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Abstract 

Energy flexibility is balancing the supply and demand of a building according to climate 

conditions, user preferences, and grid constraints. Energy flexibility in households is a practical 

approach to achieving sustainability in the building sector. However, the diversity in flexibility 

potential of energy systems and climatic variability complicate the selection of envelope 

parameters and building energy systems (BESs). This study aimed to design a framework to 

improve the energy flexibility of the building. For this purpose, a single-family house and 

diversified BESs were simulated in a TRNSYS-Python co-simulation platform. 

Initially, the bi-objective optimization identified flexible building envelopes in twenty-four 

locations. Then, the multi-criteria assessment of BESs was conducted using life-cycle energy 

flexibility indicators. Lastly, the energy flexibility potential of the BES was evaluated by 

employing steady-state optimization and model predictive control (MPC). The findings of this 

work set a benchmark for flexible household envelopes. The systematic approach for selecting 

BES could guide the energy system design, providing insight into energy flexibility. Further, 

this investigation has established that the dataset of building thermal load, boundary conditions, 

and control disturbances can be used to develop an MPC-based dynamic control. That controller 

could be employed on different BESs to achieve energy flexibility. 
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Kurzfassung 

Energieflexibilität ist der Ausgleich von Versorgung und Bedarf eines Gebäudes je nach Klima, 

Nutzerpräferenzen und Netzbeschränkungen. Energieflexibilität ist damit ein praktischer 

Ansatz für Nachhaltigkeit in Gebäuden. Die Vielfalt des Flexibilitätspotenzials von 

Energiesystemen und die klimatischen Unterschiede erschweren jedoch die Auswahl von 

Hüllparametern und Gebäudeenergiesystemen (BESs). Diese Studie zielte darauf ab, einen 

Rahmen zur Verbesserung der energetischen Flexibilität von Gebäuden zu entwickeln. Hierzu 

wurden ein Einfamilienhaus und verschiedene BES in einer TRNSYS-Python Co-

Simulationsplattform simuliert. 

Zunächst wurden über eine bi-objektive Optimierung flexible Gebäudehüllen an 

vierundzwanzig Standorten ermittelt. Danach erfolgte eine multikriterielle Bewertung der BES 

anhand von Energieflexibilitätsindikatoren über den gesamten Lebenszyklus. Schließlich 

wurde das Energieflexibilitätspotenzial der BES durch den Einsatz statischer Optimierung und 

modellprädiktiver Regelung (MPC) bewertet. Die Ergebnisse dieser Arbeit setzen einen 

Maßstab für flexible Gebäudehüllen. Der systematische Ansatz zur Auswahl von BES könnte 

als Leitfaden für die Auslegung zukünftiger Systeme dienen. Darüber hinaus hat die 

Untersuchung ergeben, dass Daten zu thermischer Belastung des Gebäudes,  Randbedingungen 

und Regelungsstörungen zur Entwicklung eines MPC verwendet werden können. Dieser Regler 

könnte bei verschiedenen BES eingesetzt werden, um Energieflexibilität zu erreichen. 
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1 Introduction 

1.1 Background 

The building sector accounts for 30% of energy use and 27% of CO2 emissions worldwide. 

Residential buildings are responsible for 22% of final energy consumption and 17% of CO2 

emissions globally [1]. The Asian household sector has the largest share of 35% in building 

energy consumption. The second largest energy consumer for the residential sector is Europe, 

which accounts for about 28% of total energy use. Annual growth of 1.4% is anticipated in 

household energy use from 2018 to 2050 [2]. Energy consumption in the residential sector in 

2014 was 30% higher than in 1990. In developing economies, this growth was above 50% 

during that timeline [3]. The energy usage share of heating, ventilation, and air-conditioning 

(HVAC) applications in buildings was the largest, around 37% in the world, in 2020. HVAC 

systems in buildings had a final energy consumption share of approximately 61% in Europe in 

2019. Consequently, HVAC applications are responsible for a significant portion of buildings’ 

CO2 emissions [4]. Space heating, air-conditioning, and domestic hot water (DHW) are building 

end-use services with a substantial energy consumption share. A study produced the energy 

consumption trend for these three services from 2010 to 2050 based on the population size, 

household size, floor area, and Gross Domestic Product (GDP). The trend shows that energy 

consumption of these end uses increased by 65% worldwide in residential buildings from 2010 

to 2050. The increase in energy consumption is relatively higher in regions of hot and humid 

or partially humid climates like Central and South Asia, Latin America, Africa, and the Middle 

East. However, energy consumption increases at a low rate in North America, Central Europe, 

and Eastern Europe. Even the energy consumption for space heating and cooling will be lower 

in 2050 than in 2010 in cold regions of Western Europe and Pacific OECD countries [5]. Based 

on these facts, modern society requires an economical and reliable energy supply to achieve 

thermal comfort and living standards. It is challenging to balance supply and demand while 

meeting climatic and energy efficiency standards like the energy performance of buildings 

directive [6] and the energy efficiency directive [7] by the European Commission.  Current 

energy standards require management on both the demand and supply sides to accomplish the 

set energy efficiency and emissions reduction targets. Buildings have an enormous potential for 

energy savings, and energy efficiency in the building sector would lead to reduced CO2 

emissions [8–10]. It is projected that the building sector will contribute 25% to the reductions 

in CO2 emissions by 2030 [11]. Among different building typologies, households are most 



2 

 

imperative for energy management due to the highest share in the final energy consumption. 

The energy management of a building through demand-side management (DSM) and supply-

side management (SSM) can be referred to as energy flexibility. There are different definitions 

of energy flexibility in the literature. However, the most widely adopted one is defined in IEA 

EBC Annex 67 as “…the ability to manage its demand and generation according to local 

climate conditions, user needs and grid requirements.” [12]. The DSM may include load 

shifting, load shaving, and energy consumption reduction. In comparison, the SSM is the 

generation, storage, and distribution of electric and thermal energy in an efficient way. Energy 

flexibility can be further categorized into generation flexibility, system flexibility on the supply 

side, and load/demand flexibility on the demand side [13]. Moreover, two indicators generally 

assess energy flexibility: potential and performance indicators. The former indicators quantify 

energy flexibility using a bottom-up approach for demand response. The latter quantifies the 

energy system's flexibility regarding the economic and/or environmental impacts [14]. 

Extensive research has been conducted on the modulation of energy demand based on energy 

tariffs and peak loads, yet assessing flexibility for different energy supply mixes and service 

systems is unrecognized. The efficient architecture and energy systems with optimal control 

strategies reduce the energy use of the building. Moreover, renewable energy sources, 

specifically solar and geothermal, can reduce greenhouse gas (GHG) emissions by substituting 

conventional fuels [15–19]. The thermal gains/losses of the building envelope control the 

energy use for thermal comfort, which explicitly impacts total energy consumption in buildings 

[20]. Consequently, designing the building envelope using an integrative approach at the initial 

planning stage is imperative to improve buildings' energy flexibility. The energy supply system 

should be technically and economically feasible and environmentally friendly. Integration of 

renewable energy into the energy supply system is fundamental to achieving a sustainable 

future. Although integrating renewable energy technologies in the building sector is growing 

fast, it only covered 14% of the total energy demand in 2017 [21]. The use of solar energy in 

building energy systems (BESs) has increased significantly in the last decade, and this growth 

is expected to be increased in the future [22]. 

Similarly, the direct use of geothermal energy grew remarkably from 2010 to 2019, when it 

doubled to 107727 MWthermal. From 2010 to 2015, thermal energy utilization increased by 

39.8% and 2.3% from 2015 to 2019 [23]. In 2018, the combined share of solar and geothermal 

heat was 5.1% of total energy consumption for thermal comfort in buildings [21]. Recently, 

small to large-scale buildings have been equipped with combined solar and geothermal systems 
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to supply electricity, DHW, and HVAC services [8,24–27]. The optimal control of the HVAC 

system is also an essential aspect of DSM due to its large share of energy consumption and 

GHG emissions. Previous studies have proven a substantial energy-saving potential in the 

building sector by employing automation and control of HVAC systems [8,10,28]. Though the 

control strategies improve the performance of HVAC systems, integrating HVAC systems with 

buildings is challenging to time-dependent dynamics and the high number of interactions [29]. 

The locality of a building is also a decisive factor for building design, selection of energy supply 

and service systems, and control strategies of an HVAC system. The variation in weather 

conditions, energy tariffs, renewable energy potential, and GHG emissions from power 

production strongly influence the choice of BES [30,31]. Summarizing the energy flexibility 

strategies: generation flexibility includes on-site generation options, system flexibility includes 

energy storage, improved thermal envelope, and combinations of service systems, and demand 

flexibility includes control of HVAC thermostats, load shifting, and electric/thermal charging 

cycles. 

1.2 Research questions and objectives 

It is anticipated from the literature that residential buildings may have the potential for 

flexibility on the demand and supply sides. This potential depends on the choice of the energy 

system and on climate conditions. Energy flexibility gives information on the energy balance 

of the demand and supply sides. Conventionally, energy flexibility is quantified in terms of 

energy efficiency, cost reduction, and improvement in the environmental impacts of the energy 

system during the demand response event (DRE). However, different energy systems have 

specific life-cycle costs (LCC), life-cycle emissions (LCEs), and RES capacities.  

Furthermore, the DSM and SSM strategies result in different levels of energy flexibility for 

different service systems and energy mixes for a building. Most of the recent research on energy 

flexibility in residential buildings is focused on demand flexibility [32,33], with some studies 

[34,35] considering limited options of both demand and supply sides for a specific energy 

system in residential buildings. The flexibility indicators in the literature mostly quantify only 

one source of flexibility in a building. Moreover, the flexibility indicators provide information 

on energy consumption, efficiency, costs, and emissions but are limited to the operational 

characteristics of the energy system. Potential indicators alone cannot be used to compare 

energy systems because they only give information on energy flexibility regarding the baseline 

energy use profile. A BES could most likely accomplish high energy flexibility, yet the life-
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cycle energy use or CO2 emissions are higher than in another energy system with lower energy 

flexibility potential. Thus, the energy flexibility of different energy systems needs to be 

assessed at the design stage, considering technical feasibility, economic viability, and 

environmental impacts during the life cycle. Factually, no systematic methodology has been 

established to evaluate the potential of different energy systems for the generation, system, and 

demand flexibilities on an integrated basis. Although explicit flexibility indicators have been 

used to quantify flexibility during a DRE for different building systems, the methodical 

flexibility indicators need to be defined to compare and select multiple BESs. 

Based on these facts, the following research questions have been defined: 

1. What is the energy flexibility potential in residential buildings with multiple energy 

systems? 

2. What are optimal envelope parameters in different climates to improve households' 

energy flexibility? 

3. How can a flexible BES be selected based on the life-cycle flexibility indicators in 

different climates? 

4. How can an optimal dynamic control be developed which can be employed on different 

energy systems to improve demand flexibility? 

Answers to these questions outlined the aim and objectives of this research. The aim was to 

develop an optimization framework to identify a BES according to the climate conditions, 

which provides energy flexibility in households without compromising thermal comfort. The 

optimization framework includes the following tasks: 

• Flexibility assessment of the building’s optimal passive design (potential indicators). 

• Flexibility assessment of multiple BESs with different energy supply mixes and service 

systems (potential indicators + performance indicators). 

• Flexibility assessment of model predictive control (MPC) for thermostat and window 

shading fraction (potential indicators + performance indicators). 

To achieve the aim, a single-family house and diversified BESs were modeled and simulated 

in a TRNSYS-Python co-simulation platform. The research aim mapped the following research 

objectives: 

1. Establish guidelines for achieving energy flexibility in a residential building by 

determining optimum envelope design in various climate zones.  
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For this purpose, household passive design optimization was conducted for twenty-four 

locations in twenty climates by coupling Transient System Simulation Program (TRNSYS) [36] 

and a non-dominated sorting genetic algorithm (NSGA-III) using a Python program. 

2. Apply a multi-criteria assessment technique for selecting the BES using novel 

combination of energy flexibility indicators, which provide a comprehensive insight 

into energy flexibility. 

The goal was achieved by a multi-criteria assessment of fourteen diversified BES based on life-

cycle energy flexibility indicators. This task was performed in four locations having different 

climate conditions (severe cold, cold, mild, and hot) 

3. Evaluate how much energy flexibility potential exists by steady-state optimization 

(SSO) of energy storage capacities, heat pump’s operational parameters, and 

heating/cooling setpoints. 

This task was accomplished by performing a multi-objective optimization (MOO) using the 

NSGA-III algorithm for BES from the former task. The optimization variables were battery 

storage capacity, thermal energy storage volume, source side flow rate of geothermal heat 

pump, On/off delay of HP, borehole diameter of ground heat exchanger, and heating/cooling 

set points of the zone. In addition, primary energy ratio (PER) (to be maximized) and electricity 

consumption of BES (to be minimized) were defined as objective functions with fractional state 

of charge of battery and thermal comfort as constraints of the optimization problem. 

4. Develop an MPC strategy for building service systems and evaluate the demand 

flexibility from dynamic control. 

An MPC strategy was implemented on the BES from the previous step for this task. Firstly, a 

predictive model was developed for building thermal load considering boundary conditions and 

time-varying climate uncertainties. An MPC-based supervisory control in Python script 

interacted with local controllers (PID controllers for temperature set points and shading fraction 

of windows) in TRNSYS at the beginning of each time step. The supervisory controller 

optimized the control variable using a genetic algorithm (GA) and predictive model to minimize 

the energy system's electricity consumption while maintaining the zone's thermal comfort. 

1.3 Research contributions 

Previous flexibility assessment studies were focused on energy flexibility of generation, system, 

and demand domains of a specific system, independently. The flexibility assessment indicators 
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were also limited to demand response flexibility. Further, the performance indicators for cost 

and emissions are evaluated during the energy system operation without considering the 

embodied emissions and life-cycle costs of energy supply and BES. The novelty of the research 

is the development of a systematic framework for estimating the energy flexibility of multiple 

building energy systems from an integrated energy system perspective. A novel set of flexibility 

indicators is proposed to calculate an energy system's flexibility potential for the complete life 

cycle at the design stage. These performance indicators can evaluate the flexibility for 

generation, system, and demand flexibilities, altogether. Moreover, the MPC strategy can be 

employed on multiple energy systems using the thermal demand-based predictive model of the 

building. The novelty of the work is further evinced in chapter 2 by reviewing the current 

methods for energy flexibility and its quantification in buildings. 

The outcomes of this work support different stakeholders of building energy systems to make 

appropriate decisions for the transition to sustainability in the building sector. The 

implementation of the optimization framework results in the following research contributions: 

• Benchmarking envelope design with climate adaptability overcomes the limitations of 

the complex modeling of building architecture. Furthermore, since the climate has been 

changing over the past decades globally, the developed guidelines provide criteria to 

modify the building design in the future. 

• Provide a methodology for comprehensive multi-criteria evaluation of energy systems 

to identify a flexible BES that provides thermal comfort in the building and is 

technically feasible, economical, and environmentally friendly. 

• An MPC-based supervisory controller improves the demand flexibility of various BESs 

by coupling an optimization algorithm and a predictive model designed from the dataset 

of building thermal load, boundary conditions, and control disturbances. 

1.4 Thesis structure 

The thesis is structured as follows: 

Chapter 2 provides an overview of opportunities and sources of energy flexibility in buildings 

and introduces the optimization strategies in the context of previous findings in the literature. 

Chapter 3 describes the designing of BES and quantification of energy flexibility and explains 

the development of the TRNSYS-Python co-simulation optimization framework. The 

assumptions and limitations of this work are also described for reference. 
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Chapter 4 describes the reference building's thermal load model and boundary conditions. Then, 

it presents the modeling of energy systems and performance characteristics of HVAC 

equipment. In the end, it explains the modeling of an MPC-based dynamic control. 

Chapter 5 provides case studies of achieving energy flexibility by employing the proposed 

optimization framework. In addition, this chapter presents and discusses the simulation results 

of the investigated scenarios. 

Chapter 6 describes the implications and scope of this study, followed by the research outcomes 

and perspectives for future work.  

1.5 Research publications 

Some results of this research work have already been published in journals and conferences. 

The following research articles are based on this study: 

1. M. Usman and G. Frey, “Multi-Objective Techno-Economic Optimization of Design 

Parameters for Residential Buildings in Different Climate Zones,” Sustainability, vol. 

14, no. 1, p. 65, Dec. 2021, doi: 10.3390/su14010065. [37] 

2. M. Usman, D. Jonas, G. Frey, A methodology for multi-criteria assessment of renewable 

integrated energy supply options and alternative HVAC systems in a household, Energy 

Build. 273 (2022) 112397. [38] 

3. M. Usman, D.M. Minhas, G. Frey, Energy optimization of a residential building using 

model predictive control-A case study in temperate oceanic climate, in: 2022 

International Conference on Electrical, Computer and Energy Technologies (ICECET), 

IEEE, 2022: pp. 1–6. [39] 

Additional Publications 

4. M. Usman, M. Ali, T. ur Rashid, H. M. Ali, and G. Frey, ‘‘Towards zero energy solar 

households – A model-based simulation and optimization analysis for a humid 

subtropical climate,” Sustainable Energy Technologies and Assessments, vol. 48, p. 

101574, 2021, doi: 10.1016/j.seta.2021.101574. [17]  
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2 Review of materials and methods 

The growing energy consumption and GHG emissions in the building sector have inclined the 

focus of researchers to integrate RES and energy-saving strategies. The flexible building is 

becoming an increasingly important aspect of sustainability in buildings. However, the energy 

flexibility of BES involves several elements, from design to the utilization phase. Different 

energy systems hold diverse flexibility capabilities, operational features, energy consumption, 

and demand response characteristics  [14]. It becomes critical to evaluate these characteristics 

at the design stage according to the climate uncertainties and boundary conditions to identify 

the BES with maximum flexibility. 

There are various definitions and terminologies for energy flexibility in the literature, as 

described in Table 2-1. Regardless of the variation in the definitions, the basic principle of 

building energy flexibility (BEF) can be stated as the ability of a building to operate flexibly by 

adjusting its energy demand and generation without compromising thermal comfort [40].  

Table 2-1: Definitions of energy flexibility in literature (DSM = demand-side management, SSM = supply-

side management) 

Terminology Definition Flexibility domain Reference 

Energy flexibility “…the ability to manage its demand and generation according 

to local climate conditions, user needs and grid 

requirements.” 

DSM [12] 

Energy flexibility “…the ability to adapt the energy profile without jeopardizing 

technical and comfort constraints.” 

DSM [14] 

Demand flexibility “…the customers’ ability to modify their energy consumption 

in response to an external signal.” 

DSM [41] 

Flexibility “…the ability to deviate from the reference electric load profile 

during the flexibility interval.” 

DSM [42] 

Flexibility “…the ability of a power system to cope with variability and 

uncertainty in both generation and demand, while maintaining 

a satisfactory level of reliability at a reasonable cost, over 

different time horizons.” 

SSM [43] 

Power flexibility “…the ability to continually balance electricity supply and 

demand with negligible disruption to service for connected 

loads often in response to variability in RES-based 

generation.” 

DSM + SSM [44] 

The studies listed in Table 2-1 mainly differ in the ways of flexibility sources and flexibility 

strategies. The common attribute of these definitions is the motivation for energy flexibility, 

which is increasing the share of RES, energy saving, peak load reduction, and grid 

independence. Another essential characteristic of flexibility is the targeted domains of energy 

flexibility. Energy flexibility can be applied from the building structure to technologies and 

individual components of BES. However, most of the studies analyze the flexibility capacity of 

a DRE. The DRE span is usually seconds, hours, or a day but it could be a month or a year, 
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depending on the strategies. Summarizing, energy flexibility reduces the building's electric 

and/or thermal demand from the grid for a certain timespan by using thermal storage, flexible 

technologies, and applying control strategies. This study uses the terminology of energy 

flexibility due to its broad spectrum, which covers flexibility for all three domains, generation, 

system, and demand flexibilities. 

2.1 Energy flexibility opportunities 

Energy flexibility in a building is determined by thermal load, energy service technologies, 

energy storage techniques, and control strategies for service systems. Energy flexibility sources 

include on-site power generation, energy system technologies, active and passive energy 

storage, thermostatically controlled loads, and load shifting. The energy flexibility can be 

categorized based on the flexibility sources as follows [13]. 

• Generation flexibility: Renewable generation (solar, wind, etc.), fuel cell, combined 

cooling, heating, and power (CCHP) 

• System flexibility: Combination of technologies (heat pump, district heating, 

absorption chiller, geothermal heat pump, etc.), active energy storage (battery, thermal 

storage tank, etc.), passive thermal storage (phase change material, structural thermal 

mass) 

• Demand flexibility: thermostatically controlled load (HVAC, water heater, 

refrigerator, etc.), wet appliances, battery-based loads (electric vehicle, laptop, etc.) 

Different energy flexibility sources (EFS) provide a certain level of flexibility in the building. 

A sensitive analysis of building parameters on energy flexibility showed that envelope 

insulation is the buildings' most influential flexibility source. Thermal inertia of building 

structure and energy system also proved to be EFS with higher impacts [45]. In a study [46], a 

sensitivity analysis was performed for building parameters concerning their effect on different 

aspects of energy flexibility. Table 2-2:Table 2-2 provides the ranking of building parameters 

for energy flexibility prospects. Envelope insulation is the most critical feature of EFS. Thermal 

inertia of building structure, the ability to absorb, store, and release heat, can also deliver 

significant energy flexibility in load shifting but with small durations of DREs. The 

heating/cooling technology type is another factor that significantly impacts energy cost 

efficiency. Control strategy comes next in the hierarchy of energy flexibility potential. 

Therefore, a residential building with a high level of insulation, larger thermal inertia, and an 
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efficient heating/cooling system with optimal thermostatic modulation can provide energy 

flexibility with thermal comfort.  

Table 2-2: The ranks of envelope parameters according to the energy flexibility potential [46] 

General 

ranking 

Parameters A1 B2 Δ3 ß4 Load shifting ability Energy cost efficiency 

1 Insulation level 1 1 1 1 1 1 

2 Thermal inertia 2 2 2 6 2 4 

3 Heating/Cooling system 5 5 3 5 3 2 

4 Control strategy 4 4 5 4 4 5 

5 Building topology 3 3 4 7 5 3 

6 Outdoor temperature 6 6 6 3 6 6 

7 Solar radiation 7 7 7 2 7 7 

1 The total amount of energy shift (downward) in time. 

2 The total amount of energy shift (upward) in time. 

3 The maximum change in the power demand. 

4 The time of reduced energy demand after the control strategy. 

This study considers envelope insulation, active thermal storage, RES, and heating/cooling 

system as flexibility sources. The energy-saving potential and strategies for flexibility sources 

are discussed in later sections, 2.1.1 to 2.2.3. To get an insight into energy flexibility and its 

quantification in residential buildings, Table 2-3 gives an overview of the applied flexibility 

strategies on various sources of flexibility and indicators used to characterize energy flexibility 

in the literature.
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Table 2-3: Overview of flexibility sources with employed control strategies and flexibility indicators in residential buildings 

Ref. 
Flexibility source 

Control strategy Control inputs 
Energy flexibility quantification 

Generation System Demand Performance indicators Potential indicators 

[32] 
  

- heat pump - MPC - thermal energy of heat pump 

- thermal energy of storage 

tank 

- electricity cost 

- CO2 emissions 

- flexible thermal load 

[47] 

  

- district heating 

 

- Rule-based 

scheduling 

- Temp. set points - cost of heating - Flexibility indicator 

[34] - PV - battery  

- envelope parameters 

- HVAC 

- water heater 

 

- MPC - Temp. set points 

- PV power 

- Battery power 

- water heater duty cycle 

- electricity cost 

 

- peak power reduction 

- energy demand in peak 

hours 

[48] 

 

- Four buildings with different 

envelope parameters 

- space heating 

 

- schedule-based - Temp. set points - thermal comfort - delayed operation 

- rebound energy  

[49] 

  

- space heating 

 

- MPC + Rule-

based control 

- Temp. set points with 

comfort constraint 

 
- flexible energy (savings) 

- rebound energy 

- flexible energy efficiency 

- maximum flexible power 

[50] 

 

- building thermal storage 

- old building and passive 

house  

- heating technologies 

- radiator heating 

- floor heating 

- schedule-based - Temp. set points 
 

- flexible heating energy 

- storage capacity 

- shifting efficiency 

- flexibility factor 

[51] - micro-wind 

- PV 

- thermal 

collectors 

- battery  

- DHW tank 

- Cooling storage tank 

- HVAC - schedule-based 

- rule-based 

- Temp. set points of storage 

tank recharging 

- volume of cooling storage 

tank 

- battery capacity 

- control signal for PV and 

battery supply to the load 

 
- Flexible time duration 

- Flexible power 

- Flexible energy 

- Flexibility factor 

[52] - thermal 

collectors 

- heating technologies 

- thermal storage tank 

- air source heat 

pump 

- direct electric 

heating 

- Rule-based 

control 

- schedule-based 

- Temp. set points for the 

heating system and DHW 

- cost of heating 

- CO2 emissions 

- flexible energy 
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Ref. 
Flexibility source 

Control strategy Control inputs 
Energy flexibility quantification 

Generation System Demand Performance indicators Potential indicators 

[53] - PV 

- thermal 

collectors 

- building stock upgradation of 

envelope and HVAC system  

- HVAC 

 
 

- primary energy 

consumption 

- CO2 Emissions 

- renewable energy use 

- flexible loads 

[33] 

 

- 03 buildings with different 

envelope parameters 

- HVAC - schedule-based - Temp. set points - thermal comfort - storage capacity  

- storage efficiency 

[35] 

 

- 02 buildings with different 

envelope parameters 

- heating system 

 

- schedule-based - Temp. set points 
 

- added energy 

- discharged energy 

- curtailed energy 

- rebound energy   

[54] - PV - structural thermal energy 

storage 

- thermal storage tank 

- battery 

- GSHP - schedule-based - thermal storage tank volume 

- Temp. set points of thermal 

storage tank 

 
- storage capacity 

- storage efficiency 

- self-consumption  

[43] - wind power 

- generators 

  

- dynamic 

optimization 

- on/off status of generators - operational cost 

- investment cost 

- flexibility index 

[55] 

 

- structural thermal energy 

storage 

- building stock with different 

envelope properties and 

heating system 

-  
- Rule-based 

control 

- Temp set points 
 

- storage capacity 

- storage efficiency 

- power shifting capability 

[45] 
 

- structural thermal energy 

storage 

- building with different 

envelope parameters  

- heating technologies 

- heating system - Rule-based 

control 

- Temp set points 
 

- flexibility index 
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2.1.1 Building architecture 

This growing energy demand with associated CO2 emissions and the large energy flexibility 

potential of the envelope have led to modern design concepts for energy savings in buildings. 

Consequently, energy-efficient buildings are a sustainable approach to decreasing energy 

demand and GHG emissions. As established from the sensitivity analysis of building 

parameters [45,46], envelope insulation is the most effective technique to improve energy 

flexibility in buildings. A study on energy efficiency and demand flexibility in 498 dwellings 

showed 38 – 58% energy saving for various envelope insulation levels in a cold climate. The 

energy management system with battery storage resulted in an energy cost reduction of 

$140/year [34]. The envelope parameters are strongly related to the ability of load shifting. It 

was observed in [48,50] that poorly insulated households had significant potential for load 

shifting but with shorter periods. In contrast, the well-insulated households had a smaller 

potential for load shifting due to decreased heating/cooling demand than poorly insulated 

households for longer periods. 

Similarly, Vivian et al. [33] found that storage capacity was higher in new buildings than in old 

ones. Interestingly, the storage efficiency is higher in new buildings, which means that the 

energy stored during the demand response was used to its maximum later in new buildings, and 

a substantial portion of stored energy was lost in old buildings. Reynders et al. [55] also 

investigated energy flexibility as a function of building topology and control parameters and 

concluded that the structural thermal energy storage should be activated for a shorter duration 

to achieve higher energy flexibility. Another study investigated the energy flexibility in 419 

dwellings having different envelope retrofits [53]. It was found that each element of the 

envelope, i.e., external walls, roof, floor, and windows, had substantial energy-saving potential 

individually. However, the whole building retrofit was most effective with primary energy 

savings of 35%, CO2 emissions reduction of 47.6%, renewable energy use reduction of 2%, and 

flexible load reduction of 5%. The energy demand for thermal comfort is determined by the 

building envelope’s thermal performance, which has direct implications on the total energy 

need of the building [20]. Thus, an integrative methodology is required to build a passive design 

to improve energy flexibility at the initial design stage. Designers need extensive details on 

building performance and must choose from a wide range of design options to achieve the 

desired energy flexibility. 
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2.1.1.1 Optimization of envelope parameters 

Previous studies depict that a building's operating costs, carbon emissions, and energy 

efficiency depend on the preliminary design approaches [56]. In the planning phase, the 

designer must consider building orientation, ventilation rates, solar gain/loss, window area and 

shading, and thermal transmittance, which influence the building performance altogether or 

individually[57,58]. Climate is another critical aspect in designing building architecture. Since 

the envelope design and energy-saving capacity vary with the outdoor environment, the design 

phase becomes more complex due to the diversity of weather conditions in different regions 

[30]. Another critical factor to consider when assessing thermal load, particularly the cooling 

load, is heat gain from household appliances. A realistic appliance’s heat gain profile could 

assist in quantifying the heat to be evacuated from the building during space cooling [59] and 

preventing overheating during space heating [60]. 

Though building envelope design is a crucial aspect of energy flexibility, it is a difficult job due 

to a wide range of efficiency measures. Quantifying the energy flexibility from various building 

optimization schemes using the conventional approach is challenging. The researchers have 

coupled building simulation tools like Ecotect, EnergyPlus, Doe-2, and TRNSYS (Transient 

Systems Simulation Program) with optimization algorithms to determine energy-efficient 

solutions[12,61]. Optimization algorithms assess design options for required outcomes and 

make it possible to tradeoff between objective functions simultaneously while considering the 

design constraints [62].  

Previous studies have shown that metaheuristic algorithms are adequate tools to prompt energy 

flexibility by optimizing envelope design. Penna et al. [63] conducted a tri-objective 

optimization on a single-family household in two cities in Italy having different climates using 

TRNSYS and NSGA-II. The objectives were minimizing the cost, discomfort hours, and energy 

use by improving the envelope insulation, window glazing, and HVAC equipment. Both cities 

achieved more than 57 % energy savings in the cost-optimum scenario. Rabani et al. [64] 

developed an optimization scheme to mechanize the selection of best-suited windows’ 

configuration, envelope parameters, shading system, and service system for a Norwegian office 

building. Ascione et al. [65] simulated the thermal load of a residential building in four cities 

having Mediterranean climate in Energy Plus and optimized the building architecture using 

NSGA-II. The type of windows, walls, and roofs were determined by reaching a trade-off 

between heating and cooling demands. Ferrara et al. [66] optimized the energy use, energy cost, 

and acoustic performance of a nearly zero energy building in GenOpt using the particle swarm 
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optimization (PSO) algorithm. The energy system model of a French home was co-simulated 

with a MATLAB-based acoustic performance model. A previous study coupled IDA-ICE with 

GenOpt and optimized the energy consumption by 77% using NSGA-II. The optimal shading 

control based on solar radiations and zone temperature was the most influential design 

parameter for optimization. Chang et al. [67] optimized multiple design parameters of four 

households in Tokyo using a flexible MOO scheme. The optimum retrofit area of the building 

envelope was determined for improved energy performance, higher thermal comfort, and lower 

GHG emissions. As the MOO generates a series of Pareto fronts (PFs), the choice of the most 

appropriate solution is complicated. Multi-criteria decision-making (MCDM) is an established 

technique to order the Pareto solutions and select the optimum. The MCDM method is 

explained along with related literature in section 3.5. 

The review of past literature emphasizes that the climate needs to be considered at the 

preliminary design phase to get an idea of energy flexibility potential. Zhao & Du [68] applied 

the MOO technique to an office building to reduce energy use and increase thermal comfort in 

China's four climates, from extreme cold to hot. Optimizing building orientation, windows 

layout, and shading in those locations revealed that envelope design depended on the local 

conditions to achieve energy efficiency. In the optimum solution, the window type and 

overhang length differed in hot and cold regions. A study investigated different passive design 

options for a household in twenty-five different climate regions [69]. The authors examined the 

effect of window shades during daylight and air change rate (ACH) of 1 and 1.5 for passive 

cooling. Under five scenarios, they varied the thermal transmittance of windows and walls, 

window area, and windows glazing type. The thermal transmittance of external walls and roof 

were 0.2 W/m2K and 0.6 W/m2K in extreme cold and hot regions, respectively. The optimal 

window-to-wall ratio (WWR) was up to 0.8 in cold climates ensuring higher solar gains during 

heating. Natural ventilation remarkably reduced the cooling load in hot regions and prevented 

overheating in cold regions. 

Naji et al. [70] simulated a double-story detached house of 214 m2 using TRNSYS and 

EnergyPlus and minimized the life-cycle costs by employing a genetic algorithm. The authors 

conducted case studies in eight cities representing Australia's tropical, temperate, and 

continental climates. It was observed that tropical, hot desert, and humid subtropical climate 

zones require smaller WWR, whereas the oceanic clime zone was characterized by larger 

WWR. Furthermore, the optimal solutions showed that low-level insulation was needed in the 
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tropical climate. In contrast, high-level insulation was feasible in oceanic climate. In addition, 

the shading effect was more prominent in tropical and hot deserts than in cold climates. 

To evaluate the energy-saving potential of a zero-energy building, Harkouss et al. [71] designed 

a co-simulation platform of the MOO tool and EnergyPlus. Multi-story residential buildings 

were investigated in different locations in France and Lebanon. The design variables were 

envelope insulation, WWR, window shading, window glazing, and temperature set points for 

heating and cooling. The results established that it is imperative to use passive techniques and 

a high-insulated envelope to reduce the building's thermal load. The optimization framework 

reduced the thermal load between 6.7% to 33.1% in different locations. Delgarm et al. [72] 

coupled EnergyPlus and a genetic algorithm to determine the optimal orientation, WWR, and 

window shading fraction of a thermal zone in Iran’s four climate zones (cold to hot). The 

optimization resulted in a 23.8% to 42.2% decrease in final energy use in those locations. The 

optimum values of WWR were 0.26 and 0.08 in heating-dominant and cooling-dominant 

climates, respectively. The building orientation and overhang length did not show much 

variation in optimal solutions of investigated climates. 

2.1.2 Building energy system 

Building energy system is another critical aspect of improving energy flexibility in buildings 

and is ranked at 3rd for energy flexibility potential, as evident in Table 2-2. BES can be 

categorized into two subsystems: energy supply mix and building service system. An optimal 

energy supply mix can provide generation flexibility, and the building service system is 

responsible for the system flexibility. According to the previous studies on energy flexibility 

(c.f. Table 2-3), regarding energy supply, grid supply is the mandatory element, and other 

supply options may include photovoltaic (PV) generation, solar thermal collectors, micro-wind, 

CCHP, fuel cell, etc. At the same time, the HVAC system is an essential component of services, 

with the auxiliary system being a combination of structural thermal energy storage, thermal 

storage tank, and electric storage. 

Very few studies exist that compare the energy flexibility of service systems in residential 

buildings concerning the HVAC system [36,48,50,52,54,55], as evident from Table 2-3. 

However, the scope of energy flexibility is firmly established by the results of those studies. A 

comparison of underfloor heating and radiator showed that the floor heating system stored more 

energy for a longer duration due to low energy losses. In contrast, the shifting efficiency of the 

radiator was high due to the lower thermal inertia. Both systems could provide thermal comfort 
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in the building with negligible variation [50]. In another study [55], the comparison of floor 

heating and a conventional radiator showed that the storage efficiency of the floor heating 

system was above 90% in various building topologies, which varied between 65 – 91% for 

radiator heating. Similarly, Johra et al. [45] investigated the performance of floor heating and 

radiator heating in buildings having different structural properties. The floor heating had better 

performance in building with medium and heavy structures. Moreover, replacing the radiator 

with a floor heating system resulted in an 8% improvement in energy flexibility in highly-

insulated buildings. Clauß et al. [52] individually analyzed an air-source heat pump (ASHP) 

and a direct electric heater for flexibility potential against different control strategies. It was 

observed that scheduled base control substantially decreased energy use and cost during peak 

hours. Since the electricity consumption of the reference case was higher than the ASHP for 

direct heating, the direct heating system showed comparatively higher energy flexibility 

potential. A study calculated the energy flexibility for replacing existing service systems 

(traditional boiler/heat pump/electric water heater/air conditioner) with efficient systems 

(condensing boiler/A+++ class heat pump/heat pump for water heating/A+++ class air 

conditioner) [53]. The upgraded system reduced the primary energy consumption and local CO2 

emissions. Also, the flexible loads and renewable use were significantly increased when 

replacing the gas-fired system with a heat pump. Regarding the energy supply, Ma et al. [43] 

evaluated the energy flexibility of integrating wind generators in building power system. It was 

found that the flexibility of the power system increased with the increasing share of wind 

generator output in the electricity supply. 

2.1.2.1 Selection of optimal energy system 

Climate, occupancy rate, internal heat gains, natural ventilation, and building service 

technologies are some of the factors that determine energy use in a building [31]. The 

operational characteristics of BES, such as efficiency, power demand, and operating cost, vary 

with the changing climates. Additionally, various HVAC alternatives can be installed in the 

same building for heating and cooling[10,26,73]. Although there are energy-efficient and 

financially feasible HVAC and energy supply systems for households, choosing the most 

suitable BES for a particular climate zone involves an integrated strategy. Traditionally, the 

HVAC system is selected based on the building's final energy use and thermal load. 

Nevertheless, evaluating additional performance measures such as environmental impacts, 

capital and operating costs, energy costs, and thermal comfort is essential while selecting a 

BES. Also, the financial benefits, renewable energy share, and environmental effects need to 
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be assessed for the installed renewable energy technologies. MCDM methods compute the 

aggregated impact of these contradictory indicators and rank the possible solutions according 

to the provided criterion [74].  

Solar, wind, and geothermal are feasible energy source options. Whereas PV, solar thermal, gas 

or oil boiler, (reversible) air source heat pump (ASHP), (reversible) water-source heat pump 

(WSHP), (reversible) ground-source heat pump (GSHP), vapor compression chiller, and 

absorption chiller are the most common HVAC systems and energy converters in buildings 

[8,26,73,75,76]. There are several MCDM methods and various performance indicators that can 

be used for the evaluation of building energy systems. Table 2-4 summarizes different MCDM 

methods and evaluation criteria used to select building energy systems in recent years. 

Table 2-4: Application areas and performance indicators of MCDM for building energy system 

MCDM method/  

building type 

Energy system under 

evaluation 

Performance Indicators Application/ Criteria 

evaluation methods 

Reference 

Elimination and Choice 

Translating Reality (Electre) 
III 

(Office) 

- Heating: gas-fired boiler, 

oil-fired boiler 
- Cooling: split air 

conditioner, air-cooled 

chiller 

Net present cost, energy 

consumption, thermal 
comfort, indoor air quality, 

CO2 emissions 

- Selection of best HVAC 

system in an office 
building. 

- Simulation (TRNSYS) + 

computation 

[77] 

Analytic hierarchy process 

(AHP) 

(Commercial) 

- different sizes of the 

internal combustion engine, 

boiler, PV/PVT, absorption 
chiller, electric chiller 

annual operation cost ratio, 

primary energy saving 

ratio, carbon emission 
reduction ratio 

- Integration of combined 

heating, cooling, and 

power system in a 
commercial building 

using renewable and 

non-renewable sources. 
- Computation 

[11] 

Weighting: entropy method + 

geometric mean method + 
additive combination 

weighting method 

Ranking: Technique for Order 
of Preference by Similarity to 

Ideal Solution (TOPSIS) 

(Office) 

- air-cooled chiller with gas 

boiler 
- absorption chiller with gas 

boiler 

- combined heat and power 
with a hot water absorption 

chiller 

- ground coupled heat pump 

energy consumption, 

thermal comfort, indoor air 
quality, initial cost, 

operational cost, CO2 

emissions 

- Multi-climate study to 

develop a decision-
making tool for the 

HVAC&R system, 

including primary and 
secondary components 

of the system. 

- Simulation (TRNSYS) + 
computation 

[10] 

Stochastic multicriteria 

acceptability analysis 
(SMAA) 

(District heating) 

- coal-fired combine heat and 

power 
- gas-fired boiler 

- oil-fired boiler 

- coal-fired boiler 
- solar energy heat pump 

- water-source heat pump 

- ground-source heat pump 

cost per unit area, GHG 

emissions, qualitative 
criteria 

- Selection of sustainable 

district heating system 
considering the 

uncertainties of criteria. 

- Computation 

[78] 

Preference Assessment by 

Imprecise Ratio Statements 

method (PAIRS) 
(Residential) 

- district heating 

- geothermal heating 

- electric heating 
- air heat pump 

- solar heating 

- oil heating 
- solar oil heating 

- natural gas heating 

- natural gas heating with 
fuel cell 

Life-cycle costs, CO2 

emissions, SO2 emissions 

- Comparison of micro-

CHP (micro-

cogeneration) heating 
with traditional heating 

systems for financial 

and environmental 
impacts. 

- Computation 

[79] 

AHP + Preference Ranking 

Organization Method for 
Enrichment Evaluation 

(PROMETHEE) 

(Residential) 

- Grid + AC + boiler 

- Grid + PV + AC + boiler 
- Grid + PV + Battery + AC 

+ boiler 

- Grid + wind turbine + AC 
+ boiler 

Grid + wind turbine + PV + 
AC + boiler 

- Grid + gas engine + AC 

investment cost, running 

cost, CO2 emissions, 
primary energy 

consumption 

- Evaluation of 

conventional and 
renewable energy 

systems by combing 

linear programming and 
MCDM. 

- Computation 

[80] 
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MCDM method/  

building type 

Energy system under 

evaluation 

Performance Indicators Application/ Criteria 

evaluation methods 

Reference 

- Grid + fuel cell + AC 

SMAA 
(Residential) 

- electric heating 
- District heating with 

biomass fuel 

- GSHP 
- Pallet boiler heating 

- solar heating 

- fireplace 

investment cost, operating 
cost, CO2 emissions, 

particulate emissions 

- Multicriteria decision 
support for planning 

new sustainable 

residential area 
- Measured data + 

computation 

[81] 

AHP + Weighted Additive 

Sum Product Assessment 

(WASPAS) 
(Residential) 

- Energy supply options: 

wood, pallets, natural gas, 

PV, solar thermal, grid 
supply 

- heating /DHW options: 
Boiler, air-water heat 

pump, ground-water heat 

pump 

energy consumption, CO2 

emissions, total cost, 

thermal comfort, 
maintenance, and 

operation 

- integrated assessment 

model of an energy 

supply system 
considering different 

envelope combinations 
and technological 

solutions. 

- Simulation 
(DesignBuilder, 

Polysun) + computation 

[82] 

AHP + TOPSIS 
(Residential) 

- wood pallet boiler 
- solar thermal heating 

system 

- air-to-air HP 
- air-to-water HP 

- water-to-water HP, 

investment cost, running 
cost, payback period, 

equipment performance, 

GHG emissions, 
renewable energy share 

- Investigation of the 
drivers for decision 

makers for selecting 

different renewable 
heating technologies. 

- Computation 

[83] 

Electre III 
(Residential) 

- evacuated tube solar 
collector + flat plate solar 

collector + absorption 

chiller + PV + wind turbine 
- GSHP + PV + wind turbine 

- flat plate collector + ASHP 

+ PV + wind turbine 
- flat plate collector + GSHP 

+ PV + wind turbine 

Life-cycle cost, CO2 
emissions, total energy 

consumption, grid 

interaction index 

- Optimization of 
Renewable energy 

solution sets for net zero 

energy building in 
different climates. 

- Simulation (TRNSYS) + 

computation 

[84] 

criteria importance through 
intercriteria correlation 

(CRITIC) + TOPSIS 

(Community) 

- PV + wind turbine + diesel 
generator + battery 

- PV + diesel generator + 

battery 
- Wind turbine + diesel 

generator + battery 

- diesel generator + battery 
- PV + battery 

Unmet load, Excess 
electricity, total electricity 

production, Renewable 

fraction, life-cycle costs, 
cost of energy 

- evaluate the techno-
economic performance 

of six 

PV/wind/battery/diesel 
generator energy system 

alternatives. 

- Simulation (HOMER) + 
computation 

[85] 

CRITIC + TOPSIS 

(Community) 

- PV + diesel generator 

- wind turbine + diesel 
generator 

- PV+ diesel generator + 

battery 
- wind turbine + diesel 

generator + battery 

- PV+ wind turbine + diesel 
generator 

- PV+ wind turbine + diesel 

generator + battery 
- PV + battery, wind turbine 

+ battery 

- PV+ wind turbine + battery 

initial cost, operating cost, 

cost of energy, CO2 
emissions, Excess 

electricity, Unmet electric 

load, Capacity shortage, 
Renewable fraction 

- Identification of the best 

hybrid. Renewable 
energy system for a 

specific load of 

electricity and 
hydrogen.  

- Simulation (HOMER) + 

computation 

[86] 

In previous literature, MCDM methods have been implemented for performance assessment of 

BES from a single component to large systems and an individual building to the whole district. 

The researchers have not set certain criteria for applying a specific MCDM technique for 

building types and energy systems. Choosing an MCDM technique and assessment criterion is 

problem specific. Nevertheless, energy use, costs, and environmental impacts are three 

performance indicators generally used for aggregated evaluation of energy systems. For district 

heating application, H. Wang & Lahdelma [78] investigated a coal-fired combined heat and 

power (CHP) boiler with various fuels and HVAC technologies. The authors applied the 
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stochastic multicriteria acceptability analysis (SMAA) technique to identify the appropriate 

energy supply and HVAC systems, considering uncertainties of energy cost, carbon emissions, 

and qualitative indicators. Alanne et al. [79] used preference assessment by imprecise ratio 

statements method (PAIRS) method with life-cycle costs and GHG emissions as performance 

criteria for comparison of micro-CHP and conventional heating systems. The decision-making 

results showed that micro-CHP was the preferable system for economic and environmental 

benefits. Ren et al. [80] studied the combination of photovoltaic, wind power, gas-fired engine, 

conventional boiler, and grid supply in a residential building for air conditioning service. The 

analytical hierarchy process (AHP) and preference ranking organization method for enrichment 

evaluation (PROMETHEE) approaches were applied to capital cost, operating cost, carbon 

emissions, and primary energy consumption to determine the optimal energy mix. Kontu et al. 

[81] performed a multi-criteria assessment of various heating systems for a household using the 

SMAA method. The performance indicators were initial and operating costs and GHG 

emissions. The optimal choice was district heating with biomass regarding the capital cost and 

environmental impacts, whereas GSHP was a suitable option to reduce the operating cost. 

Džiugaitė-Tumėnienė et al. [82] developed a unified model to assess the flexibility of 

combinations of energy supply technologies for various heating systems. AHP and weighted 

additive sum product assessment (WASPAS) were applied to calculate the weights of energy 

consumption, carbon emissions, investment cost, operational cost, and thermal comfort. AHP 

and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) approaches 

were used in a study [83] to examine the performance of the traditional boiler, solar heating, 

air-to-air heat pump (A/AHP), air-to-water heat pump (A/WHP), and water-to-water heat pump 

(W/WHP). The performance criteria were energy supply from renewable energy sources, costs, 

payback period, GHG emissions, and equipment efficiency. Harkouss et al. [84] designed 

various BES combinations of photovoltaic, thermal collectors, wind turbines, absorption 

chiller, GSHP, and ASHP. Elimination and Choice Translating Reality (Electre) III was 

employed to rank BESs based on energy use, environmental impacts, costs, and grid utilization. 

Babatunde & Ighravwe [85] and Salameh et al. [86] used combinations of PV, wind turbine, 

diesel generator, and battery storage for the energy supply system of a household. They used 

criteria importance through intercriteria correlation (CRITIC) weighing and TOPSIS ranking 

to identify the best energy system. Both studies used costs, renewable fraction, excess 

electricity, and unmet load to assess energy systems. 
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2.1.3 Building control system 

HVAC system has a major share in building energy consumption. The HVAC system also has 

promising potential for demand flexibility through optimum control. The building control 

system can be categorized into two types, local controller and supervisory controller. The 

function of the local controller is to assure the continuous operation of subsystems by passing 

set points, on/off signals, and a base for determining parameters like flow rates. The Control 

system is designed to formulate the demand response measures into a control strategy in the 

supervisory controller. The supervisory controller communicates with local controllers and is 

responsible for the smooth operation of the whole system. The supervisory control receives 

information from the building and gets the time-varying parameters like weather conditions, 

price of energy, and occupancy rate [87]. In a supervisory controller, an explicit method is used 

to decide control signals and passes them to the local controllers to operate building components 

to achieve the control objective.  The control objective depends on the problem delimitation. 

The typical control objectives are minimizing energy use, reducing energy cost, maximizing 

thermal comfort, peak shaving, peak shifting, and minimizing emissions. Two control strategies 

are generally employed in buildings (c.f. Table 2-3): rule-based control (RBC) and model 

predictive control (MPC). 

Rule-based control: RBC is a simplified strategy for controlling the subsystem of an energy 

system.  Rule-based controllers are easy to integrate into dynamic simulation tools and 

determine the state of a system component based on the user-specified decision rules (using “if-

then” statements). The rule-based controller can improve energy flexibility with one of the 

control objectives mentioned earlier by adjusting the set points of the indoor environment or 

thermal energy storage (TES). However, since RBCs are designed to control a specific 

component of BES, they cannot optimize the operation of the whole energy system[88]. 

Model predictive control: In MPC, the optimal control signals are determined iteratively over 

a specified time horizon by using the information from the system model being controlled and 

uncertainties. This task is accomplished by performing optimization processes at each time step 

based on the current state of the energy system. The optimization problem tends to maximize 

or minimize a control objective subject to the given constraints. As a result, MPC can predict 

the building response to variations of parameters like weather conditions, energy use, energy 

prices, and occupancy rates and make decisions about system operation to achieve the control 

objective [89]. 
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Figure 2-1 shows the basic principle of MPC. Numerous studies have shown that MPC can 

deliver better energy efficiency and cost savings and gained growing interest in recent years. A 

review of the literature on MPC in buildings reveals that MPC can be applied to a wide range 

of building systems and is recognized as a suitable choice for energy flexibility [90]. An 

effective HVAC controller should consider time-varying uncertainties like climate, internal 

gains, and comfort constraints. MPC can address these uncertainties of building and HVAC 

systems.  

In some cases, control strategies have been applied for generation flexibility (PV supply) [34] 

and system flexibility (battery power, volume of storage tank) [51]. However, the literature 

review reveals that researchers mainly focused on activating demand flexibility through 

modulation of temperature set point or heat pump’s power [32,45,52,55]. For example, by 

applying the MPC technique, Péan et al. [32] reduced the energy use, costs, and emissions of a 

residential building in a Mediterranean climate. The system states were zone temperature, the 

internal surface temperature of the wall, and TES temperature. Weather data, internal gains, 

and occupancy rates were uncertainties of the control problem. To minimize the cost functions, 

the supervisory controller manipulated the heat pump load and TES load for a prediction 

horizon of 24 hours. The MPC strategy reduced costs (13 – 29%) and emissions (19 – 29%) 

during heating and cooling services. A study used MPCs as part of a home energy management 

system [34]. MPC contributed to the energy flexibility for generation, system, and demand. 

Figure 2-1: Basic principle of model predictive control 
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The control objectives were minimizing electricity cost, discomfort, and battery degradation. 

The controller obtained system states of indoor temperature, the temperature in a water heater, 

and battery state of charge and external data of weather conditions, price of electricity, PV 

generation profile, and user preferences. The system calculated the net house load, indoor 

temperature, and battery cycles at each time step of the simulation based on the control inputs 

of temperature set points, PV power, battery power, and water heat duty cycle. Similarly, the 

MPC-based optimal control of underfloor heating resulted in 300 kWh saving in electricity 

consumption in a year [91]. The control input, temperature set point, was manipulated to 

minimize the energy use with outdoor temperature as a disturbance. The system outputs were 

indoor temperature and heat flux density. The minimum and maximum heat flux were fixed as 

constraints of the optimization problem. In another study[49], a comparison of RBC and MPC 

was performed for thermostatic control of the HVAC system. The controllers modulated the 

heating set temperature for four hours of heating service in the morning and evening, intending 

to minimize energy costs. The limits of indoor temperature were set as constraints, and power 

demand, energy price, and indoor temperature were forwarded to a supervisory controller at 

each time step. The findings of the comparative analysis showed that MPC provided twice 

higher energy flexibility as the RBC. However, the flexibility efficiency was higher in the RBC 

strategy. 

2.2 Quantification of energy flexibility 

The fundamental goal of energy flexibility is to reduce the net energy use of BES. The energy 

flexibility is achieved by adjusting the building load profile, as shown in Figure 2-2. 

The following strategies can manipulate the energy demand from local energy networks: 

• improving envelope parameters (load conservation) [45,46] 

• integration of renewable energy supply (generation) [43] 

• using efficient building service system (load conservation) [53] 

• moving the demand in time (load shifting) [92] 

• reducing the peak demand (load shaving) [92] 

• increasing the load for financial incentives for a limited time (valley filling) [92] 
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The quantification of energy flexibility from the load shaping techniques can be expressed as 

the energy conserved (kWh), load covered by renewable energy sources, and power (kW) or 

energy (kWh) shifted or shed. The energy flexibility indicators (EFI) can be further classified 

into potential and performance indicators[12]. 

Potential indicators: The potential indicators quantify the amount or the expected amount of 

energy conserved or shifted by implementing a flexibility strategy. It should be noted that 

potential indicators typically quantify the energy flexibility of a building subsystem during the 

DRE. 

Performance indicators: The performance indicators quantify the targeted benefit of applying 

energy flexibility to an energy system. The potential target of energy flexibility could be 

thermal comfort, emission reduction, grid independence, or cost reduction. Furthermore, the 

scope of performance indicators is not limited to building subsystems or DREs. It can quantify 

the energy flexibility of a building service component to the whole building. 

The potential indicators are only a function of the flexibility strategy, but performance 

indicators depend on the price of energy networks, the type of fuel used, and renewable energy 

potential. Table 2-3 shows different potential and performance indicators used to quantify 

energy flexibility.  The generation energy flexibility can be characterized by self-consumption 

(potential indicator) and load cover factor (performance indicator). The energy flexibility from 

envelope improvements can be quantified by peak shaving and flexible load as potential 

indicators and primary energy consumption and CO2 emissions as performance indicators. 

Similarly, the energy flexibility from system upgradation is expressed as flexible energy (a 

potential indicator) and primary energy consumption, cost of heating/cooling, and CO2 

 

 

 

Figure 2-2: Load management techniques 
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emissions (performance indicators). Storage capacity and efficiency are potential indicators, 

while energy cost and CO2 emissions are performance indicators for thermal energy storage. 

The typical potential indicators of demand response strategies are flexible energy, flexible 

power, flexibility factor, and flexibility index. The performance indicators of demand flexibility 

include the cost of energy and CO2 emissions. Table 2-5 provides an overview of different 

flexibility indicators used in the literature in different domains of energy flexibility. 

Table 2-5: Overview of flexibility indicators for various flexibility sources 

Indicators Unit Description Sources Reference 

Potential Indicators 

Self-

consumption 

[-] The degree to which the building 

directly consumes the on-site 

generation. 
Onsite 

generation 

[54,93] 

On-site Energy 

Ratio 

[-] The ratio between annual energy 

supply from local renewable 

sources 

and annual energy demand. 

[92] 

Flexible thermal 

load 

kWh The decrease in the thermal load 

by improving envelope 

parameters. 
Envelope 

parameters 
[32] 

Flexible peak 

power 

kW The peak power reduced by 

improving envelope parameters. 

Flexible energy kWh The reduction in energy 

consumption by upgrading the 

service system 

Service system [50,52] 

Storage capacity kWh The reduction in energy 

consumption due to energy 

storage during an active DRE. energy storage 

[33,50,52,54,92] 

Storage 

efficiency1 

% The efficiency of energy storage 

for active DRE. 
[33,54,55,92] 

Flexible energy kWh The reduced energy consumption 

during DREs. 

Demand 

response 

[13,14,92] 

Residual load kWh The load covered by grid supply 

after DREs. 
[12] 

Flexibility factor [-] It indicates the capability of 

exploiting energy, cost, or 

emissions during DREs.  

[40,51,92] 

Flexibility index [-] The ratio between the energy cost 

of flexible operation and reference 

operation. 

[45,94] 

Performance Indicators 

PER kWh The reduction in primary energy 

consumption. 

Generation/ 

System/ 

Demand 

[32,34,43,47,52,53] 

Flexibility cost € Flexibility in terms of decrease in 

the cost of electricity by 

modulation load profile. 

Flexibility 

emissions 

kgCO2eq. The reduction in CO2 emissions 

by a flexibility strategy. 

1 the storage efficiency is calculated for independent DREs only, not for continuous modulation.  
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3 Methodology of optimization framework 

This research has developed a system optimization framework for improving energy flexibility 

in buildings. The framework can be applied at the design stage of building envelope and/or 

building service system for improving energy flexibility. Further, it provides an optimal control 

strategy for the service system for demand flexibility. A household building was selected to 

assess energy flexibility potential by employing the proposed framework. The optimization 

framework comprised four flexibility strategies, as shown in Figure 3-1. The first step towards 

energy flexibility was the upgradation of the building's passive design to minimize the 

heating/cooling demand. In the next phase, a BES was identified, which could maintain thermal 

comfort in the building while also improving renewable energy production, reducing CO2 

emissions, and operating an energy system at a lower cost. Next, a steady-state multi-objective 

optimization was performed to optimize different parameters of the building service system for 

energy flexibility. Finally, the dynamic control was applied using MPC to minimize the energy 

consumption of BES while maintaining the required thermal comfort. Sections 3.1-3.6 describe 

the optimization process in detail. 
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Figure 3-1: Optimization framework for improving energy flexibility 
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3.1 Reference building 

The reference building was a double-story household with boundary conditions and architecture 

from International Energy Agency (IEA), Solar Heating and Cooling (SHC) Task 44/Annex 38 

[95]. The building had a 70m2 floor area for each story, a total surface area of 216 m2 for external 

walls, and an external surface area of 81 m2 for the roof. Figure 3-2 shows the geometry and 

orientation of the building. The representative building was modeled and simulated as a single 

thermal zone in TRNSYS. To incorporate the capacity of the internal building structure, the 

internal walls (200 m2) and the floor area of the second story (70 m2) were also added in 

TRNBuild. 

The thermal properties of the building were given according to the energy codes in the 

investigated location [96–112]. These standards provided the references for the thermal 

transmittance (U-value) of walls and windows. Table 3-1 and Table 3-2 describe the 

construction and thermal properties of the building envelope. Expanded polystyrene (EPS) and 

rockwool insulation were used as an insulation layer for external walls and roofs, respectively. 

In each location, the insulation level was specified such that the thermal transmittance of the 

walls and roof met the criteria of regional building standards. Double-glazed windows, having 

4/16/4 geometry (4 mm inner pane, 16mm space bar, and 4mm outer pane), U-value of 1.4 

W/m2K, and g-value of 0.622, were used for all facades. 

 

 

Figure 3-2. Geometry of base case building 
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Table 3-1: Construction and thermal properties of opaque elements  

Element Layer 
Thickness 

(m) 

Density 

(kg/m3) 

Conductivity 

(W/mK) 

U-value 

(W/m2K) 

External wall 

plaster inside 0.015 1200 0.60 0.181 

0.162 

0.203 

0.264 

0.305 

brick 0.210 1380 0.70 

plaster outside 0.003 1800 0.70 

EPS (expanded 

polystyrene) 

0.2001 

0.2302 

0.1803 

0.1354 

0.1205 

17 0.04 

Floor  

wood 0.015 600 0.15 0.649 

plaster floor 0.080 2000 1.40 

sound insulation 0.040 80 0.04 

concrete 0.150 2000 1.33 

Roof ceiling 

gypsum board 0.025 900 0.21 0.131 

0.172 

0.153 

0.224 

0.205 

plywood 0.015 300 0.08 

plywood 0.015 300 0.08 

rockwool 0.2501 

0.1902 

0.2153 

0.1404 

0.1605 

60 0.03 

Internal wall clinker 0.200 650 0.230 0.885 

1 Ostersund and Stockholm, 2 Saarbrücken, 3 Strasbourg, 4 Milan, 5 All investigated locations other than those 

mentioned earlier. 

Table 3-2: Construction and thermal properties of windows 

Windows 
Construction 

(mm) 

Height 

(m) 

Width 

(m) 

Windows area 

(m2) 

U-value 

(W/m2K) 
g-value 

North 

(4,16,4) 1.0 1.0 

3.0 

1.4 0.622 
South 12.0 

East 4.0 

West 4.0 

 

3.1.1 Energy consumption by end-use 

Building energy consumption by end use may be divided into four categories: space heating 

load, space cooling load, domestic hot water (DHW) load, and electricity load of appliances 

and lighting. The heating and cooling loads depend on the location's boundary and climate 

conditions. The annual simulations of the BES were carried out to determine the power demand 

of the HVAC system.  

Since household electricity consumption also changes depending on the climate, hourly load 

profiles of twelve months were formulated from previous literature and surveys [113–127] for 
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investigated locations. The load profiles did not include the electricity consumption for heating, 

cooling, and DHW. Further, the reference building model had the same area and geometry for 

performance evaluation and thermal load in all climates. Therefore, load curves were modified, 

if required, for a household of 140 m2 floor area to realize the actual heat gain of household 

appliances. Kuusela et al. modeled common home appliances' electricity use as a floor area 

function. The relation between the electricity consumption (relative to 140 m2 floor area) and 

floor area is shown in Figure 3-3 and mathematically represented in Eq. 3.1 [128]. 

𝒚 =  −𝟎. 𝟒𝟒 𝒍𝒏(𝒙) + 𝟑. 𝟏𝟗 3.1 

The hot water was supplied at 45 °C with an average daily demand of 140 liters per day [129], 

consuming 5.845 kWh/d for cold-water inlet temperature at 10 °C. Using Eq. 3.2, the local 

energy demand of DHW (Qdhw,loc) was modeled as a function of outdoor temperature while 

keeping the hot water supply at 45 °C. 

𝑄𝑑ℎ𝑤,𝑙𝑜𝑐 = 𝑄𝑑ℎ𝑤,𝑠𝑡𝑑 . (
𝑇𝑑ℎ𝑤,𝑠𝑒𝑡 − 𝑇𝑎𝑚𝑏,𝑎𝑣𝑔

𝑇𝑑ℎ𝑤,𝑠𝑒𝑡 −  10
) 

3.2 

Where Qdhw,std represents the energy required for warm water supply at 45 °C. Tdhw,set and 

Tamb,avg  represent DHW water and annual average outdoor temperatures, respectively. 

3.1.2 Internal gains 

The reference building was a household for four people. The occupancy rate was defined from 

ASHRAE [130] as shown in Figure 3-4, and the same profile was used throughout the week. 

According to ASHRAE standards, each occupant produces 115 W of heat such that 70W is 

generated as the sensible gain, and 45 W is the latent gain [131]. The sensible heat was released 

by radiation (42 W) and convection (28 W). The latent heat gain was defined in TRNBuild by 

including a humidity rate of 0.059 kg/h. Electrical equipment also generates waste heat causing 

thermal gains in the building. It was assumed that 58% of the building's electric energy was 

retained as thermal gain. The hourly profiles for occupancy and electric heat gains were given 

as text files to the building model in TRNSYS. 
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Figure 3-3. Relative electricity consumption as a function of area 

 

Figure 3-4. Occupancy schedule of a day from ASHRAE 

3.2 Energy system alternatives 

This work considered fourteen alternative energy systems for the reference building with 

different energy supply and HVAC systems. It should be noted here that the building envelope 

was upgraded for energy system simulations according to the results of MOO in Phase 1 of the 

optimization framework. The energy flow of BESs under evaluation is shown in Figure 3-5. 

This investigation regarded the grid power supply as a conventional energy source. The building 

was equipped with solar PV, FPCs, and a vertical borehole heat exchanger (BHX) to utilize the 

available solar and geothermal energy. A storage tank was used for thermal energy storage 

having capacities of 250 L, 500 L, or 1800 L according to the requirement of the BES 

alternative. Thermal energy storage (TES) could receive thermal energy from three sources: an 

auxiliary electric heater, hot fluid from FPCs, and hot water from the heat pump (HP). 

Table 3-3 provides the combinations of energy systems for the base case and alternative. The 

auxiliary heater of TES supplied the energy for DHW in the base case and A6. Furthermore, as 

HPs provided chilled water to cooling coils for space cooling in summer, the electric heater in 

TES was turned on for water heating in the alternatives A1, A2, A10, and A11 during cooling 

hours. Alternatives A3, A4, A5, A12, and A13, on the other hand, did not require auxiliary 
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heater DHW since FPCs provided the necessary energy to TES during summer. The hot water 

in TES circulated in a heat exchanger for DHW supply and a radiator or hot water coils for 

room heating. Five HVAC technologies were assessed for providing thermal comfort in the 

reference building: brine-to-air heat pump (B/AHP), A/AHP, A/WHP, B/WHP, and single-

stage hot water-fired absorption chiller.  The base case energy system comprised an A/AHP for 

space heating/cooling and an electric heater for DHW. The energy demand in the base case was 

met by grid networks only. A vertical BHX, B/WHP, TES, and PV supply were integral 

components in alternatives A1, A2, A3, and A4. Water coils provided the cooling service using 

the chiller water from HPs. At the same time, heating was accomplished by emissions heating 

through the radiator (A1 and A3) or ventilation heating through water coils (A2 and A4). 

Alternatives A3 and A4 were also equipped with FPCs to provide heat to TES. B/WHP was a 

primary component in alternatives A5 and A6, and other components were the PV system, TES, 

and BHX. FPCs in A6 supplied heat to TES through the heat exchanger. 

In alternatives A7 and A8, the absorption chiller produced the chilled water, and flat plate 

collectors supplied the energy to the TES. Alternatives A7 and A8 were also equipped with PV 

panels and a battery bank. The alternative A9 has the same energy system configuration as the 

base case, with the PV and FPCs as additional components. The alternatives A10, A11, A12, 

and A13 were equipped with A/AHP, TES, and PV as integral components. FPCs were also 

part of BESs in alternatives A12 and A13. Moreover, alternatives A10 and A11 used a radiator 

for heating, whereas alternatives A11 and A13 used water coils for this service. 

PV capacity: The performance characteristics of the PV array and FPCs were specified 

according to findings of a validated photovoltaic- TRNSYS model [132,133] and thermal 

collector model in IEA Task 32[134], respectively. The electricity load of the building was used 

to calculate the required PV capacity using the relation in Eq. 3.3 [17]. 

𝑃𝑃𝑉 = 𝑃𝑒𝑙,𝑎𝑣𝑔/(𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙  × 𝐸𝑆𝐻) 3.3 

Where Pel,avg represents the electricity load per day. ESH is the estimated solar hours, equivalent 

to global horizontal solar radiation per day. PPV represents the power required by the PV array, 

and ηoverall is the overall efficiency of the inverter, battery, and cables. 
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Figure 3-5: Building energy supply and HVAC options 

Table 3-3: Energy system configurations for the base case and alternatives 

Energy 

system 
GHX FPC PV TES B/WHP B/AHP A/AHP A/WHP 

Absorp. 

chiller 
Radiator 

Heating 

coil 

Cooling 

coil 

Electric water 

heating 

Base case    ×   ×      × 

A1 ×  × × ×     ×  × × 

A 2 ×  × × ×      × × × 

A 3 × × × × ×     ×  ×  

A 4 × × × × ×      × ×  

A 5 × × × ×  ×        

A 6 ×  × ×  ×       × 

A 7*  × × ×     × ×  ×  

A 8*  × × ×     ×  × ×  

A 9  × × ×   ×       

A 10   × ×    ×  ×  × × 

A 11   × ×    ×   × × × 

A 12  × × ×    ×  ×  ×  

A 13  × × ×    ×   × ×  
* Alternatives (A7 and A8) with hot water-fired absorption chiller are evaluated only in cooling dominant locations, i.e., QTA 

and JKT. 

Borehole heat exchanger sizing: The fluid in a vertical U-tube BHX extracted heat from or 

released heat to the ground during heating or cooling modes. The heat transfer fluid (HTF) in 

the U-tube heat exchanger was a mixture of water and ethylene glycol, an antifreeze agent with 

a concentration of 20%. The HTF was pumped to the evaporator (heating mode) or condenser 

(cooling mode) of the heat pump, where the heat transfer occurred between the refrigerant and 

HTF. The borehole lengths for cooling mode Lc and heating mode Lh were calculated using the 

ASHRAE method [135] described in Eqs. 3.4 & 3.5. 
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𝐿𝑐 = 
𝑞𝑎 𝑅𝑔𝑎 + 𝑞𝑐𝑜𝑛𝑑(𝑅𝑏 + 𝑃𝐿𝐹𝑚𝑅𝑔𝑚 + 𝑅𝑔𝑑𝐹𝑆𝐶)

𝑡𝑔  −  
𝑡𝑤𝑡 + 𝑡𝑤𝑜

2  −  𝑡𝑝

 
3.4 

𝐿ℎ = 
𝑞𝑎 𝑅𝑔𝑎 + 𝑞𝑒𝑣𝑎𝑝(𝑅𝑏 + 𝑃𝐿𝐹𝑚𝑅𝑔𝑚 + 𝑅𝑔𝑑𝐹𝑆𝐶)

𝑡𝑔  − 
𝑡𝑤𝑡 + 𝑡𝑤𝑜

2  − 𝑡𝑝

 
3.5 

Where, Fsc is short-circuit heat loss factor, Lc is the required bore length for cooling (m), Lh is 

the required bore length for heating (m), PLFm is a part-load factor during design month, qa is 

the net annual average heat transfer to the ground (W), qcond is the heat rejection rate of heat 

pump condenser to the ground (W), qevap is the heat extraction rate of heat pump evaporator 

from the ground (W),  Rga is the effective thermal resistance of ground (annual pulse) 

((m·K)/W),  Rgd is the effective thermal resistance of ground (peak daily pulse:1 h ((m·K)/W), 

Rgm is the effective thermal resistance of ground (monthly pulse) (m·K)/W), Rb is the thermal 

resistance of bore ( (m·K)/W), tg is undisturbed ground temperature (°C), tp is temperature 

penalty for the interference of adjacent bores (°C), twi is the liquid temperature at heat pump 

inlet (°C), two is the liquid temperature at heat pump outlet or the BHX inlet temperature (°C). 

These parameters were calculated according to the guidelines of the ASHRAE method for each 

location. The undistributed ground temperature is a function of the time of the year, ambient 

temperature, and depth. That is calculated using the ground-coupling heat losses model from 

IEA SHC Task 44/Annex 38 [136]. 

HVAC options: In this study, ventilation heating or emission heating was used to meet the 

demand for space heating, while ventilation cooling was used for space cooling service. PID 

controllers generated control signals (0 to 1) based on the difference between room temperature 

and the reference set temperature. The instantaneous flow rates of water and ventilation air were 

set by multiplying the design flow rates with control signals from PID controllers.  

Although there are various HVAC technologies, the commercially available and domestic-

applicable options: GSHPs (B/WHP and B/AHP), ASHPs (A/AHP and A/WHP), and 

absorption chiller, were evaluated in this study. In addition, the heating and cooling capacities 

of the HVAC system were given according to the location's peak heating/cooling demand. 

3.3 Energy flexibility assessment 

A novel set of flexibility indicators were employed from the findings of the extensive literature 

review for energy flexibility assessment of envelope upgradation, multiple energy systems, 

SSO of service system, and optimal control of service system. The selected flexibility indicators 
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were categorized as potential indicators and performance indicators. Further, the flexibility 

assessment was not limited to the single unit of BES, but this work quantified the energy 

flexibility of the energy system from an integrative perspective. Also, the performance 

indicators’ assessment was extended to the life cycle of BESs. Table 3-4 shows the EFIs used 

to assess flexibility potential for the employed strategies. The following sections describe the 

potential and performance indicators used in this study. 

Table 3-4: The indicators for quantifying the energy flexibility from four different strategies 

Flexibility strategies Energy flexibility indicators 

Optimization of envelope parameters - Flexible thermal load (ΔQflex) 

Selection of flexible BES - Load cover factor (γload) 

- Non-renewable energy savings (fsav,NRE) 

- Life-cycle CO2 emissions (LCEs) 

- Thermal comfort 

- Net present value (NPV25) 

- Levelized costs of energy (LCOEs) 

Steady-state optimization of the service 

system 

- Storage capacity (CDR) 

- Flexible energy (ΔEflex) 

- Residual Load (lres) 

- Flexibility emissions (∆Emiflex) 

- Flexibility cost (Costflex) 

MPC-based dynamic optimization - Storage capacity (CDR) 

- Flexible energy (ΔEflex) 

- Residual Load (lres) 

- Flexibility emissions (∆Emiflex) 

- Flexibility cost (Costflex) 

3.3.1 Potential indicators 

Flexible thermal load: The energy flexibility from upgrading envelope parameters was 

quantified by the flexible thermal load. Flexible thermal load is the difference between the 

building thermal load before and after the upgradation of the building envelope and is 

mathematically described as follows: 

∆𝑄𝑓𝑙𝑒𝑥 = 𝑄𝑓𝑙𝑒𝑥 − 𝑄𝑟𝑒𝑓 3.6 

Qflex is the thermal of the building with an improved envelope, and Qref is the thermal load of 

the reference building. 
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On-site Energy Ratio/Load cover factor: On-site energy ratio, also referred to as load cover 

ratio, was used to quantify generation flexibility from PV power. This EFI computes the fraction 

of the electricity load covered by the on-site electricity generation by renewable energy sources. 

It can be calculated using Eq. 3.7 as follows [137]: 

𝛾𝑙𝑜𝑎𝑑 = 
∫ 𝑚𝑖𝑛[𝑔(𝑡) − 𝑆(𝑡) − 𝜁(𝑡), 𝑙(𝑡)]. 𝑑𝑡
𝑇2

𝑇1

∫ 𝑙(𝑡)
𝑇2

𝑇1
. 𝑑𝑡

 3.7 

Where g(t), S(t), ζ(t), and l(t) represent the electricity from renewable energy sources, energy 

storage balance of battery bank, energy losses, and electricity load during the period of dt, 

respectively. T1 is the start of the evaluation period, and T2 is the end of the evaluation period. 

The excessive electricity is either exported to the grid or considered a loss. So, the maximum 

value of γload is always 1. 

Storage capacity: The storage capacity is defined as the amount of energy added to (up-flex) 

or curtailed from (down-flex) from the energy storage component. In the case of up-flex, the 

upward temperature modulation is activated, or storage capacity is increased to store the energy, 

which could be later discharged in post-DRE hours. In down-flex, the downward temperature 

modulation is activated, or storage capacity is decreased to save the energy supply from a 

service system. The storage capacity for both cases can be calculated using Eqs. 3.8 & 3.9. This 

EFI was used to evaluate the energy flexibility by optimal sizing of thermal energy storage in 

SSO and temperature modulation in MPC-based dynamic optimization of building service 

systems. 

𝐶𝐷𝐹 = ∫ |(𝑃ℎ,𝑓𝑙𝑒𝑥 − 𝑃ℎ,𝑟𝑒𝑓)|
𝑡𝐷𝑅

0

 𝑑𝑡 3.8 

𝐶𝑈𝐹 = ∫ (𝑃ℎ,𝑓𝑙𝑒𝑥 − 𝑃ℎ,𝑟𝑒𝑓)
𝑡𝐷𝑅

0

 𝑑𝑡 3.9 

Where CDF and CUF are down-flex and up-flex storage capacities, respectively. Ph,flex and Ph,ref 

represent the heating power demands during the DRE and reference scenarios, respectively. tDR 

is the duration of DRE. 

Flexible energy: The energy consumption reduction during the DREs is characterized as 

flexible energy and can be determined using Eq. 3.10. 
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∆𝐸𝑓𝑙𝑒𝑥 = ∫ (𝑃𝑓𝑙𝑒𝑥(𝑡) − 𝑃𝑟𝑒𝑓(𝑡))
𝑡𝑁

0

 𝑑𝑡 3.10 

Where Pflex is the power consumed during DRE and Pref is the power consumed in reference 

operation. tN represents the total number of demand response events. 

Residual Load: This EFI measures grid energy networks’ utility after implementing the energy 

flexibility strategies. It is donated by the difference between the building load (Pbui) and the 

energy supply from renewable sources (PRE), as given in Eq. 3.11. 

𝑙𝑟𝑒𝑠 = ∫ (𝑃𝑏𝑢𝑖(𝑡) − 𝑃𝑅𝐸(𝑡))
𝑡𝑁

0

 𝑑𝑡 3.11 

3.3.2 Performance indicators 

Non-renewable energy savings: This EFI is calculated based on the primary energy ratio of 

non-renewable sources (PERNRE). The primary energy ratio of the reference system (base case) 

(PERNRE,ref) is compared with BES alternatives (PERNRE,i) to calculate fsav,NRE. As the share of 

non-renewable energy in the energy supply decreases, the value of PERNRE increases, and 

ultimately fsav,NRE becomes closer to 1. If fsav,NRE has a value of 1, renewable energy sources 

completely meet the building energy demand. PERNRE and fsav,NRE are calculated using Eqs. 3.12 

& 3.13 [73]. 

𝑃𝐸𝑅𝑁𝑅𝐸 =  
∑𝑄𝑜𝑢𝑡

∑(
𝑄𝑒𝑙𝑖𝑛

∈𝑒𝑙
⁄ +

𝑄𝑖𝑛
∈𝑖𝑛
⁄ )

 3.12 

𝑓𝑠𝑎𝑣,𝑁𝑅𝐸 = 1 −  
𝑃𝐸𝑅𝑁𝑅𝐸_𝑟𝑒𝑓

𝑃𝐸𝑅𝑁𝑅𝐸_𝑖
 3.13 

Where Qout is the energy acquired for heating, cooling, and DHW. Qelin and Qin represent the 

grid electricity and other non-renewable energy networks like boilers.  These energy inputs are 

converted to primary energy using the conversion factors ∈el = 0.4 and ∈in = 0.85 (boiler) [73]. 

Life-cycle CO2 emissions: Life cycle assessment (LCA) can be used to evaluate the 

environmental impacts of various BESs over the life cycle. LCA considers CO2eq emissions 

from raw materials to manufacturing, transportation, installation, operation, and disposal of 

each element of the energy system. The CO2eq emissions for electricity generation depend on 

the local power plant technologies in a country. For case studies in this research, the grid utility 
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emissions are taken as 0.012 kgCO2eq/kWh, 0.350 kgCO2eq/kWh [138], 0.707 kgCO2eq/kWh 

[139], and 0.734 kgCO2eq/kWh [140] in Stockholm (STK), Saarbrücken (SBK), Quetta (QTA), 

and Jakarta (JKT), respectively. The LCEs of energy system components, excluding the 

emissions during operation, are summarized in Table 3-5. The emissions during the operation 

were computed by multiplying the emissions factor and total electricity from the grid for one 

year and extrapolated for 25 years of operation. 

Table 3-5: Life-cycle emissions (excluding operation) of components of building energy system 

Equipment Unit GHG emissions Reference 

GHX (kg CO2eq/m) 4.59 [141] 

ASHP (kg CO2eq/kW) 193 [142] 

WSHP (kg CO2eq/kW) 171 [142] 

Absorp. Chiller (kg CO2eq/kW) 127.08 [143] 

Cooling Tower (kg CO2eq/kW) 4.41 [143] 

Collector (kg CO2eq/m2) 110 [143] 

PV + BOS (kg CO2eq/kWh) 0.04 [144] 

Batteries (kg CO2eq/Wh) 0.0729 [145] 

Storage Tank (kg CO2eq/2000 liter) 780.9 [143] 

Radiator (kg CO2eq) 12.62 [146] 

Heating Coil (kg CO2eq) 97 [147] 

Cooling Coil (kg CO2eq) 97 [147] 

Pumps (kg CO2eq) 66 [143] 

Heat Exchanger (kg CO2eq) 32.4 [148] 

Flexibility emissions: The flexibility in emissions is defined as the difference in CO2 emissions 

between the flexible operation (Emisflex) and regular operation (Emisref) of BES. It can be 

mathematically described as in Eq. 3.14. 

∆𝐸𝑚𝑖𝑠𝑓𝑙𝑒𝑥 = 𝐸𝑚𝑖𝑠𝑓𝑙𝑒𝑥 − 𝐸𝑚𝑖𝑠𝑟𝑒𝑓 3.14 

Thermal comfort: Thermal comfort is evaluated in terms of Predicted mean vote (PMV) and 

Predicted percentage dissatisfied (PPD). PMV is a function of occupant activity, clothing, air 

temperature, mean radiant temperature, air speed, and relative air humidity. The relation 

between thermal sensation and PMV is described in Table 3-6. PPD is the level of satisfaction 

of the occupants and is defined according to the PMV values. The count of hours when PMV 

fall between -0.5 and +0.5 or PPD is less than 10% is also calculated to measure thermal 

comfort hours (TCH) in a year. The average value of PPD was taken as the flexibility indicator 

for thermal comfort for a metabolic rate of 1.2, clothing factor of 1 in winter and 0.5 in summer, 

and average air speed of 0.12 m/s. 
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Table 3-6: Thermal sensation scale 

Assessment Criteria 

-0.5 ≤ PMV ≥ +0.5 PPD ≤ 10% Slightly cool to slightly warm 

-1 ≤ PMV < -0.5 / +0.5 < PMV ≥ +1 10% < PPD ≤ 25% Cool to warm 

PMV < -1 / PMV > +1 PPD > 25% Cold to hot 

Life-cycle costs (LCCs): The life cycle cost analysis (LCCA) is an effective technique for the 

economic evaluation of building energy systems. The net present cost (NPC), computed from 

Eq. 3.15 [17], is used to conduct the LCCA. The real discount rate (rd) and net annual cash 

flows (CFn) are the inputs of NPC. The net cash flow is the sum of investment, operation and 

maintenance, and local electricity tariff-based annual electricity costs. The electricity tariffs of 

0.183 €/kWh in STK [149], 0.303 €/kWh in SBK [149],  0.10 €/kWh in QTA [150],  and 0.085 

€/kWh in JKT [151] were used in LCCA. The costs of BES’s components for LCCA were 

acquired from the market survey and the articles of economic investigation of energy system 

components [152–159]. Table 3-7 presents the assumptions of economic analysis used in this 

study. 

𝑁𝑃𝐶𝑛 = 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 +∑𝐶𝐹𝑛 [(
1

1 + 𝑟𝑑
)
𝑛

]

𝑛

1

 3.15 

Table 3-7: Assumption in life cycle cost analysis 

LCCA assumptions 

Twenty-five years life cycle is considered in LCCA. 

Real discount rate (rd) is 3.5 % [160,161]. 

PV cells’ degradation rate is 0.5% per year. 

A feed-in strategy is not implemented. 

Installation costs of the energy system are not considered in the investment cost. 

The costs of the main components of HES like HPs, absorption chiller, GHX, heat exchanger, radiator, 

water coils, storage tank, pumps, and solar systems are considered for investment cost. 

Maintenance cost is 2.5% of the investment cost per year. 

The battery bank is replaced every 6.5 years during the life cycle. 

The LCCs do not include the costs of household construction, household appliances, and household 

maintenance. 

PV system degradation was considered in the LCCA assessment such that the power supply 

from the PV system was 0.5% less than the previous year. The grid utilities filled this gap in 

the power supply. 
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Levelized costs of energy: The LCCs are inadequate for providing a complete picture of the 

building's energy costs. The levelized cost of energy is another indicator for comparing the 

flexibility of BESs. For this purpose, Eqs. 3.16 & 3.17 are also used in this work to determine 

the LCOE for electricity and thermal energy. The average cost per kWh of electricity 

throughout the life cycle is regarded as the levelized cost of electricity (LCOEel). The electricity 

consumption of appliances and HVAC were considered in the computation of LCOEel. The cost 

of heating and cooling can also be calculated using the same method [162]. Thus, the LCOEth 

measures the average cost per kWhth of heating, cooling, and DHW loads. 

𝐿𝐶𝑂𝐸𝑒𝑙 =
𝑡𝑜𝑡𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 [€/𝑦𝑟]

𝑡𝑜𝑡𝑎𝑙 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑙𝑜𝑎𝑑 𝑠𝑒𝑟𝑣𝑒𝑑 [𝑘𝑊ℎ/𝑦𝑟]
 3.16 

𝐿𝐶𝑂𝐸𝑡ℎ =
𝑡𝑜𝑡𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 [€/𝑦𝑟]

𝑡𝑜𝑡𝑎𝑙 𝑡ℎ𝑒𝑟𝑚𝑒𝑙 𝑙𝑜𝑎𝑑 𝑠𝑒𝑟𝑣𝑒𝑑 [𝑘𝑊ℎ𝑡ℎ/𝑦𝑟]
 3.17 

The costs associated with a solar PV system were considered for calculating LCOEel, and the 

costs of HVAC equipment, FPCs, and GHX were used to compute the total annualized cost in 

LCOEth. The electric load served included household electricity load and electricity 

consumption of the HVAC system. The thermal load was the sum of space heating, cooling, 

and DHW demands. 

Flexibility cost: This indicator is a function of grid tariff. It defines how much electricity cost 

is saved after modulation of the electricity load profile by flexible operation, as formulated in 

Eq. 3.18. 

𝐶𝑜𝑠𝑡𝑓𝑙𝑒𝑥 = ∫ (𝑃𝑓𝑙𝑒𝑥

𝑇

0

− 𝑃𝑟𝑒𝑓) 𝑝𝑐𝑡𝑎𝑟𝑖𝑓𝑓 𝑑𝑡 3.18 

Pflex and Pref  are grid power demands during flexible and regular operation. T is the total 

duration of energy system operation, and pctariff is the grid electricity tariff. 

3.4 Multi-objective optimization 

Genetic algorithms are commonly applied techniques for optimizing the energy performance of 

buildings[163–170]. To achieve the desired optimization objectives, a population-based 

metaheuristic genetic algorithm modifies the following population according to the intuitive 

rule of survival of the fittest. When improving the building performance, a genetic algorithm 

can handle the non-linearity of design variables. They also investigate the global optimum 

solution and do not just focus on local optimal solutions [171]. 
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TRNSYS is a building simulation tool that investigates the building’s thermal load and 

evaluates the performance of transient systems. The design parameters and system inputs are 

given as text files to the TRNSYS model. After simulating the model, TRNSYS produces the 

specified outputs as a text file. Python code created an interface between TRNSYS and NSGA-

III to employ the MOO. This study applied NSGA-II in an optimization scheme using an object-

oriented Python-based framework, jMetalPy [172]. The Python script extracted the design 

variables from the TRNSYS input file and passed it on to the optimization algorithm. Next, the 

script read the simulation results output file to get objective function values.  Based on the 

values of the objectives in the previous simulation, jMetalPy produced a revised set of design 

parameters for the next simulation. Following that, Python updated these parameters in the input 

files, and TRNSYS simulated the energy system model to evaluate the objective function for 

the revised design parameters. Pareto front (PF), a non-dominated solution set produced by 

MOO, is the only viable option to improve one objective without sacrificing the second. An 

MCDM technique was applied to the Pareto points to select the best solution. Figure 3-6 

illustrates the generalized optimization flow for the TRNSY-Python co-simulation platform. 

3.4.1 Non-dominated sorting genetic algorithm (NSGA-III) 

NSGA-III, a basic evolutionary MOO algorithm, is an expansion of NSGA-II. It uses equally 

spaced reference points to select non-dominated solutions for the new generation [173]. Hence, 

NSGA-III resolves the problem of non-diversity in NSGA-II while predicting the succeeding 

populations. The structure of NSGA-III is identical to basic GA, and the concept behind the 

GA is to execute the natural evolution process. Every design variable in the optimization 

problem is a genetic factor that combines to characterize a chromosome. The initial population 

is a random selection, but the next population is generated through selection, mutation, and 

crossover and comprises the individuals suitable for the environment. The population continues 

to reproduce and eventually evolve into the best individuals for the environment [68].  

Envelope optimization: In this work, the envelope parameters were optimized in two steps. 

Initially, the Python-TRNSYS co-simulation platform generated PFs between the cost of 

insulation and the thermal load of the reference building using NSGA-III. In the second step, 

the weights of the objective functions were assigned using the CRITIC technique, and the 

Pareto-optimal solution was identified using the TOPSIS methodology. The multi-criteria 

assessment method is described in the later section. 
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Service system optimization: A multi-objective optimization process was conducted to 

maximize the primary energy ratio and minimize the electricity demand of the building service 

system. The genetic algorithm NSGA-III was implemented with constraints of thermal comfort 

level and fractional state of charge (FSOC) of battery storage. In the case of service system 

optimization, the multi-criteria assessment was not required because the minimum energy 

consumption also characterized the Pareto solution of maximum PER.  

 

Figure 3-6: Python-based optimization scheme 

3.5 Multi-criteria assessment 

The first step in the MCDM process is assigning the weights of performance indicators. Two 

weighing methods are usually applied, subjective weighting and objective weighting. The 

experts perform a pairwise comparison of the performance criteria in the subjective weighing 

method. In contrast, objective weighing techniques such as mean weight, entropy method, 

standard deviation, and CRITIC allocate weights based on the diversity of the objectives in 

Pareto solutions [174]. Some studies in the literature employed CRITIC for weighing the 

attributes and TOPSIS for ranking the energy system alternatives. The schematic of the hybrid 

MCDM process used in this study is presented in Figure 3-7.  
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Figure 3-7: Schematic of CRITIC-TOPSIS MCDM process 

CRITIC method: The CRITIC method uses standard deviation to assess the variation of 

performance indicators in alternative systems. The performance indicator with the maximum 

variation is assigned the highest weight in this technique. Next, the data is normalized to 

formulate a correlation matrix, which calculates the quantity of the information and the 

significance of each indicator (Eqs. 3.19–3.22). 

𝑟𝑖𝑗 = 

{
 
 

 
 
𝑥𝑖𝑗  −  𝑥𝑗

𝑚𝑖𝑛

𝑥𝑗
𝑚𝑎𝑥  −  𝑥𝑗

𝑚𝑖𝑛
     𝑖𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑖𝑠 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 − 𝑏𝑎𝑠𝑒𝑑

𝑥𝑗
𝑚𝑎𝑥  −  𝑥𝑖𝑗

𝑥𝑗
𝑚𝑎𝑥  −  𝑥𝑗

𝑚𝑖𝑛
     𝑖𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑖𝑠 𝑐𝑜𝑠𝑡 − 𝑏𝑎𝑠𝑒𝑑       

 3.19 

𝑟𝑗𝑘 = 
∑ (𝑟𝑖𝑗  −  𝑟𝑗̅). (𝑟𝑖𝑘  −  𝑟𝑘̅)
𝑚
𝑖=1

√∑ (𝑟𝑖𝑗  −  𝑟𝑗̅)2. ∑(𝑟𝑖𝑘  −  𝑟𝑘̅̅ ̅)2
𝑚
𝑖=1

 3.20 

𝑐𝑗 = 𝜎𝑗∑1− 𝑟𝑗𝑘

𝑘

𝑘=1

 3.21 

𝑤𝑗 = 
𝑐𝑗

∑ 𝑐𝑗
𝑛
𝑗=1

 3.22 
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Where rij represents the normalized value of ith alternative on jth EFI. rjk indicates the 

correlation coefficient between j x k EFIs matrix. σj, cj, and wj represent the standard deviation, 

the quantity of information contained, and the weight of the jth EFI. 

TOPSIS method: In the TOPSIS method, the alternative systems are ranked according to their 

geometrical distance from ideal and worst solutions (Eq. 3.23–3.27). First, the decision matrix 

is normalized for each EFI (Eq. 3.23). Then a weighted normalized matrix is created using the 

weights determined by the CRITIC technique (Eq. 3.24). Next, the distance of each alternative 

to the ideal and non-ideal solutions is calculated (Eq. 3.25 & 3.26). Finally, Eq. 3.27 is used to 

determine the relative closeness of alternatives. The BES with the maximum score was chosen 

as the most flexible option. 

𝑛𝑖𝑗 = 
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑛

𝑗=1

 
3.23 

𝑣𝑖𝑗 = 𝑛𝑖𝑗.̅̅ ̅̅ 𝑤𝑗 3.24 

𝐷𝑖
+ = √∑(𝑣𝑖𝑗 − 𝑣𝑗

+)
2

𝑛

𝑗=1

 3.25 

𝐷𝑖
− = √∑(𝑣𝑖𝑗 − 𝑣𝑗

−)
2

𝑛

𝑗=1

 3.26 

𝐷𝑖 = 
𝐷𝑖
−

𝐷𝑖
+ + 𝐷𝑖

− 3.27 

Where nij denotes the normalized value of jth EFI for ith alternative. wj is the weight of the jth 

EFI, and vij represents the weighted normalized value of jth EFI for the ith alternative. vj
+ and 

vj
- stand for the best and the worst values of the jth EFI, respectively. Di

+ and Di
- represent the 

ideal and non-ideal distances for the ith alternative, respectively, and Di refers to the measure 

of relative closeness of the ith alternative to the ideal solution. 

3.6 MPC-based optimization 

The MPC-based optimization was subdivided into two steps, as shown in Figure 3-8. In the first 

step, the building thermal load and boundary conditions dataset was used to develop a predictive 

model, which was employed on the service system with similar boundary conditions in the 

second phase for improving energy flexibility. A TRNSYS model calculated the building 
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demand for heating and cooling in the first phase. Then, a parametric analysis was performed 

with a time step of 30 minutes with the concerned parameters of BES. The dataset obtained 

from the parametric analysis contained information on weather conditions, internal gains, 

indoor conditions, and respective thermal comfort and demand for ranges of underlying 

parameters. The prediction models were developed for each month of the year using the 

RandomForestRegressor (RF) algorithm. RandomForestRegressor, an ensemble method, is a 

supervisory machine learning algorithm of scikit-learn, a Python library for predictive analysis 

[175]. The RF algorithm has been used in the literature for predicting building energy use [176]. 

Some studies showed that the RF algorithm depicted better prediction accuracy than other 

regression-based algorithms [177,178]. The ensemble algorithm builds decision trees and uses 

the bootstrap aggregation (bagging) technique over multiple decision trees. The decision trees 

are trained on different data sets extracted from the original data set. The final decision is 

reached using the average of individual trees’ outcomes. 

 

Figure 3-8: MPC-based optimization scheme 

The second step applied the control optimization strategy to the building service system. The 

MPC-based supervisory controller, developed in Python, passed control signals to local 

controllers in TRNSYS. The supervisory controller had a predictive model and a genetic 

algorithm (GA). The predictive model fetched the control disturbances and BES states at the 
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start of each time step. The predictive model and GA operated in a loop for the current time 

step. The GA passed the control variable to the predictive model and retrieved the control 

objective and constraints from the predictive model until the termination criterion was reached. 

Finally, the MPC identified the control inputs of the predictive model for which the control 

objective was minimized or maximized, and control constraints were fulfilled. This process was 

repeated for each time step during the TRNSYS simulation. The mathematical formulation of 

a general MPC problem is described in Eq. 3.28 [179]. 

𝑚𝑖𝑛
𝑢𝑖

∑𝐽𝑘

𝑃−1

𝑘=0

(𝑥𝑘, 𝑢𝑘, 𝑦𝑘) 3.28 

Subject to: 

𝑥0 = 𝑥 3.29 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘, 𝑑𝑘) 3.30 

𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘, 𝑑𝑘) 3.31 

𝑦𝑖,𝑘 = ℎ(𝑥𝑘, 𝑢𝑘, 𝑑𝑘) ≥ 0 3.34 

 𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥  

Where k is the simulation time step, P is the prediction horizon, and Jk is the objective function 

of the control problem. yi,k is the inequality constraint of ith system output. The vectors x, y, u, 

and d are system states, system outputs, control inputs, and disturbances, respectively. 

The MPC receive system states x containing information about the building and energy system 

like zone temperature, energy supply, gains, etc. The controller runs the optimization process 

at each time step and decides the control inputs u considering the constraints and disturbances. 

The constraints are generally problem-specific, like thermal comfort in climate control, power 

of a heating system, and fractional state of charge of the battery. The common disturbances are 

weather conditions in building automation problems. The control inputs could be temperature 

set points for zone or water storage, chiller or heating system flow rates, air handling unit speed, 

etc. The model determines outputs y for the current time step with given control inputs. Energy 

consumption, energy cost, zone temperature, thermal comfort, and emissions are system outputs 

used in building control problems. 

3.7 Assumptions and limitations 

The scope of this study was to establish a methodology to select the best-suited envelope design, 

energy supply mix, and energy service system and devise a generic dynamic control scheme for 
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the service system. There were a few assumptions and limitations implied during the case 

studies of the proposed framework as follows: 

• A typical household building was used for the case study in all investigated locations. 

The occupancy rate was the same in all locations and adopted from ASHRAE. However, 

the boundary conditions such as DHW load, household electricity load profile, and 

thermal load were modified for each location. 

• The area of PV and thermal collectors was limited by the available rooftop area of the 

building. 

• While calculating the life-cycle costs, the real discount rate (rd) was fixed at 3.5 % in 

all locations. Moreover, the maintenance cost of BES was assumed to be 2.5% of the 

capital cost. 

• The capital cost of BES only included costs of main components like the heat pump, 

BHX, TES, water coils, heat exchanger, PV system, etc. Moreover, the costs of building 

construction, maintenance, and appliances were constant for all energy system 

configurations and excluded during the cost analysis.   

• A constant grid tariff was assumed for each location throughout the year. 

• The average thermal conductivity and thermal capacity were considered for designing 

BHX and the operation of GSHP. 

• Since energy flexibility was evaluated for the whole building, those EFI were calculated, 

which provided information on an integrative prospect. 

• Since the grid tariff was constant, the tariff-based or incentive-based control strategies 

were excluded from the analysis. 
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4 Modeling and simulation 

Two programs were used to conduct the simulations in this study: TRNSYS for simulating 

building and energy systems behavior and Python programming language for the interface 

between optimization algorithms/MPC and TRNSYS. The building and energy systems were 

modeled in TRNSYS using the built-in standard components and individual components from 

TRNSYS distributors. The genetic algorithms and MPC were developed in Python using the 

jMetalPy, a metaheuristics optimization library, and scikit-learn, a predictive analysis library. 

The Python code also established the TRNSYS-Python co-simulation scheme for optimization. 

4.1 Thermal load model 

TRNSYS simulated the reference building's space heating and cooling loads using the TRNSY 

component for multi-zone building (Type 56). Type 56 imported the text file containing the 

information on the geometry, envelope properties, and the descriptions of building gains/losses, 

which were specified in TRNBuild. Yearly simulations were conducted with a five-minute 

timestep to compute building thermal load. Figure 4-1 shows the building thermal load model 

in the TRNSYS environment. The mathematical models for the system components are derived 

from ordinary differential or algebraic equations in the TRNSYS program. These models are 

made commercially available from TRNSYS after validation and are extensively used in 

building energy systems. The main components of the TRNSYS model are the following: 

• Type 56 – Multi-zone building 

• Type 75b – Natural ventilation/infiltration 

• Type 109 – Weather data processor 

• Type 2b – ON/OFF differential controller 

• Type 14h – Time-dependent forcing function 

• Type 358 – infiltration through the tilted window 

• Type 985 – Undistributed ground temperature 

• Type 9c – Data reader for external file 

• Equation – define new variables as algebraic functions of constants, previously defined 

variables, and outputs from other components 

The occupancy rate and internal gains were given as external files, described in sections 3.1.1-

3.1.2. The envelope properties were defined in TRNBuild as listed in Table 3-1 and Table 3-2. 
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The control schemes of tilted window ventilation and shading are explained in sections 4.1.1 

and 4.1.2. 

 

 

Figure 4-1: TRNSYS model for thermal load simulation 

4.1.1 Ventilation load 

Thermal load simulations considered two ventilation loads resulting from the airflow through 

cracks in the building envelope and window’s aperture. The infiltration rate (Qinf [m
3/s]) was 

computed using the Sherman Grimsrud model for a single zone, defined by Eq. 4.1 in ASHRAE 

fundamentals 1997 [180]. 

𝑄𝑖𝑛𝑓 = (𝐴𝐿 1000).√𝐶𝑠∆𝑇 + 𝐶𝑤𝑉2⁄  4.1 
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Where AL and Cs represent the effective area of envelope cracks [cm2] and stack coefficient 

[(L/s)2/(cm4K)]. ∆T denotes the difference between indoor and outdoor temperature for the time 

interval of investigation [K]. Cw and V are wind coefficient [(L/s)2/[cm4 (m/s)2] and average 

wind speed (m/s). The value of Cs depends on the total number of floors in the building. For 

instance, its values are 0.000145 for single-story, 0.00029 for double-story, and 0.000435 for 

triple-story buildings. The wind coefficient Cw depends on the height of the building and local 

shielding from surrounding objects. The values of these coefficients were assigned according 

to the guidelines in ASHRAE fundamentals 1997. 

The passive cooling was activated through window openings based on the zone and outdoor 

temperature at night (21:00 to 08:00 hrs.). The average temperature of the last twenty-four hours 

(Tavg24) was used to decide the heating and cooling seasons. The climate data show that Tavg24 

falls below 12 °C in the winter, and the building does not need to be cooled. In summer, passive 

cooling started when the zone temperature exceeded 24 °C and the outdoor temperature was at 

least two degrees lower than the zone temperature. On the other hand, active cooling started 

when the zone temperature exceeded 25 °C. The gap of one degree before activating the active 

cooling was given to save energy through passive cooling. Windows were closed after the room 

temperature dropped to 23 °C. Hence, passive cooling was realized between zone temperatures 

of 23 °C and 25 °C. When all the conditions mentioned in Figure 4-2 were satisfied, windows 

tilted to start passive ventilation. The building’s total ventilation load was a total of heat gains 

and/or losses from two air exchange rates. 

 

Figure 4-2. Temperature-based control of passive ventilation through windows 
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4.1.2 Solar gain 

Windows in the building had shading blinds to reduce the cooling demand by controller solar 

gain and preventing overheating in the winter. The current study planned a monthly schedule 

of the window shading fraction in the building model such that the shading fraction in each 

month was a function of the lowest value during the year. A study concluded that the average 

value of the optimum shading during winter was approximately 23%, and the lowest value 

during the day was 10% [181]. In the summer, window shading can range from 25% to 100% 

for the optimization process [182]. Thus, the base-case building model fixed the minimum 

shading fraction of 0.11 for December. Figure 4-3 shows the variation in the shading for other 

months of the year relative to December.  

In addition, a control strategy was also realized to activate the window shading based on the 

outdoor temperature, zone temperature, and global horizontal solar radiations (IT_H). The 

control scheme for shading on/off is shown in Figure 4-4. The active cooling was functioning 

at a zone temperature above 25 °C. The window shading was activated at 23.8 °C [95] to avoid 

further increase in zone temperature from solar gains. Hence, the gap of 1.2 °C delayed the 

active cooling in the building. Though a higher margin could be set to save energy, it would 

also increase the lighting loads and heat gain. Therefore, the window shading was deactivated 

at 22.8 °C, i.e., one degree below the shading-on temperature, to allow sunlight into the building 

and prevent a further drop in the zone temperature during summer. The second element that 

affected solar gains was the WWR. Each façade had a different WWR (c.f. Table 3-2). 

However, the South façade had a value of 0.2 for WW in the base case. According to the 

recommendation of ASHRAE standard 90.1-2019[183], the maximum WWR was set to 0.4 

(residential building) in the optimization process.  

 

Figure 4-3: Relative shading fraction during the year 
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Figure 4-4: Solar radiation-based control of window shading 

4.2 Energy system models 

TRNSYS simulated the behavior of building and energy system alternatives having different 

energy supply and service system configurations. The envelope design, building geometry, 

climate data, and schedules of occupants and residential appliances were identical for all BESs 

in a location, as obtained from MOO of envelope parameters in phase 1. The year-round 

simulations were performed for each energy system alternative in the investigated climates.  

Figure 4-5 shows the TRNSYS model of the energy hub. The BES was divided into subsystems; 

GSHPs, ASHPs, absorption chiller, solar energy system, and energy system control. The heat 

exchanger of the DHW and a TES were integral components in all BES configurations. The 

space heating service was realized by emission heating or ventilation heating using a radiator 

or hot water coils. At the same time, a chilled water coil provided the ventilation air for space 

cooling. A subsystem was activated according to the configuration of BESs under evaluation. 

The components of BES’s subsystems are displayed in Figure 4-6 to Figure 4-9. Table 4-1 

presents the types used and connectivity of the main components in the TRNSYS model. 
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Figure 4-5: TRNSYS model for simulation of BESs 

The GSHPs system had a borehole heat exchanger, B/WHP, and B/AHP. The additional 

components were adiabatic pipe for short-term thermal capacity effects, horizontal ground heat 

exchangers for buried pipes, pumps, equation blocks, and liquid flow control valves. The HTF 

on the source side of GSHPs absorbed heat from or released heat to the borehole in heating and 

cooling seasons, respectively. The HTF released the absorbed heat to the load side liquid in 

B/WHP and air in B/AHP during the heating service. In contrast, during the cooling service, 

the HTF absorbed the heat from the load-side liquid stream in B/WHP and the air stream in 

B/AHP. The ASHPs system was comprised of A/AHP and A/WHP. The air stream was the 

source-side fluid to heat or cool the air and water on the source side in A/AHP and A/WHP, 

respectively. The hot/cool air was directly supplied to the building for HPs having an air stream 

at the load side.  

For HPs having water at the load side, the hot water was supplied to the TES, which was further 

used for space heating and DHW supply. Regarding space cooling, the chilled water was 

supplied to the water coils for air conditioning. In the case of the absorption chiller system, a 

single-stage absorption chiller produced the chilled water by using the heat of hot water from 

TES. A cooling tower cooled down the cooling water stream of the absorption chiller through 

natural convection. The chilled water was used in water coils for air conditioning. 
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Figure 4-6: TRNSYS subsystem model for GSHPs 

 

Figure 4-7: TRNSYS subsystem model for ASHPs 

The PV array supplied electricity to the building through an inverter or stored in the battery 

bank. The stored electricity was drawn later when solar radiations dropped below a certain level 

until the lower limit FSOC reached. The grid supply provided the PV-unmet electricity load of 

the building. FPCs absorbed solar energy in water-glycol fluid and transferred that energy to 

the water in TES through a heat exchanger, which was used for hot water supply to the 

radiator/hot water coils for space heating, absorption chiller for space cooling, and/or to the 

heat exchanger for DHW supply. A flow rate of 35 kg/h.m2 was given for the HTF in FPCs.  

The control system components were equation blocks, differential controllers, and PID 

controllers. The equation performed an algebraic function on the inputs from the differential 

controller to define the ON/OFF signals for the heating or cooling season, heating or cooling 
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mode of HPs, and electricity supply from the PV array or battery storage. For PV supply, the 

priority was assigned to the building electricity demand over battery charging. Only excess 

electricity, if available after covering the building electricity demand, was stored in the battery. 

The heating season was active if the average outdoor temperature in the last twenty-four hours 

was below 12 °C. The cooling season was activated if the twenty-four hours average outdoor 

temperature was above 20 °C. The upper and lower limit of the battery’s FSOC was 0.9 and 

0.25, respectively. The PID controllers set the zone temperature to be achieved by the service 

system and generated the control signals (0 to 1) for ventilation and water flow rates in the 

radiator and water coils. The B/W and A/W HPs were active in the heating season whenever 

there was DHW demand and/or heating demand and the temperature of TES was below 55 °C. 

In the cooling season, the chilled water was supplied by the B/WHP, A/WHP, or absorption 

chiller when the zone temperature elevated from the set point. Similarly, B/A and A/A HPs 

were activated when the zone temperature dropped below or raised above the set point during 

the heating and cooling seasons, respectively.  

 

Figure 4-8: TRNSYS subsystem model for PV supply and FPCs 
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Figure 4-9: TRNSYS subsystem model for control strategies 

Table 4-1: TRNSYS types and connectivity of main components of TRNSYS simulation models 

Energy system component TRNSYS type Connectivity 

Building Type 56 Weather data, Internal gains, convective and radiative 

gains, and ventilation air were input from other model 

components. 

Thermal energy storage Type 340 Heat gain from the hot fluid stream of FPCs through heat 

exchangers and inlet/outlet ports for water circulation 

with DHW circuit, B/WHP, A/WHP, and absorption 

chiller. 

Borehole heat exchanger Type 557b A vertical U-tube heat exchanger extracted heat from or 

released heat to a circulating water-glycol mixture from 

GSHPs. 

Adiabatic nodded pipe Type 604a To model the short-term behavior of the BHX. 

PV panel Type 835 

[184] 

Generated electricity was supplied to the building via an 

inverter or the excess electricity was stored in the battery 

(Type 47). 

FPC Type 832 The water-glycol mixture circulated between FPCs and 

TES to transfer the absorbed solar energy to the water. 

B/WHP Type 927 Hot water supply to the storage tank in heating mode by 

absorbing heat from the source-side water-glycol mixture 

or chilled water supply to cooling coils by rejecting heat 

to the source-side liquid stream. 

B/AHP Type 143 Conditioned air stream to the building by absorbing heat 

from (heating mode) or rejecting heat to (cooling mode) 

the source-side water-glycol mixture. 

A/WHP Type 941 Hot water supply to TES in heating mode by absorbing 

heat from source-side outside air or chilled water supply 

to cooling coils in cooling mode by rejecting heat to the 

outside air. 
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Energy system component TRNSYS type Connectivity 

A/AHP Type 119 Conditioned air stream to the building by absorbing heat 

from (heating mode) or rejecting heat to (cooling mode) 

the outside air stream. 

Absorption chiller Type 107 To supply chilled water to the cooling coils in cooling 

mode by using TES-supplied hot water energy in the 

generator. 

DHW heat exchanger Type 805 Counter flow heat exchanger for heating the utility water 

to the set point by using hot water from the storage tank 

on the primary side. 

Radiator Type 362 Space heating through convection and radiation using the 

heat of liquid stream from the storage tank. 

Cooling coils  Type 124 Conditioned air stream to the building by rejecting heat to 

the chilled water flowing inside the tube. 

Heating coils Type 140 Conditioned air stream to the building by absorbing heat 

from hot water flowing inside the tubes. 

4.2.1 Performance mapping of HVAC equipment 

The performance catalog of commercial equipment characterized the performance of HPs and 

the absorption system. The performance data contained information on power consumption, 

cooling capacity, and/or heating capacity at various flow rates and fluid stream temperatures. 

B/WHP, A/WHP, and absorption chiller needed normalized power consumption, 

heating/cooling capacity, and flow rates to predict the performance. The reference equipment 

for performance mapping of HVAC systems are described below, and complete performance 

data files are available online [185] for reference. 

Ground source HPs: The water or air was heated or cooled in brine-to-water HP and brine-to-

air HP, respectively, using a borehole heat exchanger. The performance attributes of geothermal 

HP were defined by the performance characteristics of YORK® HPs based on the peak heating 

and cooling demands for each climate [186]. The performance data of YAWS series heat pumps 

were used to parameterize brine-to-water HP. The HP's normalized capacity and power at 

entering temperatures and normalized flow rates of the fluid were calculated in the performance 

file. Likewise, the performance file of brine-to-air HP was created using YAFS series HPs. The 

normalized capacity and power of the heat pump (relative to the peak loads) at different entering 

temperatures and normalized flow rates of the working fluid were attributes of the performance 

file. Similarly, YAFS series residential heat pumps parameterized the performance of brine-to-

air HPs. As a limitation of available data, the available minimum cooling load's performance 

characteristics were assumed when the performance mapping was unknown at very low cooling 

rates. The performance file contained the heating or cooling capacity with the power demand 
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of HP at specific airflows, flow rates, and working fluid temperatures. Reversible valves 

controlled the refrigerant flow in both the cooling and heating modes of the reversible GSHPs. 

Air source HPs: The performance of ASHPs was also defined by the peak heating/cooling 

demand in the investigated locations. The HP's heating or cooling capacity and power demand 

at various airflows and ambient and return air temperatures were used to simulate the 

performance of air-to-air HPs. The performance parameters of Bosch® IDS HPs were used to 

parameterize the performance of air-to-air HP [187]. The performance file defined the air-to-

water HP's fractional capacity and power demand at varying water and air input temperatures. 

The performance mapping of low temperature ERLQ HP from DAIKIN Altherma [188] was 

used to parametrize air-to-water HP. Both ASHPs were reversible, with the capacity to divert 

the refrigerant flow to switch between heating and cooling modes. 

Absorption chiller: This work investigated a lithium bromide (LiBr) single-effect absorption 

chiller powered by hot water in a temperate range of 70 °C to 95 °C. This investigation used 

the WFC-SC5 absorption chiller's performance attributes to calculate the normalized cooling 

capacity and the required energy at various cooling load fractions, chilled water, and cooling 

water temperatures [189]. In cooling-dominant climates, such as QTA and JKT, the BES 

included an absorption chiller and a cooling tower of 3 kW and 7.2 kW, respectively. The 

generator of the absorption system was powered by hot water from TES. 

4.3 MPC-based dynamic control 

MPC-based dynamic control used a predictive model for predicting the system's future behavior 

over the prediction horizon of thirty minutes. Initially, a correlation was computed between the 

control variables and outputs of the predictive model to determine the potential variables for 

the MPC model. Then, based on MPC model prediction and control variables, the optimal 

control inputs were determined for a control objective of minimizing the thermal load of the 

building subject to a constraint of thermal comfort. Finally, the control scheme was employed 

on the flexible BES, identified from the multi-criteria assessment process, for three 

representative months: January (cold), June (warm), and October (mild). The dynamic control 

problem was formulated as given below. 

𝑱𝒆 = 𝒎𝒊𝒏∑𝑸𝑘

𝑃−1

𝑘=0

(𝑥𝑘, 𝑢𝑘 , 𝑦𝑘) 4.2 
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Where k is the simulation time step, P is the prediction horizon, and Je is the objective function 

for minimizing the thermal load (Qk). The thermal load of the building is a function of system 

states (x), system outputs (y), control inputs (u), and disturbances (d). 

System states: MPC model received the solar gains through windows and heating or cooling 

mode of the HVAC system as the system states at the current time step of the simulation. 

Control inputs: The reference set points of PID controllers for the heating and cooling 

operation were control inputs of MPC. The upper and lower limits of the reference set point 

were specified in the control problem. For heating mode, the upper and lower limits of the 

temperature set point were 22 °C and 18 °C, respectively. Similarly, 26 °C and 24 °C were 

given as upper and lower temperature set point limits in cooling mode, respectively. 

Additionally, the window shading fraction was the second control input in the cooling season, 

with a range of 0 to 1. 

Control disturbances: The outdoor temperature, relative humidity, and total horizontal solar 

radiations were control disturbances of the control problem. 

System outputs: The model predicted the zone temperature and relative humidity, heating or 

cooling load, and PPD based on the control variables at the current time step. Thermal comfort 

was specified as a control constraint such that the optimal control inputs were defined for a PPD 

value not higher than 10%. According to ASHRAE standards 55 [190] for thermal 

environmental conditions for human occupancy, PPD is a quantitative indicator of the 

percentage of thermally dissatisfied occupants. The allowable range of PPD is 10%, above 

which the occupants feel warm or cool. 

A TRNSYS component, type163, was used to co-simulate TRNSYS and Python. Type 163 

forwarded the control variables in a text file to the MPC model in Python. The path of the 

Python script needed to be specified in type 163. The MPC model created a text file containing 

the optimal control inputs, which were retrieved by type 163. This information exchange loop 

was executed iteratively during the TRNSYS-Python co-simulation.   
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5 Case studies 

The optimization framework, described in chapter 3, was tested on reference building for 

different climate conditions. Three case studies were conducted to validate the effectiveness of 

the devised methodology for improving energy flexibility. Firstly, the energy flexibility 

potential of the building envelope was evaluated in major climate zones worldwide. Then, a 

flexible energy system was identified by computing a comprehensive set of EFIs in severe cold, 

cold, mild, and hot climates. Finally, the steady-state and dynamic optimization strategies were 

employed on the flexible BES in a cold climate to further improve the energy flexibility of the 

underlying residential building. 

5.1 Building architecture flexibility 

Multi-objective optimization strategy was implemented on the reference building in four major 

climate zones; A: Tropical, B: Dry, C: Temperate, and D: Continental, according to Köppen-

Geiger climates classification [191] (first letter). These climate zones are subdivided based on 

the annual variation in ambient temperature and precipitation. The precipitation level (second 

letter) is defined as f (no dry season), m (Monsoon), s (dry summer), w (dry winter), S (semi-

arid), W (desert). Similarly, the temperature level (third letter) is categorized as a (hot summer), 

b (warm summer), c (cold summer), d (very cold winter), h (hot), k (cold). Table 5-1 describes 

the average temperature (Tavg), cooling degree days (CDD), and heating degree days (HDD) for 

twenty selected climates in twenty-four locations. Meteonorm tool was used to generate the 

meteorological data for these locations. The CDD10 and HDD18 are defined as follows: 

𝐻𝐷𝐷18 =∑ (𝑇𝑏𝑎𝑠𝑒

365

𝑡=1

− 𝑇𝑎) 5.1 

𝐶𝐷𝐷10 =∑ (𝑇𝑎

365

𝑡=1

− 𝑇𝑏𝑎𝑠𝑒) 5.2 

Where Tbase is 18 °C for HDD and 10 °C for CDD, Ta is the average temperature of the day, 

and degree days are the yearly sum of the daily temperature differences. 
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Table 5-1: Climate characteristics and electric gains of investigated locations 

SN Country Location 

Köppen 

Climate 

IECC 

Climate 

Tavg 

(°C) HDD18 CDD10 

Electricity 

consumption 

(kWh/m2a) 

Electric 

gains 

(kWhth/m2a) 

1 Sweden Ostersund Dfc 7 A 3.9 5468 429 30.20 [113] 17.52  

2 Sweden Stockholm Dfb 5 A 7.4 3922 841 30.20 [113] 17.52  

3 Austria Bischofshofen Dfb 5 A 8.3 3660 994 23.87 [114] 13.85  

4 China Daocheng Dwb 6 A 5.9 4434 378 11.67 [115] 6.77  

5 Iran Sarab Dsb 5 C 9.1 3496 1305 32.51 [116] 18.85  

6 Japan Sapporo Dfa 5 A 9.3 3523 1430 28.80 [117] 16.71  

7 China Beijing Dwa 4 B 12.8 2875 2470 11.67 [115] 6.77  

8 Iran Arak Dsa 4 B 14.4 2320 2523 32.51 [116] 18.85  

9 Denmark Odense Cfb 5 C 8.9 3364 835 26.77 [118] 15.53 

10 Germany Saarbrücken Cfb 5 A 9.8 3119 1074 34.36 [114] 19.93  

11 UK Birmingham Cfb 5 C 10.8 3679 930 37.34 [119] 21.66  

12 France Strasbourg Cfb 4 A 12.1 2470 1533 30.00 [114] 17.40 

13 China Kunming Cwb 3 C 15.7 1137 2204 11.67 [115] 6.77  

14 Spain Vigo Csb 3 A 15.4 1282 2042 19.92 [120] 11.55 

15 Italy Milan Cfa 4 A 13.9 2099 2115 21.81 [121] 12.65 

16 China Hanzhong Cwa 3 A 15.4 1853 2589 11.67 [115] 6.77  

17 Portugal Evora Csa 3 A 16.1 1404 2397 27.15 [122] 15.75 

18 Iran Birjand BWk 3 B 17.0 1693 3052 32.51 [116] 18.85  

19 Pakistan Quetta BSk 3 A 17.9 1182 3312 22.19 [123] 12.87 

20 Pakistan Lahore Bsh 1 B 24.7 348 5382 22.19 [123] 12.87 

21 UAE Dubai Bwh 0 B 28.9 0 6910 39.93 [124] 23.16 

22 Singapore Singapore Af 0 A 28.6 0 6782 28.04 [125] 16.26 

23 India Mumbai Aw 0 A 28.1 0 6594 22.92 [126] 13.30  

24 Indonesia Jakarta Am 1 A 26.6 0 6045 18.40 [127] 10.67 

5.1.1 Optimization scheme 

The optimization goal was to identify a flexible envelope design for the building at the 

preliminary design stage according to the climate conditions.  At this point, the absolute thermal 

load of the building was calculated instead of the energy consumption of HVAC equipment for 

attaining thermal comfort in the building. 

The heating and cooling set points were 20 °C and 25 °C, respectively, with a relative humidity 

level of 50% in both cases. The predicted mean vote (PMV) and predicted percentage 

discomfort (PPD) values quantified the thermal comfort in the zone.  
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The NSGA-III performed 5000 simulations with a population size of 100 for every run to 

complete the optimization process. Table 5-2 provides the attributes of the MOO problem in 

this study. The optimization algorithm produced PFs of 100 non-dominated envelope design 

options for each location. Finally, an MCDM method was applied using the CRITIC and 

TOPSIS techniques to identify the optimum option from the Pareto solutions. 

Table 5-2: Inputs of genetic algorithm 

NSGA-III attributes Value 

Population size 100 

No of variables 7 

No of objectives 2 

Maximum evaluations 5000 

Mutation method Polynomial 

Mutation probability 0.15 

Crossover method Simulated binary crossover 

Crossover probability 0.8 

Termination criteria Max evaluations 

5.1.1.1 Design variables 

Solar gains, infiltration gains/losses through cracks, and transmission gains/losses through 

opaque building parts are the decisive variables of a building's thermal load. Thus, the passive 

design parameters were chosen as design variables of the optimization problem according to 

their impact on heat gains and/or losses. The design variables for this study were building 

orientation, WWR, window shading fraction, minimum solar radiation to turn on window 

shading, and the insulation thickness of the external walls and roof. Table 5-3 provides 

information on the selected design variables. 

Table 5-3: Design variables and their optimization bounds  

Building element Variable Lower bound Upper bound 

External wall insulation EPS thickness (EPSThk), m 0.10 0.25 

Roof insulation rockwool thickness (RockwoolThk), m 0.10 0.25 

Window aperture α (degrees) 5 20 

South faced window Window-to-Wall ratio (WWR) 0.2 0.4 

Windows shading Minimum horizontal solar radiation 

(IT_H) for shading on 

250 500 

Windows shading  Shading fraction in December (ShdDec) 0.10 0.33 

Building orientation Orientation (N/S/E/W) NA NA 
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5.1.1.2 Objective functions 

The optimization goal was minimizing the envelope insulation cost while employing passive 

design upgradation to minimize heating and cooling loads.  The cost for insulation of the 

envelope was considered in the optimization problem because this study optimized the passive 

parameters only. TRNSYS estimated the yearly thermal load of the building using the boundary 

conditions specified in sections 3.1&4.1. TRNSYS model also computed the total cost of 

envelope insulation based on insulation thickness. The cost of insulating materials with 

identical thermal properties is about the same, according to a market assessment in the various 

regions under investigation. The same insulation materials were used in all locations at 139 € 

per cubic meter for EPS and 230 € per cubic meter for rockwool [192]. Concerning the cost of 

windows, it was assumed that the higher cost for large windows would balance the cost saved 

from constructing a smaller insulated wall. Finally, the TRNSYS model wrote text files 

containing values of the objective function. The following two objectives were selected for the 

bi-objective optimization. 

Minimize annual thermal load (kWhth/year): The annual thermal load was the sum of 

sensible and latent heating and cooling demands to maintain the comfort level in the building. 

This objective function was dependent on all design variables.  

Minimize investment cost (€): This objective function only depended on the thickness of 

insulation materials and was calculated accordingly. 

5.1.2 Optimization results 

A MOO does not generate a solution that concurrently minimizes or maximizes the 

optimization objectives. However, it produces a Pareto optimal solution set such that each 

solution is independent of other solutions on PF. Also, improving an objective function is 

impossible without compromising at least another objective function. The bi-objective 

optimization in this investigation produced PFs for each location comprising about 100 

solutions. Figure 5-1 presents the PFs of continental, temperate, dry, and tropical climate zones. 

The 2D PFs plots were constructed between the insulation cost and the annual thermal load. In 

all locations, the scatter plots were symmetric. Nevertheless, they were dispersed vertically 

because of the diversity in climate conditions.  

The emplacement of PFs demonstrated that earlier, a little increase in the insulation cost led to 

a significant decrease in the thermal load. This trend was prominent in hot regions of tropical 
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and dry climates. In such regions, PFs had higher slopes but flattened out eventually as 

insulating costs increased. The CRITIC and TOPSIS techniques identified the best solution. In 

the optimal solution, good envelope insulation in all climate zones significantly reduced the 

thermal load. The optimal trade-off solution is highlighted in green on PFs. It is worth noting 

that, in each case, the best option was the solution with the lowest thermal load or the one close 

to it on PFs. The higher weight of the annual thermal load, assigned by the CRITIC weighing 

method, justified this phenomenon. The weight of the thermal load varied between 0.63 and 

0.68 in cold climates but varied between 0.60 and 0.72 in cold climates.  

Table 5-4 provides the values of design parameters, thermal transmittance of the external wall 

(Uw) and roof (Ur), and objective functions for the optimal solution in each location. A well-

insulated envelope and windows with large shades were typical design requirements in optimal 

solutions. The WWR showed variation in different climates between lower and upper limits, 

i.e., 0.2 to 0.4. In most cases, the solar radiation for turning on the window shading was around 

250 W. The window aperture angle ranged from 5 to 20 degrees depending on climate, with an 

average value of 11.88 degrees. In areas with high demand for space heating or cooling, the U-

value of external walls and roofs was around 0.15 W/m2K. In mild conditions, it was 

comparatively greater. The optimization reduced the thermal transmittance of the envelope in 

all locations except for Ostersund and Stockholm. The roof's U-value was increased from 0.13 

W/m2K to 0.15 W/m2K in those locations. 

The diversity of envelope parameters in optimal solutions with changing climate conditions was 

characterized according to the degree days. The optimization results showed that the envelope 

parameters in optimal solutions were consistent for a specific range of degree days. The mean, 

standard deviation (STD), and ranges of design parameters are shown in Table 5-5 for various 

degree days. The U-value should be low in heating-dominant locations. The mean of U-value 

was minimum in locations with heating degree days higher than 3500. The average U-value 

was 0.153 for the wall and 0.165 for the roof in climate zones with cooling days greater than 

3500. The WWR had a maximum mean value of 0.36 for climates with HDD18>3500 and 

decreased to 0.2 for climates with CDD10>3500. For HDD18>2000, the window aperture angle 

was approximately 11 degrees. The largest aperture angle of 14.77 was found in the regions of 

CDD10>3500. The mean value of the IT_H for activating the shading was highest in areas with 

HDD18>3500 and lowest in areas with CDD10>3500. 
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The STD was used to measure the spread of the solution set in different locations having similar 

climate conditions. The consistency of solution sets was justified by very low STD in each 

category for all design parameters, other than the aperture angle, which had a large spread and 

high STD value. A detailed analysis of variation in the design parameters for each climate zone 

is provided in Appendix A. 

 

 

 

 

 Figure 5-1: Pareto fronts of MOO in investigated climates 
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Table 5-4: Trade-off solution set in investigated climates 

Table 5-5: Comparison of design parameters based on degree days 

Category 
Uw 

(W/m2K) 

Ur 

(W/m2K) WWR α (degree) IT_H (W) 

HDD18 >3500 Range 0.15-0.156 0.136-0.164 0.31-0.4 5.25-15.45 255-289 

Mean 0.152 0.144 0.362 11.192 278 

STD 0.003 0.013 0.040 3.505 11.90 

3500> HDD18 >2000 Range 0.15-0.169 0.138-0.178 0.22-0.4 5.23-16.15 250-304 

Mean 0.156 0.153 0.297 11.599 261 

STD 0.007 0.015 0.061 3.789 19.62 

3500> CDD10 >2000 Range 0.159-0.185 0.145-0.173 0.2-0.32 5.01-19.21 25-264 

Mean 0.179 0.171 0.224 10.859 255 

STD 0.024 0.031 0.048 5.083 6.04 

CDD10 >3500 Range 0.149-0.159 0.148-0.189 0.2 5-20 250-256 

Mean 0.153 0.165 0.201 14.772 252 

STD 0.006 0.018 0.001 6.042 2.65 
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Dfc (Ostersund) 0.247 0.211 9.8 0.37 279 0.330 North 0.150 0.154 14317 350 

Dfb (Stockholm) 0.237 0.196 10.9 0.31 289 0.330 North 0.156 0.164 10426 335 

Dfb 

(Bischofshofen) 0.247 0.240 12.7 0.39 256 0.328 

North 

0.150 0.137 6729 

367 

Dwb (Daocheng) 0.245 0.241 5.2 0.40 287 0.253 North 0.151 0.136 6546 365 

Dsb (Sarab) 0.234 0.188 11.0 0.33 255 0.329 North 0.157 0.170 7159 326 

Dfa (Sapporo) 0.246 0.237 15.4 0.40 277 0.330 North 0.150 0.138 8845 364 

Dwa (Beijing) 0.240 0.218 16.1 0.40 251 0.330 North 0.154 0.149 10333 346 

Dsa (Arak) 0.217 0.179 5.2 0.22 250 0.330 North 0.169 0.178 7757 317 

Cfb (Odense) 0.246 0.237 10.0 0.34 304 0.328 North 0.150 0.138 7506 368 

Cfb (Saarbrucken) 0.245 0.235 10.4 0.24 252 0.327 North 0.151 0.139 6595 372 

Cfb (Birmingham) 0.240 0.249 13.1 0.32 279 0.329 North 0.154 0.132 3862 371 

Cfb (Strasbourg) 0.244 0.214 12.3 0.28 260 0.330 North 0.151 0.152 5573 354 

Cwb (Kunming) 0.160 0.219 7.3 0.22 250 0.330 North 0.222 0.148 1576 287 

Csb (Vigo) 0.196 0.187 13.2 0.20 264 0.330 North 0.185 0.171 1674 298 

Cfa (Milan) 0.231 0.223 16.1 0.28 251 0.330 North 0.159 0.146 5868 349 

Cwa (Hanzhong) 0.232 0.203 8.4 0.32 255 0.328 North 0.159 0.159 5844 334 

Csa (Evora) 0.235 0.224 19.2 0.20 261 0.330 North 0.157 0.145 2900 363 

BWk (Birjand) 0.197 0.133 5.0 0.20 251 0.330 North 0.184 0.230 9000 265 

BSk (Quetta) 0.223 0.185 12.0 0.20 250 0.330 North 0.165 0.173 7308 322 

Bsh (Lahore) 0.249 0.219 16.3 0.20 256 0.330 South 0.149 0.148 10826 368 

Bwh (Dubai) 0.232 0.203 20.0 0.20 250 0.330 South 0.159 0.159 16195 342 

Af (Singapore) 0.250 0.167 13.4 0.20 251 0.330 South 0.148 0.189 17933 334 

Aw (Mumbai) 0.247 0.176 19.2 0.20 253 0.330 South 0.150 0.180 15757 338 

Am (Jakarta) 0.232 0.215 5.0 0.20 250 0.330 North 0.159 0.151 13503 350 
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5.1.3 Effect of design optimization on energy flexibility 

The optimized building envelope substantially improved energy flexibility by delivering 

flexible heating and cooling loads in cold and hot climate zones. The PMV index ranged 

between -0.5 and 0.5 throughout the year, or the PPD was below 10% for each case, which 

complied with the recommended thermal comfort level of ASHRAE standard 55. During MOO, 

design parameters were modified continuously for the subsequent evaluation until the desired 

outcome was achieved. Therefore, it could be challenging to explicitly predict how a particular 

design parameter influenced the objective functions. However, the combined impact of 

improved envelope design was evident by flexible thermal loads. Total building thermal load 

was the sum of infiltration losses/gains, transmission losses/gains, equipment gains, occupancy 

gains, solar gains, heating gains, and cooling losses. The passive design of the building was 

particularly effective for energy exchange through the envelope by infiltration, transmission, 

and solar radiation. Thus, this study evaluated the variation in those thermal loads in the 

investigated climates, as shown in Figure 5-2. The clustered columns represent the heat 

exchange through the building envelope for the base case and optimal envelope design of the 

household. While the scatter plots show the shift in those thermal loads after optimization on 

the secondary vertical axis. For transmissions and infiltration phenomena, the net effect for heat 

gain during summer and heat loss during winter in a location is plotted. The findings of the 

optimization strategy indicated that envelope insulation, window shading, and WWR were the 

most influential design parameters for household energy flexibility. On the contrary, solar 

radiation-based window shading control and window aperture (α) for passive ventilation did 

not significantly impact the flexible thermal load. 

The optimal design increased the solar heat gains through windows (QSHG) in continental 

climates besides Dsa (Arak) and Dfb (Stockholm). Whereas in temperate climates, solar gains 

slightly increased or decreased depending upon the space cooling demand of the location. In 

the case of tropical and dry climates, the QSHG was always reduced after optimization. 

Furthermore, the optimal passive design decreased transmission losses during winter and 

transmission gains in summer. Thus, the net effect lowered the transmission heat exchange 

(Qtrans) after optimization in all locations. On the other hand, the change in heat exchange due 

to infiltration (Qinf) was insignificant in cold and hot climates. However, it avoided overheating 

in winter or lowered the cooling demand in summer to some extent through passive cooling. 

The following sections describe the energy flexibility of the architecture upgradation in the 
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household, computed using Eq. 3.6, in four major climate zones of the Köppen-Geiger 

classification. 

 

Figure 5-2: Household’s thermal loads for the base case and energy-optimal scenarios 

5.1.3.1 Continental climate 

The continental climate has the temperature of the coldest month below 0 °C and the 

temperature of the hottest month greater than 10 °C. Therefore, the locations in this zone are 

heating-dominant besides the hot and dry summer continental climate (Dsa). Even though the 

cooling energy demand was very low, the optimization reduced it substantially. Figure 5-3 

compares the reference and optimal household heating and cooling energy demands and 

illustrates the energy flexibility achieved through optimization. On average, the flexible thermal 

load was 2853 kWhth/year in continental climate regions. The Daocheng (Dwb) was the location 

with a maximum flexible heating load of 3844 kWhth/year. However, the optimization resulted 

in a negative flexible cooling load of -101 kWhth/year. As a matter of fact, energy flexibility 

depends upon the current practices of building energy standards. For example, the optimization 

strategy did not depict significant flexibility potential in Dfc (Oestersund) and Dfb (Stockholm). 

This phenomenon was due to the energy-efficient envelope standards in those locations. On the 

other hand, the flexible heating load was quite prominent in locations with high heating demand. 

It can be observed that the flexible heating load decreased in Beijing (Dwa) and Arak (Dsa), 

but contrarily, the flexible cooling load was higher than in other locations. The maximum 

flexible load of 3921 kWhth/year was achieved in Beijing (Dwa). 
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Figure 5-3. Heating and cooling loads and respective flexible thermal loads in continental climate 

5.1.3.2 Temperate climate 

The temperate climate is characterized by the coldest month's average temperature between 0 

°C and 18 °C and at least one month's average above 10 °C. Figure 5-4 shows the energy 

demand of the reference building and the energy demand and flexible thermal loads after 

optimization. The investigated locations showed a mixed trend for space heating and cooling 

dominance. Contrary to the continental climate, the space cooling demand was relatively higher 

in temperate climates. The average flexible loads for space heating and cooling were 905 

kWhth/year and 1046 kWhth/year, respectively. Similar to Dfc (Oestersund) and Dfb 

(Stockholm), the flexible heating load was small in Saarbrücken (Cfb) due to the well-insulated 

building envelope. 

Further, the flexible thermal load was relatively small in locations having lower heating and 

cooling demands, as in the cases of Kunming (Cwb) and Vigo (Csb). Odense (Cfb) showed the 

highest flexible heating load of 2377 kWhth/year, and the heating demand reduced to 42.59 

kWhth/m
2a after optimization. The maximum energy flexibility for cooling was achieved in 

Evora (Csa), having a flexible cooling load of 1918 kWhth/year and a cooling demand of 14.8 

kWhth/m
2a. The optimization strategy also showed that a higher flexible heating load was 

achieved in heating-dominant locations and a higher flexible cooling load in cooling-dominant 

locations. Milan (Cfa) was the location with a maximum flexible thermal load of 2714 

kWhth/year due to the poor envelope insulation in the reference building.  
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Figure 5-4. Heating and cooling loads and respective flexible thermal loads in temperate climate 

5.1.3.3 Dry climate 

The dry climate is defined by very little precipitation during the year. Moreover, it has two 

subgroups based on the mean average temperature, hot: MAT ≥ 18 °C and cold: MAT < 18 °C. 

Consequently, the locations in this zone have long summer and shortened winter seasons. The 

design optimization was equally effective in cooling-dominant climates, as shown in Figure 

5-5. The flexible thermal load in dry climates was 3758 kWhth/year on average for space 

cooling. The maximum cooling demand was 142.34 kWth/m
2a in the hot desert climate of Dubai 

(BWh), which also had a maximum flexible thermal load of 5998 kWhth/year. The energy 

flexibility for the heating load was not very significant in dry climates because these locations 

had only space cooling or very low space heating demand. However, the flexible cooling load 

increased with increasing cooling demand. Another factor for larger flexibility potential in these 

locations was the poorly-insulated envelope in reference cases. 

 

Figure 5-5. Heating and cooling loads and respective flexible thermal loads in dry climate 
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5.1.3.4 Tropical climate 

In a tropical climate, the average temperature of every month is 18 °C or higher, with year 

around significant precipitation. High humidity throughout the year is another prominent 

feature of this climate. Therefore, there was no space heating load in this climate or such low 

to be negligible. Nevertheless, the space cooling load was very high, and the total thermal load 

was the largest of all investigated locations in the tropical climate. The space cooling loads for 

three representative tropical climates and energy flexibility through design optimization are 

presented in Figure 5-6. The space cooling demand in Jakarta's tropical-monsoon climate (Am) 

was the lowest due to the higher precipitation, resulting in a minimum flexible cooling load of 

3490 kWhth/year. The highest flexible load was 4870 kWhth/year in Mumbai, a tropical savanna 

climate (Aw). The average flexible cooling load amounted to 3981 kWhth/year, the maximum 

of all climate zones. 

 

Figure 5-6. Heating and cooling loads and respective flexible thermal loads in tropical climate 

5.1.4 Benchmarking of envelope parameters 

The envelope optimization delivered flexible annual thermal loads in all investigated locations. 

Interestingly, building design optimization not only increased energy flexibility but also 

significantly reduced the operational cost of the building. Since the operating cost of a building 

depends upon the type of equipment, energy supply system, and local energy prices, the 

monetary savings from design optimization would vary in each location. Table 5-6 presents 

criteria for choosing the envelope parameters according to the degree days in various climate 

zones. Though this criterion was based on the investigation in twenty-four locations in major 

climate zones, its authenticity was justified by achieving the optimal solution from a large 

number of simulations, i.e., 5000, in each location. The design parameters are strongly related 
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to each other. Therefore, adopting an individual parameter to achieve a flexible thermal load is 

not advisable. 

Table 5-6: Ranges of optimal design parameters and degree days in different climate zones 
 

Continental Temperate Dry Tropical 
 

cold 

warm 

summer hot summer 

warm 

summer hot summer cold hot 

Rainforest/ 

Savanna monsoon 

HDD18 5468 3496 - 3922 2320 - 3523 1137 - 3364 1404 - 2099 1182 - 1693 0 -348 0 0 

CDD10 429 378 - 1305 1430 - 2523 835 - 2204 2115 - 2589 3052 - 3312 5382 - 6910 6594 - 6782 6045 

EPSThk (m) 0.247 0.234 - 0.247 0.216 - 0.245 0.160 - 0.246 0.231 - 0.238 0.197 - 0.223 0.232 - 0.249 0.247 - 0.25 0.232 

RockwoolThk 

(m) 
0.211 0.188 - 0.241 0.187 - 0.239 0.187 - 0.249 0.203 - 0.227 0.133 - 0.185 0.203 - 0.219 0.167 - 1.176 0.215 

Uw (W/m2K) 0.15 0.150-0.157 0.150-0.169 0.150-0.222 0.157-0.159 0.165-0.184 0.149-0.159 0.148-0.150 0.159 

Ur (W/m2K) 0.154 0.136-0.170 0.138-0.178 0.132-0.171 0.145-0.159 0.173-0.230 0.148-0.159 0.180-0.189 0.151 

α (degree) 9.8 5.2 - 11 5.2 - 16.1 7.3 - 13.2 8.4 - 17 5 - 12 16.3 - 20 13.4 - 19.2 5 

WWR 0.37 0.33 - 0.4 0.2 - 0.4 0.2 - 0.34 0.2 - 0.32 0.2 0.2 0.2 0.2 

IT_H (W) 279 255 - 289 251 - 277 250 - 304 251 - 255 250 - 251 250 - 256 251 - 253 250 

ShdDec 0.329 0.253 - 0.33 0.33 0.327 - 0.33  0.328 - 0.33 0.33 0.33 0.33 0.33 

Orientation  North North North North North North South South North 

The continental-cold climate was represented by maximum HDD. So, it needed high EPS 

thickness of 0.247 and a rockwool thickness of 0.211, resulting in a low thermal transmittance 

of 0.15 W/m2K for the envelope. It was also characterized by large WWR, IT_H, and ShdDec. 

The continental-warm and continental-hot climates showed a similar pattern for design 

variables, but their ranges dropped with the decrease in HDD and increasing CDD. 

Furthermore, the window aperture angle needed to be increased from continental-cold to 

continental-hot climate. Regarding the orientation, the North faced household was the optimum 

choice in the continental climate zone. 

The dominant thermal load in the temperate zone was space heating. Therefore, it also required 

a high level of insulation and, consequently, lower thermal transmittance of the envelope. 

Interestingly, the lower limits of insulation materials and U-values were higher in the temperate-

hot summer zone than in the temperate-warm summer zone, and the upper limits were low. The 

reason was that the lower limit of HDD was high, but the upper limit of HDD was small in this 

climate zone. Also, the temperate-hot summer zone had higher CDD. Moreover, the design 

variables responsible for solar gains should be adjusted to minimize the solar heat gain, i.e., the 

ranges of WWR and IT_H decreased, and the ShdDec range increased in the temperate zone. 

The optimal orientation was North, the same as the continental climate zone. 

In the dry-cold zone, neither cooling nor heating was the dominant thermal load. As a result, 

the HDD and CDD were in the same range and had relatively low values. The recommended 
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range of insulation materials was 0.197-0.223 m for EPS and 0.133-0.185 m for rockwool. 

Similarly, the U-values of the external wall and roof had relatively higher ranges of 0.165-0.184 

W/m2K and 0.173-0.230 W/m2K, respectively. The window aperture angle was also smaller 

compared to the temperate climate. The WWR and IT_H needed to be kept at a minimum, and 

ShdDec was maximized to restrict the solar gains. The optimal orientation was North in the dry-

cold zone. On the other hand, the dry-hot climate was represented by a higher cooling load and  

CDD. The optimal solution set was also quite different from a dry-cold climate. The 

recommended thermal transmittance of the envelope was lower than in dry-cold temperate 

climate zones, and the window aperture angle ranged to its upper limit. The optimal orientation 

also changed to the South in a dry-hot climate. Nevertheless, other design variables were the 

same as in the dry-cold climate. 

The tropical zone consisted of cooling-dominant locations, and the CDD were above 3000. The 

values of WWR, IT_H, and ShdDec followed the same trend as in other cooling-dominant 

climates. In Af and Aw climate zones, the recommended EPS insulation was the maximum of 

all climates and thus had the minimum thermal transmittance range, i.e., 0.148-0.150 W/m2K. 

However, the thermal transmittance of the roof required a comparatively higher range of 0.180-

0.189 W/m2K. The Am climate had lesser CDD than other tropical climates and required a 

relatively lower level of envelope insulation. The recommended U-value of the external wall 

was 0.159 W/m2K, and it was 0.151 W/m2K for the roof. The aperture angle was 5 degrees in 

Am climate due to higher humidity levels throughout the year. The households were South-

faced in Af and Aw climates to attain a high flexible thermal load, whereas Am climate had an 

optimal orientation of North.  

5.2 Flexible building energy system 

As described in sections 3.2 & 4.2, fourteen BES configurations were modeled for year around 

simulations in four different climate conditions. These alternatives differed from each other 

w.r.t the share of RESs and heating/cooling service systems. MCDM was employed on energy 

system alternatives with fsav,NRE, γload, LCEs, NPV25, PPD, LCOEel, and LCOEth as EFIs. The 

flexibility strategy was implemented in four locations: STK (severe cold), SBK (clod), QTA 

(mild), and JKT (hot and humid). The weather data and energy demand of the representative 

household are summarized in Table 5-7. At this, the envelope parameters were upgraded 

according to the findings of building architecture flexibility in section 5.1, as described in Table 

5-8. 
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Table 5-7: weather conditions and energy demand in investigated locations 

Country Location 
Köppen 

Climate 

IECC 

Climate 

Tamb,avg 

(°C) 

IT_H 

(kWh/m2a) 
HDD18 CDD10 

Electricity 

Consumption 

(kWh/m2 a) 

Sensible space 

heating load 

(kWhth/m
2 a) 

Sensible space 

cooling load 

(kWhth/m
2 a) 

Sweden STK Dfb 5 A 7.4 899.8 3922 841 30.20 54.63 3.47 
Germany SBK Cfb 5 A 9.8 1141 3119 1074 34.36 33.36 4.18 

Pakistan QTA BSk 3 A 17.9 2041.2 1182 3312 22.19 3.39 19.01 

Indonesia JKT Am 1 A 26.6 1760.9 0 6045 18.40 0 69.87 

Table 5-8: Thermo-physical properties of building envelope in investigated locations 

Element Layer 

Stockholm (Dfb) Saarbrucken (Cfb) Quetta (BSk) Jakarta (Am) 

Thickness 

(m) 

U-Value 

(W/m2 K) 

Thickness 

(m) 

U-Value 

(W/m2 K) 

Thickness 

(m) 

U-Value 

(W/m2 K) 

Thickness 

(m) 

U-Value 

(W/m2 K) 

External wall plaster inside 0.015 0.156 0.015 0.151 0.015 0.165 0.015 0.159 

Brick 0.210 0.210 0.210 0.210 

EPS (expanded polystyrene) 0.237 0.245 0.223 0.232 

plaster outside 0.003 0.003 0.003 0.003 

Floor Wood 0.015 0.649 0.015 0.649 0.015 0.649 0.015 0.649 

plaster floor 0.080 0.080 0.080 0.080 

sound insulation 0.040 0.040 0.040 0.040 

Concrete 0.150 0.150 0.150 0.150 

Roof ceiling gypsum board 0.025 0.164 0.025 0.139 0.025 0.173 0.025 0.151 

Plywood 0.015 0.015 0.015 0.015 

Rockwool 0.196 0.235 0.185 0.215 

Plywood 0.015 0.015 0.015 0.015 

Internal wall Clinker 0.200 0.885 0.200 0.885 0.200 0.885 0.200 0.885 

Window-to-wall 
ratio (South wall) 

double glazed  0.31  0.24  0.20  0.20 

5.2.1 Design parameters of BESs 

The energy supply mixes were combinations of grid supply, PV generation with battery storage, 

FPC, and/or geothermal energy. The size of the PV system was calculated using Eq. 3.3, and it 

depended on the available solar radiation and rooftop area. The PV area and battery storage 

capacity were modified accordingly in alternatives having FPC. Since solar radiations were low 

in heating-dominant climates, the required PV power was 7.69 kW in STK and SBK, 

respectively. In contrast, solar radiations were substantially higher in QTA and JKT, which 

resulted in smaller installed PV power in those locations. Table 5-9 provides the installed PV 

system capacity and FPCs’ area for different BESs in investigated climates.  

Table 5-9: Installed capacity of PV system and FPCs in alternative energy systems 

Location Energy system alternative 
PPV 

(kW) 

APV 

(m2) 

Battery 

Capacity1 (Wh) 

AFPC 

(m2) 

Tilt angle 

(degree) 

 [193] 

STK A3, A4, A5, A9, A12, A13 4.622 30 4320 20 
41 

A1, A2, A6, A10, A11 7.69 50 5760 0 

SBK A3, A4, A5, A9, A12, A13 4.622 30 4320 20 
32 

A1, A2, A6, A10, A11 7.69 50 5760 0 

QTA A3, A4, A5, A9, A12, A13 3.85 25 2880 20 

30 A1, A2, A6, A10, A11 3.85 25 2880 0 

A7, A8 3.102 20 2880 30 
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Location Energy system alternative 
PPV 

(kW) 

APV 

(m2) 

Battery 

Capacity1 (Wh) 

AFPC 

(m2) 

Tilt angle 

(degree) 

 [193] 

JKT A3, A4, A5, A9, A12, A13 4.62 30 4320 20 

10 A1, A2, A6, A10, A11 4.62 30 4320 0 

A7, A8 2.312 15 2880 35 

1 The battery capacity is determined to keep the average FSOC of 0.45 by controlling the lower limit of discharge 

for the battery life of 6.5 years [159]. 

2 The installed PV power is less than the required power due to the limitation of the available rooftop area. 

The borehole lengths of GSHPs were computed using Eqs. 3.4&3.5 for peak cooling and 

heating load, respectively. The thermal properties of the ground soil were assumed to be the 

same in all locations. A specific heat capacity of 0.8 kJ/kgK, the ground thermal conductivity 

of 2 W/mK, and a thermal gradient of 0.025 K/m were used [129]. The larger of the two lengths 

was the required borehole length. The borehole lengths with respective design conditions and 

peak loads are presented in Table 5-10. STK was the location with the maximum peak load of 

space heating and was associated with a large borehole length of 99.29 m. The borehole length 

decreased to 66.46 m in SBK due to a smaller peak load. In cooling-dominant locations, though 

the peak load was much lower than STK and SBK, the borehole lengths were comparatively 

large due to the higher undisturbed ground temperature. In the case of JKT, the ground 

temperature was 27 °C, and the required borehole length (150 m) was the maximum of all 

locations. 

Table 5-10: Length of borehole and design conditions of BHX 

Location Lc (m) Lh (m) tg (°C) 
two,heating 

(°C) 

two,cooling 

(°C) 

Flow rate 

heating 

(kg/h) 

Flow rate 

cooling 

(kg/h) 

Design load 

heating 

(kW) 

Design load 

cooling 

(kW) 

STK 29.59 99.29 7.84 -5 30 1590 681 5.43 1.88 

SBK 35.62 66.46 10.14 -5 30 1136 681 4.55 1.94 

QTA 89.53 20.42 18.27 -5 30 908 908 2.69 2.80 

JKT 150 ˗ 27 ˗ 35 ˗ 908 ˗ 2.81 

The heating and cooling capacities of HVAC systems were specified according to the peak 

loads in the location. The performance mapping of HVAC equipment was realized based on the 

flow rate and entering temperature of the fluid at the source and/or load sides of HPs at the peak 

load, as explained in section 4.2.1. According to the design load and performance ratings, the 

operating ranges in performance data files of HVAC systems are listed in Table 5-11.  
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Table 5-11: Design capacities and flowrates of HVAC systems 

Location Elements Operational parameters 

STK • B/WHP  TH range: 3.44 – 7.68 kW, TC range: 1.18 – 2.56 kW, the flow rate of source and 

load sides: 680-1590 kg/h 

Performance rating (AHRI/ISO 13256-2): COP = 3.1, EER = 16.6 

• B/AHP TH range: 3.86 – 8.09 kW at source flow rate: 684 – 1590 kg/h and airflow: 1047 – 

1449 kg/h 

TC range: 2.31 – 3.05 kW, SC range: 1.55 – 2.08 kW at source flow rate: 454 – 

908 kg/h and airflow: 624 – 840 kg/h  

Performance rating (AHRI/ISO 13256-1): COP = 3.8, EER = 18.6 

• A/WHP TH range: 2.76 – 5.96 kW, TC range: 1.18 – 2.56 kW 

Performance rating: COPheating = 3.58 at Ta DB/WB 7ºC/6ºC - LWC 45ºC (dT = 

5ºC), COPcooling = 2.32 at Ta 35ºC - LWE 7ºC (dT = 5ºC) 

• A/AHP TH range: 2.39 – 5.63 kW at airflow: 819 – 1002 kg/h 

TC range: 1.85 – 3.02 kW, SC range: 1.030.8 – 2.27 kW, airflow: 455 – 553 kg/h 

Performance rating (AHRI 210/240): HSPF = 10.5, SEER = 20.5 

SBK • B/WHP TH range: 3.44 – 7.68 kW, TC range: 1.18 – 2.56 kW, the flow rate of source and 

load sides: 680-1136 kg/h 

Performance rating (AHRI/ISO 13256-2): COP = 3.1, EER = 16.6 

• B/AHP TH range: 3.86 – 8.09 kW at source flow rate: 684 – 1136 kg/h and airflow: 1047 – 

1449 kg/h 

TC range: 2.31 – 3.05 kW, SC range: 1.55 – 2.08 kW at source flow rate: 454 – 

908 kg/h and airflow: 624 – 840 kg/h 

Performance rating (AHRI/ISO 13256-1): COP = 3.8, EER = 18.6 

• A/WHP TH range: 2.76 – 5.96 kW, TC range: 1.18 – 2.56 kW 

Performance rating: COPheating = 3.58 at Ta DB/WB 7ºC/6ºC - LWC 45ºC (dT = 

5ºC), COPcooling = 2.32 at Ta 35ºC - LWE 7ºC (dT = 5ºC) 

• A/AHP TH range: 2.39 – 5.63 kW at airflow: 819 – 1002 kg/h 

TC range: 1.85 – 3.02 kW, SC range: 1.030.8 – 2.27 kW, airflow: 455 – 553 kg/h 

Performance rating (AHRI 210/240): HSPF = 10.5, SEER = 20.5 

QTA • B/WHP TH range: 1.72 – 3.84 kW, TC range: 1.56 – 3.4 kW, the flow rate of source and 

load sides: 454 – 908 kg/h 

Performance rating (AHRI/ISO 13256-2): COP = 3.1, EER = 16.6 

• B/AHP TH range: 2.32 – 4.56 kW at source flow rate: 454 – 908 kg/h and airflow: 624 – 

832 kg/h 

TC range: 2.31 – 3.05 kW, SC range: 1.55 – 2.08 kW at source flow rate: 454 – 

908 kg/h and airflow: 624 – 840 kg/h 

Performance rating (AHRI/ISO 13256-1): COP = 3.8, EER = 18.6 

• A/WHP TH range: 1.86 – 4.02 kW, TC range: 1.56 – 3.24 kW 

Performance rating: COPheating = 3.58 at Ta DB/WB 7ºC/6ºC - LWC 45ºC (dT = 

5ºC), COPcooling = 2.32 at Ta 35ºC - LWE 7ºC (dT = 5ºC) 

• A/AHP TH range: 1.33– 3.13 kW at airflow: 455 – 553 kg/h 

TC range: 1.85 – 3.02 kW, SC range: 1.030.8 – 2.27 kW, airflow: 455 – 553 kg/h 

Performance rating (AHRI 210/240): HSPF = 10.5, SEER = 20.5 

• Absorp. chiller A capacity of 3 kW heat rejection from chilled water with a 7.2 kW cooling tower. 

Performance rating: COP = 0.7 at a hot water temperature of 90 °C 

JKT • B/WHP TC range: 1.72 – 3.84 kW, the flow rate of source and load sides: 454 – 908 kg/h 

Performance rating (AHRI/ISO 13256-2):  EER = 16.6 

• B/AHP TC range: 2.31 – 3.05 kW, SC range: 1.55 – 2.08 kW at source flow rate: 454 – 

908 kg/h and airflow: 624 – 840 kg/h 

Performance rating (AHRI/ISO 13256-1): EER = 18.3 

• A/WHP  TC range: 1.56 – 3.24 kW 

Performance rating: COPcooling = 2.32 at Ta 35ºC - LWE 7ºC (dT = 5ºC) 

• A/AHP TC range: 1.85 – 3.02 kW, SC range: 1.030.8 – 2.27 kW, airflow: 455 – 553 kg/h 

Performance rating (AHRI 210/240): SEER = 20.5 

• Absorp. chiller A capacity of 3 kW heat rejection from chilled water with a 7.2 kW cooling tower. 

Performance rating: COP = 0.7 at a hot water temperature of 90 °C 

Note: TH is total heating, TC is total cooling, SC is sensible cooling, absorp. Chiller stands for absorption chiller, COP is coefficient of 

performance, Ta is air temperature, DB is the dry bulb, WB is the wet bulb, LWE is leaving water evaporator, and LWC is leaving water 

condenser. AHRI/ISO 13256-2: entering source at 25 °C and entering load at 12 °C for cooling, entering source at 0 °C and entering load at 

40 °C for heating. AHRI/ISO 13256-1: entering source at 25 °C for cooling, entering source at 0 °C for heating. AHRI 210/240: 26.66 °C 

entering air temperature and 50% RH for cooling, 21.11 °C entering air temperature, and 50% RH for heating. 
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5.2.2 Energy flexibility assessment 

5.2.2.1 Non-renewable energy savings  

This EFI determined the alternatives' non-renewable primary energy ratio and non-renewable 

energy savings. Table 5-12 describes the energy output of BES and the grid's electricity supply 

for fourteen different BES in four locations. All alternative BESs fulfilled the energy demand 

for heating, cooling, and DHW supply. However, the electricity requirement from the grid was 

dependent on available solar potential, the size of the PV system and FPCs, and the power 

demand of HVAC equipment. The energy demand of BES was maximum for the base case 

because of the higher power demand of air-to-air HP and auxiliary water heating in TES. The 

alternatives with brine-to-water HP (A1-A4) required less grid electricity in cold climates. For 

the case of hot climates, the alternatives having an absorption chiller (A7&A8) utilized the least 

grid electricity. The same trend was observed for PER and fsav,NRE, as evident in Figure 5-7. The 

alternative A3, an energy system having B/WHP and FPCs with radiator heating and ventilation 

cooling, achieved maximum flexibility with PER of 0.84 and fsav,NRE of 0.53 in STK. In SBK, 

the alternative A1 was the most flexible BES having PER and fsav,NRE as 0.82 of 0.57, 

respectively. Conversely, The BES with absorption chiller was a flexible option having 

maximum values of 0.80 and 0.82 for fsav,NRE in QTA and JKT, respectively. Since there was 

no space heating demand in JKT, the alternatives with radiator and hot water coils were treated 

the same. The alternative A7/8 attained the highest PER, 3.11, in JKT. The higher solar 

radiation and, consequently, higher power and heat supply from PV systems and FPCs in QTA 

and JKT relative to other locations resulted in a greater flexibility potential for PER and fsav,NRE. 

Table 5-12: Thermal energy output from energy system and grid electricity to building 

 STK SBK QTA JKT 

Alternatives Qheat Qcool QDHW Pelgrid Qheat Qcool QDHW Pelgrid Qheat Qcool QDHW Pelgrid Qcool QDHW Pelgrid 

Base case 56.20 2.88 2030 10300 39.89 3.14 2001 10175 2.99 18.98 1458 6996 73.60 954 8255 

A1 56.02 2.49 2139 4773 35.81 3.64 2011 3808 3.22 17.83 1458 2844 
74.23 963 3516 

A2 58.56 2.81 2138 5181 40.66 3.99 2011 4541 2.87 17.43 1486 2870 

A3 56.02 2.49 2146 4618 35.8 3.72 2021 4141 3.24 17.88 1576 1987 
77.47 1101 2602 

A4 58.42 2.81 2147 5130 40.62 4.07 2021 4691 2.74 17.45 1577 1964 

A5 56.97 3.06 2123 5920 36.46 3.82 1985 4824 3.04 20.9 1560 2178 77.60 1101 2546 

A6 58.80 3.20 2047 6389 37.42 3.75 1996 5321 3.07 20.84 1590 3692 77.09 961 3444 

A7 – – – – – – –   2.81 21.98 1503 1373 
69.86 1101 1468 

A8 – – – – – – –   3.22 21.98 1503 1452 

A9 56.73 2.88 2086 5875 37.64 4.03 1985 5810 2.97 19.4 1561 2176 73.67 1100 4124 

A10 56.20 2.43 2143 5248 35.83 3.73 2014 4884 3.22 18.5 1499 3223 
75.53 988 3733 

A11 61.43 2.69 2139 5734 34.96 4.03 2007 5437 2.97 19.69 1499 3135 

A12 56.20 2.43 2148 5506 36.12 3.49 2020 5081 3.00 18.57 1577 2142 75.29 1096 2935 
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 STK SBK QTA JKT 

Alternatives Qheat Qcool QDHW Pelgrid Qheat Qcool QDHW Pelgrid Qheat Qcool QDHW Pelgrid Qcool QDHW Pelgrid 

A13 61.43 2.69 2150 6315 35.30 3.72 2020 5329 3.00 18.5 1577 2157 

Note: Qheat (sensible heating load) and Qcool (sensible cooling load) are given in kWhth/m
2a, QDHW is given in kWhth/a, and Pelgrid (grid electricity) 

is given in kWh/a 

 

Figure 5-7: Primary energy ratio (PERNRE) and Non-renewable energy saving (fsav,NRE) of alternative 

energy systems. a) Stockholm, b) Saarbrücken, c) Quetta, d) Jakarta 

5.2.2.2 Load cover factor  

The load cover factor computed the fraction of electricity load covered by the on-site electricity 

generation. This indicator quantified the generation flexibility. The flexibility depended on the 

size of the PV system and the energy consumption of the building. The BESs with an electric 

heater like base case and A6 required more electricity to meet the energy demand. On the other 

hand, the brine-to-water HP utilized less electricity than other HVAC equipment, excluding the 

absorption chiller. As a result, the electricity consumption of the energy system was the lowest 

for BESs having brine-to-water HP in heating-dominant locations. However, the electricity load 

of BESs having brine-to-water HP increased in QTA. The fact was due to the electric heating 

in TES for DHW during the cooling hours. Moreover, the minimum electricity demand was 

noticed for energy systems with an absorption chiller in QTA and JKT. From Figure 5-8, it can 

be observed that the flexible energy system configurations were A1 (STK), A1 (SBK), A7 

(QTA), and A7/8 (JKT), respectively, to reduce the dependence on grid networks. The load 

cover factor had a value of 0.44, 0.50, 0.65, and 0.66 in those four locations for the mentioned 

BES.  
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Figure 5-8: Electricity load (Pelsys), PV supply (PelPV), and load cover factor (γload) of alternative energy 

systems. a) Stockholm, b) Saarbrücken, c) Quetta, d) Jakarta 

5.2.2.3 Life-cycle emissions 

The CO2 emissions for the life cycle of each BES alternative are given in Table 5-13. The most 

critical elements in LCEs were the emissions from the utility grid and the emissions released 

during energy system manufacturing. In STK, the CO2 emissions of the utility grid were much 

lower than in the other three cities. Hence, the LCEs were produced between 3000 kg CO2eq 

and 4243 kg CO2eq for various BESs. The LCEs reached 126457 kg CO2eq for the base case 

in JKT due to higher electricity demand and CO2 emissions. The LCEs ranged from 31809 kg 

CO2eq to 80263 kgCO2eq and 20205 kgCO2eq to 99744 kgCO2eq in SBK and QTA, 

respectively. In heating-dominant regions, the carbon emissions were minimum for BES having 

B/WHP during the operation (GHGoper), but the emissions during manufacturing (GHGmfg) 

were maximum due to the construction of the borehole heat exchanger. Conversely, BES having 

A/WHPs produced lower carbon emissions during the manufacturing and relatively higher 

emissions during the operation. Consequently, in STK, the alternative A10, A/WHP with a PV 

system and radiator heating, was the most flexible option due to the low CO2eq emission of 

grid electricity. In contrast, alternative A1, B/WHP with a PV system and radiator heating, was 

the flexible choice in SBK due to higher CO2 emission of grid electricity. BESs with absorption 

chiller had minimum environmental impacts in QTA and JKT due to the least CO2 emissions 

during operation and relatively low CO2 emissions during manufacturing. 
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Table 5-13: GHG emissions during manufacturing (GHGmfg) and operation (GHGoper) of energy systems and 

life-cycle emissions 

 STK SBK QTA JKT 

Alternatives GHGmfg  
GHGoper 

per year  
LCEs  GHGmfg  

GHGoper 

per year 

LCEs  GHGmfg  
GHGoper 

per year 
LCEs  GHGmfg  

GHGoper 

per year 
LCE  

Base case 1153 124 4243 1153 3164 80263 813 4947 99744 813 6282 126457 

A1 2331 57 3782 2197 1184 31809 2024 2056 43140 
2387 2676 55908 

A2 2521 62 4073 2276 1412 37587 2096 2254 47180 

A3 2589 55 3977 2354 1288 34483 2188 1423 30656 
2470 1981 42081 

A4 2517 62 4060 2284 1459 38832 2115 1480 31724 

A5 1820 71 3596 1660 1500 39166 1476 1540 32276 1861 1938 40612 

A6 1665 77 3582 1512 1655 42883 1297 2610 53502 1682 2621 52603 

A7 – – – – – – 781 971 20205 
766 1117 23111 

A8 – – – – – – 853 1027 21391 

A9 1353 70 3116 1378 1807 46551 1040 1538 31808 1071 2282 46720 

A10 1419 63 3000 1085 1519 39070 985 2329 47573 
1101  3409 69287  

A11 1490 69 3217 1556 1691 43442 1061 2477 50602 

A12 1496 66 3151 1164 1580 40671 1077 1570 32482 
1200  2681  54816  

A13 1567 76 3465 1235 1657 42673 1149 1587 32880 

Note: All values are given in kg CO2eq. 

5.2.2.4 Thermal comfort 

The thermal comfort was investigated by calculating PMV, PPD, and the total number of 

comfortable hours when the PPD was ≤ 10% (-0.5 ≤ PMV ≤ 0.5). Table 5-14 summarizes the 

thermal comfort performance of BESs in the four investigated climates. Each BES alternative 

achieved thermal comfort in the building except base case & A9 with A/AHP and A5 & A6 

with B/AHP in STK. The average PPD value was slightly above the recommended thermal 

comfort level in those cases. The choice of heat supply equipment, i.e., radiator or hot water 

coil, did not change the thermal comfort in the building. Moreover, the information in Table 

5-14, lower PPD and higher TCH values in QTA and JKT, illustrates that the HVAC systems 

with the defined capacities were able to achieve a higher comfort level in climates having lower 

peak heating/cooling loads and fewer hours of higher heating and cooling demands. 

Table 5-14: Average predicted percentage dissatisfied (PPD) and thermal comfort hours (TCH) of 

alternative energy systems 

 STK  SBK  QTA JKT 

Alternatives PPD (%) TCH (%) PPD (%) TCH (%) PPD (%) TCH (%) PPD (%) TCH (%) 

Base case 11.06 84.3 9.11 88.7 6.23 99.2 7.33 98.2 

A1 9.40 86.3 8.54 91.2 6.33 99.6 
7.83 96.8 

A2 9.23 87.5 8.48 91.4 6.41 99.4 

A3 9.39 86.3 8.53 91.2 6.33 99.6 
7.86 96.6 

A4 9.97 85.0 8.91 89.2 6.42 99.3 

A5 10.76 86.3 8.53 91.4 6.14 99.7 7.35 98.4 
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 STK  SBK  QTA JKT 

Alternatives PPD (%) TCH (%) PPD (%) TCH (%) PPD (%) TCH (%) PPD (%) TCH (%) 

A6 11.63 84.3 9.00 89.3 6.16 99.4 7.39 98.1 

A7 – – – – 6.28 99.5 
7.11 98.2 

A8 – – – – 6.43 98.9 

A9 11.06 84.3 9.11 88.7 9.11 88.7 7.04 98.4 

A10 9.22 87.9 8.41 92.1 6.26 99.5 
7.33 96.9 

A11 9.12 84.8 8.43 89.4 6.39 99.3 

A12 9.22 87.9 8.41 92.1 6.26 99.5 
7.91 98.2 

A13 9.05 85.1 8.41 89.6 6.39 99.3 

5.2.2.5 Net present cost 

The cost analysis was conducted over a life cycle of twenty-five years by incorporating the 

major economic factors like capital cost, replacement costs, operating cost, and discount rate, 

along with the PV cell's degradation rate. Table 5-15 summarizes the investment costs, 

operating costs, and NPC25 of the fourteen BES in four locations. The base case required the 

lowest capital cost, but the operating cost was substantially higher than most alternatives 

because there was no on-site energy generation. Though the integration of PV, FPCs, and GHX 

in BESs reduced the cost of the utility grid, it also significantly increased the capital cost. The 

alternatives with GSHP required a large investment and, consequently, higher maintenance 

costs. In STK and SBK, the B/WHP (A1-A4) and A/WHP (A10-A13) systems had lower 

operating costs. In contrast, the energy systems having absorption chiller and ASHP reduced 

operating costs in QTA and JKT. Regarding flexibility, the minimum values of NPC25 were 

33681 € for the base case in STK, 47833 € for A10 in SBK, 12056 € for the base case in QTA, 

and 12436 € for the base case in JKT. Regarding economic flexibility, GSHPs were the least 

feasible option in all locations. At this, it should be noted that national subsidies were not 

considered in the economic analysis. 

5.2.2.6 Levelized costs of energy 

The LCOE was the EFI to evaluate cost per unit of energy, considering all cost flows over the 

life cycle of the BES. LCOE was further categorized into LCOEel and LCOEth to explain the 

economic impacts of alternatives in terms of useful electricity and thermal energies, as 

presented in Figure 5-9. The LCOEs were calculated using the annualized cost of twenty-five 

years life cycle. The base case was the most flexible BES in STK, QTA, and JKT, having the 

lowest LCOEel values of 0.183 €/kWh, 0.105 €/kWh, and 0.080 €/kWh, respectively. This fact 

was due to the low local electricity prices, as there was no additional cost of on-site electricity 

generation. In contrast, the LCOEel was maximum (0.319 €/kWh) for the base case in SBK 
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because the grid electricity tariff was the highest of the investigated locations. This fact implied 

that the cost of electricity for a life cycle of twenty-five years for all BES would be lower than 

the grid electricity tariff in SBK. The minimum value of the LCOEel was 0.261 €/kWh for 

alternative A10, a BES having PV and A/WHP, in SBK. The BESs having ASHPs and solar 

energy systems were characterized by lower values of LCOEth in all locations. The flexible BES 

regarding LCOEth was A11 (A/WHP with PV generation), with values of 0.155 €/kWhth (STK), 

0.261 €/kWhth (SBK), 0.167 €/kWhth (QTA), and 0.053 €/kWhth (JKT). 

Table 5-15: Investment cost, operating cost, and net present cost (NPC25) of alternative energy systems 

 STK SBK QTA JKT 

Alternatives 
Cinvt 

(€) 

Coper 

(€/year) 

NPC25 

(€) 

Cinvt 

(€) 

Coper 

(€/year) 

NPC25 

(€) 

Cinvt 

(€) 

Coper 

(€/year) 

NPC25 

(€) 

Cinvt 

(€) 

Coper 

(€/year) 

NPC25 

(€) 

Base case 1852 1931 33681 1851 3133 53493 1558 739 12056 1558 765 12436 

A1 22063 1425 49452 19409 1641 50722 17546 729 29415 
20854 831 34968 

A2 22251 1504 50951 18705 1845 53446 16842 740 28853 

A3 23890 1442 50589 21048 1783 53695 21442 737 33394 
25232 860 39713 

A4 24595 1554 53132 20343 1932 55452 22146 763 34448 

A5 20570 1598 49794 17561 1903 52117 18451 679 29584 25622 865 40169 

A6 18520 1632 49349 15511 2002 52911 13440 705 24969 21244 817 35165 

A7 – – – – – – 16082 539 25287 
15349 513 24172 

A8 – – – – – – 15377 530 24450 

A9 11949 1374 37437 10721 2031 48246 10593 482 19035 11655 555 21952 

A10 14592 1325 40339 13487 1819 47833 9377 564 18987 
8170 548 18426 

A11 13887 1396 40807 12782 1969 49600 8672 567 18334 

A12 16231 1413 42461 15126 1920 50047 13977 572 23667 
12548 572 23110 

A13 15526 1544 43901 14421 1977 50283 13272 556 22751 

 

 

Figure 5-9: Levelized cost of electrical energy (LCOEel) and levelized cost of thermal energy (LCOEth) in 

alternative energy systems. a) Stockholm, b) Saarbrücken, c) Quetta, d) Jakarta 
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5.2.3 Multi-criteria assessment 

5.2.3.1 Evaluation 

The goal of the multi-criteria assessment was to identify the most flexible BES using the 

MCDM method. The multi-criteria assessment was completed in two steps. Initially, the 

CRITIC-TOPSIS scheme was applied to rank BESs according to the energy flexibility 

potential. Then MCDM was repeated with priority weights of EFIs in TOPSIS ranking to 

evaluate the certainty level of the multi-criteria assessment methodology. 

Table 5-16 presents the weights of the EFIs, assigned by the CRITIC technique, for four 

locations. The significance score of an EFI varied in four different climates and from other EFIs 

in a specific climate. The EFIs with maximum weights were LCOEel (0.22) in STK, NPC25 

(0.25) in SBK, LCOEth (0.19) in QTA, and NPC25 (0.16) in JKT. EFIs' weightage varied 

marginally, ranging from 0.12 to 0.16. On the other hand, the weights of EFIs in other three 

locations showed large variations. The NPC25 received the highest weightage of 0.25 and 0.16 

in SBK and JKT, respectively, and the second highest weightage in STK and QTA with values 

of 0.16 and 0.18, respectively. LCEs and fsav,NRE ranged from 0.09 to 0.14 in investigated 

locations. The EFIs with the minimum weightage were fsav,NRE  in STK, γload in SBK, and LCE  

in QTA and JKT. 

TOPSIS technique assigned ranks to the BES based on the closeness coefficient to the best 

possible solution, as given in Table 5-17. The ranks of BESs, resulting from MCDM, were 

different as compared to individual EFI-based rankings. In the case of aggregated score-based 

ranking, it was determined how much energy flexibility could be delivered by a BES while 

providing thermal comfort with minimum grid interaction and environmental hazards. Hence, 

the base case was the least flexible BES in all locations except QTA. According to the findings 

of MCDM, the alternative A10, BES having A/WHP with PV generation and radiator heating, 

was the most flexible BES in STK, followed by A11, A12, and A1. This could be justified by 

the fact that the electricity tariff was significantly low, and the carbon emissions were the 

minimum of the investigated locations in STK. On the other hand, the higher initial costs and 

GHGmfg emissions associated with GSHPs and FPCs resulted in a lower flexibility potential of 

the alternatives A1 to A6 in STK.  

The GHG emissions and grid supply were relatively higher during operation for BESs having 

ASHPs. The electricity tariff was maximum in SBK as compared to other locations. Thus, the 
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flexibility of BESs having B/WHP was improved in SBK. At this, the most flexible BES was 

alternative A1 in SBK, followed by alternatives A10, A2, and A3. 

In QTA, the grid electricity price was significantly lower than STK and SBK, and the output of 

the PV system and FPCs was relatively higher. Therefore, the BES having A/AHP with PV 

generation and FPCs (alternative A9) delivered maximum energy flexibility in QTA. The initial 

cost of alternative A9 was lower than most BESs, and the power demand of A/AHP was also 

not much higher than the GSHPs in QTA. Furthermore, in cooling-dominant climates of QTA 

and JKT, BESs having absorption chiller (A7 and A8) had the lowest electricity consumption 

and lowered costs compared to BESs having GSHP. Consequently, the EFIs of fsav,NRE, and 

GHG emissions were adequate for alternative A7/8. So, alternative A7/8 was the most flexible 

BES in JKT. 

Table 5-16: Weights of EFIs in investigated locations 

 fsav,NRE γload LCEs NPC25 PPDavg LCOEel LCOEth 

STK 0.11 0.12 0.11 0.16 0.15 0.22 0.13 

SBK 0.10 0.09 0.09 0.25 0.20 0.11 0.15 

QTA 0.10 0.10 0.10 0.18 0.16 0.16 0.19 

JKT 0.12 0.14 0.12 0.16 0.15 0.15 0.15 

Table 5-17: Relative closeness (Di) and ranking of alternative energy systems in investigated locations 

 STK SBK QTA JKT 

 Di Rank Di Rank Di Rank Di Rank 

Base case 0.278 12 0.111 12 0.497 12 0.430 9 

A1 0.720 4 0.900 1 0.516 10 
0.539 7 

A2 0.682 8 0.798 3 0.490 13 

A3 0.650 9 0.763 4 0.498 11 
0.512 8 

A4 0.608 10 0.684 10 0.461 14 

A5 0.598 11 0.698 9 0.591 9 0.542 6 

A6 0.698 6 0.728 7 0.615 8 0.675 4 

A7 – –   0.685 7 
0.758 1 

A8 – –   0.700 6 

A9 0.712 5 0.585 11 0.820 1 0.653 5 

A10 0.851 1 0.817 2 0.749 2 
0.694 3 

A11 0.819 2 0.749 5 0.740 3 

A12 0.736 3 0.741 6 0.717 5 
0.717 2 

A13 0.698 7 0.704 8 0.736 4 

5.2.3.2 Sensitivity analysis 

A sensitivity analysis was conducted to examine the reliability of the multi-criteria assessment 

methodology. The approach for the sensitivity analysis was to analyze the ranks of BES with 

changing weights of EFIs. For this purpose, five scenarios were created by assigning equal 

weights to all EFIs and prioritizing the EFIs of energy efficiency (fsav,NRE & γload), economics 
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(NPC25, LCOEel, and LCOEth), and other EFIs of GHG emissions and thermal comfort (LCEs 

& PPDavg) by assigning a cumulative weightage of 50% one by one. Hence, the confidence of 

the MCDM method was verified under five scenarios, as summarized in Table 5-18. In addition, 

the flexibility ranking of BESs for these five scenarios is given in Table 5-19. 

The findings of sensitivity analysis revealed that the base case was the least accepted BES in 

all scenarios except S1 in QTA and S5 in JKT. The ranks of BESs were consistent in five 

different scenarios. Particularly in STK, the BESs having A/WHP and the PV system were the 

alternatives (A10 and A11) with the maximum flexibility potential in all scenarios. The energy 

systems with B/WHP increased their rank in SBK for the energy efficiency-priority scenario 

(S3) because of the lower power demand of GSHP as compared to ASHPs. In SBK, the BESs 

having B/WHP (A1 and A2) were the flexible option. Since NPC25 received a higher weightage 

of 25% in S1, alternative A10 became the second-most flexible energy system in S1due to 

higher economic flexibility. Likewise, alternative A10 was the third most flexible BES for the 

economic-priority scenario (S5) in SBK. In the case of JKT, the alternative with an absorption 

chiller, PV, and FPCs (A7/8) was the most flexible BES for all scenarios, while the flexibility 

order of BES changed with varying weights of EFIs. Conversely, the ranks of BESs were 

sensitive to the variation in weights of EFIs in QTA. Although the flexibility order of BESs was 

different in all scenarios, the alternative A9, BES having A/AHP with PV and FPCs, was the 

preferred energy system in QTA with maximum energy flexibility except for scenario S4. The 

alternatives A7 and A8 were characterized by the lowest GHG emissions and electricity 

consumption in all alternative energy systems. Therefore, the alternative A8 was ranked first in 

scenario S4 and second in scenario S3 in QTA. 

As presented in Table 5-19, the flexibility order of BESs changed by prioritizing the EFIs, 

which demonstrated that the weights of EFIs strongly influenced the ranks of BES and 

emphasized the importance of criteria weighting in MCDM. However, the most flexible BESs 

were the same in all scenarios except scenario S4 in QTA. Thus, it could be implied that the 

weights had little impact on the choice of the most flexible BES in the investigated locations, 

which verified the robustness of the CRITIC-TOPSIS scheme for MCDM in selecting the BESs 

with the employed EFIs. 
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Table 5-18: Weights of EFIs under five scenarios for sensitivity analysis of MCDM results 

 Weights of EFIs 
 fsav,NRE γload LCEs NPC25 PPDavg LCOEel LCOEth 

S1: Weights obtained 

from CRITIC 

method 

weights from Critic method (c.f. Table 5-16) 

S2: Equal weightage 

to each EFI 
0.14 0.14 0.14 0.14 0.14 0.14 0.14 

S3: Prioritize EFIs of 

energy efficiency 
0.25 0.25 0.10 0.10 0.10 0.10 0.10 

S4: Prioritize EFIs of 

emission and comfort 
0.10 0.10 0.25 0.10 0.25 0.10 0.10 

S5: Prioritize 

economic EFIs 
0.10 0.10 0.10 0.17 0.10 0.17 0.17 

Table 5-19: The order of alternative energy systems under five scenarios in investigated locations 

 Scenario Rank 

STK 

S1 A10 > A11 > A12 > A1 > A9 > A6 > A13 > A2 > A3 > A4 > A5 > Base case 

S2 A10 > A11 > A1 > A12 > A6 > A2 > A13 > A9 > A3 > A4 > A5 > Base case 

S3 A10 > A1 > A11 > A2 > A3 > A6 > A12 > A4 > A13 > A5 > A9 > Base case 

S4 A10 > A11 > A12 > A9 > A6 > A1 > A13 > A2 > A3 > A5 > A4 > Base case 

S5 A10 > A11 > A9 > A12 > A13 > A1 > A6 > A2 > A3 > A4 > A5 > Base case 

SBK 

S1 A1 > A10 > A2 > A3 > A11 > A12 > A6 > A13 > A5 > A4 > A9 > Base case 

S2 A1 > A2 > A3 > A10 > A6 > A12 > A4 > A11 > A5 > A13 > A9 > Base case 

S3 A1 > A2 > A3 > A10 > A6 > A4 > A11 > A12 > A5 > A13 > A9 > Base case 

S4 A1 > A3 > A2 > A10 > A4 > A5 > A12 > A6 > A11 > A13 > A9 > Base case 

S5 A1 > A2 > A10 > A3 > A11 > A6 > A12 > A13 > A5 > A4 > A9 > Base case 

QTA 

S1 A9 > A10 > A11 > A13 > A12 > A8 > A7 > A6 > A5 > A1 > A3 > Base case > A2 > A4 

S2 A9 > A8 > A13 > A7 > A12 > A10 > A5 > A11 > A3 > A6 > A1 > A4 > A2 > Base case 

S3 A9 > A8 > A7 > A13 > A12 > A5 > A3 > A4 > A10 > A1 > A11 > A6 > A2 > Base case 

S4 A8 > A7 > A9 > A13 > A12 > A5 > A3 > A4 > A10 > A1 > A11 > A2 > A6 > Base case 

S5 A9 > A13 > A10 > A11 > A12 > A8 > A7 > A6 > A5 > A1 > A3 > A2 > A4 > Base case 

JKT 

S1 A7/8 > A12/13 > A10/11 > A6 > A9 > A5 > A1/2 > A3/4 > Base case 

S2 A7/8 > A12/13 > A6 > A9 > A10/11 > A5 > A1/2 > A3/4 > Base case 

S3 A7/8 > A12/13 > A9 > A6 > A5 > A3/4 > A10/11 > A1/2 > Base case 

S4 A7/8 > A9 > A12/13 > A6 > A5 > A3/4 > A1/2 > A10/11 > Base case 

S5 A7/8 > A10/11 > A12/13 > A6 > A9 > Base case > A1/2 > A5 > A3/4 

5.3 Building service system flexibility 

In the previous section, the MCDM analysis of different BESs identified a feasible BES in each 

location. Two optimization methods, steady-state optimization and dynamic control, were 

further implemented to evaluate the energy flexibility potential of the building service system. 

The optimization scheme was implemented in a temperate oceanic climate (Cfb) of Saarbrücken 

for alternative A1 (energy system having brine-to-water heat pump with PV supply and 
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emission heating). The energy consumption profile of alternative A1 was taken as a reference 

scenario for assessing energy flexibility through steady-state or dynamic optimization of BES 

parameters. 

5.3.1 Steady-state optimization 

In SSO, fixed optimal values of selected design variables were evaluated by conducting annual 

simulations. The building architecture was defined according to the findings of section 5.1, and 

the energy system model of alternative A1 in Saarbrücken was used as a reference for this 

optimization problem. The capacity and performance characteristics of the heat pump, length 

of the borehole, properties of the soil, and control strategies were fixed in SSO. NSGA-III 

completed the bi-objective optimization task by conducting 5000 annual simulations with 

constraints of thermal comfort and FSOC and produced a PF to identify the optimal solution 

set.  

Design variables: Table 5-20 describes the variables with their lower and upper bounds for the 

optimization scheme. Borehole radius and active energy storage, i.e., battery capacity and 

volume of TES, were sources of system flexibility. Whereas the remaining parameters provided 

opportunities for demand flexibility. The limits of variables were either assigned as percentage 

margins of the boundary conditions of BES in section 5.1 or with reference to the previous 

literature, as given in Table 5-20. 

Table 5-20: Design variables for steady-state optimization 

Variables 

reference 

value 

Lower 

bound 

Upper 

bound Remarks 

Battery capacity (Wh) 5760 5184 6336 10% margin w.r.t., initial value 

Volume of TES (m3) 
1.8 

1.35 2.25 25% margin wrt initial value 

Radius of borehole pipe (m) 0.0762 0.05715 0.09525 25% margin wrt initial value 

Mass flow rate of brine in 

GHX (kg/h) 

1136 

681 1136 

According to performance data 

of YAWS YORK HP [186] 

Starting delay of HP (h) 0.25 0 0.5 [194] 

Stopping delay of HP (h) 0.25 0 1 [194] 

Cooling set point (°C) 25 24 28 [195] 

Heating set point (°C) 20 18 23 [195] 

 

Constraints: Two constraints were defined for the optimization problem, as given in Table 

5-21. The first constraint of average PPD value maintained thermal comfort above a certain 

level by avoiding overheating/cooling or underheating/cooling. The average FSOC of the 

battery was given as the second constraint to extend the battery life to a minimum of 6.5 years. 
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FSOC depended on the BES's total electricity consumption and battery capacity. In comparison, 

PPD was mainly influenced by HP's temperature set points and starting/stopping delay.  

Table 5-21: Constraints for steady-state optimization 

Constraints  Criteria Remarks 

Average predicted percentage 

discomfort = < 10 ASHRAE standard 

Average fractional state of charge of 

battery 
= > 0.45 

for a minimum of 6.5 years of 

battery life 

 

Objective functions: Two objective functions were set for SSO, the electricity consumption of 

BES (Pel,sys)  and PERNRE, while maintaining thermal comfort in the building. The goal was to 

minimize Pel,sys and maximize the PERNRE, i.e., meet the energy demand of the service system 

using a smaller share of primary energy from the grid network. The electricity consumption 

was the sum of the electricity consumption of the HP, electric heater in the storage tank, blower 

of water coils, pumps, controllers, and other auxiliary equipment. Eq. 3.12 was used to calculate 

the PERNRE for BES. At each iteration, TRNSYS produced the values of these functions in a 

text file, forwarded to NSGA-III using Python to process the design variables for the next 

simulation. Since the household appliances’ load profile was fixed, the variation in the design 

variables would influence the energy consumption of the HVAC system and DHW supply. For 

the designed optimization problem, all design variables had an impact on both objective 

functions except the battery capacity, which affected only the PERNRE. 

5.3.1.1 Optimization results 

The optimization algorithm produced a PF between PERNRE and Pel,sys. The solution with the 

maximum value of PERNRE was also characterized by the lowest value of Pel,sys, as highlighted 

in Figure 5-10. The maximum PERNRE of 1.03 was achieved for reduced Pel,sys of 1707.77 

kWh/year for the optimum solution. Moreover, both constraints had values of 6.52% and 0.46 

for average PPD and average FSOC, respectively. The optimized values of design variables for 

the optimum solution on PF are listed in Table 5-22. Battery capacity was increased to 6000 

Wh after optimization, which resulted in higher FSOC and, eventually, a larger share of PV 

supply to the building. The TES volume and borehole radius were reduced to 1.46 m3 and 

0.0602 m, respectively, in the optimum solution compared to the reference scenario. The mass 

flow rate of brine in GHX was also reduced from 1136 kg/h to 985 kg/h. After optimization, 

there was a minor change of 0.03 h and 0.01 h in starting and stopping delays of HP, 

respectively. The cooling set point was decreased to 24.63 °C, which resulted in lower energy 
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consumption during space cooling. On the other hand, the building was heated to a higher 

temperature of 21.18 °C during space heating in the optimal scenario. 

 

Figure 5-10: PF of steady-state optimization 

Table 5-22: Optimized values of design variables 

Variables Optimal value 

Battery capacity (Wh) 6000 

Volume of TES (m3) 1.46 

Radius of borehole pipe (m) 0.0602 

Mass flow rate of brine in GHX (kg/h) 985 

Starting delay of HP (h) 0.28 

Stopping delay of HP (h) 0.26 

Cooling set point (°C) 24.63 

Heating set point (°C) 21.18 

5.3.1.2 Energy flexibility by steady-state optimization 

Energy flexibility was evaluated by comparing reference and optimized energy consumption 

profiles of BES having brine-to-water heat pump with PV supply and emission heating. The 

DRE was assumed to be one year in SSO. Energy flexibility was achieved by system flexibility 

and demand flexibility in SSO. Thermal and electric storage capacities and borehole radius 

were responsible for system flexibility. On the other hand, the mass flow rate of brine, 

starting/stopping delays, and temperature set points provided demand flexibility through SSO. 

The EFIs for the SSO strategy are given below. 

Storage capacity: The capacity of TES was reduced in the optimal SSO solution, which 

resulted in a down-flex storage capacity. The downward flexibility potential of the HP was 

evaluated for a simulation period of a whole year. Since the operation hours of the HP depended 

on the hot water’s temperature and volume of TES, HP's power demand decreased for reduced 

TES volume. The annual power demand profiles of HP for reference and SSO scenarios are 

presented in Figure 5-11. Thermal storage capacity (CDF) is also presented for each month on 
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the secondary vertical axis. The power demand in the SSO scenario kept lower than the 

reference scenario throughout the year. However, it was quite small in the summer because 

there was only DHW demand in those months. Similarly, in December, the CDF was high in 

winter, with a maximum value of 213.75 kWh. Overall, the energy flexibility was high in 

months having higher power demand of HP. In winter, the CDF ranged between 42.35 kWh and 

213.75 kWh. In comparison, it was only 4.50 kWh to 13.71 kWh in summer. Overall, the SSO 

strategy could incorporate 871.31 kWh storage capacity per year. 

 

Figure 5-11: Storage capacity (down-flex) from SOO and power demand of HP in reference and SSO 

scenarios 

Flexible energy: This EFI demonstrated how much energy consumption was saved after 

optimization. The main source of flexible energy was HP. Further, the flexible energy, like the 

storage capacity, was higher in the heating season. Figure 5-12 presents the flexible energy 

potential for each month. The maximum flexible energy was achieved in December (226.13 

kWh), reaching 183.21 kWh, 153.36 kWh, and 147.71 kWh in February, November, and 

January, respectively. A total of 967.83 kWh of flexible energy was achieved by employing the 

SSO. The flexible energy potential varied between 5.73 kWh and 20.86 kWh from June to 

October. 

Residual load: The residual load of the building evaluated the grid stress of the BES. The lower 

power demand of the HP and reduced energy consumption of BES substantially decreased the 

residual load after SSO. The annual profiles of residual loads for reference and SSO scenarios 

are presented in Figure 5-12. The electricity demand from the grid was also reduced in the 

heating season, as in the case of HP’s power demand and energy consumption of BES. 

Nevertheless, the residual load in the SSO scenario was higher than the reference scenario from 

May to October. For example, the residual load reduced to 527.09 kWh from 7736.47 kWh in 

December. In contrast, it increased in May from 111.59 kWh to 124.47 kWh. Overall, the 

residual load in the SSO scenarios was 648.75 kWh less than in the reference scenario. 
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Figure 5-12: Flexible energy from SSO and residual loads in reference and SSO scenarios 

Flexibility cost: Flexibility cost was computed by comparing the grid electricity cost during 

the operation of the BES in reference and SSO scenarios. Thus, the flexibility cost was directly 

related to the residual load of the building. The stacked column chart and scatter plot in Figure 

5-13 show the grid electricity cost for both scenarios and the flexibility cost, respectively. The 

annual flexibility cost achieved by SSO was 196.81 €, with a grid electricity cost of 944.1 € in 

the SSO scenario. Since the residual load was increased after SSO from May to October, the 

flexibility cost was negative in those months, showing the increased grid electricity cost. The 

flexibility cost reached 63.53 € in December, 44.83 € in February, 40.53 € in January, and 35.13 

€ in November. 

Flexibility emissions: This EFI provided information on the CO2 emissions during the 

operation of BES. Flexibility emissions were also based on the residual load of the building. 

Thus, higher flexibility emissions were accomplished in winter months, 41.55 kgCo2eq in 

January, 45.96 41.55 kgCo2eq in February, 36.03 41.55 kgCo2eq in November, and 65.12 41.55 

kgCo2eq in December. On the other hand, the SSO strategy increased the CO2 emissions by 

minimal values from May to October, as shown in Figure 5-13. The net effect of SSO was 

reducing the CO2 emissions from 1169.5 kgCo2eq to 967.74 kgCo2eq in a year. 

 

Figure 5-13: Total cost and emissions in reference and SSO scenarios with flexibility cost and emissions 

from SOO 
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5.3.2 MPC-based optimization 

The functionality of the MPC optimization strategy was analyzed for three months, January, 

June, and October. Firstly, the performance of the MPC model was validated by comparing the 

predicted and simulated results for the thermal load of the reference building. Then the energy 

flexibility potential was computed for the dynamic control scheme. For MPC-based dynamic 

control, the boundary conditions and design parameters of BES were modified according to the 

findings of SSO. Finally, the energy consumption profile in investigated months was compared 

with the reference and SSO scenarios to better present dynamic control's energy flexibility 

potential. 

5.3.2.1 Predictive model performance 

The RandomForestRegressor predictive model was developed using the TRNSYS-generated 

training data for a residential building in Saarbrücken. The model was trained on the data set of 

990 monthly TRNSY simulations with a 30-minute time step for each month. The correlation 

was initially computed between model outputs and possible inputs, including Tamb, RHamb, 

IT_H, internal gains, solar gains, SHD_w, Tset_H, Tset_C, Tzone, and relative humidity of 

zone RHzone. The variables with relatively higher correlations were selected as model inputs, 

as given in Table 5-23. Tamb was the most critical parameter for building thermal load, and 

Tzone highly influenced thermal comfort in the zone. Further, SHD_w was prominent in the 

summer but not considered in January and October due to low correlation scores. Then, the 

model was validated by comparing the energy demand of the building from the simulation and 

the predictive model for the reference building having similar boundary conditions.  

Table 5-23: Correlation between inputs and outputs of predictive model 

Features 

January June October 

Qth 

(kW) 

PPD 

(%) 

Qth 

(kW) 

PPD 

(%) 

Qth 

(kW) 

PPD 

(%) 

Tamb (°C) -0.87 -0.13 0.24 -0.26 -0.49 -0.43 

RHamb (%) 0.39 0.11 -0.18 0.27 0.25 0.19 

IT_H (kWh/m2) 0.14 0.05 -0.14 0.17 0.10 0.10 

SHD_w (fraction) ˗ ˗ -0.28 -0.10 ˗ ˗ 

Tset_H (°C) 0.31 -0.89 ˗ ˗ 0.38 -0.36 

Tset_C (°C) ˗ ˗ -0.21 0.03 ˗ ˗ 

Tzone (°C) 0.27 -0.91 0.15 0.51 -0.08 -0.71 
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Figure 5-14 to Figure 5-16 show the simulated and predicted thermal load (Qth) plots during 

January, June, and October, respectively. Predicted results showed a good agreement with the 

simulated results. However, the accuracy of the predictive model was relatively lower in June. 

Moreover, the evaluation matrices of the predictive model were also calculated to measure the 

accuracy. Table 5-24 shows three evaluation matrices used in this study, i.e., mean absolute 

error (MAE), R2 (R squared) score, and root mean square error (RMSE). These matrices were 

within the acceptable range for all three months. Moreover, the evaluation scores were higher 

in January and October (heating-dominant months) than in June (a cooling-dominant month). 

Overall, higher R2 scores and lower values of MAE and RMSE in three months show that the 

predictive outcomes were near realistic. 

 

Figure 5-14: Comparison of simulated and predictive household’s thermal load (January) 

 

 

Figure 5-15: Comparison of simulated and predictive household’s thermal load (June) 
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Figure 5-16: Comparison of simulated and predictive household’s thermal load (October) 

Table 5-24: Evaluation matrices of predictive model 

Model evaluation matrices January June October 

MAE 0.0091 0.0652 0.0382 

R2 score 0.998 0.967 0.991 

RMSE 0.056 0.211 0.163 

5.3.2.2 Energy flexibility by MPC 

The employed optimization strategy was presumed to improve the energy flexibility of the 

building without compromising the thermal comfort in the zone. It should be noted here that 

the electricity consumption of household appliances was independent of the selected control 

variables and thus not considered in the formulation of the dynamic control. The MPC optimizer 

provided the reference set temperature to local PID controllers and shading fraction for the 

window blinds for each DRE of 30-minute. The PID controller generated a control signal by 

comparing the reference and zone temperature. That signal controlled the heating/cooling 

operational characteristics of the GHP, radiator, and cooling coils. Therefore, the goal was to 

achieve thermal comfort with the minimum possible electricity consumption of the HVAC 

system. The simulation results showed that the MPC-based optimization could further improve 

the energy flexibility of the building by delivering demand flexibility through optimal control 

of window shading and temperature set points. Moreover, the dynamic modulation of 

temperature set points reduced the energy consumption of BES while maintaining thermal 

comfort. As a result, the dynamic control provided better thermal comfort than the reference 

scenario, with an average PPD value of 11.18 % in January. However, it was slightly higher 

than the desired level and lower than the SSO scenario (7.261%) in January. MPC maintained 

thermal comfort at 7.49% and 6.95% PPD levels in June and October, respectively, which were 

almost the same in reference and SSO scenarios. The EFIs of the MPC-based optimization 

strategy are described below. 
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Storage capacity: The storage capacity (CDF) and heating power demand resulting from MPC 

are presented in Figure 5-17. The stacked columns show the CDF in MPC and SSO scenarios, 

whereas the scatter plots present the power demand of HP in all three scenarios. The simulation 

results showed that applying the MPC-based optimization after the SSO on BES could further 

induce energy flexibility. The CDF was increased from 140.87 kWh (SSO scenario) to 289.81 

kWh by the downward temperature modulation of the heating set point. It can be observed that 

the HP’s power demand was much lower in the MPC scenario during high heating load hours, 

which was the source of energy flexibility in MPC-based optimization. A total of 21.34 kWh 

storage capacity was achieved in October, with a significant share of 7.63 kWh by the MPC 

strategy. The heating power demand in January and October decreased from 508.74 kW 

(reference scenario) to 354.16 kW (SSO scenario) and further decreased by 197.61 kW in the 

MPC scenario. 

 

Figure 5-17: Storage capacities (down-flex) and HP’s power demands in reference, SSO, and MPC 

scenarios 

Flexible energy: The flexible energy from MPC-based optimization and its comparison with 

the SSO strategy is shown in Figure 5-18 on the secondary vertical axis. The flexible energy 

reached 97.26 kWh in January by employing dynamic control. The impact of MPC was 

increased energy consumption w.r.t. reference and SSO scenarios in June, resulting in -19.09 

kWh flexible energy. In October, a month of low heating demand, the flexible energy kept to a 

low value of 4.25 kWh. Overall, the combined effect of SSO and MPC was an energy flexibility 

of 244.97 kWh in January and 19.53 kWh in October.  

Residual load: The residual load was another indicator for assessing energy flexibility by 

activating the MPC of temperature set points and window shading. Figure 5-18 illustrates the 

variation in residual load profiles in simulated periods. Though SSO reduced the total annual 

residual load, the effect of SSO was increased residual load from May to October. In the case 

of MPC, the residual load was lower than the reference scenario in January and October and 
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higher in June with a minimal value of 1.45 kWh. The SSO and MPC strategies dropped the 

electricity requirement of the grid by a total of 233.72 kWh, including a 100.13 kWh reduction 

from MPC-based optimization. 

 

Figure 5-18: Flexible energies and residual loads in reference, SOO, and MPC scenarios 

Flexibility cost: The electricity costs and flexibility costs in the investigated scenarios are 

presented in Figure 5-19. The flexibility cost depended on the grid electricity and showed a 

similar pattern as in residual load. The electricity cost was lower than the reference scenario in 

SSO and MPC scenarios during January. As a result, the flexibility costs were 40.53 € and 70.91 

€ in SSO and MPC scenarios, respectively, compared to the reference scenario. On the other 

hand, the electricity cost was higher than the reference scenario in June after applying the 

optimization strategies, as depicted by the negative flexibility costs. The SSO strategy's 

electricity cost in October was highest due to increased residual load. In comparison, the MPC 

strategy reduced the residual load in October by a nominal value and provided a flexibility cost 

of 1.34 €. 

Flexibility emissions: The flexibility emissions were also a function of residual load and 

showed a pattern similar to the flexibility cost. MPC-based optimization was more effective 

than SSO for flexibility emissions. The dynamic temperature modulation in the heating season 

significantly reduced CO2 emissions. Though SSO could achieve 41.55 kgCO2eq flexibility 

emissions in January, MPC further reduced the CO2 emissions and provided flexibility 

emissions of 72.69 kgCO2eq regarding the reference scenario. The SSO could not achieve 

flexibility emissions in October, but the MPC strategy accomplished flexibility emissions of 

1.38 kgCO2eq in October. Nevertheless, CO2 emissions increased, as in the SSO scenario, by 

0.45 kgCO2eq in June by activating MPC. 
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Figure 5-19: Total and flexibility cost and emissions in reference, SSO, and MPC scenarios 

5.4 Discussion 

The implantation of the proposed optimization framework can improve the energy flexibility 

of the building from the envelope design stage to the system selection and operation. A novel 

combination of EFIs was formulated to evaluate the energy flexibility potential for generation, 

system, and demand flexibilities. There were some limitations while conducting case studies, 

like constant grid tariff throughout the year, no feed-in tariff, and no national subsidies on 

renewable energy installations. Furthermore, annual simulations were carried out for generation 

and system flexibilities, and monthly simulations were conducted for demand flexibility 

through MPC. The EFIs were calculated for each flexibility category accordingly. 

5.4.1 Flexible building envelope 

The bi-objective optimization of the building envelope established two discussion areas about 

architectural design in different climate conditions: energy flexibility potential and optimal 

design parameters. The potential depended on the local building energy standards and 

heating/cooling demand for the flexible thermal load. For instance, the flexible thermal load 

was lower in Dfc (Oestersund) and Dfb (Stockholm) than in all other heating-dominant 

locations despite high heating demands due to good practices of the energy-efficient envelope. 

Contrary, other locations in the continental climate had significant potential for energy 

flexibility. Cfb (Saarbrücken), a temperate climate, showed low potential for flexible thermal 

load because of the highly insulated envelope. The locations in the Dry climate had higher 

cooling demand than other climates and showed the maximum potential of flexible cooling 

load. Similarly, the locations in tropical climates also achieved a significant flexible cooling 

load. Regarding the optimal envelope, the building design parameters depend on each other, 

and a complete set of optimal parameters should be adopted instead of individual parameters. 
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The locations with extreme weather conditions, either cold or hot, required very insulated 

envelopes to minimize transmission gains or losses. The insulation thickness of the external 

wall was higher in continental, dry-hot, and tropical climate zones. The insulation thickness of 

the roof was high in continental and temperate climate zones. The dry-cold climate was 

characterized by the lowest average insulation thickness for external walls and roofs.  

Since the infiltration through the window aperture was active for passive cooling, the aperture 

angle was more effective in hot climates. Consequently, the aperture angle was higher in hot 

regions of temperate and dry climates. The dry-hot zone had a maximum mean aperture angle. 

Although the dominant thermal load was cooling in a tropical climate, it also had a higher 

humidity level throughout the year. As a result, the aperture angle was relatively lower than in 

dry climates, and it even reduced to 5 degrees in Jakarta, a tropical-monsoon region. 

WWR was the most imperative element regarding solar gains in heating-dominant and cooling-

dominant climates. As a matter of fact, the optimal solutions established that the heating-

dominant regions require higher WWR to maximize the solar gains. Therefore, the continental-

cold climate had the maximum WWR, continuously decreasing to the mean value of 0.27 in the 

temperate-hot summer climate. On the other hand, in the dry and tropical zone, the WWR 

remained equal to the lower bound in optimum solutions. The solar radiation value for 

activating the window shading was another factor in controlling the solar gains in the 

household. This parameter had relatively higher values in continental and temperate climates 

because the dominant thermal load is heating. In contrast, window shading was activated at low 

solar radiation, around 250W, in dry and tropical climates due to high cooling loads. The 

building orientation also strongly influenced the solar gains. The optimal orientation is an 

essential aspect of the building architecture since it can increase energy flexibility without 

additional investment costs. Optimization results showed that the South or North was the 

optimal orientation in the Northern hemisphere. In most of the locations, the front facade faced 

North. However, the locations in dry and temperate climate zones with minimal heating load 

had South-faced optimal building orientation. 

5.4.2 Flexible energy system 

Concerning the selection of flexible BES, the proposed framework devised a systematic 

methodology for a definite flexibility evaluation of BES based on performance indicators for 

system flexibility. It should be noted that the cost of energy system components in LCCA does 

not include value-added tax (VAT), cost of system accessories like piping, controllers, sensors, 
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and system installation costs, which is a limitation of this study. The methodology was applied 

to fourteen energy systems with various energy mixes and HVAC system configurations in four 

locations having different climates.  

The alternatives with brine-to-water HP required less grid electricity in a heating-dominant 

climate. For a cooling-dominant climate, the alternatives having an absorption chiller consumed 

the minimum grid electricity. Further, QTA and JKT had larger PER and fsav,NRE due to higher 

solar radiation and ultimately higher electricity and heat supply from the PV system and FPCs. 

Similarly, the load cover factor prioritized the energy systems with brine-to-water HP in a 

heating-dominant climate and absorption chiller in a cooling-dominant climate. The GHG 

emissions were lowest for ground source brine-to-water HP energy systems during the 

operation in heating-dominant regions, but the emissions from the manufacturing process were 

the highest because of the BHX construction. The alternatives with air-to-water HPs were 

characterized by lower emissions during manufacturing. The low electricity rate and CO2 

emissions of grid utility make the alternative with A/WHP and PV system a suitable choice in 

STK. In contrast, the alternative with B/WHP and PV system became the appropriate energy 

system in SBK due to higher CO2 emission and grid electricity tariffs. The energy systems with 

the absorption chiller had minimum environmental impacts in cooling-dominant climates, QTA 

and JKT. 

Although the integration of PV, FPCs, and ground heat exchangers in the energy system 

reduced the cost of the utility grid, it also significantly increased the investment cost. The 

alternatives having GSHP required a significant investment, and consequently, the maintenance 

cost would also be high. The LCCA showed that air-to-air HP with no on-site generation was 

the best option in STK, QTA, and JKT. However, the energy system having air-to-water HP 

and the PV system was a good choice in SBK due to the high electricity rate and, therefore, the 

higher operating costs in the base case energy system. As far as the LCCA was concerned, the 

GSHPs were the least desired option in all climate zones. The LCOEel and LCOEth were 

computed using the five-year life cycle annualized cost. The LCOEel was strongly dependent 

on the grid utility rate. Thus, the optimal choice was the base case in locations with low utility 

rates like STK, QTA, and JKT. The high electricity rate in SBK made the alternative with 

A/WHP and PV an appropriate energy system. The alternatives with ASHPs and solar energy 

systems were associated with lower values of LCOEth. As a result, the best energy system 

concerning LCOEth was A/WHP with PV generation and hot water coil in all investigated 

locations. GSHP was a favorable HVAC system regarding energy consumption and operating 
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GHG emissions in cold climates. On the other hand, the absorption chiller with FPCs was a 

suitable option for energy efficiency and LCEs in warm or hot climates. 

Each EFI came up with a different alternative energy system w.r.t. other EFIs and locations. 

Selecting a BES configuration based on an individual EFI would result in subduing other EFIs. 

Therefore, choosing the BES based on the aggregated score of all EFIs was essential. The 

MCDM technique was applied using CRITIC and TOPSIS techniques to achieve this goal. The 

multi-criteria evaluation showed that the choice of suitable BES was quite different from the 

individual EFIs. It was also established that the selection of BES was strongly influenced by 

climate conditions, energy tariffs, and emissions during power production. According to the 

MCDM evaluation and sensitivity analysis, the energy systems with air-to-water HP + PV + 

radiator (STK), brine-to-water HP + PV + radiator (SBK), air-to-air HP + PV + FPC (QTA), 

and absorption chiller + PV + FPCs (JKT) were the most feasible BES in distinct locations. 

5.4.3 Energy flexibility by BES optimization 

The energy flexibility of the BES, identified by the MCDM process (reference scenario), was 

improved by a two-stage optimization approach. In the first stage (steady-state optimization), 

system and demand flexibilities were improved through MOO of BES design parameters, HP’s 

starting/stopping delays, and temperature set points. In the second stage (MPC-based 

optimization), an MPC-based dynamic control was employed on the BES, optimized by SSO, 

to continuously modulate temperature set points of the zone and window shading fraction. 

The optimization results showed a substantial flexibility potential in both SSO and MPC 

scenarios. EFIs of SSO were quite promising in heating mode, but the energy flexibility 

decreased in June. The BES was more flexible in the MPC scenario and performed better than 

the SSO scenario in the summer. However, the performance of BES in summer was optimum 

in the reference scenario. The critical aspect of the optimization framework was the design of 

an MPC-based dynamic control. The supervisory controller coupled the prediction model and 

optimization algorithm to determine the optimal control inputs. The predictive model was 

developed based on the dataset regarding the thermal load, boundary conditions, and control 

disturbances rather than the energy consumption profiles of a BES. The objective was to devise 

an MPC optimizer that could be employed on various energy systems for the reference building. 

The case study of MPC-based optimization illustrated the effectiveness of the proposed MPC 

model for improving demand flexibility. The heating power demand of the heat pump was 

61.2% less than the reference scenario and 44.2% less than the SSO scenario for January and 
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October. The low heating power demand resulted in increased storage capacity (CDF). Similarly, 

in these months, the residual load decreased by 25.4% and 14.3 % with reference and SSO 

scenarios. Moreover, the flexibility cost (72.25 €) and flexibility emissions (74.07 kgCO2eq) 

during January and October indicated the significance of the MPC-optimizer for demand 

flexibility. The high energy flexibility achieved in the MPC scenario established that the MPC 

model based on heating/cooling demand and boundary conditions could be employed on a BES. 
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6 Conclusions 

6.1 Summary of research 

The high energy consumption and GHG emissions in the household sector, particularly in 

HVAC applications, have comprehended the importance of identifying a flexible BES at the 

design stage. Previous flexibility assessment studies are focused on energy flexibility of generation, 

system, and demand domains of a specific system, independently. The flexibility assessment 

indicators are also limited to demand response flexibility. Further, the indirect flexibility indicators 

for cost and emissions are evaluated during the operation of the energy system without considering 

the embodied emissions and life cycle costs of energy supply and BES. This work has proposed a 

systematic optimization framework to evaluate the energy flexibility of multiple building energy 

systems from an integrated perspective of the energy system and flexibility indicators. A novel set 

of EFIs is proposed so that an energy system's energy flexibility potential can be calculated for the 

complete life cycle. The EFIs are defined for the building architectural design to the energy system 

selection and operation, resulting in the evaluation of flexibility in all three domains of generation, 

system, and demand flexibilities. 

Firstly, this study analyzed flexible thermal load against the optimized envelope design and its 

dependence on the climate. TRNSYS and Python-based NSGA-III were used for bi-objective 

optimization of a single-family household for twenty-four cities in twenty climate zones. The 

design variables of the optimization problem were insulation thickness of the envelope, window 

aperture angle, WWR, window shading fraction, radiation-based shading control, and 

orientation. The objective functions considered were the annual thermal load and the investment 

cost of insulation. An MCDM process was implemented through CRITIC and TOPSIS methods 

to find the best solution from the PFs. Even though the optimization reduced the thermal load 

in all investigated climates, it was more effective in the heating-dominant regions. Furthermore, 

it was observed that the weather conditions strongly influenced passive design parameters.  

The passive design optimization results showed that thermal insulations of the envelope and 

WWR were the most perceptive design parameters as they determine the household's solar gains 

and transmission gains or losses. A highly insulated envelope was required in climates of high 

heating or cooling load. Therefore, the EPS thickness on external walls had higher ranges in 

continental-cold, continental-war summer, dry-hot, and tropical climate zones. The rockwool 

thickness on the roof was larger in heating-dominant locations of continental and temperate 

climate zones. The dry-cold climate zone was associated with mixed climate conditions and 
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required a lower level of insulation. The windows in the south direction, which were exposed 

to sunlight for an extended period, tended to increase the solar gains in continental and 

temperate climates. Similarly, the optimal orientation was North in those climates enabling the 

façade with maximum WWR to face South. On the contrary, dry-hot and tropical climate zones 

were characterized by cooling-dominant loads, minimum WWR, higher window shading, and 

the South (expect tropical-monsoon) as the optimal orientation.  

In the second phase of the optimization framework, a set of fourteen energy system alternatives 

was defined as having different configurations of energy supply and HVAC systems. The 

energy systems were different combinations of the grid utility, PV with battery, FPCs, BHX, 

thermal energy storage, ASHPs, GSHPs, absorption chiller, radiator, and water coils. The EFIs 

of the alternatives were assessed by annual simulations of BESs and life-cycle analysis of costs 

and emissions. Although the EFIs provided an in-depth flexibility assessment of the energy 

system, the conflicting solutions from individual EFIs comprehended the MCDM approach for 

selecting the most suitable BES. Thus, the multi-criteria evaluation model used the flexibility 

assessment results to assign the weights of EFIs by the CRITIC weighting technique. Then, the 

TOPSIS method identified the most flexible energy system for a representative household 

building in four climates (severe cold, cold, mild, and hot). Finally, the stability of the MCDM 

results was assessed by creating five scenarios such that each scenario has different weights of 

EFIs. According to the MCDM results, the energy systems with air-to-water HP + PV + radiator 

(STK), brine-to-water HP + PV + radiator (SBK), air-to-air HP + PV + FPC (QTA), and 

absorption chiller + PV + FPCs (JKT) are the best options in the different locations. 

Lastly, the energy flexibility potential of the BES was assessed by steady-state optimization of 

design parameters and temperature modulation by an MPC-based dynamic control. The SSO 

was based on annual simulations, whereas three representative months, January (cold), June 

(hot), and October (mild), were considered in the MPC scenario.  

In SSO, the objectives were maximizing the primary energy ratio and minimizing the electricity 

demand of building service systems with constraints of thermal comfort level and fractional 

state of charge (FSOC) of battery storage. Thermal and electric storage capacities and borehole 

radius were the sources of system flexibility. Whereas mass flow rate of brine, starting/stopping 

delays, and temperature set points provided the demand flexibility. The annual assessments of 

EFIs indicated that the SSO strategy significantly improved the down-flex storage capacity and 

flexible energy throughout the year and, more prominently, during space heating. In contrast, 
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the residual load, operating cost, and operating emissions were higher than the reference 

scenario from May to October. 

In MPC-based optimization, the building thermal load and boundary conditions dataset was 

used to develop a predictive model, communicating in a loop with a genetic algorithm to decide 

the control inputs. The supervisory controller modulated the reference temperatures of local 

PID controllers for space heating/cooling and windows’ shading fraction to improve demand 

flexibility. The MPC optimizer significantly improved the demand flexibility in January, a 

month with high heating demand. On the other hand, the EFIs showed small flexibility potential 

in October, having low heating demand. In June, the residual load, operating cost, and operating 

emissions were higher than the reference scenario by a minimal value but lower than the SSO 

scenario. 

6.2 Key findings 

• The outcomes of this work provide comprehensive guidelines for the designers to make 

appropriate decisions about the household’s passive design according to the climate. 

Previous building energy standards in the investigated locations provide only the limiting 

thermal transmittance values for the building envelope. These results set a benchmark 

for selecting energy-efficient envelope parameters and respective thermal transmittance 

ranges in the investigated climates, which can be applied worldwide, eliminating the 

traditional energy analysis process. It should be noted here that the optimal parameters 

strictly rely on one another and would not indicate remarkable improvement in energy 

demand if implemented individually. 

• Selecting a flexible energy system in a location requires comprehensive flexibility 

indicators to understand the system performance and the interaction of its components 

rather than the individual performance criteria or operating characteristics. Since the 

choice of BES is strictly dependent on the local energy rates and associated GHG 

emissions, case-by-case evaluation should be conducted for energy system alternatives 

in each region. The outcome of this study could guide the energy system design for a 

household in different climates providing insight into energy flexibility. 

• The MPC can improve the energy flexibility of the BES without compromising thermal 

comfort. This study elaborates on designing a thermal load-based prediction model and 

its coupling with the optimization algorithm to tackle the MPC problems in the context 

of different energy systems. The findings of this paper establish that the dataset of 
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building thermal load, boundary conditions, and control disturbances can be used to 

develop an MPC-based dynamic control. That controller could be employed on different 

building service systems to achieve energy flexibility. 

6.3 Future work 

Some ideas for future research have come up from this research work. Building envelope 

optimization considered limited locations in each climate zone and did not perform statistical 

analysis to validate the research findings. Therefore, further research should be conducted to 

statistically analyze these design parameters by considering more locations in each climate 

zone. It is also suggested to consider the variability in the price and GHG emissions of grid 

utility in different climate zones for employing the MCDM for selecting BES. The extended 

research would test the reliability of the MCDM approach for grid utility attributes in a climate. 

Since the MPC-optimizer did not improve energy flexibility in the summer in a cold climate, 

the MPC-based optimization strategy could be applied on various BESs in different climates to 

assess the certainty of the employed strategy.  
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Appendix A 

 

Fig A1: Variability in thickness of EPS insulation in different climate zones 

 

 

Fig A2: Variability in thickness of rockwool insulation in different climate zones  

 

 

Fig. A3: Variability in window aperture angel in different climate zones 
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Fig. A4: Variability in WWR in different climate zones 

 

 

Fig. A5: Variability in solar radiation for shading control in different climate zones 

 

 

Fig. A6: Optimal household orientation in different climate zones 


