] 

Predictive Decentralized No Exact (LP) No 

Wang et al. 

2014 [106] 

Predictive Centralized Yes Heuristic Yes (rule-based 

reaction) 

Pedersen et al. 

2011 [90] 

Predictive Decentralized No Exact (LP) No 

Biegel et al. 

2013 [14] 

Predictive Centralized Yes Exact No 

Korkas et al. 

2016 [111] 

Predictive Centralized Yes Exact (Optimal control 

theory) 

Yes 

Biegel et al. 

2013 [73] 

Predictive Centralized Yes Exact (MILP) No 

Hao et al. 2015 

[105] 

Predictive Centralized Yes Heuristic (predictive 

rule-based) 

Not necessary (rule-

based) 

Kolen et al. 

2017 [54] 

Predictive Decentralized 

 

Yes Exact combined with 

heuristic 

No 

Ramchurn et al. 

2011 [91] 

Predictive Decentralized 

 

Yes Exact (MIQP) and 

heuristic 

No 

Chang et al. 

2014 [78] 

Predictive Decentralized 

 

Yes Exact (LP 

Decomposition) 

No 

Menon et al. 

2019 [86] 

Predictive Decentralized 

 

Yes Exact (Distributed MPC 

with MILP) 

Yes (MPC) 
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Source Predictive vs. 

non-predictive 

Centralized vs. 

decentralized 

Multiple 

buildings 

Solving method Uncertainty 

considered 

Fischer et al. 

2017 [62] 

Both Decentralized No Heuristic (rule-based), 

MPC with LP 

Not necessary (rule-

based), MPC 

De Coninck et 

al. 2014 [61] 

Non-predictive Both Yes Heuristic (rule-based) Not necessary (rule-

based) 

Ogston et al. 

2007 [88] 

Predictive Hybrid 

 

Yes Heuristic No 

Blaauwbroek et 

al. 2015 [74] 

Predictive Hybrid 

 

Yes Exact (MIQP) and 

heuristic 

No 

Braun et al. 

2015 [77] 

Predictive Hybrid 

 

Yes Exact (MPC with LP) MPC 

Bao et al. 2015 

[110] 

Non-predictive Hybrid 

 

Yes Dynamic Demand 

Control (Hybrid) 

Not necessary 

Bhattarai et al. 

2014 [72] 

Predictive Hybrid Yes Exact and heuristic Yes (schedule 

correction) 

Juelsgaard et al. 

2014 [83] 

Predictive Decentralized 

 

Yes Exact (QP 

Decomposition) 

No 

Verhelst et al. 

2012 [99] 

Predictive Decentralized No Exact (NLP) No 

Worthmann et 

al. 2015 [101] 

Predictive Both Yes Exact (MPC with QP) MPC 

Favre et al. 

2014 [107] 

Predictive Decentralized No Exact (DP) No 

Brahman et al. 

2015 [75] 

Predictive Centralized Yes Exact (MILP) No 

Sepulveda et al. 

2010 [95] 

Predictive Centralized Yes Metaheuristic 

(PSO) 

No 

Lösch et al. 

2014 [42] 

Predictive Decentralized No Metaheuristic (EA) No 

Braun et al. 

2016 [76] 

Predictive Decentralized No Metaheuristic (EA) No 

Hu et al. 2012 

[82] 

Predictive Both Yes Metaheuristic (MA) No 

Hong et al. 

2012 [108] 

Non-predictive Decentralized Yes Heuristic Not necessary 

Sánchez et al. 

2019 [94] 

Predictive Decentralized No Heuristic No 

Brunner et al. 

2013 [59] 

Non-predictive Centralized Yes Heuristic (rule-based) Not necessary (rule-

based) 

Kim et al. 2015 

[116] 

Non-predictive Centralized Possible Dynamic Demand 

Control (Centralized) 

Not necessary 

Molina-García 

et al. 2011 

[109] 

Non-predictive Decentralized 

 

Yes Dynamic Demand 

Control (Decentralized) 

Not necessary 

Ruelens et al. 

2017 [93] 

Predictive Decentralized No Reinforcement learning Not necessary 

De Somer et al. 

2017 [97] 

Predictive Decentralized Yes Reinforcement learning Not necessary 

Zhu et al. 2011 

[102] 

Predictive Decentralized Yes Game theory and MILP No 

Nguyen et al. 

2012 [87] 

Predictive Hybrid Yes Game theory and LP No 
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Source Predictive vs. 

non-predictive 

Centralized vs. 

decentralized 

Multiple 

buildings 

Solving method Uncertainty 

considered 

Gao et al. 2015 

[80] 

Predictive Decentralized 

 

No Metaheuristic (EA) Yes (schedule 

correction) 

Stoyanova et al. 

2014 [98] 

Predictive Decentralized 

 

Yes Heuristic adjustments Yes (schedule 

correction) 

Kajgaard et al. 

2013 [84] 

Predictive Decentralized No Exact (MPC) Yes (MPC) 

Diekerhof et al. 

2018 [79] 

Predictive Decentralized 

 

Yes Exact (Decomposition, 

MPC with QP) 

Yes (Robust MPC) 

Arnold et al. 

2011 [70] 

Predictive Centralized Energy-

hub 

Exact (MPC) Yes (MPC) 

Barbato et al. 

2012 [71] 

Predictive Centralized No Heuristic Yes (Rescheduling) 

Allerding et al. 

2011 [69] 

Predictive Decentralized No Heuristic Yes (Rescheduling) 

Good et al. 

2015 [81] 

Predictive Centralized Yes Exact with uncertainties 

(SP) 

Yes (Stochastic 

optimization) 

Ottesen et al. 

2015 [89] 

Predictive Centralized Yes Exact with uncertainties 

(SP) 

Yes (Stochastic 

optimization) 

Kim et al. 

2013 [85] 

Predictive Centralized Yes Exact (MILP) Yes (Robust 

optimization) 

Zwickel et al. 

2019 [112] 

Predictive Decentralized No Exact (MPC with LP) Yes (MPC) 

Stoyanova et al. 

2020 [103] 

Predictive Hybrid Yes Exact (Distributed MPC 

with MIQP) 

Yes (MPC and 

rescheduling) 
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Demand response with heuristic control strategies for modulating heat
pumps
Thomas Dengiz⁎, Patrick Jochem, Wolf Fichtner
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H I G H L I G H T S

• Control strategies for using flexibilities of modulating heat pumps are developed.

• A privacy preserving control and communication architecture is used.

• Combination of central and decentralized control approaches.

• Comparison to a conventional control and exact optimization approaches.

• Results reveal a good trade-off between quality and computational time.

A R T I C L E I N F O

Keywords:
Demand response
Modulating heat pumps
Heuristic control strategy
Control and communication architecture
Smart grid
Thermal storages

A B S T R A C T

The flexibility of electrical heating devices can contribute to overcoming the challenges caused by increasing
shares of volatile renewable energy sources in the energy system. Especially modulating heat pumps are suitable
for using intelligent control strategies that vary the pumps’ power output based on demand response signals. In
this paper, we define optimization problems for minimizing the heating costs and the surplus energy of a re-
sidential area, and we introduce novel heuristic control strategies for modulating heat pumps to solve these
problems. The heuristic control strategies make use of a privacy preserving control and communication archi-
tecture that combines central and decentralized control approaches. All buildings use an underfloor heating
system and a domestic hot water tank as thermal storages. Compared to a conventional control strategy, the
results show average cost reductions of between 4.1% and 13.3% for the cost minimization heuristics, and
average improvements of between 38.3% and 52.6% for the surplus energy minimization heuristic. Contrary to
approaches for finding the globally optimal solution, the introduced heuristic control strategies have sig-
nificantly lower computational times and do not require perfect foresight regarding future demands and elec-
tricity generation.

1. Introduction

To diminish the effects of climate change caused by increasing
amounts of CO2 in the atmosphere, the European countries have agreed
to decarbonize the power system. As a result, the share of environment-
friendly renewable energy sources in Europe has been steadily in-
creasing. Between 2004 and 2016, the share of energy from renewable
sources in gross final consumption of energy increased from 8.5% to
17% in Europe [1]. This development will continue as the target for the
year 2020 is 20%, and 27% for the year 2030. Due to these high shares,
generating energy is increasingly decentralized. A crucial challenge
brought about by renewable energy sources like wind turbines and
photovoltaic systems (PV) is their intermittent character. As noted in

[2], wind and PV contributed about 12% of Europe’s electricity supply
in 2016. That study, carried out by the Joint Research Centre of the
European Commission, concludes that this contribution needs to be
tripled in order to reach the 2030 target.

To cope with these problems, energy systems have to realize a
paradigm shift in future. The electrical demand will continuously have
to be adjusted based on the current power outputs of the fluctuating
renewable energy sources. Flexible electrical loads will become essen-
tial to deliver demand response which directly or indirectly describes
implemented changes in customers’ electric usage in response to certain
signals [3]. Incentive based signals like direct load control or price-
based signals can be used for shifting the electrical demand [4]. In the
residential sector several technologies, such as thermostatically
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controlled loads, electric vehicles, and deferrable loads (washing ma-
chine, dish washer, and tumble dryer) are suitable for demand response
[5].

Especially electrical heating devices (e.g. heat pumps, electric sto-
rage heaters, and electric heating elements) in combination with
thermal storage can provide significant flexibility. In 2016, space
heating accounted for about 65% of the end energy consumption in EU
households and domestic hot water (DHW) preparation for more than
14% [6]. Considering suitable heating technologies for demand re-
sponse, heat pumps can play a significant role in providing flexibilities,
due to their high efficiencies [7]. Between 2006 and 2016, the number
of buildings equipped with a heat pump in Europe has increased five-
fold [8] having installed more than 10 million by the end of 2017 [9].

Heat pumps can efficiently use existing infrastructure for thermal
storage by decoupling heat production and usage in buildings. The
thermal mass of the building [10] and a hot water tank [11] can be
utilized for shifting the operation of the heat pump without affecting
the inhabitants’ comfort negatively. Currently, the practice is to use a
conventional control for heating devices coupled to thermal storages.
The conventional control strategy starts heating up the thermal storage
with full power if the lower temperature limit is reached, and the
heating stops when the storage’s energy level reaches its upper limit.
However, this control approach does not exploit the flexibility of
thermal storage. Alternative strategies can optimize the use of the
electrical heating devices making them suitable for demand response.

In this paper we introduce novel heuristic control strategies for
modulating heat pumps. These types of heat pumps can not only be
switched on and off, but are capable of adjusting their electrical power
continuously. In 2020, the majority of air-source heat pumps offered in
Germany are assumed to be modulating heat pumps [12]. In contrast to
other control strategies for heat pumps, our control strategies make
specific use of the continuously adjustable power of modulating heat
pumps to minimize the heating costs of a residential area or the surplus
energy. The heat pumps are connected with two storages (see Fig. 1).
An underfloor heating (UFH) system stores the energy for space heating
and a hot water tank is used for DHW preparation. The goal is to use the

flexibility of the heating system to minimize the heating costs and the
surplus energy. The computational effort for exactly solving the cor-
responding scheduling problems is fairly high as scheduling problems
are generally NP-hard [13]. Another drawback of exact optimization
approaches is that they require perfect input data. We have therefore
developed heuristics for controlling the electrical heating devices trying
to achieve a certain goal. The heuristic control strategies can be im-
plemented easily, as there is no need for powerful computing devices.
We compare the results of the heuristic control strategies to the optimal
solution in order to quantify the differences between the approaches.

Further, we use a special control and communication architecture in
this paper (see Fig. 3). It consists of a central controller which sends
control advice to the internal controllers of the buildings. The internal
controllers then decide on the control actions locally without giving
feedback to the central controller. As there is no necessity for centrally
monitoring and directly controlling the buildings, this control archi-
tecture will not breach the privacy of the inhabitants. The remainder of
the paper is organized as follows: Section 2 gives a literature review.
Section 3 describes the model of the residential area and defines two
optimization problems for making use of modulating heat pumps. We
explain the two heuristic control strategies and the control architecture
we use in Section 4. In Section 5 we discuss results, and the paper ends
with a summary and conclusion in Section 6.

2. Related work

The relevant literature mentions several different approaches that
have been applied to make use of flexible electrical heating devices.
They can be roughly subdivided into four overlapping categories: me-
taheuristic optimization, conventional (exact) optimization, model
predictive control (MPC) and (problem-specific) heuristic control stra-
tegies. Metaheuristic optimization methods define a generic search
principle for approximately solving an optimization problem by using
randomness and local search (without guaranteeing the quality of the
found solutions) [14]. They can be applied in a wide variety of pro-
blems as they are not problem-specific. In [15–17] different

Nomenclature

Et
UFHsoc energy difference between current SOC and target SOC

t time resolution
Tt temperature difference between sink and source tem-

perature of the heat pump
density

B number of buildings
b index for buildings
C total heating costs
c heat capacity
COPt coefficient of performance
dUpdate interval between updating time slots
F p( )l empirical distribution function
ht

positive binary auxiliary variable for the big-M approach
ht b, binary auxiliary variable
l number of past or future values for the cost minimization

heuristics
M M,t t

+ big-M parameters
mDegt advised modulation degree by the central controller
PHPmax maximal electrical power of the heat pump
pt price for electricity
Pt

PVtotal total PV generation
Pt

ResAux auxiliary residual load
Pt

ResReal measured residual load
Pt

Surplus+ positive part of surplus power
Pt

Surplus negative part of surplus power

Pt
Surplus surplus power

Pt
total total demand

Pt b
Demand
, conventional electrical demand

Pt b
PV
, PV generation by one building

Pt
LoadHP electrical load of all heat pumps

QLossesDHW losses of the domestic hot water tank
QLossesSH losses of the space heating
Qt

DemandSH demand for space heating
Qt

HP DHW, heating energy of the heat pump for domestic hot water
Qt

HP SH, heating energy of the heat pump for space heating
SE surplus energy
SOCt b

DHW
, state of charge of the domestic hot water tank

state of charge of the underfloor heating system
t index for time slots
TDHW temperature of the domestic hot water
TSink sink temperature of the heat pump
ti

Update updating time slot for the cost minimization heuristics
Tt

Source source temperature of the heat pump
Tt

UFH temperature of the underfloor heating system
Vt

DHWuse usable volume of the domestic hot water tank
V UFH volume of the underfloor heating system
xt modulation degree of the heat pump for space heating
xt necessary modulation for keeping the SOC of the UFH
yt modulation degree of the heat pump for domestic hot

water
Z number of time slots
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metaheuristics are used for scheduling flexible heating loads of build-
ings. In contrast to heuristics, conventional (exact) optimization
methods can guarantee finding the globally optimal solution. The au-
thors of [15,18–20] illustrate applications of exact optimization
methods in exploiting the flexibility of electrical heating devices. MPC
is an approach used for controlling dynamic systems by iteratively
solving a finite-horizon optimization problem based on predicted input
parameters. The authors of [21–23,7] use MPC approaches to control
the heating activities of heat pumps in residential buildings.

We call methods which consist of problem-specific control laws that
iteratively try to achieve a certain goal, heuristic control strategies (some
authors refer to these approaches as rule-based control). As these methods
are heuristics, they are not able to guarantee the quality of the control
actions. Opposed to the above-mentioned methods, heuristic control stra-
tegies do not require perfect information regarding the future. Most of
them need no (or very little) information about future values. Table 1
compares the different heuristic control strategies for using the flexibility
of electrical heating devices found in the literature. The aim of all these
strategies is to minimize the heating costs or to maximize the consumption
of power generated by renewable energy sources (PV and wind). While
most of the publications consider a conventional heat pump that can
merely be switched on and off, De Coninck et al. [24], Fischer et al. [25],
and Salpakari et al. [26] define control strategies that are specified for
modulating heat pumps. Besides Hong et al. [27] and De Coninck et al.
[24], the heuristic control strategies are designed for only one building. As
none of the essential information for the control strategies (electrical power
of the building, temperatures of the storages, heat demand, etc.) is sent to
others, all approaches for controlling one building are privacy friendly.

In [27] Hong et al. investigate a heat pump for space heating in one
building, which is powered by a wind turbine. A distributed demand
side control algorithm groups the electrical demands of the building in
three clusters depending on their control availability. When the demand
exceeds the supply, the algorithm controls the flexible demands pro-
gressively from cluster 1 (highest load availability) to 3 (lowest load
availability). If the supply is higher than the demand, the algorithm
initiates a load recovery program beginning from cluster 3. Although
their study used only one building, the approach can be applied to
multiple buildings and different types of flexible loads. As the algorithm
continuously needs current temperature data of the storages to quantify
their load availability, it will infringe on the privacy of the inhabitants
if it is used for centrally controlling multiple buildings.

De Coninck et al. [24] analyze several control strategies for DHW
production with heat pumps in a zero-energy neighborhood of 33
buildings, aiming to reduce PV curtailment. Besides some decentralized
control strategies for single buildings, the authors introduce an ap-
proach which necessitates a central controller with access to the voltage
and temperature of the DHW tank in each building. When the voltage
exceeds a threshold value anywhere in the grid, the central controller
increases the temperature set point of the DHW tank with the lowest
temperature. However, such a central monitoring and control approach
is not privacy friendly.

All the heuristic control strategies are compared to a conventional
control approach. Only Fischer et al. [25] use an MPC approach as an
upper optimal benchmark for their strategies. Salpakari et al. [26] de-
fine a cost-optimal control approach and approximate the global op-
timal solution using a dynamic programming algorithm. Moreover, they
develop a rule-based control strategy for one building that can cope
with different kinds of flexible loads as in electrical heating devices,
shiftable appliances, and batteries.

As far as the authors know, no heuristic control strategy that is
specially designed for modulating heating devices, combines the ben-
efits of a central control system with the privacy friendliness of a de-
centralized control system. Optimizing a single building without in-
teracting with the other buildings or with a central controller can lead
to suboptimal decisions for the entire system. Therefore, we introduce a
communication and control architecture that takes its decisions based

on the entire system without the drawback of breaching the privacy of
the inhabitants. While the introduced control strategies are only de-
signed for modulating heating devices, the basic approach regarding
communication and control can be used for other flexible loads, espe-
cially electric vehicles and batteries.

3. Optimization problems for a residential area

In this section we explain the model of a residential area by describing
the heating system and the thermal storages of the buildings in Section
3.1 and the data and parameters for the case studies in Section 3.2. After
that, we introduce two central optimization problems in Sections 3.3 and
3.4. The first problem aims at minimizing the heating costs for the re-
sidential area, while the second one aims to minimize surplus energy.

3.1. Heating system and thermal storages

Fig. 1 illustrates a schematic view of the heating system and the
corresponding energy flows. The only heating device is a heat pump that
can either heat up the UFH system or the DHW tank. A switching valve
controls the hot water flow from the heat pump to either the UFH system
or to the DHW tank. The water stored in the DHW tank is not directly
used by the inhabitants of the building. Instead, whenever there is de-
mand for DHW, hot water flows from the DHW tank into a fresh water
station. Simultaneously, fresh cold water passes into the fresh water sta-
tion and a heat exchanger transfers the heating energy to the fresh water
for use by the inhabitants. Such a fresh water station allows for reducing
the supply temperature of the DHW tank while ensuring a small like-
lihood of hygienic problems caused by Legionella bacteria [33].

For modeling the temperature of the UFH system we use a uniform
temperature model with an energy difference equation that has been
used frequently in similar form for modeling thermal storages (for ex-
ample in [34,35,26]):

T T Q Q Q
V c· ·t

UFH
t
UFH t

HP SH
t
DemandSH LossesSH

UFH Concrete Concrete1

,
= +

(1)

The temperature Tt
UFH of the UFH system at time t is calculated by

adding the energy difference at time t to the temperature Tt
UFH

1 at time
t 1 and dividing that by the volume of the UFH system V UFH , the
density of the concrete Concrete and the heat capacity of the concrete
cConcrete. The heating energy of the heat pump for space heating Qt

HP SH,

increases the energy level of the UFH system while both the demand for
space heating Qt

DemandSH and the losses of the space heating QLossesSH

decrease it. The difference in energy for the UFH system can be positive
or negative. A positive difference results in a temperature increase
while a negative difference leads to reduced temperatures.

For modeling the usable volume of the DHW tank Vt
DHWuse at time t

Fig. 1. Schematic view of the heating system.
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we use the same difference equation for the energy stored, but in this
case the temperature of the domestic hot water TDHW is fixed and the
usable volume itself is variable:

V V Q Q Q
T c· ·t

DHWuse
t
DHWuse t

HP DHW
t
DemandDHW LossesDHW

DHW Water Water1

,
= +

(2)

Analogous to the UFH system, the demand for DHW Qt
DemandDHW and

the standing losses of the DHW tank QLossesDHW decrease the usable
volume of the DHW tank while the heating energy of the heat pump for
DHW Qt

HP DHW, increases it. As water is the storage medium of the DHW
tank, the difference in energy is divided by the density of water Water ,
the heat capacity of water cWater and the temperature of the hot water
TDHW .

To calculate the heating energy of the heat pump for space heating
Qt

HP SH, the constant maximal electrical power of the heat pump PHPmax

is multiplied by the time resolution t and the coefficient of perfor-
mance COPt (Eq. (3)). The coefficient of performance (COP) is an in-
dicator of the heat pump’s efficiency and is not constant over time since
it depends on the difference Tt between sink TSink and source tem-
perature Tt

Source of the heat pump. In this study, we use a linear re-
lationship between the COP and Tt (see Section 3.2) which is similar to
the way it was done in [36]. We choose an air source heat pump as the
heating system, since air source heat pumps account for about 50% of
the entire heat pumps in Europe [8]. The modulation degree of the heat
pump for space heating xt determines which fraction of the maximal
heating energy is used for space heating at time t. The heating energy of
the heat pump Qt

HP DHW, for DHW is calculated in the same way with yt
being the variable for quantifying the fraction of the maximal heating
energy that is used (Eq. (4)).

Q x P t COP· · ·t
HP SH

t
HPmax

t
, = (3)

Q y P t COP· · ·t
HP DHW

t
HPmax

t
, = (4)
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Fig. 2. Heat, DHW and electrical demand of one building with 4 inhabitants
during one week.
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For a conventional heat pump that can merely be switched on and off,
xt and yt would be binary variables. For our analysis we use a modulating
heat pump which can vary its electrical power from 0% to 100% making
xt and yt continuous variables with ranges between 0 and 1.

3.2. Data and parameters for the case studies

For our analysis, we model a residential area with 40 single-family
houses located in Braunschweig, Germany. Of these, 30 are inhabited by
four persons, whereas the remaining 10 buildings have two persons
living in each. Having been built after 2001, the buildings have a high
energy efficiency level. We use the same type of building for all single-
family houses. Its heat related parameters are presented in Table A1 in
the appendix. For the load profiles (demand for electricity, space heating,
and DHW) and for the PV generation we use data that was generated by
the tool synPRO from Fraunhofer Institute for Solar Energy Systems [37].
The tool combines a behavioral model, based on the Harmonised Eur-
opean Time of Use Survey (HETUS [38]), and a 5R1C building model for
space heating, as described in DIN EN ISO 13790 [39]. The used models
are explained and validated against measured data in [40]. Fig. 2 illus-
trates the heat, DHW and electrical (not flexible loads) demand of one
building with four inhabitants during a week in December.

To determine the maximal power of the heat pumps PHPmax, we
scaled up the maximal heat demand of the year to an outside tempera-
ture of −14 °C and added 100 W per person for the DHW preparation.
This value was chosen to ensure that the heat pump itself can cover the
whole demand for space heating and DHW without needing an addi-
tional heating element. The resulting maximal electrical power was
3000 W for each heat pump. The maximal temperature of the UFH system
TUFHmax is set to 22 °C and the minimal temperature TUFHmin to 20 °C
[41]. For the buildings with four inhabitants, we use a DHW tank volume
of 200 l and for the buildings with two inhabitants, we use 150 l following
the recommendations of the heat pump manufacturer Viessmann [42].

The source temperature for the calculation of the COP is equal to
the current outside temperature. For the UFH system, we assume a
supply temperature (sink temperature) of 30 °C, which is 5 K lower
than the temperature mentioned in [36], and we use 45 °C
[43,33] for the temperature of the DHW. The parameters for
calculating the COP are similar to the ones of the model LA
28TBS of the heat pump manufacturer Glen Dimplex
( T COP T COP28 K 3.8, 42 K 2.8= = = = ) [44]. We use a
common minimal modulation degree mDegmin of 0.1 for all heat
pumps. These heat pump specific parameters calibrate Eqs. (5) and
(6) that are used in our study. The higher supply temperature for
DHW decreases the COP when heating up the DHW tank by 1.07
compared to the UFH system. Table A2 in the appendix contains all
relevant parameters of the heating system we used.

{ }COP T max T( ) 5.8 1
14

· , 0t t t=
(5)

T T Tt
Sink

t
Source= (6)

3.3. Cost minimization problem

In the first central optimization model a central controller intends to
minimize the heating costs for a residential area. The buildings b are all
equipped with the heating system explained in Section 3.1. The central
controller determines when to heat up which thermal storage by solving
the following optimization problem:

min C x y P t p(( )· )· ·
t

Z

b

B

t b t b b
HPmax

t
1 1

, ,= +
= = (7)

subject to
T T T t b

:
,b

UFHmin
t b
UFH

b
UFHmax

, (8)

V V V t b,b
DHWmin

t b
DHWuse

b
DHWmax

, (9)

x y mDeg t b,t b t b
min

, ,+ (10)

x h t b,t b t b
Aux

, , (11)

y h t b1 ,t b t b
Aux

, , (12)

x y h t b[0, 1], [0, 1], {0, 1} ,t b t b t b
Aux

, , , (13)

To determine the total cost (Eq. (7)) of heating C, the electrical power
of the heat pump, which is obtained by multiplying the modulation de-
gree of the heat pump with its maximal power, is summed up for all
buildings b and all time slots t. The overall power for each time slot is
multiplied by the time resolution and the time dependent price for elec-
tricity pt . Constraints (8) ensure that the temperature of the UFH system is
always between a lower limit Tb

UFHmin and an upper limit Tb
UFHmax while

constraints (9) force the usable volume of the DHW tank always to be
greater than (or equal to) a minimal value Vb

DHWmin and smaller than (or
equal to) a maximal valueVb

DHWmax for all buildings. These constraints are
vital for guaranteeing the inhabitant’s maximal comfort and to ensure
that certain technical limitations are not violated. To avoid the heat pump
being switched on and off too frequently constraints (10) force the heat
pump never to switch off completely. Instead, it goes into a ”standby-
mode” with a minimal modulation degree of mDegmin. This constraint can
be eliminated or adjusted as it is not vital in the model. Since excluding
this constraint leads to frequent stops and starts of the heat pump, we
inserted it to avoid additional stress on the compressors. Constraints (11)
and (12) introduce the binary variable ht b

Aux
, which makes sure that only

one storage can be heated up in every time slot. Having both continuous
and binary variables makes this model a Mixed-Integer Linear Program-
ming (MILP) problem.

3.4. Surplus energy minimization problem

For the second central optimization problem, the residential area’s
buildings additionally have PV systems on their roofs. The controller’s
objective is to schedule the heating activities of the buildings in a way
that will minimize the overall surplus energy SE for the residential area.
To reduce the surplus energy the surplus power Pt

Surplus has to be
minimized. But if the surplus power is negative due to higher electricity
demand than generation by the PV systems, a value of 0 should be
assigned to the surplus power Pt

Surplus. This prevents the central con-
troller from minimizing negative surplus power by scheduling the heat
pumps’ heating activities into time periods with no or low PV genera-
tion. The corresponding optimization problem to be solved is:

min SE P t·
t

Z

t
Surplus

1
=

=

+

(14)

subject to

P P t

:

t
PVtotal

b

B

t b
PV

1
,=

= (15)

P x y P P t(( )· )t
total

b

B

t b t b b
HPmax

t b
Demand

1
, , ,= + +

= (16)

P P P tt
Surplus

t
PVtotal

t
total= (17)

P P P tt
Surplus

t
Surplus

t
Surplus= + (18)

P M h t·t
Surplus

t t
positive+ + (19)

P M h t·(1 )t
Surplus

t t
positive (20)

h P P t{0, 1}, 0, 0t
positive

t
Surplus

t
Surplus+ (21)

and the constraints of the previous model8–13 3.3
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The total PV generation of all buildings Pt
PVtotal at time t is defined in

Eq. (15) as the sum of the PV generation of each building Pt b
PV
, . Simi-

larly, the total demand for every time slot Pt
total comprises the conven-

tional electrical demand of each household Pt b
Demand
, and the electrical

power of the heat pump (Eq. (16)). The conventional electrical demand
sums up the power for all electrical appliances in a building excepting
the power for the heat pump. We assume that these electrical loads are
inflexible and thus cannot be controlled. However, as this demand in-
fluences the operative schedule of the heat pump, it has to be in-
corporated in the objective function. The surplus power Pt

Surplus is de-
fined in Eq. (17). It is calculated by subtracting the total electrical
demand from the total PV generation. In order to assign the value 0 to
the objective function if we have negative surplus power, the variable
surplus power is subdivided in Eq. (18) into a positive part Pt

Surplus+ and
a negative part Pt

Surplus . Only the positive part is considered in the
objective function.

We use the big-M approach to model the problem as a disjunctive
MILP program, similar to how it is done in [45,46]. Eqs. (19) and
(20) are the big-M constraints which use the two big-M parameters
Mt

+ and Mt and an additional binary auxiliary variable ht
positive. If

ht
positive has the value 0, the positive surplus power Pt

Surplus+ will also
take the value 0 because it is a positive variable. However, if ht

positive

is 1 and if the big-M parameter Mt
+ is sufficiently large, the positive

surplus power Pt
Surplus+ can take every positive value smaller than the

big-M parameter Mt
+. The same is valid for the negative part of the

surplus power Pt
Surplus with opposite values of ht

positive. This modeling
approach solves the initially mentioned problem of assigning a value
of 0 to the surplus power in the objective function if the total demand
exceeds the generated electricity. Further, we also include the con-
straints (8)–(13) from the cost minimization problem of Section 3.3 in
this problem.

4. Heuristic control strategies

In this section we introduce heuristic control strategies for ap-
proximately solving the optimization problems of Section 3. In con-
trast to algorithms for exactly solving the corresponding optimization
problems, these heuristics have low computational complexities and
do not require perfect information about future input data. The
heuristics use a special communication and control architecture with a
central and several internal controllers being available. A building’s
internal controller has the function of implementing the control ac-
tions of the central controller. We describe the communication ar-
chitecture and outline the basic principles of the internal controller in
Section 4.1. Section 4.2 describes a heuristic for the cost minimization
problem, and Section 4.3 a heuristic for the surplus energy mini-
mization problem.

4.1. Communication and control architecture

Fig. 3 shows the local grid and the information flows of an illus-
trative residential area which consists of only six buildings in this case
(our case studies use 40 buildings). All buildings are equipped with
the heating system described in Section 3.1 and have a PV system on
their roofs. The net meter measures the residual load of the residential
area, and the local grid is connected to a transformer. The dashed
green1 lines show the unidirectional information flows. Each building
has an internal controller (IC) that receives information from the
central controller, but does not send anything back to it. The net meter
sends information about the current residual load to the central con-
troller.

The internal controllers of the buildings are a fundamental part of

the proposed control system. Opposed to the central optimization
problems of Sections 3.3 and 3.4, the central controller is not directly
controlling the heat pumps but merely sends modulation advice to
the buildings. The internal controller has to decide whether the ad-
vised modulation degree is applicable or not, and which storage
(UFH system or DHW tank) to heat up. Eq. (22) calculates the state of
charge (SOC) of the UFH system and Eq. (23) the one of the DHW
tank SOCt b

DHW
, :

SOC
T T

T Tt b
UFH t b

UFH
b
UFHmin

b
UFHmax

b
UFHmin,

,=
(22)

SOC
V V
V Vt b

DHW t b
DHWuse

b
DHWmin

b
DHWmax

b
DHWmin,

,=
(23)

To calculate the SOC, the minimal temperature (or volume) is
subtracted from the current temperature (or volume). This difference
is then divided by the difference between the corresponding maximal
and minimal values. If the SOC of both storages is higher than a
certain threshold (we use 95%), the internal controller will use the
minimal modulation degree for the storage with the lower SOC.
Likewise, if the SOC of only one storage is under a certain threshold
(we use 10% for the UFH system and 25% for the DHW tank) the
internal controller heats up the storage by using the full power of the
heat pump. Otherwise, if none of the storages has reached its upper or
lower threshold, the internal controller heats up the storage, which
was heated up during the last time slot, with the modulation degree
mDegt advised by the central controller. After one storage reaches its
upper limit, the internal controller switches to the other storage. By
doing so, frequent switching between the two storages is minimized
while ensuring that no technical violations occur. Table 2 shows the
rules of the internal controller for the just described normal opera-
tion. The rules are listed in descending priority, meaning that the
internal controller starts to check the condition of the first rule. If the
condition is fulfilled the corresponding action will be implemented.
Otherwise the internal controller checks the condition of the next
rule.

Rules 1–5 ensure the avoidance of constraint violations. For both
storages threshold values are used that incorporate a safety buffer to
the temperature and volume limits. For the upper threshold values, we
choose 95% for both storages. Since a minimal modulation degree is
considered, heating up a storage until its limit (100% SOC) can cause a
constraint violation if the SOC of the other storage is also near 100%.
Switching to heat up the other storage if a 95% SOC is reached, does
not guarantee removal of a violation risk, but it makes it less likely. In
our studies the upper limit was never violated with a minimal mod-
ulation degree of 10% for the heat pump. If a minimal modulation
degree of 0% is used (meaning that the heat pump can be switched off)
there is no need for a safety buffer to the upper limits. The use of a
safety buffer to the lower limits assure that no constraint violation will
occur in times of high demand for both DHW and space heating. For
the UFH system 10% and for the DHW tank 25% were sufficient in our
studies. However, if there is demand for DHW and SOCt b

DHW
, is smaller

than 40%, the DHW tank should be heated up with full power. A re-
duction of these safety buffers resulted in constrain violations in our
study. This is why we choose these values. The thresholds should be
adjusted if another heating system is used as they depend on the
technical parameters of the heating system. Nonetheless, we think that
the chosen values can be used as a rough estimate for other heating
systems. Further, it should be noted that small violations of the limits
potentially bring about reduced comfort, but do not result in technical
problems.

Our control approach, with both central and internal controllers,
combines the benefits of a central and a decentralized control archi-
tecture. On the one hand, the control advice is calculated centrally by
considering the whole residential area; on the other hand, decentralized

1 For interpretation of color in Fig. 1, the reader is referred to the web version
of this article.
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internal controllers assure control of the flexible devices. The central
controller neither directly controls the load, nor measures private data
of the households (e.g. electrical load, temperature of the storages).
Consequently, our control approach in using the described control and
communication architecture, will not be in conflict with the in-
habitants’ privacy.

4.2. Heuristic for cost minimization

The Past Value Heuristic aims at setting the modulation degrees of
the heat pumps at every time slot t such that the total heating costs are
as low as possible. In this case the buildings do not have a PV system on
their roofs, and there is no need for a net meter. Fig. 4 depicts the
flowchart of the cost minimization heuristic. To initialize, we have to
define updating time slots ti

Update. The intervals between these time slots
(d t tUpdate

i
Update

i
Update

1= + ) can be for instance one day, half a day or only
a few hours. At each updating time slot (t ti

Update= = ) the central con-
troller calculates the empirical distribution function F p( )l of the last l
price values.

Fig. 5 illustrates this step. Both the number of past price values and
the interval between the updating time slots are adaptable parameters
of the introduced heuristic. In the shown case the number of past price
values l is equal to the interval between the updating time slots. This
does not necessarily have to be the case, as l can be larger or smaller.
After having updated the empirical distribution function, the central
controller increments i such that the next time slot for updating is
changed.

Within two updating time slots (t ti
Update) the value of the em-

pirical distribution function F p( )l t is calculated for the current price pt
at time t. Next, the central controller sets the advised modulation

degree to mDeg F p1 ( )t l t= and broadcasts this to the internal con-
trollers of the buildings. The advised modulation degree will be high if
the price is relatively low, and it will be low if the price is relatively
high. The internal controllers now try to either heat the UFH system
with the advised modulation degree (x mDegt t= ) or the DHW tank
(y mDegt t= ). Since a violation of the volume or temperature constraint
is possible, the internal controller will not directly heat up the storages
with mDegt. An internal control approach determines whether heating
up (or cooling down) according to the advised modulation is possible or

Table 2
Internal controller rules (normal operation) in descending priority.

No. Condition Action

1 IF demand for DHW AND SOC 40%t
DHW < Heat up DHW tank with full modulation (y 1t = )

2 IF SOC 95%t
UFH AND SOC 95%t

DHW AND SOC SOCt
UFH

t
DHW Heat up DHW tank with minimal modulation (y mDegt

min= )
3 IF SOC 95%t

UFH AND SOC 95%t
DHW AND SOC SOCt

UFH
t
DHW< Heat up UFH with minimal modulation (x mDegt min= )

4 IF SOC 25%t
DHW < Heat up DHW tank with full modulation (y 1t = )

5 IF SOC 10%t
UFH < Heat up UFH with full modulation (x 1t = )

6 IF DHW tank heated up in t-1 AND SOC 95%t
DHW < Heat up DHW tank with advised modulation (y mDegt t= )

7 IF DHW tank heated up in t-1 AND SOC 95%t
DHW Heat up UFH with advised modulation (x mDegt t= )

8 IF UFH heated up in t-1 AND SOC 95%t
UFH < Heat up UFH with advised modulation (x mDegt t= )

9 IF UFH heated up in t-1 AND SOC 95%t
UFH Heat up DHW tank with advised modulation (y mDegt t= )

Fig. 3. Local grid and information flows of the residential area.

Fig. 4. Flowchart of the cost minimization heuristic.
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not (see Table 2). Due to the use of past values for updating the em-
pirical distribution function we call this approach Past Value Heuristic. If
information about future electricity prices are available, the upcoming l
values can be used for calculating F p( )l . The Future Value Heuristic is
equivalent to the Past Value Heuristic with the only difference that is
uses future values for updating the empirical distribution function. Both
heuristics have two parameters: the number of past (or future) price
values l and the interval between two updating time slots dUpdate. As
these heuristics are control strategies, there does not necessarily have to
be an end. When these strategies are used for solving the optimization
problem defined in Section 3.3, the control ends whenever the current
time t is equal to the number of time slots Z.

4.3. Heuristic for surplus energy minimization

The objective of the Incremental Control Heuristic is to shift the op-
eration of the heat pumps to times with high PV generation and thus to
minimize the surplus energy in the residential area. Fig. 6 shows the
flowchart of the Incremental Control Heuristic. At the beginning of each
iteration, the net meter measures the current residual load Pt

ResReal and
sends this information to the central controller. If the current residual
load is higher than 0, meaning that the demand of the residential area
exceeds the supply, the central controller instructs each internal con-
troller to implement its Keep-SOC-Strategy for this time slot. The goal of
this strategy is to have the SOC of the two storages (UFH system and
DHW tank) at certain levels. Afterwards the time slot is incremented
and the next iteration starts. If the supply is higher than the demand,
the measured residual load Pt

ResReal will be negative. The advised mod-
ulation degree mDegt is then initially set to the minimum mDegmin. Next,
the central controller calculates a help value, which we call auxiliary
residual load, Pt

ResAux with the following equations:

P P P P mDeg·t
ResAux

t
ResReal

t
LoadHP

b

B

b
HPmax

t1
1

= +
= (24)

P P mDeg·t
LoadHP

b

B

b
HPmax

t1
1

1=
= (25)

Eq. (25) determines the electrical load of all heat pumps from the
previous time slot t 1 if all used the advised modulation degree
mDegt 1 from the previous time slot. The central controller subtracts
this load from the measured residual load Pt

ResReal and adds the new
hypothetical load of the heat pumps for this time slot to it (Eq. (24)).
The new hypothetical load depends on the advised modulation degree
mDegt. If the auxiliary residual load is negative and the advised mod-
ulation degree has not reached the maximum value of 1, the central
controller increments the modulation degree by 0.01 (1%). Following
this, the new auxiliary residual load is recalculated. This loop stops
either if the auxiliary residual load is negative, or if mDegt has reached
its maximum value. The central controller now sends the value of the
advised modulation degree to all internal controllers which try to use
this value for heating up the UFH system or the DHW tank (see Table 2).
At the end of the iteration, the time slot t is increased by one and the
whole procedure starts from the beginning. Analogous to the cost
minimization heuristics in Section 4.2, an end is not essential, as this is
a real time control approach. However, considering the corresponding
optimization problem of Section 3.4, the control heuristic will end if t is

equal to the number of time slots Z.
This control approach does not need to monitor the individual

buildings. Only the constant maximal electrical power of the heat
pumps Pb

HPmax has to be known by the central controller. If the heat
pumps have different minimal modulation degrees, the approach has to
be slightly modified. In such a case, the central controller will not send
one common advised modulation degree mDegt to the internal con-
trollers. Instead, it will calculate a specific advised modulation degree
for each heat pump, which has to be considered in Eqs. (24) and (25).

When applying the Incremental Control Heuristic, the central con-
troller can instruct the internal controllers to use their Keep-SOC-
Strategy. The aim of this strategy is to keep the SOC of the storages at a
certain level by dynamically adjusting the modulation degrees. The
internal controller uses the necessary modulation degree xt (Eqs. (26)
and (27)) to maintain the UFH system’s at a certain predefined target
level (we use 25%). Simultaneously, the internal controller checks at
every time slot whether the SOC of the DHW tank SOCt b

DHW
, is under a

predefined value (we use 25%). If it is below that value, the heat pump
starts heating up the DHW tank with maximal power until it has
reached an upper threshold for this strategy (we use 35%). Afterwards,
the UFH system is heated up until having reached its target level.
Subsequently, the internal controller proceeds to maintain the UFH
system’s SOC at this target level while checking the SOC of the DHW
tank.

x max mDeg E Q Q
P COP t

,
· ·t

min t
UFHsoc

t
DemandSH LossesSH

HPmax
t

= + +
(26)

E T T V c( )· · ·t
UFHsoc Target

t
UFH UFH Concrete Concrete= (27)

Table 3 summarizes the rules of the internal controller when using
their Keep-SOC-Strategy. Rules 1–5 are equal to the ones of the normal
operation. We obtained these thresholds by trying out different values
in many runs of a simulation, eventually using the values that, on

Fig. 5. Calculation of the empirical distribution
function F p( )l at updating time slot ti

Update.

Fig. 6. Flowchart of the heuristic for surplus energy minimization.
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average, yielded the best results. The thresholds depend on the goal of
the used control strategies and on the heating system. These values can
also serve as rough estimates for other heating systems if the goal is to
minimize surplus energy in a residential area.

5. Results

For our study, we chose 12weeks of the year 2017 by randomly
picking two weeks for each month of the heating period (October –
March). We used a rolling-horizon-approach for the optimization with a
time horizon of one day and consequently seven iterations (one for each
day of the week). The time resolution t was five minutes. Most of the
studies in the reviewed literature used a lower time resolution. Salom
et al. [47] strongly recommend a time resolution of between one to five
minutes to analyze the interaction between the grid and individual
buildings. In [48] it is shown that using a 1-h resolution can lead to
errors of up to 60% compared to a 1-min resolution if the objective is to
match the electrical demand of a building with its PV production. As the
basic aim of our control approaches is to react to the volatile supply of
renewable energy sources, and thus to balance the grid, we choose a
time resolution of five minutes. The optimization problem was modeled

with the modeling language GAMS and we used Cplex 12.8 as the
solver. The heuristics and the simulations were implemented in Java.
All computations were carried out on an Intel Core i5-6200U system
with 2.3 GHz, 2 cores, and 8 GB RAM. We discuss the results of the
optimization and the heuristic control strategies in Sections 5.1 and 5.2.
This chapter ends with a critical appraisal in Section 5.3.

5.1. Cost minimization

We both solved an optimization problem and ran simulations for
applying the Past Value Heuristic, the Future Value Heuristic, and a
conventional control approach. For the Past Value Heuristic, we used
half a day (770min) for both the interval between updating time slots
dUpdate and the number of past values l for calculating the empirical
distribution function. We chose these values after having tried out
different parameter combinations. Regarding the Future Value Heuristic,
an updating frequency of 40-min intervals with 440min of future va-
lues, yielded good results. Data from the day-ahead market and the
intraday market (average price of the auctions) of the European Energy
Exchange were used as the time dependent price for electricity pt . Fig. 7
illustratively shows these prices for March 13th, 2017.

Fig. 8 shows the heating costs for the different control approaches
when we used price data from the day-ahead market. The Past Value
Heuristic led to reduced costs compared to the conventional control
approach in every week. The Future Value Heuristic outperformed the
Past Value Heuristic in 10weeks, whereas surprisingly, in weeks 41 and
46 the application of the Past Value Heuristic led to reduced costs. As
expected, the central optimization approach yields the best results
across all weeks. Generally, the differences between the methods are
rather small. The main reason for that is the relatively small variability
of the day-ahead markets prices. The prices have a time resolution of
one hour which is significantly smaller than the 5-min time resolution
of all the control approaches. We maintained the time resolution of five
minutes although the price signals have a lower time resolution, as this
leads to increased decision options for the controller for exploiting the
flexibility of the heating devices. Moreover, the COP of the heat pumps
depends on the outside temperature and slightly changes every five
minutes. This results in changing costs for generating a certain amount
of heat even if the price for electricity is constant.

The used average prices of the intraday market auctions have a time
resolution of 15min. The results for the intraday market prices are
displayed in Fig. 9. The diagram looks similar to the one of the day-
ahead market prices. In this case, the Future Value Heuristic always
yields better results than the Past Value Heuristic. As the price fluctua-
tions are higher due to the increased time resolution, the difference
between the conventional control and the other control approaches are
higher. Fig. 10 illustrates the average percentage improvements of the
different approaches compared to the conventional control for the
12weeks. When we used day-ahead market prices, the average im-
provement of the Past Value Heuristic for the 12weeks was 4.1% and for
the Future Value Heuristic 7.5%. The increased volatility of the intraday
market prices almost doubles the improvements of the two heuristic

Table 3
Internal controller rules (Keep-SOC-Strategy) in descending priority.

No. Condition Action

1 IF demand for DHW AND SOC 40%t
DHW < Heat up DHW tank with full modulation (y 1t = )

2 IF SOC 95%t
UFH AND SOC 95%t

DHW AND SOC SOCt
UFH

t
DHW Heat up DHW tank with minimal modulation (y mDegt

min= )
3 IF SOC 95%t

UFH AND SOC 95%t
DHW AND SOC SOCt

UFH
t
DHW< Heat up UFH with minimal modulation (x mDegt min= )

4 IF SOC 25%t
DHW < Heat up DHW tank with full modulation (y 1t = )

5 IF SOC 10%t
UFH < Heat up UFH with full modulation (x 1t = )

6 IF UFH heated up in t-1 AND SOC 25%t
DHW Heat up UFH with necessary modulation for keeping SOCt

UFH (x min x{1, }t t= )
7 IF DHW tank heated up in t-1 AND SOC 35%t

DHW < Heat up DHW tank with full modulation (y 1t = )
8 IF DHW tank heated up in t-1 AND SOC 35%t

DHW Heat up UFH with necessary modulation for keeping SOCt
UFH (x min x{1, }t t= )

Fig. 7. Prices of the day-ahead market and the intraday market for March
13 , 2017th .
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control strategies. The central optimization leads to improvements of
20.7% for the day-ahead price scenarios and 33.3% for intraday market
prices.

The results show that using flexible electrical loads for decreasing
the heating costs is beneficial if the price fluctuations are high enough.
Wide differences between the maximal and minimal prices and a high
temporal resolution of the price signal leads to increased saving po-
tential when heuristic control strategies and central optimization are
applied. Considering a big utility company which has to buy energy for
all its customers, heat costs saving in the range of 4–13% can be a
significant amount. Figs. A1 and A2 in the appendix show how often the
advised modulation degree could be used when applying the different
heuristics. On average the internal controllers were able to use the
advised modulation 60% of the time if the central controller used the
Past Value Heuristic. For the Future Value Heuristic this figure is 64%. We
also ran all scenarios without considering a minimal modulation degree
to quantify its impact on the results. Fig. A4 in the appendix depicts the

average alterations of the results. The changes for the central optimi-
zation are 2.5% if day-ahead market prices are used and 5.8% for in-
traday market prices. These numbers are much smaller for both heur-
istics ranging from 0.1% to 1%.

Another advantage of the proposed heuristic control strategies is the
enormously reduced computational effort. For each iteration of the
rolling-horizon-optimization, 57,600 variables were necessary, among
which 11,520 were binary variables. The optimization needed on
average 2:17min for the scenarios with day-ahead market prices and
3:47min for the intraday market scenarios when an MIP gap of 0.5%
was chosen. The computational time for the heuristic control strategies
and the conventional control was merely three seconds, even including
the simulations.

5.2. Surplus energy minimization

We used the same weeks as in the cost minimization problem for
analyzing the effects of the Incremental Control Heuristic on the surplus
energy minimization. We defined two scenarios. In the first scenario, all
the buildings had a PV system with 10 kW peak power, whereas in the
second scenario the peak power was 7 kW. Fig. 11 shows the surplus
energy of the residential area for the 10 kW scenarios. Besides in week
12, the results reveal significantly reduced surplus energy in almost
every week compared to the conventional control approach when we
used the Incremental Control Heuristic. The PV production in week 12 is
much higher than that of the other weeks we investigated. In this week
the total electricity demand of the buildings was not sufficient to match
the PV production, resulting in only moderate improvements. In week
8, using both the Incremental Control Heuristic and the central optimi-
zation led to no surplus energy.

The results for the 7 kW scenarios are shown in Fig. 12. The im-
provements we found in using the Incremental Control Heuristic were
even higher than those in the 10 kW scenarios. Analogous to the pre-
vious scenarios, the improvements were lower in week 12. As expected,
the surplus energy is lower when the PV systems have reduced peak
powers. Fig. 13 illustrates the average improvements of the Incremental
Control Heuristic and the central optimization compared to the con-
ventional control. When the buildings are equipped with a 10 kW PV
system, the improvement of the heuristic control strategy is more than
38%. Reducing the peak power to 7 kW increases the improvement to
52.6%. Applying the central optimization leads to 14.3% higher im-
provements for the 7 kW scenarios and to 12.6% for the 10 kW sce-
narios. The usage of the advised modulation degrees for the Incremental
Control Heuristic is shown in Fig. A3 in the appendix. The internal
controller were on average able to use the advised modulation in about
72% of the time. The values range from 53% in week 12–89% in week
8. The result alteration when not considering a minimal modulation
degree are on average between 0.5% and 3% (see Fig. A5 in the ap-
pendix).

Besides requiring perfect information about the future for the

Fig. 8. Heating costs for the different approaches when using day-ahead market
prices.

Fig. 9. Heating costs for the different approaches when using intraday market
prices.

Fig. 10. Average improvement of the different approaches for cost minimiza-
tion compared to using the conventional control.

Fig. 11. Surplus energy of the residential area with PV peak power of 10 kW.
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central optimization, the computational effort is much higher compared
to the heuristic control strategy. As for the cost minimization problems,
we used a rolling-horizon-approach for the central optimization (one
day time horizon and seven iterations). This required 103,680 variables
(23,040 binary variables) for each iteration. The average computational
time for the 10 kW scenarios was 02:19min with an MIP gap of 0.5%.
The reduced power of the PV system increased the computational times
to 09:03min. Both the conventional control and the Incremental Control
Heuristic needed, on average, three seconds for the control and the si-
mulations.

5.3. Critical appraisal

For our study we simplified some features to reduce the model
complexity and to deal with data availability problems. One reason why
the prospects for modulating heat pumps are bright is their increased
part-load efficiency compared to conventional heat pumps [12]. How-
ever, considering the dependency of the COP on the modulation degree,
makes the model nonlinear with heavily increased computational times.
Because of this, the COP in our study does not depend on the power
output of the heat pump, as it does in [49]. We used a constant supply
temperature for the heating system. In reality, the supply temperature is
affected by the heat output of the heating device (and consequently by
the outside temperature). This would, similarly, lead to non-linearities
[35].

Another assumption is the possibility of an exact and immediate
energy transfer from the UFH system to the rooms of the building. The
externally given demand for space heating Qt

DemandSH quantifies the
heating energy that is necessary to have a room temperature of 21 °C. In
our model, the exact amount of heat energy is immediately taken from
the UFH system. Modeling a realistic heat transfer would require a
detailed thermal model of the building and the DHW tank which was
not in the scope of this study. Incorporating such a model in an opti-
mization problem would drastically increase the computational effort

making a study like ours computationally fairly challenging. Further,
such a model would be based on many assumptions regarding several
heat transfer coefficients, the geometry of the building, the geometry of
the UFH system, and its pipe system. A minor simplification is the as-
sumption of constant losses of the DHW tank and the UFH system.
These losses basically depend on the temperature difference between
the inside and the outside of the storages. Compared to the much higher
heat demands for space heating and DHW, the temperature dependency
of such losses is negligible.

We did not consider uncertainties for the central optimization ap-
proaches. As in reality we cannot assume that perfect information about
future demand and supply is obtainable, the results of the central op-
timization are upper bounds for the realizable improvements.
Incorporating uncertainties will affect the results and will require ad-
justed optimization approaches that are capable of dealing with un-
certainties.

Even having used several simplifications, we are convinced that the
proposed control strategies and architecture are useful for effectively
using modulating electrical heating devices for demand response. The
control strategies themselves are independent of the thermal model of
the building. Because of this, we assume more complex models for the
simulations will deliver similar results. Regarding the cost minimization
heuristics, we expect even better results, due to the increased part-load
efficiency of the heat pumps.

6. Summary and conclusion

We developed heuristic control strategies for two optimization
problems for demand response with modulating heat pumps. The goal
of the first problem was to minimize the heating costs whereas the
second problem aimed at minimizing surplus energy from PV within a
residential area. For comparing the results from the heuristics with a
central optimization approach, we modeled a simplified thermal system
of 40 buildings based on empirical heat demand patterns. The flex-
ibilities come from an UFH system and a DHW tank. The developed
heuristic control strategies use a control and communication archi-
tecture that preserves the privacy of the inhabitants. The communica-
tion architecture is based on a central controller that sends control
advice to the internal controllers of the buildings which then decide
about the execution of control actions.

For the cost minimization problem, we defined two price scenarios.
The results show that in all weeks the application of the control heur-
istic led to reduced heating costs compared to a conventional control
strategy. The average improvements were between 4.1% and 13.3%
and depend strongly on the price spread on the electricity markets. The
central optimization approach could improve this value by another
20%. In the second problem on surplus energy minimization, the
heuristic control strategies performed surprisingly well. For PV systems
with 10 (7) kW peak power the reduction of surplus energy was 38.3%
(52.6%). The central optimization approach led to another 13% im-
provement while having strongly increased computational times and
requiring perfect information about the future.

Our study demonstrates the suitability of a privacy preserving
communication and control architecture in combination with heuristic
control strategies for demand response in residential areas. As the de-
cisions of each building depend on the situation of the whole grid, the
proposed approach is capable of balancing demand and volatile supply
without the need to install powerful computational devices or to breach
the privacy of the inhabitants. The difference to a conventional control
strategy is remarkable. Further, the implementation effort is relatively
small which makes the heuristic control strategies applicable for real
devices. The developed control approach can be modified for ag-
gregators, virtual power plant operators, or the provision of ancillary
services. Especially sustainable energy systems with high shares of re-
newable energies can benefit from incorporating basic principles of our
approach.

Fig. 12. Surplus energy of the residential area with PV peak power of 7 kW.

Fig. 13. Average improvement of the different approaches for surplus energy
minimization compared to using the conventional control.
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Future work could analyze larger residential areas and the interac-
tion between different areas in a region. While the heuristic control
strategies in this study are only applicable to modulating heating de-
vices, strategies for other flexible non-modulating heating devices
(e.g.non-modulating heat pumps, electric storage heaters, and electric
heating elements) can be investigated. A combination of different ad-
ditional flexibility options like electric vehicles and stationary batteries

should also be considered in future research.
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Appendix A

Tables A1 and A2
Figs. A1,A2,A3,A4,A5

Table A1
Heat related parameters of the used building.

Parameter Value

Specific heat demand 81 kWh
m2a

Usable area of the building 160.1 m2

Ceiling height of the building 2.5 m
Air exchange rate 0.5 h

1

Heat transfer coefficient (U-value) of the windows 1.3 W
m2K

Energy transmittance (g-value) of the windows 0.75
Window area on the south facade 20.8 m2

Window area on the west facade 4.7 m2

Window area on the north facade 3.7 m2

Window area on the east facade 4.7 m2

Heat transfer coefficient of the external walls 0.24 W
m2K

Area of the external walls 226.9 m2

Heat transfer coefficient of the roof 0.22 W
m2K

Area of the roof 103.2 m2

Heat transfer coefficient of the bottom plate 0.23 W
m2K

Area of the bottom plate 95.9 m2

Heat transfer coefficient of the door 2 W
m2K

Area of the door 2 m2

Table A2
Parameters of the heating system.

Parameter Value Source Comment

Maximal power of heat pump 3000 W [25] Sized for mono energetic operation at norm ambient temperature 14 C°
Heated area of the buildings 140 m2 [37] Assumption: Not all rooms in the cellar are heated
Concrete width (for the UFH) 7 cm [39] DIN standard 18560 for screeds in building construction
Density of concrete 2400 kg

m3
[50] European standards for concrete EN 206-1

Heat capacity of concrete 1000 J
kg K

[50] European standards for concrete EN 206-1

Temperature range of the UFH 20–22 °C [41] Assumptions for optimal comfort
DHW tank volume 150 l, 200 l [42] 200 l for 4 inhabitants and 150 l for 2 inhabitants
Losses of DHW tank 35 W [51] 2nd highest efficiency class (EU regulation 814/2013)
Losses of space heating 45 W Assumptiona

Supply temperature UFH 30 °C [41,36]
Supply temperature DHW tank 45 °C [33,43]
COP of the heat pump for T 28 K= 3.8 [44] Similar value as model LA 28TBS from Glen Dimplex
COP of the heat pump for T 42 K= 2.8 [44] Similar value as model LA 28TBS from Glen Dimplex

a For the losses of space heating QLossesSH we assumed 45 W . It is difficult to find reliable values for QLossesSH , as the losses of an UFH system contribute to heating up
the desired rooms of the buildings. The losses quantified by QLossesSH are only the losses of the UFH system’s pipes that do not contribute to heating up the desired
rooms. They should not be confused with the much higher transmission heat losses of the building which are included in the demand for space heating Qt

DemandSH .
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Fig. A3. Average usage of the advised modulation when applying the Incremental Control Heuristic.

Fig. A4. Average changes in the results for the cost minimization when not using a minimal modulation degree.

Fig. A2. Average usage of the advised modulation when applying the Future Value Heuristic.

Fig. A1. Average usage of the advised modulation when applying the Past Value Heuristic.
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a b s t r a c t

Electric heating devices can provide the needed load flexibility for future energy systems with high
shares of renewable energies. To exploit these flexibilities, the literature often suggests centralized
scheduling-based optimization. However, centralized optimization has crucial drawbacks regarding
complexity, privacy and robustness while uncoordinated decentralized optimization approaches yield
non-optimal results for the entire system. In this paper, we develop two novel coordinating decentralized
optimization approaches, PSCO and PSCO-IDA. Furthermore, we define an optimization procedure to
generate a solution pool with diverse schedules for the coordinating approaches. The results show that
all investigated approaches for coordinated decentralized optimization lead to lower surplus energy and
thus to higher self-consumption rates of locally generated renewable energy compared to the uncoor-
dinated approach. Moreover, using solution pools generated by our optimization procedure strongly
improves the Iterative Desync Algorithm (IDA), an effective and privacy-preserving algorithm for
decentralized optimization. A comparison of the different decentralized optimization approaches reveals
that PSCO-IDA leads to an average improvement of 10% compared to IDA while PSCO leads to similar
results with reduced communication effort. All decentralized approaches have significantly reduced
runtimes compared to centralized optimization. Our study reveals the strong advantages of coordinated
decentralized optimization approaches for using flexible electrical loads.

© 2019 Published by Elsevier Ltd.
1. Introduction

The energy system is undergoing a fundamental transition, as
more and more energy is generated by intermittent renewable
energy sources like wind turbines and photovoltaic systems (PV).
Flexible electric loads can cope with the challenges brought about
by the volatile electricity supply. The main flexibility options which
are currently discussed in the literature for residential areas come
from electric vehicles, batteries, deferrable loads (e.g. washing
machine, dish washer, and tumble dryer) and thermostatically
controlled loads [1]. As heat is the main energy demand in resi-
dential areas in most parts of the world, electric heating devices
coupled with thermal storage can provide significant flexibility.
Furthermore, they are comparatively cheap as they can utilize
existing infrastructures like the mass of the building or hot water
tanks as thermal storage to shift the operation of the flexible
Dengiz), jochem@kit.edu
devices without affecting customer’s comfort.
Different concepts have been analyzed in the literature to use

the flexibilities in residential areas with multiple buildings. When
using centralized optimization (CO) approaches, a central unit
collects data from each building for demand and generations
forecasts that are used as input to a central optimization problem.
The central control unit then directly controls the flexible devices of
the buildings based on the calculated optimal schedule. CO leads to
the overall best solution for the residential area. However, CO also
has crucial drawbacks that strongly limit its applicability [2]. First, a
CO approach infringes on the privacy of the inhabitants. Moreover,
CO approaches have a high computational complexity as sched-
uling problems are generally NP-hard [3]. Another disadvantage is
the low level of robustness due to the central controller. If the
central controller fails, for example due to technical problems or an
external cyber-attack, tremendous damage could be done to the
whole energy system.

When decentralized optimization (DO) approaches are used,
each building optimizes its own goal and controls its own devices.
Compared to CO approaches, DO approaches have advantages
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Nomenclature

Dt time resolution
h efficiency
r density
bufferDeviaton buffer value for the deviation maximization

problem
BT1, BT2, BT2 building types 1, 2, 3
c specific heat capacity
COPt coefficient of performance
D total diversity of two load profiles
hAuxt binary auxiliary variable
hDiverstiyþt binary auxiliary variable for the big-M approach
hpositivet binary auxiliary variable for the big-M approach
mDegmin minimal modulation degree of the heat pump
Mþ

t M�
t big-M parameters

PDemand
t inflexible electrical demand

PDiversityþt positive deviation in power
PDiversity�t positive deviation in power
PDiversityt diversity in power between two load profiles
PElectricDHW power of the electrical heating device for domestic

hot water
PElectricSH power of the electrical heating device for space

heating
PHP maximal electrical power of the heat pump
POptimal
t power value of the optimal load profile

PPVt PV generation
PPvPeak peak generation of the building’s PV system
PSurplusþt positive part of surplus power

PSurplus�t negative part of surplus power
PSurplust surplus power
Ptotalt total electrical demand
QDemandDHW

t demand for domestic hot water
QDemandSH

t demand for space heating
QDHW

t heating energy for domestic hot water
QLossesDHW

t losses of the domestic hot water tank
QLossesSH

t losses of space heating
QSH

t heating energy for space heating
rt auxiliary vector for generating diversity
SE surplus energy
SEoptimal surplus energy of the optimal solution
t index for time slots
TBS
t temperature of the buffer storage

VBS volume of the buffer storage
VDHWuse
t useable volume of the domestic hot water tank

xt modulation degree of the heat pump for space
heating

xElectrict modulation degree of the electric heating element for
space heating

xGast heating variable of the electric heating element for
space heating

yt modulation degree of the heat pump for domestic
hot water

yElectrict modulation degree of the electric heating element for
domestic hot water

yGast heating variable of the electric heating element for
domestic hot water

Z number of time slots
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regarding computational complexity, data privacy and robustness
[2]. But if the buildings in the residential area merely optimize their
own goal without interacting with the other buildings, the results
will be sub-optimal for the whole residential area. Because of this,
coordination mechanisms for DO are essential for using flexible
devices for reacting to the volatile electricity generation by
renewables.

In this paper, we develop novel coordination approaches for DO
and improve existing ones by defining a new optimization pro-
cedure for generating a diverse solution pool for the local optimi-
zation problems of buildings. We compare the coordinating DO
approaches to CO approaches and non-coordinating DO ap-
proaches. Further, we show the sub-optimality of DO without co-
ordination. This paper is structured as follows: In Section 2, we
review the relevant literature. Section 3 defines the optimization
problems for the residential area. We describe the used DO ap-
proaches in Section 4 and show the results of our analysis in Section
5. The paper ends with a summary and conclusion in Section 6.

2. Related work

In this study, we focus on scheduling-based approaches to use
the flexibility of electric heating devices. In contrast to rule-based
approaches for controlling multiple buildings (see for example
[4,5]), an optimization algorithm uses a model and information
about future demand and generation to generate an operative
schedule for the flexible devices. Different studies exist in the
literature that use DO for demand response (cf. Table A.1 in the
Appendix A).

While most studies merely investigate one coordinating DO
approach, Braun et al. [6] compare model-predictive control to a
decomposition approach. Many studies apply decomposition
methods [6e10] which break down a single optimization problem
into several smaller problems that can be solved by distributed
agents [6]. A crucial drawback of decomposition approaches is the
necessity of a central controller which coordinates the procedure
and which infringes on the privacy of the inhabitants. When using
decomposition, the decentralized solutions of the agents are
created in a systematic way, as they are outputs of different
adjusted optimization problems. Kolen et al. [2] introduce a two-
stage scheduling approach for clusters of flexible devices. In a
first step, all agents optimize their own local goal creating a set of
multiple schedules. Next, the agents coordinate the selection of
their individual schedule with the aim of optimizing a common
goal. The commercial solver Cplex automatically creates the solu-
tion pool of schedules by storing the found solutions of the basic
optimization problem during optimization procedure. Ramchurn
et al. [11] use an approach with a time-dependent price signal
which is sent to the buildings. The goal is to create schedules of the
flexible devices that reduce the peak power.

In the algorithm proposed by Ogston et al. [12], the buildings of
a residential area create a set of local schedules for their flexible
devices and send them to a central control unit. The central
controller uses a simple heuristic by sequentially choosing the
schedule of an agent that best fits to the current resulting load.
Blaauwbroek et al. [13] use a similar approach. However, the set of
possible schedules is not generated immediately. The buildings
successively solve an adjusted optimization problem to create a set
of schedules in a systematic way. Hu et al. [14] define a facilitator
agent for a cluster of multiple buildings aiming to coordinate the
buildings. The central facilitator agent classifies the decision vari-
ables into local variables which are controlled by each building and
coupled variables which are jointly controlled by multiple build-
ings. While most of the listed studies use an approach where a
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central control unit is essential, the coordination approaches by
Kolen et al. [2] and Ramchurn et al. [11] do not need a central
control unit.

Worthmann et al. [15] use a hierarchical model-predictive
control approach for coordinated DO. A central entity broadcasts
a cost function that influences the local optimization problems of
the decentralized buildings. After receiving the schedules of each
building, the central entity iteratively updates the cost function to
achieve a network-wide objective. Chang et al. [16] introduce a DO
approach that converges to the solution of the CO problem and that
does not need a central controller. However, their approach re-
quires exchanging consumption and generation data among
neighbors, which breaches the privacy of the inhabitants [6,15].
Furthermore, it is assumed that each agent can estimate its
contribution to the global coupled constraint which is difficult to
realize in real-world applications.

We introduce novel coordinating DO approaches and compare
them to existing ones. To the best of our knowledge, this is the only
study that compares different coordinating DO approaches that do
not need a central control unit and that are privacy-friendly.
Another contribution of this paper is the definition of an addi-
tional optimization problem that generates diverse schedules for
the problem of minimizing surplus energy of locally generated
renewable energy. A set of schedules is required for the coordina-
tion approaches introduced in Refs. [2,12,13]. We use the additional
optimization problem to generate diverse schedules for the Iterative
Desync Algorithm (IDA) by Kolen et al. [2], as it is the only privacy-
preserving approach that is based on a set of schedules and does
not require a central control unit. In contrast to Kolen et al., we
create these schedules in a systematic way by introducing a novel
optimization procedure that makes use of the additional optimi-
zation problem. Moreover, we compare the used DO approaches to
both CO and non-coordinating DO.

3. Optimization problems for a residential area

In this section, we introduce the optimization problems for a
residential area. At first, Section 3.1 describes the different types of
buildings and heating systems that are used for our case study.
Afterwards, we define the basic optimization problem for mini-
mizing surplus energy in a residential area with locally generated
PV in Section 3.2. The optimization problem for generating a set of
diverse schedules that are used as input to the coordinating DO
approaches is explained in Section 3.3.

3.1. Different building types and heating systems for the case study

The residential area consists of three types of buildings, which
have different insulation levels and heating systems. All of them are
single-family houses that are inhabited by either two or four per-
sons. Table 1 shows an overview of the different types of buildings.
Table 1
Overview of the different types of buildings.

Building type 1

Specific heat demand
26

kWh
m2a

Heating device Ground-source heat pump
Power of heating device 1.200 W
Power of additional electric heating elements e

Buffer storage Underfloor heating system
DHW storage Hot water tank
PV system Yes
Building type 1 has a very high insulation standard and conse-
quently low heat demand. A ground-source heat pump with con-
stant electrical power generates the heat. Buildings from the
second category have a relatively low specific heat demand. For
these buildings, a modulating air-source heat pump is used for
heating. Building type 3 has the lowest insulation standard
resulting in the highest specific heat demand among the three
building types. The main heating device is a gas heater. Two addi-
tional electric heating elements (one for the buffer storage and one
for the domestic hot water (DHW) tank) are used. All buildings in
the residential area use two thermal storages: a buffer storage for
space heating and a hot water tank for DHW. For the buildings with
heat pumps, an underfloor heating system is used for buffer stor-
age, as this allows low supply temperatures for space heatingwhich
increases the heat pumps’ efficiencies [17]. The residential build-
ings are located in Braunschweig (Germany) and have a PV system.

While the overall market share of heat pumps in Germany was
only 2% [18] in 2017, the majority (43%) of new buildings built in
2017 were equipped with a heat pump [19]. Heating systems based
on gas have the highest market share (around 50%) among all
buildings in Germany [18]. In our modeled residential area, every
building uses an electric heating device. While this is not repre-
sentative of today’s heating systems in Germany, we use this resi-
dential area to investigate different optimization approaches that
exploit thermoelectric flexibilities. We use heat pumps and electric
heating elements as we think that these technologies will have
significant market shares in the future. Especially heat pumps can
play a fundamental role for providing the needed flexibilities in
future energy systems with high shares of renewables [20].

We use data that was generated by the software tool synPRO
provided by Fraunhofer Institute for Solar Energy Systems [21] for the
different load profiles (electric demand, space heating, DHW, PV
generation). The tool generates synthetic data by using a behavioral
model and a resistance-capacitance model for space heating as
described in DIN EN ISO 13790 [23]. We scaled up the maximum
heat demand of the year for the different building types to an
outside temperature of �14 �C (standard outside temperature in
Braunschweig [24]) for determining the power of the heating de-
vices as is done in Ref. [25]. Table B.1 in the Appendix B lists the
additional parameters of the heating systems.
3.2. Surplus energy minimization problem

The basic goal for each building is tominimize its surplus energy
SE and thus to maximize the self-consumption rate of locally
generated PV. To determine an optimal schedule for the electric
heating devices, the buildings solve an optimization problem. The
following equations define the mixed-integer linear program for
building type 2. The main decision variables are the modulation
degree of the heating device when heating up the buffer storage xt
and the modulation degree when heating up the DHW tank yt .
Building type 2 Building type 3

81
kWh
m2a

140
kWh
m2a

Air-source heat pump Gas heater
3.000 W (modulating) 12.000 W
e 2 * 2.000 W (modulating)
Underfloor heating system Hot water tank
Hot water tank Hot water tank
Yes Yes
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min SE ¼
XZ

t¼1

PSurplusþt , Dt (1)

subject to

Tmin� TBSt � Tmax c t (2)

VDHWmin�VDHWuse
t � VDHWmax c t (3)

TBS1 � TBSZ � TBS
1 c t (4)

VDHWuse
1 �VDHWuse

Z � VDHWuse
1 c t (5)

xt þ yt � mDegmin c t (6)

xt � hAuxt c t (7)

yt �
�
1�hAuxt

�
c t (8)

Ptotalt ¼ ðxt þ ytÞ, PHP þ PDemand
t c t (9)

PSurplust ¼ PPVt � PTotalt c t (10)

PSurplust ¼ PSurplusþt � PSurplus�t c t (11)

PSurplusþt � Mþ
t ,h

positive
t c t (12)

PSurplus�t � M�
t ,

�
1�hpositivet

�
c t (13)

xt 2 ½0;1�; yt 2½0;1�; hAuxt 2f0;1g; hpositivet 2f0;1g;
PSurplusþt � 0; PSurplus�t � 0 c t

(14)

Constraints (2) and (3) ensure that the temperature of the buffer
storage TBS

t and the useable volume of the DHW tank VDHWuse
t are

always between two limits. Moreover, the values of these two
variables at the end of the optimization horizon have to be equal to
their starting values (constraints (4) and (5)). Constraint (6) in-
troduces a minimal modulation degree for the air-source heat
pump, whereas constraints (7) and (8) forbid the heating device to
heat up both the buffer storage and the DHW tank simultaneously.
The total electrical demand Ptotalt is defined in Eq. (9); it consists of
the flexible load of the heat pump (PHP is the maximal power of the
heat pump) and the inflexible load of the other household appli-
ancesPDemand

t . We subtract the total electrical demand from the PV
generation PPVt to determine the surplus power PSurplust in Eq. (10).
To ensure that only positive surplus power is minimized and thus
prevent to schedule the heat pump’s activities into times with low
PV generation, we use the big-M approach [26,27] by adding Eq.
(11)-(13). A more detailed description of this optimization problem
can be found in Ref. [4]. The corresponding optimization problems
for building types 1 and 3 are defined in the Appendix C.

A fundamental part of these optimization problems is the model
for the buffer storage and the DHW tank. For modeling the buffer
storage’s temperature TBS

t , we use a uniform temperature model
with an energy difference equation (Eq. (15)). This approach is often
used in the literature [28].
TBSt ¼ TBSt�1 þ
QSH

t � QDemandSH
t � QLossesSH

t

VBS,rBS,cBS
(15)

The difference in energy at time t is divided by the volume of the
buffer storage VBS, the density rBS of the storage medium and heat
capacity cBS and is then added to the temperature of the previous
time slot. While the demand for space heating QDeamandSH

t and the
losses QLossesSH

t decrease the temperature of the buffer storage, the
generated thermal energy of the heating devices QSH

t increases it.
The storage medium for building types 1 and 2 is concrete, since
these buildings use an underfloor heating system. A hot water tank
serves as buffer storage for the buildings of type 3.

VDHWuse
t ¼VDHWuse

t�1 þ QDHW
t � QDemandDHW

t � QLossesDHW
t

TDHW,rWater,cWater (16)

For the useable volume of the DHW tank VDHWuse
t , we use the

same difference equation (Eq. (16)). The difference is that the vol-
ume itself is variablewhereas the temperature for TDHW is fixed and
that water is used as the storage medium for all buildings. We use
Eq. (17) and Eq. (18) to calculate the generated energy of the
heating device in building type 2 for space heating and DHW. As an
air-source heat pump is used, the coefficient of performance (COP)
quantifying the heat pump’s efficiency is not constant over time. To
incorporate its dependency on the outside temperature, we use a
linear relationship as it is done in Ref. [4].

QSH;BT2
t ¼ xt,PHP,COPt,Dt (17)

QDHW;BT2
t ¼ yt,PHP,COPt,Dt (18)

The equations of the other buildings can be found in the Ap-
pendix C. For building type 1, we assume the COP of the ground-
source heat pump to be constant, since the temperature varia-
tions in the ground are strongly reduced compared to the ones of
outside air [29]. Building type 3 has three heat sources. A gas
heating device with the power PGas and the constant efficiency hGas

can heat up both the buffer storage and the DHW tank. Further-
more, these types of buildings have additional electric heating el-
ements for space heating and DHW with constant efficiencies. We
add an additional penalty term to the objective function of building
type 3. This term penalizes the use of the electric heating devices to
a certain extent. This prevents the buildings to use electricity
instead of gas for heating in times with no PV generation.

3.3. Optimization problem for generating diverse schedules

The DO approaches described in Section 4 need a diverse pool of
optimal or near-optimal schedules. When using an exact solver,
there is the possibility to specify certain parameters of the solver to
trigger a generic approach for creating a pool of diverse solutions.
However, as these solutions are not problem-specific, we define an
additional optimization problem to generate diverse solutions for
the problem of minimizing surplus energy. This optimization
problem needs the solution from the surplus energy minimization
problem of the previous Section 3.2 as an input. All buildings can
run this additional optimization problem after having obtained the
results from the previous problem in a first step. For building type
2, the diversity maximization problem to be solved is:

max D ¼
XZ

t¼1

�
PDiversityþt þ PDiversity�t

�
, rt (19)

subject to:
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PDiversityt ¼ POptimal
t � PTotalt c t (20)

PDiversityt ¼ PDiversityþt � PDiversity�t c t (21)

PDiversityþt � Mþ
t ,h

Diverstiyþ
t c t (22)

PDiversity�t � M�
t ,

�
1�hDiverstiyþt

�
c t (23)

SE¼
XZ

t¼1

PSurplusþt , Dt (24)

SE� SEoptimal þ
�
SEoptimal , bufferDeviaton

�
c t (25)

hDiverstiyþt 2 f0;1g; PDiversityþt � 0; PDiversity�t � 0 c t (26)

and the constraints (2)e(14).
At its core, this optimization problem is equivalent to the sur-

plus energy minimization problem, including all of its constraints.
However, the goal now is to maximize the diversity D between the
load profile of a new schedule and the given load profile of the
optimal schedule from the previous optimization problem. For
calculation of the diversity in power PDiversityt (Eq. (20)), the total
demand of the new schedule PTotalt is subtracted from the value of
the optimal load profile of the previous surplus energy minimiza-
tion problem POptimal

t . As we intend to maximize the absolute value
between the load profiles, Eq. (21) subdivides PDiversityt into a posi-
tive PDiversityþt and a negative PDiversity�t part. We use the big-M
approach again to incorporate this into our model (Eq. (22) and
Eq. (23)). To ensure that the surplus energy of the new solution SE
that is calculated by using Eq. (24) only differs to a certain small
degree bufferDeviaton from the optimal value of the initial optimi-
zation problem SEoptimal, we add Eq. (25).

In the objective function, we use the exogenous binary param-
eter vector rt. This vector specifies the time slots at which the new
load profile shall differ from the previous optimal load profile.
Solving this optimization problem with different r-vectors gener-
ates multiple (near) optimal diverse schedules. Fig. 1 shows an
exemplary output load profile (Ptotalt ) of the surplus energy mini-
mization problem for a building with a modulating heat pump
(building type 2). This profile and the corresponding value of the
objective function SE are used as inputs to the diversity maximi-
zation problem.

Fig. 2 illustrates the resulting load profiles when using two
Fig. 1. Output load profile of the surplus minimization problem.
different r-vectors. For the left load profile, the r-vector has the
value 1 for the last third of the timespan inwhich the PV system has
produced energy. For the right profile, a certain amount of 1-entries
are equally distributed over the timespan with PV generation. As
only the time slots which are specified in the r-vector affect the
objective function, the optimization algorithm primarily tries to
increase or decrease the load of these time slots. Consequently,
using specific r-vectors makes it possible to specify desired time
slots for generating diversity in the load profiles. The 1-entries
should be placed within the timespan of the volatile generation.
In Section 5.2, we compare the systematically generated solution
pool of this approach with the automatically generated solution
pool during the optimization procedure of a commercial solver.

The corresponding optimization problems of the other building
types for generating diverse schedules can be found in the Ap-
pendix D.

The surplus energyminimization problem of Section 3.2 and the
diversity maximization problem of this section are combined to
generate a pool of different schedules for the local optimization
problems of the buildings. The DO approaches of the following
Section 4 need this solution pool. Fig. 3 illustrates a flowchart of the
optimization procedure to generate a diverse solution pool. First
the surplus energyminimization problem is solved whose output is
an optimal schedule. This schedule builds the first solution of the
solution pool and serves as input for the diversity maximization
problem.

The other essential input for the diversity maximization prob-
lem is a set of different r-vectors. Basically, the r-vectors can have
any shape as theymerely indicate the timeslots inwhich diversity is
favored to be created. In Section 5.2 we list the used r-vectors for
our case study that led to the best results. One of the r-vectors is
used for the diversity maximization problem which outputs
another schedule that is stored in the solution pool. If the number
of generated schedules is smaller than the desired number, another
different r-vector is used as input for the diversity maximization
problem. Every run of the diversity maximization problem with a
different r-vector creates a further solution. This procedure is
repeated until the desired number of solutions are stored in the
solution pool.

4. Decentralized optimization approaches

In this section, we describe three different approaches for
decentralized optimization. In Section 4.1, an effective algorithm
from the literature for decentralized optimizationwithout a central
control instance is explained. Afterwards, we introduce a novel
approach in Section 4.2 and a combination of these twomethods in
Section 4.3. A prerequisite for applying decentralized coordination
mechanisms is the existence of a communication network that
enables the buildings to exchange messages.

4.1. Iterative Desync Algorithm (IDA)

The basic version of the Iterative Desync Algorithm (IDA) is
described by Kolen et al. in Ref. [2]. We use a slight modification of
this algorithm to coordinate the DO of several buildings with the
aim of reducing surplus energy in a residential area. Fig. 4 shows
the DO approach IDA for an illustrative residential area, which
consists of only six buildings in this case. As a perquisite for IDA (1st
step), all buildings must have a pool of different schedules for their
local optimization problem. The buildings use their energy man-
agement system (EMS) to run the local optimization problem and
to control the flexible heating devices. Depending on the used
optimization method, several ways exist for generating a pool of
schedules. For our case study, we use the optimization problems
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Fig. 2. Output load profiles of the optimization problem for generating diverse schedules with two different r-vectors.

Fig. 3. Flowchart of the optimization procedure to generate a solution pool.
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described in Section 3 to generate a diverse set of feasible sched-
ules. This is done simultaneously for all buildings. In the residential
area shown in Fig. 4, the solution pool of each building consists of
three schedules.

In the 2nd step, the buildings use IDA to coordinate the selection
of the individual schedules. The buildings are ordered in a cycle.
The order can be random or based on some ranking (e.g. power of
the heating devices). Every building has a predecessor and a
successor in the circle. Furthermore, the buildings store a local view
on the residential area’s surplus power. At the beginning, the load
profile for the residential area’s surplus power has only zero values.
For the coordination, every building performs the four following
steps:

1. Add the local PV generation to the surplus power profile of the
residential area

2. Choose the best schedule for minimizing the surplus power of
the residential area

3. Update the surplus power profile of the residential area
4. Forward the new surplus power profile of the residential area to

the next building

The first building in the circle chooses the schedule from its
solution pool that leads to the lowest surplus power for the entire
residential area. The local load profile for the residential area’s
surplus power has no entries in the beginning. Afterwards, it up-
dates the load profile for the residential area’s surplus power and
forwards this to the next building. The next building adds its PV
generation to this profile and subtracts the total electrical demand
of its different schedules from it to determine which of the possible
schedules leads to the lowest surplus power for the residential area.
If the subtraction of the total electrical demand leads to a negative
value for one time slot, a value of 0 will be assigned to this time slot.
This is done because merely the (positive) surplus power should be
shared among the buildings and not the entire electrical load
profiles, since this could infringe on the privacy of the inhabitants.
After having chosen the best schedule, the building sends the
updated surplus power profile to its successor, which performs the
same steps. In the lower part of Fig. 4, the first three buildings have
already chosen their temporary schedule and the fourth building is
about to perform the four steps of the algorithm. There may be
multiple iterations through the circle and the building can deviate
from their initially selected schedule in each iteration. It is also
possible for each building to add random noise to the load profile in
the first iteration and delete that random noise during the second
iteration through the cycle. Thus, this approach would have an even
higher degree of privacy-friendliness. The algorithm stops, if no
building changes its selected schedule for one iteration through the
circle. Afterwards the buildings’ EMS will implement the selected
schedules and control the electric heating devices according to
them.
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Fig. 4. Decentralized optimization approach IDA in a residential area.
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4.2. Parallel Successive Cluster Optimization (PSCO)

Based on the IDA idea, we developed a novel coordinating DO
approach called Parallel Successive Cluster Optimization (PSCO),
which clusters all buildings of the residential area. The clusters
have the same number of buildings (the number for the last cluster
may be different). Besides the number of buildings per cluster, the
order within the clusters must be defined beforehand. Fig. 5 illus-
trates PSCO for clusters of size two. The number of steps is equal to
the number of buildings in a cluster. During the first step, the first
buildings of each cluster solve their local optimization problem (in
our case, the surplus energy minimization problem of Section 3.2)
and send the resulting local surplus power of the cluster to the next
building within the cluster. All first buildings of the clusters do this
in parallel.

In the second step, the second buildings of the clusters use the
profile for the local surplus power of the cluster as an input to their
own optimization problem. In contrast to the IDA algorithm, the
local optimization problem of the building is not solved before
having the output of the previous building. Thus, the output of the
previous building directly influences the optimization problem of
the buildings. Further, no additional schedules are calculated as the
buildings do not have a solution pool. As soon as the last buildings
of each cluster have solved their local optimization problem, PSCO
terminates. In our experiments, clusters of size two yielded both
the best results and the lowest runtime. This is why we stick to this
cluster size for our case study. For other objective functions (e.g.
peak shaving), larger clusters may yield better results.
Fig. 5. PSCO algorithm with t
4.3. Parallel Successive Cluster Optimization with IDA (PSCO-IDA)

Our second newly developed approach is the PSCO-IDA algo-
rithm, which combines PSCO from the previous Section 4.2 and IDA
from Section 4.1. Fig. 6 displays a schematic view of PSCO-IDAwith
two buildings per cluster. The first two steps are similar to the ones
of PSCO. The only difference is that the buildings not only generate
one schedule but a solution pool of multiple diverse schedules as it
is done at the beginning of IDA. After the last building in each
cluster has generated its solution pool, the buildings use IDA (third
step) to coordinate the selections of the profiles that lead to min-
imal surplus power for the residential area. The main advantage
over IDA is that the second buildings of the clusters can incorporate
the output of the first buildings into their local optimization
problem for generating the solution pool.

Besides a random ordering, we use a simple order heuristic to
assign buildings to clusters of size two for PSCO and PSCO-IDA. For
this, we calculate a score value for each building by using the
following formula:

Score¼ PPvPeak � PElectricalHeating (27)

The power of the building’s electrical heating device is sub-
tracted from the peak power of its PV system. This score roughly
quantifies the expected self-consumption rate of locally generated
PV for each building. The higher the score, the more surplus energy
is expected by this building.We group the buildingwith the highest
score and the building with the lowest score into the first cluster.
Next, we group the building with the second highest and the
wo buildings per cluster.
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Fig. 6. PSCO-IDA algorithm with two buildings per cluster.
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second lowest score into the next cluster. We proceed with this
procedure until every building belongs to one cluster. If there is an
odd number of buildings, the last cluster will consist of one building
only. The buildings with the higher score are always the first
buildings in the cluster that start with the optimization. The
rationale behind this grouping is that the buildings with low PV
generation can use the surplus energy of buildings with high PV
generation for their electric heating devices. For clusters containing
more buildings, this heuristic ordering has to be adjusted. However,
for our study, we only used clusters with two buildings, as this led
to the best results.
5. Results

The base scenario for the residential area in our case study
consists of 90 buildings. Of these, 15 are inhabited by two persons
whereas 75 have four persons living in each. We chose 30 buildings
for each building type. All buildings have a PV system with an
average peak power of 8 kW (equally distributed between the peak
powers of 5 kW and 11 kW). The time resolution Dt was 5 min, as
this is recommended for capturing the short-term fluctuations of
PV [30]. We used the modelling language GAMS to implement the
optimization problems with Cplex 12.8 as the solver and a MIP gap
of 1% (maximum deviation from the globally optimal solution). The
simulation of the interaction between the buildings is imple-
mented in Java. All computations were carried out on an Intel Core
i5-2500 K systemwith 3.3 GHz, 4 cores and 16 GB RAM. At first, we
show the difference between CO and uncoordinated DO in Section
5.1. Afterwards, we evaluate our method for generating diverse
solutions for the IDA algorithm in Section 5.2 and compare different
DO approaches in Section 5.3. This section ends with a critical
appraisal in Section 5.4.
5.1. Difference between centralized optimization and decentralized
optimization without coordination

If every building in a residential area only optimizes its own
objective without interacting with other buildings, the resulting
solution is going to be suboptimal for the entire system. Fig. 7
shows the difference in surplus energy between centralized and
uncoordinated DO for the base scenario during the heating period
in Germany (OctobereMarch). It can be seen that onmany days, the
difference between the centralized and the uncoordinated DO are
significant. On five days, the difference is even above 300 kWh.
Especially on the sunnier and warmermonths of the heating period
(March and October), the application of an uncoordinated DO
approach leads to higher surplus energy. On days with no or less PV
generation, the difference does not exist, since even the DO leads to
no surplus energy. On average, the difference is about 55 kWh
including the days with negligible PV generation. This diagram
clearly shows the need for coordination approaches when using
DO.
5.2. Evaluation of the solution pool for IDA

When using the IDA algorithm, every building needs a solution
pool with different schedules. In the reference paper for IDA [2], the
solution pool is automatically created by the commercial solver
Cplex in an unsystematic way by storing feasible solutions that
satisfy some quality criteria during the optimization procedure. In
Section 3.3 we introduced a systematic way of generating diverse
solutions for the problem of minimizing surplus energy from re-
newables by defining an adjusted optimization problem. We run
IDA with both automatically and systematically created solution
pools for 15 different days of the heating period. We randomly
picked 5 days with low, 5 days with medium and 5 days with high
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Fig. 7. Difference in surplus energy between centralized and uncoordinated decentralized optimization for the base scenario.

Fig. 8. Surplus energy of the IDA algorithmwith differently created solution pools for a
day averaged over 15 days of the base scenario.
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PV generation for choosing 15 days that are used throughout our
following analysis. Fig. 8 illustrates the average surplus energy for
IDAwith differently created solution pools and for the DO approach
without any coordination.

While using IDA with automatically created solution pools only
leads to minor improvements, the application of our introduced
approach leads to significant improvements of, in this case, about
20%. We ran the diversity maximization problem of Section 3.3 four
times with different r-vectors to generate a solution pool of size five
(including the solution of the base problem from Section 3.2). The
average time for generating the five solutions was 25 s. We chose a
deviation buffer ðbufferDeviatonÞ of 5% between the surplus energy of
the base problem and the one of the diversity maximization
problem, since this led to the best results. When instructing the
solver Cplex to automatically generate diverse solutions, the num-
ber of diverse solutions and the gap to the globally optimal solution
have to be specified. We let Cplex collect 50 solutions within a gap
Fig. 9. Normalized improvement of IDA for a day averaged over 15 days of the base
scenario depending on the number of additional solutions in the solution pool.
of 10%. The average time for this was 187 s. We tried out different
values for the gap and the size of the solution pool. The impact on
the results of IDAwas fairly small and the chosen values yielded the
lowest surplus energy in our experiments. It can be deduced that
using our novel optimization procedure to generate a diverse so-
lution pool for IDA clearly outperforms a generic and automatically
created solution pool.

Further, we investigated the effect of the solution pool’s size on
the results when using IDA with our approach to create diverse
solutions. Fig. 9 shows the average normalized improvements NI of
IDA depending on the number of additional solutions. The
normalized improvement of a certain approach is calculated by
using the following formula:

NIApproach ¼ SEDO � SEApproach

SEDO � SECO
(28)

The surplus energy resulting from the application of a certain
approach SEApproach is subtracted from the surplus energy of the
same scenario when using the uncoordinated DO approach SEDO.
This is divided by the difference in surplus energy between the
decentralized and the CO approach SECO. Hence, the normalized
improvement is 100% if an approach yields equally good results as
the CO. A normalized improvement of 0% means that the used
approach leads to an equal amount of surplus energy like the un-
coordinated DO. As Fig. 9 displays, adding only one additional so-
lution leads to an average normalized improvement of 60% in the
base scenario. Adding further additional solutions enhances the
normalized improvement. However, the additional gain decreases
with an increasing number of additional solutions. We chose to
have four additional solutions for IDA and PSCO-IDA, because this
yielded a good trade-off between improvement and computational
time. We tried out different types of r-vectors to generate diverse
schedules using the diversity maximization problem of Section 3.3
and chose the following four, as their application resulted in the
lowest surplus energy:

1) 1-entries: Whole timespan with PV generation
2) 1-entries for: First third of the timespan with PV generation
3) 1-entries for: Second third of the timespan with PV generation
4) 1-entries for: 40 timeslots equally distributed over the timespan

with PV generation
5.3. Comparison of different decentralized optimization approaches

Fig. 10 shows the average normalized improvement of different
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Fig. 10. Normalized improvement of different DO approaches for a day averaged over
15 days of the base scenario.
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approaches for 15 days of the base scenario. In addition to IDA, two
configurations of PSCO and PSCO-IDA are used for the comparison.
In the one configuration, the buildings in the residential area are
randomly assigned to clusters and randomly ordered whereas in
the other configuration, the heuristic ordering explained in Section
4.3 is used. As expected, all of the five approaches yield better re-
sults than an uncoordinated DO approach but worse results
compared to the CO. While PSCO with random order is clearly
outperformed by all other algorithms, the normalized improve-
ments of IDA, PSCOwith heuristic order and PSCO-IDAwith random
order are similarly high (about 75%). Using PSCO-IDAwith heuristic
order leads to significant improvements (more than 86%). It can be
further stated that the systematic assignment of buildings to
certain clusters and systematic ordering using the proposed order
heuristic clearly leads to better results compared to a random
ordering.

5.3.1. PV sensitivity analysis
We altered the mean peak of the PV system between 5 kW and

10 kW and calculated the average normalized improvement of the
different approaches. Fig. 11 illustrates the results. Increased PV
generation tends to result in lower improvements for all ap-
proaches. A reason for this might be that higher average PV peaks
lead to more PV generation whereas the load flexibility potentials
do not change. This makes it more difficult for decentralized ap-
proaches to use the relatively small load flexibility potential for
matching the large-scale PV generation in an optimal way since,
opposed to the centralized approaches, the DO itself is not aware of
other buildings’ situations.

When having buildings with an average PV peak of 5 kW, the
normalized improvement for PSCO-IDA (Heuristic Order) is about
93% whereas a PV peak of 10 kW leads to improvements of about
80%. For all cases, PSCO-IDA (Heuristic Order) yields the best results.
The higher the average PV peak, the wider the gap between PSCO-
Fig. 11. Normalized improvement of different DO approaches for a day averaged over
15 days depending on the average peak of the buildings’ PV system.
IDA (Heuristic Order) and the other algorithms. PSCO (Heuristic Or-
der) leads to better results than IDA in four of the six investigated
cases, and PSCO-IDA (Random Order) results in the second highest
improvements in all cases. Due to illustrative reasons, Fig. 10 does
not include the results for PSCO with random order, as the
normalized improvement when using this approach is only about
20%.

Further, we used different spreads for the peaks of the buildings’
PV systems. For the aforementioned results, a maximum deviation
of 3 kW from the mean PV peak was used with an average peak of
8 kW. This means that the peak powers of the PV systems for the 90
buildings are equally distributed between 8 and 3 ¼ 5 kW and
8 þ 3 ¼ 11 kW.We varied the maximal deviation from the mean PV
peak between 0 and 5 kW while having a mean of 8 kW. Fig. 12
depicts the resulting normalized improvements for different DO
approaches (PSCO (Random Order) is again not illustrated as it only
led to improvements around 20%). A higher spread leads to slightly
higher improvements for all approaches. Stronger deviations be-
tween the PV generations of the buildings make coordination ap-
proaches more useful as they enable the buildings to use balancing
effects.

5.3.2. Runtime analysis
For the decentralized approaches, the overall runtime is calcu-

lated by adding the time for the coordination procedure to the
maximum time a building needed to generate the schedules, since
the coordination cannot start before each building has generated its
schedules. We ran all the optimizations and simulations with
different numbers of buildings. Fig. 13 illustrates the average run-
time in seconds of different DO approaches depending on the
number of buildings. While PSCO has similar average runtimes,
uncoordinated DO, IDA and PSCO-IDA have increased runtimes.
However, the runtimes are generally rather low (under 50 s) and
the number of buildings has a negligible impact on the runtime,
making these approaches applicable to larger residential areas. The
centralized approach has strongly increased average runtimes that
are illustrated in Fig. 14 (runtime is shown in minutes). Further-
more, the CO does not scale well with the number of buildings as
the runtime grows disproportionately. Even with the used simple
optimization model, the average runtime for a residential area with
150 buildings for one day was above 45 min. These results show
that the centralized approach is not applicable to larger residential
areas or more complex optimization problems.

5.3.3. Number of sent messages
The buildings have to send messages to apply the DO ap-

proaches. Fig. 15 shows the average number of sent messages for
Fig. 12. Normalized improvement of different DO approaches for a day averaged over
15 days depending on the maximum deviation from the mean peak of the buildings’ PV
system.
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Fig. 13. Runtime in seconds of the different DO approaches for a day averaged over 15
days.

Fig. 14. Runtime in minutes of the centralized optimization approach for a day aver-
aged over 15 days.

Fig. 15. Number of sent messages for a day averaged over 15 days of the base scenario.
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one day averaged over 15 days of the base scenario (90 buildings).
PSCO only needed 45 messages to be sent while the number for IDA
and PSCO-IDA is strongly increased. However, as one sent message
merely contains one profile for the surplus energy, the amount of
exchanged data is rather low. When using the CO approach, the
number of messages is lower than the ones of IDA and PSCO-IDA.
But in this case, each of the 90 buildings have to send the four input
data profiles (electrical demand, heat demand, DHW demand and
PV generation) to the central controller before the optimization.
This leads to 360 (4 � 90) profiles being sent before the optimi-
zation. The output of the CO exists of two schedules for each
building (one for each thermal storage). This requires sending
further 180 (2 � 90) profiles. While the number of sent messages is
lower compared to IDA and PSCO-IDAwhen using CO, the amount of
data that has to be exchanged is higher. The asterisk on the number
of sent messages for CO indicates this.
5.4. Critical appraisal

We made some simplifications for the building model used in
our analysis. Our aimwas to compare the decentralized approaches
to the centralized approach. Increasing the model’s level of detail
would lead to strongly increased computational times for the CO
making a study like ours infeasible. The coordination part of the DO
approaches is independent of the way the schedules are generated.
The resulting optimization problem from a complex model can, for
example, be solved by (meta) heuristics, which can generate a set of
different schedules for the DO approaches within a predefined time
span. Using an exact solver is also possible. Moreover, all optimi-
zations were carried out under the assumption of perfect foresight.
As in reality all predictions are erroneous, using the investigated
approaches in real-world applications requires combining them
with uncertainty handling methods like [32e34].

In our study we only investigated the applicability of different
optimization approaches to exploit the electrical load flexibility in
residential areas from a system perspective. We neither analyzed
market mechanisms for incentivizing building owners to use their
flexibility, nor did we use market strategies for locally trading
electricity. The aim of this study is to show how to optimally use the
flexibilities of electric heating devices from a system perspective.
The design of market strategies is not in the scope of this paper.
6. Summary and conclusion

In this paper, we developed novel decentralized optimization
approaches to exploit the flexibility of electric heating devices of
buildings in residential areas. Moreover, we introduced a new
optimization procedure that generates the required schedules of
flexible devices for the Iterative Desync Algorithm (IDA) in a sys-
tematic way. The new optimization procedure uses an additional
optimization problem that outputs diverse schedules for the
problem of minimizing surplus energy from locally generated
renewable energy. For our case study, we modeled a residential
area with 90 buildings that all have a photovoltaic system. We used
three types of buildings that have different insulation levels and use
different electric heating devices coupled with thermal storage.

First, we showed that if the buildings only optimize for them-
selves without coordinating with other buildings, the resulting
surplus energy of the residential area for one day is on average
55 kWh (at maximum 300 kWh) higher compared to centralized
optimization. Using IDA with our approach to systematically
generate diverse solutions on average led to 100 kWh less surplus
energy compared to using IDA with the automatically created so-
lution pool of the commercial solver Cplex.

Furthermore, we developed the Parallel Successive Cluster Opti-
mization (PSCO) algorithm and the Parallel Successive Cluster Opti-
mization with IDA (PSCO-IDA) algorithm, which is an extension of
the IDA algorithm. PSCO-IDA outperformed IDA in all our scenarios
and on average led to improvements of about 10%. The PSCO algo-
rithm led to similar results as IDA while having reduced data ex-
change requirements. All investigated approaches led to
improvements compared to a decentralized optimization approach
without coordination. Although centralized optimization yields
better results than the decentralized optimization approaches, our
analysis shows that it has strongly increased runtimes and is not
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applicable to larger residential areas. When considering additional
flexibility options, the computational complexity of the centralized
approaches will be even higher. Furthermore, the centralized
approach breaches the privacy of the inhabitants and requires
larger amounts of data to be exchanged between the buildings. Our
study reveals the strong advantages of applying decentralized
optimization approaches in future energy systems with high shares
of renewable energy sources.

Future work could analyze the applicability of decentralized
optimization approaches to other flexibility options like electric
vehicles and stationary batteries. Moreover, generation by wind
turbines should be considered in future work. Including wind en-
ergy and more flexible loads in the analysis raises the questions of
grid stability. In future research, we intend to consider the addi-
tional goal of grid stability for the decentralized optimization ap-
proaches. Furthermore, the combination of decentralized
optimization approaches with uncertainty handling methods for
Table A.1
Comparison of different papers studying approaches for DO

Different methods for
DO

Systematic generation of various
solutions

A
u

Harb et al. [7] ✘ ✔ (Decomposition) ✘

Kolen et al. [2] ✘ ✘ ✔

Ramchurn et al. [11] ✘ ✔ ✔

Ogston et al. [12] ✘ ✘ ✘

Liu et al. [8] ✘ ✔ (Decomposition) ✘

Blaauwbroek et al.
[13]

✘ ✔ ✘

Braun et al. [6] ✔ ✔ (Decomposition) ✘

Diekerhof et al. [9] ✘ ✔ (Decomposition) ✘

Juelsgaard et al. [10] ✘ ✔ (Decomposition) ✘

Hu et al. [14] ✘ ✔ ✘

Worthmann el al
[15].

✔ ✔ ✘

Chang et al. [16] ✔ ✔ ✔

Our study ✔ ✔ ✔

Table B.1
Parameters of the heating systems

Parameter Value

Heated area of the buildings 140 m2

Concrete width (for the underfloor heating system) 7 cm
Density of concrete

2400
kg
m3

Heat capacity of concrete
1000

J
kg,K

Temperature range of the underfloor heating system 20e22 �C
Temperature range of the hot water tank (buffer storage) 30e45 �C
DHW tank volume 150 l, 200 l
Losses of space heating 45 W
Losses of DHW tank 35 W
Supply temperature underfloor heating system 30 �C
Supply temperature hot water tank (buffer storage) 60 �C
Supply temperature hot water tank (DHW) 45 �C
COP of the air-source heat pump for DT ¼ 28 K 3.8
COP of the air-source heat pump for DT ¼ 42 K 2.8
COP of the ground-source heat pump for DT ¼ 35 K 4.7
COP of the ground-source heat pump for DT ¼ 45 K 3.7
smart grids should be investigated.
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Appendix

A. Literature review
bsence of central control
nit

Comparison to DO without
coordination

Comparison to
CO

✘ ✔

✔ (✔)
✘ ✔

✔ ✔

✔ ✘

✔ ✔

✘ ✔

✘ ✔

✘ ✔

✘ ✔

✔ ✔

✘ ✔

✔ ✔
B. Parameters of the heating systems
Source Comment

[21] Assumption: Not all rooms in the cellar are heated
[35] DIN standard 18560 for screeds in building construction
[36] European standards for concrete EN 206-1

[36] European standards for concrete EN 206-1

[37] Assumptions for optimal comfort
[38]
[29] 200 l for 4 inhabitants, 150 l for 2

Assumption
[39] 2nd highest efficiency class (EU regulations 814/2013)
[37]
[38]
[40]
[41] Similar value as model LA 28TBS from Glen Dimplex
[41] Similar value as model LA 28TBS from Glen Dimplex
[42] Similar value as model SIK 6TES from Glen Dimplex
[42] Similar value as model SIK 6TES from Glen Dimplex
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C. Surplus energy minimization problems

Building type 1 (non-modulating ground-source heat pump)

min SE ¼
XZ

t¼1

PSurplusþt , Dt (C.1)

subject to:

Tmin � TBSt � Tmax c t (C.2)

VDHWmin�VDHWuse
t � VDHWmax c t (C.3)

TBS1 � TBSZ � TBS
1 c t (C.4)

VDHWuse
1 �VDHWuse

Z � VDHWuse
1 c t (C.5)

xt � hAuxt c t (C.6)

yt �
�
1�hAuxt

�
c t (C.7)

Ptotalt ¼ ðxt þ ytÞ, PHP þ PDemand
t c t (C.8)

PSurplust ¼ PPVt � PTotalt c t (C.9)

PSurplust ¼ PSurplusþt � PSurplus�t c t (C.10)

PSurplusþt � Mþ
t ,h

positive
t c t (C.11)

PSurplus�t � M�
t ,

�
1�hpositivet

�
c t (C.12)

TBSt ¼ TBSt�1 þ
QSH;BT1

t � QDemandSH
t � QLossesSH

t

VBS,rBS,cBS
(C.13)

VDHWuse
t ¼VDHWuse

t�1 þ QDHW; BT1
t � QDemandDHW

t � QLossesDHW
t

TDHW,rWater,cWater

(C.14)

QSH;BT1
t ¼ xt,PHP,COP,Dt (C.15)

QDHW;BT1
t ¼ yt,PHP,COP,Dt (C.16)

xt 2 f0;1g; yt 2f0;1g; hAuxt 2f0;1g; hpositivet 2f0;1g;
PSurplusþt � 0; PSurplus�t � 0 c t

(C.17)
Building type 3 (gas heating device with additional electric
heating element)

min SE ¼
XZ

t¼1

PSurplusþt , Dt

�
XZ

t¼1

0:01,
�
xElectrict , PElectricSH þ yElectrict , PElectricDHW

�

(C.18)

subject to

Tmin � TBSt � Tmax c t (C.19)

VDHWmin�VDHWuse
t � VDHWmax c t (C.20)

TBS1 � TBSZ � TBS1 c t (C.21)

VDHWuse
1 �VDHWuse

Z � VDHWuse
1 c t (C.22)

xGast � hAuxt c t (C.23)

yGast �
�
1�hAuxt

�
c t (C.24)

PTotalt ¼ xElectrict ,PElectricSH þ yElectrict , PElectricDHW

þ PDemand
t c t (C.25)

PSurplust ¼ PPVt � Ptotalt c t (C.26)

PSurplust ¼ PSurplusþt � PSurplus�t c t (C.27)

PSurplusþt � Mþ
t ,h

positive
t c t (C.28)

PSurplus�t � M�
t ,

�
1�hpositivet

�
c t (C.29)

TBSt ¼ TBSt�1 þ
QSH;BT3

t � QDemandSH
t � QLossesSH

t

VBS,rBS,cBS
(C.30)

VDHWuse
t ¼VDHWuse

t�1 þ QDHW; BT3
t � QDemandDHW

t � QLossesDHW
t

TDHW,rWater,cWater

(C.31)

QSH;BT3
t ¼ xGast ,PGas,hGas,Dtþ xElectrict ,PElectricSH,hElectricSH,Dt

(C.32)

QDHW ;BT3
t ¼ yGast ,PGas,hGas,Dt

þ yElectrict ,PElectricDHW,hElectricDHW,Dt (C.33)
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xGast 2f0;1g;yGast 2f0;1g;xElectrict 2½0;1�; yElectrict 2½0;1� ;
hAuxt 2f0;1g; hpositivet 2f0;1g; PSurplusþt �0; PSurplus�t �0 c t

(C.34)
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D. Optimization problem for generating diverse schedules.

Building type 1 (non-modulating ground-source heat pump)

max D ¼
XZ

t¼1

�
PDiversityþt þ PDiversity�t

�
, rt (D.1)

subject to:

PDiversityt ¼ POptimal
t � PTotalt c t (D.2)

PDiversityt ¼ PDiversityþt � PDiversity�t c t (D.3)

PDiversityþt � Mþ
t ,h

Diverstiyþ
t c t (D.4)

PDiversity�t � M�
t ,

�
1�hDiverstiyþt

�
c t (D.5)

SE¼
XZ

t¼1

PSurplusþt , Dt (D.6)

SE� SEoptimal þ
�
SEoptimal , bufferDeviaton

�
c t (D.7)

hDiverstiyþt 2 f0;1g; PDiversityþt � 0; PDiversity�t � 0 c t (D.8)

and the constraints (C.2)-(C.17).

Building type 3 (gas heating device with additional electric
heating element)

max D ¼
XZ

t¼1

�
PDiversityþt þ PDiversity�t

�
,rt

�
XZ

t¼1

0:01,
�
xElectrict , PElectricSH þ yElectrict , PElectricDHW

�
(D.9)

subject to:

PDiversityt ¼ POptimal
t � PTotalt c t (D.10)

PDiversityt ¼ PDiversityþt � PDiversity�t c t (D.11)

PDiversityþt � Mþ
t ,h

Diverstiyþ
t c t (D.12)

PDiversity�t � M�
t ,

�
1�hDiverstiyþt

�
c t (D.13)

SE¼
XZ

t¼1

PSurplusþt , Dt (D.14)
SE� SEoptimal þ
�
SEoptimal , bufferDeviaton

�
c t (D.15)

hDiverstiyþt 2 f0;1g; PDiversityþt � 0; PDiversity�t � 0 c t (D.16)

and the constraints (C.19)-(C.34).
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A paradigm shift has to be realized in future energy systems with high shares of

renewable energy sources. The electrical demand has to react to the fluctuating

electricity generation of renewable energy sources. To this end, flexible electrical loads

like electric heating devices coupled with thermal storage or electric vehicles are

necessary in combination with optimization approaches. In this paper, we develop a

novel privacy-preserving approach for decentralized optimization to exploit load

flexibility. This approach, which is based on a set of schedules, is referred to as

SEPACO-IDA. The results show that our developed algorithm outperforms the other

approaches for scheduling based decentralized optimization found in the literature.

Furthermore, this paper clearly illustrates the suboptimal results for uncoordinated

decentralized optimization and thus the strong need for coordination approaches.

Another contribution of this paper is the development and evaluation of two methods

for distributing a central wind power profile to the local optimization problem of

distributed agents (Equal Distribution and Score-Rank-Proportional Distribution). These

wind profile assignment methods are combined with different decentralized

optimization approaches. The results reveal the dependency of the best wind profile

assignment method on the used decentralized optimization approach.
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Abstract 

A paradigm shift has to be realized in future energy systems with high shares of renewable energy 

sources. The electrical demand has to react to the fluctuating electricity generation of renewable 

energy sources. To this end, flexible electrical loads like electric heating devices coupled with thermal 

storage or electric vehicles are necessary in combination with optimization approaches. In this paper, 

we develop a novel privacy-preserving approach for decentralized optimization to exploit load 

flexibility. This approach, which is based on a set of schedules, is referred to as SEPACO-IDA. The results 

show that our developed algorithm outperforms the other approaches for scheduling based 

decentralized optimization found in the literature.  Furthermore, this paper clearly illustrates the 

suboptimal results for uncoordinated decentralized optimization and thus the strong need for 

coordination approaches. Another contribution of this paper is the development and evaluation of two 

methods for distributing a central wind power profile to the local optimization problem of distributed 

agents (Equal Distribution and Score-Rank-Proportional Distribution). These wind profile assignment 

methods are combined with different decentralized optimization approaches. The results reveal the 

dependency of the best wind profile assignment method on the used decentralized optimization 

approach.  

Keywords: Demand response, Decentralized optimization, Smart grid, Wind and PV integration, 

Electric heating, Electric vehicles 

1 Introduction 

As the share of volatile renewable energy sources (RES) like photovoltaics (PV) and wind energy has 

been increasing in Europe, there is a strong need for demand response to balance demand and supply 

[1]. Especially electric vehicles (EV) and electric heating devices coupled with thermal storage can react 

to the intermittent electricity production from RES in residential areas by providing the needed 

flexibility [2, 3]. Coupling the electricity sector with the heat and transport sector is a vital step towards 

using high shares of RES [4]. The demand for heat is the main energy demand in residential areas in 

most countries. Electic heating devices can use existing infrastructures like hot water tanks or the 

inertia of building mass to store energy. Thus, their operation can be shifted to times with high 

generation by RES without affecting the residents’ comfort level.  

Advanced measurement devices like smart meters and intelligent monitoring and control strategies 

transform the conventional electricity grid into a smart grid [5]. A smart grid can reduce the curtailment 

of RES and thus increase the self-consumption rate of locally generated RES. In the year 2018, around 

                                                           

*Corresponding author. 

E-mail addresses: thomas.dengiz@kit.edu (T. Dengiz), jochem@kit.edu (P. Jochem), fichtner@kit.edu 

(W. Fichtner) 

76



 

 

5.4 GWh of electricity production from RES were curtailed in Germany [6]. Wind energy caused about 

97 % of the curtailed energy, while the share of PV was approximately 2 %. Furthermore, intelligent 

control approaches can lower the peak load in local grids and thus reduce the stress on the 

transformers.    

Centralized scheduling-based optimization (CO) is often applied in the literature to exploit the electric 

load flexibilities in residential areas [7]. In CO, a central unit generates schedules for all buildings in a 

residential area based on demand and generation forecasts and directly controls the flexible devices. 

While CO leads to the overall best results, it has many significant disadvantages that make its 

application difficult in real-world scenarios. CO approaches infringe on the privacy of the inhabitants 

[8, 9] and have a high computational complexity due to the NP-hardness of scheduling problems [10]. 

Moreover, CO approaches are not robust against single-point failures and cyber-attacks [9, 11]. 

Decentralized optimization (DO) approaches, on the contrary, do not depend on a central control unit. 

Each building only optimizes its own goal based on local information. DO approaches have a higher 

level of robustness and lead to increased data-privacy while having reduced computational complexity 

[8, 11]. However, uncoordinated DO of the single buildings without any interaction with the other 

buildings in a residential area leads to results that are far away from the optimum for the entire system 

[9].       

This paper has two main contributions. The first one is the development of a novel coordinating DO 

approach for scheduling-based optimization. We compare our approach to existing ones from the 

literature, to CO, and to a conventional control approach that is used nowadays. Moreover, we 

introduce and investigate methods for assigning central wind power profiles to the local optimization 

problems of different buildings in a residential area. For a large-scale analysis of the developed 

methods in a variety of scenarios, we use a multi-objective optimization problem that exploits the 

flexibility of electric heating devices and EVs. This paper is structured as follows: In Section 2, we sum 

up the related work, and in Section 3, we describe the residential area for our case study and the 

optimization problem. Section 4 introduces the novel DO approach and wind assignment methods. We 

show the results of our case study in Section 5 and summarize the paper in Section 6.  

 

2 Related Work 

We use scheduling-based approaches for exploiting the flexibility of electric heating devices and EVs 

in this study. These approaches determine an optimal schedule for the operation of the flexible device 

as the output of an optimization problem. We found several DO approaches for demand response in 

the literature. Commonly used techniques are decomposition methods [12–15]. A single optimization 

problem is broken down into multiple smaller optimization problems when using decomposition 

approaches. This process has to be carried out by a central control unit that defines the optimization 

problems for the decentralized agents.  

Braun et al. [12] and Worthmann et al. [16] use hierarchical model predictive control to coordinate the 

DO of different agents, and Menon et al. [17] use distributed model predictive control for demand 

response. The authors of [8, 9, 18, 19] use approaches where no central control unit is present. For the 

approach introduced by Chang et al. [19], the buildings need to exchange consumption and generation 

data, which interferes with the privacy of the residents [12, 16]. Ramchurn et al. [18] use a time-

dependent price signal and a coordinative optimization mechanism to reduce the costs and the peak 

load of multiple buildings in a decentralized way. The DO algorithms in [8, 9, 20, 21] are based on 

creating and coordinating a set of schedules for the local optimization problems of different buildings.   
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While a central control unit is necessary in [20, 21], the DO approaches by Kolen et al. [8] and Dengiz 

et al. [9] are based on a set of schedules and do not need a central controller. Kolen et al. introduce a 

two-stage approach to exploit the flexibility of electric heating devices. In the first step, every agent 

creates a pool of (near-) optimal schedules by solving their local optimization problems.  The buildings 

afterward coordinate the selection of the individual schedules to optimize a common goal in the local 

grid. Dengiz et al. extend the coordinating algorithm by Kolen et al. and define a procedure to generate 

a diverse set of schedules for the problem of maximizing the self-consumption rate of locally generated 

RES. As we saw potential for improvement, we introduce a novel DO approach in this paper that is 

based on the coordination mechanism by Kolen et al. and the approach by Dengiz et al. for generating 

diverse solution sets.  

Several studies also apply decomposition methods [11, 22, 23] to use wind energy for demand 

response in a decentralized way. In [24, 25], the authors use load aggregation methods to aggregate 

the electrical load and the demand response capabilities of multiple residential buildings to participate 

in the electricity market. Xu et al. [25] use a stochastic day-ahead economic dispatch model to improve 

the utilization of wind energy. Shao et al. [24] develop a real-time demand response exchange market 

that is capable of balancing short-term fluctuations of wind power. In addition to the novel approach 

for coordinating DO, we introduce methods that distribute the whole wind power profile of a 

residential area to the local optimization problems of different buildings. To the best of our knowledge, 

this is the only study that investigates methods for assigning wind power profiles to decentralized 

agents that apply coordinating DO approaches based on a set of schedules.  

3 Optimization problem for the residential area of our case study 

In this section, we describe the optimization problem for the residential area of our case study. The 

different building types with their corresponding heating systems are shortly described in Section 3.1, 

and the multi-objective optimization problem for exploiting the load flexibility potentials is explained 

in Section 3.2.  

3.1 Different building types and heating systems  

The residential area in our case studies consists of three different building types that all represent 

single-family buildings. Building type 1 and building type 2 have a high insulation level and use an 

underfloor heating system (for space heating) and a hot water tank (for domestic hot water) as thermal 

storage. Building type 1 uses a non-modulating ground-source heat pump and building type 2 uses a 

modulating air-source heat pump. Buildings belonging to the third category have a mediocre insulation 

standard and use a combined storage system for space heating and domestic hot water. Their primary 

heat source is a gas boiler. In addition to that, a modulating electric heating element is used in the 

combined hot water tank.  

Figure 1 displays a schematic view of the residential area’s local grid. Some buildings are equipped with 

a PV system and some have EVs that are charged at home. Furthermore, a wind turbine is connected 

to the local grid. All buildings use an energy management system (EMS) for controlling the flexible 

heating systems and the charging of the EVs. A transformer connects the local grid to other grid levels.  

Table A.1 (Appendix) lists the parameters of the heating systems and the EVs in the residential area. In 

Section 5.1, we describe how we generate the scenarios for our case study. We use the software tool 

synPRO that generates realistic synthetic data for the load profiles (demand for electricity, space 

heating, and DHW) and PV generation [26].  
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Figure 1: Local grid of the residential area 

 

3.2 Multi-objective optimization problem 

The buildings in the residential area solve an optimization problem with two objectives. The first goal 

is to minimize the surplus energy �� and thus to maximize the self-consumption rate of locally 

generated RES. Further, the buildings intend to minimize their peak loads �����. To determine an 

optimal schedule for the electric heating devices and the EVs, each building solves a multi-objective 

optimization problem. Eq. (1) shows the objective function for the individual buildings. We combine 

the two objectives by using a weighted sum approach. Thus, the objective space is transformed into a 

one-dimensional space and we can apply conventional algorithms for solving single-objective 

optimization problems [27]. We multiply the two objectives by the two weights �	 and �
 that sum 

up to one. To avoid biases caused by different scales of the objectives, we divide each of the objective 

variables (�� and �����) by their corresponding normalized values (����� and ����
���� ). These values 

represent the optimal solution for each of the two objectives if the weight of the other objective is set 

to zero. They are obtained by solving two auxiliary single-objective optimization problems separately 

prior to the basic optimization problem with the two objectives. 

 
min							 �	 ⋅

��

�����
��
 ⋅

�����

����
����

 

 

(1) 
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 The optimization problems have the following constraints: 

• Temperature limits of the buffer storage 

• Volume limits of the hot water tank 

• Heat pump cannot heat up both storages of a building simultaneously (building types 1 and 2) 

• Power constraint of the heating device 

• Power and availability constraint for charging the EV 

• State of charge (SOC) limitation constraints for the EV 

The following variable definitions are part of the optimization problem: 

• Amount of surplus energy 

• Power of RES (wind and PV) 

• Peak load 

• Difference equation for the temperature of the buffer storage (building types 1 and 2) 

• Difference equation for the volume of the hot water tank (building types 1 and 2) 

• Difference equation for the energy content of the combined storage (building type 3) 

• Difference equation for the SOC of the EV 

The coordinating DO approaches of Section 4.2 require the buildings to have not only one schedule 

but a set of multiple schedules. We use the method introduced in [9] to generate a diverse solution 

pool that leads to much better results than the conventional procedure of commercial solvers to collect 

and store the solutions found during the optimization. For this purpose, all buildings have to solve 

another optimization problem that maximizes the diversity of a new solution to a given optimal 

schedule. The full commented mathematical representation of the basic problem (described in this 

section) and the diversity maximization problem (described in [9]) for all three building types can be 

found at the data repository hosting the supplementary materials for this paper [28]. Moreover, we 

uploaded the commented code (written in the modeling language GAMS) for all optimization problems 

used in our study.  

 

4 Decentralized optimization   

We describe methods for assignment of wind power to buildings in Section 4.1. In Section 4.2, we 

explain two coordination approaches for decentralized optimization from the literature and introduce 

a novel approach that is based on the two other ones.  

4.1 Methods for assignment of wind power to decentralized agents 

To assign a central wind power profile to the local optimization problems of different buildings, we 

propose and investigate two simple methods. Figure 2 illustrates these two methods for the 

distribution of an entire wind power profile to five buildings. The upper diagram shows an exemplary 

profile of a small wind turbine that should be distributed to the different buildings such that they can 

incorporate the generated wind power into their optimization procedures. The left-hand picture 

depicts the assignment when using the Equal Distribution (ED) method. The entire profile is equally 

distributed to the five buildings. Eq. (2) shows the formula to calculate the wind power assigned to 

building �.  For every time slot �, the power value of the entire wind power profile ��
���������� is 

divided by the number of buildings. Thus, each building gets an equal share of wind energy. The 

buildings include these assigned profiles in their local optimization problems by adding the 

corresponding values to their PV generation profiles.  
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(2) 

The picture on the right-hand side of Figure 2 shows the Score-Rank-Proportional Distribution (SRPD) 

method. In the first step, a score is calculated for every building by using Eq. (3). The power of the 

building’s electric heating device ��
/��0��0��1�����2

 and the power for the EV charging station 

��
/345�2��2

 are subtracted from the peak power of the PV system ��
�3����. This score roughly 

quantifies the expected self-consumption rate of locally generated PV. Buildings that have a high score 

are more likely to generate surplus energy since their flexible electrical demand might not match their 

PV generation. As all information from the buildings is static, there is no need to measure any data 

from the buildings or to monitor demand profiles, which would infringe on the residents’ privacy. In 

the next step, the buildings are ranked according to this score. The building with the highest score gets 

the highest rank and the building with the lowest score gets the lowest rank. In the example of Figure 

2, building 5 has the lowest score and thus the lowest rank (67&89 = 5) and building 1 has the highest 

score and thus the highest rank (67&8	 = 1). SRPD uses Eq. (4) for assignment of the wind power 

profiles to the buildings. The entire wind power for each time slot is divided by the sum of ranks (in 

this example, the sum of ranks is ∑ 67&8�
<
� = 1 � 2 � 3 � 4 � 5 = 15). This value is then multiplied 

by the rank of the building which leads to an assignment of more wind power to buildings with lower 

ranks, as is illustrated in Figure 2. We evaluate the two methods SRPD and ED in Section 5.2. 

 Score� =	��
�3���� − ��

/��0��0��1�����2
− ��

/345�2��2
 

(3) 

 ��,�
���� =	

��
����������

∑ 67&8�
<
�

⋅ 	67&8�							∀	�	 ∈ +1,… , "., ∀	� 
(4) 
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Figure 2: Two methods for assignment of wind power to buildings 

4.2 Coordination methods for decentralized optimization 

4.2.1 Iterative Desync Algorithm (IDA) 

The Iterative Desync Algorithm (IDA), developed by Kolen et al. [8], is the basic approach for the two 

other coordinating DO algorithms used in this paper. Figure 3 schematically displays IDA in a residential 

area. In the first step, all buildings simultaneously create a solution pool that consists of multiple 

schedules by solving their local optimization problems (see Section 3.2). Afterward, the buildings 

coordinate the selection of the individual schedules. All buildings are ordered in a cycle and have a 

predecessor and successor each. Furthermore, the buildings store local views on the residential areas’ 

load profiles (profiles resulting from generation and demand). In each iteration, each building 

successively selects the schedule out of its solution pool that leads to an optimal value of a common 

objective. This common objective of our study is based on the load profiles of the residential area. It 

can be calculated by using the weighted sum of the surplus energy in the residential area, and the peak 

load (see Eq. (1)). The building then updates the common load profiles of the residential area based 

on their selected schedules (demand profile) and generation profiles. Next, the building forwards the 

updated profiles to the next building in the cycle, which performs the same procedure. The algorithm 

terminates if none of the buildings changes its previously selected schedule for one iteration through 

the cycle.  

To guarantee the privacy-friendliness of this algorithm, the first building to start with this process adds 

a random noise vector to its load and generation profiles during the first iteration and stores this 

vector. During the second iteration through the cycle, this building removes the previously added 

random noise from the load profiles of the residential area. 
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Figure 3: Decentralized optimization approach IDA in a residential area [9] 

 

4.2.2 Parallel Successive Cluster Optimization with IDA (PSCO-IDA) 

The PSCO-IDA algorithm groups the buildings of the residential area into multiple clusters of a specific 

size. The number of steps for PSCO-IDA is proportional to the number of buildings in a cluster. Figure 

4 shows the algorithm for clusters of size two, as this cluster size led to the best results in our 

experiments. In the first step, only the first of the two buildings in each cluster solve their local 

optimization problems in parallel and thus generate a solution pool. Afterward, they forward the 

resulting surplus power profiles to the next buildings in the clusters, which use these as an input to 

their local optimization problems. In contrast to IDA, the results of the first buildings’ optimization 

problems directly influence the solution pool of the second buildings in the clusters. In the last step, 

all buildings of the residential area use IDA to coordinate the selection of the schedules. A more 

detailed description of IDA and PSCO-IDA can be found in [8, 9]. 

Instead of randomly assigning buildings to the clusters, we use a simple ordering heuristic that is 

introduced in [9] and that led to strongly improved results. For each building, a score is calculated by 

using Eq. (3). The building with the highest score and the building with the lowest score are grouped 

into the first cluster. For the second cluster, we use the building with the second-highest and the 

second-lowest score. We successively do this until each building belongs to one cluster. The basic idea 

behind this clustering is that the buildings with low PV generation can use the surplus power of 

buildings with high PV generation for their flexible devices as buildings with higher scores tend to 

generate more surplus energy. 
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Figure 4: PSCO-IDA algorithm with two buildings per cluster [9] 

4.2.3 Sequential Parallel Cluster Optimization with IDA (SEPACO-IDA) 

The SEPACO-IDA algorithm is one of the two main contributions of this paper. It efficiently combines 

the PSCO-IDA and IDA algorithms. As in PSCO-IDA, the buildings are divided into an arbitrary number 

of clusters. In SEPACO-IDA, the number of steps is proportional to the number of clusters. Figure 5 

illustrates the algorithm for two clusters. We investigated the algorithm with different numbers of 

clusters, and two clusters led to the best results while having the lowest computational time. In the 

first step, the buildings of the first cluster simultaneously generate a solutions pool and use IDA for 

selecting individual schedules. Afterward, the resulting load profiles of the cluster are sent to all 

buildings from the second cluster (2nd step). Next, the buildings of the second cluster likewise generate 

a solution pool and use IDA for coordination. The resulting load profiles of the first cluster influence 

the local optimization problems of the buildings in the second cluster. The surplus power profile of the 

previous clusters can be assigned to the building of the new cluster by using the methods explained in 

Section 4.1 for the wind power assignment. In the last step, all buildings of the residential area use IDA 

to coordinate the selection of the schedules jointly. The difference to PSCO-IDA is that in SEPACO-IDA, 

the buildings in one cluster generate their solution pool simultaneously and not successively. 

Moreover, the buildings use IDA for the coordination within every cluster, and optimization of the 

different clusters is done sequentially and not in parallel. As no building receives direct information 

from another single building, SEPACO-IDA has a higher level of privacy compared to PSCO-IDA.  

We investigated different approaches for assigning buildings to the clusters. The best result was 

obtained when using the score function of Section 4.1 (Eq. (3)) and putting the buildings with high 

scores into the first cluster and the buildings with low scores into the second cluster. We also tried a 

random assignment of buildings to the clusters and assignments based on either an increasing sum of 

scores per cluster or a similar sum of scores per cluster. However, our approach with a decreasing sum 

of scores per cluster overall led to the best solutions. We analyze the three DO approaches and 

compare them to CO and a conventional control approach in Section 5.3. 
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Figure 5: SEPACO-IDA algorithm with two clusters 
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5 Results 

In this section, we evaluate the methods developed in Section 4. Section 5.1 describes the scenarios 

used for our analysis. In Section 5.2, we compare the two wind assignment methods and in Section 

5.3, we show the results for the different optimization approaches.  

5.1 Scenarios for the analysis 

To analyze the developed methods, we define base case scenarios for 31 days. We randomly choose 

31 days with mediocre to high PV or wind energy generation from the heating period in Germany 

(October – March). In the base case scenarios, we use 15 buildings for each of the three building types, 

resulting in 45 buildings. Of these, 15 have two residents each, whereas four persons live in each of 

the other 30 buildings. The average PV peak of buildings which have a PV system on their rooftop is 

7 kW with a maximum positive and negative deviation from the average peak power of 3 kW. This 

means that the values for the PV systems’ peak power of the different buildings are uniformly 

distributed between 4 kW (7 – 3) and 10 kW (7 + 3). The share of buildings with a PV system is 50 % in 

the base case scenarios. Ten of the buildings have an EV that is charged at home. We choose two types 

of EVs (Opel Ampera-e and BMW i3) and assume that at the beginning of the optimization horizon, the 

SOC of all vehicles is at 0.5 (50 %). This value is also the target SOC for the end of the optimization 

horizon. We use the driving and availability patters from [29] as mobility data for the EVs. Table A.1 in 

the Appendix lists the technical parameters of the EVs and the charging stations. For wind generation, 

we use profiles of the wind turbine Nordex N27/150 with a capacity of 100 kW generated by the web 

tool Renewable.ninja [30].  

In addition to the base case scenarios, we generate several further scenarios for our analysis. To this 

end, we use a Monte Carlo sampling method for the different parameters. Table 1 lists the relevant 

parameters of the residential area and their average, minimum, and maximum values. For all scenarios, 

the optimization horizon is one day with a time resolution of five minutes. We implemented the 

optimization problems in the modeling language GAMS with Cplex as the solver and used Java for the 

simulations. The solution pool for all coordinating approaches consists of five different solutions, as 

this leads to a good trade-off between the quality of the results and computational time [9].  

Table 1: Parameters for the Monte Carlo sampling 

Parameter Average Min Max 

Number of buildings type 1 15 5 25 

Number of buildings type 2 15 5 25 

Number of buildings type 3 15 5 25 

PV peak power [kW] 7 3 11 

Maximal deviation from PV 

peak power [kW] 

1.5 0 3 

Share of buildings with PV 

[%] 

50 25 75 

Number of EVs 11.5 2 21 

Power of wind turbine [kW] 140 30 250 
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5.2 Wind assignment methods 

For the evaluation of the two different wind assignment methods of Section 4.1, we use six different 

optimization approaches in combination with the wind assignment methods for the base case 

scenarios. Figure 6 shows the optimality percentages of the two wind assignment methods for the 

different optimization approaches averaged over the 31 base case scenarios with wind. Per definition, 

CO leads to an optimality of 100 %. In addition to the three coordination methods for DO described in 

Section 4.2, we include a conventional control approach (hysteresis control) that is current practice for 

today’s heating systems, and a DO approach without any coordination mechanism in the evaluation. 

The analysis shows that for CO and Conventional Control, the two assignment methods ED and SRPD 

lead to similar results since CO and Conventional Control do not depend on the assignment of wind 

power profiles to decentralized entities. The slight difference for Conventional Control occurs because 

of the random decision on whether to heat up or cool down the thermal storage at the beginning of a 

day.  

For the DO approaches, the application of ED and SRPD leads to different results. While for DO without 

coordination and for IDA, an equal distribution (ED) of the centralized wind power profile leads to 

better results, for PSCO-IDA and SEPACO-IDA, the Score-Rank-Proportional Distribution (SRPD) yields 

better results. This might be explained by the fact that for PSCO-IDA and SEPACO-IDA, a score roughly 

quantifying the expected self-consumption rate of the different buildings is already used for the 

generation of the clusters. A second assignment based on such a score might interfere with the notion 

of the initial clustering. IDA and DO without coordination do not make use of such a score. This might 

be the reason why consideration of the score brings these optimization approaches closer to 

optimality, as Figure 6 indicates.  

 
Figure 6: Optimality comparison of the two wind assignment methods for the different optimization approaches averaged 

over the base case scenarios 

5.3 Optimization approaches  

To compare and evaluate the coordination methods for DO, we use scenarios with and without wind 

power generation. PV is included in all scenarios. For the scenarios with wind energy generation, we 

use the 31 days of the base case and generate four additional scenarios per day by using the Monte 
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Carlo sampling method. This leads to a total of 155 scenarios.  We ran all scenarios with five different 

combinations of weight coefficients. Figure 7 displays the optimality of the methods used with 

different weights for the objectives averaged over all scenarios with wind and PV generation. For all 

weight combinations, Conventional Control, as expected, leads to the worst results having optimality 

percentages of around 30 %. The figure clearly shows that if all buildings only optimize their own goal 

without interacting with the other buildings, the result is quite far away from the optimal solution. For 

all weights, DO without coordination leads to optimality percentages below 50 %. The results reveal 

that SEPACO-IDA outperforms the other two coordinating DO approaches IDA and PSCO-IDA having 

optimality percentages of between 87 % and 79 %.  The differences to PSCO-IDA are small (between 

0.8 % and 2.4 %), while the improvements compared to IDA are significant (between 11.1 % and 

13.3 %). Figure 7 shows that the more the emphasis is on the second goal (reducing the peak load), 

the worse the results become for all three coordinating DO approaches (IDA, PSCO-IDA, and SEPACO-

IDA).  

 

 

Figure 7: Optimality comparison of the used optimization approaches with different weight combinations for the objectives 

averaged over all scenarios with wind and PV (w1: Weight for the Surplus Energy, w2: Weight for the Maximum Load) 

Table 2 lists the average results of the scenarios with wind and PV for different weights of the 

objectives. For Conventional Control, the values of the surplus energy and the maximum load do not 

depend on the weights of the objectives. For all four DO approaches, the results significantly change 

for the three weight combinations that have nonzero values for both objectives ([w1 = 0.75, w2 = 0.25], 

[w1 = 0.5, w2 = 0. 5], [w1 = 0.25, w2 = 0.75]). Surprisingly, when putting the whole weight and thus the 

emphasis only on one objective ([w1 = 1.0, w2 = 0.0] or [w1 = 0.0, w2 = 1.0]), the results for the single 

objective are worse than the corresponding result for that objective when also considering the other 

objective to some degree. This means that decreasing the weight for one objective from 1.0 to 0.75 

led to better results for that objective. This counterintuitive outcome can be explained by the 
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optimization approach used for creating the solution pool for the DO approaches explained in [9]. A 

diverse solution pool with different schedules is vital for the DO approaches, as the coordination 

procedure is not an exact optimization algorithm but a heuristic.  Using weights for both objectives 

leads to higher flexibility for the generation of a solution pool. This eventually can lead to better results 

for the whole residential area, although the results for the individual buildings might be worse.  

For CO, the results among the combined weights ([w1 = 0.75, w2 = 0.25], [w1 = 0.5, w2 = 0. 5], [w1 = 

0.25, w2 = 0.75]) are almost identical. The results of the objective Maximum Load for the combined 

weights are equal to the one of the single-objective optimization of the peak load ([w1 = 0.0, w2 = 1.0]). 

The results of the objective Surplus Energy are only slightly worse for the combined objectives 

compared to the single-objective optimization ([w1 = 1.0, w2 = 0.0]). This indicates that the objectives 

in our case studies are not contrary to each other. The surplus energy can simultaneously be minimized 

with the maximum load because the power of the RES mainly causes the peak load. However, if the 

full focus is on one objective only, the other objective is neglected, which leads to very poor results for 

that objective. This is valid for CO and all DO approaches. Thus, for scenarios with high power 

generation by RES in residential areas where the peak load at the transformer is mainly caused by 

feeding power of RES from the local grid into the whole grid, the consideration of a combined objective 

function is highly beneficial.  

Table 2: Average results of the scenarios with wind and PV for different weight combinations of the objectives (Surplus 

Energy in kWh and Maximum Load in kW) 

Objectives 
Conventional 

Control 

DO with no 

coordination 
IDA 

PSCO-

IDA 

SEPACO-

IDA 
CO 

Surplus Energy   

(Weight w1 = 1.0) 

666.8 

 

481.8 

 

278.0 

 

238.7 

 

236.0 

 

207.7 

 

Maximum Load  

(Weight w2 = 0.0) 

111.4 

 

93.2 

 

77.1 

 

72.6 

 

72.5 

 

75.0 

 

Surplus Energy  

(Weight w1 = 0.75) 

666.8 

 

475.6 

 

276.8 

 

236.8 

 

234.1 

 

210.3 

 

Maximum Load  

(Weight w2 = 0.25) 
111.4 82.4 64.3 56.9 56.7 37.6 

Surplus Energy  

(Weight w1 = 0.5) 
666.8 477.8 279.5 238.6 237.1 210.3 

Maximum Load  

(Weight w2 = 0.5) 
111.4 78.2 60.9 53.5 52.4 37.5 

Surplus Energy  

(Weight w1 = 0.25) 
666.8 477.8 283.2 239.7 239.6 210.4 

Maximum Load  

(Weight w2 = 0.75) 
111.4 75.7 58.4 50.5 49.1 37.5 

Surplus Energy  

(Weight w1 = 0.0) 
666.8 637.4 361.4 341.0 343.2 370.1 

Maximum Load  

(Weight w2 = 1.0) 
111.4 83.1 59.3 52.1 50.4 37.5 

 

As the authors of [9] only test the algorithm PSCO-IDA in scenarios with PV, but without wind energy, 

we also evaluate the newly developed algorithm SEPACO-IDA in scenarios without wind. Figure 8 

illustrates the optimality percentages of the used control approaches with different weights for the 

objectives averaged over all scenarios with PV and no wind. For this purpose, we used the base case 

scenarios without wind and additionally generated three scenarios for each day, leading to a total of 
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124 scenarios. The results show that SEPACO-IDA again leads to better results compared to IDA and 

PSCO-IDA (for the combined weights [w1 = 0.25, w2 = 0.75], PSCO-IDA and SEPACO-IDA have similar 

results). The optimality percentages of PSCO-IDA and SEPACO-IDA do not vary strongly for the different 

weight combinations. In contrast, the difference to IDA becomes smaller with an increasing emphasis 

on the objective of minimizing the peak load.  

 

 

Figure 8: Optimality comparison of the used optimization approaches with different weight combinations for the objectives 

averaged over all scenarios with PV and no wind (w1: Weight for the Surplus Energy, w2: Weight for the Maximum Load) 

Table 3 shows the average runtimes and number of coordination rounds of the optimization 

approaches for the base case scenarios with wind and PV. CO has the highest runtime requiring around 

20 times more time than SEPACO-IDA. We used an Intel i7 3930K system with 3.2 GHz and 64 GB RAM 

for the analysis. The MIP gap for both the centralized and the decentralized optimization problems was 

set to 0.1 %. Surprisingly, SEPACO-IDA led to a similar number of coordination rounds for selection of 

the schedules as IDA and fewer coordination rounds compared to PSCO-IDA. Although SEPACO-IDA 

needs coordination for each cluster, the final IDA step converges rather quickly. We included the load 

profiles of all buildings for all base case scenarios to the uploaded supplementary materials of this 

paper [28]. Moreover, we added result tables, which include detailed information about the results 

and the configurations of every single scenario to the supplementary materials. 
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Table 3: Average runtimes and number of coordination rounds of the optimization approaches for the base case scenarios 

Approach Runtime [s] 

Number of 

coordination 

rounds 

Conventional Control 2 - 

DO without coordination 13 - 

IDA 47 4.7 

PSCO-IDA 76 4.9 

SEPACO-IDA 86 4.7 

CO 1770 - 
 

5.4 Critical appraisal 

For our study, we made some simplifications. We assumed perfect foresight regarding the generation 

and demand of the buildings for all optimization problems. To apply the investigated methods to real-

world scenarios, they have to be combined with forecasts and uncertainty handling methods for 

scheduling-based optimization like [31, 32]. Furthermore, we assumed that all buildings agree to 

participate in the decentralized optimization without any incentive. The focus of this study was to 

investigate different optimization approaches from a system perspective and not to analyze market 

strategies for incentivizing building owners to use their flexibility or to trade their generated electricity 

locally.  

We merely tested two different methods for wind power assignment. Many other possible criteria for 

the assignment of wind power profiles to the local optimization problems of decentralized entities 

exist. Also, for the coordination approach SEPACO-IDA, clustering methods based on other score 

functions or ranking schemes have not been analyzed in detail. Doing a large-scale analysis of different 

methods for generating the clusters could even improve SEPACO-IDA.  

 

6 Summary and conclusion 

In this paper, we developed a novel coordination mechanism for optimally using flexible electrical 

loads in a decentralized way in order to react to the volatile supply from renewable energy sources in 

a residential area. The Sequential Parallel Cluster Optimization with IDA (SEPACO-IDA) combines two 

coordination algorithms from the literature for decentralized optimization that are based on a set of 

schedules (PSCO-IDA and IDA). In a case study that consists of a high number of scenarios, we 

compared our developed approach to existing approaches for decentralized optimization, to a 

conventional control approach and a centralized optimization. The load flexibility in the residential 

areas comes from electric heating devices and electric vehicles. The results reveal the superiority of 

SEPACO-IDA over the other coordinating approaches for decentralized optimization. Further, our 

analysis demonstrates that uncoordinated decentralized optimization leads to fairly bad results. In 

addition to that, we investigated the two methods Equal Distribution and Score-Rank-Proportional 

Distribution for assigning a wind power profile to the local optimization problems of decentralized 

agents. These methods are used in combination with decentralized optimization approaches.  While 

for the uncoordinated decentralized optimization and IDA, the wind assignment method Score-Rank-

Proportional Distribution yields better results, the two decentralized optimization approaches SEPACO-

IDA and PSCO-IDA profit more from the Equal Distribution method.  

91



 

 

All introduced methods are easy to implement and preserve the privacy of the residents. Our study 

shows the suboptimality of the currently used conventional control approaches and the crucial 

advantages of coordinating decentralized optimization. Sustainable energy systems with high shares 

of renewable energy sources can profit from the application of the developed methods.  They can help 

to overcome the challenges brought about by the weather-dependent electricity generation of wind 

turbines and photovoltaic systems.  

Future work could compare the used scheduling-based decentralized optimization approaches to rule-

based or to machine-learning-based control approaches. Moreover, different criteria (like the sum of 

the total electricity consumption) for the assignment of wind power profiles to decentralized 

optimization problems of buildings should be investigated. Designing novel market mechanisms to 

offer incentives to building owners to participate in demand response programs is an essential task for 

exploiting the load flexibilities in residential areas and should be analyzed in future work.  

 

 

 

 

 

Supplementary materials 

We added the following supplementary materials to an open-source online data repository [28] 

hosted at Mendeley Data (https://data.mendeley.com/datasets/8jx97kfjxg/2):  

• Full mathematical description of all optimization problems with explanations of the 

equations 

• Resulting load and temperature profiles of the buildings for the base case scenarios  

• Result tables with detailed information about the scenarios and their results 

• Commented code (in the modeling language GAMS) of the decentralized optimization 

problems for the different building types and the centralized optimization problem  
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Appendix 

Parameters of the residential area 
Table A.1: Parameters of the residential area 

Parameter Value Source Comment 

Heated area of the buildings 140 m2 [33] Assumption: Not all rooms 

in the cellar are heated 

Concrete width (for the 

underfloor heating system) 

7 cm [34] DIN standard 18560 for 

screeds in building 

construction 

Density of concrete 2400 
kg

m3 
[35] European standards for 

concrete EN 206-1 

Heat capacity of concrete 1000
J

kg⋅K
 [35] European standards for 

concrete EN 206-1 

Temperature range of the 

underfloor heating system 

20 – 22 °C [36] Assumptions for optimal 

comfort 

Temperature range of the 

hot water tank (buffer 
storage) 

30 – 45 °C [37]  

DHW tank volume 150 l, 200 l [38] 200 l for 4 residents, 150 l 
for 2  

Losses of space heating 45 W  Assumption 

Losses of DHW tank 35 W [39] 2nd highest efficiency class 
(EU regulations 814/2013) 

Supply temperature  of the 
underfloor heating system 

30 °C [36]  

Supply temperature of the 

hot water tank (buffer 

storage) 

60 °C [37]  

Supply temperature of the 

hot water tank (DHW) 

45 °C [41]  

Energy content of the 

combined storage 

14 kWh   

Electrical power of the 

heating devices 

1.2 kW (BT 1), 3 kW 

(BT 2, BT 3) 

 Thermal power of the gas 

heating device: 12 kW 

COP of the air-source heat 

pump for ΔT=28 K 

3.8 [40] Similar value as model LA 

28TBS from Glen Dimplex 

COP of the air-source heat 

pump for ΔT=42 K 

2.8 [40] Similar value as model LA 

28TBS from Glen Dimplex 

COP of the ground-source 

heat pump for ΔT=35 K 

4.7 [42] Similar value as model SIK 

6TES from Glen Dimplex 

COP of the ground-source 

heat pump for ΔT=45 K 

3.7 [42] Similar value as model SIK 

6TES from Glen Dimplex 

Battery capacity BMW i3 37.9 kWh [43]  

Charging efficiency BMW i3 85 % [43]  

Energy consumption per 

100 km BMW i3 

13.9 kWh [43]  

Battery capacity 

Opel Ampera-e 

60 kWh [43]  

Charging efficiency 

Opel Ampera-e 

89 % [43]  
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Parameter Value Source Comment 

Energy consumption per 

100 km Opel Ampera-e 

17.5 kWh [43]  

Maximal charging power for 

home charging 

4.6 kW [44] Wallbox: KEBA KeContact 

P30 

Average length of rides 

BMW i3 (Opel Ampera-e) 

35 km (45 km) [45] Assumptions inspired by the 

German Mobility Study  
 

 

 

 
 

 

 

 

 

References 
[1] Shariatzadeh F, Mandal P, Srivastava AK (2015): Demand response for sustainable 

energy systems: A review, application and implementation strategy. Renewable and 

Sustainable Energy Reviews 45: 343–350. doi: 10.1016/j.rser.2015.01.062 

[2] Shao S, Pipattanasomporn M, Rahman S (2011): Demand Response as a Load Shaping 

Tool in an Intelligent Grid With Electric Vehicles. IEEE Trans. Smart Grid 2(4): 624–631. 
doi: 10.1109/TSG.2011.2164583 

[3] Patteeuw D, Bruninx K, Arteconi A et al. (2015): Integrated modeling of active demand 

response with electric heating systems coupled to thermal energy storage systems. 

Applied Energy 151: 306–319. doi: 10.1016/j.apenergy.2015.04.014 

[4] Narayanan A, Mets K, Strobbe M et al. (2019): Feasibility of 100% renewable energy-

based electricity production for cities with storage and flexibility. Renewable Energy 

134: 698–709. doi: 10.1016/j.renene.2018.11.049 

[5] Dileep G (2020): A survey on smart grid technologies and applications. Renewable 

Energy 146: 2589–2625. doi: 10.1016/j.renene.2019.08.092 

[6] Bundesnetzagentur (2019): Quartalsbericht zu Netz- und Systemsicherheitsmaßnahmen 
- Gesamtjahr und Viertes Quartal 2018 

[7] Jordehi AR (2019): Optimisation of demand response in electric power systems, a 

review. Renewable and Sustainable Energy Reviews 103: 308–319. doi: 

10.1016/j.rser.2018.12.054 

[8] Kolen S, Molitor C, Wagner L et al. (2017): Two-level agent-based scheduling for a 

cluster of heating systems. Sustainable Cities and Society 30: 273–281. doi: 

10.1016/j.scs.2017.01.014 

[9] Dengiz T, Jochem P (2020): Decentralized optimization approaches for using the load 

flexibility of electric heating devices. Energy 193: 116651. doi: 

10.1016/j.energy.2019.116651 
[10] Ullman JD (1975): NP-complete scheduling problems. Journal of Computer and System 

Sciences 10(3): 384–393. doi: 10.1016/S0022-0000(75)80008-0 

[11] Guo F, Wen C, Mao J et al. (2016): Distributed Economic Dispatch for Smart Grids With 

Random Wind Power. IEEE Trans. Smart Grid 7(3): 1572–1583. doi: 

10.1109/TSG.2015.2434831 

[12] Braun P, Grune L, Kellett CM et al. (2015): Predictive control of a Smart Grid: A 

distributed optimization algorithm with centralized performance properties. In: Control 

ICoDa (ed) 2015 54th IEEE Conference on Decision and Control (CDC): Date: 15-18 Dec. 

2015. IEEE, [Piscataway, NJ], pp 5593–5598 
[13] Harb H, Paprott J-N, Matthes P et al. (2015): Decentralized scheduling strategy of 

heating systems for balancing the residual load. Building and Environment 86: 132–140. 

doi: 10.1016/j.buildenv.2014.12.015 

[14] Liu Y, Yu N, Wang W et al. (2018): Coordinating the operations of smart buildings in 

smart grids. Applied Energy 228: 2510–2525. doi: 10.1016/j.apenergy.2018.07.089 

 

94



 

 

[15] Diekerhof M, Schwarz S, Martin F et al. (2018): Distributed Optimization for Scheduling 

Electrical Demand in Complex City Districts. IEEE Systems Journal 12(4): 3226–3237. doi: 

10.1109/JSYST.2017.2713798 

[16] Worthmann K, Kellett CM, Braun P et al. (2015): Distributed and Decentralized Control 

of Residential Energy Systems Incorporating Battery Storage. IEEE Trans. Smart Grid 

6(4): 1914–1923. doi: 10.1109/TSG.2015.2392081 

[17] Menon RP, Amblard F, Page J (2019): Distributed Model Predictive Control For Demand 

Response On Thermal Devices in Building Blocks. In: 2019 IEEE PES Innovative Smart 
Grid Technologies Europe (ISGT-Europe), pp 1–5 

[18] Sarvapali D. Ramchurn, Perukrishnen Vytelingum, Alex Rogers et al.: Agent-based 

control for decentralised demand side management in the smart grid. In: The Tenth 

International Conference on Autonomous Agents and Multiagent Systems (AAMAS 

2011), Taiwan, Province of China. 02 - 06 May 2011. pp. 5-12 . 

[19] Chang T-H, Nedic A, Scaglione A (2014): Distributed Constrained Optimization by 

Consensus-Based Primal-Dual Perturbation Method. IEEE Trans. Automat. Contr. 

59(6): 1524–1538. doi: 10.1109/TAC.2014.2308612 

[20] Ogston E, Zeman A, Prokopenko M et al. (2007): Clustering Distributed Energy 

Resources for Large-Scale Demand Management. In: Di Marzo Serugendo G (ed) First 
International Conference on Self-Adaptive and Self-Organizing Systems, 2007: SASO '07 ; 

9 - 11 July 2007, Cambridge, Massachusetts ; proceedings. IEEE Computer Society, Los 

Alamitos, Calif. [u.a.], pp 97–108 

[21] Blaauwbroek N, Nguyen PH, Konsman MJ et al. (2015): Decentralized Resource 

Allocation and Load Scheduling for Multicommodity Smart Energy Systems. IEEE Trans. 

Sustain. Energy 6(4): 1506–1514. doi: 10.1109/TSTE.2015.2441107 

[22] Ghasemi A, Mortazavi SS, Mashhour E (2016): Hourly demand response and battery 

energy storage for imbalance reduction of smart distribution company embedded with 

electric vehicles and wind farms. Renewable Energy 85: 124–136. doi: 

10.1016/j.renene.2015.06.018 
[23] Zhao L, Zeng B (2012 - 2012): Robust unit commitment problem with demand response 

and wind energy. In: 2012 IEEE Power and Energy Society General Meeting. IEEE, pp 1–8 

[24] Shao C, Ding Y, Siano P et al. (2019): A Framework for Incorporating Demand Response 

of Smart Buildings Into the Integrated Heat and Electricity Energy System. IEEE Trans. 

Ind. Electron. 66(2): 1465–1475. doi: 10.1109/TIE.2017.2784393 

[25] Jiang Y, Xu J, Sun Y et al. (2017): Day-ahead stochastic economic dispatch of wind 

integrated power system considering demand response of residential hybrid energy 

system. Applied Energy 190: 1126–1137. doi: 10.1016/j.apenergy.2017.01.030 

[26] Fischer D, Härtl A, Wille-Haussmann B (2015): Model for electric load profiles with high 

time resolution for German households. Energy and Buildings 92: 170–179. doi: 
10.1016/j.enbuild.2015.01.058 

[27] Grodzevich O, Romanko O (2006): Normalization and Other Topics in Multi -Objective 

Optimization. Proceedings of the Fields–MITACS Industrial Problems Workshop 2006 

[28] Dengiz T (2020): Supplementary materials for paper "Demand response through 

decentralized optimization in residential areas with wind and photovoltaics". 

https://data.mendeley.com/datasets/8jx97kfjxg/2 

[29] Wang Z, Jochem P, Fichtner W (2020): A scenario-based stochastic optimization model 

for charging scheduling of electric vehicles under uncertainties of vehicle availability and 

charging demand. Journal of Cleaner Production 254: 119886. doi: 

10.1016/j.jclepro.2019.119886 
[30] Staffell I, Pfenninger S (2016): Using bias-corrected reanalysis to simulate current and 

future wind power output. Energy 114: 1224–1239. doi: 10.1016/j.energy.2016.08.068 

[31] Dengiz T, Jochem P, Fichtner W (2019 - 2019): Uncertainty handling control algorithms 

for demand response with modulating electric heating devices. In: 2019 IEEE PES 

Innovative Smart Grid Technologies Europe (ISGT-Europe). IEEE, pp 1–5 

95



 

 

[32] Mazidi M, Rezaei N, Ghaderi A (2019): Simultaneous power and heat scheduling of 

microgrids considering operational uncertainties: A new stochastic p-robust 

optimization approach. Energy 185: 239–253. doi: 10.1016/j.energy.2019.07.046 

[33] Fraunhofer-Institut für Solare Energiesysteme ISE: synPRO. 

https://www.elink.tools/elink-tools/synpro. Accessed 20 Aug 2018 

[34] DIN 18560-2:2009-09, Estriche im Bauwesen_- Teil_2: Estriche und Heizestriche auf 

Dämmschichten (schwimmende Estriche) 

[35] IBU - Institut Bauen und Umwelt e.V (2013): Beton der Druckfestigkeitsklasse C 20/25. 
https://www.beton.org/fileadmin/beton-

org/media/Wissen/Nachhaltigkeit/EPD_IZB_2013411_C20_25_D.pdf. Accessed 19 Aug 

2018 

[36] The Danfoss Group (2008): Handbook Hydronic Floor Heating. 

http://heating.danfoss.com/PCMPDF/Handbook_Introduction_VGDYA102_lo-res.pdf. 

Accessed 11 Nov 2018 

[37] Institut für Technische Gebäudeausrüstung Dresden (2014): Energetische Bewertung 

einer Wärme- und Warmwasserversorgung mit Wohnungsstationen im Vergleich mit 

einem konventionellen zentralen bzw. dezentralen System. 

https://www.oventrop.com/Pools/Files/file/de/Energetische_Bewertung_Wohnungssta
tionen_11671645-aca2-4065-85d6-8994235daae9.pdf. Accessed 18 Mar 2019 

[38] Viessmann Deutschland GmbH (2011): Planungshandbuch Wärmepumpen. 

https://www.viessmann.de/content/dam/vi-brands/DE/PDF/Planungshandbuch/ph-

waermepumpen.pdf/_jcr_content/renditions/original.media_file.download_attachmen

t.file/ph-waermepumpen.pdf. Accessed 19 Aug 2018 

[39] Umweltbundesamt (2013): Ökodesign - Richtlinie und Energieverbrauchskennzeichnung 

- Warmwasserbereiter und Warmwasserspeicher. 

https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/oekod

esignrichtlinie_und_energieverbrauchskennzeichnung_warmwasserbereiter.pdf. 

Accessed 19 Aug 2018 
[40] Glen Dimplex Deutschland GmbH: LA 28TBS. 

http://www.dimplex.de/waermepumpe/luft-wasser/aussenaufstellung/la-28tbs.html. 

Accessed 18 Mar 2019 

[41] Paulsen O, Fan J, Furbo S et al. (2008): Consumer Unit for Low Energy District Heating 

Net. Proceedings of The 11th International Symposium on District Heating and Cooling 

[42] Glen Dimplex Deutschland GmbH: SIK 6TES. 

http://www.dimplex.de/waermepumpe/sole-wasser-erdwaerme/kompakt-fuer-

einfache-und-schnelle-installation/sik-6tes.html. Accessed 18 Mar 2019 

[43] ADAC e.V. (2020): Aktuelle Elektroautos im Test: So hoch ist der Stromverbrauch. 

https://www.adac.de/rund-ums-fahrzeug/tests/elektromobilitaet/stromverbrauch-
elektroautos-adac-test/ 

[44] ADAC e.V. (2020): ADAC Test Wallboxen 2018/19: KEBA KeContact P30. 

https://www.adac.de/rund-ums-

fahrzeug/tests/elektromobilitaet/wallboxen/details/4180/keba-kecontact-p30/ 

[45] Federal Ministry of Transport and Digital Infrastructure (2018): Mobilität in Deutschland 

− MiD. h]ps://www.bmvi.de/SharedDocs/DE/Anlage/G/mid-

ergebnisbericht.pdf?__blob=publicationFile. Accessed 17 Jan 2020 

 

 

 

96



The responsibility for the contents of the working papers rests with the author, not the institute.

Since working papers are of preliminary nature, it may be useful to contact the author of a

particular working paper about results or caveats before referring to, or quoting, a paper. Any

comments on working papers should be sent directly to the author.

Working Paper Series in Production and Energy

recent issues

No. 41 Jann Weinand, Fabian Scheller, Russell McKenna: Reviewing energy 

system modelling of decentralized energy autonomy

No. 40 Jann Weinand, Sabrina Ried, Max Kleinebrahm, Russell McKenna, Wolf 

Fichtner: Identification of potential off-grid municipalities with 100% 

renewable energy supply

No. 39 Rebekka Volk, Christian Kern, Frank Schultmann: Secondary raw 

material markets in the C&D sector: Study on user acceptance in 

southwest Germany

No. 38 Christoph Fraunholz, Dirk Hladik, Dogan Keles, Dominik Möst, Wolf 

Fichtner:On the Long-Term Efficiency of Market Splitting in Germany

No. 37 Christoph Fraunholz, Dogan Keles, Wolf Fichtner:On the Role of 

Electricity Storage in Capacity Remuneration Mechanisms

No. 36 Hansjörg Fromm, Lukas Ewald, Dominik Frankenhauser, Axel Ensslen, 

Patrick Jochem: A Study on Free-floating Carsharing in Europe –
Impacts of car2go and DriveNow on modal shift, vehicle ownership, 

vehicle kilometers traveled, and CO2emissions in 11 European cities

No. 35 Florian Zimmermann, Andreas Bublitz, Dogan Keles, Wolf Fichtner: 
Cross-border effects of capacity remuneration mechanisms: the 
Swiss case

No. 34 Judith Auer: Ladeinfrastruktur für Elektromobilität im Jahr 2050 in 

Deutschland

No. 33 Jann Weinand, Max Kleinebrahm, Russell McKenna, Kai Mainzer, Wolf 

Fichtner: Developing a three-stage heuristic to design geothermal-

based district heating systems

No. 32 Daniel Fehrenbach: Modellgestützte Optimierung des energetischen 

Eigenverbrauchs von Wohngebäuden bei sektor-gekoppelter 

Wärmeversorgung –Vorstellung des POPART-Modells

No. 31 Jann Weinand, Russell McKenna, Katharina Karner, Lorenz Braun, 
Carsten Herbes: Assessing the potential contribution of excess heat
from biogas plants towards decarbonisingGerman residential
heating

No. 30 Daniel Heinz: Erstellung und Auswertung repräsentativer Mobilitäts-und 

Ladeprofile für Elektrofahrzeuge in Deutschland

No. 29 Alexander Harbrecht, Russell McKenna, David Fischer, Wolf Fichtner: 

Behavior-oriented Modeling of Electric Vehicle Load Profiles: A Stochastic

Simulation Model Considering Different Household Characteristics, 

Charging Decisions and Locations

No. 28 Felix Hübner, Sven Möller, Frank Schultmann: Entwicklung eines 

Expertensystems für die Planung kerntechnischer Rückbauprojekte

97



www.iip.kit.edu

Impressum

Karlsruher Institut für Technologie

Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Deutsch-Französisches Institut für Umweltforschung (DFIU)

Hertzstr. 16
D-76187 Karlsruhe

KIT – Universität des Landes Baden-Württemberg und
nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Working Paper Series in Production and Energy
No. 42, April 2020

ISSN 2196-7296

98



Uncertainty handling control algorithms for demand
response with modulating electric heating devices

Thomas Dengiz
Institute for Industrial Production

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

thomas.dengiz@kit.edu

Patrick Jochem
Institute for Industrial Production

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

jochem@kit.edu

Wolf Fichtner
Institute for Industrial Production

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany
wolf.fichtner@kit.edu

Abstract—The flexibility of electric heating devices coupled
with thermal storage can help to cope with the increasing
share of volatile renewable energy sources in the electricity grid.
Scheduling-based demand response approaches for optimally ex-
ploiting these flexibilities use demand and generation predictions
to calculate an operative schedule of the heating devices. Due to
deviations between predicted and real energy profiles, additional
uncertainty handling methods are essential which adjust the
actions imposed by the schedule to the current situation. In this
paper, we introduce corrective control algorithms for buildings in
smart grids with modulating heating devices that can compensate
the uncertainties of predictions. The results show that our
developed approaches avoid violations of the inhabitants’ comfort
limits and decrease the surplus energy (and thus increase the
self-consumption rate) of photovoltaic systems compared to a
conventional control strategy. Further, our analysis reveals that
uncertainties affect the load shifting potentials of electric heating
devices and lead to increased surplus energy.

Index Terms—Demand response, control algorithms, uncer-
tainties, electric heating devices, home automation, smart grids

I. INTRODUCTION

Demand response is becoming more and more important
for future energy systems, as it allows to cope with the
increasing share of volatile renewable energy sources like
wind or photovoltaics (PV). Among the flexible loads that are
suitable for demand response in the residential area, electric
heating devices (e.g heat pumps, electric storage heaters,
electric heating elements) seem promising as they can use
existing infrastructure for thermal storage like the mass of the
building or a hot water tank. The operation of the flexible
devices can thus be shifted in time. Opposed to rule-based
control approaches for flexible loads (see for example [1]),
scheduling-based approaches use a model and predictions
of future demand and generation to calculate a schedule
for the flexible devices. However, in reality the predictions
are erogenous which makes additional correcting algorithms
necessary. These algorithms adjust the recommended actions
by previously calculated schedules with the aim of reacting to
the current situation.

In this paper, we develop novel uncertainty handling ap-
proaches for buildings in smart grids with modulating electric
heating devices. In Germany, most of the offered heat pumps
by the year 2020 are assumed to be modulating heat pumps [2]
that can not only be switched on and off but have continuously
adjustable power outputs and are thus especially suitable for
smart grids. The remainder of this paper is structured as
follows: Section II summarizes the relevant literature and
Section III defines the optimization problem for residential
buildings with thermal storage. The two corrective control
algorithms are explained in Section IV and the results of
our analysis are shown in Section V. This paper ends with
a conclusion in Section VI.

II. LITERATURE REVIEW

In literature different approaches are used for exploiting
the flexibility of electrothermal loads under the consideration
of uncertainties. Gao et al. [3] and Stoyanova et al. [4]
use corrective algorithms which adjust the control actions
of a schedule that was calculated before with the use of
predicted input data. The methods only overrule the initial
control actions if a constraint violation is about to occur. In
[5] and [6] model predictive control (MPC) is used to cope
with the uncertainties of demand and generation forecasts. As
MPC approaches iteratively solve an optimization problem
and merely implement the first results of the optimization,
they can immediately react to changes in the input parameters
of the optimization. Arnold et al. [7] also apply MPC and
use, in addition to hard constraints, soft constraints for the
storage which can be violated. The authors of [8] and [9]
tackle the problem of uncertainties in predictions by using
a two-stage stochastic optimization. Barbato et al. [10] use
a control system that triggers a rescheduling of the flexible
devices’ activities if events which were unexpected when
calculating the initial schedule, like wrong weather forecasts or
users misbehaviors, occur. Another approach for dealing with
uncertainties is robust optimization for demand response [11].
Generally in robust optimization the solutions should remain
feasible in all cases of erroneous predictions. However, in real978-1-5386-8218-0/19/$31.00 ©2019 European Union
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world applications it is necessary to have a reasonable trade-
off between optimality and robustness [11].

In contrary to all other approaches, our algorithms, intro-
duced in this paper, are specially designed for modulating
heating devices. Another essential feature of our approaches
is that we combine elements from robust optimization with an
corrective online mechanism. To the best of our knowledge,
this is the only study that analyzes the effects of different
prediction error degrees on the capability of electric heating
devices to react to locally generated renewable energy. Further,
our adjusting methods are easy-to-implement and have negligi-
ble runtime. They can be used with centralized or decentralized
optimization approaches for buildings in smart grids.

III. OPTIMIZATION PROBLEM

The building used in our case study is equipped with a
modulating air-source heat pump and uses a hot water tank for
domestic hot water (DHW) and an underfloor heating system
for space heating. Furthermore, the building has a 10 kWp
PV system on its rooftop. The goal of the building is to
minimize its surplus energy SE and thus to maximize the self-
consumption rate of locally generated PV. The Mixed-Integer
Linear Program to be solved is:

min SE =
Z∑

t=1

PSurplus+
t ·∆t (1)

subject to:

Tmin ≤ TBS
t ≤ Tmax ∀ t (2)

V DHWmin ≤ V DHWuse
t ≤ V DHWmax ∀ t (3)

xSt + ySt ≥ mDegmin ∀ t (4)

xSt ≤ hAux
t ∀ t (5)

ySt ≤ 1− hAux
t ∀ t (6)

P total
t = (xSt + ySt ) · PHP + PDemand

t ∀ t (7)

PSurplus
t = PPV

t − P total
t ∀ t (8)

PSurplus
t = PSurplus+

t − PSurplus−
t ∀ t (9)

PSurplus+
t ≤M+

t ∗ h
positive
t ∀ t (10)

PSurplus−
t ≤M−

t ∗ (1− hpositivet ) ∀ t (11)

xSt , y
S
t ∈ [0, 1]; hAux

t , hpositivet ∈ {0, 1} ∀ t (12)

The modulation degree of the heat pump when heating up the
buffer storage xSt and the modulation degree when heating up
the DHW tank ySt are the main decision variables of this prob-
lem. Constraints (2) and (3) make sure that the temperature of
the buffer storage TBS

t and the usable volume of the DHW
tank V DHWuse

t are bounded. We use a minimal modulation
degree for the heat pump by adding (4). Constraints (5) and (6)
forbid the heat pump to heat up both the buffer storage and the
DHW tank at the same time by using the binary variable hAux

t .
Equation (7) defines the total electrical demand P total

t which
comprises the flexible load of the heat pump and the inflexible
load of the other household appliances PDemand

t . For the

calculation of the surplus power, we subtract the total electrical
demand from the PV generation PPV

t in (8). Equations (9) to
(11) define the big-M approach [12]. This approach is used to
guarantee that merely positive surplus power is minimized and
thus prevent to schedule the heat pump’s activities into times
with low PV generation. The surplus energy SE, defined in
(1), is the sum of the positive surplus power PSurplus+

t over
all time slots Z multiplied by the time resolution ∆t. For
the temperature of the buffer storage TBS

t we use a uniform
temperature model with an energy difference equation (13)
that is often used in literature [13]:

TBS
t = TBS

t−1 +
QSH

t −QDemandSH
t −QLossesSH

V BS · ρBS · cBS
(13)

The energy of the heat pump for space heating QSH
t in-

creases the temperature whereas the demand for space heating
QDemandSH

t and losses QLossesSH decrease it. The difference
in energy in divided by the volume of the buffer storage
V BS the density of the storage medium ρBS and its heat
capacity cBS . We use the same difference equation for the
usable volume of the hot water tank V DHWuse

t with the only
difference being that the temperature of the hot water is fixed
whereas the volume itself is variable. The generated energy for
space heating and for DHW linearly depend on the respective
modulation degrees xt and yt and on the efficiency of the
heat pump. A more detailed description of this optimization
problem can be found in [1].

IV. CORRECTIVE CONTROL ALGORITHMS

The output of the optimization problem is a schedule for a
day. As the optimization is carried out under the presumption
of perfect foresight, the resulting schedule will not be optimal
in reality and is likely to cause constraint violations. To cope
with the uncertainties of predictions, we introduce two simple
supplementary online correction mechanisms that strongly
decrease the likelihood and degree of constraint violations and
lead to improved results. In our analysis, we only consider one
building to generally show the applicability of the developed
correction algorithms. When having multiple buildings and
a smart grid with a communication infrastructure, a central
optimizer could calculate the individual schedules and send
them to the buildings, similar to [14]. Alternatively, the
buildings could apply a decentralized optimization approach
and coordinate the selection of individual schedules via the
communication network, as it is done in [15] and [16].

A. Storage Correction algorithm

When using a scheduling-based approach for exploiting
flexibilities of electric heating devices coupled with thermal
storage, upper and lower limits have to be defined for the
optimization problem. Most often the limits for the optimiza-
tion are identical to the limits for maximal comfort of the
thermal storage. The output of the optimization is a schedule
of the heat pump for heating up the buffer storage Sx =
{xS1 , xS2 , ..., xSZ} and the DHW tank Sy = {yS1 , yS2 , ..., ySZ}.
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For each of the optimization horizon’s Z time slots (typically
one day), the schedule specifies one decision variable for each
storage. This is based on forecasted demand and generation
profiles. However, due to the uncertainty of every prediction,
the real values will differ from the predicted ones. Moreover,
the used models of the thermal storage and the heating device
themselves introduce further uncertainties since they are only
a simplification of reality. As a consequence, just following
the recommended actions of the optimal schedule will lead
to constraint violations as can be seen in Fig. 1. The figure
shows the temperature of the buffer storage when no correction
mechanism is used. The constraint violations result in a loss
of comfort for the inhabitants and can even cause technical
problems.

Fig. 1. Temperature of the buffer storage with no correction mechanism

To tackle this problem, we introduce a simple and easy-
to-implement online control algorithm that adjusts the recom-
mended actions of the previously calculated schedule. Further,
we make the output of the schedule more robust by reducing
the temperature range of the buffer storage (and the volume
range of the DHW tank) for the optimization. Thus violations
of the optimization limits will not necessarily result in viola-
tions of the comfort limits, as Fig. 2 illustrates. The control
strategy for the buffer storage is described in Algorithm 1. For
each time slot (t < Z) the control unit of the heating device
checks whether the current storage temperature TBS

t is within
the comfort limits. If this is the case, the current modulation
degree for heating up the buffer storage is set to the one of the
calculated optimal schedule (xt = xSt ). If the temperature is
above the upper limit, the current modulation degree is set to
the minimal modulation degree (xt = mDegmin) and in case
of a lower limit violation, the buffer storage is heated up with
full power (xt = 1). Fig. 2 shows a resulting temperature
profile when using the Storage Correction algorithm. The
control algorithm for the DHW tank is analogously defined
but is treated with higher priority in case of necessary control
actions for both storage types at a certain time slot.

B. PV Correction algorithm

Uncertainties in the PV forecast and in the prediction of
the building’s electrical demand do not lead to constraint
violations but to sub-optimal decisions. Hence, adjusting the
initially calculated control actions of the optimal schedule
can yield improved results. Algorithm 2 lists the steps of the
control mechanism for reacting to errors in the prediction of

Fig. 2. Temperature of the buffer storage with the Storage Correction
algorithm

Algorithm 1 Storage Correction for the buffer storage
while t < Z do

if Tmin ≤ TBS
t ≤ Tmax then

Set xt = xSt
end
if TBS

t > Tmax then
Set xt = mDegmin

end
if TBS

t < Tmin then
Set xt = 1

end
Set t = t+ 1

end

the PV generation and the electrical demand of the building.
For every time slot (t < Z), first a preliminary adjusting
factor α∗

t is calculated based on the differences between real
and forecasted values for the PV generation and the electrical
demand. In our analysis it turned out that a strong adjustment
of the actions recommended by the optimal schedule is not
beneficial. Consequently, we set the limits for the used ad-
justing factor αt to 0.5 and 1.5 by using a sectionally defined
function, as this led to the best results in our experiments.
The limits can be modified for different buildings as they
depend on the power of the flexible devices and the PV
system. However, we think that the chosen limits can be used
as a rough estimate for other buildings. In the last step, the
recommended modulation degrees for the storage are updated.
The proposed algorithm for reacting to uncertainties in PV
generation and in the electrical demand should be used before
the Storage Correction algorithms of section IV-A, since a
possible constraint violation is critical and its avoidance should
have highest priority.

V. RESULTS

For our analysis we use synthetic data created by the tool
synPRO from Fraunhofer Institute for Solar Energy Systems
[17]. The tool uses a behavioural model, calibrated with data
of the Harmonised European Time of Use Survey (HETUS
[18]), and a resistance-capacitance model for space heating, as
described in DIN EN ISO 13790 [19]. We apply our methods
on a single family house located in Braunschweig, Germany.
The building with four inhabitants has a modulating air-source
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Algorithm 2 PV Correction
while t < Z do

Calculate α∗
t =

∣∣∣ PPV,real
t −PDemand,real

t

PPV,forecasted
t −PDemand,forecasted

t

∣∣∣

Set αt =



1.5 for α∗
t ≥ 2

1.4 for 1.8 ≤ α∗
t < 2

1.3 for 1.6 ≤ α∗
t < 1.8

1.2 for 1.4 ≤ α∗
t < 1.6

1.1 for 1.2 ≤ α∗
t < 1.4

1.0 for 0.9 ≤ α∗
t < 1.2

0.9 for 0.7 ≤ α∗
t < 0.9

0.8 for 0.5 ≤ α∗
t < 0.7

0.7 for 0.3 ≤ α∗
t < 0.5

0.6 for 0.1 ≤ α∗
t < 0.3

0.5 for α∗
t < 0.1

Update xSt = xSt · αt

Update ySt = ySt · αt

Set t = t+ 1
end

heat pump with 3 kW of electrical power (minimal modulation
degree of 0.1) and a PV system with 10 kW peak generation.
Additional to an underfloor heating system, a 200 l hot water
tank servers as thermal storage. More information about the
building and the used parameters of the heating system are
described in [1]. We manually manipulated the load profiles
to generate uncertainties by enhancing or lowering the values
of the original four load profiles that are used to generate
the optimal schedule (electric demand, space heating, DHW,
PV generation). The optimization problem was formulated in
GAMS and solved with Cplex using a MIP gap of 0.1%.
We implemented a simulation in Java that uses the output of
the optimization and applies the different control algorithms.
The time resolution of the optimization and simulation ∆t
are five minutes. We used a rolling-horizon-approach for the
optimization with a time horizon of one day. This leads to
seven iterations for one week.

Fig. 3 shows the surplus energy of the building for the
expemplarily choosen 9. week (March) of the year 2017 de-
pending on the prediction error. We compared four approaches:
Storage Correction, Storage Correction and PV Correction,
Optimal Control with perfect foresight and Conventional Con-
trol (two-point controller). Since the Optimal Control uses
input data without any prediction errors (which is not possible
in reality) and the Conventional Control does not need any
prediction, those two approaches are independent from the
prediction error. The optimization problem for the Optimal
Control with perfect foresight exploits the whole temperature
range of the buffer storage (20 °C − 22 °C) and the whole
volume range of the DHW tank (0 l−200 l). This can be done
as this approach merely represents a hypothetical scenario
without any uncertainties. For the two uncertainty handling
control approaches (Storage Correction, Storage Correction

and PV Correction) the optimization limits for the buffer
storage were chosen to be between 20.3 °C − 21.7 °C and
50 l−175 l for the DHW tank. These adjusted limits, combined
with the correction algorithms, led to schedules that were
robust enough to avoid constraint violations in all scenarios
of our experiments. We used three runs of the uncertainty
handling methods with differently manipulated data, for each
of the six values of the prediction error. This means that e.g.
for a prediction error of 2 %, we created three different input
data sets for the optimization that deviate 2 % from the ”real”
data that was used for the simulations.

Fig. 3. Surplus energy of the building for week 9 (March) depending on the
prediction error

It can be seen that considering uncertainties significantly
impact the surplus energy and thus the usable load shifting
potentials. Higher prediction errors lead to worse results.
Moreover, using the Storage Correction algorithm in combina-
tion with the PV Correction algorithm yields better results than
solely using the Storage Correction algorithm. As expected,
the results for the uncertainty handling methods are in all cases
better than the ones of the conventional control approach but
worse than the ones of the optimization with perfect foresight.
For our analysis, we did not use a forecasting method (like
regression or artificial neural networks) but manipulated the
data manually to quantify the impact of different prediction
errors on the results. We assume that using a forecasting
method would enhance the improvement of the PV Correc-
tion algorithm, because the algorithm can react to wrongly
predicted cloudiness.

Fig. 4 depicts the number of necessary corrections of the
Storage Correction algorithm to avoid constraint violations for
week 9 of the year 2017. Even a low prediction error of only
2 % makes on average 76 corrections necessary for this week.
A higher prediction error requires more correcting actions, as
simply following a schedule that was calculated by using high
prediction errors will lead to strong violations of the comfort
limits. We analyzed 12 weeks of the year 2017 by randomly
picking two weeks for each month of the heating period
(October – March). The results look similar for every week.
Fig. 5 shows the average surplus energy of the building for
the 12 weeks. Generally, the additional computational times
of the algorithms are under one second and thus negligible.
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Fig. 4. Number of necessary corrections of the Storage Correction algorithm
for week 9 (March) depending on the prediction error

Fig. 5. Average surplus energy of the building for 12 weeks depending on
the prediction error

VI. CONCLUSION

We developed two simple but effective uncertainty handling
algorithms for buildings in smart grids with modulating heat-
ing devices and thermal storage. The algorithms adjust the
recommended actions of an previously calculated schedule.
Our analysis shows that the developed approaches avoid
violations of the inhabitants’ comfort limits and lead to a
higher usage of locally generated PV. Moreover, the results
reveal that uncertainties in predictions of electricity demand
and generation diminish the capability of electric heating
devices to react to the volatile generation by the renewable
energy sources. Higher predictions errors make more cor-
recting actions necessary to avoid constraints violations. The
corrective control algorithms can be easily implemented and
combined with both centralized and decentralized optimization
approaches in smart grids.

In future work, we will compare our correcting approaches
to the other uncertainty handling methods found in literature
like MPC, stochastic optimization, (purely) robust optimiza-
tion and rescheduling in case of strong deviations. Further-
more, we want to adjust the algorithms to non-modulating
heating devices. In this study we used synthetic data and only
considered one building. We intend to analyze different un-
certainty handling approaches using real data and forecasting
methods for multiple buildings in future research.
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