25,713 research outputs found

    Virtual Communication Stack: Towards Building Integrated Simulator of Mobile Ad Hoc Network-based Infrastructure for Disaster Response Scenarios

    Full text link
    Responses to disastrous events are a challenging problem, because of possible damages on communication infrastructures. For instance, after a natural disaster, infrastructures might be entirely destroyed. Different network paradigms were proposed in the literature in order to deploy adhoc network, and allow dealing with the lack of communications. However, all these solutions focus only on the performance of the network itself, without taking into account the specificities and heterogeneity of the components which use it. This comes from the difficulty to integrate models with different levels of abstraction. Consequently, verification and validation of adhoc protocols cannot guarantee that the different systems will work as expected in operational conditions. However, the DEVS theory provides some mechanisms to allow integration of models with different natures. This paper proposes an integrated simulation architecture based on DEVS which improves the accuracy of ad hoc infrastructure simulators in the case of disaster response scenarios.Comment: Preprint. Unpublishe

    Process-Based Design and Integration of Wireless Sensor Network Applications

    Get PDF
    Abstract Wireless Sensor and Actuator Networks (WSNs) are distributed sensor and actuator networks that monitor and control real-world phenomena, enabling the integration of the physical with the virtual world. They are used in domains like building automation, control systems, remote healthcare, etc., which are all highly process-driven. Today, tools and insights of Business Process Modeling (BPM) are not used to model WSN logic, as BPM focuses mostly on the coordination of people and IT systems and neglects the integration of embedded IT. WSN development still requires significant special-purpose, low-level, and manual coding of process logic. By exploiting similarities between WSN applications and business processes, this work aims to create a holistic system enabling the modeling and execution of executable processes that integrate, coordinate, and control WSNs. Concretely, we present a WSNspecific extension for Business Process Modeling Notation (BPMN) and a compiler that transforms the extended BPMN models into WSN-specific code to distribute process execution over both a WSN and a standard business process engine. The developed tool-chain allows modeling of an independent control loop for the WSN.

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Building accurate radio environment maps from multi-fidelity spectrum sensing data

    Get PDF
    In cognitive wireless networks, active monitoring of the wireless environment is often performed through advanced spectrum sensing and network sniffing. This leads to a set of spatially distributed measurements which are collected from different sensing devices. Nowadays, several interpolation methods (e.g., Kriging) are available and can be used to combine these measurements into a single globally accurate radio environment map that covers a certain geographical area. However, the calibration of multi-fidelity measurements from heterogeneous sensing devices, and the integration into a map is a challenging problem. In this paper, the auto-regressive co-Kriging model is proposed as a novel solution. The algorithm is applied to model measurements which are collected in a heterogeneous wireless testbed environment, and the effectiveness of the new methodology is validated

    Mobile Computing in Digital Ecosystems: Design Issues and Challenges

    Full text link
    In this paper we argue that the set of wireless, mobile devices (e.g., portable telephones, tablet PCs, GPS navigators, media players) commonly used by human users enables the construction of what we term a digital ecosystem, i.e., an ecosystem constructed out of so-called digital organisms (see below), that can foster the development of novel distributed services. In this context, a human user equipped with his/her own mobile devices, can be though of as a digital organism (DO), a subsystem characterized by a set of peculiar features and resources it can offer to the rest of the ecosystem for use from its peer DOs. The internal organization of the DO must address issues of management of its own resources, including power consumption. Inside the DO and among DOs, peer-to-peer interaction mechanisms can be conveniently deployed to favor resource sharing and data dissemination. Throughout this paper, we show that most of the solutions and technologies needed to construct a digital ecosystem are already available. What is still missing is a framework (i.e., mechanisms, protocols, services) that can support effectively the integration and cooperation of these technologies. In addition, in the following we show that that framework can be implemented as a middleware subsystem that enables novel and ubiquitous forms of computation and communication. Finally, in order to illustrate the effectiveness of our approach, we introduce some experimental results we have obtained from preliminary implementations of (parts of) that subsystem.Comment: Proceedings of the 7th International wireless Communications and Mobile Computing conference (IWCMC-2011), Emergency Management: Communication and Computing Platforms Worksho
    • …
    corecore