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Abstract In cognitive wireless networks, active monitoring of the wireless
environment is often performed through advanced spectrum sensing and net-
work sniffing. This leads to a set of spatially distributed measurements which
are collected from different sensing devices. Nowadays, several interpolation
methods (e.g. Kriging) are available and can be used to combine these mea-
surements into a single globally accurate radio environment map that covers a
certain geographical area. However, the calibration of multi-fidelity measure-
ments from heterogeneous sensing devices, and the integration into a map is
a challenging problem. In this paper, the auto-regressive co-Kriging model is
proposed as a novel solution. The algorithm is applied to model measurements
which are collected in a heterogeneous wireless testbed environment, and the
effectiveness of the new methodology is validated.

Keywords Radio environment maps · Wireless experimentation · Kriging ·
Multi-fidelity modeling

1 Introduction

A reliable connectivity for wireless services that have stringent QoS require-
ments is often compromised by the saturation of the wireless radio spectrum.
Due to the uncoordinated use of the unlicensed frequency bands (2.4 GHz and
5 GHz) by various wireless technologies and devices, the adverse effects of in-
terference are becoming increasingly important and can no longer be neglected.
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Over the past years, cognitive radio techniques have been developed to ensure
efficient interoperability of heterogeneous systems through advanced monitor-
ing of the wireless environment, and the optimization of network configura-
tions through cognitive decision making [1]. To this end, Radio Environment
Maps (REMs) contain a lot of information as they represent an integrated
database that provides real-time information concerning, e.g., spectrum avail-
ability, regulations or policies, and the degree of channel utilization [2]. In
terms of spectrum utilization, REMs have been proposed to measure power
spectral density (PSD) in order to determine the degree of spectrum utilization
in a certain geographical area. These models are typically calculated from a set
of distributed measurements and spatial interpolation techniques are applied
to build an approximation model that estimates the corresponding values at
arbitrary spatial coordinates. Several algorithms to calculate a REM have been
studied previously, such as splines, Kriging, probabilistic models, Shepard’s in-
terpolation and Inverse Distance Weighting [3]. Kriging is reported to achieve
a good performance in terms of overall prediction accuracy and generality [4].
In addition to PSD maps, other authors present so-called channel gain maps,
that capture information about the propagation medium [5]. In [6], the use
of medium utilization is proposed as a metric to be included in the REMs
dedicated for wireless LANs. In [7], REMs have been used for intelligently
guiding spectrum access for deployment of a prototype of a Long Term Evo-
lution (LTE) system that opportunistically exploits the spectral white spaces
in the upper Ultra High Frequency (UHF) TV bands.

This paper will focus on building REMs for measurements that originate
from heterogeneous spectrum sensing devices on a wireless testbed. It is noted
that each type of device may have its own processing and hardware capabilities
in terms of detection mechanisms, sweeping time and data accuracy [8]. Also in
[9], it is mentioned that the calibration of such measurements and integration
into a REM involves a lot of challenges. The different sensing devices that will
be considered in this work are subdivided into two categories. The USRP and
IMEC sensing engines are considered to be high-fidelity (HF) devices which
come at a higher production cost, but offer superior energy detection capa-
bilities leading to very accurate measurements. The low-fidelity (LF) sensing
devices such as Wi-Fi are considered to be low-cost and provide less accurate
measurements because their sensing solutions are not as advanced. In order
to combine these different types of data into a single globally accurate REM,
the use of the autoregressive co-Kriging model [10] is presented as a novel
approach. First, the densely sampled LF data is used to determine a trend
function which is then corrected by the sparsely sampled HF data. An inde-
pendent data set, based on additional measurements, is then used to validate
the accuracy of the model and to assess how well its predictions cover the
overall environment.

The paper is structured as follows: in Section 2, a spatial modeling algo-
rithm is presented which explains how a single model can be calculated from
measurement data with different levels of fidelity. In Section 3, a brief descrip-
tion of the w-iLab.t testbed is given - a large scale wireless testbed where
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all the measurements are performed. In Section 4, more details are provided
about the different spectrum sensing devices installed in the testbed. In Sec-
tion 5, a practical application example of the novel technique is considered and
the approach is validated experimentally. Finally, conclusions are provided in
Section 6.

2 Spatial Modeling Algorithms

In order to build spatially-interpolated REMs, several mathematical algo-
rithms can be considered [3] to model the measurement data. This paper
will focus on a Kriging-based approach, which it is reported to achieve good
performance in terms of prediction accuracy and generality [4]. First, a brief
recap of the Kriging algorithm is presented in Section 2.1. Then, the use of
the co-Kriging algorithm will be advocated in Section 2.2 as a novel approach
to build REMs by combining data from sensing devices having different levels
of fidelity.

2.1 Kriging Interpolation

A well-known technique in surrogate modeling is Kriging [11,12]. Kriging sur-
rogate models are also known as Gaussian Processes (GP) [13] or Gaussian
Random Fields [14]. Originally proposed by Krige [15], Kriging was popular-
ized for the Design and Analysis of Computer Experiments (DACE) by Sacks
et al. [16], where it has proven to be very useful for tasks such as optimization
[17,18], design space exploration, visualization, prototyping, and sensitivity
analysis [19,20]. For a full survey of Kriging the reader is referred to [12]
and [13]. In this section a summary is given of the most important aspects of
Kriging, and a brief explanation is given on how to build a REM.

Let X = (x1,x2, . . . ,xn) be a base set of n spatial coordinates and fe(X)
the associated expensive measurements (HF). Kriging first fits a constant re-
gression function on the data and, subsequently, constructs a GP through the
residuals. The idea is that the regression function captures the largest vari-
ance in the data, while the GP takes care of the finer details and the final
interpolation. This is reflected in the Kriging interpolant which is derived as,

f̂(x) = α+ r(x) · Ψ−1 · (fe(X)− 1α), (1)

where 1 is a column vector of ones. The coefficients of the regression function,
i.e., the vector α, are determined by generalized least squares,

α = (X ′Ψ−1X)−1XΨ−1fe(X). (2)
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r(x) =
(

ψ(x,x1) . . . ψ(x,xn)
)

is an 1 × n vector of correlations between the
point x and the base set X , and Ψ is a n× n correlation matrix given by,

Ψ =







ψ(x1,x1) . . . ψ(x1,xn)
...

. . .
...

ψ(xn,x1) . . . ψ(xn,xn)






(3)

Moreover, Kriging also predicts the approximation error (prediction variance)
at each location in the environment, also where no measurements have been
performed. The approximation error is zero in the data points themselves, as
Kriging interpolates all data.

The regression function actually operates as the mean of the GP: pre-
dictions too far from existing measurement points (e.g., outside the sampled
region) will revert to the mean (=regression function). As the behavior of the
response is usually unknown, a popular choice that works well is the constant
regression function as explained further on. However, in this case Kriging is
purely an interpolation technique (in contrast to extrapolation). By using prior
knowledge or other techniques (e.g., blind Kriging [21]) one may identify basis
functions (linear, quadratic, etc.) to use in the regression function, enabling
Kriging to extrapolate outside the sampled environment. This is especially
useful for problems with missing data, i.e., in cases where there exist large
gaps in the environment because no sensing devices are installed or available.

The choice of correlation function is crucial to create an accurate Kriging
surrogate model. The popular (squared) exponential correlation functions are

defined by ψ(x,x′) = exp(−
∑d

i=1
θi|xi − x′i|p). These correlation functions

are called stationary because the correlation function only depends on the
distance between the two points x and x′. The smaller the distance between
two points, the higher the correlation and, hence, the more the prediction of
one point is influenced by the other. Similarly, if the distance increases the
correlation drops to zero.

The rate and the manner at which this happens are governed by several
parameters. In essence, the parameter p determines the ‘smoothness’ of the
prediction, see Figure 1a. A value of p = 2 leads to a smooth prediction, but
also has strict smoothness requirements on the response fe(x). With a smaller
value of p the correlation decreases much faster as the two points move farther
from each other, which is suitable for more sharp (discontinuous) responses.

Often, the parameter p is set to two, also known as the Gaussian correlation
function, which is suitable for many problems. However, the Matérn class of
correlation functions is a more realistic choice for real-life problems [22] and is
considered in this work over the commonly used Gaussian correlation function.
The Matérn class of correlations functions is observed to model rough surfaces
more accurately than the Gaussian correlation function on various occasions.
Two instances of the Matérn correlation functions are defined by,

ψ(x,x′)ν= 3

2

=
(

1 +
√
3l
)

exp
(

−
√
3l
)

, (4)
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Fig. 1: Examples of one-dimensional correlation functions: a) the exponential
correlation function with varying parameter p for θ = 0.1 b) the exponen-
tial correlation function with varying parameter θ for p = 1 c) the Matérn
correlation function with varying parameter θ for ν = 3

2
.

ψ(x,x′)ν= 5

2

=

(

1 +
√
5l +

5l2

3

)

exp
(

−
√
5l
)

, (5)

with l =

√

∑d

i=1
θi(xi − x′i)

2. The parameter ν of the Matérn correlation

functions has a similar role as the p parameter. Usually both parameters are
fixed and in this work ν is set to 3

2
.

The second set of parameters,
(

θ1 . . . θd
)

, describes the influence sphere
of a point on nearby points for each dimension, see Figure 1b and 1c. This
is useful as it describes the linearity of the response and, hence, can be used
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Fig. 2: Kriging and co-Kriging applied to a 1-dimensional mathematical ex-
ample f(x) having a normalized input coordinate x. Co-Kriging interpolates
the expensive model response and is further corrected by the cheap model
response.

to identify relevant variables. The parameters
(

θ1 . . . θd
)

are identified using
Maximum Likelihood Estimation (MLE). In particular, we minimize the neg-
ative concentrated log-likelihood,

− ln(L) ∼= −n
2
ln(σ̂2)− 1

2
ln(|Ψ |), (6)

where σ̂2 = (fe(X) − 1α)′Ψ−1(fe(X) − 1α)/n. Note that the application of
Kriging is primarily limited by the size of the dataset. The number of samples
has a direct impact on the correlation matrix which grows quickly as the
number of samples increases. As the inverse of the correlation matrix needs
to be computed many times during the MLE, Kriging is typically used for
datasets with less than 1000 samples. Because the number of sensing devices
in a testbed is usually limited (< 100 samples), the computation time is merely
a matter of seconds which makes it a suitable aid for visualization and real-
time decision making.

2.2 co-Kriging Interpolation

The popularity of Kriging has generated a large body of research, includ-
ing several extensions to Kriging to handle different problem settings, e.g.,
by adding gradient information in the prediction [23], or by approximating
stochastic simulations [24], etc. Co-Kriging is a natural multi-response exten-
sion to Kriging and allows to incorporate both expensive (i.e. high-fidelity, HF)
and cheap (i.e. low-fidelity, LF) measurements from heterogeneous sensing de-
vices in order to build accurate REMs [25]. In this paper the autoregressive
co-Kriging model of Kennedy et al. [10] is adopted.
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Creating a co-Kriging model can be interpreted as constructing two Kriging
models in sequence. First a Kriging model f̂c of the cheap data (Xc, fc(Xc)) is

constructed. Subsequently, the second Kriging model f̂r is constructed on the
residuals of the expensive and cheap data (Xe, fr), where fr = fe(Xe) − ρ ·
fc(Xe). The parameter ρ is included in the MLE of the second Kriging model.
If the response values fc(Xe) are not available, they can be approximated by

the first Kriging model f̂c, namely, fc(Xe) ≈ f̂c(Xe).
Note that the configuration (choice of correlation function, regression func-

tion, etc.) of both Kriging models can be adjusted separately for the cheap
data and the residuals, respectively.

The final co-Kriging model is built upon the two Kriging models. Namely,
the co-Kriging interpolant is defined similarly as (1),

f̂(x) = Ṁα+ ṙ(x) · Ψ̇−1 · (fr − Ḟα), (7)

where the block matrices Ṁ , Ḟ , ṙ(x) and Ψ̇ can be written as a function of

the two underlying Kriging models f̂c and f̂r:

ṙ(x) =
[

ρ · σ̂2

c · rc(x), ρ2 · σ̂2

c · rc(x, Xe) + σ̂2

r · rr(x)
]

, (8)

Ψ̇ =

[

σ̂2

c · Ψc ρ · σ̂2

c · Ψc(Xc, Xe)
0 ρ2 · σ̂2

c · Ψc(Xe, Xe) + σ̂2

r · Ψr

]

, (9)

Ḟ =

[

1 0
ρ · 1 1

]

, Ṁ =
[

ρ 1
]

, (10)

where (σ̂2

c , Ψc) and (σ̂2

r , Ψr) are matrices obtained from the Kriging models f̂c
and f̂r, respectively (see Section 2.1). In particular, σ̂2

c and σ̂2

r are process vari-
ances, while Ψc(·,·) and Ψr(·,·) denote correlation matrices of two datasets with
the optimized

(

θ1 . . . θd
)

parameters and correlation function of the Kriging

models f̂c and f̂r, respectively. The block matrix is the crucial part of co-
Kriging, as it is here that the correlation between the cheap and expensive
model data is taken into account.

Similarly to Section 2.1, we choose the Matérn correlation function with
ν = 3

2
for the underlying Kriging models, f̂c and f̂r. For illustration purposes,

Kriging and co-Kriging are applied to a mathematical example, see Figure 2.
Using the same expensive data, co-Kriging is able to capture the behavior of
the environment better than Kriging, which is attributed to the use of the
additional cheap sensing data.

3 Wireless Testbed Facility (w-iLab.t)

The w-iLab.t testbed is a generic and heterogeneous wireless testbed that is
used for experimental testing and validation. It consists of two sub-testbeds:
the w-iLab.t office and w-iLab.t Zwijnaarde. The w-iLab.t office is deployed
in a real office environment whereas the testbed Zwijnaarde is located in a
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Fig. 3: Topology of the w-iLab.t Zwijnaarde testbed.

utility room. There is little external interference at the Zwijnaarde testbed
as no regular human activity is present and most of its walls and ceiling are
covered with metal. Since Zwijnaarde testbed was deployed more recently,
the devices in this testbed are more advanced in terms of processing power,
memory and storage [26,27].

In this work, all experiments are performed at the Zwijnaarde testbed.
There are 60 Zotac nodes installed, each having two Wi-Fi interfaces, one sen-
sor node, one Bluetooth dongle and a wired control interface. Furthermore,
the testbed is equipped with several types of spectrum sensing devices. These
include 6 USRP N210 Software Defined Radios [28] and 7 IMEC Sensing En-
gines [29]. The testbed is also equipped with mobile nodes which are suited
for mobility experiments. The OMF (cOntrol and Management Framework)
was adopted, as it allows experimenters to describe their experiments system-
atically. It provides easy data logging services and the ability to configure
multiple devices. The topology of the testbed is presented in Fig. 3.

4 Heterogeneous Sensing Devices

In this section, the capabilities of three different sensing devices is briefly
presented. As explained below, the Wi-Fi nodes are considered to be LF nodes
whereas USRP and IMEC Sensing Engines are seen as HF information sources.

4.1 Wi-Fi nodes (LF nodes)

The monitor mode of the IEEE 802.11 standard [30] enables the wireless ter-
minal to trace the spectrum activity on the channel it is configured to. More
precisely, the receiver of the wireless terminal sniffs all IEEE 802.11 packets
that are detectable, regardless of the packet source and destination address. In
this way, the terminal can gather information on the present Wi-Fi traffic by
means of packet sniffing applications such as tcpdump [31] and libtrace [32].
The radio tap header of the Wi-Fi packets contains link layer information of
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the received packets, such as Received Signal Strength Indicator (RSSI), Link
Quality Indicator (LQI), packet length, receiving antenna, transmission rate,
and other parameters.

Thanks to the increasing utilization of Wi-Fi technology in smart devices,
the cost of Wi-Fi interfaces has been declining. This makes Wi-Fi sniffing
a promising solution for spectrum monitoring in cognitive radio networks.
However, this type of spectrum monitoring is limited to homogeneous traffic,
i.e. technologies other than Wi-Fi are excluded from the detection results.
Moreover, if the processing capacity of the sniffer terminal is not commensurate
with the rate of sniffed traffic, it is likely that the terminal drops some packets
which will introduce uncertainties to the fidelity of the measurements.

4.2 USRP Sensing Engine (HF nodes)

The Universal Software Radio Peripheral (USRP) [28] is a Software Defined
Radio (SDR) platform maintained by National Instruments. It consists of two
parts - a fixed motherboard and a removable daughterboard. The motherboard
contains an Analog-to-digital converter (ADC) a digital-to-analog converter
(DAC), a field-programmable gate array (FPGA) for digital down sampling
and an interface connected to a host computer. The daughterboard provides
the RF front-end functionality. There are many third-party software platforms,
such as GNU Radio [33] and Iris SDR platform [34], which can communicate
with the USRP. Thus, spectrum sensing applications can be implemented in
many ways. In our case, the sensing algorithm is FFT-based energy detec-
tion, implemented directly above the USRP hardware driver (UHD) [35]. The
application uses multi-threading to increase the processing speed on the host
machine. On the hexa-core server in w-iLab.t, seamless FFT operation of 25
Msps can be achieved in real time [36], which ensures that no transient signal
is missed from the detection.

4.3 IMEC Sensing Engine (HF nodes)

The IMEC Sensing Engine is an integrated sensing device developed by IMEC,
an interuniversity micro-electronics center [29]. The design of IMEC Sensing
Engine targets on low-power and hand-held devices. Hence it is powered and
configured over a single USB connection. Similar to USRP, it has configurable
gain settings and a separate PCB for the RF front-end functionality. The imec
sensing engine has a very wide RF frequency range (from 100 MHz up to
6 GHz) and a programmable instantaneous bandwidth between 1 MHz and
40 MHz. Additionally, it uses a dedicated IC for signal processing instead
of using the host computer. There are several pre-defined modes in the IC,
including sensing based on FFT and sensing based on fast sweeping over a set
of consecutive RF frequencies.
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Fig. 4: Topology of the w-iLab.t testbed and sensing devices (training data).

5 Application of co-kriging for building REMs

In this example, it is shown how a comprehensive REM can be built from
received signal strength indicator (RSSI) values, which are measured by a het-
erogeneous set of sensing devices. The setup that was considered is a typical
scenario of two IEEE 802.11 standard compliant nodes, operating in infras-
tructure mode with 802.11g standard and generating active traffic on Uplink.
We refer to these two nodes as the System Under Test (SUT). The sender node
13 will directly transmit iPerf data to the receiver node 15 on IEEE 802.11g
channel 6 over a short time period of 10 seconds. During the course of traffic
generation, all sensing devices collect their measurements into a centralized
database. These measurements originate from Wi-Fi nodes, hereby acting as
LF information sources, operating on monitor mode and on channel 6. These
Wi-Fi agents store the RSSI field of all packets they sniff. Aside form this,
the other sensing devices (USRP nodes and IMEC sensing engines) collect
HF measurement data at a sparser set of locations. Note that these devices
store the power spectral density of all IEEE 802.11 channels into the database.
The topological setup of the sensing devices is shown in Fig. 4. Once all mea-
surements are collected, the maximum value of stored values is queried at
their corresponding node locations on channel 6. By performing these testbed
experiments, a total amount of 8 HF and 14 LF data samples have been col-
lected to build a spatially-interpolated REM using co-Kriging with the Matérn
correlation function.

All the HF data samples are shown in Fig. 5 as solid black dots (•), whereas
the LF data samples are marked as black asterisks (∗). The surface inbetween
these data samples represents the RSSI values which are predicted by the
co-Kriging model at arbitrary coordinates in the plane. As can be seen, the
model exactly interpolates the HF data whereas the trend of the function is
determined by the LF data. This result is also confirmed by Fig. 6, which
shows a scatter plot of the predicted and the observed RSSI values. It is seen
that predictions at the coordinates of the HF sensing devices matches exactly
the HF measurement data, whereas the LF data samples are biased within a
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Table 1: A summary of accuracy metrics of the co-Kriging model.

Data set NRMSE SROCC PLCC
HF training 0.0000 1.000 1.000
LF training 0.1996 0.507 0.624
LF validation 0.2454 0.677 0.688

range of approximately ±10 dB. This deviation matches with the stochastic
variability (noise level) of the testbed environment.

In order to validate the accuracy of the model predictions on unseen data,
an independent validation set of LF data was measured at different coordi-
nates as shown in Fig. 7. This validation set consists of 19 additional LF
measurements, based on another run of experiments which was performed at
a later time. As shown in Fig. 6, the predicted RSSI values and the observed
measurements in the validation set (+) show a good agreement. This shows
that the co-Kriging model is quite accurate as the absolute fitting error lies
within the range of ±10 dB for most of the validation data points. A more
extensive summary of these results is presented in Table 1, where the Normal-
ized Root Mean Square Error (NRMSE), Spearman’s Rank-Order Correlation
Coefficient (SROCC) and Pearson Linear Correlation Coefficient (PLCC) are
compared for both the training and the validation set. The latter metrics quan-
tify the statistical dependence between the observed and the predicted RSSI
values, more specifically the correlation between both variables and their rank.
A strong correlation is observed, as most coefficients are substantially higher
than 0.5. Of course, a perfect correlation is observed for the HF data as it is
interpolated exactly. Moreover, in order to show the feasibility of the variable
fidelity data modeling with co-Kriging over the single fidelity data modeling
with Kriging, both the HF and the LF data are independently modeled by
Kriging. Table 2 shows a summary of accuracy metrics of the Kriging models
built with either LF data or HF data only. It can be observed that more than
30% of accuracy reduction is exhibited in the Kriging models built with either
LF data or HF data only as compared to the co-Kriging models built with
both the LF and the HF data (see Table 1 and Table 2). This clearly shows
the advantage of why one can go for co-Kriging over Kriging when a variable
fidelity data is available.

Table 2: A summary of accuracy metrics of the Kriging model.

Data set NRMSE SROCC PLCC
Training Validation
HF only LF validation 0.4427 0.3502 0.3015
LF only HF 0.3020 0.7306 0.6571

As the choice of the correlation function is important for successful model-
ing in co-Kriging, three different correlation functions which are more widely
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used in the context of surrogate modeling are compared. They are the Gaussian
correlation function, Matérn 3

2
correlation function and Matérn 5

2
correlation

function. All the three correlation functions are observed to be equally capa-
ble of providing accurate REM models (see Table 3 which shows a summary
of accuracy metrics of the co-Kriging models built with different correlation
functions). But, with a close observation, one can see that the Matérn 3

2
cor-

relation function results in a slightly more accurate REM model than the
other correlation functions employed. This is essentially due to the fact that
the Gaussian correlation function is infinitely differentiable and is thus very
smooth [22]. This smoothness assumption is considered to be unrealistic in
real-life data and the Matérn class of correlation functions effectively models
such not-so-smooth real-life data [22]. Readers are referred to [13] and [22] for
more information on various correlation functions which are commonly used
in Kriging-based surrogate modeling.

Table 3: Performance of different correlation functions in co-Kriging model.

Correlation Data set NRMSE SROCC PLCC
function
Gaussian LF validation 0.2629 0.615 0.674
Matérn 3/2 LF validation 0.2454 0.677 0.688
Matérn 5/2 LF validation 0.2578 0.645 0.668

Finally, a heat map of the predicted RSSI values is visualized in Fig. 8
using the proper aspect ratio, which facilitates a direct comparison with the
topology layout of the testbed in Fig. 4. As expected, it can be seen that the
RSSI values are elevated in regions where the traffic generator link is situated.
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6 Conclusions

This paper presents co-Kriging as a novel methodology to build REMs, based
on measurements from heterogeneous sensing devices. It generalizes the exist-
ing work on Kriging, in a sense that the different fidelity levels of data can be
taken into account. As demonstrated in the example, HF measurements are
expensive to obtain so this data is modeled with a very high accuracy. The LF
measurements are easier to collect and can be used to guide the trend of the
approximation model at inbetween spatial coordinates. The resulting model
can be used to build a heat map which visualizes spectrum information and
can serve as a monitoring tool that facilitates cognitive decision making.
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